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1 Introduction

This paper is concerned with regularity of solutions for an abstract parabolic

type equation; 
du(t)

dt
= Au(t) + f(t), t ∈ (0, T ],

u(0) = u0

(1.1)

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let

A(x, Dx) be an elliptic differential operator of second order as follows:

A(x, Dx) = −
n∑

i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

) +
n∑

i=1

bi(x)
∂

∂xi

+ c(x)

where {ai,j(x)} is a positive definite symmetric matrix for each x ∈ Ω,

bi ∈ C1(Ω) and c ∈ L∞(Ω).

If we put that Au = −A(x, Dx)u then it is known that A generates

an analytic semigroup in W−1,p(Ω) where W−1,p(Ω) is the dual space of

W 1,p
′

0 (Ω), p
′

= p/(p − 1) as is seen in [1]. Therefore, from the interpola-

tion theory. First, we will prove that the operator A generates an analytic

semigroup in Hp,q = (W 1,p
0 , W−1,p)1/q,q.

If −A is the infinitesimal generator of an analytic semigroup in a complex

Banach space X, we find that in general it is false that problem (1.1) has a

solution u ∈ W 1,p(0, T ; X)∩Lp(0, T ; D(A)) in case f ∈ Lp(0, T ; X). As in Da

Prato and Grisvard [6](also see [18, 4]), we can obtain L2- regularity for the
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strong solutions, while in the Hilbert space setting. Moreover as the better

result in [5], if X is ζ-convex, we also obtain Lp(p > 1)-regularity results for

solution of (1.1) mentioned above.

Concerning ζ-convex Banach space, we recall that every Hilbert space

is ζ-convex. Cartesian products and quotients of ζ-convex spaces are ζ-

convex. By proving that A is an isomorphism from W 1,p
0 (Ω) onto W−1,p(Ω)

and W 1,p
0 (Ω), and W−1,p(Ω) are ζ-convex spaces, it is easily seen that Hp,q is

also ζ-convex.

In view of Sobolev’s embedding theorem, we remark that L1(Ω) ⊂ W−1,p(Ω)

if 1 < p < n/(n − 1) as is seen in [5]. Hence, we can investigate the sys-

tem (1.1) in the space W−1,p(Ω). Furthermore, it is known that W−1,p(Ω)

is ζ-convex and the initial value problem (1.1) has a unique solution u ∈

Lq(0, T ; W 1,p
0 (Ω) ∩W 1,q(0, T ; W−1,p(Ω)) for any u0 ∈ Hp,q and f ∈ Lq(0, T ;

W−1,p(Ω)) (see Theorem 3.1 in [5]). Thereafter, we can apply the method of

Dore and Venni [5] to the system (1.1) to show the existence and uniqueness

of the solution

u ∈ Lq(0, T ; W 1,p
0 (Ω)) ∩W 1,q(0, T ; W−1,p(Ω)) ⊂ C([0, T ]; Hp,q).
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2 Notations

For an integer m ≥ 0, Cm(Ω) is the set of all m-times continuously differential

functions on Ω. For 1 ≤ p ≤ ∞, Wm,p(Ω) is the set of all functions f = f(x)

whose derivative Dαf up to degree m in distribution sense belong to Lp(Ω).

As usual, the norm is then given by

||f ||m,p, = (
∑
α≤m

||Dαf ||pp)
1
p , 1 ≤ p < ∞, ||f ||m,∞ = max

α≤m
||Dαu||∞,

where D0f = f . In particular, W 0,p(Ω) = Lp(Ω) with the norm || · ||p. Let

p
′
= p/(p− 1), 1 < p < ∞. W−1,p(Ω) stands for the dual space W 1,p

′

0 (Ω)∗ of

W 1,p
′

0 (Ω) whose norm is denoted by || · ||−1,p.

For a closed linear operator of A in some Banach space, ρ(A) denotes the

resolvent set of A. If X is a Banach space and the notation (·, ·)X∗,X is the

duality pairing between X∗ and X.

Lp(0, T ; X) is the collection of all strongly measurable functions from

(0, T ) into X the p-th powers of norms are integrable. Cm([0, T ]; X) will

denote the set of all m-times continuously differentiable functions from [0, T ]

into X.

If X and Y are two Banach spaces, B(X, Y ) is the collection of all

bounded linear operators from X into Y , and B(X,X) is simply written as

B(X). For an interpolation couple of Banach spaces X0 and X1, (X0, X1)θ,p

and [X0, X1]θ denote the real and complex interpolation spaces between X0

and X1, respectively.
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3 Elliptic boundary value problem in W−1,p(Ω)

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Consider the

following elliptic differential operator of second order with real and smooth

coefficients:

A(x, Dx) = −
n∑

i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

) +
n∑

i=1

bi(x)
∂

∂xi

+ c(x)

where {ai,j(x)} is a positive definite symmetric matrix for each x ∈ Ω. The

operator

A′
(x, Dx) = −

n∑
i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

)−
n∑

i=1

∂

∂xi

(bi(x)·) + c(x)

is the formal adjoint of A.

For 1 < p < ∞, we denote the realization of A in Lp(Ω) under the

Dirichlet boundary condition by Ap:

D(Ap) = W 2,p(Ω) ∩W 1,p
0 (Ω), (3.1)

Apu = Au for u ∈ D(Ap).

For p
′

= p/(p − 1), we can also define the realization A′
in Lp

′
(Ω) under

Dirichlet boundary condition by A
′

p′
:

D(A
′

p′
) = W 2,p

′

(Ω) ∩W 1,p
′

0 (Ω),

A
′

p′
v = A′

v for v ∈ D(A
′

p′
).
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It is known that the adjoint operator of Ap considered as a closed linear

operator in Lp(Ω) coinside with A
′

p′
:

A∗
p = A

′

p′

and −Ap and −A
′

p′
generate analytic semigroups in Lp(Ω) and Lp

′
(Ω),

respectively[[19], section 7.3]. For the sake of simplicity we assume that the

closed half plane {λ : Reλ ≤ 0} is contained in ρ(Ap) ∩ ρ(A
′

p′
), hence in

particular 0 ∈ ρ(Ap) ∩ ρ(A
′

p′
), by adding some positive constant to A if

necessary.

In what follows we make D(Ap) and D(A
′

p′
) Banach space endowing them

with graph norm of Ap and A
′

p′
, respectively, Since D(A

′

p′
) and W 1,p

′

0 (Ω) are

dense subspaces of W 1,p
′

0 (Ω) and Lp
′
(Ω), respectively, we may consider that

D(Ap) ⊂ W 1,p
0 (Ω) ⊂ Lp(Ω) ⊂ W−1,p(Ω) ⊂ D(A

′

p′
)∗.

Lemma 3.1 Let (A
′

p′
)′ be the adjoint operator A

′

p′
. Then (A

′

p′
)′ is an isomor-

phism from Lp(Ω) to D(A
′

p′
)∗ and the restriction of (A

′

p′
)′ to D(Ap) coincides

with Ap.

Proof. For any f ∈ Lp(Ω) and v ∈ D(A
′

p′
), we have

((A
′

p′
)′f, v)D(A

′
p
′ )
∗,D(A

′
p
′ )

= (f, A
′

p′
v)

Lp(Ω),Lp
′
(Ω)

.
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So, due to 0 ∈ ρ(A
′

p′
), we have that (A

′

p′
)′ is an isomorphism from Lp(Ω) to

D(A
′

p′
)∗. If f ∈ Lp(Ω) and v ∈ D(A

′

p′
), then

((A
′

p′
)′u, v)D(A

′
p
′ )
∗,D(A

′
p
′ )

= (u, A
′

p′
v)

Lp(Ω),Lp
′
(Ω)

= (Apu, v)D(A
′
p
′ )
∗,D(A

′
p
′ )
.

This implies that the restriction of (A
′

p′
)′ to D(Ap) coincides with Ap. 2

Lemma 3.2 Let Ã be the restriction of (A
′

p′
)
′
to W 1,p

0 (Ω). Then the opera-

tor Ã is an isomorphism from W 1,p
0 (Ω) to W−1,p(Ω). Similarly, we consider

that the restriction Ã′ of (Ap)
′ ∈ B(Lp

′
(Ω), D(Ap)

∗) to W 1,p
′

0 (Ω) is an iso-

morphism from W 1,p
′

0 (Ω) to W−1,p
′
(Ω).

Proof. From the result of Seeley [11] (see also Triebel [[15], p. 321], [3])

we obtain that

[D(Ap), L
p(Ω)]1/2 = W 1,p

0 (Ω), (3.2)

[D(A
′

p′
), Lp

′

(Ω)]1/2 = W 1,p
′

0 (Ω). (3.3)

Regarding the dual spaces, from (3.3) it follows that

[Lp(Ω), D(A
′

p′
)∗]1/2 = [D(A

′

p′
), Lp

′

(Ω)]∗1/2 = W−1,p(Ω).

This, together with 0 ∈ ρ(A
′

p′
), implies that the operator Ã is an isomorphism

from W 1,p
0 (Ω) to W−1,p(Ω) by the interpolation theory. 2
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It is not difficult to see that, for u ∈ W 1,p
0 (Ω) and v ∈ W 1,p

′

0 (Ω), Ãu = Au

and Ã′v = A′v, both understood in the distribution sense, and

(Ãu, v) = a(u, v) = (u, Ã′v) (3.4)

where a(u, v) is the associated sesquilinear form:

a(u, v) =

∫
Ω

{
n∑

i,j=1

(ai,j(x)
∂u

∂xi

∂v

∂xj

+
n∑

i=1

bi(x)
∂u

∂xi

v + c(x)uv

}
dx.

The following results are from Section 3 in Jeong [8].

Lemma 3.3 The operators −Ã and −Ã′ generate analytic semigroups in

W−1,p(Ω) and W−1,p
′
(Ω), respectively. Furthermore, the inequality

||(Ã)is||B(W−1,p(Ω)) ≤ Ceγ|s|, −∞ < s < ∞, (3.5)

holds for some constants C > 0 and γ ∈ (0, π/2).

For any q ∈ (1,∞), we set

Zp,q = (D(Ap), L
p(Ω))1/q,q, Hp,q = (W 1,p

0 (Ω), W−1,p(Ω))1/q,q. (3.6)

Remark 3.1 Concerning ζ-convex Banach space, we recall that every Hilbert

space is ζ-convex. Cartesian products and quotients of ζ-convex spaces are

ζ-convex. If (X, Y ) is an interpolation couple spaces of ζ-convex spaces,
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(X,Y )θ,p with 1 < p < ∞ and [X, Y ]θ are ζ-convex. Moreover, if X is

ζ-convex and 1 < p < ∞ then every Lp space of X-valued functions is ζ-

convex(see [19, 17] and the bibliography therein). Since Ã is an isomorphism

from W 1,p
0 (Ω) onto W−1,p(Ω) and W 1,p

0 (Ω) and W−1,p(Ω) are ζ-convex spaces.

From the interpolation theory and definitions of the operator Ã, it is easily

seen that Hp,q and Zp,q are also ζ-convex.

Proposition 3.1 The operators −Ã and −Ã′ generate analytic semigroups

in Hp,q and Hp′ ,q′ , respectively.

Proof. By lemma 3.3, since −Ap and −Ã generate analytic semigroup in

Lp(Ω) and W−1,p(Ω), respectively, there exists an angle γ ∈ (0, π
2
) such that

Σ = {λ : γ ≤ arg λ ≤ 2π − γ} ⊂ ρ(Ap) ∩ ρ(Ã), (3.7)

||(λ− Ap)
−1||B(Lp(Ω)) ≤ C/|λ|, λ ∈ Σ, (3.8)

||(λ− Ã)−1||B(W−1,p(Ω)) ≤ C/|λ|, λ ∈ Σ. (3.9)

In view of (3.8)

||Ap(λ− Ap)
−1u||p = ||(λ− Ap)

−1Apu||p ≤
C

|λ|
||Apu||p,

for any u ∈ D(Ap), we have

||(λ− Ap)
−1||B(D(Ap)) ≤

C

|λ|
. (3.10)
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From (3.8) and (3.10) it follows that

||(λ− Ã)−1||B(W 1,p
0 (Ω)) ≤

C

|λ|
(3.11)

and, hence from (3.10), (3.11) and the definition of the space Hp,q we have

that

||(λ− Ã)−1||B(Hp,q) ≤
C

|λ|
.

Therefore we have shown that −Ã generates an analytic semigroup in Hp,q.

2

Proposition 3.2 There exists a constant C > 0 such that

||Ãis||B(Hp,q) ≤ Ceγ|λ|, s ∈ R,

where γ is the constant in (3.7).

Proof. From Theorem 1 of Seeley [10] and Proposition 3.2 of Jeong [8]

there exists a constant C > 0 such that

||(Ap)
ε+is||B(Lp(Ω)) ≤ Ceγ|s|, (3.12)

||Ãε+is||B(W−1,p(Ω)) ≤ Ceγ|s|, (3.13)

for any s ∈ R and ε > 0. From (3.12) it follows

||(Ap)
ε+is||B(D(Ap)) ≤ Ceγ|s|, (3.14)

9



and hence, from (3.12) and (3.14) we obtain

||Ãε+is||B(W 1,p
0 (Ω)) ≤ Ceγ|s|. (3.15)

Hence from (3.5), (3.14) and (3.15) we have shown that

||Ãε+is||B(Hp,q) ≤ Ceγ|s|.

So the proof is complete. 2

Remark 3.2 Propositions 3.1, 3.2 say that −Ã generates analytic semigroup

{etÃ : t ≥ 0} in Hp,q as well as in W−1,p(Ω). Hence we may assume that

there is a constant M0 > 0 such that

||etÃ||B(Lp(Ω)) ≤ M0, ||etÃ||B(Hp,q) ≤ M0, ||etÃ||B(W−1,p(Ω)) ≤ M0.

From now on, in virtue of Proposition 3.1, 3.2, we study such a simple

initial value problem in W−1,p(Ω) or in Hp,q as

 u′(t) + Ãu(t) = f(t), t > 0,

u(0) = u0.
(LE)

Remark 3.3 If −A is the infinitesimal generator of an analytic semigroup in

a complex Banach space X, we find that in general it is false that problem (LE)

has a solution u ∈ W 1,p(0, T ; X) ∩ Lp(0, T ; D(A)) in case f ∈ Lp(0, T ; X).
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As in Da Prato and Grisvard [19](also see [18, 4], section 5.5 of [12]), we

can obtain L2- regularity for the strong solutions, while in the Hilbert space

setting. Moreover as the better result in [5], if X is ζ-convex, we also obtain

Lp(p > 1)-regularity results for solution of (LE) mentioned above.

From Theorem 3.5.3 of Butzer and Berens [2] we obtain the following

result.

Lemma 3.4 For any 1 < p and q ∈ (0,∞), we have

Zp,q = (D(Ap), L
p(Ω))1/q,q = {x ∈ Lp(Ω) :

∫ T

0

||ÃetÃx||qpdt < ∞},

and

Hp,q = (W 1,p
0 (Ω), W−1,p(Ω))1/q,q = {x ∈ W−1,p(Ω) :

∫ T

0

||ÃetÃx||q−1,pdt < ∞}.

In order to prove the solvability of the initial equation (LE), we estab-

lish necessary estimates applying the result of [5] to (LE) considered as an

equation in Hp,q as well as in W−1,p(Ω).

Proposition 3.3 Suppose that Ã is defined as in Lemma 3.2. Then the

following results hold:

1) Let 1 < p, q < ∞, Then for any u0 ∈ Hp,q and f ∈ Lq(0, T ; W−1,p(Ω)),

there exists a unique solution u of (LE) belonging to

W ≡ Lq(0, T ; W 1,p
0 (Ω))

⋂
W 1,q(0, T ; W−1,p(Ω)) ⊂ C([0, T ]; Hp,q) (3.16)
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and satisfying

||u||W ≤ C1(||u0||p,q + ||f ||Lq(0,T ;W−1,p(Ω))), (3.17)

where C1 is a constant depending on T .

2) Let u0 ≡ 0 and f ∈ Lq(0, T ; Hp,q), T > 0. Then there exists a unique

solution u of (LE) belonging to

W0 ≡ Lq(0, T ; W 2,p(Ω) ∩W 1,p
0 (Ω))

⋂
W 1,q(0, T ; Hp,q)

and satisfying

||u||W0 ≤ C1||f ||Lq(0,T ;Hp,q),

where C1 is a constant depending on T .

Proof. In virtue of Remark 3.2 the mild solution of (LE) is represented

by

u(t) = e−tÃu0 +

∫ t

0

e−(t−s)Ãf(s)ds, t ≥ 0.

If t 7→ f(t) belongs to Lq(0, T ; X) we set ||f(t)||Lq
t (0,T ;X) = ||f ||Lq(0,T ;X),

Analogous notations we are used when Lq(0, T ; X) is replaced by another

Banach space of functions. For the sake of simplicity, we may consider

||v||−1,p ≤ ||v||p,q, v ∈ Hp,q.
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Now, by Lemma 3.4, Remark 3.2, and the isomorphism of Ã, we have that

||e−tÃu0||Lq
t (0,T ;W 1,p

0 (Ω)) ≤ const ·
(∫ T

0

||ÃetÃu0||q−1,pdt

)1/q

≤ const · ||etÃu0||W1,q
t (0,T;W−1,p(Ω)) ≤ c0||u0||p,q.

For any f ∈ Lq(0, T ; W−1,p(Ω)), set

(e−Ã ∗ f)(t) =

∫ t

0

e(t−s)Ãf(s)ds, 0 ≤ t ≤ T.

Since −Ã generates an analytic semigroup {e−tÃ : 0 ≤ t < ∞} in W−1,p(Ω)

and applying Theorem 3.2 of [5] to the equation (LE), we have (3.17)(see

Theorem 2.3 of [4]) and

e−Ã ∗ f ∈ Lq(0, T ; W 1,p
0 (Ω))

⋂
W 1,q(0, T ; W−1,p(Ω)).

The last inclusion relation of (3.16) is well known and is an easy consequence

of the definition of real interpolation space by the trace method.

The proof of 2) is obtained by applying the argument of 1) term by term

to the equation (LE) due to (3.1) in the space Hp,q. 2

Remark 3.4 By terms of Proposition 3.3, the result of [[5], Theorem 2.1]

implies that if u0 ∈ (D(A), Lp(Ω))1/q,q ≡ Zp,q and f ∈ Lq(0, T ; Lp(Ω)), then

there exists a unique solution u of (LE) belonging to

W1 ≡ Lq(0, T ; D(A))
⋂

W 1,q(0, T ; Lp(Ω)) ⊂ C([0, T ]; Zp,q) (3.18)
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and satisfying

||u||W1 ≤ C1(||u0||Zp,q + ||f ||Lq(0,T ;Lp(Ω))), (3.19)

where C1 is a constant depending on T .
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4 Properties of the principal operator

This section is to investigate the regularity of solutions for an abstract

parabolic type equation (1.1) in the strong sense in case for any u0 ∈ Hp,q(1 <

p, q < ∞) and f ∈ Lq(0, T ; W−1,p(Ω)). Now, we put that

Au = −A(x, Dx)u i.e., A = Ã (4.1)

which was defined in the previous section, and A(x, Dx) is restriction to

W 1,p
0 (Ω) with real coefficients:

A(x, Dx) = −
n∑

i,j=1

∂

∂xj

(ai,j(x)
∂

∂xi

) +
n∑

i=1

bi(x)
∂

∂xi

+ c(x)

where aij = aji ∈ C1(Ω̄) and {aij(x)} is positive definite uniformly in Ω, i.e.,

there exists a positive number c1 such that

n∑
i,j=1

aij(x)ξiξj ≥ c1|ξ|2 (4.2)

for all x ∈ Ω̄ and all real vectors ξ, bi ∈ C1(Ω), and c ∈ L∞(Ω). On the other

hand, by this hypothesis, there exists a certain K such that |bi(x)| ≤ K and

|c(x)| ≤ K hold almost everywhere.

We denote the pairings between Lp
′
(Ω) and Lp(Ω), W−1,p(Ω) and W 1,p

′

0 (Ω),

and D(A
′

p′
)∗ and D(A

′

p′
) all by (·, ·) with no fear of confusion.
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Theorem 4.1 Let the operator A be defined by (4.1). Then A is symmet-

ric bounded operator from W 1,p
0 (Ω) into W−1,p(Ω) and there exist constants

ω1 > 0, ω2 ≥ 0 such that for any u ∈ W 1,p
0 (Ω)

||Au||−1 ≥ ω1||u||21,2 − ω2||u||2P . (4.3)

Proof. For each u, v ∈ H1(Ω), we put

a(u, v) =

∫
Ω

{
n∑

i,j=1

aij
∂u

∂xi

∂v

∂xj

+
n∑

i=1

bi
∂u

∂xi

v̄ + cuv̄

}
dx. (4.4)

Since {aij} is real symmetric, by (4.2) the inequality

n∑
i,j=1

aij(x)ζiζ̄j ≥ c0|ζ|2 (4.5)

holds for all complex vectors ζ = (ζ1, · · · , ζn). Hence, by (4.3),(4.4) we have

Re a(u, u) ≥
∫

Ω

c0

n∑
i=1

∣∣∣∣ ∂u

∂xi

∣∣∣∣2 dx−K

∫
Ω

n∑
i=1

∣∣∣∣ ∂u

∂xi

∣∣∣∣ |u|dx−K

∫
Ω

|u|2dx

≥ c0

∫
Ω

n∑
i=1

∣∣∣∣ ∂u

∂xi

∣∣∣∣2 dx−K

∫
Ω

n∑
i=1

(
ε

2

∣∣∣∣ ∂u

∂xi

∣∣∣∣2 +
1

2ε
|u|2
)

dx

−K

∫
Ω

|u|2dx

=
(
c0 −

ε

2
K
) n∑

i=1

∫
Ω

∣∣∣∣ ∂u

∂xi

∣∣∣∣2 dx−
(

nK

2ε
+ K

)∫
Ω

|u|2dx.

16



By choosing ε = c0K
−1, we obtain

Re a(u, u) ≥ c0

2

n∑
i=1

∫
Ω

∣∣∣∣ ∂u

∂xi

∣∣∣∣2 dx−
(

nK2

2c0

+ K

)∫
Ω

|u|2dx

=
c0

2
‖u‖2

1 −
(

nK2

2c0

+ K +
c0

2

)
‖u‖2.

Therefore, regarding as (3.3), the proof is completed. 2
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