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Frequency-shaped Linear
Quadratic Control Approach to
Anti-sway System Design

Luu Hoang Minh

Department of Mechanical Engineering
The Graduate School
Pukyong National University

Abstract

In this paper, a crane controller design approach for anti-sway system is
studied. To reduce the swing motion of container in desired area, we use a
small auxiliary mass which is installed on the spreader, such that the actuator
reacting against the auxiliary mass applies nertial control forces. In this
study, we apply the Frequency-shaped Linear Quadratic control approach to
anti-sway control system design problem. The frequency-shaped approach
can be carried a step further by augmenting the plant with frequency-shaped
filters so as to penalize their outputs in addition to other cost terms in the
performance index. A considerable magnitude reduction in the resonances
frequency range is obtained by introducing frequency dependent weighting
functions. By using MATLAB program, we calculate and design controller

for anti-sway system and evaluate system performance through simulation.
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Chapter 1
Introduction

1.1 Background of Container Crane System

Now, in all ports, the transporting container from the container ship onto
trucks is undertaken by the container crane. But there must be decrease of
swing motion in the all transportation process. This swing motion happens
when trolley is at the end of acceleration process, deceleration process,

stopping or in the case of that the unexpected disturbance input exist.

In fact, we have two control objects which are trolley and spreader. The
trolley control method is used to decrease swing motion of container, but this
method has several problems relating to working time of the crane drives

such as increase of fatigue and discomfort.

In this paper, we study a method to decrease swing motion of container
using a small auxiliary mass [1] [2] which is installed on the spreader of the
container crane, and the actuator reacting against the auxiliary mass applies
mnertial control forces. Based on these facts, we have introduced many
control techniques. And in this paper, Linear Quadratic control will approach

to anti-sway system using auxiliary mass damper.
1.2 Outline of Dissertation and Summary of Contribution

This dissertation designs new controller for anti-sway system for
container crane by Linear Quadratic (LQ) methods [7] [8] [9] [10] [11]. The
content and summary of contribution in this dissertation is organized as

follows:



In chapter 1:

This chapter introduces background of container crane system
and the reason of swing motion in container crane. The outline of

each chapter for this dissertation is given.
In chapter 2:

This chapter introduces some methods reduce swing motion of
container crane. And give state space equation of anti-sway system

using mass damper.
In chapter 3:

This chapter introduces Linear-Quadratic and Linear Quadratic
Gaussian methods with new design will be termed frequency-shaped

designs [3] [4] [5] [6].
In chapter 4:

Design new controller for anti-sway system and evaluate system

performance through simulation by using MATLAB program.
In chapter 5:

Conclusions.



Chapter 2
Anti-sway System of Container
Crane
2.1 Trolley Control Method

The key point of this method is identifying the times, when the trolley in

the end of acceleration, deceleration process or stopping.

Figure 2.1 shows movement of trolley and container, where, m, is mass
of trolley, M is mass of container, f,is driving force. for trolley, /is rope

length.

Fig. 2.1: Movement of trolley and container



Moving equations of container and trolley are described as following:

2 2
mEx L) Mg 2.1)
a’  di I
d’x, Mg
my dtzT +T)C=fT (22)

From equation (2.1) we obtained:

d’x, d’x g
dtzT = dtz +7)C (23)

2

Substitute dd);T in equation (2.2) we get differential equation of
t

movement of container:

d’x g

my +7(mT +Mx=f; (2.4)
2
@d—f+§ f Mol o (2.5)
dt [ m, my,

General solution of equation (2.5) is:

x = Asin /§(1+£jt+Bcos /§£1+£jt+(p(1) (2.6)
) my [ my

Where, ¢(¢) is partial solution of equation (2.5).

Define as f7 isn’t changed, from equation (2.5) we get partial solution as

following.



_ Sl
(p(t)——(mT P 2.7)

So equation (2.6) can be rewritten

v dsin |2[1+M |y Beos |E[ 14 M |y Sil (2.8)
/ my / m; (mT+M)g

With initial conditions ¢ = 0 then x = 0;% =0
t

Therefore: 4 = 0,8 = . B AW
(m; +M)g
:>sz 1—cos £ 1+£t (2.9)
(mT - M)g l mT

We see a few solution to decrease sway after trolley post-acceleration or

stop .Derivative equation (2.9) follow time, we acquire container’s velocity

@:L\/i(nﬂ%m\/ﬁ(uﬂ} 2.10)
dt  (m,+M)\ gl m, I\ m,

When x = O;% =0 then %(lJrﬂJt =2nnw  Where, n=1, 2, 3...

my

equation:

X = 0,% =0 and f, =0then sway of container is zero. Deduce period

of time accelerate and stop must following



myl

t=2n7z'
(mT +M)g

2.11)

We selected t as equation (2.11), then sway of container is zero, when the
trolley in acceleration, deceleration process or start, stop. But this method has
several problems relating to working time of the crane drives such as increase
of fatigue and discomfort. So in next part, we introduce other method of anti-

sway for container crane.
2.2 Mass-damper type Anti-sway System

Here we introduce a solution to suppress swing motion by installing an

auxiliary mass damper on the spreader. The auxiliary mass is showed in

figure: Damper Mass

|

Bufter

Fig. 2.2: Auxiliary mass damper

This damper-mass is installed on the spreader of container crane, the belt
or ball-screw to transfer power to the moving mass and a motor to move a
damper mass. In this system, the actuator reacting against the auxiliary mass

applies inertial control force to the container to reduce the swing motion.



Fig. 2.3: Dynamic model for swing motion analysis

Where, the parameters are described as following.

my

M

fr

Ja

XG5V

: mass of trolley

» mass of container

: mass of damper mass

: driving force for trolley

: horizontal force generated by actuator

: rope length

: gravity center

: sway angle



We define that the center of gravity of the spreader is equal to that of the

mass-damper then X,y can be written as:

X; =1sin @ +x,
(2.12)
Y =—lcos@

We define K as kinetic energy and V' as potential energy then:

K= %mchTz +%(M +m)(X5 + 75 (2.13)

V =—(M +m)glcos (2.14)

Define L = K-V, we have the Lagrange equations as following:

d(@LJ_@_L_fT

dt\ ox, ) ox,

A2 R
dt\ o6 ) @0

(2.15)

where, T ::moment generated by disturbance

T, : moment generated by actuator

In this thesis we don’t consider dynamic of trolley, because it can be
regarded as a kind of disturbance input, so the kinetic energy and the kinetic

energy produced by the mass m can be written:

(M+m)b'c'+%5c+(M+m)gx=T—mgxd - fil (2.16)
ms, =—$x+fd —C, %, —k,x, (2.17)



where, C :damping constant

g :acceleration of gravity
C, :damping constant of actuator
k, :stiffness of actuator

In fact: C,C,and k, are given as follows: C=0.005324,C,=1.5865 and
k,=0.00095

Define: x, =x, x, s#2 »f=%, ) % %,
Then
X, =X, (2.18)
Xy =X, (2.19)

Substitute” ¥=x,, X=x,,  xX=x,, x,=x, into equation (2.16) and

X, =X,, x=Xx, X, =X, X, =X, Into equation (2.17), we obtain:
. C
(M +m)lx, +7x2 +(M+m)gx, =T —mgx, — f,1 (2.20)

. m
mx, = _Tg‘xl + fu = Caxy —kyxs

2.21)

Therefore:

i=-£x ¢ mg T2/ (2.22)
(M +m)l

I T M) Memyl

-9-



. k C
x4:—§xl—ﬁx3—#x4+% (2.23)

where f, = K, v, with K is motor torque coefficient andv is voltage to

motor.

From equations (2.18), (2.19), (2.22), (2.23) we obtained:

.1 [0 1 0 (U
e ¢ me 0o |
Yol | ] (M +m)l’ (M +m)l X2
X, 0 0 0 1| x,
ol |-& 0 ke _ S x,
L ! m m |
T 0 AL R
+ Marm v+ | (MA+m)l |T
K, Y
- 0
4 s U H =
(2.24)
Xy
x X, 1 00 Qi
Define y= = =SS0 p= (2.25)
X, % 0 01 .0fx
X4

The state equation of anti-sway system can be written:

X, = Axp+Bu+ Gw

2.26
Ve (2.26)

where, the states x, = [x X x, X, ]T, control input u = v (input voltage to

motor), w=1T1 (disturbance input), and

-10 -



0 1 0 0
0

g C mg

I M+m)i® (M +m)

A=
0 0 0 1
g 0 ke G
L !/ m m |
r T
B=|0 - L 0 K}
M +m m
1 0 0 0
C =
0 0 10
R
1
G=| (M +m)l
0
— 0 -

Table parameter values of the reduction model

(2.27)

(2.28)

(2.29)

(2.30)

Parameters Values

Spreader specification:

Length 0.70 [m]

Width 0.43 [m]

Height 0.42 [m]

Weight (M) 0.565 [kg]

Rope length (/) 0.40 [m]

Moving-mass weight (m ) 0.095 [kg]
Motor torque coefficient (K, ) 150 [N/v]

Table 2.1 Parameter values of the reduction model

If we use the parameter values given in table 2.1, the system matrices are

obtained as following:

-11 -



0 1 0 0 0
~245 —0.0504 -3.5265 0 ~227.3
A= 2.31), B= (2.32)
0 0 0 1 0

—-24.5 0 -0.01 -16.7

-12-



Chapter 3
Linear Quadratic Methods

3.1 Linear Quadratic Regulator (LQR)

3.1.1 The Linear Quadratic Regulator Problem
Consider the linear system and the quadratic cost function:
X =Ax+ Bu
y==Cx

T
e %.([(x'Qx +u' Ru)dt

The problem is to minimize cost function J with respect to the control
input u(?), this problem is known as the linear quadratic regulator problem.
We see that cost function J is the weighted sum of energy of state and energy

of control input.
3.1.2 LQR Solution using the Minimum Principle

The linear quadratic regulator control problem can be solved using many
techniques, for example Euler-Lagrange equation, Hamilton-Jacobi-Bellman

theory, and Pontriagin’s minimum principle...etc.

In this chapter we must first from the so-called Hamiltonian to arrive at

the minimum principle.

H(x,l,t)=%(x'Qx+u'Ru)+A'(Ax+Bu) (3.1)

-13 -



The minimum principle states must satisfy the following equations:

ot

X= Y] x(0) =x, State equation
(3.2)
. OH .. )
-A= Y AMT)=0 Costate or adjoint equation (3.3)
28
OH _, (3.4)
ou

Where, x, is initial state and 7 is final time.

From equation (3.1) we obtain:

X =Ax+ Bu x(0) = x,
(3.5)
—A=0x%A'A MT)=0 (3.6)
Ru+B'A=0
=u=-R"'B'A (3.7)

= x=Ax—BR'B'A

The above coupled linear differential equation form a two point
boundary value problem (TPBVP), which is difficult to solve numerically
because of mixed boundary conditions. Note that matrix R must be positive

definite for R exist. Now we get state equation of optimal control:
; A -BR'B
e Ylapgl® (3.8)
A -0 -A |4 A

-14 -



Where, matrix H is called the Hamiltonian matrix.

However we can’t solve the two point boundary value problem after all.

To solve it we must define the substitution:
A= Px (3.9

Differentiating both sides with respect to time we get:

dir  dP dx
—=—x+P—
dt dt dt
=%x+PAx—PBR’1B% (3.10)

= ci—Px + PAx— PBR'B' Px
t

With equation (3.6) we get:

§x+PAx—PBR*B'Px=—Qx—A’Px (3.11)
t

This equation must hold for any x, so matrix P.is solution of

following equation:

—%:A‘P+PA+Q—PBRIB'P, P(T)=0 (3.12)

The above equation is called Riccati differential equation. It is a
nonlinear first order differential equation that has to be solved backwards in
time. Recall that the TPBVP is a linear second order differential equation
with mixed boundary conditions. It is usually the Riccati equation form of

the LQR solution that is use.

-15 -



The above formulation and solution of the LQR problem is know as the
finite time problem. It results in a linear time varying controller of the

feedback form:
u(t) =—K(t)x(t) where K(t)=R'B'P(¢) (3.13)

For the infinite time LQR problem, we let T approach infinity. Of course,
now one runs into the question of the convergence of the cost function and,
hence, the existence of the optimal controller. Event if the optimal control

exists, it doesn’t necessarily result in a stable closed loop system. It turn out

that under mild conditions, P(¢)is a constant matrix so d%t equal zero,

and the positive definite solution of the algebraic Riccati equation result in an

asymptotically stable closed loop system.
A'P+PA+Q—-PBR'B'P=0 (3.14)

#l =—Kx, K=R'B'P (3.15)

Matrix R and matrix O can be selected so that R > 0-and Qcan be as

0=C,'C,, where C is any matrix such that-[C ,A] is detectable. These

q b
conditions are necessary and sufficient for existence and uniqueness of an

optimal controller that will asymptotically stabilize the system.

-16 -



3.2 The Linear Quadratic Gaussian (LQG)

In this method, the frequency-shaped approach can be carried a step
further by augmenting the plant with frequency-shaped filters so as to
penalize their outputs in addition to other cost terms in the performance index.
A considerable magnitude reduction in the resonances frequency range is

obtained by introducing frequency dependent weighting functions.
3.2.1 The Linear Quadratic Gaussian Problem

Consider the problem of estimating the state of the stochastic system

given by following figure:

Y __ /G
v
N D
+ /X +
“ 1 B . 1 Y
i S +
A
Fig. 3.1: Diagram of open-loop system
Then the state equation of this system is
x(t) = Ax(t)+ Bu(t) + Gw(t
(1) = Ax(2) + Bu(t) + Gw(1) (3.16)

y(t) = Cx(t) + Du(t) +v(¢)

-17 -



Where the state is available only indirectly through the noisy-output

measurement, w(¢) and v(¢) is uncorrelated zero-mean, Gaussian, white-

noise, random vectors with correlation matrices. And known covariance

given below.
Elw@)w'(t)]=W(@)o(t—7) (3.17)
E[(v@v' (O)]=V(@®)o(t—1) (3.18)

The problem is to find a dynamical system that optimally estimates of the

system x(z) given by measurements. This problem is minimizing the

quadratic performance measure:

J = lim EU [x' (t)Qx(t)+u(t)R“(f)]d’} (3.19)

= E[x' (t)Qx(t) +u'(t)Ru(t)]

As we know the results in a linear time varying controller of the feedback

form:
u(t) ==K (@)x(r) (3.20)
Where K(¢)=R'B'P(t)
And P is solution of Riccati differential equation:
A'P+PA+Q—-PBR'B'P=0 (3.21)
3.2.2 LQG Solution: Frequency-shaped

Consider state available and control input in frequency-shaped, then the

quadratic performance is given:

-18 -



J = [TELY (@)X (jo) +U' (jo)RU(jo)Ho (322)

Consider matrices O and R by substituting as weighting functions Q(jw)

and R(jw), then we obtain

J= i [TELX (jo)0(jm) X (jo) +U" (jo)R(joW (jo)do  (3.23)

Where, X" and U" are conjugate vectors of X and U.

Define é( jw)and E( jo) satisfy following conditions.

0(jo)=0 (jo)0(jo) (3.33)

R(jo) <R (j@)R(jo) (3.34)
And define X (jo)and U(jo) satisfy:

X (jo)y=0(jo)X(jo) (3.39)

U(jo) = R(jo)(jo) (3.36)

From equations (3.35) and (3.36), each state equation for é( jw) and
E( jm) is described as following respectively.

%, (t)= A,x, (1) + B,x(t)

(3.36)
z,(0)=C,x, )+ D, x(¢)

X, (t) = 4,x,(0) + Bu(?)

(3.37)
2,(t)=C,x,(6) + D,u?)

-19-



Synthesize 3 state equations (3.16), (3.36) and (3.37), we obtain

Z(1) = AZ(1) + Bu(?)

(3.38)
where,

x(t)

Z(t)=| x, (1) (3.39)
x, (1)
N PN

A=\B 4, 0 (3.40)
0 0 4
B

B=|0 (3.41)
B

For the system described in (3.38), we introduce-a quadratic performance

criteria.
J = E[Z(¢) OZ (1) + 22 (¢) Su(t) + u(t) Ru(1)] (3.42)
Where,
D,'D, D,'C, 0

0=|Cc,'D, C,'C, 0 (3.43)
0 0o C'C

-20 -



S=[ 0 (3.44)
C.'D,
R=D,'D, (3.45)

In (3.38) and (3.42), the control law is given

u(t)y=—F,x(t)-F x (t)— F x,(t)
L (3.46)
=—R ' (B'P+8)Z(t)
where P is a solution of following Riccati equation.
P(A-BR'S"Y+(A—BR'S'YP-PBR'B'P+0-SRS'=0 (3.47)

Then the closed-loop system can be described as Fig. 3.2.

Zy

v

D, |«
X, D,
X
+ r 1
+ X
C. leg — B, |4 + q lxq + z,
+ N e Bq ~ Lo Cq
+T+ S +
> A,
\ 4 : S
X
F ul] 5 % 1 c LY
r -—b}'\ ¥ N —»
+1 1+ sl
A4 |«

A R— Fy
F,

Fig. 3.2: Diagram of closed-loop system with frequency-shaped LQG method

-21-



In this approach, we must select weighting functions é( jo) andﬁ( jo),

so that we can reduce the amplitude gain of the open-loop system especially

in the resonance frequency range.

-22.



Chapter 4
Design of LLQ Controller for Anti-sway

System by MATLAB

4.1 Modeling and Simulating System

In this thesis, the weighting functions are frequency dependent as we

studied in chapter 3, so we define E( jw) and é( j) following equations:

K0, [(jo) +2ze,w, jo+ ol

R(jw)= (4.1)

cz)f‘[(jco)2 +2ze,0, jo+ a)22 ]2

4
K, o,

[(jo)* +2ze 0, jo +0; |

O(jo) = (4.2)

We need to prepare to combine weighting functions selection with
iteration, because the translation of specification intoé , R selection is
imprecise. Here, we can change shape of bode diagram of éand R by

changing of w;, w 2, @3, ze;;zes, ze3; K; and K; to compare bode diagram of

closed-loop with bode diagram of-open-loop. Noting that, the first breakpoint

on the bode diagram of E( j) has same frequency with the breakpoint on the

bode diagram ofé( jo).

Then M-files of plant of container crane (crane.m), weighting functions
(fwfwt.m), and the Frequency-shaped Linear Quadratic controller (fslqg.m)
were obtained as table I, II, and III in Appendix.
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In figure 3.2, we obtain the diagram closed-loop system show as

following figure.

Fig. 4.1 Diagram closed-loop system with frequency shaped LQ method by
MATLAB program.
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4.2 Select Weighting Functions

First draw bode diagrams of é, R, open-loop and closed-loop system,

then we compare bode diagram of open-loop system with bode diagram of
closed-loop system. If in resonance frequency range, the disturbance is

reduced, then we obtain weighting functions as desired.

Draw bode diagrams of é, R, open-loop and closed-loop system at

;= w3;=20m, ze,/=ze,=ze;=0.6, w,=60m, K,,/=1, we obtain following figure:

50 i i i B
= |
........... ODen_|oop
Close-loop
] Y J U s | "-...._..__.... L e = |
41 %
- ™
g’ _..-'/.\
= \"\&_‘, c e e 8 Y I
| Oy S S T e ey g R I O N ) SR Y P ol P R, T 'f-/.'l'&%- I .
|+ &.
Y
.| T4
/’.
-100 - -
107 10" 10 10°

Frequency [rads/sec]

Fig. 4.2 Bode diagrams of é , R, open-loop and closed-loop system at

w = a)3:207[, 26122622263:0.6, 602:60 TC, K21:1
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In above figure, to increase magnitude of Closed-loop’s bode diagram,
we must increase K»;. To make the bode diagram of é lies in the left of
open-loop’s bode diagram, we decrease parameter w;. Next figure show the

bode diagrams of é , R, open-loop and closed-loop system at w;=

C()3:3.4TE, 0)2:307E, K21:1 .1

50 T T T T T TTT
Y
........... ODen_|oop
Close-loop
D = o L g =1 I "Ti‘:x_'%. V. |- 3 5 Y Sn. e ; . ..-..-.-._.. _._. = - X —
SN y
— TN
=] NG
= \ I
e ¥y \
E B NG
B A N N
bu— ..................... | | R S | \ —
) \\
N
2 N \\.
# X,
¥ [N EE MR .. " LRSS LT _/j
-100 ; -
10 10" 10' 107

Frequency [rads/sec]

Fig. 4.3 Bode diagrams of é , R, open-loop and closed-loop system at

W= C()3:3.4TE, 0)2:307E, K21:1.1

- 26 -



To increase magnitude of Closed-loop’s bode diagram more, we try with

K>/=1.4 and decrease w; and w; to 1.32. Next figure show the bode diagrams

of é , R, open-loop and closed-loop system when increase K»; to 1.4 and

w = C()3:2.64TE.

50 r e e s e
e —
........... ODen_|oop
— ClOSe-lOOP
=ax T i s q\ I a
i \ /
b ™
N
o) o
g ¥ \'\
K] ) . \
y ™N
— %
LT Y S R | W) T O R AR e / RERL Lo R \\ A
/ B Y
\'\
N
5
s A
.-'H'
-100 - - -
107 10" 10 i0?

Frequency [rads/sec]

Fig. 4.4 Bode diagrams of é , R, open-loop and closed-loop

system when increase K»; to 1.4 and w,= @w3;=2.64m.

We obtained the bode diagram of closed-loop as desired, such that the
good control performance maybe obtained.
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4.3 Simulation Result

For the weighting functions were selected, the controller is calculated as

following based on the Frequency-shaped Linear Quadratic theory:

The é-loop:
-19.9 -236.6 —1369.2 -4731.7 1
1 0 0 0 0
A, = , B =| |,
1 0 1 0 0 10
0 0 1 0 0

C,=[0 0 0 66243],D,=0.
The E-loop:

—226.19  =3.06x10" —2.01x10° —7.89x10’

1 0 0 0
4, = ,
0 1 0 0
0 0 1 0
1
0 4 6 8
B=| | C.=[343.99 -506x10° -335x10° ~132x10°],
0
D, = 1.6675.

The feedback matrices:

F,=[-232 -40.99 -384.838 -11182],

F =[1.9672 287.37 1.9x10* 7.46x10°,
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F,=[-05 -0.067 0015 3.74x10™]

Consider the disturbance input as chirp signal.

L

RERSRE R Tt

Time [sec]

Fig. 4.5 Disturbance input

For this disturbance, the controlled outputs are' calculated. Fig. 4.6 and
Fig. 4.7 show the spreader displacement, and Fig. 4.8 shows the displacement

of moving-mass in the actuator.
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Fig. 4.6 Displacement of spreader with open-loop system

T T I T T T T T T

i i i i i I i i i
1 2 3 4 5 6 7 8 9 10

Time [sec]

Fig. 4.7 Displacement of spreader with closed-loop system
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Fig. 4.8 Movement of mass-damper
The figures 4.7 show the displacement of spreader with| Frequency-
shaped Linear Quadratic controller that we designed above. Although, the
swing motion still exist but it is reduced a lot. In figure 4.6, the biggest
amplitude of vibration of spreader i1s 0.54 m, but when  system has
Frequency-shaped LQ. controller, the biggest amplitude of vibration of
spreader is only 0.045 'm, and the spreader comes balance state very fast. So

we obtain the good coentrol performance.
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Chapter 5

Conclusions

In this thesis, we introduced background of container crane system and
the reason of swing motion in container crane and some methods reduce
swing motion of container crane, and we obtained state space equation of

anti-sway system using mass damper.

In order to design anti-sway system for container crane, an approach was
recommended in this study. The new controller was-designed by Frequency-

shaped Linear Quadratic method.

In Frequency-shaped Linear Quadratic method, as same as other LQ
methods, the most important work is selecting weighting functions. To select
weighting functions, we draw bode diagrams of weighting functions, open-
loop and closed-loop system. If in resonance frequency range, the magnitude
of closed-loop system is reduced, then we obtain weighting functions as

desired.

The steps to design Frequency-shaped Linear Quadratic controller are

described as following:

1. Chapter 2 introduces the way to modeling plant of anti-sway system

by state equation.

2. In chapter 3, we conformed bode diagram of open-loop system and
bode diagram of closed-loop system by changing parameters of

weighting functions, and selected the weighting function to obtain the
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bode diagram of closed-loop as desired, so that the magnitude in the

resonances frequency range could be reduced.

3. After that, the frequency dependent weighting functions were

described as state equations in chapter 3.

4. In chapter 4, the control law is obtained by solving the Riccati

equation.

The controller is obtained base on the solution of Riccati equation.
Although, the swing motion still exist but it is reduced a lot, and the spreader

comes balance state very fast. So we obtain the good control performance.
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APPENDIX

The M-file of plant of container crane (crane.m) was shows as following

table.

1- g=9.8; 1=0.4;

2- M=0.565; am=0.095;

3- cd=1.5856; kd=0.00095; km=150; c=0.005324;

4- all=0;

5- al2=1;

6- al3=0;

7- al4=0;

8- a2l=-g/1;

9- a22=-c/((M+am) *(1A2));
10- a23=-am*g/(M+am)/1;
11- a24=0;

12- a31=0;

13- a32=0;

14- a33=0;

15- a34=1;

16- a4l=-g/T1;

17- a42=0;

18- a43=-kd/am;

19- a44=-cd/am;

%O— ﬁ:[gll al2 al3 ald; a2l.a22 a23 a24; a3l a32 a33 a34; a4l ad42 a43 ad4]

1- b1=0;

22- b2=-km/(M+am);

23- b3=0;

24- b4=km/am;

25- B=[bl;b2;b3;b4]

26- ¢c=[1 0 0 0;0 0 1 0]
27- D=[0;0]

28- G=[0;1/(C(M+am)*1);0;0]

Table I M-file of plant of container crane (erane.m)
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The M-file of weighting functions (fwfwt.m) was show as following
table.

1- % WT=Rbar(w)

2- f1=10;

3- f2=30;

4- zel=0.6;

5- ze2=0.6;

6- K1=0.0001;

7- %WS=Qbar(w)

8- f3=10;

9- ze3=0.6;
10- K21=1;
11- % WT

12- wl=2*pi*fl;

13- w2=2*pi*f2;

14- numl=[1 2*zel*wl wlA2];

15- numl=K1*w2A4*conv(numl,numl);
16- denl=[1 2*ze2*w2 w2A2];

17- denl=wlA4*conv(denl,denl);
18- w=Tlogspace(-1,3,1000);

19- magl=bode(tf(numl,denl) ,w);
20- magl=20*T1ogl0(magl(1,:));

21- % WS

22- w3=2*pi*f3;

23- num21=[0 0 0 0 K21*w3A4];

24- den21=[1 2*ze3*w3 w3A2];

25- den2l=conv(den21,den2l);

26- w=logspace(-1,3,1000);

27- mag2=bode (tf(num21,den2l) ,w);
28- mag2=20%1ogl0(mag2(1,:));

29- % Bode diagrams of Qbar and Rbar
30- f=w/pi/2;

31- semilogx(f,mag2,f,magl)

32- Xlabel('Frequency Hz')

33- Ylabel('Gain ds")

34- axis([10A(-1),10A2,-100,10]1);

Table II M-file of weighting functions@ and R (fwfwt.m)
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The M-file (fslqg.m) of frequency-shaped LQG controller was shown as
following table.

1- crane

2- fwfwt

3- % Q(Gw)

4- [Aq,Bq,Cq,Dg]l=tf2ss(num2l,den2l);
5- % R(jw)

6- [Ar,Br,Cr,Dr]=tf2ss(numl,denl);

7- cd1l=[1 0 0 0];

8- Dd1=0;

9- [n,m]=size(B);
10- [p,n]=size(CQ);
11- [n_q,m_qg]=size(Bq);

12- [p_qg,n_q]=size(Cq);

13- [n_r,m_r]=size(Br);

14- [p_r,n_r]=size(Cr);

15- Aag=[A zeros(n,n_qg) zeros(n,n_r);
16- Bg*Cdl Aq zeros(n_g,n_r);
17- zeros(n_r,n) zeros(n_r,n_q) Ar];
18- Bag=[B; zeros(n_qg,m);Br];
19- Bw=[B; zeros(n_qg,m);zeros(n_r,m)];
20- cag=[C zeros(p,n_qg)-zeros(p,n_r)];
21- Qag=[[cdl'*Dq"';cg"]*[Dg*cdl cq] zeros(n+n_g,n_r);
22- zeros(n_r n+n_q) Cr'*cr];
23- Rag=Dr'*Dr;
24- Fag=1qr2(Aag,Bag,Qag,Rag);
25- Fb=Fag(1,1:4);
26- Fg=Fag(1,5:8);
27- Fr=Fag(1,9:12);
28- mag3=bode(ss(Aag-Bag*Fag,Bw,Cag,D),w);
29- mag3=20%1ogl0(mag3(1,:));

30- mag4=bode(ss(A,B,C,D),w);

31- mag4=20*ToglO(mag4(1,:));

Table III M-file of designing LQG controller (fslqg.m)
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