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Anti-sway System Design 

Luu Hoang Minh 

Department of Mechanical Engineering 

The Graduate School 

Pukyong National University 

Abstract 

In this paper, a crane controller design approach for anti-sway system is 

studied. To reduce the swing motion of container in desired area, we use a 

small auxiliary mass which is installed on the spreader, such that the actuator 

reacting against the auxiliary mass applies inertial control forces. In this 

study, we apply the Frequency-shaped Linear Quadratic control approach to 

anti-sway control system design problem. The frequency-shaped approach 

can be carried a step further by augmenting the plant with frequency-shaped 

filters so as to penalize their outputs in addition to other cost terms in the 

performance index. A considerable magnitude reduction in the resonances 

frequency range is obtained by introducing frequency dependent weighting 

functions. By using MATLAB program, we calculate and design controller 

for anti-sway system and evaluate system performance through simulation. 
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Chapter 1 

Introduction 

1.1 Background of Container Crane System 

Now, in all ports, the transporting container from the container ship onto 

trucks is undertaken by the container crane. But there must be decrease of 

swing motion in the all transportation process. This swing motion happens 

when trolley is at the end of acceleration process, deceleration process, 

stopping or in the case of that the unexpected disturbance input exist. 

In fact, we have two control objects which are trolley and spreader. The 

trolley control method is used to decrease swing motion of container, but this 

method has several problems relating to working time of the crane drives 

such as increase of fatigue and discomfort. 

In this paper, we study a method to decrease swing motion of container 

using a small auxiliary mass [1] [2] which is installed on the spreader of the 

container crane, and the actuator reacting against the auxiliary mass applies 

inertial control forces. Based on these facts, we have introduced many 

control techniques. And in this paper, Linear Quadratic control will approach 

to anti-sway system using auxiliary mass damper. 

1.2 Outline of Dissertation and Summary of Contribution 

This dissertation designs new controller for anti-sway system for 

container crane by Linear Quadratic (LQ) methods [7] [8] [9] [10] [11]. The 

content and summary of contribution in this dissertation is organized as 

follows: 
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In chapter 1: 

This chapter introduces background of container crane system 

and the reason of swing motion in container crane. The outline of 

each chapter for this dissertation is given. 

In chapter 2: 

This chapter introduces some methods reduce swing motion of 

container crane. And give state space equation of anti-sway system 

using mass damper. 

In chapter 3: 

This chapter introduces Linear Quadratic and Linear Quadratic 

Gaussian methods with new design will be termed frequency-shaped 

designs [3] [4] [5] [6].  

In chapter 4: 

Design new controller for anti-sway system and evaluate system 

performance through simulation by using MATLAB program. 

In chapter 5: 

Conclusions. 
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Chapter 2 

Anti-sway System of Container 
Crane  

2.1 Trolley Control Method 

The key point of this method is identifying the times, when the trolley in 

the end of acceleration, deceleration process or stopping. 

Figure 2.1 shows movement of trolley and container, where, Tm  is mass 

of trolley, M  is mass of container, Tf is driving force for trolley, l is rope 

length. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2.1: Movement of trolley and container 
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Moving equations of container and trolley are described as following: 
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2
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 From equation (2.1) we obtained:  

x
l

g
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2
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         (2.3) 

Substitute 
2

2

dt

xd T  in equation (2.2) we get differential equation of 

movement of container: 
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General solution of equation (2.5) is: 
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Where, j(t) is partial solution of equation (2.5).  

Define as fT isn’t changed, from equation (2.5) we get partial solution as 

following. 
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So equation (2.6) can be rewritten  
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We see a few solution to decrease sway after trolley post-acceleration or 

stop .Derivative equation (2.9) follow time, we acquire container’s velocity 

equation: 
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+  Where, n=1, 2, 3… 

 0,0 ==
dt

dx
x  and 0=Tf then sway of container is zero. Deduce period 

of time accelerate and stop must following 
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( )gMm

lm
nt

T

T

+
= p2          (2.11) 

We selected t as equation (2.11), then sway of container is zero, when the 

trolley in acceleration, deceleration process or start, stop. But this method has 

several problems relating to working time of the crane drives such as increase 

of fatigue and discomfort. So in next part, we introduce other method of anti-

sway for container crane. 

2.2 Mass-damper type Anti-sway System 

Here we introduce a solution to suppress swing motion by installing an 

auxiliary mass damper on the spreader. The auxiliary mass is showed in 

figure:  

 

 

 

 

Fig. 2.2: Auxiliary mass damper 

This damper-mass is installed on the spreader of container crane, the belt 

or ball-screw to transfer power to the moving mass and a motor to move a 

damper mass. In this system, the actuator reacting against the auxiliary mass 

applies inertial control force to the container to reduce the swing motion. 

Buffer 
Belt or Ball 
Screw 

Damper Mass 

Motor 
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Fig. 2.3: Dynamic model for swing motion analysis 

 Where, the parameters are described as following. 

Tm   : mass of trolley 

M   : mass of container 

m   : mass of damper mass 

Tf   : driving force for trolley 

df   : horizontal force generated by actuator 

l   : rope length 

GG yx ,  : gravity center 

q   : sway angle 
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 We define that the center of gravity of the spreader is equal to that of the 

mass-damper then GG yx , can be written as: 
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 We define K as kinetic energy and V as potential energy then:   
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Define VKL -= , we have the Lagrange equations as following: 
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where,   T   : moment generated by disturbance 

   dT   : moment generated by actuator 

In this thesis we don’t consider dynamic of trolley, because it can be 

regarded as a kind of disturbance input, so the kinetic energy and the kinetic 

energy produced by the mass m can be written: 

    lfmgxTgxmMx
l

C
xlmM dd --=++++ )()( &&&      (2.16) 

dddddd xkxCfx
l

mg
xm --+-= &&&          (2.17) 
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where,  C   :damping constant 

   g   :acceleration of gravity 

   dC   :damping constant of actuator 

   dk   :stiffness of actuator 

In fact: C, dC and dk  are given as follows: C=0.005324, dC =1.5865 and 

dk =0.00095 

Define: dd xxxxxxxx && ==== 4321 ,,,  

Then     

21 xx =&                   (2.18)             

43 xx =&                  (2.19) 

 Substitute 3122 ,,, xxxxxxxx d ==== &&&& into equation (2.16) and 

3414 ,,, xxxxxxxx ddd ==== &&&&  into equation (2.17), we obtain: 
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C
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l
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Therefore: 
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 where vKf md = , with mK  is motor torque coefficient and v  is voltage to 

motor. 

 From equations (2.18), (2.19), (2.22), (2.23) we obtained: 
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The state equation of anti-sway system can be written: 

p

pp

Cxy

GwBuAxx

=

++=&
        (2.26) 

where, the states [ ]Tddp xxxxx &&= , control input vu = (input voltage to 

motor), Tw =  (disturbance input), and 
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Table parameter values of the reduction model 

Parameters Values 
Spreader specification: 

Length  
Width 
Height 
Weight  ( M ) 
Rope length  ( l ) 
Moving-mass weight  ( m ) 

 
0.70 [m] 
0.43 [m] 
0.42 [m] 

0.565 [kg] 
0.40 [m] 

0.095 [kg] 

Motor torque coefficient ( mK ) 150 [N/v] 

 

Table 2.1 Parameter values of the reduction model 

If we use the parameter values given in table 2.1, the system matrices are 

obtained as following: 
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Chapter 3  

Linear Quadratic Methods 

3.1 Linear Quadratic Regulator (LQR) 

3.1.1 The Linear Quadratic Regulator Problem 

Consider the linear system and the quadratic cost function: 

Cxy

BuAxx

=

+=&
 

ò +=
T

dtRuuQxxJ
0

)''(
2

1
 

 The problem is to minimize cost function J with respect to the control 

input u(t), this problem is known as the  linear quadratic regulator problem. 

We see that cost function J is the weighted sum of energy of state and energy 

of control input. 

3.1.2 LQR Solution using the Minimum Principle 

 The linear quadratic regulator control problem can be solved using many 

techniques, for example Euler-Lagrange equation, Hamilton-Jacobi-Bellman 

theory, and Pontriagin’s minimum principle…etc. 

 In this chapter we must first from the so-called Hamiltonian to arrive at 

the minimum principle. 

   )(')''(
2

1
),,( BuAxRuuQxxtxH +++= ll       (3.1) 
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 The minimum principle states must satisfy the following equations: 
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Where, 0x  is initial state and T  is final time. 

 From equation (3.1) we obtain: 
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 The above coupled linear differential equation form a two point 

boundary value problem (TPBVP), which is difficult to solve numerically 

because of mixed boundary conditions. Note that matrix R must be positive 

definite for R-1 exist. Now we get state equation of optimal control: 
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Where, matrix H is called the Hamiltonian matrix. 

However we can’t solve the two point boundary value problem after all. 

To solve it we must define the substitution: 

     Px=l            (3.9) 

Differentiating both sides with respect to time we get: 
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 With equation (3.6) we get: 

     PxAQxPxBPBRPAxx
dt

dP
''1 --=-+ -    (3.11)

  This equation must hold for any x , so matrix P is solution of 

following equation: 

  0)(,'' 1 =-++=- - TPPBPBRQPAPA
dt

dP
   (3.12) 

 The above equation is called Riccati differential equation. It is a 

nonlinear first order differential equation that has to be solved backwards in 

time. Recall that the TPBVP is a linear second order differential equation 

with mixed boundary conditions. It is usually the Riccati equation form of 

the LQR solution that is use. 
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 The above formulation and solution of the LQR problem is know as the 

finite time problem. It results in a linear time varying controller of the 

feedback form:  

 )()()( txtKtu -=         where   )(')( 1 tPBRtK -=      (3.13) 

 For the infinite time LQR problem, we let T approach infinity. Of course, 

now one runs into the question of the convergence of the cost function and, 

hence, the existence of the optimal controller. Event if the optimal control 

exists, it doesn’t necessarily result in a stable closed loop system. It turn out 

that under mild conditions,  )(tP is a constant matrix so 
dt

dP  equal zero, 

and the positive definite solution of the algebraic Riccati equation result in an 

asymptotically stable closed loop system. 

    0'' 1 =-++ - PBPBRQPAPA       (3.14) 

    Kxu -= ,  PBRK '1-=       (3.15) 

 Matrix R  and matrix Q  can be selected so that 0>R  and Q can be as 

qq CCQ '= , where qC is any matrix such that ],[ ACq  is detectable. These 

conditions are necessary and sufficient for existence and uniqueness of an 

optimal controller that will asymptotically stabilize the system.  
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3.2 The Linear Quadratic Gaussian (LQG) 

In this method, the frequency-shaped approach can be carried a step 

further by augmenting the plant with frequency-shaped filters so as to 

penalize their outputs in addition to other cost terms in the performance index. 

A considerable magnitude reduction in the resonances frequency range is 

obtained by introducing frequency dependent weighting functions. 

3.2.1 The Linear Quadratic Gaussian Problem 

Consider the problem of estimating the state of the stochastic system 

given by following figure:  

 

Fig. 3.1: Diagram of open-loop system 

Then the state equation of this system is 

)()()()(
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 Where the state is available only indirectly through the noisy-output 

measurement, )(tw  and )(tv  is uncorrelated zero-mean, Gaussian, white-

noise, random vectors with correlation matrices. And known covariance 

given below. 

)()()](')([ td -= ttWtwtwE        (3.17) 

)()()](')([( td -= ttVtvtvE        (3.18) 

 The problem is to find a dynamical system that optimally estimates of the 

system )(tx  given by measurements. This problem is minimizing the 

quadratic performance measure: 

)]()(')()('[

)]()(')()('[
1

lim

tRututQxtxE

dttRututQxtxE
t

J
f

ff

t

t
f

t

+=

úû
ù

êë
é += ò-¥®    (3.19) 

 As we know the results in a linear time varying controller of the feedback 

form: 

)()()( txtKtu -=          (3.20) 

Where   )(')( 1 tPBRtK -=  

 And P is solution of Riccati differential equation:  

0'' 1 =-++ - PBPBRQPAPA       (3.21) 

3.2.2 LQG Solution: Frequency-shaped  

Consider state available and control input in frequency-shaped, then the 

quadratic performance is given: 
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  wwwww
p

djRUjUjQXjXEJ ò
+¥

¥-
+= )]()()()([

2

1 **    (3.22) 

Consider matrices Q and R by substituting as weighting functions )( wjQ  

and )( wjR , then we obtain 

 wwwwwww
p

djUjRjUjXjQjXEJ ò
+¥

¥-
+= )]()()()()()([

2

1 **  (3.23) 

Where, X* and U* are conjugate vectors of X and U. 

Define )( wjQ and )( wjR satisfy following conditions. 

)()()(
*

www jQjQjQ =         (3.33) 

)()()(
*

www jRjRjR =         (3.34) 

And define )( wjX and )( wjU satisfy: 

)()()( www jXjQjX =         (3.35) 

)()()( www jUjRjU =         (3.36) 

From equations (3.35) and (3.36), each state equation for )( wjQ and 

)( wjR  is described as following respectively. 

)()()(

)()()(

txDtxCtz

txBtxAtx

qqqq

qqqq

+=

+=&
        (3.36) 

)()()(

)()()(

tuDtxCtz

tuBtxAtx

rrrr

rrrr

+=

+=&
        (3.37) 
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Synthesize 3 state equations (3.16), (3.36) and (3.37), we obtain 

)(
~

)(~~
)(~ tuBtzAtz +=&         

 (3.38) 

where, 
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For the system described in (3.38), we introduce a quadratic performance 

criteria. 

)](
~

)'()(
~

)'(~2)(~~
)'(~[ tuRtutuStztzQtzEJ ++=    (3.42) 
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In (3.38) and (3.42), the control law is given 
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~
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txFtxFtxFtu rrqqb

+-=

---=
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     (3.46) 

where P
~

 is a solution of  following Riccati equation. 

0'
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(
~ 111 =-+--+- --- SRSQPBRBPPSRBASRBAP  (3.47) 

Then the closed-loop system can be described as Fig. 3.2.  

 

 

 

 

 

 

 

 

Fig. 3.2: Diagram of closed-loop system with frequency-shaped LQG method 
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In this approach, we must select weighting functions )( wjQ and )( wjR , 

so that we can reduce the amplitude gain of the open-loop system especially 

in the resonance frequency range. 
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Chapter 4  

Design of LQ Controller for Anti-sway 

System by MATLAB 

 

4.1 Modeling and Simulating System  

 In this thesis, the weighting functions are frequency dependent as we 

studied in chapter 3, so we define )( wjR  and )( wjQ  following equations: 

22
222
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K
jQ                (4.2) 

 We need to prepare to combine weighting functions selection with 

iteration, because the translation of specification into Q , R  selection is 

imprecise. Here, we can change shape of bode diagram of Q and R  by 

changing of ω1, ω 2, ω 3, ze1, ze2, ze3, K1 and K21 to compare bode diagram of 

closed-loop with bode diagram of open-loop. Noting that, the first breakpoint 

on the bode diagram of )( wjR has same frequency with the breakpoint on the 

bode diagram of )( wjQ .  

Then M-files of plant of container crane (crane.m), weighting functions 

(fwfwt.m), and the Frequency-shaped Linear Quadratic controller (fslqg.m) 

were obtained as table I, II, and III in Appendix. 
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In figure 3.2, we obtain the diagram closed-loop system show as 

following figure. 

 

Fig. 4.1 Diagram closed-loop system with frequency shaped LQ method by 

MATLAB program. 
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4.2 Select Weighting Functions 

First draw bode diagrams of Q , R , open-loop and closed-loop system, 

then we compare bode diagram of open-loop system with bode diagram of 

closed-loop system. If in resonance frequency range, the disturbance is 

reduced, then we obtain weighting functions as desired. 

Draw bode diagrams of Q , R , open-loop and closed-loop system at   

ω1= ω3=20π, ze1=ze2=ze3=0.6, ω2=60π, K21=1, we obtain following figure: 

 

Fig. 4.2 Bode diagrams of Q  ,  R ,  open-loop and closed-loop system at  

ω1= ω3=20π, ze1=ze2=ze3=0.6, ω2=60 π, K21=1 
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In above figure, to increase magnitude of Closed-loop’s bode diagram, 

we must increase K21. To make the bode diagram of  Q  lies in the left of 

open-loop’s bode diagram, we decrease parameter ω3. Next figure show the 

bode diagrams of  Q  ,  R ,  open-loop and closed-loop system at ω1= 

ω3=3.4π, ω2=30π, K21=1.1 

 

Fig. 4.3 Bode diagrams of  Q  ,  R ,  open-loop and closed-loop system at 

ω1= ω3=3.4π, ω2=30π, K21=1.1 
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To increase magnitude of Closed-loop’s bode diagram more, we try with 

K21=1.4 and decrease ω1 and ω3 to 1.32. Next figure show the bode diagrams 

of  Q  ,  R ,  open-loop and closed-loop system when increase K21 to 1.4 and 

ω1= ω3=2.64π. 

 

Fig. 4.4 Bode diagrams of  Q  ,  R ,  open-loop and closed-loop 

system when increase K21 to 1.4 and ω1= ω3=2.64π. 

We obtained the bode diagram of closed-loop as desired, such that the 

good control performance maybe obtained. 
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4.3 Simulation Result 

For the weighting functions were selected, the controller is calculated as 

following based on the Frequency-shaped Linear Quadratic theory: 

The Q -loop: 
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The R -loop: 

   

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é ´-´-´--

=

0100

0010

0001

1089.71001.21006.319.226 764

rA ,  

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

0

0

0

1

rB ,  [ ]864 1032.11035.31006.599.343 ´-´-´--=rC ,   

Dr = 1.6675. 

The feedback matrices: 

[ ]2.111888.38499.4032.2 ----=qF , 

[ ]54 1046.7109.137.2879672.1 ´´=rF , 
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[ ]41074.3015.0067.05.0 -´---=bF  

Consider the disturbance input as chirp signal. 

 
Fig. 4.5 Disturbance input 

 

For this disturbance, the controlled outputs are calculated. Fig. 4.6 and 

Fig. 4.7 show the spreader displacement, and Fig. 4.8 shows the displacement 

of moving-mass in the actuator.  
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Fig. 4.6 Displacement of spreader with open-loop system 

 

 

Fig. 4.7 Displacement of spreader with closed-loop system 
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Fig. 4.8 Movement of mass-damper 

The figures 4.7 show the displacement of spreader with Frequency-

shaped Linear Quadratic controller that we designed above. Although, the 

swing motion still exist but it is reduced a lot. In figure 4.6, the biggest 

amplitude of vibration of spreader is 0.54 m, but when system has 

Frequency-shaped LQ controller, the biggest amplitude of vibration of 

spreader is only 0.045 m, and the spreader comes balance state very fast. So 

we obtain the good control performance. 

 

 

 

 

 

 



 

- 32 - 

Chapter 5 

Conclusions 

In this thesis, we introduced background of container crane system and 

the reason of swing motion in container crane and some methods reduce 

swing motion of container crane, and we obtained state space equation of 

anti-sway system using mass damper. 

In order to design anti-sway system for container crane, an approach was 

recommended in this study. The new controller was designed by Frequency-

shaped Linear Quadratic method. 

In Frequency-shaped Linear Quadratic method, as same as other LQ 

methods, the most important work is selecting weighting functions. To select 

weighting functions, we draw bode diagrams of weighting functions, open-

loop and closed-loop system. If in resonance frequency range, the magnitude 

of closed-loop system is reduced, then we obtain weighting functions as 

desired. 

The steps to design Frequency-shaped Linear Quadratic controller are 

described as following: 

1. Chapter 2 introduces the way to modeling plant of anti-sway system 

by state equation. 

2. In chapter 3, we conformed bode diagram of open-loop system and 

bode diagram of closed-loop system by changing parameters of 

weighting functions, and selected the weighting function to obtain the 
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bode diagram of closed-loop as desired, so that the magnitude in the 

resonances frequency range could be reduced. 

3. After that, the frequency dependent weighting functions were 

described as state equations in chapter 3.  

4. In chapter 4, the control law is obtained by solving the Riccati 

equation. 

The controller is obtained base on the solution of Riccati equation. 

Although, the swing motion still exist but it is reduced a lot, and the spreader 

comes balance state very fast. So we obtain the good control performance. 
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APPENDIX 

The M-file of plant of container crane (crane.m) was shows as following 

table. 

 
 1- g=9.8; l=0.4; 
 2- M=0.565; am=0.095; 
 3- cd=1.5856; kd=0.00095; km=150; c=0.005324; 
 4- a11=0; 
 5- a12=1; 
 6- a13=0; 
 7- a14=0; 
 8- a21=-g/l; 
 9- a22=-c/((M+am)*(l^2)); 
10- a23=-am*g/(M+am)/l; 
11- a24=0; 
12- a31=0; 
13- a32=0; 
14- a33=0; 
15- a34=1; 
16- a41=-g/l; 
17- a42=0; 
18- a43=-kd/am; 
19- a44=-cd/am; 
20- A=[a11 a12 a13 a14; a21 a22 a23 a24; a31 a32 a33 a34; a41 a42 a43 a44] 
21- b1=0; 
22- b2=-km/(M+am); 
23- b3=0; 
24- b4=km/am; 
25- B=[b1;b2;b3;b4] 
26- C=[1 0 0 0;0 0 1 0] 
27- D=[0;0] 
28- G=[0;1/((M+am)*l);0;0] 

 

 

Table I M-file of plant of container crane (crane.m) 
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The M-file of weighting functions (fwfwt.m) was show as following 

table. 

 
 1- % WT=Rbar(w) 
 2- f1=10; 
 3- f2=30; 
 4- ze1=0.6; 
 5- ze2=0.6; 
 6- K1=0.0001; 
 7- %WS=Qbar(w) 
 8- f3=10; 
 9- ze3=0.6; 
10- K21=1; 
11- % WT 
12- w1=2*pi*f1; 
13- w2=2*pi*f2; 
14- num1=[1 2*ze1*w1 w1^2]; 
15- num1=K1*w2^4*conv(num1,num1); 
16- den1=[1 2*ze2*w2 w2^2]; 
17- den1=w1^4*conv(den1,den1); 
18- w=logspace(-1,3,1000); 
19- mag1=bode(tf(num1,den1),w); 
20- mag1=20*log10(mag1(1,:)); 
21- % WS 
22- w3=2*pi*f3; 
23- num21=[0 0 0 0 K21*w3^4]; 
24- den21=[1 2*ze3*w3 w3^2]; 
25- den21=conv(den21,den21); 
26- w=logspace(-1,3,1000); 
27- mag2=bode(tf(num21,den21),w); 
28- mag2=20*log10(mag2(1,:)); 
29- % Bode diagrams of Qbar and Rbar 
30- f=w/pi/2; 
31- semilogx(f,mag2,f,mag1) 
32- Xlabel('Frequency    Hz') 
33- Ylabel('Gain    dB') 
34- axis([10^(-1),10^2,-100,10]); 
 

 

Table II M-file of weighting functions Q  and R (fwfwt.m) 
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The M-file (fslqg.m) of frequency-shaped LQG controller was shown as 

following table. 

 
 1- crane 
 2- fwfwt 
 3- % Q(jw) 
 4- [Aq,Bq,Cq,Dq]=tf2ss(num21,den21); 
 5- % R(jw) 
 6- [Ar,Br,Cr,Dr]=tf2ss(num1,den1); 
 7- Cd1=[1 0 0 0]; 
 8- Dd1=0; 
 9- [n,m]=size(B); 
10- [p,n]=size(C); 
11- [n_q,m_q]=size(Bq); 
12- [p_q,n_q]=size(Cq); 
13- [n_r,m_r]=size(Br); 
14- [p_r,n_r]=size(Cr); 
15- Aag=[A zeros(n,n_q) zeros(n,n_r); 
16-      Bq*Cd1 Aq zeros(n_q,n_r); 
17-      zeros(n_r,n) zeros(n_r,n_q) Ar]; 
18- Bag=[B; zeros(n_q,m);Br]; 
19- Bw=[B; zeros(n_q,m);zeros(n_r,m)]; 
20- Cag=[C zeros(p,n_q) zeros(p,n_r)]; 
21- Qag=[[Cd1'*Dq';Cq']*[Dq*Cd1 Cq] zeros(n+n_q,n_r); 
22-      zeros(n_r,n+n_q) Cr'*Cr]; 
23- Rag=Dr'*Dr; 
24- Fag=lqr2(Aag,Bag,Qag,Rag); 
25- Fb=Fag(1,1:4); 
26- Fq=Fag(1,5:8); 
27- Fr=Fag(1,9:12); 
28- mag3=bode(ss(Aag-Bag*Fag,Bw,Cag,D),w); 
29- mag3=20*log10(mag3(1,:)); 
30- mag4=bode(ss(A,B,C,D),w); 
31- mag4=20*log10(mag4(1,:)); 
 

 

 

Table III M-file of designing LQG controller (fslqg.m) 
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