

Thesis for the Degree of Master of Education

On πgp -locally closed sets and πgp -locally continuous functions

Jin Woo Jeong

Graduate School of Education

Pukyong National University

August 2010

On *πgp*-locally closed sets and *πgp*-locally continuous functions (*πgp*-국소폐집합과 *πgp*-국소연속함수에 관하여)

Master of Education

Graduate School of Education Pukyong National University

August 2010

On πgp -locally closed sets and πgp -locally continuous functions

A Dissertation

by Jin Woo Jeong NUE G Approved by : (Chairman) Yong-Soo Pyo, Ph. D. Pr (Member) Jin Han Park, Ph. D. (Member) Sung-Jin Cho, Ph. D.

August 25, 2010

CONTENTS

	Abstract(Korean) i
1.	Introduction 1
2.	Preliminaries
3.	πgp -locally closed sets
4.	Properties of πgp - lc sets
5.	πgp -locally continuous and πgp -locally irresolute functions 13
	References

 πgp -국소 폐집합과 πgp -국소 연속 함수에 관하여

정진우

부경대학교 교육대학원 수학교육전공

요약

본 논문에서는 πgp -개집합과 πgp -폐집합의 정의와 이를 이용한 g-lc 집합, p-lc 집합 를 포함하는 πgp -lc 집합, πgp - lc^* 집합, πgp - lc^{**} 집합이라 불리는 세 가지 새로운 집합 을 소개하고 그 집합들의 모임인 πGp - $LC(X, \tau)$, πGp - $LC^*(X, \tau)$ 및 πGp - $LC^{**}(X, \tau)$ 이 갖는 성질에 대하여 알아보았다.

또한, 그러한 집합들을 이용하여 $\pi gp-lc$ 연속 함수, $\pi gp-lc^*$ 연속 함수, $\pi gp-lc^{**}$ 연속 함수와 $\pi gp-lc$ irresolute 함수, $\pi gp-lc^*$ irresolute 함수, $\pi gp-lc^{**}$ irresolute 함수를 정의하고 이들의 관계를 살펴보았다.

1 Introduction

Levine [10] initiated the investigation of so-called q-closed sets in topological spaces, since then many modifications of g-closed sets were defined and investigated by many authors. Zaitsev [14] introduced the concept of π -closed sets and a class of topological spaces called quasi-normal spaces. Recently, Dontchev and Noiri [6] defined the concept of πq -closed sets as a weak form of q-closed sets and used this notion to obtain a characterization and some preservation theorems for quasi-normal spaces. More recently, Park et al. [13] introduced and studied the notion of πqp -closed sets which is implied by that of πq -closed sets. The notions of πgp -open sets, πgp - $T_{1/2}$ spaces, πgp -continuity and πgp -irresoluteness are also introduced by Park et al. [13]. The notion of a locally closed set in topological space was implicitly introduced by Kuratowski and Sierpienski [9]. According to Bourbaki [4] a subset of a topological space X is locally closed in X. In 1989, Ganster and Reilly [8] continued the study of locally closed set and also introduced the concept of LC-continuous functions to find a decomposition of continuous functions. Balachandran et al. [3] introduced the concept of generalized continuity. Arockia Rani et al. [1] introduced regular generalized locally closed sets and obtained six more new classes of generalized continuity using the concept of regular generalized closed sets [12]. They also introduced $\pi G\alpha$ -LC sets, $\pi G\alpha$ -LC^{*} sets, $\pi G\alpha^{**}$ -LC sets and different classes of continuous and irresolute functions [2].

The purpose of this paper is to introduce three new classes of sets called πgp -lc sets, πgp -lc^{*} sets, πgp -lc^{**} sets which contain the class of glc-sets and p-lc sets by using the notion of πgp -open sets and πgp -closed sets. Also we introduce some different classes of continuity and irresoluteness and study some of their properties.

2 Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. We denote the closure and the interior of a set A by cl(A) and int(A), respectively. A subset A is said to be regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A))). The finite union of regular open sets is said to be π -open [14]. The complement of a π -open set is said to be π -closed [14]. A subset A is said to be α -open [11] (resp. *pre*-open) if $A \subset int(cl(int(A)))$ (resp. $A \subset int(cl(A))$). The complement of an α -open (resp. *pre*-open) set is said to be α -closed (resp. *pre*-closed). The preclosure is denoted by pcl(A).

We recall the following definitions used in sequel.

Definition 2.1 A subset A of a space (X, τ) is called

- (a) g-closed [6] if $cl(A) \subset U$ whenever $A \subset U$ and U is open in X;
- (b) $\pi g \alpha$ -closed [3] if $\alpha cl(A) \subset U$ whenever $A \subset U$ and U is π -open in X;
- (c) πgp -closed [13] if $pcl(A) \subset U$ whenever $A \subset U$ and U is π -open in X.

Definition 2.2 A subset A of (X, τ) is called

(a) locally closed set [7] (briefly, lc set) if $A = G \cap F$ where G is open and F is closed;

(b) $\pi g \alpha - lc$ set [2] if $S = A \cap B$ where A is $\pi g \alpha$ -open in X and B is $\pi g \alpha$ -closed in X;

(c) $\pi g \alpha - lc^*$ set [2] if there exist a $\pi g \alpha$ -open set A and a closed set B such that $S = A \cap B$;

(d) $\pi g \alpha - lc^{**}$ set [2] if there exist an open set A and a $\pi g \alpha$ -closed set B such that $S = A \cap B$.

The collection of all lc sets, (resp. $\pi g \alpha - lc$ sets, $\pi g \alpha - lc^*$ sets, $\pi g \alpha - lc^{**}$ sets) of (X, τ) will be denoted by $LC(X, \tau)$, (resp. $\pi G \alpha - LC(X, \tau)$, $\pi G \alpha - LC^*(X, \tau)$, $\pi G \alpha - LC^{**}(X, \tau)$).

Definition 2.3 A function $f: (X, \tau) \to (Y, \sigma)$ is called

(a) *lc* continuous [7] if $f^{-1}(V) \in LC(X, \tau)$ for each open set V of (Y, σ) ;

(b) *lc* irresolute [7] if $f^{-1}(V) \in LC(X, \tau)$ for each open set V of $LC(Y, \sigma)$;

(c) Sub-lc continuous [7] if there is a sub-base B for (Y, σ) such that $f^{-1}(V) \in$

 $LC(X, \tau)$ for each $V \in B$.

Definition 2.4 A space (X, τ) is called

- (a) submaximal space [5] if every dense subset of X is open;
- (b) door space [4] if every subset of X is either open or closed in X;
- (c) $\pi g \alpha T_{1/2}$ space if every $\pi g \alpha$ -closed set is α -closed.

Theorem 2.5 [13] If A is π -open and πgp -closed in (X, τ) , then A is *pre*-closed and hence clopen.

Lemma 2.6 [13] If $A \subset X \subset Y$ and Y is open in X, then $pcl_Y(A) = pcl_X(A) \cap Y$.

Lemma 2.7 [13] Let Y is open in X. Then

(a) If A is π -open in Y, then there exists a π -open set B in X such that $A = B \cap Y$.

(b) If A is π -open in X, then $A \cap B$ is π -open in Y.

Theorem 2.8 [13] Let $A \subset Y \subset X$. Then

(a) If Y is open in X and A is πgp -closed in X, then A is πgp -closed in Y.

(b) If Y is πgp -closed and regular open in X and A is πgp -closed in Y, then A is πgp -closed in X.

3 πgp -locally closed sets

In this section we define πgp -locally closed sets which are weaker forms of locally closed sets and compare it with existing weaker forms of sets.

Definition 3.1 A subset S of a space (X, τ) is called

(a) *p*-*lc* set if $S = G \cap F$ where G is *pre*-closed and F is *pre*-open;

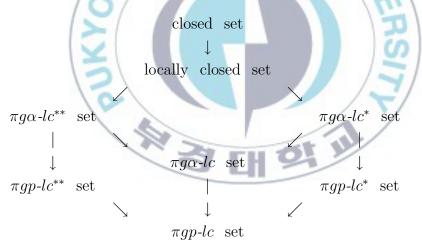
(b) πgp -lc set if $S = A \cap B$ where A is πgp -open in X and B is πgp -closed in X;

(c) πgp - lc^* if there exist a πgp -open set A and a closed set B such that $S = A \cap B$;

(d) πgp - lc^{**} if there exist an open set A and a πgp -closed set B such that $S = A \cap B$.

The collection of all *p*-*lc* sets, (resp. πgp -*lc* sets, πgp -*lc*^{*} sets, πgp -*lc*^{**} sets) of (X, τ) will be denoted by *p*-*LC* (X, τ) , (resp. πGp -*LC* (X, τ) , πGp -*LC*^{**} (X, τ)).

Remark 3.2 From Definition 3.1, we have the following diagram of implications.



In the above remark the relationship cannot be reversible as the following example illustrates.

Example 3.3 (a) Let $X = \{a, b, c, d, e\}$ and $\tau = \{X, \emptyset, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}\}$, then $\{b, c\} \in \pi Gp\text{-}LC^*(X, \tau)$ but $\{a, c\} \notin \pi G\alpha\text{-}LC^*(X, \tau)$.

(b) Let
$$X = \{a, b, c, d\}$$
 and $\tau = \{X, \emptyset, \{b\}, \{c, d\}, \{b, c, d\}\}$, then
(i) $\{b, c, d\} \in \pi Gp\text{-}LC(X, \tau)$ but $\{b, c, d\} \notin \pi Gp\text{-}LC^*(X, \tau)$.
(ii) $\{a, c\} \in \pi Gp\text{-}LC(X, \tau)$ but $\{a, c\} \notin \pi Gp\text{-}LC^{**}(X, \tau)$.

Remark 3.4 Every πgp -closed (resp. πgp -open) set is πgp -lc set and every locally closed set is πgp -closed but not conversely.

Example 3.5 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{b\}, \{c, d\}, \{b, c, d\}\}$. Then $\{a, c\}$ is a πgp -closed set but $\{a, c\}$ is not a locally closed set.

Remark 3.6 If $A \in LC(X, \tau)$, then $A \in \pi Gp\text{-}LC^*(X, \tau)$ and $\pi Gp\text{-}LC^{**}(X, \tau)$. The converse is not true as seen in the following example. Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a, b\}\}$. Then $LC(X, \tau) = \{X, \emptyset, \{c\}, \{a, b\}\}$ and $\{a\} \in \pi Gp\text{-}LC^*(X, \tau)$ and $\pi Gp\text{-}LC^*(X, \tau) = \pi Gp\text{-}LC^{**}(X, \tau) = P(X)$. Hence $\{a\} \in \pi Gp\text{-}LC^{**}(X, \tau)$ but $\{a\} \notin LC(X, \tau)$.

Definition 3.7 A space is a πgp -space if every πgp -open set is open in X.

Theorem 3.8 Let (X, τ) be a πgp -space, then

- (a) $\pi Gp\text{-}LC^{**}(X,\tau) = LC(X,\tau).$
- (b) $\pi Gp\text{-}LC^{**}(X,\tau) \subset GLC(X,\tau).$
- (c) $\pi Gp\text{-}LC^{**}(X,\tau) \subset \alpha LC(X,\tau).$

Proof Obvious.

Definition 3.9 A space is (X, τ) is πgp - $T_{1/2}$ spaces if every πgp -closed set is *pre*-closed.

Theorem 3.10 If X is a πgp - $T_{1/2}$ space, then πGp - $LC(X, \tau) = p$ - $LC(X, \tau)$.

Proof It follows from Definition 3.9.

The converse of the above theorem need not hold.

Example 3.11 Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, d\}\}$, then $\pi Gp\text{-}LC(X, \tau) = p\text{-}LC(X, \tau) = P(X)$. But $\{a\}$ is πgp -closed set not *pre*-closed.

Theorem 3.12 If X is a πgp -space, then

$$\pi Gp\text{-}LC(X,\tau) = \pi Gp\text{-}LC^{*}(X,\tau) = \pi Gp\text{-}LC^{**}(X,\tau).$$

Proof Straightforward.

The hypothesis in Theorem 3.12 can be weakened as follows.

Theorem 3.13 If $\pi GpO(X,\tau) \subset LC(X,\tau)$ and suppose that collections of all πgp -closed (or πgp -open) sets are closed under finite intersection, then

$$\pi Gp\text{-}LC(X,\tau) = \pi Gp\text{-}LC^*(X,\tau) = \pi Gp\text{-}LC^{**}(X,\tau).$$

Proof Let $A \in \pi Gp\text{-}LC(X)$. Then $A = P \cap Q$ where P is $\pi gp\text{-}open$ and Q is $\pi gp\text{-}closed$. Since $\pi GpO(X,\tau) \subset LC(X,\tau)$ implies $\pi GpC(X,\tau) \subset LC(X,\tau)$, we have Q is locally closed. Let $Q = M \cap N$ where M is open and N is closed. Hence $A = (P \cap M) \cap N$ where $(P \cap M)$ is $\pi gp\text{-}open$ and N is closed. Hence $A \in \pi Gp\text{-}LC^*(X)$. For any space $X, \pi Gp\text{-}LC^*(X) \subset \pi Gp\text{-}LC(X)$. Thus $\pi Gp\text{-}LC(X) = \pi Gp\text{-}LC^*(X)$. Let $B \in \pi Gp\text{-}LC(X)$. Then $B = P \cap Q$ where P is locally closed, we have $P = M \cap N$ where M is open and N is closed. Hence $A = M \cap (N \cap Q)$ where M is open and $N \cap Q$ is $\pi gp\text{-}closed$. For any space $X, \pi Gp\text{-}LC^{**}(X) \subset \pi Gp\text{-}LC(X)$.

Now, we obtain a characterization for πgp - lc^* sets as follows.

Theorem 3.14 For a subset S of (X, τ) the following are equivalent:

- (a) $S \in \pi Gp\text{-}LC^{**}(X, \tau)$.
- (b) $S = P \cap cl(S)$ for some πgp -open set P.
- (c) $\operatorname{cl}(S) \setminus S$ is πgp -closed.
- (d) $S \cup (X \setminus cl(S))$ is πgp -open.

Proof $(a) \Rightarrow (b)$: Let $S \in \pi Gp\text{-}LC^*(X, \tau)$. Then there exist a πgp -open set Pand a closed set F in (X, τ) such that $S = P \cap F$. Since $S \subset P$ and $S \subset cl(S)$, we have $S \subset P \cap cl(S)$. Conversely, $P \cap cl(S) \subset P \cap F = S$ since $cl(S) \subset F$. Hence $S = P \cap cl(S)$.

 $(b) \Rightarrow (a)$: Since P is πgp -open and cl(S) is closed, $S = P \cap cl(S) \in \pi Gp$ - $LC^*(X, \tau)$.

 $(c) \Rightarrow (d)$: Let $F = \operatorname{cl}(S) \setminus S$. Then F is πgp -closed by assumption. $X \setminus F = X \cap (\operatorname{cl}(S) \setminus S)^c = S \cup (X \setminus \operatorname{cl}(S))$. Since $X \setminus F$ is πgp -open, we have that $S \cup (X \setminus \operatorname{cl}(S))$ is πgp -open.

 $(d) \Rightarrow (c)$: Let $U = S \cup (X \setminus \operatorname{cl}(S))$. Then U is πgp -open. This implies $X \setminus U = X \setminus (S \cup (X \setminus \operatorname{cl}(S))) = (X \setminus S) \cap \operatorname{cl}(S) = \operatorname{cl}(S) \setminus S$ is πgp -closed.

 $(b) \Rightarrow (d)$: Let $S = P \cap cl(S)$ for some πgp -open set P. $S \cup (X \setminus cl(S)) = P \cap (cl(S) \cup X \setminus cl(S)) = P \cap X = P$ which is πgp -open.

 $(d) \Rightarrow (b)$: Let $U = S \cup (X - \operatorname{cl}(S))$. Then U is πgp -open. Now, $U \cap \operatorname{cl}(S) = (S \cup (X \setminus \operatorname{cl}(S))) \cap \operatorname{cl}(S) = (S \cap \operatorname{cl}(S)) \cup (X \setminus \operatorname{cl}(S) \cap \operatorname{cl}(S)) = S \cup \emptyset = S$ for some πgp -open set U.

Remark 3.15 It is not true that $S \in \pi Gp\text{-}LC^*(X,\tau)$ iff $S \subset \operatorname{int}(S \cup (X \setminus \operatorname{cl}(S)))$. Let $S = \{b, d\}$ be a subset of the topological space (X, τ) given in Example 3.3 (b). Then $S \notin \operatorname{int}(S \cup (X \setminus \operatorname{cl}(S)))$ but $S \in \pi Gp\text{-}LC^*(X,\tau)$.

Definition 3.16 A topological space (X, τ) is called πgp -submaximal if every dense subset in it is πgp -open.

Theorem 3.17 Every submaximal space is πgp -submaximal.

Proof It follows from Definition 3.16.

Converse of the above is not true as seen in the following example.

Example 3.18 Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{b, d\}$. Then A is dense in X such that A is πgp -open but not open.

Theorem 3.19 A topological space (X, τ) is πgp -submaximal if and only if πGp - $LC^*(X, \tau) = P(X)$.

Proof Necessity : Let $S \in P(X)$. Let $U = S \cup (X \setminus cl(S))$. Then cl(U) = X. U is dense in X and X is πgp -submaximal implies U is πgp -open. By Theorem 3.14, $S \in \pi Gp$ - $LC^*(X, \tau)$.

Sufficiency : Let S be a dense subset of (X, τ) . Then $S = (X \setminus cl(S)) = S$ is πgp -open. Hence (X, τ) is πgp -submaximal.

Definition 3.20 The intersection of all πgp -closed sets of X containing A is the πgp -closure of A is denoted by $\pi gpcl(A)$.

Theorem 3.21 Let S be any subset of (X, τ) . If $S \in \pi Gp\text{-}LC^{**}(X, \tau)$, then there exist an open set P such that $S = P \cap \pi gpcl(S)$.

Proof Let $S \in \pi Gp\text{-}LC^{**}(X,\tau)$. Then there exist an open set P and $\pi gp\text{-}closed$ set F of (X,τ) such that $S = P \cap F$. Since $S \subset P$ and $S \subset \pi gpcl(S)$, we have $S \subset P \cap \pi gpcl(S)$. Since $\pi gpcl(S) \subset F$, we have $P \cap \pi gpcl(S) \subset P \cap F \subset S$. Thus $S = P \cap \pi gpcl(S)$.

4 Properties of πgp -lc sets

Theorem 4.1 Let A and B be any two subsets of (X, τ) . Suppose that the collection of πgp -closed set of (X, τ) is closed under finite intersection, then the following are true.

(a) If $A \in \pi Gp\text{-}LC(X, \tau)$ and B is πgp -open (or πgp -closed), then

$$A \cap B \in \pi Gp\text{-}LC(X, \tau).$$

(b) If $A \in \pi Gp\text{-}LC^*(X,\tau)$ and $B \in \pi Gp\text{-}LC^*(X,\tau)$, then

$$A \cap B \in \pi Gp\text{-}LC^*(X,\tau).$$

Proof (a) $A \in \pi Gp\text{-}LC(X, \tau)$ implies $A \cap B = (G \cap F) \cap B$ for some πgp -open set G and πgp -closed set F. If B is πgp -open, then $A \cap B = (G \cap B) \cap F \in \pi Gp\text{-}LC(X, \tau)$. If B is πgp -closed, then $A \cap B = G \cap (F \cap B) \in \pi Gp\text{-}LC(X, \tau)$, since $F \cap B$ is πgp -closed.

(b) If $A, B \in \pi Gp\text{-}LC^*(X, \tau)$, then by Theorem 3.14, there exist πgp -open sets P and Q such that $A = P \cap cl(A)$ and $B = Q \cap cl(B)$. Since $P \cap Q$ is also πgp -open, then $A \cap B = (P \cap Q) \cap (cl(A) \cap cl(B)) \in \pi Gp\text{-}LC^*(X, \tau)$.

Theorem 4.2 Let A and B be any two subsets of (X, τ) . Suppose that the collection of πgp -closed set (X, τ) is closed under finite intersection. If $A \in \pi Gp$ - $LC^{**}(X, \tau)$ and B is closed or open, then $A \cap B \in \pi Gp$ - $LC^{**}(X, \tau)$.

Proof If $A \in \pi Gp\text{-}LC^{**}(X,\tau)$, then there exist an open set G in (X,τ) and a $\pi gp\text{-closed set } F$ in (X,τ) such that $A \cap B = (G \cap F) \cap B$. If B is open, then $A \cap B = (G \cap B) \cap F \in \pi Gp\text{-}LC^{**}(X,\tau)$. If B is closed, then $A \cap B =$ $G \cap (B \cap F) \in \pi Gp\text{-}LC^{**}(X,\tau)$.

Theorem 4.3 Let A be any subset of (X, τ) and let $A \subset Z$ which Z is πgp open in (X, τ) and regular closed. Suppose that the collection of all πgp -open sets of (X, τ) is closed under finite intersection. If $A \in \pi Gp$ - $LC^*(Z, \tau/Z)$, then $A \in \pi Gp$ - $LC^*(X, \tau)$.

Proof If $A \in \pi Gp\text{-}LC^*(Z, \tau/Z)$, there is a πgp -open set G in $(Z, \tau/Z)$ such that $A = G \cap \operatorname{cl}_Z(A)$ where $\operatorname{cl}_Z(A) = Z \cap \operatorname{cl}(A)$. Since G and Z are πgp -open, $G \cap Z$ is also πgp -open. This implies that $A = (G \cap Z) \cap \operatorname{cl}(A) \in \pi Gp\text{-}LC^*(X, \tau)$.

Remark 4.4 The following example shows that one of the assumption in the above theorem (i.e., Z is πgp -open in (X, τ)) cannot be removed.

Example 4.5 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{b\}, \{c, d\}, \{b, c, d\}\}$. Let $Z = A = \{a, c\}$. Then Z is not πgp -open in X and $\tau/Z = \{Z, \emptyset, \{c\}\}$. Hence $A \in \pi Gp$ - $LC^*(Z, \tau/Z)$ but $A \notin \pi Gp$ - $LC^*(X, \tau)$.

Lemma 4.6 Let Z be regular open and πgp -closed in (X, τ) and $F \subset Z$. If F is πgp -closed in $(Z, \tau/Z)$, then F is πgp -closed in (X, τ) .

Theorem 4.7 Suppose that the collection of all πgp -closed sets of (X, τ) is closed under finite intersection. If Z is πgp -closed and regular open in (X, τ) and $A \in \pi Gp$ - $LC^*(Z, \tau/Z)$, then $A \in \pi Gp$ - $LC(X, \tau)$.

Proof Let $A \in \pi Gp\text{-}LC^*(Z, \tau/Z)$. Then $A = G \cap F$ for some πgp -open set G in $(Z, \tau/Z)$ and some closed set F in $(Z, \tau/Z)$. F is closed in Z. By Lemma 4.6, Z is πgp -closed and regular open in X implies F is πgp -closed in (X, τ) . Hence $A = G \cap F \in \pi Gp\text{-}LC(X, \tau)$.

Theorem 4.8 If Z is closed and open in (X, τ) and $A \in \pi Gp\text{-}LC(Z, \tau/Z)$, then $A \in \pi Gp\text{-}LC(X, \tau)$.

Proof Let $A \in \pi Gp\text{-}LC(Z, \tau/Z)$. Then $A = G \cap F$ where G is πgp -open in $(Z, \tau/Z)$ and F is πgp -closed in $(Z, \tau/Z)$. Since Z is closed and open in (X, τ) by Lemma 4.6, G and F are πgp -open and πgp -closed respectively in (X, τ) . Therefore $A \in \pi Gp\text{-}LC(X, \tau)$.

Theorem 4.9 If $A \in \pi Gp\text{-}LC^{**}(Z, \tau/Z)$, where Z is πgp -closed and regular open in (X, τ) , then $A \in \pi Gp\text{-}LC^{**}(X, \tau)$.

Proof Let $A \in \pi Gp\text{-}LC^{**}(Z, \tau/Z)$. Then $A = G \cap F$ where G is πgp -open in $(Z, \tau/Z)$ and F is πgp -closed in $(Z, \tau/Z)$. Since Z is πgp -closed and regular open, G is open set in (X, τ) and F is open set and πgp -closed set in (X, τ) . Then $A \in \pi Gp\text{-}LC^{**}(X, \tau)$.

Definition 4.10 Let $A, B \in X$. Then A and B are said to be *separated* if $A \cap cl(B) = \emptyset$ and $B \cap cl(A) = \emptyset$.

Theorem 4.11 Suppose the collection of all πgp -open sets of (X, τ) are closed under finite unions. Let $A, B \in \pi Gp$ - $LC^*(X, \tau)$. If A and B are separated in (X, τ) , then $A \cup B \in \pi Gp$ - $LC^*(X, \tau)$.

Proof Since $A, B \in \pi Gp\text{-}LC^*(X, \tau)$ by Theorem 3.14, there exist πgp -open sets P and Q of (X, τ) such that $A = P \cap \operatorname{cl}(A)$ and $B = Q \cap \operatorname{cl}(B)$. Put $U = P \cap (X \setminus \operatorname{cl}(B))$ and $V = Q \cap (X \setminus \operatorname{cl}(A))$. Then U and V are πgp -open subsets of (X, τ) . Thus $A = U \cap \operatorname{cl}(A), B = V \cap \operatorname{cl}(B)$ and $U \cap \operatorname{cl}(B) = \emptyset, V \cap \operatorname{cl}(A) = \emptyset$. Consequently $A \cup B = (U \cap V) \cap (\operatorname{cl}(A \cup B))$ shows that $A \cup B \in \pi Gp\text{-}LC^*(X, \tau)$.

Remark 4.12 The following example shows that one of assumption of Theorem 4.11 (i.e., A and B are separated) cannot be removed.

In Example 3.3 (b), $\{b\} \in \pi Gp\text{-}LC^*(X, \tau), \{c, d\} \in \pi Gp\text{-}LC^*(X, \tau)$. However $\{b\}$ and $\{c, d\}$ are not separated and $\{b, c, d\} \notin \pi Gp\text{-}LC^*(X, \tau)$.

Theorem 4.13 Let $\{Z_i : i \in \Gamma\}$ be a finite πgp -closed cover of (X, τ) and let A be a subset of (X, τ) . If $A \cap Z_i \in \pi Gp$ - $LC^{**}(Z_i, \tau/Z_i)$ for each $i \in \Gamma$, then $A \in \pi Gp$ - $LC^{**}(X, \tau)$.

Proof For each $i \in \Gamma$, there exist an open set $U_i \in \tau/Z_i$ and πgp -closed set F_i of $(Z_i, \tau/Z_i)$ such that $A \cap Z_i = (U_i \cap F_i) \cap Z_i = U_i \cap (F_i \cap Z_i)$. Then $A = \bigcup \{A \cap Z_i : i \in \Gamma\} = \bigcup \{U_i : i \in \Gamma\} \cap [\bigcup \{F_i \cap Z_i : i \in \Gamma\}]$ and hence $A \in \pi Gp$ - $LC^{**}(X, \tau)$.

Theorem 4.14 Let (X, τ) and (Y, σ) be any two topological spaces. Then (a) If $A \in \pi Gp\text{-}LC(X, \tau)$ and $B \in \pi Gp\text{-}LC(Y, \sigma)$, then

$$A \times B \in \pi Gp\text{-}LC(X \times Y, \tau \times \sigma).$$

(b) If $A \in \pi Gp\text{-}LC^*(X, \tau)$ and $B \in \pi Gp\text{-}LC^*(Y, \sigma)$, then

$$A \times B \in \pi Gp\text{-}LC^*(X \times Y, \tau \times \sigma)$$

(c) If $A \in \pi Gp\text{-}LC^{**}(X, \tau)$ and $B \in \pi Gp\text{-}LC^{**}(Y, \sigma)$, then

$$A \times B \in \pi Gp\text{-}LC^{**}(X \times Y, \tau \times \sigma).$$

Proof Let $A \in \pi Gp\text{-}LC(X, \tau)$ and $B \in \pi Gp\text{-}LC(Y, \sigma)$. Then there exist πgp open sets V and V_1 of (X, τ) and πgp -closed sets W and W_1 of (Y, σ) respectively
such that $A = V \cap W$ and $B = V_1 \cap W_1$. Then $A \times B = (V \cap W) \times (V_1 \cap W_1) =$ $(V \times V_1) \cap (W \times W_1)$ hold and hence $A \times B \in \pi Gp\text{-}LC(X \times Y, \tau \times \sigma)$.

Proofs of (b) and (c) are similar to (a).

5 πgp -locally continuous and πgp -locally irresolute functions

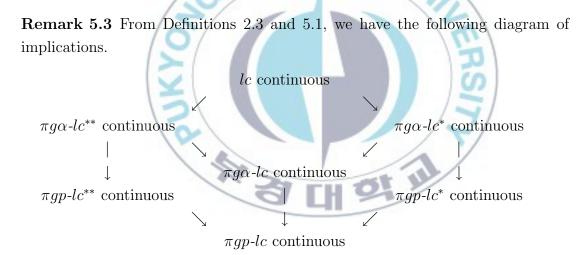
In this section we use πgp -lc sets, πgp - lc^* sets, πgp - lc^{**} sets to generalize πgp -lc continuous function and πgp -lc irresolute function.

Definition 5.1 A function $f: (X, \tau) \to (Y, \sigma)$ is called

- (a) $\pi gp\text{-}lc$ continuous if $f^{-1}(V) \in \pi Gp\text{-}LC(X,\tau)$ for every $V \in \sigma$;
- (b) $\pi gp\text{-}lc^*$ continuous if $f^{-1}(V) \in \pi Gp\text{-}LC^*(X,\tau)$ for every $V \in \sigma$;
- (c) $\pi gp\text{-}lc^{**}$ continuous if $f^{-1}(V) \in \pi Gp\text{-}LC^{**}(X,\tau)$ for every $V \in \sigma$;
- (d) $\pi gp\text{-}lc$ irresolute if $f^{-1}(V) \in \pi Gp\text{-}LC(X,\tau)$ for every $V \in \pi Gp\text{-}LC(Y,\sigma)$;
- (e) $\pi gp\text{-}lc^*$ irresolute if $f^{-1}(V) \in \pi Gp\text{-}LC^*(X,\tau)$ for every $V \in \pi Gp\text{-}LC^*(Y,\sigma)$;
- (f) $\pi gp\text{-}lc^{**}$ irresolute if $f^{-1}(V) \in \pi Gp\text{-}LC^{**}(X,\tau)$ for every $V \in \pi Gp\text{-}LC^{**}(Y,\sigma)$.

Proposition 5.2 If f is πgp -lc irresolute, then it is πgp -lc continuous.

Proof It follows from Definition 5.1.



In the above remark the relationship cannot be reversible as the following example illustrates.

Example 5.4 (a) Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a, b\}\}$ and $\sigma = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Let $f : (X, \tau) \to (X, \sigma)$ be the identity mapping. Then f is πgp - lc^* continuous and πgp - lc^{**} continuous but not lc continuous.

(b) Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{b\}, \{c, d\}, \{b, c, d\}\}$ and $\sigma = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, c, d\}, \{a, b, c\}\}$. Let $f : (X, \tau) \to (X, \sigma)$ be the identity mapping. Then f is πgp -lc continuous but not πgp - lc^* continuous since $\{a, c\} \in \sigma$ but $f^{-1}(\{a, c\}) \notin \pi Gp$ - $LC^*(X, \tau)$.

(c) Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{b\}, \{c, d\}, \{b, c, d\}\}$ and $\sigma = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c\}\}$. Let $f : (X, \tau) \to (X, \sigma)$ be the identity mapping. Then f is πgp - lc^* continuous but not $\pi g\alpha$ - lc^* continuous since $\{a, b, d\} \in \sigma$ but $f^{-1}(\{a, b, d\}) \notin \pi G \alpha$ - $LC^*(X, \tau)$.

Lemma 5.5 $f: (X, \tau) \to (Y, \sigma)$ be a function.

- (a) If f is πgp -lc^{*} irresolute, then f is πgp -lc^{*} continuous.
- (b) If f is πgp -lc^{**} irresolute, then f is πgp -lc^{**} continuous.

The converse of the above need not be true in general as can be seen in the following example.

Example 5.6 Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{b\}, \{c, d\}, \{b, c, d\}\}$ and $\sigma = \{X, \emptyset, \{a\}, \{a, c\}, \{a, b, c\}, \{b, c, d\}\}$. Let $f : (X, \tau) \to (X, \sigma)$ be the identity mapping. Then f is $\pi gp\text{-}lc^*$ continuous but not $\pi gp\text{-}lc^*$ irresolute since $\{b, c, d\} \in \pi Gp\text{-}LC^*(Y, \sigma)$ but $f^{-1}(\{b, c, d\}) \notin \pi Gp\text{-}LC^*(X, \tau)$.

Proposition 5.7 Any map defined on a door space is πgp -lc irresolute.

Proof Let (X, τ) be a door space and (Y, σ) be any space. Define a map f: $(X, \tau) \to (Y, \sigma)$ and let $A \in \pi Gp\text{-}LC(Y, \sigma)$. Then $f^{-1}(A)$ is either open or closed in (X, τ) . In both cases $f^{-1}(A) \in \pi Gp\text{-}LC(X, \tau)$. Hence f is $\pi gp\text{-}lc$ irresolute.

Theorem 5.8 A topological space (X, τ) is πgp -submaximal iff every function having (X, τ) as it domain is πgp - lc^* continuous.

Proof Suppose that $f: (X, \tau) \to (Y, \sigma)$ is a function. By Theorem 3.19, we have that $f^{-1}(V) \in P(X) = \pi Gp\text{-}LC^*(X, \tau)$ for each open set V of (Y, σ) . Therefore f is $\pi gp\text{-}lc^*$ continuous. Conversely, let every map having (X, τ) as domain be $\pi gp\text{-}lc^*$ continuous. Let $Y = \{0, 1\}$ be the the Sierpinski space with topology $\sigma = \{Y, \emptyset, \{0\}\}$. Let V be a subset of (X, τ) and $f: (X, \tau) \to (Y, \sigma)$ be a function defined by f(x) = 0 for every $x \in V$ and f(x) = 1 for every $x \notin V$. By assumption, f is $\pi gp\text{-}lc^*$ continuous and hence $f^{-1}(0) = V \in \pi Gp\text{-}LC^*(X, \tau)$. Therefore we have $P(X) = \pi Gp\text{-}LC^*(X, \tau)$ and by Theorem 3.19, (X, τ) is πgp -submaximal.

Proposition 5.9 If $f : (X, \tau) \to (Y, \sigma)$ is $\pi gp\text{-}lc^{**}$ continuous and subset B is open in (X, τ) , then the restriction of f to B, say $f/B : (B, \tau/B) \to (Y, \sigma)$, is $\pi gp\text{-}lc^{**}$ continuous.

Proof Let V be an open set of (Y, σ) . Then $f^{-1}(V) = G \cap F$ for some open set G and πgp -closed set F of (X, τ) . Now $G \cap B \in \tau/B$ and F is πgp -closed subset of $(B, \tau/B)$. But $(f/B)^{-1}(V) = (G \cap B) \cap F$. Hence $(f/B)^{-1}(V) \in \pi Gp$ - $LC^{**}(B, \tau/B)$. This implies that f/B is πgp - lc^{**} continuous.

We recall the definition of the combination of two function: Let $X = A \cup B$ and $f : A \to Y$ and $h : B \to Y$ be two functions. We say that f and h are *compatible* if $f/A \cap B = h/A \cap B$. If $f : A \to Y$ and $h : B \to Y$ are compatible, then the function $f \bigtriangledown h : X \to Y$ defined as

$$(f \bigtriangledown h)(x) = \begin{cases} f(x), & \text{for every } x \in A \\ h(x), & \text{for every } x \in B \end{cases}$$

is called the combination of f and h.

Next we introduce pasting lemma for πgp - lc^{**} continuous (resp. πgp - lc^{**} irresolute) function.

Theorem 5.10 Let $X = A \cup B$ where A and B are πgp -closed subsets of (X, τ) and $f : (A, \tau/A) \to (Y, \sigma)$ and $h : (B, \tau/B) \to (Y, \sigma)$ be compatible functions.

(a) If f and h are $\pi gp\text{-}lc^{**}$ continuous, then $f \bigtriangledown h : (X, \tau) \to (Y, \sigma)$ is $\pi gp\text{-}lc^{**}$ continuous.

(b) If f and h are $\pi gp\text{-}lc^{**}$ irresolute, then $f \bigtriangledown h : (X, \tau) \to (Y, \sigma)$ is $\pi gp\text{-}lc^{**}$ irresolute.

Proof (a) Let $V \in \sigma$. Then $(f \bigtriangledown h)^{-1}(X) \cap A = f^{-1}(X)$ and $(f \bigtriangledown h)^{-1}(X) \cap B = h^{-1}(V)$. By assumption $(f \bigtriangledown h)^{-1}(X) \cap A \in \pi Gp\text{-}LC^{**}(A, \tau/A)$ and $(f \bigtriangledown h)^{-1}(X) \cap B \in \pi Gp\text{-}LC^{**}(B, \tau/B)$. Therefore by Theorem 4.13,

$$(f \bigtriangledown h)^{-1}(V) \in \pi Gp\text{-}LC^{**}(X,\tau)$$

and hence $f \bigtriangledown h$ is $\pi gp\text{-}lc^{**}$ continuous.

(b) Proof is similar to (a).

In the end of this section we have the theorem concerning the composition of function.

Theorem 5.11 Let $f: (A, \tau) \to (Y, \sigma)$ and $g = (Y, \sigma) \to (Z, \eta)$ be the function. Then

(a) $g \circ f$ is πgp -lc irresolute (resp. πgp - lc^* irresolute, πgp - lc^{**} irresolute) if f and g are πgp -lc irresolute (resp. πgp - lc^* irresolute, πgp - lc^{**} irresolute).

(b) $g \circ f$ is πgp -lc continuous if f is πgp -lc irresolute and g is πgp -lc continuous.

(c) $g \circ f$ is πgp -lc^{*} continuous if f is πgp -lc^{*} continuous and g is continuous.

(d) $g \circ f$ is πgp -lc continuous if f is πgp -lc continuous and g is continuous.

(e) $g \circ f$ is πgp - lc^* continuous if f is πgp - lc^* irresolute and g is πgp - lc^* continuous.

(f) $g \circ f$ is $\pi gp{-}lc^{**}$ continuous if f is $\pi gp{-}lc^{**}$ irresolute and g is $\pi gp{-}lc^{**}$ continuous.

Proof It follows from Definition 5.1 and Proposition 5.2.

References

- I. Arockiarani, K. Balachandran and M. Ganster, *Regular generalized locally closed set and rgl-continuous function*. Indian J. Pure Apple. Math. 28 (1997), 661-669.
- [2] I. Arockiarani, K. Balachandran and C. Janaki, $\pi G\alpha$ -locally closed sets and $\pi G\alpha$ -locally continuous function, East Asian Math. J. **24** (2008), 317-328.
- [3] K. Balachandran, P. Sundaram and H. Maki. Generalised locally closed set and GLC-continuous functions, Indian J. Pure. Appl. Math. 27 (1996), 235-244.
- [4] J. Dontchev, On door spaces. Indian J. Pure Apple. Math. 26 (1995), 873-881.
- [5] J. Dontchev, On submaximal spaces. Tamkang J. Math. 26 (1995), 253-260.
- [6] J. Dontchev and T. Noiri, Quasi-normal spaces and πg -closed sets, Acta Math. Hungar. 89 (2000), 211-219.
- M. Ganster, I. L. Reilly, Locally closed sets and LC-continuous functions, Int. J. Math. Sci. 12 (1989), 417-424.
- [8] M. Ganster, I. L. Reilly and M. K. Vamanamurthy, *Remarks on locally closed sets*, Math. Pannonica. 3 (1992), 107-113.
- C. Kuratowski, Sierpinski W. Sur les differences de deux ensemble fermes, Tobuku Math. J. 20 (1921), 22-25.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo. 19 (1970), 89-96.
- [11] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.

- [12] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J. 33 (1993), 211-219.
- [13] J.H. Park, B.Y. Lee and M.J. Son, On πgp -closed sets in topological space, in press.
- [14] V. Zaitsav, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR. 178 (1968), 778-779.

