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1 Introduction

This paper is concerned with regularity of solutions for an abstract parabolic
type equation;

) = Au(t) + f(t), te€(0,T], (1.1)

u(0) = ug

Let @ be a bounded domain in R™ with smooth boundary 0f€2. Let

A(x, D,) be an elliptic differential operator of second order as follows:

n

Alw. D)= <Y a5 )+ Yo bln ol +cle)

4,j=1 i=1

where {a;;(z)} is a positive definite symmetric matrix for each = € (,

b € CY(Q) and ¢ € L>(Q).

If we put that Au = =A(z, D,)u then it is known that A generates
an analytic semigroup.in W~17(Q) where W='2(Q) is the dual space of
Wy (Q),p = p/(p =1) asis seen in [1]- Therefore, from the interpola-
tion theory. First, we will prove that the operator A generates an analytic
semigroup in Hy, = (Wo?, W) 1/00.

If — A is the infinitesimal generator of an analytic semigroup in a complex
Banach space X, we find that in general it is false that problem (1.1) has a
solution u € W'(0,T; X)NL?(0,T; D(A)) in case f € LP(0,T; X). Asin Da

Prato and Grisvard [6](also see [18, 4]), we can obtain L2- regularity for the
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strong solutions, while in the Hilbert space setting. Moreover as the better
result in [5], if X is (-convex, we also obtain LP(p > 1)-regularity results for

solution of (1.1) mentioned above.

Concerning (-convex Banach space, we recall that every Hilbert space
is (-convex. Cartesian products and quotients of (-convex spaces are (-
convex. By proving that A is an isomorphism from W,”(Q) onto W~P(Q)

and W, " (), and W—17(Q) are (-convex spaces, it is easily seen that H,, is

also (-convex.

In view of Sobolev’s embedding theorem, we remark that L' (Q2) c W=12(Q)
if 1 < p<mn/(n—1)asisseen in [5]. Hence, we can investigate the sys-
tem (1.1) in the space W~1?(Q). Furthermore, it is known that W=17(£2)
is (-convex and the initial value problem (1.1) has a unique solution u €
L0, T; Wy () n Wh4(0, T; W—1P(Q)) for any uy € H,, and f € LI(0, T;
W=17(Q)) (see Theorem 3.1 in [5]). Thereafter, we can apply the method of

Dore and Venni [5] to the system (1.1) to show the existence and uniqueness

of the solution

u € LU0, T; Wy (AW (0, T; W=R(Q)) C C([0,T1; Hp,g)-



2 Notations

For an integer m > 0, C"™(€2) is the set of all m-times continuously differential
functions on Q. For 1 < p < oo, W™P(Q) is the set of all functions f = f(z)
whose derivative D*f up to degree m in distribution sense belong to L?(2).

As usual, the norm is then given by

3 =

1 f1lmp, = (Y 1D £I[2)

) 1 S p < 00, ||f||m,oo = InaXHLauHOCM
a<m
a<m

where D°f = f. In particular, W%(Q) = LP(Q) with the norm || - ||,. Let
p =p/(p—1), 1 <p < oo. W-P(Q) stands for the dual space Wol’p’(Q)* of
W, ? (Q) whose norm is denoted by || - || 1.

For a closed linear operator of A in some Banach space, p(A) denotes the
resolvent set of A. If X is a Banach space and the notation (-,-)x~ x is the

duality pairing between X* and X.

LP(0,T; X) is the collection of all strongly measurable functions from
(0,7) into X the p-th powers of norms are-integrable. C™([0,7]; X) will
denote the set of all m-times continuously differentiable functions from [0, T’

into X.

If X and Y are two Banach spaces, B(X,Y) is the collection of all
bounded linear operators from X into Y, and B(X, X) is simply written as
B(X). For an interpolation couple of Banach spaces Xy and X7, (Xo, X1)o,p
and [Xy, X1]s denote the real and complex interpolation spaces between X

and X7, respectively.



3 Elliptic boundary value problem in W~1*(Q)

Let 2 be a bounded domain in R™ with smooth boundary 0. Consider the
following elliptic differential operator of second order with real and smooth

coefficients:

Alw.D,) = = 3 Soss(a) )+ S bl +clo)

,j=1

where {a, ;(x)} is a positive definite symmetric matrix for each z € Q. The

operator

is the formal adjoint of A.

For 1 < p < oo, we denote the realization of A in LP?(Q2) under the
Dirichlet boundary condition by A,:
D(A;) = WHP(Q) Wy ™(O)s (3.1)

Ayju =Au—for —u € D(A,).

For p' = p/(p — 1), we can also define the realization A’ in L (Q2) under

Dirichlet boundary condition by A;,:

D(A) = WP () N WP (),

A;)/'U = A/'U fOI' NS D(A;)/)



It is known that the adjoint operator of A, considered as a closed linear

operator in LP(£2) coinside with A;,:
A=A,

and —A, and —A;D/ generate analytic semigroups in LP(2) and Lp/(Q),
respectively[[19], section 7.3]. For the sake of simplicity we assume that the
closed half plane {\ : ReA < 0} is contained in p(A4,) N p(A;D,), hence in
particular 0 € p(4,) N p(A;,), by adding some positive constant to A if
necessary.

In what follows we make D(A,) and D(A;),) Banach space endowing them
with graph norm of A, and A;)/, respectively; Since D(A;),) and W, ” / (Q) are

dense subspaces of W, ? (Q) and rr (), respectively, we may consider that

D(Ay) € W, Q) € LP(Q) & W1P(Q) € DA .

’
/
p

Lemma 3.1 Let (A;?,)’ be the adjoint operator: A;,. Then (A;,)/ is an isomor-

phism from LP(S2) to D(A;,)* and the restriction of(A;,)’ to D(A,) coincides

with A,.

Proof. For any f € LP(Q2) and v € D(A;,), we have
((Ap/),f’ ’U)D(A;/)*vD(A;/) =(f AP/U)L”(Q%LP, @)’

5



So, due to 0 € p(A;,), we have that (A;,)’ is an isomorphism from LP(Q2) to
D(A,)". If f € LP(Q) and v € D(A,), then
<(Apl>,u7 U)D(A//)* D(A//) - (u’ APIU)LP(Q),LP/ () - (Apu’ U>D(A;/)*7D(A;/)‘

This implies that the restriction of (A;,)’ to D(A,) coincides with 4,. O

Lemma 3.2 Let A be the restriction of (A;,), to WyP(Q). Then the opera-
tor A is an isomorphism_from WeP(Q) to W=2(Q). Similarly, we consider

that the restriction A’ of (A,)" € B(LPI(Q),D(AP)*) to WOI’pI(Q) is an iso-

!

morphism from Wy (Q) to W_l’p/(Q).

Proof. From the result of Seeley [11] (see also Triebel [[15], p. 321], [3])

we obtain that
[D(ANLP( Q)12 = Wy (), (3.2)

7 /

DAL (e =™ (). (3.3)

o
Regarding the dual spaces, from (3.3) it follows that

’ ’ /

[L7(Q), D(A,)"T1j2 = [D(A,), L7 ()]} ) = WHP(Q).

This, together with 0 € p(A;,), implies that the operator A is an isomorphism

from Wy?(Q) to W=17(Q) by the interpolation theory. O
0



It is not difficult to see that, for u € W, ?(Q) and v € Wy (Q), Au = Au
and A'v = A’v, both understood in the distribution sense, and

(Au,v) = a(u,v) = (u, A'v) (3.4)

+ c(z )u@} dx.

where a(u, v) is the associated sesquilinear form:

= (9u R
a(u,’u):/Q{Z(a 8x18xj ;b

ij=1
The following results are from Section 3 in Jeong [8].
Lemma 3.3 The operators = A and A’ generate analytic semigroups in
W=r(Q) and W‘l’p/(Q), respectively. Furthermore, the inequality
H(ﬁ)“HB(W—Lp(Q)) <Ml oo < 5 < o0y (3.5)

holds for some. constants C >0 and 7y € (0,7/2).

For any ¢ € (1,00), we set

Zpq = (D(4p), LP(Q»l/q,q’ Hy,q = (W017p<Q)a Wﬁl’p(Q»l/q,q' (3.6)
Remark 3.1 Concerning (-convexr Banach space, we recall that every Hilbert
space is (-convex. Cartesian products and quotients of (-convex spaces are

(-convezr. If (X,Y) is an interpolation couple spaces of (-convez spaces,



(X,Y)p, with 1 < p < oo and [X,Y ]y are (-conver. Moreover, if X is
(-conver and 1 < p < oo then every LP space of X-valued functions is (-
convex(see [19, 17] and the bibliography therein). Since A is an isomorphism
from WyP(Q) onto W—P(Q) and W, P(Q) and W=5P(Q) are -convez spaces.

From the interpolation theory and definitions of the operator AV, it is easily

seen that H,, and Z,, are also (-convex.

Proposition 3.1 The operators ~A and —A' generate analytic semigroups
in Hyq and Hy o, respectively.
Proof. By lemma 3.3, since —A, and —A generate analytic semigroup in

LP(Q) and W~'P(Q), respectively, there exists an angle v €(0, ) such that

Y= {A{y<arg) < 21—} € p(4,) N p(A), (3.7)
1O — AN lss@y SCHAL Ae s, (3.8)
A = A sw-1a@) < C/IN, A€ (3.9)

In view of (3.8)

<

HAp(/\ - Ap>71u”p =[|(A— Ap>71Apu||p < A

[ Apullp,

for any u € D(A,), we have

@

o (3.10)

A = Ap) B, <



From (3.8) and (3.10) it follows that

~_ C
[(A—A) 1HB(W01’p(Q)) < W (3.11)

and, hence from (3.10), (3.11) and the definition of the space H,, we have

that

C

1O = A s < 7
R PY

Therefore we have shown that —A generates an analytic semigroup in H,,.

|

Proposition 3.2 There exists a constant C > 0-such that
4% | Bear,, ) < CePhs € R,

where 7 is the constant in (3.7).

Proof. From Theorem 1 of Seeley [10] and Proposition 3.2 of Jeong [§]

there exists a constant-C >0 such that

A || 5o )< €, (3.12)

||ge+is||B(W*1’P(Q)) < 067|s>’|7 (3.13)
for any s € R and € > 0. From (3.12) it follows

(A | B(p(a,) < Cell, (3.14)



and hence, from (3.12) and (3.14) we obtain
HAE—HSHB(WOLP(Q)) < Cel. (3.15)
Hence from (3.5), (3.14) and (3.15) we have shown that
||;{E+is||B(Hp’q) S C’e“"sl.

So the proof is complete. O

Remark 3.2 Propositions 3.1, 8.2 say that FA generates analytic semigroup

{etﬁ :t > 0} in Hpy as well as in W—1P(Q).- Hence we may assume that

there is a constant My > 0.such that

e pEe@) < Mos e, ) < Moy |le"||sow-1r@) < Mo.

From now on, in virtue of-Proposition 3.1, 3.2, we study such a simple

initial value problem in: W =*(Q) or'in H,, as

u'(t) + Au(t) = f(t), t>0, (LE)

u(0) = up.

Remark 3.3 If —A is the infinitesimal generator of an analytic semigroup in
a complex Banach space X, we find that in general it is false that problem (LE)
has a solution uw € W(0,T; X) N LP(0,T; D(A)) in case f € LP(0,T; X).

10



As in Da Prato and Grisvard [19](also see [18, 4], section 5.5 of [12]), we
can obtain L*- reqularity for the strong solutions, while in the Hilbert space
setting. Moreover as the better result in [5], if X is (-convex, we also obtain

LP(p > 1)-regularity results for solution of (LE) mentioned above.

From Theorem 3.5.3 of Butzer and Berens [2] we obtain the following

result.

Lemma 3.4 For any 1 < p and q € (0,00), we have
T o~
Zpq = (D(Ap), E(Q))1/qq =12 '€ LP(Q) : / ||AetA:L'HZdt < o0},
0
and

T 2.
Hy = (W@ 7@ g = o W) [ |1 AcTall, it < o0}

In order to prove the solvability of the initial equation (LE), we estab-
lish necessary estimates applying the result of [5]-to (LE) considered as an

equation in H,, as well asin W~ '#(Q).

Proposition 3.3 Suppose that A s defined as in Lemma 3.2. Then the
following results hold:

1) Let 1 < p, q < oo, Then for any ug € H,, and f € L9(0,T; W~1?(Q)),
there exists a unique solution u of (LE) belonging to
W = L9(0, T; Wy P (Q) (| WH(0, T: W2(Q)) € C([0,T); Hyy)  (3.16)

11



and satisfying
ulbw < Cr(lluollpg + 11|z rw—1r (@), (3.17)

where Cy is a constant depending on T.
2) Let up = 0 and f € L90,T;H,,), T > 0. Then there exists a unique

solution u of (LE) belonging to
Wo = LU0, T; WP (Q) n WP () (Y W(0,T; Hyg)
and satisfying

ullwe < CLllf||a0,1:8p.4)5

where C is ja constant depending on T'.

Proof. In virtue of Remark 3.2 the mild solution of (LE) is represented
by

LS 3 2
u(t) = e ug +/ e 9 f(5)ds,. t>0.
0

If t — f(t) belongs to-LI0,T; X) we set [[f(t)||.s0rx) = [Ifllzeo,r:x),
Analogous notations we are used when L?(0,7; X) is replaced by another

Banach space of functions. For the sake of simplicity, we may consider

o] —1p S Vllpgs v € Hpg

12



Now, by Lemma 3.4, Remark 3.2, and the isomorphism of Z, we have that

) T 1/q
[le™ % uoll g0 rw» oy < comst - (/0 HAetAuOHgl’pdt)

S const - ||etAu0||Wt1,Q(O,T;W—1,p(Q)) S CO||u0||qu'

For any f € L0, T; W~=1P(Q)), set

Since —A generates an analytic semigroup {e_t‘Z +0 <t < oo} in WHP(Q)
and applying Theorem 3.2 of [5] to the equation (LE); we have (3.17)(see
Theorem 2.3 of [4]) and

e~ f € I, T; Wo () (W4 (0, T; WHP(0)).

The last inclusion relation of (3.16) is well known and is an easy consequence

of the definition of real interpolation space by the trace method.

The proof of 2)is obtained by applying-the argument of 1) term by term
to the equation (LE) due to-(3.1) in the space H,,. O

Remark 3.4 By terms of Proposition 3.3, the result of [[5], Theorem 2.1]
implies that if ug € (D(A), LP(Q))1/q,q = Zpq and [ € LI(0,T; LP(R2)), then

there exists a unique solution u of (LE) belonging to
Wi = LU0, T; D(A) (\WH9(0, T: L(Q)) € C([0,T]; Z,q)  (3.18)

13



and satisfying

[lullw, < Ci(lluollz,,, + |[fllLa@re@)); (3.19)

where Cy is a constant depending on T

14



4  Properties of the principal operator

This section is to investigate the regularity of solutions for an abstract
parabolic type equation (1.1) in the strong sense in case for any uy € Hp (1 <

p,q <o) and f e L0, T;W~1?(Q)). Now, we put that
Au=—-A(z,D,)u ie, A=A (4.1)

which was defined in the previous section, and A(x, D,) is restriction to

W,y (Q) with real coefficients:

n

Alw, D)= = 3 S oss(a) 50) + S W) +clo)

i=1

1,j=1

where a;; = a;; € CY(Q) and {a;(x)} is positive definite uniformly in €, i.e.,

there exists a positive number ¢; such that

n

Z a;;(T)EE > a|¢)? (4.2)

ij=1

for all € Q and all real vectors £, b€ CH(Q);and ¢ € L*(2). On the other
hand, by this hypothesis, there exists a certain K such that |b;(x)| < K and

le(x)| < K hold almost everywhere.
We denote the pairings between v (2) and LP(Q2), W—1P(Q) and Wol’p/ (Q),

and D(A;),)* and D(A’,) all by (-,-) with no fear of confusion.

’
p

15



Theorem 4.1 Let the operator A be defined by (4.1). Then A is symmet-

ric bounded operator from W,P(Q) into W—P(Q) and there exist constants

wy > 0, wy >0 such that for any u € Wy (Q)

| Aul|—1 = wil[ul[] 5 — wallul p.

Proof. For each u,v € H{(2), we put

Since {a;;} is real symmetric, by (4.2) the inequality

n

> ay(@)6G = &lCP

ij=1

(4.3)

(4.5)

holds for all complex veetors ¢ = ((1,+ -+ ,Cn). Hence, by (4.3),(4.4) we have

Rea(u,u)z/coi g dx_K/Z’_
N |

16

|u]dx—K/|u\ dx



By choosing € = ¢y K !, we obtain

n 2
o nk?
Rea(u,u) > — E / dr — (——l—K)/ ul?dx
2 i1 Q 200 Q| |

o
5‘aci

o nk? c
=Slulf - (5—+ K+ )
2 ; 2

17
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