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Spin reorientation transition of ultrathin body-centered cubic Au/Ni(001)film

Jeonghwa Yang

Department of Physics, Graduate School

Pukyong National University

Abstract

The thickness dependent magnetic properties of artificially prepared ultrathin 

body-centered cubic Ni films have been explored using the all electron full potential 

linearized augmented plane wave (FLAPW) method. Here, we have considered two 

types of BCC Ni(001) films : (i) pure BCC Ni(001) and (ii)Au capped BCC Ni(001) 

in the range from 1 monolayer (ML) to 5ML of Au capping coverage. The average 

magnetic moments of pure BCC Ni(001)is about 0.63 μB and a typical surface 

enhancement is found with magnetic moment of 0.78 μB.. In the presence of Au 

capping layer, the magnetic moment if interface Ni is strongly suppressed to 

approximately 0.5 μB and this cause the reduction of average magnetic moment. 

Nevertheless, the Au adlayer has no meaningful induced magnetic moment.

The BCC pure Ni(001) films have always in-plane magnetization up to 11 ML, 

but very interestingly the Au/Ni(001) shows thickness dependent spin reorientation 

transition(SRT) from in-plane to perpendicular to the film surface according to the Au 

coverage. However, the thickness dependent SRT shows very irregular behaviors.

In addition, the calculated X-ray absorption spectroscopy(XAS) and X-ray magnetic 

circular dichroism (XMCD) have been presented.



- 1 -

Chapter 1. Introduction.

In thin film magnetism, the materials composed of typical 3d 

transitional metal elements have been extensively explored. As 

well known, the Fe, Co, and Ni have body-centered-cubic(BCC), 

hexagonal-closed-packed(HPC), and face-centered cubic (FCC) 

crystal structures in bulk mode, respectively.

To date, the fundamental magnetic properties of these 

materials in bulk state are well understood. in the other hand 

due to the advanced atomic manipulation technique, it is 

possible to materialize artificial nano structure which does not 

exist in nature. For instance, Fe and Co used to have BCC and 

HPC crystal structure can maintain FCC phase under certain 

conditions. [15-17] This means that the thermodynamically stable 

crystal structure can be even tuned in an artificial way and it 

may bring a new opportunity to utilize the noble magnetic 

properties for potential magnetic device applications. 

However, there was no report on the BCC type Ni and it 

has long been remained an intriguing issue to materialize BCC 

Ni for experimentalists until recently although the magnetic 

properties of BCC Ni have been studied using first principles 

method.[18-19] One may argue that many studies for the BCC Ni 
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on Fe(001) have been presented[25-28], but in this case it is 

obvious that the magnetism of BCC Ni affected by the 

hybridization with magnetic Fe surface.

In order to understand the intrinsic magnetism of BCC Ni, 

not affected by magnetic materials, one needs to grow BCC Ni 

on non-magnetic surface. Interestingly, it has been demonstrated 

that the bulk like BCC Ni on non-magnetic surface. 

Interestingly, it has been demonstrated that the bulk like BCC 

Ni can be epitaxially grown on GaAs(001) surface with a lattice 

constant of a=0.282nm [29-30]. According to the report by Tian et 

al.[29], the Ni/GaAs(001) manifests magnetic moment of about 

0.53 μB and the bulk like BCC　 Ni has an in-plane cubic 

magnetocrystalline anisotropy energy of 4.7×10 5ergscm -3.

On theory side, several first principles calculations have been 

performed to reveal the magnetic properties of BCC　Ni [31-33].

These theoretical studies show that the lattice distortion of 

BCC Ni does not substantially influence on the magnetic 

moment[31] and the calculated magnetic moment is not 

significantly deviated from the experimentally found value. 

Besides, a theoretical study for magnetic anisotropy of bulk like 

BCC　Ni is presented.[32]

So, Thickness dependent magnetic properties of BCC Ni and 

Au capped on BCC Ni are calculated in this article using the 
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FLAPW (GGA) method.

“Full-potential linearized augmented plan wave”  FLAPW has 

been known as exact method among first principles calculation 

methods until now. Especially, in 3d transition metal case, GGA 

method gives better results than Local density approximation 

(LDA) method, so Ni(BCC) have been calculated by the GGA 

approximation.
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Chapter 2. Methodologies

2.1. Density Functional Theory (DFT)

A reduction of the complicated many-body problem to an 

effective single-particle theory which is amenable to numerical 

calculations and supplies deeper physical insight is the density 

functional theory due to by Hohenberg and Kohn(1964)[4], and 

Kohn and Sham(1965).[5]

Density functional theory is known as important tools for 

researching electron structure theoretically and provides very 

powerful ways to treat problem in many body system as a form 

of one particle system.

2.1.1. Hohenberg - Kohn theorem

Calculation for most first-principles is base on basic theory 

like density functional theory. Early DFT was found in 

Thomas-Fermi theory[1,2] which represented energy in ground 

state with only equation of density. Exact basis of DFT was 

formulated by Hohenberg - Kohn theorem[4]. 

This theorem supposes that the characteristic of ground state 
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in many body system could be presented with only density in 

ground state.

Therefore, exact calculation of density in ground state is 

proved to be possible from the principle included only density.

Hamiltonian in many body systems could be written like as 

follow.

                                                 (1)

Here ,  and   represents Kinetic energy , external 

potential and Coulomb energy respectively. Given only external 

potential in the system we could find out total Hamiltonian. If 

system would be limited in non-degenerated systems 

corresponding eigenstate and density could be calculated with 

Schrodinger function 

                     

                                                    (2)

So function like →→ exists. Hohenberg - Kohn 

theorem supposes that function is one to one at ground state 

and invertible.

In other words external potential would be decided by 

electron density. This suggests various form of energy function
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              (3) 

                                    (4)

and Hohenberg - Kohn function, , would not be affected 

by external potential . Second equation of Hohenberg - 

Kohn theorem would be proved to be like 

                              ≤                      (5)

in any density ρ.

Here E0 represents energy in ground state and would be 

stable only if ρ=ρ 0. ρ0 represents density of ground state. So 

exact density of ground state could be decided with minimum of 

.
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2.1.2. Kohn-Sham Equation

Hohenberg & Kohn, and Kohn & Sham have suggested that 

total energy in system like solid or surface is dependent on 

only charge density in ground state[4,5]

                                                      (6)

The idea of using charge density in quantum mechanics 

theory to material had been started long time ago but only 

after decades that had been started to be adapted in molecule 

system with development of Hartree-Fock approximation and 

further in system of solid state. Slater used electron gas for 

calculation of solid state using Hartree-Fock approximation. 

This method was   and has contributed for developing 

more sophisticated method of calculating electron structure.

Charge density is scalar function defined each point r in real 

space.

                                                      (7)
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Charge density and total energy would be dependent on a 

kind and location of core atom like

                                                (8)

In this   is set of location of all atom α in any system 

considered. Eq.8 is an important one for understanding electron 

structure of material and dynamic characteristic in atom system 

and with this Eq.8 we could predict equilibrium of particles on 

the surface and cohesive energy of solid. And in this equation if 

total energy would be differentiate with the position of core of 

each atom we could get the force acting in that atom and find 

out stable structure of the system, therefore we could study 

dynamic procedure like diffusion or reaction of particles on the 

surface.

In DFT total energy Eq. 6 can be divided into kinetic 

energy, Coulomb energy and exchange-correlation like Eq. 9.

                                               (9)

Coulomb energy U  can be calculated with traditional method 
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and this can be divided into attraction between electron and 

core, repulsive force between electron and repulsive force 

between cores again.

                                           (10) 

,,and  are represented Eq. 11~13

                        





             (12)

                         


′



′


′             (13)

                         
′




′

′                   (14)

Kinetic energy  is more complicate. According to DFT 

actual electron in the system could be changed into effective 

electron with contribution of same charge, mass and density. 

Real electron is affected by all other electron but effective 

electron moves as particles not related to effective potential, so 

To can be represented with the sum of kinetic energy of all 
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effective electron.

If respectively effective electron would be stated with wave 

function ψi of single particle, kinetic energy of all effective 

electron in the system could be represented with 

               










∇





               (14)

 

Eq. 14 is the sum of expected value to kinetic energy of a 

particle and  is defined as the number of electron in the 

state of i.
(exchange-correlation energy), last term  of Eq. 9 is 

included energy by contribution of all extra complicate electron.

In this the most important contribution is the term of 

exchange term. An electron is fermion, so according to Pauli's 

exclusion principle, average coulomb repulsion act on electrons 

has been decreased due to an electron with the same spin is 

not impossible to exist on the same orbit  that energy is called 

"exchange energy". If each electron would be considered to be 

surrounded with positive exchange hole, total electric charge 
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summed by all exchange hole could be +e . According to 

definition additional many body problem among electrons with 

opposite spin would be called as "correlation energy". Kinetic 

energy and Coulomb energy have opposite sign and almost 

same amount but exchange correlation energy is about 10% of 

Coulomb energy. Correlation energy is much smaller than 

exchange energy but plays an important role in conclusion of 

length and strength of atomic combination. 

Binding energy of atoms on surface or solid is much smaller 

than total energy, so it ranges in about 1~8 eV and energy 

which would change position of atoms on the surface is also 

very small.

Most important Hohenberg-Kohn-Sham theorem in DFT 

represents that total energy under density of ground state 

would have minimum value like Eq. 15.

                      



                         (15)

If wave function of single particle would be ,  electron 
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density,  could be stated as Eq. 16.

                       




                     (16)

As Eq. 14 for kinetic energy  is defined as the occupation 

number in the eigenstate in which that would be represented 

with wave function of single particle, .

In Eq. 14~16 wave function of single particle has been used 

and variation in this wave function corresponds with variation 

of electron density, so the condition of single particle wave 

function under  ground state density can be induced from the 

condition of calculus of variation of Eq.15. This formula is 

called as “Kohn-Sham equation" 

                  








∇





              (17)

In this  is represented with Eq. 18.

                                     (18)
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The electron density which corresponds to this wave function 

would be density in ground state which would make total 

energy minimum. The solution of Kohn-Sham equation forms 

orthonormalized set of Eq. 19.

                                           (19)

Because in Eq. 9 total energy is divided into 3 terms 

Kohn-Sham equation has also 3 terms. Kinetic energy is second 

order differential operator of Shrodinger equation of single 

particle  and is not related to the system. In contrast  , 

operator of Coulomb potential, and , operator of exchange 

correlation potential, are dependent on contribution of electron 

in considered system.  , Coulomb potential, on point   are 

generated from charge of core and electron in the system and 

calculated immediately in real space like Eq. 20.

              








′



′


′              (20)
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In condensed system for calculating Coulomb potential we 

should solve Poisson equation of Eq. 21.

                      ∇
                   (21)

Exchange correlation potential is related to exchange 

correlation energy like Eq 22.

                        
                         (22)

In actual calculation exchange correlation energy (or 

exchange correlation potential) is not well known and it could 

be calculated with approximation method like LDA or GGA etc.
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2.1.3. Local density approximation ( LDA ) 

All complicate phenomena of physics in interaction system 

could be solved by calculating standardized equation about 

. It is natural to use characteristics of uniform electron 

gas interaction about density of slow variation. In other words 

put exchange correlation energy density is  it would be 

dependent on only , local density.

                                      (23)

Exchange correlation energy is dependent on only local 

density of electron around of each  , volume element. This 

method of approximation is called as LDA.

LDA has two assumption, first the effect of exchange 

correlation would be domain only around the point and second 

the effect of that would not be dependent on variation of 

electron density around. Therefore in volume element it could 

be treated as the same density of electron. 
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So, It is same charge density at volume element. This 

approximation is very corrected in the system of metal but 

should be used with precaution in the system in which 

variation of electron density would be great.

We have make an effort to understand  a system of electron 

with uniform density and research characteristics. Especially 

exchange correlation energy per electron of uniform electron gas 

has been calculated with various method of approximation like 

many body perturbation theory and Monte Carlo method. In 

actual calculation it would be represented analytic function of 

electron density and in expression of term of exchange 

correlation there are various analytic forms with different 

coefficient. For example in the system in which spin 

polarization would not be accounted for, the term of local 

density exchange by Kohn & Sham would be 

              
 






,     






                (24)

and the correlation term by Hedin and Lundqvist would be 
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              
 


 





 

 


      (25)

Here, C=0.0225, a0 is Bohr radius and

                           
                          (26) 

                           






 





                      (27)

Exchange correlation energy  and exchange correlation 

potential, would be 

                       ,  
                 (28)
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2.1.4. General Gradient Approximation (GGA)

LDA would not fit in the system in which electric charge 

would be localized like transition metal because in this method 

localized uniform electric charge of electron gas would be used 

in not uniform system. In LDA combination energy of particles 

and solid has been overestimate and gap of semi-conductor has 

been underestimate. And in calculation total energy of iron it is 

suggested that ferromagnetism of BCC would have lower 

energy. For complement of problems of LDA General Gradient 

Approximation has been recently developed[9,10]. 

General Gradient Approximation could derive much better 

result than L(S)DA in not uniform system because If consider 

gradient of electron density in each point in the space and 

gradient of electron density as well in the case of treating 

exchange correlation function. So, General Gradient 

Approximation can be called "non local" potential also. GGA 

has been complemented by Perdew and Wang and up to now 

has been complemented continuously[10]. 
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For example 

                                        (53)

 

and exchange EGx term suggested by Becke is 

                 







              (54)

                 





∇    ,   ↑ ↓                  (55) 

and  term suggested by Perdew is

                  ↑↓∇∇               (56)
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2.1.5. Method of Full potential Linearized Augmented 

Plane Wave (FLAPW)

The most important fact which should be accounted for in 

calculating electro structure of material is interaction in the 

many body system of electrons. Because complicate interaction 

among electrons would decide various and subtle property of 

material. But generally LDA by DFT will be used because 

actually interaction among countless electrons over Avogadro's 

number would be impossible to be treated directly.

DFT established by Hohenberg and Kohn is based on the 

theorem in which energy has minimum value when energy in 

ground state in the many body system would be important DFT 

of electric charge density and charge density of ground state. 

And with LDA a potential on a point  could be represented 

with density of electric charge on that point, so kinetic equation 

of quantum mechanics in the many body system  could be 

represented with equation of single particle like Kohn-Sham 

equation. Accordingly if you would like to research electron 
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structure you would solve Kohn-Sham equation numerically. For 

equation solution of single particle by DFT  there are various 

ways according to method of statement of wave function, 

electric potential, exchange correlation potential and relativistic 

consideration of Kohn-Sham equation.

Method of FLAPW is known for the most precise calculation 

method of Kohn-Sham equation up to now and it has been 

widely used for research of various materials. And for 

calculating property of surface and interface single slab 

structure would be used. Single slab divides into 3 area in real 

space that is Muffin tin around core, vacuum both ends of thin 

slab and interstitial and would be calculated in consideration of 

each area. In this moment wave function in each area shall be 

developed as basis function according to geometric forms.

That is, sphere spherical harmonics put the basis function in 

MT and 2-dimensional linear function in vacuum area and 

3-dimensional plane wave function in interstitial area . Wave 

function in each area would be linear, in other words wave 

function should be composed in consideration of first order 
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differentiation function and be continuous on the boundary in 

each area. Static potential in equation of single particle would 

be decided by solving Poisson equation with method of 

pseudocharge designed by Weninert[11]. Exchange correlation 

potential would be calculated by Least Square Method with use 

of function form of Hedin-Lundqvist[6]or Von Varth-Hedin[7] in 

which density of charge would have been given like . The 

important electron system is treated relativistically and valence 

electron is treated in proportional relativistically in 

consideration with all relativistic terms except for the term of 

interaction of spin-orbit. Method of FLAPW could also derive 

much more precise result because the approximation according 

to form like electron spin density and potential etc would never 

been used. Likewise Method of FLAPW could be stated as the 

method for exact calculation of various magnetism on the 

surface and interface and rearrangement on the surface as well 

in comparison with other methods[12].

If wave function of single particle    would be 

developed to reciprocal lattice   the result would be as follow
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                   

                   (57)

Here each basis function  is Linear Augmented Plane 

Wave: LAPW given in following formula.

 

                                                   ∈
 










            

                                                             ∈
 







 





   

                                                               ∈  

                                                           (58)

Element of   is defined from the thickness of thin slab and 

 is the volume of unit cell. Radial function     is 

energy  regulated in muffin-tin sphere and would be solved 

with solution of radial Schrodinger equation with spherical 
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effective potential.

              










 

            (59)

 
 is a differentiation of energy of  and it satisfies 

form of differentiation of that, so it would be 

             








            (60)

And  is standardization and,  and   is orthogonal, so  it 

would be stated as follow

                      





                        (61)

Coefficient  and  is decided satisfying spherical 

boundary condition of basis function  and its differentiation 




. Similarly   dependency function   and 

differentiation of energy   are derived by solution of 
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one dimension Schrodinger equation like following formula.

                


 



                 (62)

                


 



                  (63)

Continuous condition of  and 


 on the boundary of 

vacuum will be used for deciding  and .

In Method of FLAPW  , charge density would be stated 

with 3 area as follow.

                 

 

∙ ∈
 



  ∈

 

 

∙ ∈

          (64)

Coulomb potential could be derived with solution of Poisson 

equation and effective single particle potential which has been 

given in sum of Coulomb potential and correlation exchange 

potential would be represented with the form of density of 
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charge given in formula 64. Finally secular equation would be 

as follow.

           

     

    
               (65)

Here,   is Hamiltonian matrix in K-S equation and   

is overlap matrix. As concept of linearization with Method of 

LAPW radial function could be developed from random   to 

term of    and   .

                                        (66)

Here,  δ would be decided by coefficient of  and  in 

Eq.58 satisfying a boundary condition of Muffin-tin sphere.
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2.2. Methodology for determining MCA

The Magneto-Crystalline Anisotropy energy(MCA) is defined 

as the difference of the total energy for two different 

magnetization orientations, that is, in-plane and perpendicular. 

The direct approach, where the MCA is calculated by comparing 

the total energies between the two magnetic orientations, has a 

technical difficulty concerning the numerical stability of 

calculating a very small difference of two large numbers; the 

total energy is estimated to 30,000~40,000eV/atom for bulk Fe, 

Co and Ni, for example, while MCA is the order of (thin 

films) -  (bulk). In fact, in order to calculate the total 

energy with this accuracy so as to eliminate numerical 

fluctuations, extremely fine sampling meshes are required for 

the k-space integrations.

Fortunately this difficulty is solved by applying the force 

theorem.[34] Starting with the variational expression for the total 

energy in density functional theory as given in Eq. 67,

 




 

 ′′



′
     

                                                           (67)
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the force theorem has proven that :

1. Given an exact density, ρ0, the total energy estimated 

from the trial density ρ is correct to the second order of the 

charge variation, i.e.

                                    (68)

2. If there are two crystal structures, α and β, with charge 

density ρa and ρβ, the difference in total energy estimated from 

the same charge density,, can be approximated as 

the difference in the sum of the single-particle eigenvalues due 

to systematic cancellations of other terms.

This force theorem can be applied to MCA calculations. In 

the second variational treatment of spin orbit coupling (SOC), 

we start with the scalar relativistic self-consistent charge/spin 

density  and , and the corresponding scalar 

relativistic total energy, E0[ρ0, m0] which is given as Eq. 67. If 

we assume that the scalar relativistic plus  SOC calculations 

yield the charge/spin density and  and the 

corresponding  total energy , the SOC induced energy 
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can be written as

            

                     (68)

According to the force theorem point 1, we see that the first 

bracketed term in Eq. 68 is negligible to first order of the 

charge/spin density variations induced by the SOC. On the 

other hand, the second point of the force theorem ensures that 

the second term of Eq. 68 , which is the difference in total 

energy with and without SOC estimated from the scalar 

relativistic charge/spin densities, can be approximated as the 

difference in two sums of single-particle energies with and 

without SOC, as 

        ≃












             (69)

The validity of this approximation was proven explicitly for 

surfaces/interfaces by estimating  that the variation of the 

charge density induced by SOC if of second order in the SOC 

strength, namely, δ ρ∼ξ 2 and thus the correction to the MCA 

force theorem is order of ξ4 , while the typical surface/interface 
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MCA is order of ξ2[35].

From the force theorem, the MCA ΔE sl, defined as the 

difference of the total energy for in-plane( θ=90 o) and 

perpendicular(  ) magnetization orientations, can be written 

as 

           ≡  

                 





   






     (70)

This seems feasible to calculate MCA from the sums of 

Kohn-Sham eigenvalues rather than from the total energies 

since the former is order of 10eV for the 3d transition 

monatomic systems. However, the result calculated with  this 

method still reported a large fluctuation and thus slow 

convergence of  the calculated MCA with respect  to the 

number of k-points.[36,37]

The rotation of the magnetization from 0o to 90o leads to a 

redistribution of the occupied states. The the occupied sets 

{} and {} in Eq. 70 are independently determined 

according to Fermi statistics by their own eigenvalues, 


 and 

, respectively, to ensure particle 
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conservation.

Wang et al[38] pointed out a possible error introduced in this 

procedure, which might violate the validity of the force theorem 

due to large charge/spin density variations. As a reasonable way 

to obtain the new occupied states of the SOC Hamiltonian, they 

proposed a so-called state tracking method. In the state tracking 

method , each of the new occupied states  {}and 

{}(with SOC) are determined by maximizing the probability 

of the new occupied sets to be found in the old occupied states 

(without SOC), which allows the perturbed state to obtain spatial 

distributions of the charge and spin densities as close as possible 

to the unperturbed states. This method is  reported to efficiently 

depress the severe fluctuation of the MCA with respect to the 

number of k points [38-40]

More recently , the torque method[41] was proposed as 

another way to simplify the MCA calculation by realizing that 

the definition of MCA is equivalent to the partial derivative of 

SOC energy with respect to θ calculated at θ=45 o. For example, 

for the surface with 4-fold rotational symmetry, where the φ 
dependence of the MCA is negligible, and the SOC energy has 

the form  
  ,  then 
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         ≡





                     ≡∆           (71)

In practice, the torque is calculated by applying the 

Hellman-Feynman theorem as 

               




 






                     (72)

Where 


 is the wave function of the SOC Hamiltonian, 

Hsl. The advantage of the torque method is that there is only 

one Fermi energy to be estimated which suppresses the 

fluctuations due to the independently determined Fermi 

energies of the perturbed and the unperturbed states as 

mentioned above. The state tracking method still can be used 

to determine the new occupied states for the SOC Hamiltonian, 

an advantage that may not be critical. However, there is a 

trade-off in using the torque method; the magnetization oriented 

along    reduces the symmetry for most systems, which 

results in a larger IBZ and thus an increased number of 

k-points.
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Recently, the self-consistent second variational method was also  

employed to achieve better convergence of MCA calculation[42] 

where instead of the scalar relativistic solution, the charge density 

with SOC for perpendicular magnetization was obtained 

self-consistently in a second variational way and used to estimate 

the MCA for the in-plane magnetization by applying the force 

theorem. However, it didn't reveal any significant improvement 

over the non-self-consistent approach for 3d transition metals.

In our calculations , we used the non-self-consistent second 

variational approach for SOC inclusion. The MCA was obtained 

by the torque method with the new occupied states (with SOC 

of   ) determined by the state tracking method.  
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Chapter 3. Numerical Method.

The thin film version of full potential linearized augmented 

plane (FLAPW) method is employed in our calculations. 

Therefore, no shape approximation is assumed in charge, 

potential, and wavefunction expansions[20-22]. We treat the core 

electrons fully relativistically, and the spin orbit interaction 

among valence electrons are dealt with second variationally[23]. 

The generalized gradient approximation is used to describe 

exchange correlation[24]. Spherical harmonics with lmax=8 are 

used to expand the charge, potential, and wavefunctions in the 

muffin tin region.

Energy cut offs of 225 Ry and 13.7 Ry are implemented for 

the plane wavefunction and basis expansions  in the interstitial 

region.

We use 210 k-mesh points during the course of entire 

calculations discussed in this report. Since it is found that the 

BCC　 Ni grown on GaAs(001) has a lattice constant of 

0.282nm, we employ the same lattice parameters in lateral 

direction. To investigated the effect of Au capping on the 

thickness dependent magnetic anisotropy of Ni film, we assume 

that the Au adlayer can also be grown on BCC Ni 



- 35 -

pseudomorphically, while the vertical positions of all 

constituents are optimized via force and total energy 

minimization procedures. Here, we have considered in the range 

from 5ML to 11ML Ni thickness and the thickness of Au 

capping layer is increased up to 4ML coverage.
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Chapter 4.  Result

4.1. Structural Feature

 

We have calculated the optimized atomic position and 

vertical distance using the total energy and force minimization 

procedure. We first show the optimized atomic structures and 

pure BCC Ni and Au capped systems in Table 4.1.1 and Table 

4.1.2. Table 4.1.1 use the  GGA approximation and Table 4.1.2 

use the LDA approximation. And Figure 4.1 is Schematic side 

view of the Au/Ni ultra-thin film structure. In Figure 4.1, the 

Ni at the interface between Ni and Au adlayer is represented 

by Nis and the subsurface layer is denoted by Nis-1. The Aui 

stands for i-th adlayer counted from the interface. Also, 

d(Nis-i-Nis-i) means calculated vertical distance between two 

neighbor atoms as in Fig 4.1 and the values are given in Table 

4.1.1 and Table 4.1.2. 

Note that we have only displayed the optimized vertical 

distances with 11ML of Ni thickness in Au/Ni system. In other 

Au/Ni systems, there was found no physically meaningful 

change . As mentioned earlier, the bulk like BCC Ni has a 
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lattice constant of 0.282 nm and one can see that the 

calculated vertical distances of pure Ni are close to this bulk 

value at the inner layer at the GGA approximation But the 

LDA approximation is not close to this bulk value. So, GGA 

approximation has the correct value in Ni(BCC). 

You can see that the inward relaxation is found at the 

surface layer. In the Au/Ni(11ML), the interlayer distances of 

Ni are suppressed by less than 0.1Å near the interface region, 

whereas the distances of inner layers are only slightly changed.
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Nis

Au1

Au2

Au3

NiS-1

NiS-2

NiS-3

NiS-4

Nis

Au1

Au2

Au3

NiS-1

NiS-2

NiS-3

NiS-4

Nis

Au1

Au2

Au3

NiS-1

NiS-2

NiS-3

NiS-4

d(Au2-Au3)

d(Au1-Au2)

d(NiS-Au1)

d(NiS-NiS-1)

d(NiS-1-NiS-2)

d(NiS-2-NiS-3)

d(NiS-3-NiS-4)

Fig 4..1. Schematic side view of the Au/Ni 

ultra thin structure.
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thickness Ni Au
5ML 7ML 9ML 11ML 1ML 2ML 3ML 4ML

d(Nis-5-Nis-4) 1.25 1.25 1.25 1.25 1.26
d(Nis-4-Nis-3) 1.25 1.25 1.25 1.25 1.26 1.24
d(Nis-3-Nis-2) 1.27 1.26 1.27 1.26 1.26 1.26 1.26
d(Nis-2-Nis-1) 1.32 1.27 1.26 1.25 1.27 1.27 1.27 1.27
d(Nis-1-Nis) 1.20 1.20 1.25 1.21 1.27 1.26 1.26 1.26
d(Nis-Au1) 1.68 1.69 1.69 1.69
d(Au1-Au2) 2.06 2.23 2.01
d(Au2-Au3) 2.22 2.06
d(Au3-Au4) 2.05

thickness Ni Au
5ML 7ML 9ML 11ML 1ML 2ML 3ML 4ML

d(Nis-5-Nis-4) 1.40 1.39 1.39 1.38 1.38
d(Nis-4-Nis-3) 1.37 1.38 1.39 1.37 1.38 1.36
d(Nis-3-Nis-2) 1.40 1.37 1.41 1.40 1.37 1.36 1.37
d(Nis-2-Nis-1) 1.43 1.40 1.40 1.44 1.37 1.35 1.35 1.35
d(Nis-1-Nis) 1.34 1.36 1.32 1.37 1.36 1.33 1.33 1.33
d(Nis-Au1) 1.76 1.75 1.75 1.75
d(Nis-Au2) 2.21 2.23 2.23
d(Nis-Au3) 2.22 2.23
d(Nis-Au4) 2.21

Table 4.1.1 Optimized interlayer distances(in Å) of pure BCC 

and Au/Ni films(GGA).

Table 4.1.2. Optimized interlayer distances(in Å) of pure BCC 

and Au/Ni films(LDA). 
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4.2. Magnetic Moment

In Table 4.2, we present the calculated magnetic moments. 

The average magnetic moment of pure Ni  is in the range from 

0.63 μB to 0.66 μB and this is somewhat large than that found in 

bulk like BCC　Ni in which a magnetic moment of 0.53 μB is 

reported[29]. This enhanced average magnetic moment definitely 

stems from the well known surface enhancement as one can see 

from the calculated moment. In the presence of Au capping 

layer, the average magnetic moment is suppressed and it is in 

the range from 0.57 μB to 0.58 μB.. The magnetic moment of 

interface Nis adjacent to the Au adlayer is significantly affected 

and this contributes to the reduction of average magnetic 

moment.

It is observed that the magnetic moments of Ni is almost 

unchanged after 2ML Au capping. We have found the same 

trends in other systems although the Au/Ni (11ML) is only 

shown in Table 4.2.
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thickness
Ni Au

5ML 7ML 9ML 11ML 1ML 2ML 3ML 4ML
Nis-5 0.57 0.60 0.58 0.57 0.57
Nis-4 0.61 0.60 0.58 0.59 0.60 0.59
Nis-3 0.53 0.56 0.56 0.60 0.59 0.58 0.59
Nis-2 0.53 0.58 0.57 0.58 0.55 0.55 0.56 0.55
Nis-1 0.64 0.65 0.66 0.67 0.64 0.59 0.58 0.59
Nis 0.78 0.78 0.78 0.79 0.55 0.50 0.49 0.49

Table 4.2. Calculated magnetic moments (in μB )of pure Ni film 

and Au capped Ni films
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4.3. Density of State 

We now discuss the density of state (DOS) both of pure 

BCC Ni and Au/Ni films. In Figure 4.3. (a) and (b), the DOS  

of pure Ni and Au capped systems with 11ML Ni thickness are 

presented, respectively (the first few layers are shown).

One can see that the majority spin states are quite small at 

the Fermi level, while the minority states are sizable. Thus, the 

BCC Ni has close to half metallic feature. All the Ni layers 

manifest similar behaviors in both majority and minority spin 

states at the Fermi level. 

From Figure 4.3. (a), it is found that the number if holes in 

majority spin bands are almost the same, whereas the Nis has 

more holes in minority spin bands compared with those in 

other atoms.This results in well known surface enhancement in  

Nis.

In Figure 4..3. (b), we display the DOS of Au(1ML)/Ni(11ML)film. 

As shown, the main features of DOS of  Nis and this can nicely 

account for the trends in calculated magnetic moments in Table. 

4.3.

In the  Nis , it is seen that the minority spin states of  Nis 

is shifted to the left compared with that in pure case and this 
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cause reduction in empty holes, while the majority spin holes 

are almost the same. Consequently, we can see suppressed 

surface magnetic moment in  Nis.

For other layers, the change in minority spin holes are 

negligible. It is clear that this changes arises owing to the 

hybridization with Au atom as one can see from the DOS of 

Au adlayer in Fig.4.3. (b) (green line).

We have also explored the DOS features for other systems 

and have obtained very similar trends although they are not 

presented here.
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Figure 4.3. DOS of (a)pure BCC Ni (b)Au(1ML)/Ni(11ML). Here, 

the thickness of Ni is 11ML. DOS of Au/Ni
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4.4. Magnetic anisotropy.

The main issue of this report is to investigate the thickness 

dependent magnetic anisotropy of ultrathin BCC Ni  and Au/Ni 

films. The magnetic moment is simply a difference in the 

number of majority and minority spin electrons below the 

Fermi level and it has nothing to do with the wavefunction 

characters of occupied states. 

However the magnetic anisotropy arising from a spin-orbit 

coupling depends on the wave function feature and this may 

indicate that the direction of magnetization is strongly affected 

by subtle changes in underlying electronic structure. Since the 

magnitude of the spin-orbit interaction is usually small, it is 

thus required to employ very accurate numerical methods to 

deal with the spin-orbit  interaction resulting from relativistic 

effect. 

To this aim, we use the torque method[43]. It has been 

known that the torque method provides very stable results even 

with fewer k-points compared to methods that employe different 

schemes since the torque method calculates the magnetic 

anisotropy energy via expectation values of the angular 

derivative of the spin-orbit Hamiltonian.

We will calculate both E 1=E 100-E ⊥ and E 2=E 110-E ⊥ where 
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E 100 ,E 110 and E⊥ stand for the total energy when the direction 

of magnetization points to the (100) and (110) direction with 

in-plane magnetization, while the E⊥ means a total energy for 

perpendicular magnetization, respectively.

Through this, we can find a cubic magnetic anisotropy 

energy K 1=E 1-E 2=E 100-E 110 for in-plane magnetization 

systems and an uniaxial perpendicular magnetic anisotropy 

energy K u=E 100(110)-E ⊥. The negative K1 stands for in-plane 

magnetization in (100) direction, while the positive K1 means 

in-plane magnetization along the (100) direction. The calculated 

resulted results are shown in Table4.3.4. It is well known that 

the FCC Ni/Cu (100) film manifests SRT from in-plane to 

perpendicular to the film surface at the thickness of 7-10ML 

and the magnetic anisotropy can also be tuned due to oxygen 

effect [44].

Here, as shown above, there is no such a thickness 

dependent SRT from in-plane to perpendicular direction in 

ultrathin BCC Ni films at least until 11ML thickness. One can 

see that the 5ML Ni film has a magnetization along the (110) 

direction and all other BCC Ni films have an easy axis along 

the (100) direction.

Very interestingly, the Au capped ultrathin BCC Ni films 
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display quite different magnetic anisotropy from that of pure Ni 

film. For instance, the Au(1ML)/Ni(5ML) still shows in plane 

magnetization, but  the magnitude of cubic anisotropy is greatly 

changed. In Au(2ML)/Ni(5ML), a large perpendicular anisotropy 

of Ku=158 μeV per Ni atom is realized. In Au/Ni(11ML), we also 

see SRT from in-plane, i.e. (100)direction, magnetization to 

perpendicular direction at 1ML Au coverage and then the 

direction of magnetization to perpendicular direction at 1ML  

Au coverage and then the direction of magnetization changes 

from perpendicular to the film surface to (110) direction 

(in-plane magnetization) by adding more Au layers.

The calculated results definitely show that the influence of 

interface contribution plays an essential role in determining the 

direction of magnetization, but the overall behaviors are not 

consistent with increasing Au capping. Therefore, the 

conventional interpretation in terms of competition among 

surface, interface, and volume part may not be applicable to 

this ultrathin film structure because it is not clear to separate 

each contribution. On theory side, the generalized relation 

between magnetic anisotropy and orbital anisotropy has been 

preposed by Van der Laan[45] but this correlations is not yet 

clear[46].
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Au coverage 0 1ML 2ML 3ML 4ML

K1
Ni(5ML) 0.52 0.04
Ni(7ML) -0.11 4.8 0.8
Ni(9ML) -0.18

Ni(11ML) -0.16 -2.73 3.82 2.06
KU

Ni(5ML) 151 150 89
Ni(7ML) 68 35
Ni(9ML) 75 70 46 44

Ni(11ML) 19.7

Table 4.4 : Calculated magnetic anistoropy energies per Ni 

atom (in μeV )
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Figure 4.4.1 Calculated magnetic anistoropy energies
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We therefore present the distribution of magnetic anisotropy 

over two dimensional Brillouin zone(BZ). The contribution to 

perpendicular magnetization at a given k-point is represented 

by red circle, while the blue circle is for contribution to 

in-plane magnetization. The magnitude of magnetic anisotropy 

is proportional to the size of circle. As a representative 

illustration for the MAE distribution, the distribution of 11ML 

pure Ni, Au(1ML)/Ni, Au(2ML)/Ni, and Au(3ML)/Ni are shown 

in Fig. 4.4.2, respectively. As shown in Fig. 4.4.2 (a) for 11ML 

of pure Ni film, the strong in-plane contributions to the 

magnetic anisotropy mainly arise from the 2D BZ boundary and 

around the circumference radius of π/2a.
In the presence of 1ML of Au capping as in Fig 4.4.2 (b), 

the in-plane contributions from the BZ boundary are 

significantly suppressed. On the other hands, one can see more 

contributions to the perpendicular magnetization approximately 

in the line of kx direction. As a result, a perpendicular 

magnetization to the film surface is achieved. Adding more Au 

layer, one can see different behaviors and this implies that the 

character of wavefunction is greatly modified. We also realize 

that there is no single dominant k-point contributing to the 
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magnetic anisotropy, so the Γ point analysis performed in bulk 

FeCo alloy[47] is not allowed. 

Instead, it has been obtained that the many counteracting 

contributions are competing and the influence is accumulative.
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Figure4.4.2. Distribution of magnetic anisotropy over 

two-dimensional BZ  (a)pure BCC Ni(11ML) 

(b)Au(1ML)/Ni(11ML), (c)Au(2ML)/Ni(11ML)  

(d)Au(3ML)/Ni(11ML). 
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4.5. X-ray absorption spectroscopy (XAS) and X-ray magnetic 

circular dichroism (XMCD) spectra.

In Fig 4.5, the calculated X-ray absorption spectroscopy 

(XAS) and X-ray magnetic circular dichroism (XMCD) are 

presented. Here, we only consider dipole transition assuming 

rigid core-hole reliazation. Thus, the exact peak position should 

be shifted if one compares the calculated results with 

experimental data. The Donish-Sunjic shape[48] with 0.12eV for 

life time broadening. We show the results of pure Ni and Au/Ni 

with 11ML film thickness.

The XAS and XMCD of pure Ni and Au capped systems are 

almost identical although the intensity of XMCD in Au/Ni is 

slightly suppressed. Due to rather simple unoccupied DOS 

above the Fermi level in Fig 1, we have well separated L edges 

XMCD. The peak position of Nis L edge is shifted to the left 

and this can be understood from the calculated DOS in Fig. 1.

The calculated orbital magnetic moment of Nis is 0.09 μB for 

pure Ni and it is reduced to 0.04 μB due to Au(1ML) capping .

We have found about 0.04 μB at inner layers. Please note that 

the spectral shapes of XAS and XMCD for other systems are 

not presented here, but we have realized that there has been 

found no physically meaningful changes.
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Fig 4.5 the calculated X-ray absorption spectroscopy (XAS) and 

X-ray magnetic circular dichroism (XMCD) 
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Chapter 5. Summary

In conclusion, we have investigated the thickness dependent 

magenetic anisotropy of ultrathin pure BCC Ni and Au/Ni 

systems.

Both BCC Ni and Au/Ni show close to half metallic state.

The magnetic moment of interface Ni is significantly suppressed 

in the presence of Au adlayer, whereas the magnetic of inner 

layers are not changed. 

It has been observed that the BCC Ni has always in-plane 

magnetization until 11ML thickness. Very interestingly the 

Au/Ni manifests thickness dependent spin reorientation 

transition according to the Au coverage, but there is no 

consistent trend.

The calculated XAS and XMCD show well separated L edge 

single peak feature and this can be easily understood from the 

simple unoccupied DOS as shown.

Since this is the first theoretical report on the thickness 

dependent SRT in ultrathin BCC Ni film, we hope that the 

results will stimulate experimental verification.
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