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1 Introduction

Let H and V' be two complex Hilbert spaces. Assume that V is a dense
subspace in H and the injection of V' into H is continuous. If H is identified
with its dual space we may write V' C H C V* densely and the corresponding
injections are continuous. The norm on V', H and V* will be denoted by ||-||,
|-| and || - ||+, respectively. The duality pairing between the element v; of V*
and the element vy of V' is denoted by (v, vy), which is the ordinary inner
product in H if v;,vy € H. For I € V* we denote (I,v) by the value I(v) of
[ at v € V. We assume that-V" has a stronger topology than H and, for the

brevity, we may regard that
|l o Jul < bl ~Vu e V.

Let A be a continuous linear operator from V into V* which is assumed to
satisfy Garding’s inequality, and let ¢ : V' — (—o0, +00] be a lower semicon-
tinuous, proper convex function, and A : R™ x V x U — H is a nonlinear
mapping. Let. U be some Hilbert space and the controller operator B be
a bounded linear-operator from U to H. Then we study the following the

variational inequality preblemi with nonlinear term:

(@'(t) + Az(t), z(t) — 2) + ¢(z(1)) — ¢(2)
< (L k(t = $)h(s, 2(s), u(s))ds + Bu(t), 2(t) — 2), ae., ¥z €V
z(0) = .
(NDE)



Noting that the subdifferential operator 0¢ is defined by
O¢(x) ={z" € V'i¢(x) < d(y) + ("2 —y), yeV}

where (-, -) denotes the duality pairing between V* and V', the problem (NDE)

is represented by the following nonlinear functional differential problem;

o' (t) + Ax(t) + 0p(x(t)) 3 fo (t — s)h(s,z(s),u(s))ds + Bu(t), 0 < t,
z(0) = .
(NCE)

The existence and regularity for the paraboelic variational inequality in
the linear case( h'= 0), which was first investigated by Brézis [5, 6], has
been developed as seen in section 4.3.2 of Barbu [2](also see section 4.3.1 in
[3]). The regularity for the nonlinear the variational inequalities of semilinear

parabolic type was studied in [11].

The solution (NCE) is denoted by @(T’; ¢, h, u) corresponding to the non-
linear term A and the control u. The system (NCE) is said to be approxi-
mately controllable in the time interval [0, T], if for every given final state
1 € H, T > 0, and € > 0 there is a control functionu € L?(0,T; U) such that
|z(T'; ¢, h,u) — x| < €. Investigations of controllability of semilinear systems
found in [1, 10] have been studied by many references [1, 8, 9, 10, 15], which
is shown the relation between the reachable set of the semilinear system and

that of its corresponding linear system.

In [10, 14] they dealt with the approximate controllability of a semilinear
control system as a particular case of sufficient conditions for the approximate

solvability of semilinear equations by assuming
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(1) S(t) is compact operator, or the embedding D(A) C V is compact,

(2) h(-,x,u) is (locally ) Lipschitz continuous(or the sublinear growth
condition and limy, . (|h(-, z,u))|/||(z,w)|]) = 0).

(3) the corresponding linear system (NCE) in case where h = 0 and ¢ = 0

is approximately controllable.

Yamamoto and Park [18] studied the controllability for parabolic equa-
tions with uniformly bounded nonlinear terms instead of assumptions men-
tioned above. As for the some considerations on the trajectory set of (NCE)
and that of its corresponding linear system(in-case h = 0) as matters con-
nected with (3), we refer to Naito[15] and Sukavanam and Tomar[16] and
references therein. In {16] and Zhou[19] they studied the.control problems
of the semilinear equations by assuming (1); (3), a Lipschitz continuity of G

and a range condition of the controller B with an inequality constraint.

In this paper we no longer require the compact property in (1), the uni-
form boundedness in (2) and the inequality constraint on the range condition
of the controller. B, but instead we need the regularity and a variation of so-
lutions of the given-equations. For the basis of our study we construct the
fundamental solution and establish variations of constant formula of solutions

for the linear systems.

This paper is composed of four section. Section 2 gives assumptions and
notations. In Section 3, we introduce the single valued smoothing system cor-
responding to (NCE). Then in Section 4, the relations between the reachable

set of systems consisting of linear parts and possibly nonlinear perturbations



are addressed. From these results we can obtain the approximate controlla-
bility for the equation (NCE), which is the extended result of [15, 16, 19] to
the equation (NCE).

2  Solvability of the nonlinear variational in-

equality problems

Let a(-,-) be a bounded sesquilinear form defined in V' x V' and satisfying
Garding’s inequality:

Re a(u,u) > w1||u\|2 = w2|u|2,

where w; > 0 and wy is a real number. Let ‘A be the operatoriassociated with

the sesquilinear form a(s,+):
(Au,v) = a(u,v), u, veEV.

Then A is a'bounded linearoperator from V' to V* by the Lax-Milgram
theorem. The realization for the operator A in H which is the restriction of
A to

D(A) ={ueV;Auec H}

be also denoted by A. We also assume that there exists a constant Cj such

that

1/2
lJull < Collull gy lul*/? (2.1)

for every u € D(A), where
lullpay = (JAul® + [uf?)"/
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is the graph norm of D(A). Thus, in terms of the intermediate theory we
may assume that

(D(A),H)122 =V

where (D(A), H)1 /2,2 denotes the real interpolation space between D(A) and
H.

Lemma 2.1 LetT > 0. Then

T
He{zeV': / [ AetAz|[2dt < oo}
0

Proof. Put u(t) =¢'“x for x € H. Then,
v (t)= Au(t )y u(0) = z.

As in Theorem 4.1 of Chapter 4 of [13], the solution u belongs to L*(0,T; V)N
Wh2(0,T;V*), hence we obtain that

T T
/ At = / [/(s)][2ds°< 5.
0 0

Conversely, suppose that z*€¥* and fOT [[Aetz||2dt < co. Put u(t) = ettx.

Then since A is an isomorphism operator from V' to V* there exists a constant

¢ > 0 such that

T T T
| ol < [ jau)ie = [ jaca)
0 0 0

From the assumptions and u(t) = Ae4x it follows
u € L*0,T;V)NnWh0,T;V*) c C([0,T]; H).
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Therefore, x = u(0) € H. O

By Lemma 2.1, from Theorem 3.5.3 of Butzer and Berens[7], we can see

that
(V, V*)I/QQ - H

It is known that A generates an analytic semigroup S(t) in both H and
V*. The following Lemma is from Lemma 3.6.2 of [17].

Lemma 2.2 There exists a_constant M->.0_such that the following inequal-

ities hold for all t >0 and every x € H:

|S@)z) < M|zl _and gllS(t)z|] < Mt 22|1). (2.2)

Lemma 2.3 Suppose that k € L*(0,T; H) and (t) = [, S(t — s)k(s)ds for

0 <t <T. Then there exists.a constant Cy such that

Wl 220,004y < CullEl| L2 0 2y (2.3)

||| L2 0,r5my < CoT k|| L2 (0,11 (2.4)
and

|2 2oy < CoVT|K| r20,7m0)- (2.5)



Proof. The assertion (2.3) is immediately obtained by virtue of Theorem

3.3 of [8](or Theorem 3.1 of [10]). Since
2| ooz = Jo | o S(t— s)k(s)ds[2dt < M ["( [y |k(s)|ds)?dt
<M [Tt [0k (s)Pdsdt < MZ [T |k(s)|*ds

it follows that
2| L2070y < TN/ M/2||K| 20,7, m1) -
From (2.1), (2.3), and (2.4) it holds that

||$||L2(0,T;V) = C'0\/ ClT(M/2)1/4||k5||L2(0,T;H)'

So, if we take a eonstant C5 > 0 such that

= mx{/M/2, Cov/Ci(M/2)"1},

the proof is complete. O

Let h: RT xV x U — H be a nonlinear mapping satisfying the following:
(G1) For any .z € V,u € U the mapping h(-, z, u) is strongly measurable;
(G2) There exist-positive constants Lo, Ly, Ly stuch that

(1) [ht, z,u) = h(E, 2, 0)| < Liffr = i} Laflu — dllv,

(i) |h(t,0,0)] < Lo for allt e RT, z, & € V, and u, 4 € U.
For x € L*(0,T;V), we set
t
G(t,x,u) = / k(t — s)h(s,x(s),u(s))ds
0

where k belongs to L(0,T).



Lemma 2.4 Let x € L*(0,T;V) and u € L*(0,T;U) for any T > 0. Then
G(-,z,u) € L*(0,T; H) and
HG('7$7U)HL2(O,T;H) < LOHkHL2(07T)T/\/§

+ 16| 2200y VT (L ||| 207 + Ll |ul| 2 0m0))-

Moreover if x, & € L*(0,T;V), then
||G<',LIZ, U) - G(: A7ﬁ/)HL2(O,T;H) (26)

< ||kl| 20y VT (La ||z — #||20.0v) + Lallu — 4| r20.00))-

Proof. From (G1), (G2), and using the Holder inequality, it is easily seen
that
||G(> x, U)HL?(O,T;H) < ||G(> 0, O)H I+ ||G(> Ly u) o G(" 07 O)H

< (/OT | /Ot k(t — $)B(5,0, 0)ds|2dt) -

+ (/T | /t k(t— s){h(s,xz(s),u(s)) — h(s,O,O)}ds|2dt) -
o o
< Lollk|| 2200 T/V2 +{kilz2 0 VT [T, w)= h(-,0,0)| 20,73
< L0||k||L2(o,T)T/\/§+ ||k||L2(0,T)\/T(L1||x||L2(O,T;V) + Lollul[20,7,07))-
The proof of (2.6) is similar. O
By virtue of Theorems 3.1, 3.2 of [11], we have the following result on the

solvability of (NDE)(see [2, 13] in case of corresponding to equations with
h =0).



Proposition 2.1 Let the assumptions (G1) and (G2) be satisfied. Assume

that (zo,u) € D(¢) x L*(0,T;U) where D(¢) stands for the closure in H
of the set D(¢) = {u € V : ¢(u) < oo}. Then, the equation (NDE) has a

unique solution
z € L*0,T;V)nWh(0,T;V*) C C([0,T]; H)
and there exists a constant C3 depending on T such that

2|l L2awrene < Cs(1 4 [2o| + |[ul|L2(0,:0))- (2.7)

3 Smoothing system corresponding to (NDE)

For every e > 0, define

de(@)= inf{||z — y[[}/2¢ + ¢(y) > € HY.

Then the function ¢, is Fréchet differentiable on-H and its Fre¢het differential
O¢, is Lipschitz continuous on H with Lipschitz constant e~! where d¢, =
e M(I — (I +€dp)!) as is seen in Corollary 2.2 of Chapter II of [3]. Tt is
also well known results that lim._g ¢. = ¢ and lim._ ¢ (z) = (0¢)°(z) for
every x € D(0¢), where (0¢)° : H — H is the minimum element of d¢.



Now, we introduce the smoothing system corresponding to (NCE) as

follows.

2 (t) + Ax(t) + 0¢(z(t)) = G(t,z,u) + Bu(t), 0<t<T, (SCE)
z(0) = xo.

Since A generates a semigroup S(¢) on H, the mild solution of (SCE) can be
represented by

x(t) = S(t)xo + /0 S(t — s){G(s,ze,u) + Bu(s) — 0pc(zc(s)) }ds.

In virtue of Proposition 2.1 we know that if the assumptions (G1-2) are

satisfied then for every xy € H-and every.u € L*(0,T; U) the equation (SCE)

has a unique solution
r ¢ L0, V) nWhO, T; V) N C ([0, T);, H)
and there exists a constant 'y depending on 7" such that

|zl 22ama 200 < Ca(l + [zo| + Ul 2 1:0))- (3.1)

Now, we assume the hypothesis that-V-c D(9¢) and (0¢)° is uniformly

bounded, i.e.,

(A) |(09)°z| < My, =z € H.

Lemma 3.1 Let x. and x, be the solutions of (SCE) with same control u.
Then there exists a constant C' independent of € and \ such that

l|ze — 2Alleqorimnezory) < Cle+A), 0<T.

10



Proof. For given ¢, A > 0, let z. and z, be the solutions of (SCE)
corresponding to € and A, respectively. Then from the equation (SCE) we

have

/

2 (t) = @5(8) + Alwe(t) — 2a(1)) + 0c(w(t)) — da(2a(1))
=G(t,ze,u) — G(t, x5, u),
and hence, from (2.2) and multiplying by x.(t) — z(t), it follows that

1d ) :
5 g Te(t) —aO +wnllze(t) — 2Ol (3.2)

+ (09c(xe(t)) — Opa(zxlt)); we(t) — (1))
< (Gt ze;u) — Gty u), T (t) — wx(t)) + walze(t) — 2A()[*

Let us choose a constant ¢ 0 such that 2w, — cL%||k:||i2(07T) > 0. Then by
(G1), we have
(G(t, xe u) = G(t, 2,w), 2e(t) — 2A(F))

<G, xe, u)= Gtz w)] |z (t) — x(2)]

cL?|k
< L0 [ ) a0 L) - 0

Integrating (3.2) over [0, 7] and using the monotonicity of d¢ we have

cLi||k L2(0,T)
%\xea)—wm(wl—L) [ e = o
g/o (Opc(xc(t)) — OPpa(xA(t)), NOPA(2A(t) — €0 (xc(t))dE

+(%+w2)/0 |z (t) — 2\ (t)|dt.

11



Here, we used that
0be(x(t)) = € (we(t) — (I + €dg)"ac(t)).

Since |0¢.(z)| < [(04)°z| for every x € D(d¢), it follows from (A) and

using Gronwall’s inequality that

|ze — zallcqormnr2orvy < Cle+A), 0<T.

Theorem 3.1 Let the assumptions (G1-2) and (A) be satisfied. Then x =
lim._ . in L*(0,T;V) N C([0,T]; H) is a solution of the equation (NCE)
where x. is the solution of (SCE) .

Proof. In virtue of Lemma 3.1, there exists z(-) € L*(0,T; V) such that
Tl 1o (P I WP A C ([0 TTeH ),
From (G1-2) it follows that
G(-,ze,") — G(-,x,-), strongly in L*(0,T; H) (3.3)

and

Az, — Ax, strongly in L*(0,T;V*). (3.4)

Since 0¢.(x) are uniformly bounded by assumption (A), from (3.3), (3.4)

we have that

d

- ix, weakly in L*(0,T;V*),

dt

Te —

12



therefore
0¢c(ze) — G(-,m,-) + k —a' — Ax, weakly in L*(0,T;V™),

Note that O¢pc(zc) = e (I — (I + €dp)~')(x.). Since (I 4 €d¢p) 'z, —

x strongly and 0¢ is demiclosed, we have that
G(2,))+k—a2 — Ar € 9¢(x) in L*(0,T;V*).

Thus we have proved that x(t) satisfies a.e. on (0,7 the equation (NCE).
O

4 Controllability of the nonlinear variational
inequality problems
Let z(T'; ¢, g, u) be a state value of the system (SCE) at time 7! corresponding

to the function ¢, the nonlinear term g, and the control w. We define the

reachable sets for the system (SCE) as follows:

Ry(Ry=1{a(T; ¢, h,u) : w€ L2(0,T;U)},
Rr(0) = {2(T;$,0,u) : u € L*(0,T;U)},

Lr(0) = {z(T;0,0,u) : u € L*(0,T;U)}.

Definition 4.1 The system (NCE) is said to be approzimately controllable in

the time interval [0, T if for every desired final state x1 € H and € > 0 there

13



exists a control function u € L*(0,T;U) such that the solution z(T; ¢, h,u)
of (NCE) satisfies |x(T; ¢, h,u) —x1| < €, that is, if Rr(h) = H where Ry (h)
is the closure of Ry(h) in H, then the system (NCE) is called approzimately

controllable at time T'.

We need the following hypothesis:

For any ¢ > 0 and p € L*(0,T; H) there exists a u € L?(0,T;U) such
that

|Sp — SBu| <e,
(B)
HBul|t20.0:m) < arllpll20myy 0.t < T,

where ¢; is'a constant independent of p.

As seen in [12]; we obtain the following results.

Proposition 4.1 Under the assumptions (G1-2), (A) and (B), the following

system

y () Ay(t) + 06 (y(t)) = Bu(t), .0 <t <T,

(4.1)
is approzimately controllable on [0,T], i.e. Ry (0) = H
Let uw € LY(0,T;U). Then it is well known that
h
lim hl/ u(t + 5) — u(®)|[uds = 0 (4.2)
- 0

for almost all point of ¢ € (0,T).

14



Definition 4.2 The point t which permits (4.2) to hold is called the Lebesgue

point of u.

Let z.(T; ¢, h, u) be a solution of (SCE) such that z(7T'; ¢, h,u) = lim_, x(T; ¢, h, u)
in L2(0,T; V)N W40, T;V*) c C([0,T]; H) is a solution of the equation
(NCE). First we consider the approximate controllability of the system (SCE)
in case where the controller B is the identity operator on H under the Lip-

schitz conditions (G1-2) on the nonlinear operator h in Proposition 4.1. So,

H = U obviously.

Proposition 4.2 Let y(t) be solution of (4.1) corresponding to a control .
Then there ewists a v.-€ L*(0,T; H) such that

v(t I SUEG (. O= ¢ <|T

Proof. Let Ty be a Lebesgue point of u, v so that

LsV'To Vel 0 1) <1 (4.3)

For a given u € L*(0,T; H), we define a mapping

Y : L*(0,T; H) — L*(0,T; H)

(Yo)(t) = u(t) — Gt y(t),v(t), 0<t<T.

15



It follows readily from definition of W and Lemma 2.4 that
[Yvr = Yusllr20,mm) = [|G( y,v2) = GOy vl ez 0,mm) (4.4)

< Ly \/To||k?||L2(o,TO)||Uz — vl 200,10 1)-

By a well known the contraction mapping principle, Y has a unique fixed

point v in L%(0,Ty; H) if the condition (4.3) is satisfied. Let

v(t) = u(t) = Gt y(t), v(t)).
Then from (G1-2), Lemma 2.4, and Proposition 2.1, it follows
olle2 om0y < NGy, 0) + ull2omm) (4.5)
3 \/TO||k||L2(0,TO)(L1||y||L2(O,To;V) + Lo||v|| 20,7008
+[1G(-,0,0) + w20,
< VTo| |l 20z {1 Cs (ol + Ml 220,130

+ Lol o)l z2@.z0;m) } + ||G(-,0,0) +ullg30,10;8)-

Thus, from which we have

Wl £2 01020y <(1 = LoV'To| K|l r2(0.1)) ™ {VTol |kl £2(0.75) L1 Cs (|0 ]

+ullz20,m0)) + 1G5 0,0) + ul|L20,10:80) }-

16



And we obtain

[v(To)| = |G(To, y(To), v(To)) — u(To)| (4.6)
<1 [ kT = ) (A 9(9).0(5) = H(s.0.0) s
b /TO k(To — 5)h(s, 0,0)ds + u(Th)|

< 1kl z20m0) [A (- 9, ) = B(+, 0,0)|| 2(0m5r) + Lol & 2201y VT o + [u(T)]

<[kl z20,20) (L |yl L2 0,10:vy) + Lal|vl] 2 0,10;8) + Lo/ To) + [u(To)|-

If 2T is a Lebesgue point of u, v then we can solve.the equation in [T}, 27]
with the initial value v(7y) and obtain an analogous estimate to (4.5) and
(4.6). If not, we can choose Ty € [T4,21y] to be a Lebesgue point of u,v.
Since the condition (4.3) is independent of initial values, the solution can be
extended to the interval [T}, 77 +Tp], and so we have showed that there exists

av e L*(0,TyH) such that v(t) = u(t) — G(¢, y(t), v(t)). O

Now, we consider the approximate controllability for the following semi-

linear control system in-case where B. is the identity operator:

2(t) + Az(t) + 00 (2(1)) = G(t,z,v) +v(t), 0<t<T, ()
2(0) = x.

Let us define the reachable sets for the system (4.7) as follows:
ro(h) = {(T; ¢, h,u) s u € L*0,T;U)},

r7(0) = {2(T; ¢,0,u) : u € L*(0,T;U)}.

17



Theorem 4.1 Under the assumptions (G1-2), (A) and (B), we have

TT(O) C TT(h).

Therefore, if the system (4.1) with h = 0 is approzimately controllable, then

so is the semilinear system (4.7).

Proof. Let v(t) = u(t) — G(t,y(t),v(t)) and let y = 2(T; ¢,0,u) be a solu-
tion of (4.1) corresponding to a control u. Consider the following semilinear

system

{ 2'(t) + Az(t) + 0o (2(t)) = G(t, 2(t),v(t)) + ult) — G(t,y(t),v(t)), 0 <t <T
2(0) = xo.

(4.8)

The solution of (4.1) and (4.8), respectively, can be written as

y(t)=S(t)xo +/0 S(t — s){u(s) — 9o.(z(s))}ds, and
z(t) =S(t)zot /0 S(t— s){u(s) — 0¢.(2(s)) }ds

+ /O S(t=s{G(s, 2(s),v(s))=G(s,y(s),v(s))}ds.

Then from Proposition 2.1 it is easily seen that z(-) € C([0,7T]; H), that is,

z(s) — z(t) as s — t in H. Let § > 0 be given. For ¢ <, set

-5
22(t) =S(t)xo + /0 S(t — s){u(s) — 0p.(°(s))}ds
-5
+ /0 S(t — s){G(s,2°(s),v(s)) — G(s,y(s),v(s)) }ds.
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Then we have

()= (0) = [ 5= 3uls) — 26.e()}s — [ ST )Gs.u(5) 05D
+ /t; S(t — 5)G(s, (s), v(s))ds
+ /O H S(t = 5){0¢c(2(s)) — Ddc(2°(s)) }ds
+AH¥@—mcudamm—G@f®m®nw

So, for fixing € > 0, we choose some constant 77 >-0 satisfying

Cg\/ T1<L1Hk||L2(O,T) + 671) £ 1, (49)

and from (2.2), or (2.5)/it follows that

12 = 2| 2fo.mavy SCoVO(Ma + ||l | 2@ austy) + Co L Vol Kl 20,012 = yll 201
+ Co/ Tl L1 ||k 20y + € D|z— 2°/|2200m0.v)-

Thus, we know that-z° — z.asé — 0 in L2(0,T; V) for 6 <t < Ty. Noting
that

(0= u(t) == [ St = ){u—00.(:()) s
+ / S(t — 8){0¢e(2(s)) — 0pc(°(s)) }ds
t—6

t—6
+/0 S(t = s){G(s,2°(s),v(s)) — G(s,y(s), v(s)) }ds,
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from (2.2), or (2.5), it follows that
[12° = yllz20mv) =C2Vl[u = 06(2)l120:25;00)

+ CoVoe |z = 22 0.mv)

+ Con/ T La |k | 200 |12° = yll 120031

Since the condition (4.9) is independent of 0, By the step by stem method,
we get 2 — y as § — 0 in L2(0,T;V), for all § < t < T. Therefore, noting
that z(-), y(-) € C(]0,T; H]), every solution of the linear system with control
u is also a solution of the semilinear system with-control v, that is, we have

that r7(0) C rr(h) in case where B = I. 0

From now on, we consider the initial value problem for' the semilinear
parabolic equation (SCE). Let U be some Banach space and let the controller
operator B/ # I be a bounded linear operator from U to H.

Theorem 4.2 Let us assume that there exists a constant 3 > 0 such that
(B1) ||Bu}| =8||ufl- Yu € L2(0,T;U), ahd R(G) C R(B).
Assume that assumptions (G1-2), (A) and (B) are satisfied. Then we have

RT<O) C RT(h),

i.e., the system (SCE) is approzimately controllable on [0, T].

Proof. Let z be a solution of the smoothing system (SCE) corresponding
to (NCE). Set v(t) = u(t) — B'G(t,y,v) where y is a solution of (4.1)

20



corresponding to a control u. Then as seen in Theorem 4.1, we know that

v € L?(0,T;U). Consider the following semilinear system

2'(t) + Az(t) + 09 (z(t)) = G(t,z,v) + Bo(t)
= G(t,z,v) + Bu(t) — G(t,y,v), 0<t<T,
2(0) = xo.

If we define 2% as in proof of Theorem 3.1 then we get
t
20—yt == [ S(t = 5){u - 26, (s()}ds
t—3

[ St = )00l < d0a* ) s

t—=0
- /0 S(t — s){G(s,2°, v(s)) — G(s,y,u(s))}ds.

So, as similar to the proof of Theorem 3.1, we obtain that Ry (0) C Rr(h).
O

From Theorem 3.1 and Theorem 4.2 we obtain‘the following results.

Theorem 4.3 Under the assumptions (G1-2),(A), (B) and (B1), the system
(NCE) is approximately controllable on [0,T].
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