










1 Introduction and Preliminaries

The role of optimality criteria in mathematical programming is important

from both theoretical and computational points of view. Perhaps the best

known conditions for optimality are the Fritz John and the Kuhn-Tucker

conditions. And there have been much increasing interests in developing

optimality and duality relations. Therefore, some researchers have made the

study of optimality conditions and they have established duality theorems.

In [2], Jeyakumar introduced ρ-invexity for nonsmooth scalar-valued func-

tions and studied duality theorems for nonsmooth optimization problems.

Moreover, it is shown that the equivalence between saddle-points and op-

tima holds for a much large class of non-differentiable non-convex problems.

Jeyakumar and Mond [3] defined generalized V -invexity for differentiable

multiobjective programming problems. Also, they established the sufficient

optimality conditions and duality results as in the scalar case.

Further developments in this direction are founded in Mishra and Mukher-

jee [11] and Kuk et al. [5]. Mishra and Mukherjee [11] extended the results

of Jeyakumar and Mond [3] to multiobjective nonsmooth programming. And

Kuk et al. [5] defined the concept of (V, ρ)-invexity for vector-valued func-

tions, which is a generalization of the concept of V -invexity concept([3, 11]).

Moreover, they proved the generalized Karush-Kuhn-Tucker sufficient opti-

mality theorems as well as weak and strong duality for nonsmooth multi-

objective programs under the (V, ρ)-invexity assumptions. Duality theorems

for nondifferentiable programming problem with a square root term were

obtained by Lal et al. [7].
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In 1996, Mond and Schechter [12] studied duality and optimality for non-

differentiable multiobjective programming problems in which each compo-

nent of the objective function contains the support function of a compact

convex set. In nondifferentiable multiobjective programs involving the sup-

port function, further developments for duality relations were found in Kim

et al. [4] and Liang et al. [6].

Liang et al. [6] introduced the concept of (F,α, ρ, d)-convexity and ob-

tained some corresponding optimality conditions and duality results based

on the properties of sublinear fractional and generalized convex functions.

Also, Kim et al. [4] established necessary and sufficient optimality conditions

and duality results for weakly efficient solutions of nondifferentiable multiob-

jective fractional programming problems under (V, ρ)-invexity assumptions

introduced in Kuk et al. [5]. In order to establish sufficient optimality condi-

tions and duality relations, we present the concept of generalized (F,α, ρ, d)-

convexity which is related to various generalized convexity by several au-

thors([2, 3, 5, 6, 7, 11, 13, 14]).

Recently, based on Mond and Schechter [12], Yang et al. [14] introduced

a class of nondifferentiable multiojbective programming problems involving

the support function of a compact convex set. They constructed a general

dual model for a class of nondifferentiable multiobjective programs and estab-

lished only weak duality theorems for efficient solutions under the generalized

(F, ρ)-convexity assumptions. Subsequently, Kim et al. [8] established gen-

eralized second order symmetric duality in nondifferentiable multiobjective

programming problems.
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In this paper, we present the concept of generalized (F,α, ρ, d)-convexity

and formulate a class of nondifferentiable multiobjective programming prob-

lems involving the support function of a compact convex set and linear func-

tions. And we obtain the necessary and sufficient optimality theorems and

generalized duality theorems for weakly efficient solutions under generalized

(F,α, ρ, d)-convexity assumptions. Moreover, we get the equivalence of sad-

dle points and weakly efficient solution.

In Section 2, we obtain the necessary and sufficient optimality conditions

under generalized (F,α, ρ, d)-convexity assumptions. And in Section 3 we

give the weak and strong duality theorems for weakly efficient solutions.

Both weak duality theorems and strong duality theorems are established by

using necessary and sufficient optimality conditions. Finally, we derive the

weak vector saddle point theorems for multiobjective programming problems

under generalized (F,α, ρ, d)-convexity assumptions in Section 4.

Let IRn be the n-dimensional Euclidean space and let IRn
+ be its nonneg-

ative orthant.

The following notation will be used for vectors in IRn:

x < y ⇐⇒ xi < yi, i = 1, 2, · · · , n;

x <= y ⇐⇒ xi <= yi, i = 1, 2, · · · , n;

x ≤ y ⇐⇒ xi <= yi, i = 1, 2, · · · , n but x 6= y;

x 6< yis the negation ofx < y;

x 6≤ y is the negation ofx ≤ y.

For x, u ∈ IR, x <= u and x < u have the usual meaning.
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We consider the following nondifferentiable multiobjective programming

problem:

(MPE) Minimize (f1(x) + s(x|D1), · · · , fp(x) + s(x|Dp))

subject to g(x) <= 0, Bx = c,

where f and g are differentiable functions from IRn → IRp and IRn → IRm,

respectively; B is a q × n matrix, c ∈ Rq, and Di, for each i ∈ P =

{1, 2, · · · , p}, is a compact convex set of IRn.

Further let, S := {x ∈ IRn | gi(x) <= 0, Bkx = ck, i = 1, · · · ,m, k =

1, · · · , q} and I(x) := {i | gi(x) = 0} for any x ∈ IRn.

Definition 1.1 A feasible solution x̄ is a weakly efficient solution of (MPE)

if there exists no other x ∈ S such that f(x) < f(x̄).

Definition 1.2 [12] Let D be a compact convex set in IRn. The support func-

tion s(x|D) is defined by

s(x|D) := max{xTy : y ∈ D}.

The support function s(x|D), being convex and everywhere finite, has a sub-

differential, that is, there exists z such that

s(y|D) ≥ s(x|D) + zT (y − x) for all y ∈ D.

Equivalently,

zTx = s(x|D).

The subdifferential of s(x|D) is given by

∂s(x|D) := {z ∈ D : zTx = s(x|D)}.
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Definition 1.3 A functional F : X × X × Rn → IR is sublinear in its third

component, if for all x, u ∈ X,

(i) F (x, u; a1 + a2) <= F (x, u; a1) + F (x, u; a2) for all a1, a2 ∈ IRn; and

(ii) F (x, u;αa) = αF (x, u; a) for all α ∈ IR+, and for all a ∈ IRn.

We introduce the following definitions due to the concept of (F,α, ρ, d)-

convexity defined by Liang et al. [6].

Let F : IRn × IRn × IRn → IR be a sublinear functional; let the function

φ : IRn → IR be differentiable at u ∈ IRn, ρ ∈ IR, and d(·, ·) : IRn × IRn → IR.

Definition 1.4 The function φ is said to be (F,α, ρ, d)-convex at u if

φ(x)− φ(u) >= F (x, u;α(x, u)∇φ(u))+ ρd2(x, u), ∀x ∈ IRn.

Definition 1.5 The function φ is (F,α, ρ, d)-quasiconvex at u if

φ(x) <= φ(u) ⇒ F (x, u;α(x, u)∇φ(u)) <= −ρd2(x, u), ∀x ∈ IRn.

Definition 1.6 The function φ is (F,α, ρ, d)-pseudoconvex at u if

F (x, u;α(x, u)∇φ(u)) >= −ρd2(x, u) ⇒ φ(x) >= φ(u), ∀x ∈ IRn.

Definition 1.7 The function φ is strictly (F,α, ρ, d)-pseudoconvex at u if

for all x ∈ Rn, x 6= u such that

F (x, u;α(x, u)∇φ(u)) >= −ρd2(x, u) ⇒ φ(x) > φ(u), ∀x ∈ IRn.
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Remark 1.1 (i) When α(x, u) = 1, the concept of (F,α, ρ, d)-convexity is

the same as that of (F, ρ)-convexity in [13].

(ii) When F (x, u;α(x, u)∇φ(u)) = α(x, u)∇φ(u)η(x, u), for a certain

function η : IRn × IRn → IR, the concept of (F,α, ρ, d)-convexity is the same

as that of (V, ρ)-invexity in [6].

We give a generalization of Gordan’s theorem for the convex and linear

functions.

Theorem 1.1 [9] Let F be an m-dimensional convex vector function on the

convex set IRn. Let B be a given q×n matrix with linearly independent rows,

and let c be a given q-dimensional vector. Then either

I. F (x) < 0, Bx = c has a solution x ∈ IRn

or

II. 〈(p, q), (F (x), Bx− c)〉 >= 0, for all x ∈ IRn, for some p ≥ 0, p ∈ IRm,

q ∈ IRq,

but never both.

2 Optimality Conditions

In this section, we establish Fritz John and Kuhn-Tucker necessary and

sufficient conditions for weakly efficient solutions of (MPE).
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Theorem 2.1 (Fritz John Necessary Optimality Conditions) Sup-

pose that fi, gj : IRn → IR, i = 1, · · · , p, j = 1, · · · ,m, are differentiable

and the vectors Bk, k = 1, · · · , q, are linearly independent. If x̄ ∈ S is a

weakly efficient solution of (MPE), then there exist λi, i = 1, · · · , p, µj , j =

1, · · · ,m, νk, k = 1, · · · , q, and wi ∈ Di, i = 1, · · · , p such that

p∑

i=1

λi∇fi(x̄) +

p∑

i=1

λiwi +

m∑

j=1

µj∇gj(x̄) +

q∑

k=1

νkBk = 0,

〈wi, x̄〉 = s(x̄|Di), i = 1, · · · , p,

m∑

j=1

µjgj(x̄) = 0,

(λ1, · · · , λp, µ1, · · · , µm) >= 0,

(λ1, · · · , λp, µ1, · · · , µm, ν1, · · · , νq) 6= 0.

Proof. Let hi(x) = s(x|Di), i = 1, · · · , p. Since Di is convex and compact,

hi : IRn → IR is a convex function and hence ∀d ∈ IRn,

h′
i(x̄; d) = lim

λ→0+

hi(x̄ + λd) − hi(x̄)

λ

is finite. Also, ∀d ∈ IRn,

(fi + hi)
′(x̄; d) = lim

λ→0+

fi(x̄ + λd) + hi(x̄ + λd) − fi(x̄) − hi(x̄)

λ

= lim
λ→0+

fi(x̄ + λd) − fi(x̄)

λ
+ lim

λ→0+

hi(x̄ + λd) − hi(x̄)

λ
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= f ′
i(x̄; d) + h′

i(x̄; d)

= 〈∇fi(x̄), d〉 + h′
i(x̄; d).

Since x̄ is a weakly efficient solution of (MPE),





〈∇fi(x̄), d〉 + h′
i(x̄; d) < 0, i = 1, · · · , p

〈∇gj(x̄), d〉 < 0, j ∈ I(x̄)

〈Bk, d〉 = 0, k = 1, · · · , q

has no solution d ∈ IRn. By Gordan theorem for convex functions, there

exist λi >= 0, i = 1, · · · , p, µj >= 0, j ∈ I(x̄), and νk, k = 1, · · · , q, not all

zero, such that for any d ∈ Rn,

p∑

i=1

λi 〈∇fi(x̄), d〉 +

p∑

i=1

λih
′
i(x̄; d)

+
∑

j∈I(x̄)

µj 〈∇gj(x̄), d〉 +

q∑

k=1

νk 〈Bk, d〉 >= 0. (2.1)

Let A = {
∑p

i=1 λi

[
∇fi(x̄) + ξi

]
+

∑
j∈I(x̄) µj∇gj(x̄) +

∑q
k=1 νkBk | ξi ∈

∂hi(x̄), i = 1, · · · , p}. Then 0 ∈ A. Assume to the contrary that 0 6∈ A.

By separation theorem, there exists d∗ ∈ IRn, d∗ 6= (0, · · · , 0) such that

∀a ∈ A, 〈a, d∗〉 < 0, that is, ∀ξi ∈ ∂hi(x̄)

p∑

i=1

λi 〈∇fi(x̄), d∗〉 +

p∑

i=1

λi 〈ξi, d
∗〉 +

∑

j∈I(x̄)

µj 〈∇gj(x̄), d∗〉 +

q∑

k=1

νk 〈Bk, d
∗〉 < 0.
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Hence, we have

p∑

i=1

λi 〈∇fi(x̄), d∗〉 +

p∑

i=1

λih
′
i(x̄; d∗) +

∑

j∈I(x̄)

µj 〈∇gj(x̄), d∗〉 +

q∑

k=1

νk 〈Bk, d
∗〉 < 0,

which contradicts (2.1).

Letting µj = 0, ∀j 6∈ I(x̄), we get

0 ∈
p∑

i=1

λi∇fi(x̄) +

p∑

i=1

λi∂hi(x̄) +
m∑

j=1

µj∇gj(x̄) +

q∑

k=1

νkBk

and

m∑

j=1

µjgj(x̄) = 0,

(λ1, · · · , λp, µ1, · · · , µm) 6= 0.

Since ∂hi(x̄) = {wi ∈ Di | 〈wi, x̄〉 = s(x̄|Di)}, we obtain the desired result.2

Theorem 2.2 (Kuhn-Tucker Necessary Optimality Conditions) Sup-

pose that fi, gj : IRn → IR, i = 1, · · · , p, j = 1, · · · ,m, are differen-

tiable and the vectors Bk, k = 1, · · · , q, are linearly independent. As-

sume that there exist z∗ ∈ IRn such that 〈∇gj(x̄), z∗〉 < 0, j ∈ I(x̄) and

〈Bk, z
∗〉 = 0, k = 1, · · · , q. If x̄ ∈ S is a weakly efficient solution of

(MPE), then there exist λi, i = 1, · · · , p, µj , j = 1, · · · ,m, νk, k =

1, · · · , q, and wi ∈ Di, i = 1, · · · , p such that
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p∑

i=1

λi∇fi(x̄) +

p∑

i=1

λiwi +
m∑

j=1

µj∇gj(x̄) +

q∑

k=1

νkBk = 0,

〈wi, x̄〉 = s(x̄|Di), i = 1, · · · , p,

m∑

j=1

µjgj(x̄) = 0,

(λ1, · · · , λp) ≥ 0,

(µ1, · · · , µm) ≥ 0.

Proof. Since x̄ is a weakly efficient solution of (MPE), by Theorem 2.1,

there exist λi, i = 1, · · · , p, µj, j = 1, · · · ,m, νk, k = 1, · · · , q, and wi ∈

Di, i = 1, · · · , p such that

p∑

i=1

λi∇fi(x̄) +

p∑

i=1

λiwi +
m∑

j=1

µj∇gj(x̄) +

q∑

k=1

νkBk = 0,

〈wi, x̄〉 = s(x̄|Di), i = 1, · · · , p,

m∑

j=1

µjgj(x̄) = 0,

(λ1, · · · , λp, µ1, · · · , µm) >= 0,

(λ1, · · · , λp, µ1, · · · , µm, ν1, · · · , νq) 6= 0.

Assume that there exists z∗ ∈ IRn such that 〈∇gj(x̄), z∗〉 < 0, ∀j ∈ I(x̄)

and 〈Bk, z
∗〉 = 0, k = 1, · · · , q. Then (λ1, · · · , λp) 6= (0, · · · , 0). Assume to

the contrary that (λ1, · · · , λp) = (0, · · · , 0). Then (µ1, · · · , µm, ν1, · · · , νq) 6=
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(0, · · · , 0). If µ = 0, then ν 6= 0. Since Bk is linearly independent, ν1B1 +

· · · + νqBq = 0 has a trivial solution ν = 0, this contradicts to the fact that

ν 6= 0. So µ ≥ 0. Define µj∈I(x) > 0, µj 6∈I(x) = 0. Since 〈∇gj(x̄), z∗〉 <

0, j ∈ I(x̄), we have
∑m

j=1 µj 〈∇gj(x̄), z∗〉 < 0 and so
∑m

j=1 µj 〈∇gj(x̄), z∗〉+

∑q
k=1 νk 〈Bk, z

∗〉 < 0. This is a contradiction. Hence (λ1, · · · , λp) 6= (0, · · · , 0).

2

Theorem 2.3 (Fritz John Sufficient Optimality Conditions) Let (x̄, λ, w,

µ, ν) satisfy the Fritz John optimality conditions as follows:

p∑

i=1

λi∇fi(x̄) +

p∑

i=1

λiwi +
m∑

j=1

µj∇gj(x̄) +

q∑

k=1

νkBk = 0,

〈wi, x̄〉 = s(x̄|Di), i = 1, · · · , p,

m∑

j=1

µjgj(x̄) = 0,

(λ1, · · · , λp, µ1, · · · , µm) >= 0,

(λ1, · · · , λp, µ1, · · · , µm, ν1, · · · , νq) 6= 0.

Assume that one of the following conditions hold:

(a) fi(·) + (·)T wi is (F,α, ρi, d)-pseudoconvex at x̄ and
∑m

j=1 µjgj(·) +

∑q
k=1 νk(Bk(·)−ck) is strictly (F,α, β, d)-pseudoconvex at x̄ with β+

∑p
i=1 λiρi >=

0; or

(b)
∑p

i=1 λi(fi(·) + (·)T wi) is (F,α, ρ, d)-quasiconvex at x̄ and
∑m

j=1 µj

gj(·)+
∑q

k=1 νk(Bk(·)− ck) is strictly (F,α, β, d)-pseudoconvex at x̄ with β +

ρ >= 0.

11



Then x̄ is a weakly efficient solution of (MPE).

Proof. (a) Suppose that x̄ is not a weakly efficient solution of (MPE).

Then there exists x∗ ∈ S such that fi(x
∗)+s(x∗|Di) < fi(x̄)+s(x̄|Di). Since

〈wi, x̄〉 = s(x̄|Di), i = 1, · · · , p,

fi(x
∗) + x∗Twi = fi(x

∗) + s(x∗|Di)

< fi(x̄) + s(x̄|Di)

= fi(x̄) + x̄T wi.

By the (F,α, ρi, d)-pseudoconvexity of fi(·) + (·)T wi at x̄, we obtain

F (x∗, x̄;α(x∗, x̄)(∇fi(x̄) + wi)) < −ρid
2(x∗, x̄).

By the sublinearity of F ,

F (x∗, x̄;α(x∗, x̄)

p∑

i=1

λi(∇fi(x̄) + wi)) <= −
p∑

i=1

λiρid
2(x∗, x̄).

With β +
∑p

i=1 λiρi >= 0, we have

F (x∗, x̄;α(x∗, x̄)(
m∑

j=1

µi∇gj(x̄) +

q∑

k=1

νkBk)) >= −βd2(x∗, x̄).

Since
∑m

j=1 µjgj(x̄)+
∑q

k=1 νk(Bkx̄− ck) is strictly (F,α, β, d)-pseudoconvex,

m∑

j=1

µjgj(x
∗) +

q∑

k=1

νk(Bkx
∗ − ck) >

m∑

j=1

µjgj(x̄) +

q∑

k=1

νk(Bkx̄ − ck).
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By
∑m

j=1 µjgj(x̄) = 0 and
∑q

k=1 νk(Bkx
∗ − ck) =

∑q
k=1 νk(Bkx̄ − ck) = 0, we

get

m∑

j=1

µjgj(x
∗) > 0,

which contradicts the condition that
∑m

j=1 µjgj(x∗) <= 0.

(b) Suppose that x̄ is not a weakly efficient solution of (MPE). Then

there exists x∗ ∈ S such that fi(x
∗) + s(x∗|Di) < fi(x̄) + s(x̄|Di). Since

〈wi, x̄〉 = s(x̄|Di), i = 1, · · · , p,

fi(x
∗) + x∗T wi < fi(x̄) + x̄Twi.

Using λi >= 0, we have

p∑

i=1

λi(fi(x
∗) + x∗T wi) <=

p∑

i=1

λi(fi(x̄) + x̄Twi).

By the (F,α, ρ, d)-quasiconvexity of
∑p

i=1 λi(fi(·) + (·)Twi) at x̄, we obtain

F (x∗, x̄;α(x∗, x̄)

p∑

i=1

λi(∇fi(x̄) + wi)) <= −ρd2(x∗, x̄).

With β + ρ >= 0, we have

F (x∗, x̄;α(x∗, x̄)(
m∑

j=1

µi∇gj(x̄) +

q∑

k=1

νkBk)) >= −βd2(x∗, x̄).

Since
∑m

j=1 µjgj(x̄)+
∑q

k=1 νk(Bkx̄− ck) is strictly (F,α, β, d)-pseudoconvex,

m∑

j=1

µjgj(x
∗) +

q∑

k=1

νk(Bkx
∗ − ck) >

m∑

j=1

µjgj(x̄) +

q∑

k=1

νk(Bkx̄ − ck).
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By
∑m

j=1 µjgj(x̄) = 0 and
∑q

k=1 νk(Bkx
∗ − ck) =

∑q
k=1 νk(Bkx̄ − ck) = 0, we

get

m∑

j=1

µjgj(x
∗) > 0,

which contradicts the condition that
∑m

j=1 µjgj(x∗) <= 0. 2

Theorem 2.4 (Kuhn-Tucker Sufficient Optimality Conditions) Let

(x̄, λ, w, µ, ν) satisfy the Kuhn-Tucker optimality conditions as follows:

p∑

i=1

λi∇fi(x̄) +

p∑

i=1

λiwi +
m∑

j=1

µj∇gj(x̄) +

q∑

k=1

νkBk = 0,

〈wi, x̄〉 = s(x̄|Di), i = 1, · · · , p,

m∑

j=1

µjgj(x̄) = 0,

(λ1, · · · , λp) ≥ 0,

(µ1, · · · , µm) ≥ 0.

Assume that one of the following conditions hold:

(a) fi(·) + (·)Twi is (F,α, ρi, d)-pseudoconvex at x̄ and
∑m

j=1 µjgj(·) +

∑q
k=1 νk(Bk(·) − ck) is (F,α, β, d)-quasiconvex at x̄ with β +

∑p
i=1 λiρi >= 0;

or

(b)
∑p

i=1 λi(fi(·) + (·)T wi) is (F,α, ρ, d)-pseudoconvex at x̄ and
∑m

j=1 µj

gj(·) +
∑q

k=1 νk(Bk(·) − ck) is (F,α, β, d)-quasiconvex at x̄ with β + ρ >= 0.

Then x̄ is a weakly efficient solution of (MPE).
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Proof. (a) Suppose that x̄ is not a weakly efficient solution of (MPE).

Then there exists x∗ ∈ S such that fi(x
∗)+s(x∗|Di) < fi(x̄)+s(x̄|Di). Since

〈wi, x̄〉 = s(x̄|Di), i = 1, · · · , p,

fi(x
∗) + x∗Twi = fi(x

∗) + s(x∗|Di)

< fi(x̄) + s(x̄|Di)

= fi(x̄) + x̄T wi.

By the (F,α, ρi, d)-pseudoconvexity of fi(·) + (·)T wi at x̄, we obtain

F (x∗, x̄;α(x∗, x̄)(∇fi(x̄) + wi)) < −ρid
2(x∗, x̄).

By the sublinearity of F ,

F (x∗, x̄;α(x∗, x̄)

p∑

i=1

λi(∇fi(x̄) + wi)) < −
p∑

i=1

λiρid
2(x∗, x̄).

With β +
∑p

i=1 λiρi >= 0, we have

F (x∗, x̄;α(x∗, x̄)(
m∑

j=1

µi∇gj(x̄) +

q∑

k=1

νkBk)) > −βd2(x∗, x̄).

Since
∑m

j=1 µjgj(x̄) +
∑q

k=1 νk(Bkx̄− ck) is (F,α, β, d)-quasiconvex,

m∑

j=1

µjgj(x
∗) +

q∑

k=1

νk(Bkx
∗ − ck) >

m∑

j=1

µjgj(x̄) +

q∑

k=1

νk(Bkx̄ − ck).
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By
∑m

j=1 µjgj(x̄) = 0 and
∑q

k=1 νk(Bkx
∗ − ck) =

∑q
k=1 νk(Bkx̄ − ck) = 0, we

get

m∑

j=1

µjgj(x
∗) > 0,

which contradicts the condition that
∑m

j=1 µjgj(x∗) <= 0.

(b) Suppose that x̄ is not a weakly efficient solution of (MPE). Then

there exists x∗ ∈ S such that fi(x
∗) + s(x∗|Di) < fi(x̄) + s(x̄|Di). Since

〈wi, x̄〉 = s(x̄|Di), i = 1, · · · , p,

fi(x
∗) + x∗T wi < fi(x̄) + x̄Twi.

Using λi ≥ 0, we have

p∑

i=1

λi(fi(x
∗) + x∗T wi) <

p∑

i=1

λi(fi(x̄) + x̄Twi).

By the (F,α, ρ, d)-pseudoconvexity of
∑p

i=1 λi(fi(·)+ (·)Twi) at x̄, we obtain

F (x∗, x̄;α(x∗, x̄)

p∑

i=1

λi(∇fi(x̄) + wi)) < −ρd2(x∗, x̄).

With β + ρ >= 0, we have

F (x∗, x̄;α(x∗, x̄)(
m∑

j=1

µi∇gj(x̄) +

q∑

k=1

νkBk)) > −βd2(x∗, x̄).

Since
∑m

j=1 µjgj(x̄) +
∑q

k=1 νk(Bkx̄− ck) is (F,α, β, d)-quasiconvex,

m∑

j=1

µjgj(x
∗) +

q∑

k=1

νk(Bkx
∗ − ck) >

m∑

j=1

µjgj(x̄) +

q∑

k=1

νk(Bkx̄ − ck).
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By
∑m

j=1 µjgj(x̄) = 0 and
∑q

k=1 νk(Bkx
∗ − ck) =

∑q
k=1 νk(Bkx̄ − ck) = 0, we

get

m∑

j=1

µjgj(x
∗) > 0,

which contradicts the condition that
∑m

j=1 µjgj(x∗) <= 0. 2

3 Duality Theorems

In this section, we introduce a generalized dual programming problem and

establish weak and strong duality theorems under generalized (F,α, ρ, d)-

convexity assumptions. Now we propose the following general dual (MDE)

to (MPE):

(MDE) Maximize

(f1(u) + uTw1 +
∑

i∈I0

yigi(u) +
∑

j∈J0

zj(Bju − cj),

· · · , fp(u) + uTwp +
∑

i∈I0

yigi(u) +
∑

j∈J0

zj(Bju − cj))

subject to

p∑

i=1

λi(∇fi(u) + wi) + yT∇g(u) +

q∑

k=1

zkBk = 0, (3.1)

∑

i∈Iα

yigi(u) +
∑

j∈Jα

zj(Bju − cj) >= 0, α = 1, · · · , r, (3.2)

y >= 0, wi ∈ Di, i = 1, · · · , p,

λ = (λ1, · · · , λp) ∈ Λ+,
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where Iα ⊂ M = {1, · · · ,m}, α = 0, 1, · · · , r with ∪r
α=0Iα = M and Iα∩Iβ =

∅ if α 6= β, Jα ⊂ Q = {1, · · · , q}, α = 0, 1, · · · , r with ∪r
α=0Jα = Q and

Jα ∩ Jβ = ∅ if α 6= β.

Let Λ+ = {λ ∈ IRp : λ >= 0, λT e = 1, e = (1, · · · , 1)T ∈ IRp}.

Theorem 3.1 (Weak Duality) Assume that for all feasible x of (MPE)

and all feasible (u, λ,w, y, z) of (MDE), if
∑

i∈Iα
yigi(·)+

∑
j∈Jα

zj(Bj(·)−cj)

(α = 1, · · · , r) is (F,α, βα, ρ)-quasiconvex at u and assuming that one of the

following conditions hold:

(a) fi(·) + (·)Twi +
∑

i∈I0
yigi(·) +

∑
j∈J0

zj(Bj(·) − cj) is (F,α, ρi, d)-

pseudoconvex at u with
∑r

α=1 βα +
∑p

i=1 λiρi >= 0 ; or

(b)
∑p

i=1 λi(fi(·)+(·)Twi)+
∑

i∈I0
yigi(·)+

∑
j∈J0

zj(Bj(·)−cj) is (F,α, ρ, d)-

pseudoconvex at u with
∑r

α=1 βα + ρ >= 0.

Then the following cannot hold:

f(x) + s(x|C) < f(u) + uTw +
∑

i∈I0

yigi(u)e +
∑

j∈J0

zj(Bju − cj)e. (3.3)

Proof. Since x is feasible for (MPE) and (u, λ,w, y, z) is feasible for

(MDE), we have

∑

i∈Iα

yigi(x) +
∑

j∈Jα

zj(Bjx − cj) <= 0 <=
∑

i∈Iα

yigi(u) +
∑

j∈Jα

zj(Bju− cj),

α = 1, · · · , r.

By the (F,α, βα, d)-quasiconvexity of
∑

i∈Iα
yigi(u)+

∑
j∈Jα

zj(Bju−cj), α =

1, · · · , r, it follows that
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F (x, u;α(x, u)(
∑

i∈Iα

yi∇gi(u) +
∑

j∈Jα

zjBj)) <= −βαd2(x, u), α = 1, · · · , r.(3.4)

On the other hand, by (3.1) and the sublinearity of F , we have

F (x, u;α(x, u)(

p∑

i=1

λi(∇fi(u) + wi) +
∑

i∈I0

yi∇gi(u) +
∑

j∈J0

zjBj))

+
r∑

α=1

F (x, u;α(x, u)(
∑

i∈Iα

yi∇gi(u) +
∑

j∈Jα

zjBj))

>= F (x, u;α(x, u)(

p∑

i=1

λi(∇fi(u) + wi) + yT∇g(u) +

q∑

k=1

zkBk))

= 0. (3.5)

Combination (3.4) and (3.5) gives

F (x, u;α(x, u)(

p∑

i=1

λi(∇fi(u) + wi) +
∑

i∈I0

yi∇gi(u) +
∑

j∈J0

zjBj))

>= (

r∑

α=1

βα)d2(x, u). (3.6)

Now suppose, contrary to the result, that (3.3) holds. Since xTwi <=

s(x|Di), we have for all i ∈ {1, · · · , p}

fi(x) + xTwi +
∑

i∈I0

yigi(x) +
∑

j∈J0

zj(Bjx − cj)

<= fi(x) + xT wi
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<= fi(x) + s(x|Di)

< fi(u) + uTwi +
∑

i∈I0

yigi(u) +
∑

j∈J0

zj(Bju− cj). (3.7)

If (a) holds, then we get

F (x, u;α(x, u)(∇fi(u) + wi +
∑

i∈I0

yi∇gi(u) +
∑

j∈J0

zjBj))

< −ρid
2(x, u), ∀i ∈ {1, · · · p}. (3.8)

From λ ∈ Λ+, (3.8) and the sublinearity of F , we have

F (x, u;α(x, u)(

p∑

i=1

λi(∇fi(u) + wi) +
∑

i∈I0

yi∇gi(u) +
∑

j∈J0

zjBj))

< (−
p∑

i=1

λiρi)d
2(x, u). (3.9)

Since
∑r

α=1 βα +
∑p

i=1 λiρi >= 0, it follows from (3.9) that

F (x, u;α(x, u)(

p∑

i=1

λi(∇fi(u) + wi) +
∑

i∈I0

yi∇gi(u) +
∑

j∈J0

zjBj))

< (
r∑

α=1

βα)d2(x, u),

which contradicts (3.6). Hence (3.3) cannot hold.

If (b) holds, then from λ ∈ Λ+ and (3.7), it follows that

p∑

i=1

λi(fi(x) + xTwi) +
∑

i∈I0

yigi(x) +
∑

j∈J0

zj(Bjx − cj)
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<

p∑

i=1

λi(fi(u) + uT wi) +
∑

i∈I0

yigi(u) +
∑

j∈J0

zj(Bju− cj).

Then, by the (F,α, ρ, d)-pseudoconvexity of
∑p

i=1 λi(fi(·)+(·)Twi)+
∑

i∈I0
yi

gi(·) +
∑

j∈J0
zj(Bj(·)− cj) at u,

F (x, u;α(x, u)(

p∑

i=1

λi(∇fi(u) + wi) +
∑

i∈I0

yi∇gi(u) +
∑

j∈J0

zjBj))

< −ρd2(x, u). (3.10)

Since
∑r

α=1 βα + ρ >= 0, it follows from (3.10) that

F (x, u;α(x, u)(

p∑

i=1

λi(∇fi(u) + wi) +
∑

i∈I0

yi∇gi(u) +
∑

j∈J0

zjBj))

< (
r∑

α=1

βα)d2(x, u),

which contradicts (3.6). Hence (3.3) cannot hold. 2

Theorem 3.2 (Strong Duality) If x̄ ∈ S is a weakly efficient solution

of (MPE), and assume that there exists z∗ ∈ IRn such that 〈∇gj(x̄), z∗〉 <

0, ∀j ∈ I(x̄), 〈Bk, z
∗〉 = 0, k = 1, · · · , q, and the vectors Bk, k = 1, · · · , q,

are linearly independent, then there exist λ̄ ∈ Rp, w̄i ∈ Di, i = 1, · · · , p, ȳ ∈

Rm, and z̄ ∈ Rq such that (x̄, λ̄, w̄, ȳ, z̄) is feasible for (MDE) and x̄T w̄i =

s(x̄|Di), i = 1, · · · , p. Moreover, if the assumptions of weak duality are

satisfied, then (x̄, λ̄, w̄, ȳ, z̄) is a weakly efficient solution of (MDE).
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Proof. By Theorem 2.2, there exist λ̄ ∈ IRp, ȳ ∈ IRm, z̄ ∈ IRq, and

w̄i ∈ Di, i = 1, · · · , p such that

p∑

i=1

λ̄i∇fi(x̄) +

p∑

i=1

λ̄iw̄i +
m∑

j=1

ȳj∇gj(x̄) +

q∑

k=1

zkBk = 0,

< w̄i, x̄ >= s(x̄|Di), i = 1, · · · , p,

m∑

j=1

ȳjgj(x̄) = 0,

(λ1, · · · , λp) ≥ 0,

(µ1, · · · , µm) ≥ 0.

Thus (x̄, λ̄, w̄, ȳ, z̄) is a feasible for (MDE) and x̄T w̄i = s(x̄|Di), i = 1, · · · , p.

Notice that

fi(x̄) + s(x̄|Di)

= fi(x̄) + x̄T w̄i

= fi(x̄) + x̄T w̄i +
∑

i∈I0

ȳigi(x̄) +
∑

j∈J0

z̄j(Bjx̄ − cj).

By Theorem 3.1, we obtain that the following cannot hold:

(f1(x̄) + s(x̄|D1), · · · , fp(x̄) + s(x̄|Dp))

< (f1(u) + uTw1 +
∑

i∈I0

yigi(u) +
∑

j∈J0

zj(Bju − cj)

, · · · , fp(u) + uT wp +
∑

i∈I0

yigi(u) +
∑

j∈J0

zj(Bju− cj)),
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where (u, λ,w, y, z) is any feasible solution of (MDE). Since x̄T w̄i = s(x̄|Di),

we have that the following cannot hold:

(f1(x̄) + x̄T w̄1 +
∑

i∈I0

ȳigi(x̄) +
∑

j∈J0

z̄j(Bjx̄ − cj)

, · · · , fp(x̄) + x̄T w̄p +
∑

i∈I0

ȳigi(x̄) +
∑

j∈J0

z̄j(Bjx̄ − cj))

< (f1(u) + uTw1 +
∑

i∈I0

yigi(u) +
∑

j∈J0

zj(Bju − cj)

, · · · , fp(u) + uTwp +
∑

i∈I0

yigi(u) +
∑

j∈J0

zj(Bju − cj)).

Since (x̄, λ̄, w̄, ȳ, z̄) is a feasible solution for (MDE), (x̄, λ̄, w̄, ȳ, z̄) is a weakly

efficient solution of (MDE). Hence the result holds. 2

Remark 3.1 If we replace the conditions of Theorem 3.1 and Theorem 3.2

by the ones of Theorem 2.1 in [14], we can establish our weak and strong

duality theorems for efficient solutions.

Remark 3.2 If B = 0 and d = 0, the primal problem (MPE) and the dual

problem (MDE) become the primal problem (VP) and the dual problem (VD)

considered in Yang et al. [14] respectively. So our weak duality Theorem 3.1

extends and improves Theorem 2.1 in Yang et al. [14].

Remark 3.3 Let Di = {Biw : wT Biw <= 1}. Then s(x|Di) = (xTBix)1/2

and the sets Di, i = 1, · · · , p, are compact and convex.
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(i) B = 0, d = 0, I0 = M and Iα = ∅, α = 1, · · · , r, then (MPE) and

(MDE) reduce to (VP) and (VDP)1 in Lal et al. [7], respectively.

(ii) B = 0, d = 0, I0 = ∅, I1 = M and Iα = ∅, α = 2, · · · , r, then (MPE)

and (MDE) reduce to (VP) and (VDP)2 in Lal et al. [7], respectively.

4 Weak Vector Saddle Point Theorems

In this section, we prove weak vector saddle point theorems for the multi-

objective program (MPE).

For the problem (MPE), a point (x, λ, µ, ν) is said to be a critical point

if x is a feasible point for (MPE), and

p∑

i=1

λi∇fi(x) +

p∑

i=1

λiwi +
m∑

j=1

µj∇gj(x) +

q∑

k=1

νkBk = 0,

〈wi, x〉 = s(x|Di), i = 1, · · · , p,

m∑

j=1

µjgj(x) +

q∑

k=1

νk(Bkx − ck) = 0,

(λ1, · · · , λp, µ1, · · · , µm) >= 0,

λT e = 1.

Let L(x, µ, ν) = f(x) + s(x|D) + µTg(x)e + νT (Bx− c)e, where x ∈ IRn,

µ ∈ IRm, and ν ∈ IRq. Then, a point (x̄, µ̄, ν̄) ∈ IRn × IRm
+ × IRq is said to be

a weak vector saddle point if
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L(x̄, µ, ν) 6> L(x̄, µ̄, ν̄) 6> L(x, µ̄, ν̄)

for all x ∈ IRn, µ ∈ IRm
+ , ν ∈ IRq.

Theorem 4.1 Let (x̄, λ̄, µ̄, ν̄) be a critical point of (MPE). Assume that

fi(·)+(·)Twi is (F,α, ρi, d)-convex at x̄ and µ̄T g(·)+ν̄T (B(·)−c) is (F,α, β, d)-

convex at x̄ with
∑p

i=1 λ̄iρi + β >= 0. Then (x̄, µ̄, ν̄) is a weak vector saddle

point of (MPE).

Proof. Since fi(·) + (·)T wi is (F,α, ρi, d)−convex at x̄, we obtain

[fi(x) + xTwi] − [fi(x̄) + x̄Twi]

>= F (x, x̄;α(x, x̄)(∇fi(x̄) + wi)) + ρid
2(x, x̄), i = 1, · · · , p,

and the sublinearity of F ,

p∑

i=1

λ̄i[fi(x) + xTwi] −
p∑

i=1

λ̄i[fi(x̄) + x̄Twi]

>= F (x, x̄;α(x, x̄)(

p∑

i=1

λ̄i[∇fi(x̄) + wi])) + (

p∑

i=1

λ̄iρi)d
2(x, x̄). (4.1)

Since µ̄T g(·) + ν̄T (B(·)− c) is (F,α, β, d)−convex at x̄, we have

[µ̄Tg(x) + ν̄T (Bx− c)] − [µ̄Tg(x̄) + ν̄T (Bx̄− c)]

>= F (x, x̄;α(x, x̄)(µ̄T∇g(x̄) + ν̄TBk)) + βd2(x, x̄). (4.2)

Combination (4.1) and (4.2), we get
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p∑

i=1

λ̄i[fi(x) + xTwi] −
p∑

i=1

λ̄i[fi(x̄) + x̄Twi]

+[µ̄T g(x) + ν̄T (Bx − c)]− [µ̄Tg(x̄) + ν̄T (Bx̄− c)]

>= F (x, x̄;α(x, x̄)(

p∑

i=1

λ̄i[∇fi(x̄) + wi]))

+F (x, x̄;α(x, x̄)(µ̄T∇g(x̄) + ν̄TBk)) + (

p∑

i=1

λ̄iρi)d
2(x, x̄) + βd2(x, x̄).

Since (x̄, λ̄, µ̄, ν̄) is a critical point for (MPE), then there exists

p∑

i=1

λ̄i∇fi(x̄) +

p∑

i=1

λ̄iwi +

m∑

j=1

µ̄j∇gj(x̄) +

q∑

k=1

ν̄kBk = 0.

By the sublinearity of F and
∑p

i=1 λ̄iρi + β >= 0, we have

F (x, x̄;α(x, x̄)(

p∑

i=1

λ̄i[∇fi(x̄) + wi]))

+F (x, x̄;α(x, x̄)(µ̄T∇g(x̄) + ν̄T Bk)) + (

p∑

i=1

λ̄iρi)d
2(x, x̄) + βd2(x, x̄)

>= F (x, x̄;α(x, x̄)(

p∑

i=1

λ̄i[∇fi(x̄) + wi] + µ̄T∇g(x̄) + µ̄T Bk))

+(

p∑

i=1

λ̄iρi)d
2(x, x̄) + βd2(x, x̄)
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>= (

p∑

i=1

λ̄iρi)d
2(x, x̄) + βd2(x, x̄)

>= 0.

Hence, we get

p∑

i=1

λ̄i[fi(x) + xTwi] + µ̄T g(x) + ν̄T (Bx− c)

>=

p∑

i=1

λ̄i[fi(x̄) + x̄Twi] + µ̄T g(x̄) + ν̄T (Bx̄ − c).

From s(x|Di) >= xTwi, i = 1, · · · , p, we have

p∑

i=1

λ̄i[fi(x) + s(x|Di)] + µ̄T g(x) + ν̄T (Bx− c)

>=

p∑

i=1

λ̄i[fi(x̄) + s(x̄|Di)] + µ̄T g(x̄) + ν̄T (Bx̄− c).

Using λ̄i >= 0, and λ̄T e = 1,

f(x) + s(x|D) + µ̄Tg(x)e + ν̄T (Bx− c)e

6< f(x̄) + s(x̄|D) + µ̄T g(x̄)e + ν̄T (Bx̄− c)e, for any x ∈ IRn.

Now, since µT g(x̄) + νT (Bx̄− c) <= 0, we have

[µ̄T g(x̄) + ν̄T (Bx̄ − c)]− [µTg(x̄) + νT (Bx̄− c)] >= 0,

for any µ ∈ IRm
+ , ν ∈ IRq. Thus,
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p∑

i=1

λ̄i[fi(x̄) + s(x̄|Di)] + µT g(x̄) + νT (Bx̄− c)

<=

p∑

i=1

λ̄i[fi(x̄) + s(x̄|Di)] + µ̄T g(x̄) + ν̄T (Bx̄− c).

Using λ̄i >= 0, and λ̄T e = 1,

f(x̄) + s(x̄|D) + µT g(x̄)e + νT (Bx̄− c)e

6> f(x̄) + s(x̄|D) + µ̄T g(x̄)e + ν̄T (Bx̄ − c)e,

for any µ ∈ IRm
+ , ν ∈ IRq.

Therefore, (x̄, µ̄, ν̄) is a weak vector saddle point of (MPE). 2

Remark 4.1 If we replace the (F,α, ρi, d)-convexity of fi(·) + (·)Twi and

µ̄T g(·) + ν̄T (B(·) − c) with
∑p

i=1 λ̄iρi + β >= 0 by (F,α, ρ, d)−convexity of

f(·) + (·)Tw + µ̄T g(·)e + ν̄T (B(·) − c)e at x̄ with
∑p

i=1 λ̄iρi >= 0 in Theorem

4.1, then this theorem is also valid.

Theorem 4.2 If there exists (µ̄, ν̄) ∈ IRm
+ × IRq such that (x̄, µ̄, ν̄) is a weak

vector saddle point, then x̄ is a weakly efficient solution of (MPE).

Proof. Assume that (x̄, µ̄, ν̄) is a weak vector saddle-point. From the left

inequality of saddle-point conditions,
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f(x̄) + s(x̄|D) + µT g(x̄)e + νT (Bx̄− c)e

6> f(x̄) + s(x̄|D) + µ̄T g(x̄)e + ν̄T (Bx̄ − c)e,

for any µ ∈ IRm
+ , ν ∈ IRq, and hence we have

µT g(x̄) + νT (Bx̄− c) <= µ̄T g(x̄) + ν̄T (Bx̄ − c), (4.3)

for any µ ∈ IRm
+ , ν ∈ IRq.

Since µ can be taken arbitrary large and Bx̄ = c, we have

g(x̄) <= 0.

Hence,

µ̄T g(x̄) <= 0.

Letting µ = 0 in (4.3) and Bx̄ = c, we have

µ̄T g(x̄) >= 0.

Therefore,

µ̄T g(x̄) = 0.

By Bx̄ = c, we obtain

µ̄T g(x̄) + ν̄T (Bx̄− c) = 0. (4.4)

Now, from the right inequality of saddle point conditions and (4.4), we

have for any feasible x for (MPE)

f(x̄) + s(x̄|D) + µ̄T g(x̄)e + ν̄T (Bx̄− c)e

6> f(x) + s(x|D) + µ̄T g(x)e + ν̄T (Bx − c)e,
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i.e.

f(x̄) + s(x̄|D) 6> f(x) + s(x|D).

Hence, x̄ is a weakly efficient solution of (MPE). 2
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