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1 Introduction

Levine [10] initiated the investigation of so-called g-closed sets in topological

spaces, since then many modifications of g-closed sets were defined and inves-

tigated by many authors. Zaitsev [14] introduced the concept of π-closed sets

and a class of topological spaces called quasi-normal spaces. Recently, Dontchev

and Noiri [6] defined the concept of πg-closed sets as a weak form of g-closed sets

and used this notion to obtain a characterization and some preservation theorems

for quasi-normal spaces. More recently, Park et al. [13] introduced and studied

the notion of πgp-closed sets which is implied by that of πg-closed sets. The

notions of πgp-open sets, πgp-T1/2 spaces, πgp-continuity and πgp-irresoluteness

are also introduced by Park et al. [13]. The notion of a locally closed set in

topological space was implicitly introduced by Kuratowski and Sierpienski [9].

According to Bourbaki [4] a subset of a topological space X is locally closed

in X. In 1989, Ganster and Reilly [8] continued the study of locally closed set

and also introduced the concept of LC-continuous functions to find a decompo-

sition of continuous functions. Balachandran et al. [3] introduced the concept

of generalized continuity. Arockia Rani et al. [1] introduced regular generalized

locally closed sets and obtained six more new classes of generalized continuity

using the concept of regular generalized closed sets [12]. They also introduced

πGα-LC sets, πGα-LC∗ sets, πGα∗∗-LC sets and different classes of continuous

and irresolute functions [2].

The purpose of this paper is to introduce three new classes of sets called

πgp-lc sets, πgp-lc∗ sets, πgp-lc∗∗ sets which contain the class of glc-sets and p-lc

sets by using the notion of πgp-open sets and πgp-closed sets. Also we introduce

some different classes of continuity and irresoluteness and study some of their

properties.
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2 Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (simply X and Y ) always

mean topological spaces on which no separation axioms are assumed unless ex-

plicitly stated. Let A be a subset of a space X. We denote the closure and the

interior of a set A by cl(A) and int(A), respectively. A subset A is said to be

regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A))). The

finite union of regular open sets is said to be π-open [14]. The complement of

a π-open set is said to be π-closed [14]. A subset A is said to be α-open [11]

(resp. pre-open) if A ⊂ int(cl(int(A))) (resp. A ⊂ int(cl(A))). The complement

of an α-open (resp. pre-open) set is said to be α-closed (resp. pre-closed). The

preclosure is denoted by pcl(A).

We recall the following definitions used in sequel.

Definition 2.1 A subset A of a space (X, τ) is called

(a) g-closed [6] if cl(A) ⊂ U whenever A ⊂ U and U is open in X;

(b) πgα-closed [3] if αcl(A) ⊂ U whenever A ⊂ U and U is π-open in X;

(c) πgp-closed [13] if pcl(A) ⊂ U whenever A ⊂ U and U is π-open in X.

Definition 2.2 A subset A of (X, τ) is called

(a) locally closed set [7] (briefly, lc set) if A = G ∩ F where G is open and F

is closed;

(b) πgα-lc set [2] if S = A∩B where A is πgα-open in X and B is πgα-closed

in X;

(c) πgα-lc∗ set [2] if there exist a πgα-open set A and a closed set B such that

S = A ∩B;

(d) πgα-lc∗∗ set [2] if there exist an open set A and a πgα-closed set B such

that S = A ∩B.

The collection of all lc sets, (resp. πgα-lc sets, πgα-lc∗ sets, πgα-lc∗∗ sets)

of (X, τ) will be denoted by LC(X, τ), (resp. πGα-LC(X, τ), πGα-LC∗(X, τ),

πGα-LC∗∗(X, τ)).
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Definition 2.3 A function f : (X, τ) → (Y, σ) is called

(a) lc continuous [7] if f−1(V ) ∈ LC(X, τ) for each open set V of (Y, σ);

(b) lc irresolute [7] if f−1(V ) ∈ LC(X, τ) for each open set V of LC(Y, σ);

(c) Sub-lc continuous [7] if there is a sub-base B for (Y, σ) such that f−1(V ) ∈
LC(X, τ) for each V ∈ B.

Definition 2.4 A space (X, τ) is called

(a) submaximal space [5] if every dense subset of X is open;

(b) door space [4] if every subset of X is either open or closed in X;

(c) πgα-T1/2 space if every πgα-closed set is α-closed.

Theorem 2.5 [13] If A is π-open and πgp-closed in (X, τ), then A is pre-closed

and hence clopen.

Lemma 2.6 [13] If A ⊂ X ⊂ Y and Y is open in X, then pclY (A) = pclX(A)∩Y .

Lemma 2.7 [13] Let Y is open in X. Then

(a) If A is π-open in Y , then there exists a π-open set B in X such that

A = B ∩ Y .

(b) If A is π-open in X, then A ∩B is π-open in Y .

Theorem 2.8 [13] Let A ⊂ Y ⊂ X. Then

(a) If Y is open in X and A is πgp-closed in X, then A is πgp-closed in Y .

(b) If Y is πgp-closed and regular open in X and A is πgp-closed in Y , then

A is πgp-closed in X.
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3 πgp-locally closed sets

In this section we define πgp-locally closed sets which are weaker forms of locally

closed sets and compare it with existing weaker forms of sets.

Definition 3.1 A subset S of a space (X, τ) is called

(a) p-lc set if S = G ∩ F where G is pre-closed and F is pre-open;

(b) πgp-lc set if S = A∩B where A is πgp-open in X and B is πgp-closed in

X;

(c) πgp-lc∗ if there exist a πgp-open set A and a closed set B such that

S = A ∩B;

(d) πgp-lc∗∗ if there exist an open set A and a πgp-closed set B such that

S = A ∩B.

The collection of all p-lc sets, (resp. πgp-lc sets, πgp-lc∗ sets, πgp-lc∗∗ sets)

of (X, τ) will be denoted by p-LC(X, τ), (resp. πGp-LC(X, τ), πGp-LC∗(X, τ),

πGp-LC∗∗(X, τ)).

Remark 3.2 From Definition 3.1, we have the following diagram of implications.

closed set

↓
locally closed set

↙ ↘
πgα-lc∗∗ set πgα-lc∗ set

| ↘ ↙ |
↓ πgα-lc set ↓

πgp-lc∗∗ set | πgp-lc∗ set

↘ ↓ ↙
πgp-lc set

In the above remark the relationship cannot be reversible as the following

example illustrates.
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Example 3.3 (a) Let X = {a, b, c, d, e} and τ = {X, ∅, {a}, {e}, {a, e}, {c, d}, {a,

c, d}, {c, d, e}, {a, c, d, e}, {b, c, d, e}}, then {b, c} ∈ πGp-LC∗(X, τ) but {a, c} 6∈
πGα-LC∗(X, τ).

(b) Let X = {a, b, c, d} and τ = {X, ∅, {b}, {c, d}, {b, c, d}}, then

(i) {b, c, d} ∈ πGp-LC(X, τ) but {b, c, d} 6∈ πGp-LC∗(X, τ).

(ii) {a, c} ∈ πGp-LC(X, τ) but {a, c} 6∈ πGp-LC∗∗(X, τ).

Remark 3.4 Every πgp-closed (resp. πgp-open) set is πgp-lc set and every lo-

cally closed set is πgp-closed but not conversely.

Example 3.5 Let X = {a, b, c, d} and τ = {X, ∅, {b}, {c, d}, {b, c, d}}. Then

{a, c} is a πgp-closed set but {a, c} is not a locally closed set.

Remark 3.6 If A ∈ LC(X, τ), then A ∈ πGp-LC∗(X, τ) and πGp-LC∗∗(X, τ).

The converse is not true as seen in the following example. Let X = {a, b, c}, τ =

{X, ∅, {a, b}}. Then LC(X, τ) = {X, ∅, {c}, {a, b}} and {a} ∈ πGp-LC∗(X, τ)

and πGp-LC∗(X, τ) = πGp-LC∗∗(X, τ) = P (X). Hence {a} ∈ πGp-LC∗∗(X, τ)

but {a} 6∈ LC(X, τ).

Definition 3.7 A space is a πgp-space if every πgp-open set is open in X.

Theorem 3.8 Let (X, τ) be a πgp-space, then

(a) πGp-LC∗∗(X, τ) = LC(X, τ).

(b) πGp-LC∗∗(X, τ) ⊂ GLC(X, τ).

(c) πGp-LC∗∗(X, τ) ⊂ αLC(X, τ).

Proof Obvious.

Definition 3.9 A space is (X, τ) is πgp-T1/2 spaces if every πgp-closed set is

pre-closed.

Theorem 3.10 If X is a πgp-T1/2 space, then πGp-LC(X, τ) = p-LC(X, τ).

Proof It follows from Definition 3.9.

5



The converse of the above theorem need not hold.

Example 3.11 Let X = {a, b, c, d}, τ = {X, ∅, {a}, {c}, {a, b}, {a, c}, {a, b, c} {a,

c, d}, {a, b, d}}, then πGp-LC(X, τ) = p-LC(X, τ) = P (X). But {a} is πgp-

closed set not pre-closed.

Theorem 3.12 If X is a πgp-space, then

πGp-LC(X, τ) = πGp-LC∗(X, τ) = πGp-LC∗∗(X, τ).

Proof Straightforward.

The hypothesis in Theorem 3.12 can be weakened as follows.

Theorem 3.13 If πGpO(X, τ) ⊂ LC(X, τ) and suppose that collections of all

πgp-closed (or πgp-open) sets are closed under finite intersection, then

πGp-LC(X, τ) = πGp-LC∗(X, τ) = πGp-LC∗∗(X, τ).

Proof Let A ∈ πGp-LC(X). Then A = P ∩ Q where P is πgp-open and Q is

πgp-closed. Since πGpO(X, τ) ⊂ LC(X, τ) implies πGpC(X, τ) ⊂ LC(X, τ),

we have Q is locally closed. Let Q = M ∩ N where M is open and N is

closed. Hence A = (P ∩ M) ∩ N where (P ∩ M) is πgp-open and N is closed.

Hence A ∈ πGp-LC∗(X). For any space X, πGp-LC∗(X) ⊂ πGp-LC(X). Thus

πGp-LC(X) = πGp-LC∗(X). Let B ∈ πGp-LC(X). Then B = P ∩ Q where P

is locally closed, we have P = M ∩ N where M is open and N is closed. Hence

A = M ∩ (N ∩Q) where M is open and N ∩Q is πgp-closed. For any space X,

πGp-LC∗∗(X) ⊂ πGp-LC(X). Thus πGp-LC(X) = πGp-LC∗∗(X).

Now, we obtain a characterization for πgp-lc∗ sets as follows.

Theorem 3.14 For a subset S of (X, τ) the following are equivalent:

(a) S ∈ πGp-LC∗∗(X, τ).

(b) S = P ∩ cl(S) for some πgp-open set P .

(c) cl(S) \ S is πgp-closed.

(d) S ∪ (X \ cl(S)) is πgp-open.
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Proof (a) ⇒ (b) : Let S ∈ πGp-LC∗(X, τ). Then there exist a πgp-open set P

and a closed set F in (X, τ) such that S = P ∩ F . Since S ⊂ P and S ⊂ cl(S),

we have S ⊂ P ∩ cl(S). Conversely, P ∩ cl(S) ⊂ P ∩ F = S since cl(S) ⊂ F .

Hence S = P ∩ cl(S).

(b) ⇒ (a) : Since P is πgp-open and cl(S) is closed, S = P ∩ cl(S) ∈
πGp-LC∗(X, τ).

(c) ⇒ (d) : Let F = cl(S) \S. Then F is πgp-closed by assumption. X \F =

X ∩ (cl(S) \ S)c = S ∪ (X \ cl(S)). Since X \ F is πgp-open, we have that

S ∪ (X \ cl(S)) is πgp-open.

(d) ⇒ (c) : Let U = S ∪ (X \ cl(S)). Then U is πgp-open. This implies

X \ U = X \ (S ∪ (X \ cl(S))) = (X \ S) ∩ cl(S) = cl(S) \ S is πgp-closed.

(b) ⇒ (d) : Let S = P ∩ cl(S) for some πgp-open set P . S ∪ (X \ cl(S)) =

P ∩ (cl(S) ∪X \ cl(S)) = P ∩X = P which is πgp-open.

(d) ⇒ (b) : Let U = S ∪ (X − cl(S)). Then U is πgp-open. Now, U ∩ cl(S) =

(S ∪ (X \ cl(S)))∩ cl(S) = (S ∩ cl(S))∪ (X \ cl(S)∩ cl(S)) = S ∪ ∅ = S for some

πgp-open set U .

Remark 3.15 It is not true that S ∈ πGp-LC∗(X, τ) iff S ⊂ int(S∪(X \cl(S))).

Let S = {b, d} be a subset of the topological space (X, τ) given in Example 3.3

(b). Then S 6∈ int(S ∪ (X \ cl(S))) but S ∈ πGp-LC∗(X, τ).

Definition 3.16 A topological space (X, τ) is called πgp-submaximal if every

dense subset in it is πgp-open.

Theorem 3.17 Every submaximal space is πgp-submaximal.

Proof It follows from Definition 3.16.

Converse of the above is not true as seen in the following example.

Example 3.18 Let X = {a, b, c}, τ = {X, ∅, {b}, {a, b}, {b, c}, {a, b, c}}. Let

A = {b, d}. Then A is dense in X such that A is πgp-open but not open.
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Theorem 3.19 A topological space (X, τ) is πgp-submaximal if and only if

πGp-LC∗(X, τ) = P (X).

Proof Necessity : Let S ∈ P (X). Let U = S ∪ (X \ cl(S)). Then cl(U) = X.

U is dense in X and X is πgp-submaximal implies U is πgp-open. By Theorem

3.14, S ∈ πGp-LC∗(X, τ).

Sufficiency : Let S be a dense subset of (X, τ). Then S = (X \ cl(S)) = S is

πgp-open. Hence (X, τ) is πgp-submaximal.

Definition 3.20 The intersection of all πgp-closed sets of X containing A is the

πgp-closure of A is denoted by πgpcl(A).

Theorem 3.21 Let S be any subset of (X, τ). If S ∈ πGp-LC∗∗(X, τ), then

there exist an open set P such that S = P ∩ πgpcl(S).

Proof Let S ∈ πGp-LC∗∗(X, τ). Then there exist an open set P and πgp-closed

set F of (X, τ) such that S = P ∩ F . Since S ⊂ P and S ⊂ πgpcl(S), we have

S ⊂ P ∩ πgpcl(S). Since πgpcl(S) ⊂ F , we have P ∩ πgpcl(S) ⊂ P ∩ F ⊂ S.

Thus S = P ∩ πgpcl(S).
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4 Properties of πgp-lc sets

Theorem 4.1 Let A and B be any two subsets of (X, τ). Suppose that the

collection of πgp-closed set of (X, τ) is closed under finite intersection, then the

following are true.

(a) If A ∈ πGp-LC(X, τ) and B is πgp-open (or πgp-closed), then

A ∩B ∈ πGp-LC(X, τ).

(b) If A ∈ πGp-LC∗(X, τ) and B ∈ πGp-LC∗(X, τ), then

A ∩B ∈ πGp-LC∗(X, τ).

Proof (a) A ∈ πGp-LC(X, τ) implies A∩B = (G∩ F )∩B for some πgp-open

set G and πgp-closed set F . If B is πgp-open, then A ∩ B = (G ∩ B) ∩ F ∈
πGp-LC(X, τ). If B is πgp-closed, then A ∩ B = G ∩ (F ∩ B) ∈ πGp-LC(X, τ),

since F ∩B is πgp-closed.

(b) If A, B ∈ πGp-LC∗(X, τ), then by Theorem 3.14, there exist πgp-open

sets P and Q such that A = P ∩ cl(A) and B = Q ∩ cl(B). Since P ∩ Q is also

πgp-open, then A ∩B = (P ∩Q) ∩ (cl(A) ∩ cl(B)) ∈ πGp-LC∗(X, τ).

Theorem 4.2 Let A and B be any two subsets of (X, τ). Suppose that the

collection of πgp-closed set (X, τ) is closed under finite intersection. If A ∈
πGp-LC∗∗(X, τ) and B is closed or open, then A ∩B ∈ πGp-LC∗∗(X, τ).

Proof If A ∈ πGp-LC∗∗(X, τ), then there exist an open set G in (X, τ) and

a πgp-closed set F in (X, τ) such that A ∩ B = (G ∩ F ) ∩ B. If B is open,

then A ∩ B = (G ∩ B) ∩ F ∈ πGp-LC∗∗(X, τ). If B is closed, then A ∩ B =

G ∩ (B ∩ F ) ∈ πGp-LC∗∗(X, τ).

Theorem 4.3 Let A be any subset of (X, τ) and let A ⊂ Z which Z is πgp-

open in (X, τ) and regular closed. Suppose that the collection of all πgp-open

sets of (X, τ) is closed under finite intersection. If A ∈ πGp-LC∗(Z, τ/Z), then

A ∈ πGp-LC∗(X, τ).
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Proof If A ∈ πGp-LC∗(Z, τ/Z), there is a πgp-open set G in (Z, τ/Z) such

that A = G ∩ clZ(A) where clZ(A) = Z ∩ cl(A). Since G and Z are πgp-open,

G∩Z is also πgp-open. This implies that A = (G∩Z)∩ cl(A) ∈ πGp-LC∗(X, τ).

Remark 4.4 The following example shows that one of the assumption in the

above theorem (i.e., Z is πgp-open in (X, τ)) cannot be removed.

Example 4.5 Let X = {a, b, c, d} and τ = {X, ∅, {b}, {c, d}, {b, c, d}}. Let Z =

A = {a, c}. Then Z is not πgp-open in X and τ/Z = {Z, ∅, {c}}. Hence A ∈
πGp-LC∗(Z, τ/Z) but A 6∈ πGp-LC∗(X, τ).

Lemma 4.6 Let Z be regular open and πgp-closed in (X, τ) and F ⊂ Z. If F is

πgp-closed in (Z, τ/Z), then F is πgp-closed in (X, τ).

Theorem 4.7 Suppose that the collection of all πgp-closed sets of (X, τ) is closed

under finite intersection. If Z is πgp-closed and regular open in (X, τ) and A ∈
πGp-LC∗(Z, τ/Z), then A ∈ πGp-LC(X, τ).

Proof Let A ∈ πGp-LC∗(Z, τ/Z). Then A = G ∩ F for some πgp-open set G

in (Z, τ/Z) and some closed set F in (Z, τ/Z). F is closed in Z. By Lemma 4.6,

Z is πgp-closed and regular open in X implies F is πgp-closed in (X, τ). Hence

A = G ∩ F ∈ πGp-LC(X, τ).

Theorem 4.8 If Z is closed and open in (X, τ) and A ∈ πGp-LC(Z, τ/Z), then

A ∈ πGp-LC(X, τ).

Proof Let A ∈ πGp-LC(Z, τ/Z). Then A = G ∩ F where G is πgp-open in

(Z, τ/Z) and F is πgp-closed in (Z, τ/Z). Since Z is closed and open in (X, τ)

by Lemma 4.6, G and F are πgp-open and πgp-closed respectively in (X, τ).

Therefore A ∈ πGp-LC(X, τ).

Theorem 4.9 If A ∈ πGp-LC∗∗(Z, τ/Z), where Z is πgp-closed and regular open

in (X, τ), then A ∈ πGp-LC∗∗(X, τ).
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Proof Let A ∈ πGp-LC∗∗(Z, τ/Z). Then A = G ∩ F where G is πgp-open

in (Z, τ/Z) and F is πgp-closed in (Z, τ/Z). Since Z is πgp-closed and regular

open, G is open set in (X, τ) and F is open set and πgp-closed set in (X, τ). Then

A ∈ πGp-LC∗∗(X, τ).

Definition 4.10 Let A, B ∈ X. Then A and B are said to be separated if

A ∩ cl(B) = ∅ and B ∩ cl(A) = ∅.

Theorem 4.11 Suppose the collection of all πgp-open sets of (X, τ) are closed

under finite unions. Let A, B ∈ πGp-LC∗(X, τ). If A and B are separated in

(X, τ), then A ∪B ∈ πGp-LC∗(X, τ).

Proof Since A, B ∈ πGp-LC∗(X, τ) by Theorem 3.14, there exist πgp-open

sets P and Q of (X, τ) such that A = P ∩ cl(A) and B = Q ∩ cl(B). Put

U = P ∩(X\cl(B)) and V = Q∩(X\cl(A)). Then U and V are πgp-open subsets

of (X, τ). Thus A = U ∩ cl(A), B = V ∩ cl(B) and U ∩ cl(B) = ∅, V ∩ cl(A) = ∅.
Consequently A∪B = (U ∩V )∩ (cl(A∪B)) shows that A∪B ∈ πGp-LC∗(X, τ).

Remark 4.12 The following example shows that one of assumption of Theorem

4.11 (i.e., A and B are separated) cannot be removed.

In Example 3.3 (b), {b} ∈ πGp-LC∗(X, τ), {c, d} ∈ πGp-LC∗(X, τ). However

{b} and {c, d} are not separated and {b, c, d} 6∈ πGp-LC∗(X, τ).

Theorem 4.13 Let {Zi : i ∈ Γ} be a finite πgp-closed cover of (X, τ) and let

A be a subset of (X, τ). If A ∩ Zi ∈ πGp-LC∗∗(Zi, τ/Zi) for each i ∈ Γ, then

A ∈ πGp-LC∗∗(X, τ).

Proof For each i ∈ Γ, there exist an open set Ui ∈ τ/Zi and πgp-closed set

Fi of (Zi, τ/Zi) such that A ∩ Zi = (Ui ∩ Fi) ∩ Zi = Ui ∩ (Fi ∩ Zi). Then

A = ∪{A ∩ Zi : i ∈ Γ} = ∪{Ui : i ∈ Γ} ∩ [∪{Fi ∩ Zi : i ∈ Γ}] and hence

A ∈ πGp-LC∗∗(X, τ).
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Theorem 4.14 Let (X, τ) and (Y, σ) be any two topological spaces. Then

(a) If A ∈ πGp-LC(X, τ) and B ∈ πGp-LC(Y, σ), then

A×B ∈ πGp-LC(X × Y, τ × σ).

(b) If A ∈ πGp-LC∗(X, τ) and B ∈ πGp-LC∗(Y, σ), then

A×B ∈ πGp-LC∗(X × Y, τ × σ).

(c) If A ∈ πGp-LC∗∗(X, τ) and B ∈ πGp-LC∗∗(Y, σ), then

A×B ∈ πGp-LC∗∗(X × Y, τ × σ).

Proof Let A ∈ πGp-LC(X, τ) and B ∈ πGp-LC(Y, σ). Then there exist πgp-

open sets V and V1 of (X, τ) and πgp-closed sets W and W1 of (Y, σ) respectively

such that A = V ∩W and B = V1 ∩W1. Then A×B = (V ∩W )× (V1 ∩W1) =

(V × V1) ∩ (W ×W1) hold and hence A×B ∈ πGp-LC(X × Y, τ × σ).

Proofs of (b) and (c) are similar to (a).
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5 πgp-locally continuous and πgp-locally irresolute func-

tions

In this section we use πgp-lc sets, πgp-lc∗ sets, πgp-lc∗∗ sets to generalize πgp-lc

continuous function and πgp-lc irresolute function.

Definition 5.1 A function f : (X, τ) → (Y, σ) is called

(a) πgp-lc continuous if f−1(V ) ∈ πGp-LC(X, τ) for every V ∈ σ;

(b) πgp-lc∗ continuous if f−1(V ) ∈ πGp-LC∗(X, τ) for every V ∈ σ;

(c) πgp-lc∗∗ continuous if f−1(V ) ∈ πGp-LC∗∗(X, τ) for every V ∈ σ;

(d) πgp-lc irresolute if f−1(V ) ∈ πGp-LC(X, τ) for every V ∈ πGp-LC(Y, σ);

(e) πgp-lc∗ irresolute if f−1(V ) ∈ πGp-LC∗ (X, τ) for every V ∈ πGp-LC∗(Y, σ);

(f) πgp-lc∗∗ irresolute if f−1(V ) ∈ πGp-LC∗∗(X, τ) for every V ∈ πGp-LC∗∗(Y, σ).

Proposition 5.2 If f is πgp-lc irresolute, then it is πgp-lc continuous.

Proof It follows from Definition 5.1.

Remark 5.3 From Definitions 2.3 and 5.1, we have the following diagram of

implications.

lc continuous

↙ ↘
πgα-lc∗∗ continuous πgα-lc∗ continuous

| ↘ ↙ |
↓ πgα-lc continuous ↓

πgp-lc∗∗ continuous | πgp-lc∗ continuous

↘ ↓ ↙
πgp-lc continuous

In the above remark the relationship cannot be reversible as the following

example illustrates.
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Example 5.4 (a) Let X = {a, b, c}, τ = {X, ∅, {a, b}} and σ = {X, ∅, {a}, {b}, {c}
, {a, b}, {b, c}, {a, c}}. Let f : (X, τ) → (X, σ) be the identity mapping. Then f

is πgp-lc∗ continuous and πgp-lc∗∗ continuous but not lc continuous.

(b) Let X = {a, b, c, d}, τ = {X, ∅, {b}, {c, d}, {b, c, d}} and σ = {X, ∅, {a}, {c},
{a, b}, {a, c}, {a, c, d}, {a, b, c}}. Let f : (X, τ) → (X, σ) be the identity map-

ping. Then f is πgp-lc continuous but not πgp-lc∗ continuous since {a, c} ∈ σ

but f−1({a, c}) 6∈ πGp-LC∗(X, τ).

(c) Let X = {a, b, c, d}, τ = {X, ∅, {b}, {c, d}, {b, c, d}} and σ = {X, ∅, {a}, {a,

b}, {a, b, c}, {a, b, c}}. Let f : (X, τ) → (X, σ) be the identity mapping. Then f is

πgp-lc∗ continuous but not πgα-lc∗ continuous since {a, b, d} ∈ σ but f−1({a, b, d})
6∈ πGα-LC∗(X, τ).

Lemma 5.5 f : (X, τ) → (Y, σ) be a function.

(a) If f is πgp-lc∗ irresolute, then f is πgp-lc∗ continuous.

(b) If f is πgp-lc∗∗ irresolute, then f is πgp-lc∗∗ continuous.

The converse of the above need not be true in general as can be seen in the

following example.

Example 5.6 Let X = {a, b, c, d}, τ = {X, ∅, {b}, {c, d}, {b, c, d}} and σ = {X, ∅,
{a}, {a, c}, {a, b, c}, {b, c, d}}. Let f : (X, τ) → (X, σ) be the identity map-

ping. Then f is πgp-lc∗ continuous but not πgp-lc∗ irresolute since {b, c, d} ∈
πGp-LC∗(Y, σ) but f−1({b, c, d}) 6∈ πGp-LC∗(X, τ).

Proposition 5.7 Any map defined on a door space is πgp-lc irresolute.

Proof Let (X, τ) be a door space and (Y, σ) be any space. Define a map f :

(X, τ) → (Y, σ) and let A ∈ πGp-LC(Y, σ). Then f−1(A) is either open or closed

in (X, τ). In both cases f−1(A) ∈ πGp-LC(X, τ). Hence f is πgp-lc irresolute.

Theorem 5.8 A topological space (X, τ) is πgp-submaximal iff every function

having (X, τ) as it domain is πgp-lc∗ continuous.
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Proof Suppose that f : (X, τ) → (Y, σ) is a function. By Theorem 3.19, we

have that f−1(V ) ∈ P (X) = πGp-LC∗(X, τ) for each open set V of (Y, σ).

Therefore f is πgp-lc∗ continuous. Conversely, let every map having (X, τ) as

domain be πgp-lc∗ continuous. Let Y = {0, 1} be the the Sierpinski space with

topology σ = {Y, ∅, {0}}. Let V be a subset of (X, τ) and f : (X, τ) → (Y, σ) be

a function defined by f(x) = 0 for every x ∈ V and f(x) = 1 for every x 6∈ V .

By assumption, f is πgp-lc∗ continuous and hence f−1(0) = V ∈ πGp-LC∗(X, τ).

Therefore we have P (X) = πGp-LC∗(X, τ) and by Theorem 3.19, (X, τ) is πgp-

submaximal.

Proposition 5.9 If f : (X, τ) → (Y, σ) is πgp-lc∗∗ continuous and subset B is

open in (X, τ), then the restriction of f to B, say f/B : (B, τ/B) → (Y, σ), is

πgp-lc∗∗ continuous.

Proof Let V be an open set of (Y, σ). Then f−1(V ) = G ∩ F for some open

set G and πgp-closed set F of (X, τ). Now G ∩ B ∈ τ/B and F is πgp-closed

subset of (B, τ/B). But (f/B)−1(V ) = (G ∩ B) ∩ F . Hence (f/B)−1(V ) ∈
πGp-LC∗∗(B, τ/B). This implies that f/B is πgp-lc∗∗ continuous.

We recall the definition of the combination of two function: Let X = A ∪ B

and f : A → Y and h : B → Y be two functions. We say that f and h are

compatible if f/A ∩ B = h/A ∩ B. If f : A → Y and h : B → Y are compatible,

then the function f 5 h : X → Y defined as

(f 5 h)(x) =

 f(x), for every x ∈ A

h(x), for every x ∈ B

is called the combination of f and h.

Next we introduce pasting lemma for πgp-lc∗∗ continuous (resp. πgp-lc∗∗

irresolute) function.
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Theorem 5.10 Let X = A∪B where A and B are πgp-closed subsets of (X, τ)

and f : (A, τ/A) → (Y, σ) and h : (B, τ/B) → (Y, σ) be compatible functions.

(a) If f and h are πgp-lc∗∗ continuous, then f5h : (X, τ) → (Y, σ) is πgp-lc∗∗

continuous.

(b) If f and h are πgp-lc∗∗ irresolute, then f 5 h : (X, τ) → (Y, σ) is πgp-lc∗∗

irresolute.

Proof (a) Let V ∈ σ. Then (f5h)−1(X)∩A = f−1(X) and (f5h)−1(X)∩B =

h−1(V ). By assumption (f5h)−1(X)∩A ∈ πGp-LC∗∗(A, τ/A) and (f5h)−1(X)∩
B ∈ πGp-LC∗∗(B, τ/B). Therefore by Theorem 4.13,

(f 5 h)−1(V ) ∈ πGp-LC∗∗(X, τ)

and hence f 5 h is πgp-lc∗∗ continuous.

(b) Proof is similar to (a).

In the end of this section we have the theorem concerning the composition of

function.

Theorem 5.11 Let f : (A, τ) → (Y, σ) and g = (Y, σ) → (Z, η) be the function.

Then

(a) g ◦ f is πgp-lc irresolute (resp. πgp-lc∗ irresolute, πgp-lc∗∗ irresolute) if f

and g are πgp-lc irresolute (resp. πgp-lc∗ irresolute, πgp-lc∗∗ irresolute).

(b) g◦f is πgp-lc continuous if f is πgp-lc irresolute and g is πgp-lc continuous.

(c) g ◦ f is πgp-lc∗ continuous if f is πgp-lc∗ continuous and g is continuous.

(d) g ◦ f is πgp-lc continuous if f is πgp-lc continuous and g is continuous.

(e) g ◦ f is πgp-lc∗ continuous if f is πgp-lc∗ irresolute and g is πgp-lc∗ con-

tinuous.

(f) g ◦ f is πgp-lc∗∗ continuous if f is πgp-lc∗∗ irresolute and g is πgp-lc∗∗

continuous.

Proof It follows from Definition 5.1 and Proposition 5.2.

16



References

[1] I. Arockiarani, K. Balachandran and M. Ganster, Regular generalized lo-

cally closed set and rgl -continuous function. Indian J. Pure Apple. Math.

28 (1997), 661-669.

[2] I. Arockiarani, K. Balachandran and C. Janaki, πGα-locally closed sets and

πGα-locally continuous function, East Asian Math. J. 24 (2008), 317-328.

[3] K. Balachandran, P. Sundaram and H. Maki. Generalised locally closed set

and GLC -continuous functions, Indian J. Pure. Appl. Math. 27 (1996),

235-244.

[4] J. Dontchev, On door spaces. Indian J. Pure Apple. Math. 26 (1995), 873-

881.

[5] J. Dontchev, On submaximal spaces. Tamkang J. Math. 26 (1995), 253-260.

[6] J. Dontchev and T. Noiri, Quasi-normal spaces and πg-closed sets, Acta

Math. Hungar. 89 (2000), 211-219.

[7] M. Ganster, I. L. Reilly, Locally closed sets and LC -continuous functions,

Int. J. Math. Sci. 12 (1989), 417-424.

[8] M. Ganster, I. L. Reilly and M. K. Vamanamurthy, Remarks on locally

closed sets, Math. Pannonica. 3 (1992), 107-113.

[9] C. Kuratowski, Sierpinski W. Sur les differences de deux ensemble fermes,

Tobuku Math. J. 20 (1921), 22-25.

[10] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo.

19 (1970), 89-96.

[11] O. Nj̊astad, On some classes of nearly open sets, Pacific J. Math. 15 (1965),

961-970.

17



[12] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook

Math. J. 33 (1993), 211-219.

[13] J.H. Park, B.Y. Lee and M.J. Son, On πgp-closed sets in topological space,

in press.

[14] V. Zaitsav, On certain classes of topological spaces and their bicom-

pactifications, Dokl. Akad. Nauk SSSR. 178 (1968), 778-779.

18


	1. Introduction
	2. Preliminaries
	3. πgp-locally closed sets
	4. Properties of πgp-lc sets
	5. πgp-locally continuous and πgp-locally irresolute functions 
	References


<startpage>7
1. Introduction 1
2. Preliminaries 2
3. ¥ðgp-locally closed sets 4
4. Properties of ¥ðgp-lc sets 9
5. ¥ðgp-locally continuous and ¥ðgp-locally irresolute functions  13
References 17
</body>

