
 

 

저작자표시 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

l 이차적 저작물을 작성할 수 있습니다.  

l 이 저작물을 영리 목적으로 이용할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/


Thesis for the Degree

Master of Education

Approximate controllability for 

variational inequalities with nonlinear 

perturbations

by

Su Jin Cheon

Graduate School of Education

Pukyong National University

August 2010



Approximate controllability for 

variational inequalities with nonlinear 

perturbations

(비선형 항을 포함하는 변수부등식의 

 근사 제어가능성)

Advisor: Prof. Jin Moon Jeong

by

Su Jin Cheon

A thesis submitted in partial fulfillment of the requirement

for the degree of

Master of Education

Graduate School of Education

Pukyong National University

August 2010





i

CONTENTS

Abstract(Korean)………………………………………………………………… ⅱ

1. Introduction …………………………………………………………………… 1

2. Solvability of the nonlinear variational inequality problems ………… 4

3. Smoothing system corresponding to (NDE) ……………………………… 9

4. Controllability of the nonlinear variational inequality problems……… 13

References ……………………………………………………………………………21



ii

천 수 진

부경대학교 교육대학원 수학교육전공

 이 논문은 힐버트 공간상에서 비선형 항을 포함하는 변수부등식의 근사 제어가능성을 다룬

다. 먼저 주어진 부등식을 단가 준선형 방정식으로 변형하여 해의 정칙성을 다룬 후 제어이

론을 유도하고자 하였다. 본 논문의 주요 결과는 다음과 같다.

 첫째로,  와  를 힐버트 공간으로 하고 가 조밀한 공간으로서  그의 공액공간을  

로 하자. 는 제어집합이다. 그리고 함수   →∞∞ 가 하반연속이고 제어기 

   →  유계 선형이라 할 때 다음과 같이 유계선형연산자    ⊂  →   를 포함

하는 초기치 문제:

       










 ′          

≤ 




       ∀∈

  

에서  ∈×  로 주어지면 위의 초기치 문제의 해는 유일하게 존재하며, 

아울러       

                ∈  ∩  ⊂   

임을 증명하였다.

 둘째로,  를 시간  에서 제어 ∈    에 대응하는 자취라고하면 

    ∈   의 집합이 전 공간 상에서 조밀성을 보여 가제어성을 증명하

였다.



1 Introduction

Let H and V be two complex Hilbert spaces. Assume that V is a dense

subspace in H and the injection of V into H is continuous. If H is identified

with its dual space we may write V ⊂ H ⊂ V ∗ densely and the corresponding

injections are continuous. The norm on V , H and V ∗ will be denoted by || · ||,

| · | and || · ||∗, respectively. The duality pairing between the element v1 of V ∗

and the element v2 of V is denoted by (v1, v2), which is the ordinary inner

product in H if v1, v2 ∈ H. For l ∈ V ∗ we denote (l, v) by the value l(v) of

l at v ∈ V . We assume that V has a stronger topology than H and, for the

brevity, we may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V.

Let A be a continuous linear operator from V into V ∗ which is assumed to

satisfy G̊arding’s inequality, and let φ : V → (−∞, +∞] be a lower semicon-

tinuous, proper convex function, and h : R+ × V × U → H is a nonlinear

mapping. Let U be some Hilbert space and the controller operator B be

a bounded linear operator from U to H. Then we study the following the

variational inequality problem with nonlinear term:


(x′(t) + Ax(t), x(t)− z) + φ(x(t))− φ(z)

≤ (
∫ t

0
k(t− s)h(s, x(s), u(s))ds + Bu(t), x(t)− z), a.e., ∀z ∈ V

x(0) = x0.

(NDE)
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Noting that the subdifferential operator ∂φ is defined by

∂φ(x) = {x∗ ∈ V ∗; φ(x) ≤ φ(y) + (x∗, x− y), y ∈ V },

where (·, ·) denotes the duality pairing between V ∗ and V , the problem (NDE)

is represented by the following nonlinear functional differential problem; x′(t) + Ax(t) + ∂φ(x(t)) 3
∫ t

0
k(t− s)h(s, x(s), u(s))ds + Bu(t), 0 < t,

x(0) = x0.

(NCE)

The existence and regularity for the parabolic variational inequality in

the linear case( h ≡ 0), which was first investigated by Brézis [5, 6], has

been developed as seen in section 4.3.2 of Barbu [2](also see section 4.3.1 in

[3]). The regularity for the nonlinear the variational inequalities of semilinear

parabolic type was studied in [11].

The solution (NCE) is denoted by x(T ; φ, h, u) corresponding to the non-

linear term h and the control u. The system (NCE) is said to be approxi-

mately controllable in the time interval [0, T ], if for every given final state

x1 ∈ H, T > 0, and ε > 0 there is a control function u ∈ L2(0, T ; U) such that

|x(T ; φ, h, u)−x1| < ε. Investigations of controllability of semilinear systems

found in [1, 10] have been studied by many references [1, 8, 9, 10, 15], which

is shown the relation between the reachable set of the semilinear system and

that of its corresponding linear system.

In [10, 14] they dealt with the approximate controllability of a semilinear

control system as a particular case of sufficient conditions for the approximate

solvability of semilinear equations by assuming
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(1) S(t) is compact operator, or the embedding D(A) ⊂ V is compact,

(2) h(·, x, u) is (locally ) Lipschitz continuous(or the sublinear growth

condition and limn→∞(|h(·, x, u))|/||(x, u)||) = 0).

(3) the corresponding linear system (NCE) in case where h ≡ 0 and φ ≡ 0

is approximately controllable.

Yamamoto and Park [18] studied the controllability for parabolic equa-

tions with uniformly bounded nonlinear terms instead of assumptions men-

tioned above. As for the some considerations on the trajectory set of (NCE)

and that of its corresponding linear system(in case h ≡ 0) as matters con-

nected with (3), we refer to Naito[15] and Sukavanam and Tomar[16] and

references therein. In [16] and Zhou[19] they studied the control problems

of the semilinear equations by assuming (1), (3), a Lipschitz continuity of G

and a range condition of the controller B with an inequality constraint.

In this paper we no longer require the compact property in (1), the uni-

form boundedness in (2) and the inequality constraint on the range condition

of the controller B, but instead we need the regularity and a variation of so-

lutions of the given equations. For the basis of our study we construct the

fundamental solution and establish variations of constant formula of solutions

for the linear systems.

This paper is composed of four section. Section 2 gives assumptions and

notations. In Section 3, we introduce the single valued smoothing system cor-

responding to (NCE). Then in Section 4, the relations between the reachable

set of systems consisting of linear parts and possibly nonlinear perturbations
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are addressed. From these results we can obtain the approximate controlla-

bility for the equation (NCE), which is the extended result of [15, 16, 19] to

the equation (NCE).

2 Solvability of the nonlinear variational in-

equality problems

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying

G̊arding’s inequality:

Re a(u, u) ≥ ω1||u||2 − ω2|u|2,

where ω1 > 0 and ω2 is a real number. Let A be the operator associated with

the sesquilinear form a(·, ·):

(Au, v) = a(u, v), u, v ∈ V.

Then A is a bounded linear operator from V to V ∗ by the Lax-Milgram

theorem. The realization for the operator A in H which is the restriction of

A to

D(A) = {u ∈ V ; Au ∈ H}

be also denoted by A. We also assume that there exists a constant C0 such

that

||u|| ≤ C0||u||1/2
D(A)|u|

1/2 (2.1)

for every u ∈ D(A), where

||u||D(A) = (|Au|2 + |u|2)1/2

4



is the graph norm of D(A). Thus, in terms of the intermediate theory we

may assume that

(D(A), H)1/2,2 = V

where (D(A), H)1/2,2 denotes the real interpolation space between D(A) and

H.

Lemma 2.1 Let T > 0. Then

H = {x ∈ V ∗ :

∫ T

0

||AetAx||2∗dt < ∞}.

Proof. Put u(t) = etAx for x ∈ H. Then,

u′(t) = Au(t), u(0) = x.

As in Theorem 4.1 of Chapter 4 of [13], the solution u belongs to L2(0, T ; V )∩

W 1,2(0, T ; V ∗), hence we obtain that

∫ T

0

||AetAx||2∗dt =

∫ T

0

||u′(s)||2∗ds < ∞.

Conversely, suppose that x ∈ V ∗ and
∫ T

0
||AetAx||2∗dt < ∞. Put u(t) = etAx.

Then since A is an isomorphism operator from V to V ∗ there exists a constant

c > 0 such that∫ T

0

||u(t)||2dt ≤ c

∫ T

0

||Au(t)||2∗dt = c

∫ T

0

||AetAx||2∗dt.

From the assumptions and u̇(t) = AetAx it follows

u ∈ L2(0, T ; V ) ∩W 1,2(0, T ; V ∗) ⊂ C([0, T ]; H).
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Therefore, x = u(0) ∈ H. 2

By Lemma 2.1, from Theorem 3.5.3 of Butzer and Berens[7], we can see

that

(V, V ∗)1/2,2 = H.

It is known that A generates an analytic semigroup S(t) in both H and

V ∗. The following Lemma is from Lemma 3.6.2 of [17].

Lemma 2.2 There exists a constant M > 0 such that the following inequal-

ities hold for all t > 0 and every x ∈ H:

|S(t)x| ≤ M |x|, and ||S(t)x|| ≤ Mt−1/2|x|. (2.2)

Lemma 2.3 Suppose that k ∈ L2(0, T ; H) and x(t) =
∫ t

0
S(t− s)k(s)ds for

0 ≤ t ≤ T . Then there exists a constant C2 such that

||x||L2(0,T ;D(A)) ≤ C1||k||L2(0,T ;H), (2.3)

||x||L2(0,T ;H) ≤ C2T ||k||L2(0,T ;H), (2.4)

and

||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H). (2.5)
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Proof. The assertion (2.3) is immediately obtained by virtue of Theorem

3.3 of [8](or Theorem 3.1 of [10]). Since

||x||2L2(0,T ;H) =
∫ T

0
|
∫ t

0
S(t− s)k(s)ds|2dt ≤ M

∫ T

0
(
∫ t

0
|k(s)|ds)2dt

≤ M
∫ T

0
t
∫ t

0
|k(s)|2dsdt ≤ M T 2

2

∫ T

0
|k(s)|2ds

it follows that

||x||L2(0,T ;H) ≤ T
√

M/2||k||L2(0,T ;H).

From (2.1), (2.3), and (2.4) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M/2)1/4||k||L2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√

M/2, C0

√
C1(M/2)1/4},

the proof is complete. 2

Let h : R+×V ×U → H be a nonlinear mapping satisfying the following:

(G1) For any x ∈ V , u ∈ U the mapping h(·, x, u) is strongly measurable;

(G2) There exist positive constants L0, L1, L2 such that

(i) |h(t, x, u)− h(t, x̂, û)| ≤ L1||x− x̂||+ L2||u− û||U ,

(ii) |h(t, 0, 0)| ≤ L0 for all t ∈ R+, x, x̂ ∈ V , and u, û ∈ U .

For x ∈ L2(0, T ; V ), we set

G(t, x, u) =

∫ t

0

k(t− s)h(s, x(s), u(s))ds

where k belongs to L2(0, T ).
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Lemma 2.4 Let x ∈ L2(0, T ; V ) and u ∈ L2(0, T ; U) for any T > 0. Then

G(·, x, u) ∈ L2(0, T ; H) and

||G(·, x, u)||L2(0,T ;H) ≤ L0||k||L2(0,T )T/
√

2

+ ||k||L2(0,T )

√
T (L1||x||L2(0,T ;V ) + L2||u||L2(0,T ;U)).

Moreover if x, x̂ ∈ L2(0, T ; V ), then

||G(·, x, u)−G(·, x̂, û)||L2(0,T ;H) (2.6)

≤ ||k||L2(0,T )

√
T (L1||x− x̂||L2(0,T ;V ) + L2||u− û||L2(0,T ;U)).

Proof. From (G1), (G2), and using the Hölder inequality, it is easily seen

that

||G(·, x, u)||L2(0,T ;H) ≤ ||G(·, 0, 0)||+ ||G(·, x, u)−G(·, 0, 0)||

≤
(∫ T

0

|
∫ t

0

k(t− s)h(s, 0, 0)ds|2dt

)1/2

+

(∫ T

0

|
∫ t

0

k(t− s){h(s, x(s), u(s))− h(s, 0, 0)}ds|2dt

)1/2

≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )

√
T ||h(·, x, u)− h(·, 0, 0)||L2(0,T ;H)

≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )

√
T (L1||x||L2(0,T ;V ) + L2||u||L2(0,T ;U)).

The proof of (2.6) is similar. 2

By virtue of Theorems 3.1, 3.2 of [11], we have the following result on the

solvability of (NDE)(see [2, 13] in case of corresponding to equations with

h ≡ 0).
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Proposition 2.1 Let the assumptions (G1) and (G2) be satisfied. Assume

that (x0, u) ∈ D(φ) × L2(0, T ; U) where D(φ) stands for the closure in H

of the set D(φ) = {u ∈ V : φ(u) < ∞}. Then, the equation (NDE) has a

unique solution

x ∈ L2(0, T ; V ) ∩W 1,2(0, T ; V ∗) ⊂ C([0, T ]; H)

and there exists a constant C3 depending on T such that

||x||L2∩W 1,2∩C ≤ C3(1 + |x0|+ ||u||L2(0,T ;U)). (2.7)

3 Smoothing system corresponding to (NDE)

For every ε > 0, define

φε(x) = inf{||x− y||2∗/2ε + φ(y) : y ∈ H}.

Then the function φε is Fréchet differentiable on H and its Frećhet differential

∂φε is Lipschitz continuous on H with Lipschitz constant ε−1 where ∂φε =

ε−1(I − (I + ε∂φ)−1) as is seen in Corollary 2.2 of Chapter II of [3]. It is

also well known results that limε→0 φε = φ and limε→0 ∂φε(x) = (∂φ)0(x) for

every x ∈ D(∂φ), where (∂φ)0 : H → H is the minimum element of ∂φ.
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Now, we introduce the smoothing system corresponding to (NCE) as

follows. x′(t) + Ax(t) + ∂φε(x(t)) = G(t, x, u) + Bu(t), 0 < t ≤ T,

x(0) = x0.
(SCE)

Since A generates a semigroup S(t) on H, the mild solution of (SCE) can be

represented by

xε(t) = S(t)x0 +

∫ t

0

S(t− s){G(s, xε, u) + Bu(s)− ∂φε(xε(s))}ds.

In virtue of Proposition 2.1 we know that if the assumptions (G1-2) are

satisfied then for every x0 ∈ H and every u ∈ L2(0, T ; U) the equation (SCE)

has a unique solution

x ∈ L2(0, T ; V ) ∩W 1,2(0, T ; V ∗) ∩ C([0, T ]; H)

and there exists a constant C4 depending on T such that

||x||L2∩W 1,2∩C ≤ C4(1 + |x0|+ ||u||L2(0,T ;U)). (3.1)

Now, we assume the hypothesis that V ⊂ D(∂φ) and (∂φ)0 is uniformly

bounded, i.e.,

(A) |(∂φ)0x| ≤ M1, x ∈ H.

Lemma 3.1 Let xε and xλ be the solutions of (SCE) with same control u.

Then there exists a constant C independent of ε and λ such that

||xε − xλ||C([0,T ];H)∩L2(0,T ;V ) ≤ C(ε + λ), 0 < T.
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Proof. For given ε, λ > 0, let xε and xλ be the solutions of (SCE)

corresponding to ε and λ, respectively. Then from the equation (SCE) we

have

x
′

ε(t)− x
′

λ(t) + A(xε(t)− xλ(t)) + ∂φε(xε(t))− ∂φλ(xλ(t))

= G(t, xε, u)−G(t, xλ, u),

and hence, from (2.2) and multiplying by xε(t)− xλ(t), it follows that

1

2

d

dt
|xε(t)− xλ(t)|2 + ω1||xε(t)− xλ(t)||2 (3.2)

+ (∂φε(xε(t))− ∂φλ(xλ(t)), xε(t)− xλ(t))

≤ (G(t, xε, u)−G(t, xλ, u), xε(t)− xλ(t)) + ω2|xε(t)− xλ(t)|2.

Let us choose a constant c > 0 such that 2ω1 − cL2
1||k||2L2(0,T ) > 0. Then by

(G1), we have

(G(t, xε, u)−G(t, xλ, u), xε(t)− xλ(t))

≤ |G(t, xε, u)−G(t, xλ, u)| · |xε(t)− xλ(t)|

≤
cL2

1||k||2L2(0,T )

2

∫ T

0

||xε(t)− xλ(t)||2dt +
1

2c
|xε(t)− xλ(t)|2.

Integrating (3.2) over [0, T ] and using the monotonicity of ∂φ we have

1

2
|xε(t)− xλ(t)|2 +

(
ω1 −

cL2
1||k||2L2(0,T )

2

)∫ T

0

||xε(t)− xλ(t)||2dt

≤
∫ T

0

(∂φε(xε(t))− ∂φλ(xλ(t)), λ∂φλ(xλ(t)− ε∂φε(xε(t))dt

+ (
1

2c
+ ω2)

∫ T

0

|xε(t)− xλ(t)|2dt.
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Here, we used that

∂φε(xε(t)) = ε−1(xε(t)− (I + ε∂φ)−1xε(t)).

Since |∂φε(x)| ≤ |(∂φ)0x| for every x ∈ D(∂φ), it follows from (A) and

using Gronwall’s inequality that

||xε − xλ||C([0,T ];H)∩L2(0,T ;V ) ≤ C(ε + λ), 0 < T.

2

Theorem 3.1 Let the assumptions (G1-2) and (A) be satisfied. Then x =

limε→ xε in L2(0, T ; V ) ∩ C([0, T ]; H) is a solution of the equation (NCE)

where xε is the solution of (SCE) .

Proof. In virtue of Lemma 3.1, there exists x(·) ∈ L2(0, T ; V ) such that

xε(·) → x(·) in L2(0, T ; V ) ∩ C([0, T ]; H).

From (G1-2) it follows that

G(·, xε, ·) → G(·, x, ·), strongly in L2(0, T ; H) (3.3)

and

Axn → Ax, strongly in L2(0, T ; V ∗). (3.4)

Since ∂φε(xε) are uniformly bounded by assumption (A), from (3.3), (3.4)

we have that

d

dt
xε →

d

dt
x, weakly in L2(0, T ; V ∗),
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therefore

∂φε(xε) → G(·, x, ·) + k − x′ − Ax, weakly in L2(0, T ; V ∗),

Note that ∂φε(xε) = ε−1(I − (I + ε∂φ)−1)(xε). Since (I + ε∂φ)−1xε →

x strongly and ∂φ is demiclosed, we have that

G(·, x, ·) + k − x′ − Ax ∈ ∂φ(x) in L2(0, T ; V ∗).

Thus we have proved that x(t) satisfies a.e. on (0, T ) the equation (NCE).

2

4 Controllability of the nonlinear variational

inequality problems

Let x(T ; φ, g, u) be a state value of the system (SCE) at time T corresponding

to the function φ, the nonlinear term g, and the control u. We define the

reachable sets for the system (SCE) as follows:

RT (h) = {x(T ; φ, h, u) : u ∈ L2(0, T ; U)},

RT (0) = {x(T ; φ, 0, u) : u ∈ L2(0, T ; U)},

LT (0) = {x(T ; 0, 0, u) : u ∈ L2(0, T ; U)}.

Definition 4.1 The system (NCE) is said to be approximately controllable in

the time interval [0, T ] if for every desired final state x1 ∈ H and ε > 0 there
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exists a control function u ∈ L2(0, T ; U) such that the solution x(T ; φ, h, u)

of (NCE) satisfies |x(T ; φ, h, u)−x1| < ε, that is, if RT (h) = H where RT (h)

is the closure of RT (h) in H, then the system (NCE) is called approximately

controllable at time T .

We need the following hypothesis:

For any ε > 0 and p ∈ L2(0, T ; H) there exists a u ∈ L2(0, T ; U) such

that

(B)

 |Ŝp− ŜBu| < ε,

||Bu||L2(0,t;H) ≤ q1||p||L2(0,t;H), 0 ≤ t ≤ T.

where q1 is a constant independent of p.

As seen in [12], we obtain the following results.

Proposition 4.1 Under the assumptions (G1-2), (A) and (B), the following

system  y′(t) + Ay(t) + ∂φε(y(t)) = Bu(t), 0 < t ≤ T,

y(0) = x0.
(4.1)

is approximately controllable on [0, T ], i.e. RT (0) = H

Let u ∈ L1(0, T ; U). Then it is well known that

lim
h→0

h−1

∫ h

0

||u(t + s)− u(t)||Uds = 0 (4.2)

for almost all point of t ∈ (0, T ).
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Definition 4.2 The point t which permits (4.2) to hold is called the Lebesgue

point of u.

Let xε(T ; φ, h, u) be a solution of (SCE) such that x(T ; φ, h, u) = limε→ xε(T ; φ, h, u)

in L2(0, T ; V ) ∩ W 1,2(0, T ; V ∗) ⊂ C([0, T ]; H) is a solution of the equation

(NCE). First we consider the approximate controllability of the system (SCE)

in case where the controller B is the identity operator on H under the Lip-

schitz conditions (G1-2) on the nonlinear operator h in Proposition 4.1. So,

H = U obviously.

Proposition 4.2 Let y(t) be solution of (4.1) corresponding to a control u.

Then there exists a v ∈ L2(0, T ; H) such that

v(t) = u(t)−G(t, y, v), 0 < t ≤ T,

v(0) = u(0).

Proof. Let T0 be a Lebesgue point of u, v so that

L2

√
T 0||k||L2(0,T0) < 1. (4.3)

For a given u ∈ L2(0, T ; H), we define a mapping

Y : L2(0, T ; H) → L2(0, T ; H)

by

(Y v)(t) = u(t)−G(t, y(t), v(t)), 0 < t ≤ T0.

15



It follows readily from definition of W and Lemma 2.4 that

||Y v1 − Y v2||L2(0,T0;H) = ||G(·, y, v2)−G(·, y, v1)||L2(0,T0;H) (4.4)

≤ L2

√
T 0||k||L2(0,T0)||v2 − v1||L2(0,T0;H).

By a well known the contraction mapping principle, Y has a unique fixed

point v in L2(0, T0; H) if the condition (4.3) is satisfied. Let

v(t) = u(t)−G(t, y(t), v(t)).

Then from (G1-2), Lemma 2.4, and Proposition 2.1, it follows

||v||L2(0,T0;H) ≤ ||G(·, y, v) + u||L2(0,T0;H) (4.5)

≤
√

T 0||k||L2(0,T0)(L1||y||L2(0,T0;V ) + L2||v||L2(0,T0;H))

+ ||G(·, 0, 0) + u||L2(0,T0;H)

≤
√

T 0||k||L2(0,T0){L1C3(|x0|+ ||u||L2(0,T0;U))

+ L2||v||L2(0,T0;H)}+ ||G(·, 0, 0) + u||L2(0,T0;H).

Thus, from which we have

||v||L2(0,T0;H)) ≤(1− L2

√
T 0||k||L2(0,T0))

−1{
√

T 0||k||L2(0,T0)L1C3(|x0|

+ ||u||L2(0,T ;U)) + ||G(·, 0, 0) + u||L2(0,T0;H)}.
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And we obtain

|v(T0)| = |G(T0, y(T0), v(T0))− u(T0)| (4.6)

≤ |
∫ T0

0

k(T0 − s){h(s, y(s), v(s)− h(s, 0, 0)}ds|

+ |
∫ T0

0

k(T0 − s)h(s, 0, 0)ds + u(T0)|

≤ ||k||L2(0,T0)||h(·, y, v)− h(·, 0, 0)||L2(0,T0;H) + L0||k||L2(0,T0)

√
T 0 + |u(T0)|

≤ ||k||L2(0,T0)(L1||y||L2(0,T0;V )) + L2||v||L2(0,T0;H) + L0

√
T0) + |u(T0)|.

If 2T0 is a Lebesgue point of u, v then we can solve the equation in [T0, 2T0]

with the initial value v(T0) and obtain an analogous estimate to (4.5) and

(4.6). If not, we can choose T1 ∈ [T0, 2T0] to be a Lebesgue point of u, v.

Since the condition (4.3) is independent of initial values, the solution can be

extended to the interval [T1, T1 +T0], and so we have showed that there exists

a v ∈ L2(0, T ; H) such that v(t) = u(t)−G(t, y(t), v(t)). 2

Now, we consider the approximate controllability for the following semi-

linear control system in case where B is the identity operator: z′(t) + Az(t) + ∂φε(z(t)) = G(t, z, v) + v(t), 0 < t ≤ T,

z(0) = x0.
(4.7)

Let us define the reachable sets for the system (4.7) as follows:

rT (h) = {z(T ; φ, h, u) : u ∈ L2(0, T ; U)},

rT (0) = {z(T ; φ, 0, u) : u ∈ L2(0, T ; U)}.
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Theorem 4.1 Under the assumptions (G1-2), (A) and (B), we have

rT (0) ⊂ rT (h).

Therefore, if the system (4.1) with h = 0 is approximately controllable, then

so is the semilinear system (4.7).

Proof. Let v(t) = u(t) − G(t, y(t), v(t)) and let y = z(T ; φ, 0, u) be a solu-

tion of (4.1) corresponding to a control u. Consider the following semilinear

system

 z′(t) + Az(t) + ∂φε(z(t)) = G(t, z(t), v(t)) + u(t)−G(t, y(t), v(t)), 0 < t ≤ T

z(0) = x0.

(4.8)

The solution of (4.1) and (4.8), respectively, can be written as

y(t) =S(t)x0 +

∫ t

0

S(t− s){u(s)− ∂φε(z(s))}ds, and

z(t) =S(t)x0 +

∫ t

0

S(t− s){u(s)− ∂φε(z(s))}ds

+

∫ t

0

S(t− s){G(s, z(s), v(s))−G(s, y(s), v(s))}ds.

Then from Proposition 2.1 it is easily seen that z(·) ∈ C([0, T ]; H), that is,

z(s) → z(t) as s → t in H. Let δ > 0 be given. For δ ≤ t, set

zδ(t) =S(t)x0 +

∫ t−δ

0

S(t− s){u(s)− ∂φε(z
δ(s))}ds

+

∫ t−δ

0

S(t− s){G(s, zδ(s), v(s))−G(s, y(s), v(s))}ds.
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Then we have

z(t)− zδ(t) =

∫ t

t−δ

S(t− s){u(s)− ∂φε(z(s))}ds−
∫ t

t−δ

S(t− s)G(s, y(s), v(s))ds

+

∫ t

t−δ

S(t− s)G(s, z(s), v(s))ds

+

∫ t−δ

0

S(t− s){∂φε(z(s))− ∂φε(z
δ(s))}ds

+

∫ t−δ

0

S(t− s){G(s, z(s), v(s))−G(s, zδ(s), v(s))}ds.

So, for fixing ε > 0, we choose some constant T1 > 0 satisfying

C2

√
T1(L1||k||L2(0,T ) + ε−1) < 1, (4.9)

and from (2.2), or (2.5) it follows that

||z − zδ||L2(0,T1;V ) ≤C2

√
δ(M1 + ||u||L2(0,T1;H)) + C2L1

√
δ||k||L2(0,T )||z − y||L2(0,T1;V )

+ C2

√
T1(L1||k||L2(0,T ) + ε−1)||z − zδ||L2(0,T1;V ).

Thus, we know that zδ → z as δ → 0 in L2(0, T1; V ) for δ < t < T1. Noting

that

zδ(t)− y(t) =−
∫ t

t−δ

S(t− s){u− ∂φε(z(s))}ds

+

∫ t

t−δ

S(t− s){∂φε(z(s))− ∂φε(z
δ(s))}ds

+

∫ t−δ

0

S(t− s){G(s, zδ(s), v(s))−G(s, y(s), v(s))}ds,
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from (2.2), or (2.5), it follows that

||zδ − y||L2(0,T1;V ) =C2

√
δ||u− ∂φε(z)||L2(0,T1;H)

+ C2

√
δε−1||z − zδ||L2(0,T1;V )

+ C2

√
T1L1||k||L2(0,T )||zδ − y||L2(0,T1;V ).

Since the condition (4.9) is independent of δ, By the step by stem method,

we get zδ → y as δ → 0 in L2(0, T ; V ), for all δ < t < T . Therefore, noting

that z(·), y(·) ∈ C([0, T ; H]), every solution of the linear system with control

u is also a solution of the semilinear system with control v, that is, we have

that rT (0) ⊂ rT (h) in case where B = I. 2

From now on, we consider the initial value problem for the semilinear

parabolic equation (SCE). Let U be some Banach space and let the controller

operator B 6= I be a bounded linear operator from U to H.

Theorem 4.2 Let us assume that there exists a constant β > 0 such that

(B1) ||Bu|| ≥ β||u|| ∀u ∈ L2(0, T ; U), and R(G) ⊂ R(B).

Assume that assumptions (G1-2), (A) and (B) are satisfied. Then we have

RT (0) ⊂ RT (h),

i.e., the system (SCE) is approximately controllable on [0, T ].

Proof. Let x be a solution of the smoothing system (SCE) corresponding

to (NCE). Set v(t) = u(t) − B−1G(t, y, v) where y is a solution of (4.1)
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corresponding to a control u. Then as seen in Theorem 4.1, we know that

v ∈ L2(0, T ; U). Consider the following semilinear system


x′(t) + Ax(t) + ∂φε(x(t)) = G(t, x, v) + Bv(t)

= G(t, x, v) + Bu(t)−G(t, y, v), 0 < t ≤ T,

z(0) = x0.

If we define xδ as in proof of Theorem 3.1 then we get

xδ(t)− y(t) =−
∫ t

t−δ

S(t− s){u− ∂φε(x(s))}ds

+

∫ t

t−δ

S(t− s){∂φε(x(s))− ∂φε(x
δ(s))}ds

+

∫ t−δ

0

S(t− s){G(s, xδ, v(s))−G(s, y, v(s))}ds.

So, as similar to the proof of Theorem 3.1, we obtain that RT (0) ⊂ RT (h).

2

From Theorem 3.1 and Theorem 4.2 we obtain the following results.

Theorem 4.3 Under the assumptions (G1-2),(A), (B) and (B1), the system

(NCE) is approximately controllable on [0, T ].
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