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1 Introduction and Preliminaries

The role of optimality criteria in mathematical programming is important
from both theoretical and computational points of view. Perhaps the best
known conditions for optimality are the Fritz John and the Kuhn-Tucker
conditions. And there have been much increasing interests in developing
optimality and duality relations. Therefore, some researchers have made the
study of optimality conditions and they have established duality theorems.

In [2], Jeyakumar introduced p-invexity for nonsmooth scalar-valued func-
tions and studied duality theorems for nonsmooth optimization problems.
Moreover, it is shown that the equivalence between saddle-points and op-
tima holds for'a much large ¢lass of non-differentiable non-convex problems.
Jeyakumar and Mond [3] defined generalized V-invexity for differentiable
multiobjective programming problems. Also, they established the sufficient
optimality conditions and duality results as in the scalar case.

Further developments in this direction are founded in Mishra and Mukher-
jee [11] and Kuk et-al. [5]." Mishra and Mukherjee [11] extended the results
of Jeyakumar and Mond [3]-to multiobjective nonsmooth programming. And
Kuk et al. [5] defined the concept of (V, p)-invexity for vector-valued func-
tions, which is a generalization of the concept of V-invexity concept([3, 11]).
Moreover, they proved the generalized Karush-Kuhn-Tucker sufficient opti-
mality theorems as well as weak and strong duality for nonsmooth multi-
objective programs under the (V, p)-invexity assumptions. Duality theorems
for nondifferentiable programming problem with a square root term were

obtained by Lal et al. [7].



In 1996, Mond and Schechter [12] studied duality and optimality for non-
differentiable multiobjective programming problems in which each compo-
nent of the objective function contains the support function of a compact
convex set. In nondifferentiable multiobjective programs involving the sup-
port function, further developments for duality relations were found in Kim
et al. [4] and Liang et al. [6].

Liang et al. [6] introduced the concept of (F,«, p,d)-convexity and ob-
tained some corresponding optimality conditions and duality results based
on the properties of sublinear fractional and generalized convex functions.
Also, Kim et al. [4] established necessary and sufficient optimality conditions
and duality results for weakly efficient solutions of nondifferentiable multiob-
jective fractional programming problems under (V, p)-invexity assumptions
introduced in Kuk et al. [5]. In order toestablish sufficient optimality condi-
tions and duality relations, we present the concept of generalized (F, o, p, d)-
convexity which is related to various generalized convexity by several au-
thors([2, 3, 5, 6, 7,-11,°13;:14]).

Recently, based on Mond and Schechter {12]; Yang et al. [14] introduced
a class of nondifferentiable multiojbective programming problems involving
the support function of a compact convex set. They constructed a general
dual model for a class of nondifferentiable multiobjective programs and estab-
lished only weak duality theorems for efficient solutions under the generalized
(F, p)-convexity assumptions. Subsequently, Kim et al. [8] established gen-
eralized second order symmetric duality in nondifferentiable multiobjective

programming problems.



In this paper, we present the concept of generalized (F, «, p, d)-convexity
and formulate a class of nondifferentiable multiobjective programming prob-
lems involving the support function of a compact convex set and linear func-
tions. And we obtain the necessary and sufficient optimality theorems and
generalized duality theorems for weakly efficient solutions under generalized
(F, o, p, d)-convexity assumptions. Moreover, we get the equivalence of sad-
dle points and weakly efficient solution.

In Section 2, we obtain the necessary and sufficient optimality conditions
under generalized (F, asp, d)-convexity assumptions.. And in Section 3 we
give the weak and strong duality theorems for weakly efficient solutions.
Both weak duality theorems and strong duality theorems are established by
using necessary and sufficient optimality conditions. Finally, we derive the
weak vector saddle point theorems for multiobjective programming problems

under generalized (F, o, p, d)-convexity assumptions in Section 4.

Let IR™ be the n-dimensional Euclidean space and let IR” be its nonneg-

ative orthant.

The following notation will be used for vectors in IR":

rT<Yy &= 1; <y, 1=1,2,---,n;
Ty <= 1, Sy, 1=1,2,---,m;
r<y <= x; <y, 1=12,--- nbutx#uy;

x £ yis the negation ofr < y;

x £ y is the negation ofzr < y.

For z,u € IR, x < u and = < u have the usual meaning.



We consider the following nondifferentiable multiobjective programming

problem:

(MPE) Minimize  (fi(z) + s(z|Dy), -, fo(z) + s(z|D,))

subject to g¢g(x) <0, Bz =c¢,

where f and ¢ are differentiable functions from IR" — IR? and IR" — IR™,
respectively; B is a ¢ x n matrix, ¢ € R?, and D;, for each i € P =
{1,2,--- ,p}, is a compact convex set of IR".

Further let, S := {z € R" | gi(v) £ 0, Byx =¢;, i = 1,--- ,m, k =
1,---,q} and I(x) = {i | gi(x) = 0} for any z € IR".

Definition 1.1 A feasible solution T is a weakly efficient solution of (MPE)
if there exists no other x € S such that f(z) < f(Z).

Definition 1.2 [12] Let D be a compact convex set in IR". The support func-
tion s(x|D) is defined by

s(z| DY:= max i’ yhay e DY

The support function s(x|D), being conver and everywhere finite, has a sub-
differential, that is, there exists z such that

s(y|D) > s(x|D) + 2% (y — x) for all y € D.
Equivalently,

2Tx = s(z|D).

The subdifferential of s(x|D) is given by

ds(z|D) :={z € D : 2"z = s(z|D)}.



Definition 1.3 A functional F': X x X x R" — IR s sublinear in its third
component, if for all x,u € X,

(i) F(x,u;a1 + ag) £ F(x,u;a1) + F(x,u;as) for all a1, ay € R"; and

(ii) F(x,u;ca) = aF (z,u;a) for all « € Ry, and for all a € IR".

We introduce the following definitions due to the concept of (F, «, p, d)-

convexity defined by Liang et al. [6].

Let F: IR" x IR" x IR™ — IR be a sublinear functional; let the function
¢ : IR" — IR be differentiable at v € IR", p € IR, and d(-,+) : R" x IR" — IR.

Definition 1.4 The function ¢ is said to be (F,«, p, d)-convez at u if
d(x) —o(u) = F(@, u; a(z, u)Vid(u)) + pd*(z,v), Vo elR"
Definition 1.5 The function.¢ is (F,a, p,d)-quasiconvez at u if
() < d(u) = Fx, uyelz; uw)Vo(u)) < =pdi(m u), VrecIR"
Definition 1.6 The function ¢ is (F, a, p, d)-pseudoconver at u if
F(z,u; oz, u)Vo(u)) = —pd*(z,u) = ¢(x) = ¢(u), Vo R"

Definition 1.7 The function ¢ is strictly (F,a, p,d)-pseudoconver at u if
for all x € R, x # u such that

F(z,u;a(z,u)Vé(u)) = —pd*(z,u) = ¢(x) > ¢(u), Ve R™



Remark 1.1 (i) When a(z,u) = 1, the concept of (F,a, p,d)-convexity is
the same as that of (F, p)-convezity in [13].

(i) When F(x,u;a(z,u)Vo(u)) = a(x,u)Ve(u)n(z,u), for a certain
function i : IR™ x IR" — IR, the concept of (F,a, p,d)-convexity is the same
as that of (V, p)-invexity in [6].

We give a generalization of Gordan’s theorem for the convex and linear

functions.

Theorem 1.1 [9] Let F' be an m-dimensional convex vector function on the
convex set IR". Let B be a given-q X n matriz with linearly independent rows,
and let ¢ be a given q-dimensional vector. Then either

I F(x) <0, Bx = c has a solution x € IR"

or

II. {(p,q), (F(z), Bx — ¢)).= 0, for all xz € R", for somep >0, p€ R™,
q € RY,

but never both.

2 Optimality Conditions

In this section, we establish Fritz John and Kuhn-Tucker necessary and

sufficient conditions for weakly efficient solutions of (MPE).



Theorem 2.1 (Fritz John Necessary Optimality Conditions) Sup-
pose that f;,g; : R" — IR, ¢ = 1,---,p, 7 = 1,---,m, are differentiable
and the vectors By, k = 1,---,q, are linearly independent. If x € S s a
weakly efficient solution of (MPE), then there exist \;, i =1,--- ,p, pj, j =

1,--- m, v, k=1,--- ,q, and w; € D;, i =1,--- ,p such that

p p m q
Z NV fi(z) + Z Aiw; + Z,ungj(a?) + Z v By, =0,
=1 =1 7=1 k=1
<wi>j> = S(E|DZ)7 v = 17 » Dy
> igi(®) =0,
j=1
()\1"" 9)‘27’:[1'17"' num) % 07
()‘17"' 7)‘;D>Iu17"' y Moy U1y 0t 7]/4) 7é0

Proof. Let hy(x) = s(z|D;), i =1,-+,p. Since D; is convex and compact,

h; : IR" — IR is a convex function and hence Vd € IR",

hi(z;d) = )\lir(r]l+ ha(z + )\i) — ()

is finite. Also, Vd € IR",

A0+ A
_ lim fi(Z + ) — fi(%) lim hi(z + A\d) — h;(Z)
A—0+ A A—0+ A



= fi(Z;d) + hi(T;d)

= (V/fi(®),d) + hi(z; d).

Since T is a weakly efficient solution of (MPE),

(Vgj(x),d) <0, j €l(z)
<Bk>d> :07 k= 17 )
has no solution .d € IR". By Gordan theorem for convex:functions, there

exist \; 20, ¢t =1,--- ,p.qu; 20, j € I(Z), and v, k =1,:--,q, not all

zero, such that for any d € R",

14
> AV ST —I—Z/\h’
i=1

q
+ Z 14V gz Z’/k (B, d) = 0. (2.1)
k=1

JjEI(Z)
Let A = {37, )‘i[vfi( ) + 5@} + del(m 1V (@) + X vkBr | & €
Ohi(z), i = 1,--- ,p}. Then 0 € A. Assume to the contrary that 0 ¢ A.

By separation theorem, there exists d* € IR", d* # (0,---,0) such that
Va € A, {(a,d*) <0, that is, V& € 0h;(T)

S ONAVE@), A+ N d) + Y 1 (Vg(),d) + Y v (Bi, d7) <0,
=1 i=1

jel(z)

e
Il
—

8



Hence, we have

p p

D NAVE@), )+ Y Nh(@d) + Y (Vgi(@),d7) + Y v (Br,d) <0
i=1 i=1 jel(@) k=1
which contradicts (2.1).

Letting p; =0, Vj & 1(Z), we get

q
OEZ)\Vﬁ +Z)\8h +Zujvgj T)+ > wBy
k=1

and

N 1i0:(z) =
=
()\1’... 7)\p7,u'17”' 7/~’Lm)$é0

Since 0h;(z) = {w;.€ Dy} {w;, T) = s(z|D;)}, we obtain the desired result.0

Theorem 2.2 (Kuhn-Tucker Necessary Optimality Conditions) Sup-
pose that fi,g; : R" — IR, ¢« = 1,---,p, 7 = 1,---,m, are differen-
tiable and the wvectors By, k = 1,---,q, are linearly independent. As-
sume that there exist z* € IR"™ such that (Vg;(Z),2*) < 0, j € I(Z) and
(Bg,z*) =0, k = 1,---,q. If T € S is a weakly efficient solution of
(MPE), then there exist N;, @ = 1,---.,p, pj, j = 1,--- ,m, v, k =

1,---,q, and w; € Dy, 1 =1,--- ,p such that



q
Z/\Vﬁ +2Awl+zujvgj 7+ > uBy =0,
k=1

<wi>j> = s(j|DZ)> L= 1> » Dy

> 1igi(x)
j=1
()‘19"' >)‘;D) > 0>

(P, ptim)2 0.

Proof. Singe T is a weakly efficient solution of (MPE), by, Theorem 2.1,
there exist N, o™= 1,--- #@ f;, 3 = 1, B Vg, k = Lyt Jg, and w; €
D;, i=1,--- ;p such that

q
Z/\Vﬁ +2Awl+zujvgj 7+ > ubB =0,
k=1

<wi>j> = s(:ﬂDl)v = 17 » D

> 1igi(@)

j=1

()‘17"' 9)‘1177:“17"' nu“m) %07

()‘19"' 9)‘1177:“17"' y Moy V1, ot >Vq) 7é0

Assume that there exists z* € IR" such that (Vg;(Z), 2*) <0, Vj € I(Z)
and (Bg,z*) =0, k=1,---,q. Then (A,---,A,) # (0,---,0). Assume to
the contrary that (A1, -+, A,) = (0,---,0). Then (g1, , fhm, V1, , V) #

10



(0,--+,0). If w =0, then v # 0. Since By is linearly independent, vy By +
-+ 4+ 1v4B; = 0 has a trivial solution v = 0, this contradicts to the fact that
v # 0. Sou > 0. Define pjersy > 0, pjgra) = 0. Since (Vg;(Z),2%) <
0, j € 1(z), we have ST, gy (Vgy(2), 2°) < 0 and so S0, gy (Vgy(7), 2°) +

>t _ vk (Bg, 2*) < 0. Thisis a contradiction. Hence (A1, -+, \,) # (0,---,0).
O

Theorem 2.3 (Fritz John Sufficient Optimality Conditions) Let (z, A, w,

W, v) satisfy the Fritz John optimality conditions as follows:

p p m q
Z )\szZ(ff) + Z )\iwi - Z,ungj (i’) + Z l/kBk = 0,
i=1 i=1 j=1 k=1

<wi>j> i s(j’Dl)7 1= 1> » Dy
D 1g;(z) =0,
j=1

()‘17"' 9)‘1177M17"' ,,Um) %07

()‘19"' 9)‘277:“17"' y oy VLo >Vq)7é0-

Assume that one of the following conditions hold:

(a) fi(:) + ()T w; is (F,a, pi, d)-pseudoconver at T and Z;nzl wig;(-) +
S vk(Br(-)—ck) is strictly (F, «, 8, d)-pseudoconvezr at T with G+ 5 | \ip; =
0, or

(b) Y20 Mi(fi(+) + () Twi) is (F a, p, d)-quasiconver at T and 37", p
g; () + >0 vk(Bi(+) — cx) is strictly (F, «, (3, d)-pseudoconver at T with (3 +
p=0.

11



Then T is a weakly efficient solution of (MPE).

Proof. (a) Suppose that Z is not a weakly efficient solution of (MPE).
Then there exists * € S such that f;(z*)+s(z*|D;) < fi(Z)+s(z|D;). Since
<wi>j> = S(j|DZ)> L= 17 D

file®) + 2w = fi(x") + s(2"|Dy)
< fi(%) + s(z[Di)

= I 5 25w
By the (F, «, p;,d)-pseudoconvexity of f;(-) + (-)Twi at, T, we obtain
F(z*, 7 a@", 2)(Vfi(Z) +wi)) < —pid* (2", 7).
By the sublinearity of F,
P
F(z*, 7 ax”, @) Z MN(V(z)+w)) < Z \ipid® (x*, T)
=1
With 5+ 3P \ipi = 0, we have
m q
Pla,za(a’, )3 1V (@) + 3 wB) 2 —Ad (s, 2).
=1 k=1

Since 7 1195 () + Y j_y vi(BrT — ¢x) is strictly (F, a, 3, d)-pseudoconvex,

Q
Q

Z wigi(x®) + Y vp(Brx™ — c) Z w1ig;(Z) + Y vp(BrT — cx).
= k=1 k=1

12



By >0, 11;9;(Z) = 0 and 375 vi(Brr* — cx) = > 1, vk(ByT — ¢) = 0, we

get
> wigix*) >0,
j=1

which contradicts the condition that » 7", 1;g;(v+) < 0.

(b) Suppose that T is not a weakly efficient solution of (MPE). Then
there exists z* € S such that fi(z*) + s(z*|D;) < fi(%) + s(z|D;). Since

<wi>j> = S(j|DZ)> L= 17 = i

file™) + 2T w; < fi(T) + 77w

Using \; = 0, we have

P P
3 A(fi@) + 2 w) £ 3 N (@) + 2Tws).
i=1 i=1
By the (F, a, p, d)-quasiconvexity of Y20 | N:(fi(-) +(-)Tw;) at Z, we obtain
P
F(2*, 2 o(a™, 2) YN (VAE) +wi)) < —pd®(2*, 7).

i=1

With 6+ p = 0, we have
m q
F(a*, @ a(a",2)()_uiVgi(7) + Y _vB)) = —pd*(a", 7).
=1 k=1
Since Y70 11595 (T) + D4y vk(BrT — ¢x) s strictly (F, a, 3, d)-pseudoconvex,

m q m q
Z,ujgj(:z*) + Z vk(Brx™ — ¢) > Z,ujgj(i) + Z vi(BrT — cg).
=1 j=1

k=1 k=1

13



By >0, 11;9;(Z) = 0 and 375 vi(Brr* — cx) = > 1, vk(ByT — ¢) = 0, we

get
> wigix*) >0,
j=1

which contradicts the condition that Y77 p;g;(7%) < 0 O

Theorem 2.4 (Kuhn-Tucker Sufficient Optimality Conditions) Let

(Z, \,w, p, v) satisfy the Kuhn-Tucker optimality conditions as follows:

p p m q
Z MV () + Z Aw; + Z,ungj (Z) + Z vg B, =0,
i1 i—1 P k=1
<wi7j> i~ s(j’Dl)7 u="l, "
M 1igi(E) =0,
j=1

()\1’... ’)\p) ZO,
(pa,- - ftm) > 0.

Assume that one of the following conditions hold:

(a) fi(-) + () Tw; is (F,a, pi, d)-pseudoconver at T and Z;nzl wig;(-) +
S ve(Br(+) — k) is (F,a, 3,d)-quasiconver at T with 8+ >.7_ Nip;i = 0;
or

(b) 70 N fi(-) 4+ () Twi) s (F, i, p, d)-pseudoconver at T and 377",
g; () + 320 ve(Bi(+) — cx) is (F, o, 8, d)-quasiconvex at T with 4 p = 0.
Then T is a weakly efficient solution of (MPE).

14



Proof. (a) Suppose that Z is not a weakly efficient solution of (MPE).
Then there exists * € S such that f;(z*)+s(z*|D;) < fi(Z)+s(z|D;). Since

<wi>j> = S(j|DZ)> L= 17 Y 2

file®) + 2w, = fi(z*) + s(z*| D)
< [fi(Z) + s(z[Dy)
= fi(@®) + 2" w;
By the (F, o, p;, d)-pseudoconvexity of fi(-) 4 (-) w;-at Z, we obtain
F($*> z; Oé(l’*, j)(vfl(j) t wl)) < _pid2($*7 j)
By the sublinearity of F,

F(z*, T, oz, %) Z AV fi (7 S~ — Z Nipid*(zF, 7).

i—1
With 3+ >"F | Xipr-= 0,:we have
m q
Pz, z;0(z", 2)(Y Vg (@) + > wB)) > —d*(", 2).

j=1 k=1

Since 370 1595 (%) + Doy vk(BrT — ) is (F) a, 3, d)-quasiconvex,

m q m q
Z,ujgj(:z*) + Z vk(Brx™ — ¢) > Z,ujgj(i) + Z vi(BrT — cg).
=1 j=1

k=1 k=1

15



By >0, 11;9;(Z) = 0 and 375 vi(Brr* — cx) = > 1, vk(ByT — ¢) = 0, we

get
> wigix*) >0,
j=1

which contradicts the condition that » 7", j1;g;(v*) < 0.
(b) Suppose that T is not a weakly efficient solution of (MPE). Then
there exists z* € S such that f;(z*) + s(z*|D;) < fi(Z) + s(Z|D;). Since

<wi>j> = S(j|DZ)> L= 17 LDy

Using \; > 0, we have
p

i=1
By the (F, a, p, d)-pseudoconvexity of Y7 Xi(fi(-) + (-) w;) at &, we obtain
P
F(x*, 7% a(x™, %) Z i (Vfil®) Fw))< —pd(z*, 7).
i=1
With 8+ p = 0, we have
m q
F(a*, %5 0(a",2)(Y Vg (7) + Y wBy)) > —d*(a", ).
=1 k=1
Since 370, pjg;(T) + Do vi(BeT — ) is (F) o, 3, d)-quasiconvex,
m q m q
Z,ujgj(:z*) + Z vk(Brx™ — ¢) > Z,ujgj(i) + Z vi(BrT — cg).
j=1 k=1 j=1 k=1

16



By 3270 1395 (%) = 0 and Y70, vi(Brr™ — ) = 325 vk(BeZ — ) = 0, we

get
> wigix*) >0,
j=1

which contradicts the condition that Y 7", p1;g;(2*) < 0. O

3 Duality Theorems

In this section, we introduce a generalized dual programming problem and
establish weak and strong duality theorems under generalized (F,a, p,d)-
convexity assumptions. Now we propose the following general dual (MDE)

o (MPE):
(MDE) Maximize

(fr(u)+ u"wi+ > yigi(u)+ ) z(Bju—icy),

i€lp j€Jdo

: >fp(u)+uTwp+Zyigi +ZZ9 u—cj

i€y Jj€Jo

subject to

Z )\Z(sz( + ’LUZ) + yTVg —I— Z zkBr =0, (31)

> yigi(w) + > z(B; )20, a=1--,r (32

i€ly j€Ja
y%0> wiEDiai:1>"'>p7

)\:()‘19"'>)\P)€A+7

17



where [, C M ={1,--- ,m}, a=0,1,--- ,rwithU,,_,I, = M and I,NIg =
Difa#08,Jo CcQ=A{1,---,¢}, a =0,1,--- ,r with U,_,J, = @ and
JaNJs=0if a £ 5.

Let At ={A€R?: A=0, Me=1,e=(1,---,1)T € R"}.

Theorem 3.1 (Weak Duality) Assume that for all feasible x of (MPE)
and all feasible (u, \,w,y, z) of (MDE), if 3 .o, yigi(')_l_ZjeJa 2i(B;(-) —¢;)
(a=1,---,71)is (F,a, Ba, p)-quasiconver at-u.and assuming that one of the
following conditions hold:
(a) fil) + (Vrwid Ficr, 4:19i() + Djes, 2(Bi() = i), is (Fr e, pi, d)-
pseudoconver at w with Y 4| Ba+ Y 0 Aipi= 0 ; or
(0) 320y M FiC)+ ) )+ 35, ¥i9i (VD je 5y 2 (Bi (1) =) s (F v, p, d) -
pseudoconves at w with Y01 Ba+p 2 0.
Then the following cannot hold:
f(@)+ s(z|C) < fy+ v'w+> " yigi(wje+ Y z(Bju —cjle.  (3.3)
iely J€Jo
Proof. Since x is feasible for (MPE) and (u, A\, w,y, z) is feasible for
(MDE), we have
D wigi(x) + > z(Biz—c) S0 wigi(u) + Y zi(Bju— ),
icla j€Ja icla j€Ja

a=1,--,r

By the (F, a, (4, d)-quasiconvexity of } ., yigi(u)+zj€Ja zj(Bju—c;), a =

1,---,r, it follows that

18



F(x,u; oz, u) ZyZVgZ +sz ) < —Bod*(z,u), a=1,---,r.(3.4)

i€l j€Ja
On the other hand, by (3.1) and the sublinearity of F', we have

F(x,u;a(x,u)(Z)\i(Vﬁ( + w;) +Zyzv£h +ZZJ
i=1

i€ly J€Jo

—I—ZF:Buaxu ZyZVgl —|—sz

i€ly JjE€Ja

p
gF(x,u;a(x,u)(Z)\i(Vﬁ( ey Vo TV g () —I—szBk

=

= 0. (3.5)

Combination'(3.4) and (3.5) gives

F (2w ale, QU AV fi(w) +w) + 3 GNG(u) + Y B
=1

i€y J€Jo
> (Y fa)d (a, u). (3.6)

Now suppose, contrary to the result, that (3.3) holds. Since z7w; <

s(z|D;), we have for all i € {1,--- p}

fi(l’)‘l—l’Twi‘l'Zyigz +Zz§ T — Cj)

i€ly J€Jo
< filz) + 2" w;

19



< fi(x) + s(z|Di)

< fi(u) + ulw; + Z yigi(u) + Z z;j(Bju — ¢j). (3.7)

i€ly J€Jo

If (a) holds, then we get

F(x,u; oz, u)(Vfi(u) + w; + Z yiVgi(u) + Z 2B

i€ly J€Jo

< —pid*(z,u), Vie{l,---p}. (3.8)

From A € AT, (3.8) and the sublinearity of F', we have

F(x, i ae, u) Y XN(Vfilw) + w4 > uiVa(w)+ Y 2B;)
i=1

i€ Iy j€do

= Z Xipi)d> (z, w). (3.9)

Since YL 1 Ba + D 0 Xipi = 0, it follows from (3.9)-that

P, usae, ) (Y NV Fu)+w) -+ uiVai(u) + Y %B)
=1

i€ly J€Jo

< (iﬁa)d T, U

which contradicts (3.6). Hence (3.3) cannot hold.
If (b) holds, then from A € AT and (3.7), it follows that

Z Ni(fi(x) + 2Tw;) + Zyzgz(if) + Z zj(Bjx — ¢j)

i€ly J€Jo
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< Z Ni(fi(w) + u"w;) + Zyzgl(u) + Z zij(Bju — ¢j).

i€ly J€Jo
Then, by the (F, a, p, d)-pseudoconvexity of > 7 Ni(f;(-)+ () w;) + Dicn, Yi

9i(") + 2 iep #i(B5() = ¢;) at u,

P, u; oz, U)(Z AV fi(u) +wi) + Y4 Vgi(u) + Y 2B;))

i€ly Jj€Jo

< —pd*(z,u). (3.10)

Since >.! | Ba +p 2 0, it follows from (3.10) that

F(afusale,w) (YO MVAW) + )+ 3wV + 3T 55))

i€y j€Jo

< (0 B (2h),

which contradicts (3.6). Henece (3.3).cannot hold. O

Theorem 3.2 (Strong Duality) If £ € S is a weakly efficient solution
of (MPE), and assume that there exists z* € IR™ such that (Vg;(Z), 2*) <
0, Vj € I(z), (Bg,2*) =0, k=1,--- ,q, and the vectors By, k =1,--- ,q,
are linearly independent, then there exist \ ERP, w; € D;, i=1,--- ,p, §J €
R™, and z € R? such that (Z,\,w,, 2) is feasible for (MDE) and z7w; =
s(z|D;), i = 1,--- ,p. Moreover, if the assumptions of weak duality are

satisfied, then (T, \, 0,7, Z) is a weakly efficient solution of (MDE).
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Proof. By Theorem 2.2, there exist A € IR, y € IR™, z € IR?, and
w; € D;, 1=1,---,p such that

p p m q

Z S\ZVfZ(ZZ’) + Z j\i’wi + Znggj(i“) + Z zkBr =0,
=1 =1 7=1 k=1

< w;, T >=s(z|D;), i=1,---,p,

> 59:(@) =0,

j=1

()‘17 : 7)\117) < 07

Thus (Z, \, W, 9, 2) is a feasible for (MDE) and z7w; = s(z|D;), i =1,--- ,p.
Notice that

By Theorem 3.1, we obtain that the following cannot hold:

(f1(2) + s(z[Dr), -+, fp(7) + s(2[ Dy))

< (filw) +u"wi +> yigi(u) + Y z(Bju— ;)

i€ly j€Jo

y " >fil7(u) + uTwP + Zylgl(u) + Z Zj(Bju - Cj))>

i€ly J€Jo
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where (u, \, w,y, z) is any feasible solution of (MDE). Since z7w; = s(Z|D;),

we have that the following cannot hold:

(f(@) + 270+ 7:9:(T) + Y %(BT — ;)

i€ly J€Jo

>"'>fp()+x wp_l'zyzgz ‘l'zzj(BJ:E

i€ly J€Jo

< (i) +uwr + ) ysgitw)+> z(Bju — ¢;)

i€ly Jj€Jo

>"'>fp(u)+uTwp+Zyigi +ZZJ ju—c5))
iely J€Jo
Since (7, \, W, i, Z) is a feasible solution for (MDE), (Z, \, w, ¥, Z) is a weakly
efficient solution of (MDE). Hence the result holds. O

Remark 3.1 If we replace the-conditions of Theorem 3.1 and Theorem 3.2
by the ones of Theorem-2:1 in [14], we can establish .our weak and strong

duality theorems for efficient solutions.

Remark 3.2 If B =0 and d = 0, the primal problem (MPE) and the dual
problem (MDE) become the primal problem (VP) and the dual problem (VD)
considered in Yang et al. [14] respectively. So our weak duality Theorem 3.1

extends and improves Theorem 2.1 in Yang et al. [14)].

Remark 3.3 Let D; = {Biw : w'Byw < 1}. Then s(z|D;) = (27 B;x)'/?

and the sets D;, 1 =1,--- ,p, are compact and convex.
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() B=0,d=0,Ip=Mand I, =0, o« =1,---,r, then (MPE) and
(MDE) reduce to (VP) and (VDP)y in Lal et al. [7], respectively.

(1)) B=0,d=0,Ih=0, =M and I, =0, « =2,--- ,r, then (MPE)
and (MDE) reduce to (VP) and (VDP)y in Lal et al. [7], respectively.

4 Weak Vector Saddle Point Theorems

In this section, we prove-weak vector saddle point theorems for the multi-

objective program (MPE).

For the problem (MPE),a point (z, A, sv) is said to be a critical point
if x is a feasible point for (MPE), and

P P m q
Z NVifiz) + Z Q. W Z,ungj(a:) + Z v By, =0,
i=1 i=1 J=1 k=1
<wi7x>:S(I|Di)? = l-pv;

Z,ujgj(x) + i Ve(Brr — ) =0,
j=1 k=1
()\1’... ’)\p”ul’... ;,Um) >0,
Me=1.
Let L(x, pu,v) = f(z) + s(z|D) + pFg(z)e + v (Bx — c)e, where z € IR”,
p € IR™, and v € IR?. Then, a point (z, 1, 7) € R™ x IR x IR? is said to be

a weak vector saddle point if
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L(z, p,v) # L(2, i, v) # Lz, i, 0)

for all z € R", p € IRY, v € IRY.

Theorem 4.1 Let (z, )\, ji,7) be a critical point of (MPE). Assume that
fi()+() T w; is (F, ., p;, d)-convez at T and i’ g(-)+vT (B(-)—c) is (F, a, 3, d)-
conver at T with >.0_ \ipi + 3 = 0. Then (Z, i, V) is a weak vector saddle
point of (MPE).

Proof. Since fi(+) + () w; is (F, a, p;, d)—convex at Z, we obtain

(e o] — (@) + 7w
> F(z,7; ofm, 2)(V fi(Z) gay)) + p:id*(z,2), i=1,--- ,p,

and the sublinearity of F,
Z 5\ fl + ET'wi]
2 F(z, 2 a(z, 7)Y MVE) +w)) + O Ap)d* (2, 7). (4.1)
i=1

Since il g(+) + 77 (B(:) — ¢) is (F, a, 8,d)—convex at T, we have

" g(x) + v (Br — )] = [a" () + 7" (Bz — ¢)]
> F(x,7;0(x,7)(a" Vg(2) + v By)) + pd?(z, 7). (4.2)
Combination (4.1) and (4.2), we get
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> F(, )(ZX V fi(Z) + wi)))
+F (2, Z; oz 1) (5 Vg(z) + 71 By)) Z)‘“Ol T) + Bd*(x, T).

Since (z, A, i,v) is a critical point for (MPE); then there exists

Z +Z)‘wz+zlu]v9] +ZVkBk—0

By the sublinearity of Frand >7_ A\ip; + 8 = 0, we-have
p —
F(z, %5 a(z, 7)Y N[V (E) + w]))

+F(z, % a2, 2) (BT V() + 7T By)) + (Z Xipi)d?(x, T) + Bd?(x, T)
> F(z, 7 oz, :z)(z N[V £i(Z) 4+ wi) + 7TV g(z) + iF By))
+(Z j‘ipi)dz(z> j) + ﬁdz(z> j)
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= (Z j‘ipi)dz(z> j) + ﬁdz(z> j)

= 0.

Hence, we get

Z ) +atwi] + " g(x) + v (Bx —¢)

ZX 1£i(®) + 2"w,] + i g(2)+ 0" (Bz — ¢).
From s(z|D;) =2 x%w;, i = 1,4+ ,p, we have

YAl fi(@) (@] Da)] + gra(@) + 7 (Bx — c)

=1

ZX [£:(Z) + s(z|Dy)] + pF g(z) + 7 (Bz — ).

Using A\; = 0, and \e = 1,

f(@) + s(x|D) + p'g(x)e + " (Bx — c)e

£ f(z) + s(z|D) + a* g(z)e + 77 (BZ — c)e, for any x € IR™.
Now, since pu?'g(z) + vT(BZ — ¢) < 0, we have

A7 g(z) + 7 (BT — ] — [u"g(7) + v (BT — )] 20,
for any p € R, v € IR?. Thus,
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Using A\; = 0, and \e = 1,

f(@) +5(|D) + u"g(z)e +v"(Bx ~c)e

* f(%) + s(z|D) + " g(z)e + 0" (BT =.c)e,

for any p € IR, v € IRY.

Therefore, (7, i1, 7) is a weak vector saddle point of (MPE). O

Remark 4.1 If we replace the (F,a,p;, d)-convezity of fi(-) + () Tw; and
BTg(-) + 0T (B() =) aith -8 Nip; + 8 = 0 by (Fray p, d)—convezity of
fO)+ () w + pTg(-)e + v7(B() — e)e at T with> "_ \ip; = 0 in Theorem

4.1, then this theorem is also valid.

Theorem 4.2 If there exists (fi,v) € IR} x IR? such that (Z, i,7) is a weak

vector saddle point, then T is a weakly efficient solution of (MPE).

Proof. Assume that (z, i, 7) is a weak vector saddle-point. From the left

inequality of saddle-point conditions,
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f(@) + s(z|D) + u"g(z)e + v (Bz — c)e
# f(@) + s(z|D) + ' g(z)e + v (BT — c)e,

m

for any € IR, v € IR?, and hence we have
prg(@) + v (BT — ) < i g(z) + 77 (BT - ¢), (4.3)

for any p € IR, v € IR%.

Since p can be taken arbitrary large and BZ = ¢, we have

Hence,

irg(@) =0
Therefore,
it g(w) =0
By Bz = ¢, we obtain
@' g(z) + 7 (Bz —¢) = 0. (4.4)

Now, from the right inequality of saddle point conditions and (4.4), we
have for any feasible x for (MPE)

f(®) + s(z|D) + i' g()e + " (BT — c)e
# f(x) + s(x|D) + @' g(x)e + 7 (Bx — c)e,
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1.e.

f(@) +s(z|D) # f(x) + s(x[D).

Hence, 7 is a weakly efficient solution of (MPE). O
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