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1. Introduction

Let H denote the class of analytic functions in the open unit disk U = {z ∈ C :

|z| < 1}. For a positive integer n and a ∈ C, let

H[a, n] = {f ∈ H : f(z) = a+ anz
n + an+1z

n+1 + · · · },

and let H0 ≡ H[0, 1] and H1 ≡ H[1, 1]. Let Ap denote the class of all analytic

functions of the form

f(z) = zp +
∞∑

k=p+1

akz
k (z ∈ U) (1.1)

and let A1 ≡ A. Let f and F be members of H. The function f is said to be

subordinate to F , or F is said to be superordinate to f , if there exists a function

w analytic in U, with w(0) = 0 and |w(z)| < 1, and such that f(z) = F (w(z)). In

such a case, we write f ≺ F or f(z) ≺ F (z). If the function F is univalent in U,

then f ≺ F if and only if f(0) = F (0) and f(U) ⊂ F (U) (cf. [4, 11]).

With a view to introducing a fractional differintegral operator, we begin by

recalling the following definitions of fractional calculus (that is, fractional intgral

and fractional derivative of an arbitrary order) considered by Owa [6] (see also [7],

[10] and [11]).

Definition 1.1 The fractional integral of order λ(λ > 0) is defined, for a

function f , analytic in a simply-connected region of the complex plane containing

the origin by

D−λ
z f(z) =

1

Γ(λ)

∫ z

0

f(ζ)

(z − ζ)1−λ
dζ,
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where the multiplicity of (z − ζ)λ−1 is removed by requiring log(z − ζ) to be real

when z − ζ > 0.

Definition 1.2. Under the Definition 1.1, the fractional derivative of f of

order λ(λ ≥ 0) is defined by

Dλ
z f(z) =


1

Γ(1−λ)
d
dz

∫ z

0
f(ζ)

(z−ζ)λdζ (0 ≤ λ < 1)

dn

dznD
λ−n
z f(z) (n ≤ λ < n+ 1;n ∈ N0 = N ∪ {0}),

where the multiplicity of (z − ζ)λ−1 is removed as in Definition 1.1.

We observe that, for a function f , given by (1.1), we have

Dλ
z f(z) =

Γ(p+ 1)

Γ(p+ 1− λ)
zp−λ +

∞∑
n=1

Γ(n+ p+ 1)

Γ(n+ p+ 1− λ)
ap+nz

n+p−λ, (1.2)

provided that z ∈ Ũ, where Ũ = U if −∞ < λ ≤ p and Ũ = U\{0} if p < λ < p+ 1,

and Dλ
z f(z) is, respectively, the fractional integral of f of order −λ when −∞ <

λ < 0 and the fractional derivative of f of order λ when 0 ≤ λ < p+ 1.

In view of (1.2), we now define the fractional differintegral operator Ωλ,p
z : Ap −→

Ap for a function f of the form (1.1) and for a real number λ(−∞ < λ < p+ 1) by

Ωλ,p
z f(z) =

Γ(p+ 1− λ)

Γ(p+ 1)
zλDλ

z f(z)

= zp +
∞∑

k=1

Γ(k + p+ 1)Γ(p+ 1− λ)

Γ(p+ 1)Γ(k + p+ 1− λ)
ak+pz

k+p. (1.3)

It is easily seen from (1.3) that

z(Ωλ,p
z f(z))′ = (p− λ)Ωλ+1,p

z f(z) + λΩλ,p
z f(z) (−∞ < λ < p; z ∈ U). (1.4)
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We also note that

Ω0,p
z f(z) = f(z), Ω1,p

z f(z) =
zf ′(z)

p
.

The fractional differential operator Ωλ,p
z with 0 ≤ λ < 1 was investigated by

Srivastava and Aouf [8]. More recently, Srivastava and Mishra [9] obtained several

interesting properties and characteristics for certain subclasses of p-valent analytic

functions involving the differintegral operator Ωλ,p
z when −∞ < λ < 1. We further

observe that Ωλ,1
z is the operator introduced by Owa and Srivastava [7].

Denote by Q the class of functions q that are analytic and injective on U\E(q),

where

E(q) =

{
ζ ∈ ∂U : lim

z→ζ
q(z) = ∞

}
,

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U\E(q). Further, let the subclass of Q for

which q(0) = a be denoted by Q(a), Q(0) ≡ Q0 and Q(1) ≡ Q1.

Definition 1.3 [4]. Let

φ : C3 × U → C

and let h be univalent in U. If p is analytic in U and satisfies the differential

subordination

φ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), (1.4)

then p is called a solution of the differential subordination. The univalent function

q is called a dominant of the solutions of the differential subordination, or more

simply a dominant if p ≺ q for all p satisfying (1.4). A dominant q̃ that satisfies

q̃ ≺ q for all dominants q of (1.4) is said to be the best dominant.
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Definition 1.4 [5]. Let

ϕ : C3 × U → C

and let h be analytic in U. If p and ϕ(p(z), zp′(z), z2p′′(z); z) are univalent in U and

satisfy the differential superordination

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z), (1.5)

then p is called a solution of the differential superordination. An analytic function

q is called a subordinant of the solutions of the differential superordination, or more

simply a subordinant if q ≺ p for all p satisfying (1.5). A univalent subordinant q̃

that satisfies q ≺ q̃ for all subordinants q of (1.5) is said to be the best subordinant.

Definition 1.5 [4]. Let Ω be a set in C, q ∈ Q and n be a positive integer. The

class of admissible functions Ψn[Ω, q] consists of those functions ψ : C3 × U → C

that satisfy the admissiblity condition ψ(r, s; z) 6∈ Ω whenever r = q(ζ), s = kζq′(ζ)

and

Re

{
t

s
+ 1

}
≥ kRe

{
ζq′′(ζ)

q′(ζ)
+ 1

}
for z ∈ U, ζ ∈ U\E(q) and k ≥ n. We write Ψ1[Ω, q] as Ψ[Ω, q].

Definition 1.6 [5]. Let Ω be a set in C and q ∈ H[a, n] with q′(z) 6= 0. The

class of admissible functions Ψ′
n[Ω, q] consists of those functions ψ : C3×U → C that

satisfy the admissiblity condition ψ(r, s; ζ) 6∈ Ω whenever r = q(z), s = zq′(z)/m

for z ∈ U and

Re

{
t

s
+ 1

}
≤ kRe

{
ζq′′(z)

q′(z)
+ 1

}
for z ∈ U, ζ ∈ U and m ≥ n ≥ 1. We write Ψ′

1[Ω, q] as Ψ′[Ω, q].
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For the above two classes of admissible functions, Miller and Mocanu proved the

following theorems.

Theorem 1.1 [4]. Let ψ ∈ Ψn[Ω, q] with q(0) = a. If the analytic function

p(z) = a+ anz
n + an+1z

n+1 + · · · satisfies

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω,

then p ≺ q.

Theorem 1.2 [5]. Let ψ ∈ Ψ′
n[Ω, q] with q(0) = a. If p ∈ Q(a) and ψ(p(z), zp′(z); z)

is univalent in U, then

Ω ⊂ {ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ U}

implies q ≺ p.

In the present paper, making use of the differential subordination and superordi-

nation results of Miller and Mocanu [4, 5], we determine certain classes of admissible

functions and obtain some subordination and superordination implications of multi-

valent functions associated with the fractional differintegral operator Ωλ,p
z defined by

(1.3). Additionally, new differential sandwich-type theorems are obtained. We re-

mark in passing that some similar problems for analytic and meromorphic functions

associated with linear operators were considered by Ali et al. [1, 2, 3].

2. Subordination Results

Firstly, we begin by proving the subordination theorem involving the integral

operator Ωλ,p
z defined by (1.3). For this purpose, we need the following class of

admissible functions.
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Definition 2.1. Let Ω be a set in C, q ∈ Q0 ∩ H0 and λ < p − 2. The class

of admissible functions ΦI,1[Ω, q] consists of those functions φ : C3 × U → C that

satisfy the admissibility condition φ(u, v, w; z) 6∈ Ω whenever

u = q(ζ), v =
kζq′(ζ) + (p− λ− 1)q(ζ)

p− λ

and

Re

{
(p− λ)(p− λ− 1)w − (p− λ− 2)(p− λ− 1)u

(p− λ)v − (p− λ− 1)u
− 2(p− λ) + 3

}
≥ kRe

{
ζq′′(ζ)

q′(ζ)
+ 1

}
for z ∈ U, ζ ∈ ∂U\E(q) and k ≥ 1.

Theorem 2.1. Let φ ∈ ΦI,1[Ω, q]. If f ∈ Ap satisfies

{
φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
: z ∈ U

}
⊂ Ω, (2.1)

then

Ωλ,p
z f(z)

zp−1
≺ q(z).

Proof. Define the function p in U by

p(z) :=
Ωλ,p

z f(z)

zp−1
. (2.2)

By making use of (1.4) and (2.2), we get

Ωλ+1,p
z f(z)

zp−1
=
zp′(z) + (p− λ− 1)p(z)

p− λ
. (2.3)
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Further computations show that

Ωλ+2,p
z f(z)

zp−1
=
z2p′′(z) + 2(p− λ− 1)zp′(z) + (p− λ− 2)(p− λ− 1)p(z)

(p− λ− 1)(p− λ)
. (2.4)

Define the transformation from C3 to C by

u = r, v =
s+ (p− λ− 1)r

p− λ
and w =

t+ 2(p− λ− 1)s+ (p− λ− 2)(p− λ− 1)r

(p− λ− 1)(p− λ)
.

(2.5)

Let

ψ(r, s, t; z) = φ(u, v, w; z)

= φ

(
r,
s+ (p− λ− 1)r

p− λ
,
t+ 2(p− λ− 1)s+ (p− λ− 2)(p− λ− 1)r

(p− λ− 1)(p− λ)
; z

)
.

(2.6)

Using equations (2.2), (2.3) and (2.4), from (2.6), we obtain

ψ(p(z), zp′(z), z2p′′(z); z) = φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
; z

)
(2.7)

Hence (2.1) becomes

ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω.

Note that

t

s
+ 1 =

(p− λ− 1)(p− λ)w − (p− λ− 2)(p− λ− 1)u

(p− λ)v − (p− λ− 1)u
− 2(p− λ) + 3.

and so the admissibility condition for φ ∈ ΦI,1[Ω, q] is equivalent to the admissibility

condition for ψ ∈ Ψ[Ω, q]. Therefore by Theorem 1.1, p ≺ q or
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Ωλ,p
z f(z)

zp−1
≺ q(z),

which evidently completes the proof of Theorem 2.1.

If Ω 6= C is a simply connected domain, then Ω = h(U) for some conformal

mapping h of U onto Ω. In this case, the class ΦI,1[h(U), q] is written as ΦI,1[h, q].

Proceeding similarly as in the previous section, the following result is an immediate

consequence of Theorem 2.5.

Theorem 2.2. Let φ ∈ ΦI,1[h, q]. If f ∈ Ap satisfies

φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
≺ h(z), (2.8)

then

Ωλ,p
z f(z)

zp−1
≺ q(z).

Our next result is an extension of Theorem 2.2 to the case where the behavior

of q on ∂U is not known.

Corollary 2.1. Let Ω ⊂ C and q be univalent in U with q(0) = 0. Let φ ∈

ΦI [Ω, qρ] for some ρ ∈ (0, 1) where qρ(z) = q(ρz). If f ∈ Ap satisfies

φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
∈ Ω,

then

Ωλ,p
z f(z)

zp−1
≺ q(z).
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Proof. Theorem 2.1 yields Ωλ,p
z f(z)/zp−1 ≺ qρ(z). The result is now deduced

from qρ(z) ≺ q(z).

Theorem 2.3. Let h and q be univalent in U with q(0) = 0 and set qρ(z) = q(ρz)

and hρ(z) = h(ρz). Let φ : C3 × U → C satisfy one of the following conditions:

(1) φ ∈ ΦI [h, qρ] for some ρ ∈ (0, 1), or

(2) there exists ρ0 ∈ (0, 1) such that φ ∈ ΦI [hρ, qρ] for all ρ ∈ (ρ0, 1).

If f ∈ Ap satisfies (2.8), then

Ωλ,p
z f(z)

zp−1
≺ q(z).

Proof. The proof is similar to that [16, Theorem 2.3d] and so is omitted.

The next theorem yields the best dominant of the differential subordination

(2.7).

Theroem 2.4. Let h be univalent in U. Let φ : C2 × U → C. Suppose that the

differential equation

φ

(
q(z),

zq′(z) + (p− λ− 1)q(z)

p− λ
,
z2q′′(z) + 2(p− λ− 1)zq′(z) + (p− λ− 2)(p− λ− 1)q(z)

(p− λ− 1)(p− λ)
; z

)
= h(z) (2.9)

has a solution q with q(0) = 0 and satisfy one of the following conditions:

(1) q ∈ Q0 and φ ∈ ΦI [h, q],

(2) q is univalent in U and φ ∈ ΦI [h, qρ] for some ρ ∈ (0, 1), or

(3) q is univalent in U and there exists ρ0 ∈ (0, 1) such that φ ∈ ΦI [hρ, qρ]

for all ρ ∈ (ρ0, 1).
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If f ∈ Ap satisfies (2.8), then

Ωλ,p
z f(z)

zp−1
≺ q(z).

and q is the best dominant.

Proof. Following the same arguments in [4, Theorem 2.3e], we deduce that q is

a dominant from Theorem 2.2 and Theorem 2.3. Since q satisfies (2.9), it is also a

solution of (2.8) and therefore q will be dominated by all dominants. Hence q is the

best dominant.

In the particular case q(z) = Mz, M > 0, the class ΦI,1[Ω, q] of admissible

functions becomes the class ΦI,1[Ω,M ].

Definition 2.2. Let Ω be a set in C, λ < p − 2 and M > 0. The class of

admissible functions ΦI,1[Ω,M ] consists of those functions φ : C3×U → C such that

φ

(
Meiθ,

(k + p− λ− 1)Meiθ

p− λ
,
L+ [2k(p− λ− 1) + (p− λ− 2)(p− λ− 1)]Meiθ

(p− λ− 1)(p− λ)

)
6∈ Ω

(2.10)

whenever z ∈ U, Re
{
Le−iθ

}
≥ (k − 1)kM , θ ∈ R and k ≥ 1.

Corollary 2.2. Let φ ∈ ΦI,1[Ω,M ]. If f ∈ Ap satisfies

φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
; z

)
∈ Ω,

then

Ωλ,p
z f(z)

zp−1
≺Mz.
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When Ω = {w : |w| < M} = q(U), the class ΦI,1[Ω,M ] is simply denoted by

ΦI,1[M ].

Cor0llary 2.3. Let φ ∈ ΦI,1[M ]. If f ∈ Ap satisfies

∣∣∣∣φ(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)∣∣∣∣ < M,

then

∣∣∣∣Ωλ,p
z f(z)

zp−1

∣∣∣∣ < M.

Cor0llary 2.4. Let λ < p− 1 and M > 0. If f ∈ Ap satisfies

∣∣∣∣Ωλ+1,p
z f(z)

zp−1

∣∣∣∣ < M,

then

∣∣∣∣Ωλ,p
z f(z)

zp−1

∣∣∣∣ < M.

Proof. This follows from Corollary 2.6 by taking φ(u, v; z) = v.

Cor0llary 2.5. Let λ < p− 2 and M > 0. If f ∈ Ap satisfies

∣∣∣∣(p− λ− 1)(p− λ)
Ωλ+2,p

z f(z)

zp−1
+ (p− λ)

Ωλ+1,p
z f(z)

zp−1

−(p− λ− 2)(p− λ− 1)
Ωλ,p

z f(z)

zp−1

∣∣∣∣ < [3(p− λ)− 2]M,

then
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∣∣∣∣Ωλ,p
z f(z)

zp−1

∣∣∣∣ < M.

Proof. This follows from Corollary 2.2 by taking φ(u, v, w; z) = (p− λ− 1)(p−

λ)w+(p−λ)v−(p−λ−2)(p−λ−1)u and Ω = h(U), where h(z) = [3(p−λ)−2]Mz.

To use Corollary 2.2, we need to show that φ ∈ ΦI,1[Ω,M ], that is, the admissible

condition (2.10) is satisfied. This follows since

∣∣∣∣φ(
Meiθ,

(k + p− λ− 1)Meiθ

p− λ
,
L+ [2k(p− λ− 1) + (p− λ− 2)(p− λ− 1)]Meiθ

(p− λ− 1)(p− λ)

)∣∣∣∣
=

∣∣L− [2k(p− λ− 1) + (p− λ− 2)(p− λ− 1)Meiθ + (k + p− λ− 1)Meiθ

−(p− λ− 2)(p− λ− 1)Meiθ
∣∣

=
∣∣L+ [2k(p− λ− 1) + (k + p− λ− 1)]Meiθ

∣∣
≥ Re

{
Le−iθ

}
+ [2k(p− λ− 1) + (k + p− λ− 1)]M

≥ k(k − 1)M + [2k(p− λ− 1) + (k + p− λ− 1)]M

= [3(p− λ)− 2]M

for z ∈ U, Re
{
Le−iθ

}
≥ (k − 1)kM , θ ∈ R and k ≥ 1. Hence by Corollary 2.5, we

deduce the required result.

3. Superordination and Sandwich-type Results

The dual problem of differential subordination, that is, differential superordina-

tion of the fractional differintegral operator defined by (1.3) is investigated in this

section. For this purpose, the class of admissible functions is given in the following

definition.
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Definition 3.1. Let Ω be a set in C, q ∈ H0 and λ < p − 2. The class of

admissible functions Φ′I,1[Ω, q] consists of those functions φ : C3 × U → C that

satisfy the admissiblity condition φ(u, v, w; ζ) ∈ Ω whenever

u = q(z), v =
zq′(z)/m+ (p− λ− 1)q(z)

p− λ

and

Re

{
(p− λ)(p− λ− 1)w − (p− λ− 2)(p− λ− 1)u

(p− λ)v − (p− λ− 1)u
− 2(p− λ) + 3

}
≤ 1

m
Re

{
ζq′′(ζ)

q′(ζ)
+ 1

}
for z ∈ U, ζ ∈ U and m ≥ 1.

Theorem 3.1. Let φ ∈ Φ′I,1[Ω, q]. If f ∈ Ap, Ωλ,p
z f(z)/zp−1 ∈ Q0 and

φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
is univalent in U, then

Ω ⊂
{
φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
: z ∈ U

}
(3.1)

implies

q(z) ≺ Ωλ,p
z f(z)

zp−1
.

Proof. From (2.7) and (3.1), we have

Ω ⊂
{
ψ(p(z), zp′(z); z), z2p′′(z); z) : z ∈ U

}
.
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From (2.5), we see that the admissibility condition for φ ∈ Φ′I,1[Ω, q] is equivalent to

the admissibility condition for ψ as given in Definition 1.2. Hence ψ ∈ Ψ′[Ω, q], and

by Theorem 1.2, q ≺ p or

q(z) ≺ Ωλ,p
z f(z)

zp−1
.

If Ω 6= C is a simply connected domain, then Ω = h(U) for some conformal

mapping h of U onto Ω. In this case, the class Φ′I,1[h(U), q] is written as Φ′I,1[h, q].

The following result is an immediate consequence of Theorem 3.1.

Theorem 3.2. Let q ∈ H0, h is analytic in U and φ ∈ Φ′I,1[h, q]. If f ∈ Ap,

Ωλ,p
z f(z)/zp−1 ∈ Q0 and

φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
is univalent in U, then

h(z) ≺ φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
implies

q(z) ≺ Ωλ,p
z f(z)

zp−1
.

Theorem 3.1 and Theorem 3.2 can only be used to obtain subordinants of dif-

ferential superordination of the form (3.1) or (3.2). The following theorem proves

the existence of the best subordinant of (3.2) for certain φ.

Theorem 3.3. Let h be analytic in U and φ : C2 × U → C. Suppose that the

differential equation
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φ

(
q(z),

zq′(z) + (p− λ− 1)q(z)

p− λ
,
z2q′′(z) + 2(p− λ− 1)zq′(z) + (p− λ− 2)(p− λ− 1)q(z)

(p− λ− 1)(p− λ)
; z

)
= h(z)

has a solution q ∈ Q0. If φ ∈ Φ′I [h, q], f ∈ Ap, Ωλ,p
z f(z) ∈ Q0 and

φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
is univalent in U, then

h(z) ≺ φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
implies

q(z) ≺ Ωλ,p
z f(z)

zp−1
,

and q is the best subordinant.

Proof. The proof is similar to that of Theorem 2.4 and so is omitted.

Combining Theorem 2.2 and Theorem 3.2, we obtain the following sandwich-

type theorem.

Theroem 3.4. Let h1 and q1 be analytic functions in U, h2 be univalent function

in U, q2 ∈ Q0 with q1(0) = q2(0) = 0 and φ ∈ ΦI,1[h2, q2] ∩ Φ′I,1[h1, q1]. If f ∈ Ap,

Ωλ,p
z f(z)/zp−1 ∈ H0 ∩Q0 and

φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
is univalent in U, then

h1(z) ≺ φ

(
Ωλ,p

z f(z)

zp−1
,
Ωλ+1,p

z f(z)

zp−1
,
Ωλ+2,p

z f(z)

zp−1
; z

)
≺ h2(z)

15



implies

q1(z) ≺
Ωλ,p

z f(z)

zp−1
≺ q2(z).
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