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A state-space length-based assessment model for the Korea chub mackerel (Scomber 

japonicus) stock 

 

김 도 율 

 

부경대학교 대학원 해양생물학과 

 

요    약 

 

본 연구를 통해, 어류의 체장 자료를 이용하는 자원평가 모델인 상태공간 체장기반 모델을 

개발하였다. 어류의 연령 자료가 이용가능한 경우에는 연령구조 모델을 이용하여 자원을 평가하는 

것이 일반적이다. 하지만, 어류의 연령 자료를 수집하는 것은 체장 자료를 수집하는 것에 비해 시간 

및 비용적 측면에서 훨씬 더 부담이 크기 때문에, 대부분의 수산자원에 대해 이용가능한 연령 자료가 

부재한 경우가 일반적이다. 이러한 이유로, 우리나라에서는 어류의 연령 자료에 비해 체장 자료가 잘 

수집이 되어 있는 실정이며, 이는 우리나라 자료 수집 현황에 적합한 체장기반 모델 개발 연구에 대한 

직접적인 동기가 되었다. 본 연구의 또 다른 동기는, 자료를 수집하는 과정에서 일어날 수 있는 관측 

오차(observation error)와 몇몇 시간 변이성을 갖는 모수에 의해 일어날 수 있는 과정 오차(process 

error)를 명확하게 구분하는 자원평가 모델을 개발하고자 하는 것이었다. 이를 위해, 시간 변이성을 

갖는 모수를 random effects (state variable)로 취급하는 상태기반(state-space) 체계를 

도입하였으며, 특히 해당 연구에서는 연도별 연령별 마릿수를 random effects 로 간주하였다. 해당 

모델의 주요 특징으로는 개체군 내 연급군의 체장 빈도 분포를 연령 및 연도별로 동일하게 가정하는 

것이 아니라, 가입연령의 체장 빈도 분포로부터 사망과 확률론적 von Bertalanffy 모델을 이용한 체장 

계급별 체성장을 고려하여 가입연령 이후의 체장 빈도 분포를 직접적으로 유도한다는 것이다. 또한, 

일반적인 자원평가 모델에서 추정이 잘 되지 않아 입력값으로써 선언되는 자연 사망률 값을 자유 

모수로써 추정한다는 특징이 있다. 본 연구를 통해 모델을 개발하면서, 모델 내 몇몇 가정에 따른 

모델 성능을 비교, 분석하였다. 이에, 모델 내 산란-가입 관계식 유무 및 과정 오차 고려 여부에 따라 

총 6 개의 시나리오를 구성하였으며, 자료에 대한 적합도, retrospective 패턴, 모의 실험(simulation 

study)의 결과를 이용하여 모델을 검증하였다. 본 연구에서 개발한 자원평가 모델은 TMB 언어로 
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직접 코딩하였으며, 모수의 점추정치 뿐만 아니라 추정치의 표준 오차를 제시하였다. 자원평가를 위해 

모델에 적용된 자료는 우리나라 연근해에서 대형선망 어업에 의해 주로 어획되는 고등어(Scomber 

japonicus)의 2000 년부터 2019 년 까지의 연도별 어획 체장 조성 자료, 단위노력당 어획량 자료 

(CPUE), 총 어획량 자료이다. 종합적인 결과로써, 산란-가입 관계식이 고려되지 않으면서, 모든 

연령별 연도별 마릿수에 대한 과정오차를 고려한 모델(시나리오)이 가장 우수하였다. 해당 

시나리오에서 자연 사망률 값은 약 0.1/년으로 추정되었으며, 추정된 고등어의 자원량과 산란 어미 

생체량은 각각 약 5.0 x 105 ~ 10.0 x 105 MT, `1.0 x 105 ~ 2.2 x 105 MT 의 범위에서 나타났다. 
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1. Introduction 

For most fisheries, gauging the age information of fish via fishery-

independent surveys used in age-structured assessment models is considerably 

expensive and difficult to obtain (Rudd and Thorson 2018). By contrast, 

measuring and collecting body size information such as the lengths of fish 

caught by a fishing fleet is easier and more economical. In this context, a length-

based assessment model that is more informative and has a higher resolution 

than a surplus production model could be a viable option to assess the exploited 

fish stock in most fisheries. With this in mind, I develop a length-based 

assessment model. 

This model, which is extended from Cohen and Fishman (1980), Deriso and 

Parma (1988), and Quinn et al. (1998), has some differences from other 

prominent length-based assessment models in CASAL, MULTIFAN-CL, 

SCALE, Stock Synthesis, and others. Unlike the model in CASAL, a software 

package developed by NIWA for modeling the population dynamics of marine 

species (Bull et al. 2012), the proposed model utilizes the structure of imaginary 

age class, which enables it to segregate cohorts based on the length distribution 

of the population. MULTIFAN-CL, which uses identical assumptions in 

MULTIFAN (Fournier et al. 1998), predicts the observed size-composition data 

as the sum of normal distributions (Punt et al. 2013). By contrast, the proposed 
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model assumes that each cohort of the population follows a length distribution. 

Furthermore, the proposed model assumes that length-based proportions of 

numbers follow a normal distribution with a given mean and variance only at 

the age of recruitment; the length distributions at the age after recruitment are 

calculated by considering the process of mortality and growth, which differs 

from the assumption made in SCALE. In SCALE, a statistical Catch-at-Length 

model included in the NOAA Fish and Fisheries Toolbox, all cohorts are 

assumed to follow given normal distributions for length at each age considered. 

As the length-based assessment module in Stock Synthesis, which has been 

applied in a wide variety of fish assessments globally, is based on an age-

structured model, some functions associated with fish length, such as gear 

selectivity and fish body growth, are converted to the function for age (Methot 

and Wetzel 2013; Methot et al. 2020). In the proposed model, most of the 

functions are customized for fish lengths and not for age. 

Another difference of the proposed model from other prominent length-based 

assessment models is that it explicitly estimates the natural mortality rate. As 

estimating the natural mortality rate in stock assessment models is difficult 

(Vetter 1988; Quinn and Deriso 1999), it is commonly assumed to be known 

and constant (Hilborn and Walters 2013). Although natural mortality in fish 

likely varies among ages (sizes) and years (Deroba and Schueller 2013), it is 

treated as a constant across fish of various lengths and years, reflecting that a 
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constant natural mortality rate performed better than the allometric relationship 

of natural mortality to mass (Miller and Hyun 2018).  

The other main features in this model include considering observation and 

process errors, leading to a state-space framework, where I treat some time-

varying parameters as random effects (a.k.a. state variables). Traditional 

assessment models do not separate variance of the observations from those 

attributable to time-varying processes (Miller and Hyun 2018). However, the 

utility of formal state-space models wherein process errors in time-varying 

parameters are modeled and estimated is statistically significant (Miller and 

Hyun 2018). Accounting for random variation and observation error arising 

from the process of sampling from the population helps to better identify the 

true state of the fish population (Rudd and Thorson 2018). In this context, the 

proposed model treats the annual abundance at age as a random effect and the 

probability distribution related to fishing mortality as a penalty to the likelihood 

function. 

I also explored the effects of the presence or absence of a stock–recruitment 

relationship and process errors in annual abundance at age in the model 

framework. The relationship between the biomass of reproductively mature 

individuals (spawning stock biomass) and the resulting offspring added to the 

population (recruitment), i.e. the stock–recruitment relationship, is a 

fundamental challenge in population biology (Mangel et al. 2010). In some 
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cases, it is argued that recruitment is mainly determined by the environment and 

is independent of spawning stock biomass. The steepness, which was 

popularized by Mace and Doonan (1988), is set to 1 (Mangel et al. 2010). I try 

to determine the impact of stock–recruitment relationship on the result of 

estimation in this model. I also try to consider a length-based model without 

random effects as well as a state-space length-based model and compare each 

model’s performance to determine whether accounting for variation arising 

from natural processes or measurement processes separately (Rudd and Thorson 

2018) improves model performance. 

The purpose of this study is to develop and demonstrate this state-space 

length-based assessment model. This model requires yields, catch-per-unit-

effort (CPUE), and length composition data, all of which are readily available. 

For demonstrating this model, I used actual data on Korean chub mackerel 

(Scomber japonicus) stock. By conducting a simulation study and comparing 

the goodness-of-fit for data and Mohn’s (1999) , the measure of retrospective 

pattern, I compared the relative performance of the models chosen for 

comparison in this study. 
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2. Materials and Methods 

2.1. A state-space length-based model 

2.1.1. Fish length as discrete variable 

I assumed that a length class x of individuals at recruitment, r in the 

beginning of a year follows a discrete normal (Gaussian) random variable, rX : 

i.e., rX 2~ ( ,  )D r rNormal     where the subscript D indicates the random 

variable is ‘discrete’.  

 Thus, the probability mass function (PMF) of rX  can be written 

( )
2 2

2 2

1 1
( ) exp exp ( )

2 2
r r r

r rx

f x x x 
 

   
= − − − −      

   
   (1) 

where constants with respect to x are ignored. See Table 1 for notations. Then, 

the abundance of recruitment at each length class at the beginning of year t is  

, ,( ) ( ).t r t r rN x N f x=    (2) 

 

2.1.2. Mortality 

A distribution of population’s length frequency and abundances at age after 

recruitment change over time with the processes of growth and mortality. I 

followed Quinn et al. (1998)’s assumption that the mortality process occurs first 
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and then the growth process does. The total mortality rate is the sum of natural 

and fishing mortality rate: 

( ) ( ).t tZ x M F x= +  (3) 

I assumed the natural mortality rate to be constant across length classes and 

years but have fishing mortality rate to differ by each length class and year. 

Fishing mortality rate of length class x in year t is separable into the selectivity 

for length class and annual fully-selected fishing mortality in year t: 

( ) ( ) .t tF x S x F=   (4) 

I assumed a logistic selectivity at length class for the fishing fleet which is 

considered to be large purse-sein in the proposed model: 

50%( )

1
( ) .

1
x L

S x
e

− −
=

+
  (5) 

I treated annual fully-selected fishing mortality as a random walk with the 

known variance, 
2
log F : 

2
1 loglog( ) ~ (log( ),  )init FF Normal F    (6) 

and 

2
1 loglog( ) ~ (log( ),  )t t FF Normal F +  (7) 

where t = 1, …, T - 1.  



 

7 

 

The relative length distribution at age a at the end of year t where the process 

of morality took place during year t is derived from the PMF of the length class 

at age a at the beginning of year t: 

( )
, , ,( ) ( ) .tZ x

t a Z t ap x f x e
−

=    (8) 

 

2.1.3. Body growth 

To account for body growth after fish experienced mortality, I used Quinn et 

al. (1998)’s assumption that an individual of length class x will growth to length 

class l in one time step according to a stochastic growth model (Quinn et al. 

1998). The deterministic von Bertalanffy growth model is 

0( )
(1 ).

a a
aL L e

− −
= −  

This equation can be transformed into the relationship of 1aL +   against aL  

with the stochastic error term: 

1 (1 )a G G a GL L L  + = − + +  (9) 

where 2~ (0,  )G GNormal    and the Brody coefficient G  is e −
 . By 

modifying this equation, the expected length and variance at age a + 1 can be 

expressed by equation for length class x and age a, respectively, from Cohen 

and Fishman (1980): 



 

8 

 

( ) (1 )G Gx L x  = − +  (10) 

and 

2( 1 )
2 2 2( 1 ) 2

1 2

1
.

1

a r
a rG

a G G r

G


   



+ −
+ −

+
−

= +
−

 (11) 

Thus, length l of each individual at age a + 1 is considered to be a discrete 

variable and has a distribution which is discrete normal with the mean, ( )G x  

and the variance, 2
1a +  : i.e., 2

1| ~ ( ( ),  ).D G aL x Normal x  +   The PMF of 

length L at age a + 1 given length class x can be written 

1,

2 2
2 2

1 1

( | )

1 1
exp ( ( )) exp ( ( )) .

2 2

a G

G G
a al

f l x

l x l x 
 

+

+ +

=

   
− − − −   

   
   


 (12) 

 

2.1.4. Combining the process of mortality and body growth 

The relative length distribution at age a + 1 at the beginning of year t + 1 is 

1, 1 , , 1,( ) ( ) ( | ).t a t a Z a G
x

p l p x f l x+ + +=   (13) 

The number of individuals of length class l at age a + 1 at the beginning of year 

t + 1 is calculated using the number of individuals at age a at the beginning of 

year t and eq. (13): 
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1, 1 , 1, 1( ) ( ).t a t a t aN l N p l+ + + +=   (14) 

Then, the abundance at age a + 1 at the beginning of year t + 1 is 

1, 1 1, 1( ).t a t a
l

N N l+ + + +=   (15) 

The PMF of a length class can be written 

1, 1
1, 1

1, 1

( )
( )

( )

t a
t a

t a

p l
f l

p l

+ +
+ +

+ +

=


 (16) 

or 

1, 1
1, 1

1, 1

( )
( ) .

t a
t a

t a

N l
f l

N

+ +
+ +

+ +

=  (17) 

 

2.1.5. Abundances at the first year 

In the propsed model, the logarithm of abundances at all ages at the first year 

1,(log( ))t aN =   is assumed to be distributed normally with mean 
1

log( )
tN
=

 

and the known variance 
1

2
log tN

=
: 

1 1

2
1, loglog( ) ~ (log( ),  )

t tt a N NN Normal  
= ==  (18) 

where a = r, …, A. The known variance provides the constraining penalty for 

the estimates of deviations of abundance at age at the first year (Methot et al. 
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2020). 

As I assumed the distribution of length frequency at recruited age, I could 

derive length frequency distribution at age after recruitment for each cohort by 

considering both the mortality and the body growth process. However, as 

abundances at age at the first year are not from certain one common cohort, I 

needed to define the length frequency distribution by age. I assumed the 

equilibrium state for total mortality rate to resolve it. I considered the mean 

value, Z  of the total mortality rates in all years by length class. This can be 

written as 

( )
1, , 1,( ) ( ) .Z x

t a Z t ap x f x e−
= ==   (19) 

Then, the process of growth occurs: 

1, 1 1, , 1,( ) ( ) ( | ).t a t a Z a G
x

p l p x f l x= + = +=   (20) 

The PMF of length class at age a + 1 at the first year can be written: 

1, 1
1, 1

1, 1

( )
( ) .

( )

t a
t a

t a

p l
f l

p l

= +
= +

= +

=


 (21) 

By repeating this calculation until the maximum age, each PMF of length 

classes at all ages can be obtained. The number of individuals of length class x 

at age a at the beginning of the first year is calculated 
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1, 1, 1,( ) ( )t a t a t aN l N f l= = ==   (22) 

where a = 2, …, A+. 

 

2.1.6. Spawning stock biomass 

I estimated the spawning stock biomass by estimating the number of 

spawners and considering maturation rates, the ratio of female fish to both sex 

fish, and body weights. I applied the length-maturation relationship of a logistic 

form (eq. (23)) and the ratio of the female fish, 0.5 following Kim et al. (2020): 

0 1( )

1
( ) .

1
b b x

Mat x
e

− 
=

+
  (23) 

Then, the number of spawners of length class x at age a at the beginning of year 

t is expressed as 

, ,( ) ( ) .( )t a t a femaleSpawners x N x Mat x ratio=     (24) 

Summing spawners from eq. (24) over age and length classes, I get the number 

of spawners at the beginning of year t: 

, ( )t t a
a x

Spawners Spawners x=   (25) 

Also, multiplying the number of spawners of length class x at age class a at the 

beginning of year t in the right side of eq. (25) by the mean weight at length 
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class ( ( ))W x  , spawning stock biomass at the beginning of year t can be 

acquired 

, ( ) ( )t t a
a x

SSB Spawners x W x=   (26) 

where the form of allometric length-weight relationship ( )W x  is as follows: 

( ) .W x x=   (27) 

 

2.1.7. Recruitment 

I considered two assumptions for estimating recruitment in all remaining 

years except the first year. The first assumption is that Beverton–Holt stock–

recruitment model in which recruitment is related to spawning stock biomass is 

applied to estimate recruitments. The second is the assumption that recruitment 

is related independently spawning stock biomass. Two alternative assumptions 

are as follows: 

1,

t

SR SR t
t r

R

SSB

SSB
N

 



+


 + 

= 



 (28) 

where t = 2, …, T. In the case that the second assumption is utilized in this model, 

logarithm of recruitment at the beginning of year t ,(log( ))t rN  is assumed to 
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be distributed normally with mean log( )R  and fixed variance 
2
log R : 

2
, loglog( ) ~ (log( ),  )t r R RN Normal    (29) 

where t = 2, …, T. The fixed variance provides the constraining penalty for the 

estimates of recruitment deviations and it is not affected by data (Methot et al. 

2020). 

 

2.1.8. Abundance at length class x at each age 

The following equation describes how the abundances at length class x at 

each age are calculated. The eq. (22) presents those in the first year: 

1, 1, 1,( ) ( ).t a t a t aN l N f l= = ==   (22) 

And the eq. (30) presents those for year > 1: 

,

, 1, 1 ,

1, 1 , 1, ,

( )     for  

( ) ( ) for  1

( ) ( ) for  

t r r

t a t a t a

t a t a t a t A

N f x a r

N x N p x a A

N p x N p x a A

− −

− − −

  =


=   
  +  =

 

 

(30) 

 

2.1.9. Random effects 

I considered abundance at age and years as a random effects. Logarithm of 

abundance for age and year > 1 are normally distributed conditional on the 
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calculated deterministic numbers at age (Miller and Hyun 2018): 

* 2
, , loglog( ) ~ (log( ),  ).    for   > 1t a t a NN Normal N t  (31) 

In this model, I considered process error in abundance at age separated by 

recruitment and remaining abundance at older ages. Therefore, I can include 

process errors in annual deviations around Beverton–Holt model stock–

recruitment curve or logarithm of recruitment   and in interannual transitions 

of abundance at older ages. Although I considered random effects as two parts, 

I assume there is only one common variance for the abundance at age and 

estimate this parameter. The reason why I treat it is estimating a variance in 

stock assessment is difficult, so I tried to lessen the number of free parameters 

difficult to be estimated. Now, I can take into account several scenarios, 

depending on which assumption for estimating recruitment to select, and 

whether to consider both or either process error or not. How to set up a series of 

scenarios will be explained further later. 

 

2.1.10. Measurement error 

I assumed the logarithm of fishery yields have observation errors, a normal 

(Gaussian) random variable with the known variance 
2
logY : 
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2
loglog( ) ~ (log( ),  ).tt YY Normal Y   (32) 

The predicted catch at length class x in year t by the fishing fleet is 

( )
,

( )
( ) (1 ) ( ).

( )
tZ xt

t t a
ta

F x
C x e N x

Z x

−
=  −   (33) 

The predicted aggregate yield by the fishing fleet in year t is 

( ) ( ).t t

x

Y C x W x=   (34) 

The observed logarithm of aggregate relative biomass indices for fishing 

fleet which are equivalent to catch-per-unit-effort (CPUE) in this model are 

assumed to follow a normal distribution with the known variance 
2
log I : 

2
loglog( ) ~ (log( ),  ).tt II Normal I   (35) 

The predicted relative biomass index at the beginning of year t is 

.t tI q B=   (36) 

The biomass at the beginning of year t is 

, ( ) ( ).t t a
a x

B N x W x=   
(37) 

The catchability for the relative biomass index is assumed to be constant 

regardless of year and estimated on a logit-scale to avoid boundary problems 
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during estimation (Miller and Hyun 2018): 

logit( )1

q q
q q

u l
q l

e−

−
= +

+
 (38) 

where ql  and qu  are lower and upper bounds of parameter q  and logit( )q  

is the actual free parameter estimated in the model (Miller and Hyun 2018). 

The length frequencies by the fishing fleet catch are assumed to follow a 

multinomial distribution: 

ˆ~ ( ,  )t t tm Multinomial n p  (39) 

where tn  is the sample size of the length frequencies by the fishing fleet catch 

in year t, and ˆ tp  is the vector of predicted catch proportions by length class in 

year t: 

( )
ˆ

( )

t
t

t

x

C x
p

C x
=


 

(40) 

 

2.2. Model scenarios 

I considered six model scenarios and summarize them in (Table 2). The 

criteria determining the model scenario are as follows: (i) model for estimating 

recruitment after the first year, and (ii) how the population abundances at age 
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after the first year were treated. In the respective criterion, there are two and 

three options to choose from, respectively.  

In the first criterion, the options are (see eq. (28)): (i-1) Beverton–Holt 

stock–recruitment model, (ii-2) mean-deviations which includes assumption 

that recruitment is related independently spawning stock biomass. In the second 

criterion, the options I can select are as follows: (ii-1) no random effects, (ii-2) 

treating only annual recruitment after the first year as random effects, and (ii-3) 

treating all abundances at age after the first year as random effects. Thus, a total 

of 6 scenarios can be constructed by combining (i) and (ii) (Table 2). The first 

three (M1-M3) are assumed to have Beverton–Holt stock–recruitment model, 

while the later three (M4-M6) are assumed that recruitment is related 

independently spawning stock biomass. The difference among model scenarios 

M1-M3 and among M4-M6 are in the assumptions for process errors. Model 

scenarios M1 and M4 are assumed to have no random effects. Model scenarios 

M2 and M5 are assumed to treat only recruitment after the first year as random 

effects, and model scenarios M3 and M6 are assumed to consider abundance at 

age after the first year as random effects. Therefore, model scenarios M1 and 

M4 are referred to as a length-based model and model scenarios M2, M3, M5, 

and M6 are referred to as a state-space length-based model. 

 

2.3. Objective function 



 

18 

 

Free parameters in the proposed model are the mean value of abundance 

and all abundances at age at the first year 
1 1,( , ),

tN t aN
= =   catchability for 

relative biomass index ( ),q   all selectivity parameters 50%( ,  ),L   some 

growth parameters ( ,  ),G    initial fully-selected fishing mortality rate and 

annual fully-selected fishing mortality rate at all years ( ,  ),init tF F  and constant 

natural mortality rate across length classes and years ( )M . In model scenarios 

M1, M2, and M3, the two parameters in Beverton–Holt stock–recruitment 

model ( ,  )SR SR   are commonly added as free parameter. However, in model 

scenarios M4, M5, and M6, mean value of recruitment ( )R   is commonly 

added as free parameter. Further, annual recruits after the first year ,( )t rN  are 

treated as free parameter in model scenario M4, whereas these are treated as 

random effects in model scenarios M5, and M6. State-space model scenarios 

M2, M3, M5, and M6 estimate additional free parameter for variance for 

random effects 
2
log( ).N  Therefore, it is different that what kind of and the 

number of free parameters estimated for each model scenario fitted to the Korea 

chub mackerel data (Table 3). 

I estimated free parameters using the maximum likelihood approach (MLE), 

and the likelihood components are defined according to eq. (6), (7), (18), (29), 

(31), (32), (35), and (39). The likelihood component for eq. (6), and (7) for 

logarithm of fully-selected fishing mortality rate is as follows: 
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( )

( )

2
1 1 log

1
2

1 log

1

log( ) | log( ),

       log( ) | log( ), .

init F

T

t t F

t

L Normal F F

Normal F F




−

+

=

= 


  

The notation, Normal(X|Y, Z) indicates the normal pdf of X whose population 

mean and variance are Y and Z , respectively.   

The likelihood component for eq. (18) for logarithm of abundances at all ages 

at the first year is as follows: 

( )1 1

2
2 1, loglog( ) | log( ), .

t t

A

t a N N

a r

L Normal N  
= ==

=

=    

The likelihood component for eq. (29) for logarithm of recruitment is as follows: 

( )2
3 , log

2

log( ) | log( ), .
T

t r R R

t

L Normal N  
=

=    

The likelihood component for eq. (31) for logarithm of abundance at age can 

be divided into two parts depending on model scenario related to random effects. 

( )(1) * 2
, , log4

2

log( ) | log( ),
T

t r t r N

t

L Normal N N 
=

=    

where (1)
4L  includes assumption corresponding (ii-2) option in model scenario. 

( )(2) * 2
, , log4

2

log( ) | log( ),
T A

t a t a N

t a r

L Normal N N 
= =

=    
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where (2)
4L  includes assumption corresponding (ii-3) option in model scenario. 

The likelihood component for eq.  (32) for observed logarithm of aggregate 

yields by the fishing fleet is as follows: 

( )2
5 log

1

log( ) | log( ), .
T

tt Y

t

L Normal Y Y 
=

=   

The likelihood component for eq. (35) for observed logarithm of aggregate 

relative biomass indices for fishing fleet is as follows: 

( )2
6 log

1

log( ) | log( ), .
T

tt I

t

L Normal I I 
=

=    

The likelihood component for eq. (39) for the multinomial distribution for the 

length composition data for fishing fleet is as follows: 

,

7
,1

ˆ
! .

!

t xoT
t

t
t xt x

p
L n

o
=

 
 =
 
 

    

The likelihood components 1 2 5 6 7,  ,  ,  ,  and L L L L L  are commonly included 

in all of model scenarios I considered, whereas the likelihood components 

(1) (2)
3 4 4,  ,  and L L L  are only involved in corresponding model scenarios (Table 

2). Therefore, according to each model scenario, the joint likelihood function is 

the product of the corresponding likelihood components in the model scenario. 

I implemented the state-space length-based model in R package, TMB 
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(Kristensen et al. 2015; Developer Core Team 2019). TMB uses Laplace 

approximation to integrate joint log-likelihood over the random effects, then, 

the marginal log-likelihood is computed and obtained. The “nlminb” function 

for optimization is used to minimize the negative of the marginal log-likelihood 

function (objective function). I showed my TMB code (cpp file) in the appendix. 

 

2.4. Application to Korea chub mackerel (Scomber japonicus) 

stock 

I illustrated this model for the Korea chub mackerel stock. Chub mackerel 

are one of the most important stocks for fishery in Korea. Chub mackerel are 

mainly caught by the large purse-sein fishery, and the fishery catch accounts for 

about 92% of the total catch of Chub mackerel in Korea. For this reason, I 

assumed that catch of Chub mackerel by large purse-sein represents the whole 

of catch of that. This model requires three kind of data that are fishing fleet 

yields, relative biomass indices, and length frequencies by the fishing fleet catch. 

I used annual total yields from 2000–2019 provided by the Korean Statistical 

Information Service (KOSIS), and annual CPUE and length frequency data for 

the fishing fleet catch from large purse-sein from 2000–2019 provided by the 

National Institute of Fisheries Science (NIFS).  

To apply this model to Korea chub mackerel, I made a few assumptions. I 
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defined the age of recruitment as age 1 and the terminal age as age 6 for Korea 

chub mackerel. Also, length bin width is defined as 1 cm and the number of 

classes is 43 whose range is from 10.5–52.5 cm. In the length frequency data by 

the fishing fleet catch assumed to follow a multinomial distribution, the numbers 

of annual total sample size are assumed to be same and set as 200 individuals. 

For some parameters that are difficult to be estimated or have some information 

from previous studies or estimated value using related data outside this model, 

those are declared as an input (Table 4). 

In terms of weights for likelihood, the sample size of the length frequency 

data for the fishing fleet catch is assumed to be same throughout all years to 

allocate the same weight to every year I consider. Other than that, I did not have 

any information for some weights for likelihoods such as fixed variances of 

observation error and penalized likelihood 
2 2 2 2
log log log log,  ,  ,  ,Y I F R     and 

1

2
log .

tN
=

 For that reason, I performed a sensitivity analysis for these weights. I 

expressed a variance of logarithm of random variable X as a coefficient of 

variation of X, using following equation
2

log log(( ) 1)X XCV = +   . In 

sensitivity analysis for weights for likelihood components, I first assumed a set 

of plausible candidates for each value of weights and then estimated parameters 

repeatedly conditioned on those. In the next step, I compared the results of 

sensitivity analysis using several criteria which include whether the numerical 
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optimization was successful, maximum gradient value, etc. Consequently, the 

best set of weights was determined based on the results and used in estimation 

of parameters. 

 

2.5. Model performance 

To compare in performance among each model scenarios, I used measure of 

a retrospective pattern and did a simulation study. For measure of a retrospective 

pattern, I calculated Monh’s  and checked the consistency of model estimates. 

I peeled off total five years from the terminal year in sequence and 

simultaneously estimated parameters using data peeled off. Then, I compared 

the estimates which are from data peeled off based on the estimates which are 

from all of data.  

, ,

,1

1
( )

m
T y T y T y T

T y Ty
m

 
 



− − −

−=

−
=    

, ,
,

,

( )
t T y t T

t y
t T

 
 



− −
=   

I defined T = 2019, and y = 1, …, 5 and calculated Mohn’s  for estimates of 

annual fully-selected fishing mortality rate and annual spawning stock biomass. 

For simulation (Figure 1), I generated 1000 sets of pseudo data which 

consisted of annual yields by the fishing fleet, annual catch-per-unit-effort for 
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relative biomass indices for fishing fleet, and annual length frequencies by the 

fishing fleet catch. I commonly considered observation errors in yield, CPUE, 

length frequency data by the fishing fleet in all model scenarios, whereas 

process errors in recruitment or abundance at age after the first year are included 

only in a state-space model scenario (Table 5). The estimates of parameters by 

each model scenario from the fits to the Korea chub mackerel data are used as 

the true parameter values for generating pseudo data. I estimated parameters 

using sets of pseudo data and checked the number of convergences of each 

model scenario fitted to corresponding sets of pseudo data.  

I used four criteria of convergence: (i) convergence flag that the nlminb 

function returns, (ii) whether to generate Hessian matrix, (iii) whether estimates 

are within the bounds I set, and (iv) the maximum gradient value. I use relative 

difference to compare true parameter values I set and estimates of parameters 

from the fits to the set of pseudo data. The relative difference of a parameter 

estimate i  from the true value i  for pseudo data set i is as follows (Miller 

and Hyun 2018): 

RD ( )
i i

i
i

 




−
=   
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Table 1. Description of notations. 

Notation Description 

Indices  

a Imaginary age class 

A+ Terminal imaginary age class and its above classes 

r Recruitment age 

t Year 

T Terminal year in all year considered 

x Length class before the process of growth occurs 

l Length class after the process of growth occurs 

  

Data  

tY   Observed aggregate yield by the fishing fleet in year t 

tI   
Observed aggregate relative biomass indices for fishing 

fleet in year t 

to   
Vector of observed catch composition frequencies by 

length class in year t 

tn   
Sample size of the length frequencies by the fishing fleet 

catch in year t 

  

Parameter(s)  

r  Mean of length distribution of recruitment 

2
r  Variance of length distribution of recruitment 
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M   Length- and time-invariant natural mortality rate 

initF   Initial fully-selected fishing mortality rate 

tF   Fully-selected fishing mortality rate in year t 

2
log F   

Variance of random walk for fully-selected fishing 

mortality rate 

50%,  L   Logistic selectivity parameters 

0,  , L a   Parameters in von Bertalanffy growth model 

2
G   

Variance of stochastic error term in von Bertalanffy growth 

model 

1tN
=

  Mean abundance at the first year 

1,t aN =   Abundance at age a at the beginning of the first year 

1

2
log tN

=
  Variance of distribution of abundance at age at the first year 

0 1,  b b   Logistic maturation parameters 

femaleratio   Ratio of female fish 

,      Parameters in allometric length-weight relationship 

,  SR SR    Parameters in Beverton–Holt stock–recruitment model 

R   Mean of recruitment 

2
log R   Variance of distribution of recruitment 

2
log N   Variance of process error in abundance at age 

2
logY   Variance of observation errors for fishing fleet yield 

2
log I   

Variance of observation errors for relative biomass indices 

for fishing fleet 

q   Catchability for relative biomass index for fishing fleet 
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,  q qu l   Lower and upper estimation bounds for catchability q  

logit( )q   Actual parameter for estimating catchability q  

  

Derived 

parameter(s) 
 

,t aN   Abundance at age a at the beginning of year t 

, ( )t aN x   Abundance of length class x at age a at the beginning of 

year t 

rX   Discrete random variable for length of recruitment 

( )rf x   Probability mass function of rX  

( )tF x   Fishing mortality rate at length class x in year t 

( )S x   Selectivity at length class x 

( )tZ x   Total mortality rate at length class x in year t 

, , ( )t a Zp x   Relative length distribution at age a at the end of year t 

where the process of morality in year t took place 

aL   Length at age a 

G   Brody coefficient, e −
  

( )x   
Expected length when individuals of length class x grow 

up 

2
1a +   

Variance of length distribution at age a + 1 when 

individuals of length class x at age a grows up 

1, ( | )a Gf l x+   Conditional probability of individuals of length class l of 

which length class is x before growing up 

1, 1( )t ap l+ +   Relative length distribution at age a + 1 at the beginning of 

year t + 1 

, ( )t af x   Probability of individuals of length class x at the beginning 

of year t 
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Z   Mean of total mortality rate in all years 

( )Mat x   Maturation at length class x 

, ( )t aSpawners x   Number of spawners of length class x at age a at the 

beginning of year t 

tSSB   Spawning stock biomass at the beginning of year t 

( )W x   Average weight corresponding length class x 

tB   Biomass at the beginning of year t 

  

Predicted 

value(s) 
 

tY   Predicted aggregate yield by the fishing fleet in year t 

( )tC x   
Predicted catch of length class x by the fishing fleet in year 

t 

tI   
Predicted aggregate relative biomass indices for fishing 

fleet in year t 

ˆ tp   Vector of predicted catch proportions by length class in 

year t 

  

Random 

effects 
 

*
,t aN   

Abundance at age a at the beginning of year t treated as 

random effects  

  

The others  

iL  Likelihood component i 

XCV   Coefficient of variation of X 
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, ( )t y    

Relative difference of estimate for parameter  in year t 

when using data of which terminal year is T – y and 

estimate for parameter  in year t when using data of which 

terminal year is T 

RD ( )i    
Relative difference of estimate and true value for 

parameter  of pseudo data set i 
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Table 2. Description of model scenarios. 

Model scenario 

(corresponding 

likelihood components) 

(i) Stock–recruitment relationship 

(i-1) Beverton–Holt model (i-2) mean-deviations 

(ii) 

Random 

effects 

(ii-1) 

No random 

effects 

M1 

1 2 5 6 7( ,  ,  ,  ,  and )L L L L L   

M4 

1 2 3 5 6 7( ,  ,  ,  ,  ,  and )L L L L L L   

(ii-2) 

Only recruitment after 

the first year 

M2 
(1)

1 2 5 6 74( ,  ,  ,  ,  ,  and )L L L L L L   

M5 
(1)

1 2 3 5 6 74( ,  ,  ,  ,  ,  ,  and )L L L L L L L   

(ii-3) 

Abundance at age after 

the first year 

M3 
(2)

1 2 5 6 74( ,  ,  ,  ,  ,  and )L L L L L L   

M6 
(2)

1 2 3 5 6 74( ,  ,  ,  ,  ,  ,  and )L L L L L L L   
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Table 3. Number of free parameters estimated for each model scenario fitted to 

Korean chub mackerel data. 

Parameter M1 M2 M3 M4 M5 M6 

1
log( )

tN
=

  1 1 1 1 1 1 

1,log( )t aN =   6 6 6 6 6 6 

log( )R   0 0 0 1 1 1 

,log( )t rN   0 0 0 19 0 0 

log( )SR   1 1 1 0 0 0 

log( )SR   1 1 1 0 0 0 

log( )initF   1 1 1 1 1 1 

log( )tF   20 20 20 20 20 20 

log( )M  1 1 1 1 1 1 

log( )   1 1 1 1 1 1 

log( )G   1 1 1 1 1 1 

50%log( )L   1 1 1 1 1 1 

log( )   1 1 1 1 1 1 

logit( )q   1 1 1 1 1 1 

log N   0 1 1 0 1 1 

Total 36 37 37 54 36 36 
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Table 4. Input values used. The value of parameters r , L , and femaleratio  

are taken from previous studies (Choi et al. 2000; Kim et al. 2020) and the value 

of parameter 2
r  is assumed to be CV of 10% about .r  Using related data 

from other sources, parameters 0b  , and 1b   are externally estimated in the 

length-maturation relationship, and  and  in the allometric length-weight 

relationship. The estimates are used as input values in this model. 

Parameter Input value 

.r  18.0 (cm) 

2
r  (0.1∙18.0)2 (cm2) 

L  51.67 (cm) 

0b   20.11 

1b  0.7 (cm2) 

 0.0028 (g/cm3.43) 

 3.43 

femaleratio  0.6 
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Table 5. Level of observation and process errors used in generating pseudo data 

for each model scenario. 

 M1 M2 M3 M4 M5 M6 

Sample size 200 200 - 200 200 200 

YCV  0.1 0.1 - 0.1 0.1 0.1 

ICV  0.1 0.1 - 0.1 0.1 0.1 

RCV  - 0.1 - - 0.1 0.1 

NCV  - - - - - 0.1 

 

  



 

34 

 

 

Figure 1. Overall structure of the simulation study. First, all true values and the number of iterations (i) are set. A total of i pseudo 

data sets considering process errors and observation errors are generated. A total of i estimations are performed using each pseudo 

data set.
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3. Results 

Among the six models I fit to the Korean chub mackerel data, five model 

scenarios converged. Model scenario 3 (M3), which allowed process errors in 

abundance at age and used the Beverton–Holt model for predicting annual 

recruits, did not. The converged five model scenarios had an invertible Hessian 

providing variance estimation of parameters estimated by ML (Miller and Hyun 

2018). 

 

3.1. Goodness-of-fit 

The goodness-of-fit values of each model scenario (except M3) for annual 

yields, CPUEs, and length frequency data were generally good (Figure 2, Figure 

3, and Figure 4.). In particular, M6, the state-space model in which abundances 

at age after the first year are treated as random effects and recruitment is related 

independent of spawning stock biomass showed the best outcomes with respect 

to goodness-of-fit for all data used in this length-based model. To compare 

results, all model scenarios were divided into two classes depending on the form 

of the stock–recruitment relationship, i.e., M1 and M2 (Beverton–Holt), and M4, 

M5, and M6 (mean-deviations). 

Of the two model scenarios, M1 and M2, that use the Beverton–Holt model 

for annual recruits, M1 performed better than M2 in goodness-of-fit for yields 
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(Figure 2). Of the three model scenarios, M4, M5, and M6, where the logarithm 

of recruitment is normally distributed about a mean value, the result of M6 was 

best in goodness-of-fit for yields (Figure 2b). Although the results of M1 and 

M6 in each class were the best in their respective classes, all models showed 

good results in general. 

 M2 performed much better than M1 in goodness-of-fit for CPUE (Figure 

3). Although the predicted line in M1 penetrated all CPUEs, it did not seem to 

explain the annual variation of CPUE satisfactorily. In goodness-of-fit for the 

CPUEs of M4, M5, and M6, all predicted lines of each model scenario seemed 

to explain the annual variation of CPUE well (Figure 3). Within each class of 

model scenarios (Beverton–Holt or mean-deviations), state-space models (M2, 

M5, and M6) outperformed non-state-space models (M1 and M4) with respect 

to goodness-of-fit for CPUE. Furthermore, comparing the results of goodness-

of-fit for CPUE of M1 and M4, M4 (which included penalized likelihood for 

annual recruitment) performed better than M1. 

In goodness-of-fit for the length frequency data by the fishing fleet catch 

assumed to follow a multinomial distribution, the difference between all model 

scenarios was negligible (Figure 4.). Their annual predicted lines were almost 

bell-shaped. For this reason, some annual length frequency data that do not have 

a unimodal shape or have a skewed distribution did not fit well with the 

predicted line. 
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3.2. Retrospective pattern 

Initially, when I peeled off the data from the terminal year for checking the 

retrospective pattern and achieving Mohn’s  the state-space models (M2, M5, 

and M6) failed to converge. To mitigate this issue, the variance of process error 

in state-space models was treated as an input value, which was set by the 

estimate that is achieved when the state-space model converged for all Korean 

chub mackerel data. The variance of process error in the state-space model out 

of some free parameters was treated as the input value because it was the most 

difficult to estimate compared to the others. 

The highest absolute value of Mohn’s  estimates for fully-selected fishing 

mortality rate and spawning stock biomass for all model scenarios was 

approximately 0.227 and the suggested retrospective patterns were relatively 

minor (Figure 5). M1 had the lowest absolute value of Mohn’s  estimates, 

followed by M6. With respect to consistency of model estimates when data are 

peeled off in sequence, M1 and M6 had better results than other model scenarios 

(Figure 6). 

 

3.3. Simulation study 

In the simulation study, state-space models (M2, M5, and M6) did not 
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noticeably converge owing to the difficulty of estimating the variance of process 

errors. For this reason, the variance of process errors in state-space models was 

also treated as an input value. Consequently, the relative difference of the 

variance of process errors in state-space models could not be calculated. 

The number of convergences among model scenarios in the simulation study 

varied considerably (Table 6). M6, which outperformed the other model 

scenarios with respect to the goodness-of-fit and retrospective pattern, 

converged most frequently. Within each class of model scenarios (Beverton–

Holt or mean-deviations), state-space models (M2, M5, and M6) outperformed 

the other models (M1 and M4). The more random effects that were considered, 

the better the result of convergence (M5<M6). Among model scenarios 

including varying stock–recruitment relationships with the same assumption 

about random effects ((M1 and M4) and (M2 and M5)), the model scenarios that 

included the Beverton–Holt model converged less than others.  

The relative differences of each parameter estimate were generally 

distributed around zero in the simulation study (Figure 7). However, the 

logarithm of the initial fully-selected fishing mortality rate (log )initF  and the 

variance of the stochastic error term in the von Bertalanffy growth model 

(log )G  showed a wide distribution of relative differences. Furthermore, fits 

of some model scenarios in the simulation study produced a bias in the estimate 
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of these (log ,  log )init GF   . Whether the bias was positive or negative among 

model scenarios was not consistent. M1 and M4 performed better than the other 

model scenarios with respect to the degree of distribution of relative difference 

and bias of each parameter estimate. This result is expected, given that M1 and 

M4, which have no random effects, considered only observation error in 

generating pseudo data sets. Given that state-space models (M2, M5, and M6) 

included observation error as well as process error in abundance at age in 

generating pseudo data sets, the results of relative difference seemed to be good. 

 

3.4. Estimates 

The estimates of the natural mortality rate for all model scenarios except M3 

were reliable but differed depending on the model scenario (Table 7). The 

estimate of natural mortality rate in M6 was 0.10 year−1. This value was much 

lower than that in the other model scenarios. Instead of having a lower estimate 

of the natural mortality rate in M6 than in the others, however, estimates of 

annual fully-selected fishing mortality rate were generally higher than those of 

the others (Figure 8). Although the scale of estimates of annual fully-selected 

fishing mortality rate differed for all model scenarios, their annual trends were 

similar. 

The estimates of parameters related to body growth caused length 
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distributions by age to be different by each cohort. For example, the probability 

mass function of length distributions by age of the cohort recruited at the 

beginning of 2014 is described in Figure 9. As it was assumed that the length 

distribution for recruitment is fixed, all length distributions for age 1 were the 

same regardless of converging model scenarios. Although widening the variance 

of length distribution with aging was similar for all model scenarios, the mean 

values of length distribution by age were not. Remarkably, the gaps between the 

mean values of length distribution by age decreased with aging until the 

maximum age. This was consistent with the assumption that the process of body 

growth follows the von Bertalanffy growth model where the growth rate of the 

individual reduces as it grows. However, the gap between age 5 and maximum 

age, age 6+, increased again, unlike the behavior for previous ages. This was 

because age plus group was considered. In other words, the length distribution 

for the maximum age of a certain cohort was calculated considering not only 

the individuals of the cohort but also the remaining individuals from previous 

cohorts that survived without dying. Comparing various models, the gaps 

between the mean value of length distribution by age were the largest in M6. As 

a result, the mean value of length distribution for the maximum age, 6+, was the 

largest, i.e., approximately 31.5 cm. 

There was no significant difference in the estimated selectivity curves for 

various converging model scenarios (Figure 10). The overall shapes were 
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similar; however, there was a slight difference in the selection below 30 cm. The 

values of 50%L  ranged between 29–31 cm and the values of selection of 1.0 

were represented at approximately 40 cm for converging model scenarios. 

The annual estimate of biomass and spawning stock biomass for all model 

scenarios showed a similar trend, but the scale and range of those differed 

considerably (Figure 11). The scale and range of estimated annual biomass and 

stock spawning biomass in M6 was the lowest. 

Within the class of models that included the Beverton–Holt model for 

recruitment (M1 and M2), the shape and scale of estimated lines for the 

Beverton–Holt model were different (Figure 12). The shape of the estimated 

line for the Beverton–Holt model in M1 increased rapidly at the beginning of 

spawning stock biomass. Once the spawning stock biomass was above a certain 

level, there seemed to be no significant change in recruitment as the spawning 

stock biomass changed. As M1 was assumed to have deterministic annual 

recruitment depending on the estimated line for the Beverton–Holt model, all 

points representing estimated annual recruit were on the line. These results 

implied that recruitment in M1 was not significantly affected by spawning stock 

biomass, though recruitment is related to spawning stock biomass when using 

the Beverton–Holt model. By contrast, the shape of the estimated line for the 

Beverton–Holt model in M2 gently increased as compared to that of M1, which 

suggested that as the spawning stock biomass increases, recruitment also 
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increases. As M2 treated recruitment as a random effect, however, all points 

representing predicted annual recruit were distributed above or below the line, 

unlike for M1.  
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Table 6. Number of convergences by model scenario. 1000 denotes the total 

number of iterations in the simulation study. 

Model 
Convergence 

(1000) 

M1 364 

M2 585 

M3 - 

M4 448 

M5 787 

M6 946 

 

  



 

44 

 

Table 7. Estimates of natural mortality rate by model scenario. 

Model 
Natural mortality rate 

(year−1) 

M1 0.374 

M2 0.500 

M3 - 

M4 0.527 

M5 0.577 

M6 0.100 
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Figure 2. Goodness-of-fit for annual total yields of chub mackerel from 2000–2019. Panel (a) describes the results of M1 and 

M2, and panel (b) represents those of M4, M5, and M6, respectively. The points are observed yields and each line represents 

predicted values by model scenario.
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Figure 3. Goodness-of-fit for annual CPUE’s of chub mackerel from 2000–2019. Panel (a) describes the results of M1 and M2, 

and panel (b) represents those of M4, M5, and M6, respectively. The points are observed CPUE’s and each line represents 

predicted values by model scenario. 



 

47 

 

 



 

48 

 

Figure 4. Goodness-of-fit for length frequency data of chub mackerel by the fishing fleet catch from 2000–2019. The histograms 

are observed data and each line is predicted values by model scenario. 
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Figure 5. Mohn’s  for fully-selected fishing mortality and spawning stock 

biomass by model scenario.
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Figure 6. Relative difference plot of retrospective patterns for fully-selected fishing mortality and spawning stock biomass by model 

scenario. Five years from the terminal year in sequence are peeled off. 
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Figure 7. Box plot of relative differences of estimates for pseudo data generated in simulation study by model scenario. The red 

line indicates that the relative difference is zero. 
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Figure 8. Estimates of fully-selected fishing mortality rate by model scenario. 
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Figure 9. Estimated probability mass function (PMF) of length class by age of the cohort recruited at the beginning of 2014 by 

model scenario. The black line represents estimated PMF of length class for age 1 in 2014. The red line represents estimated PMF 

of length class for age 2 in 2015. This process is repeated and the pink line on the far right represents estimated PMF of length class 

for age 6+ in 2019. 
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Figure 10. Estimated selectivity curve by model scenario. The horizontal dotted 

line indicates the value of selection is 0.5.
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59 

 

Figure 11. Estimated (M1, M2, M4, and M5) or predicted (M6) annual biomass and spawning stock biomass by model scenario. 

The black line and the red line describe estimated (M1, M2, M4, and M5) or predicted (M6) annual biomass and spawning stock 

biomass, respectively. Note the change in the y-axis. 
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Figure 12. Beverton–Holt stock–recruitment relationship by model scenario assumed that recruitment is related to spawning stock 

biomass (M1 and M2). The solid line represents the estimated line for the Beverton–Holt model and the points are estimated (M1) 

or predicted (M2) annual recruits. Note the change in the y-axis. 
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4. Discussion 

It was observed that the state-space models (M2, M3, M5, and M6) have 

difficulty in reaching convergence when the variance of process error in 

abundance at age and year is treated as a free parameter. Specifically, the 

variances of process error in recruitment as well as in abundance at age except 

recruitment in M3 and M6 were estimated, but convergence failed to occur. By 

assuming that there is only one common variance of process error in all 

abundance at age, M6 converged, but M3 did not. This seems to be because M3, 

which allowed process error in abundance at age and used the Beverton–Holt 

model for predicting annual recruitment, has more burdens with respect to 

having multiple random effects and some free parameters that are difficult to 

estimate, such as two parameters in the Beverton–Holt model ( ,  )SR SR   and 

natural mortality rate ( )M . 

Although M3 did not converge, the converged state-space model scenarios 

(M2, M5, and M6) outperformed the models without random effects (M1 and 

M4) with respect to goodness-of-fit for all data and convergence rate in the 

simulation study. Furthermore, retrospective patterns in all model scenarios 

were negligible. Considering the comprehensive results, it was observed that 

M6, the state-space model in which the abundances at age after the first year are 

treated as random effects and recruitment is related independent of spawning 
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stock biomass, performed best among all models. In terms of the number of free 

parameters, M4, which has the maximum number of free parameters (54) and 

no random effects, was expected to show good results. However, even though 

M5 and M6 have 36 free parameters, those that have random effects 

outperformed M4. This might suggest that considering observation errors in 

data and process errors in time-varying parameters is meaningful in stock 

assessment. 

However, there were some disadvantages when allowing stochasticity in the 

interannual transition in abundance. As can be seen from the result of 

convergence in M3 and treating the variance of process error as an input value 

in a retrospective pattern and simulation study, there were difficulties in 

numerical optimization. In particular, the state-space models considered in this 

study are sensitive to the weighing terms for likelihood in the model. 

Furthermore, considering process error and including random effects in the 

model considerably increases the computation time. Even though TMB, known 

to be fast for implementing and fitting state-space models, was used, the process 

was still time-intensive. 

Annual variation of recruits was also found to potentially affect the result of 

goodness-of-fit for CPUE. The M1’s predicted line about CPUE could not 

adequately explain the annual variation of CPUE. The main difference between 

M1 and the other models is that recruitment in M1 was not considered a random 
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variable. Consequently, there was no likelihood component for recruitment in 

M1. This might imply that considering recruitment as a random variable would 

result in a better outcome in goodness-of-fit for CPUE, regardless of the form 

of penalized likelihood (M4) or random effects (M2, M5, and M6). 

In the simulation study, it was determined that fishing mortality seems to be 

most affected by variation of a set of pseudo data based on the result of the 

relative difference of each parameter estimate. For various sets of pseudo data 

generated by considering observation errors and process errors, most estimated 

parameters, except fishing mortality, did not show a significant difference 

depending on variation in pseudo data. However, the relative difference of 

logarithm of initial fully-selected fishing mortality rate showed a wide 

distribution, which might imply that the estimate of fishing mortality is more 

sensitive to data than any other estimates. In other words, data used in estimating 

parameters might be mainly explained by estimates of fishing mortality in this 

model. Bias in the variance of stochastic error in the von Bertalanffy growth 

model could also imply that the estimate was relatively imprecise. This implies 

that estimating a variance in error term is not easy. In future studies, if some 

biological information regarding the variance related to body growth could be 

obtained, it could be treated as an input value, which may yield better results. 

All free parameters in each model were estimated, except in M3. Specifically, 

the length- and time-invariant natural mortality rate, which is conventionally 
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fixed, was estimated. Crone and Hill (2015) assumed this natural mortality rate 

as 0.5 year−1 in stock assessment for the Pacific mackerel (Scomber japonicus). 

Takahashi et al. (2019) provided the range of estimates of natural mortality 

explicitly as 0.3–0.5 year−1 for the North Pacific Chub mackerel; Castro and 

Santana (2000) presented a slightly wider range. The estimates of natural 

mortality in M1, M2, M4, and M5 were somewhat consistent with the values in 

previous studies, but in M6 the value was quite different. 

In respect to estimates of the parameter related to body growth of fish, there 

was a considerable difference in the growth coefficient ( )   in the von 

Bertalanffy growth model and the value in the previous study referenced and 

estimated in this model. While estimating parameters in this study, the input 

value of 50%L was set to 51.67 cm with reference to Choi et al. (2000), whereas 

  was treated as a free parameter. Comparing to the value of  , i.e. 0.299 

provided in Choi et al. (2000), the value in M6, i.e. 0.078, was much smaller. 

Shiraishi et al. (2008), which studied the growth of Chub mackerel using body 

length and age data estimated    using the von Bertalanffy growth model, 

estimated this value as 0.372. This also suggests that estimate of    in the 

proposed model was very low. However, it might be significant that this study 

estimated    without age data. Although estimate of    in the proposed 

model was different from that in previous studies, length distributions by age in 

Figure 9 were reliable and seem to follow the assumption in the von Bertalanffy 
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model where the growth rate of the individual reduces as it grows. Estimating 

  as well as 50%L  in a future study could provide valuable insights. 

In this model, applying the Beverton–Holt model for recruitment seems 

inadequate to fulfill the purpose of associating annual recruitment with 

spawning stock biomass. In M1, as the estimated line for Beverton–Holt model 

had a drastic slope at the beginning of spawning stock biomass, the annual 

recruitment appeared at a similar level, regardless of the level of spawning stock 

biomass. In other words, the line in M1 that implied recruitment is almost 

independent of spawning stock biomass. Although the estimated line for the 

Beverton–Holt model in M2 indicated that recruitment is related to spawning 

stock biomass, unlike that of M1, the annual predicted recruitment for which 

process error is considered is distributed very far from the line. This also 

suggested that recruitment is relatively independent of spawning stock biomass. 

This study has some limitations such as the short period of time series data 

used and the lack of actual survey data. The unit of time in this model was 

defined as a year. The period of all annual data used was from 2000–2019, i.e., 

20 annual data. Given some details in this study such as the structural 

complexity of this model, the presence of process errors, and the difficulty in 

estimating some parameters, this period is not enough. Although the fact that all 

parameters in this model could be estimated using short-term data is 

encouraging, long-term data must be applied to this model. In a future study, 
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long-term pseudo data could be used. The model could also be applied to 

another stock for which actual long-term data is available. Another limitation in 

terms of data was the lack of actual survey data. All actual data used in this study 

were from fishing fleet catches. Owing to this lacuna, CPUEs were used for the 

biomass index. If reliable survey data can be obtained, the estimation can be 

more reliable. 
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Appendix. TMB code for the state-space length-

based assessment model (M6) 
 

 
//A size-based model for the Korean mackerel stock assessment; 
//Author: Doyul Kim and Saang-Yoon Hyun 
  
 #include <TMB.hpp> 
  
 // pass missing values 
 template<class Type> 
 bool isNA(Type x){ 
    return R_IsNA(asDouble(x)); 
 } 
   
 // square 
 template<class Type> 
 Type square(Type i) { 
    return i*i;  
 } 
 
 //objective function 
 template<class Type> 
 Type objective_function<Type>::operator() () { 
  
 //Data section 
 DATA_INTEGER(nages);     //number of imaginary age classes;  
 
 //Yield and CPUE data 
 DATA_MATRIX(data_yieldCPUE); 
 
 //length frequency data 
 DATA_VECTOR(x);    
 DATA_MATRIX(data_length_freq);  
 DATA_SCALAR(neff);      //effective sample size in the multinomial 
likelihood for the length data;  
 //input values of model structure 
 DATA_VECTOR(range_q); 
 
 //length-weigth relationship 
 DATA_MATRIX(data_LW); 
 DATA_SCALAR(log_alpha_LW); 
 DATA_SCALAR(log_beta_LW); 
 
 //length-maturation relationship 



 

73 

 

 DATA_MATRIX(data_maturation); 
 DATA_SCALAR(b0_mat); 
 DATA_SCALAR(b1_mat); 
 DATA_SCALAR(ratio_female); 
 
 //likelihood weights 
 DATA_SCALAR(lambda);   //weight for length freq data 
 
 //Parameter section 
 PARAMETER(mu_r);                    
 
 //abundances in initial time 
 PARAMETER(logN_1st_time_mean); 
 PARAMETER_VECTOR(logN_1st_time); 
  
 //random effects in recruitments 
 PARAMETER(logRecruit_mean); 
 PARAMETER_VECTOR(logRecruits_re);   //random effects; the number of 
parameters are 19 (2001 - 2019)  
  
 //random effects in abundances 
 PARAMETER_MATRIX(logN_re);        //random effects; the matrix 
dimension is 19 x 5 (except first row and column) 
 
 //fishing mortality 
 PARAMETER(logFt_init); 
 PARAMETER_VECTOR(logFt);   //annual fishing mortality over time; 
 
 //natural mortality 
 PARAMETER(log_M_constant); 
 
 //biomass index 
 PARAMETER(logit_q);  //q is from index = q*Bimoass; 
  
 //growth 
 PARAMETER(Linf); 
 PARAMETER(log_kappa);        //von-Bertalanffy growth equation 
 PARAMETER(log_sig_L);        //sig_L, where L is the L_{a+1} equation;  
  
 //selectivity 
 PARAMETER(log_L50);           //gear selectivity parameter; 
 PARAMETER(log_gamma);        //gear selectivity parameter; 
  
 //stock-recruitment relationship 
 //PARAMETER(log_aSR); 
 //PARAMETER(log_bSR); 
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 //sd of likelihood (weight) 
 //random effect or penalized likelihood 
 PARAMETER(logN_1st_time_sd);      //known value (outside CPP file) 
PARAMETER(logRE_sd); 

 PARAMETER(logFt_sd);              //known value (outside CPP file) 
 
 //measurement 
 PARAMETER(logYield_sd);           //known value (outside CPP file) 
 PARAMETER(logCPUE_sd);          //known value (outside CPP file) 
 
 
 //Derived quantities 
 //Derived quantities of data 
 vector<Type> yield=data_yieldCPUE.col(3);   //yield data in 
data_yieldCPUE 
 vector<Type> CPUE=data_yieldCPUE.col(4);  //cpue data in 
data_yieldCPUE 
  
 int nlengths=x.size();         //the number of length classes;   

//median length of maxFL = 53.5 cm;  
 int nyrs=yield.size();         //the number of years 
 int r=1;                    //recruitment is defined as the pop size at age 
1;  
 
 vector<Type> L=x;          //length after growth;  
  
 vector<Type> data_length_LW=data_LW.col(0);    
 vector<Type> data_weight_LW=data_LW.col(1);   
 Type alpha_LW=exp(log_alpha_LW);          
 Type beta_LW=exp(log_beta_LW);            
 int size_data_LW=data_length_LW.size(); 
 
 vector<Type> data_length_maturation=data_maturation.col(0);       
 vector<Type> data_rate_maturation=data_maturation.col(1);         
 int size_data_maturation=data_length_maturation.size(); 
 
 Type q_lower=range_q(0); 
 Type q_upper=range_q(1); 
 
 
 //Derived quantities of paremeter 
 
Type sig2_r=square(0.1*mu_r);  //variance in length distribution of 

recruitment (CV: 10%) 
 
 vector<Type> Recruits(nyrs-1); 
 vector<Type> Ft=exp(logFt); 
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 Type kappa=exp(log_kappa);             //von Bertalanffy; 
 Type Rho=exp(Type(-1.0)*kappa);        //Brody coefficient; 
 Type L50=exp(log_L50);                //gear selectivity; 
 Type gamma=exp(log_gamma);           //gear selectivity; 
 Type sig_L=exp(log_sig_L); 
  
 //instantaneous natural mortality 
 vector<Type> M(nlengths); 
 Type M_constant=exp(log_M_constant); 
 
 //constant 
 M.fill(M_constant); 
 
 vector<Type> pred_Wt(nlengths);        //body weight by length classes; 
 pred_Wt.setZero(); 
 vector<Type> pred_Maturation(nlengths);  //maturation rate by length 
classes;  
 pred_Maturation.setZero(); 
 vector<Type> Sel_PS(nlengths);         //gear selectivity by length 
classes; 
 Sel_PS.setZero(); 
 matrix<Type> F_tx(nyrs,nlengths);       //instantaneous fishing mortality; 
considering selectivity 
 F_tx.setZero(); 
 matrix<Type> Z_tx(nyrs,nlengths);       //instantaneous fishing mortality + 
instantaneous natural mortality 
 Z_tx.setZero(); 
 matrix<Type> ExpZ_tx(nyrs,nlengths);    //survival rate 
 ExpZ_tx.setZero(); 
 vector<Type> Mu(nlengths);            //differ by length 
 Mu.setZero(); 
 vector<Type> SS(nages);               //differ by age 
 SS.setZero(); 
 vector<Type> p(nlengths); 
 p.setZero(); 
 vector<Type> p_plus(nlengths);          //the last age class;  
 p_plus.setZero();  
 matrix<Type> f(nages,nlengths);         //length frequency as pmf 
 f.setZero(); 
 array<Type> f_total(nages, nlengths, nyrs); 
 f_total.setZero(); 
 array<Type> pp(nlengths,nlengths,nages);     //pp(L,x,a); //where nlengths 
(row) x nlengths (columns) at each level; 
 pp.setZero();   
 matrix<Type> N(nages,nyrs); 
 N.setZero(); 
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 array<Type> NL(nyrs,nlengths,nages);          //at the level of each age 
 NL.setZero(); 
 matrix<Type> N_save(nages,nyrs);  
 N_save.setZero();  
 array<Type> NL_re(nyrs,nlengths,nages);        //at the level of each age 
 NL_re.setZero(); 
 matrix<Type> Spawners(nages,nyrs);    
 Spawners.setZero(); 
 array<Type> SpawnersL(nyrs,nlengths,nages);    //at the level of each age 
 SpawnersL.setZero(); 
 matrix<Type> SpawnerBiomass(nages,nyrs);    
 SpawnerBiomass.setZero(); 
 array<Type> SpawnerBiomassL(nyrs,nlengths,nages); //at the level of each 
age 
 SpawnerBiomassL.setZero(); 
                           
 Type CNum; 
 CNum=Type(0.0); 
 Type CWt; 
 CWt=Type(0.0); 
 vector<Type> TCatch(nyrs); 
 TCatch.setZero(); 
 matrix<Type> Catch(nyrs,nlengths); 
 Catch.setZero(); 
 vector<Type> Yieldhat(nyrs); 
 Yieldhat.setZero(); 
  
 vector<Type> Pop(nyrs);  
 Pop.setZero(); 
 array<Type> ENx(nyrs,nlengths,nages);  
 ENx.setZero(); 
 vector<Type> EN(nyrs); 
 EN.setZero(); 
 vector<Type> B(nyrs);  
 B.setZero(); 
 vector<Type> EB(nyrs);  
 EB.setZero(); 
 
 vector<Type> nll(7);      //elements of the objective funtion, which is the 
negative loglikelihood; 
 
//Weight, gear selectivity, and maturation rate by length 
 for(int xind=0; xind<nlengths; xind++) { 

 pred_Wt(xind)=alpha_LW*pow(x(xind),beta_LW)/Type(1000);  
//the division of 1000 is to convert gram to kg; 

 Sel_PS(xind)=Type(1.0)/(Type(1.0)+exp(Type(-1.0)*gamma*(x(xind)-
L50)));  
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   pred_Maturation(xind)=Type(1.0)/(1+exp(b0_mat-b1_mat*x(xind)));  
 }; //mortality and survival rate by time and length   
  
 for(int t=0; t<nyrs; t++) { //t is year; //it is m, month in Quinns code;  
   for(int xind=0; xind<nlengths; xind++){ 
      F_tx(t,xind)=Sel_PS(xind)*Ft(t);  
      Z_tx(t,xind)=M(xind)+F_tx(t,xind); 
      ExpZ_tx(t,xind)=exp(Type(-1.0)*Z_tx(t,xind));  //survival;  
   }; 
 }; 
  
 vector<Type> ExpZ_tx_colsums(nlengths); 
 ExpZ_tx_colsums=ExpZ_tx.colwise().sum(); 
 vector<Type> ExpZ_tx_mean(nlengths); 
 ExpZ_tx_mean=ExpZ_tx_colsums/nyrs; 
  
 //LVB body growth;  
 SS(0)=sig2_r;             //SS(0): Var{lengths at age 1} 
 
 f.row(0)=dnorm(x, mu_r, sqrt(SS(0)))/sum(dnorm(x,mu_r,sqrt(SS(0))));   
 
 for(int xind=0; xind<nlengths; xind++) { 
    Mu(xind)=Linf-(Linf-x(xind))*Rho;  
 }; 
  
 for(int a=1; a<nages; a++) {  
    //this SS is from Cohen and Fishman (1980); //it was used for the shrimp 
in the Quinns paper; 
   SS(a)=square(sig_L)*(Type(1.0)-pow(Rho,(Type(2.0)*(a+1)-
Type(2.0)*r)))/(Type(1.0)-square(Rho))+pow(Rho,(Type(2.0)*(a+1)-
Type(2.0)*r))*sig2_r;  
 }; 
  
 Type kkk; 
 for(int a=0; a<nages; a++) { 
    for(int xind=0; xind<nlengths; xind++) { 
       kkk=Type(0.0);  
       for(int Lind=0; Lind<nlengths; Lind++) { 
          pp(Lind,xind,a)=Type(0.0); 
             
          if(Lind>=xind){ 
            pp(Lind,xind,a)=dnorm(L(Lind),Mu(xind),sqrt(SS(a)));   

// f(L|x) in Quinn et al. (1998);  
            kkk=kkk+pp(Lind,xind,a); 
          }; 
       }; 
       for(int Lind=0; Lind<nlengths; Lind++) { 
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          pp(Lind,xind,a)=pp(Lind,xind,a)/kkk;  //normalize f(L|x); 
       };    
    }; 
 }; 
 
 //Initial time length frequency 
 matrix<Type> f_1st_time(nages, nlengths); 
 f_1st_time.setZero(); 
  
 f_1st_time.row(0)=f.row(0); 
  
 for(int a=1; a<nages; a++) { 
    for(int Lind=0; Lind<nlengths; Lind++) { 
       for(int xind=0; xind<nlengths; xind++) { 
          f_1st_time(a,Lind)+=f_1st_time(a-
1,xind)*ExpZ_tx_mean(xind)*pp(Lind,xind,a); 
       }; 
    }; 
 }; 
  
 for(int a=1; a<nages; a++) { 
    f_1st_time.row(a)=f_1st_time.row(a)/(f_1st_time.row(a).sum()); 
 } 
 
 
 //Start of cohort loop 
 int a; 
 for(int m=0; m<nyrs; m++) { 
    if(m == 0) { 
      for(int a=0; a<nages; a++) { 
         for(int xind=0; xind<nlengths; xind++) { 
            NL(m,xind,a)=Type(0.0); 
            NL_re(m,xind,a)=Type(0.0); 
             
            NL(m,xind,a)=exp(logN_1st_time(a))*f_1st_time(a,xind); 
            N_save(a,m)+=NL(m,xind,a); 
         }; 
         N(a,m)=N_save(a,m); 
      }; 
    } else if(m>0) { 
      a=0; 
       
      for(int xind=0; xind<nlengths; xind++) { 
         NL(m,xind,a)=Type(0.0); 
         NL_re(m,xind,a)=Type(0.0); 
          
         NL(m,xind,a)=exp(logRecruits_re(m-1))*f(a,xind); 
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         N_save(a,m)+=NL(m,xind,a); 
      }; 
      N(a,m)=N_save(a,m); 
 
      for(int a=1; a<nages; a++) { 
         for(int Lind=0; Lind<nlengths; Lind++) { 
            p(Lind)=Type(0.0); 
            for(int xind=0;xind<nlengths;xind++) { 
               p(Lind)+=f(a-1,xind)*ExpZ_tx(m-1,xind)*pp(Lind,xind,a); 
            }; 
         }; 
         if(a!=nages-1) { 
           for(int Lind=0;Lind<nlengths;Lind++) { 
              NL(m,Lind,a)=Type(0.0); 
              NL_re(m,Lind,a)=Type(0.0); 
              NL(m,Lind,a)=N(a-1,m-1)*p(Lind);  
              N_save(a,m)+=NL(m,Lind,a); 
           }; 
           //N(a,m)=N_save(a,m); 
           N(a,m)=exp(logN_re(a-1,m-1)); 
          
         } else if(a == nages-1) { 
           for(int Lind=0;Lind<nlengths;Lind++) { 
              p_plus(Lind)=Type(0.0); 
              for(int xind=0;xind<nlengths;xind++) { 
                 p_plus(Lind)+=f(a,xind)*ExpZ_tx(m-
1,xind)*pp(Lind,xind,a);   
              };       
           }; 
            
           for(int Lind=0;Lind<nlengths;Lind++) { 
              NL(m,Lind,a)=Type(0.0); 
              NL_re(m,Lind,a)=Type(0.0); 

NL(m,Lind,a)=N(a-1,m-1)*p(Lind)+N(a,m-1)*p_plus(Lind); 
              N_save(a,m)+=NL(m,Lind,a); 
           }; 
           //N(a,m)=N_save(a,m);    
           N(a,m)=exp(logN_re(a-1,m-1)); 
            
         }; 
      };// a(2~6) ends here 
    }; 
     
    for(int a=0;a<nages;a++) { 
       for(int Lind=0;Lind<nlengths;Lind++) { 
          f(a,Lind)=NL(m,Lind,a)/N_save(a,m); 
       }; 
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    }; 
     
    for(int a=0;a<nages;a++) { 
       for(int Lind=0;Lind<nlengths;Lind++){ 
          f_total(a, Lind, m)=f(a, Lind); 
       }; 
    }; 
     
    for(int a=0;a<nages;a++) { 
       for(int Lind=0;Lind<nlengths;Lind++) {           
          NL_re(m,Lind,a)=N(a,m)*f(a, Lind); 
       }; 
          
       for(int Lind=0;Lind<nlengths;Lind++) { 

SpawnersL(m,Lind,a)=NL_re(m,Lind,a)*pred_Maturation(Lind)*rati
o_female; 
          
SpawnerBiomassL(m,Lind,a)=SpawnersL(m,Lind,a)*pred_Wt(Lind); 
          Spawners(a,m)+=SpawnersL(m,Lind,a); 
          SpawnerBiomass(a,m)+=SpawnerBiomassL(m,Lind,a); 
       };  
    }; 
 }; // m ends here 
         
 
 for(int m=0;m<nyrs;m++) { 

for(int a=0;a<nages;a++) { 
 for(int xind=0;xind<nlengths;xind++) { 

CNum=NL_re(m,xind,a)*(F_tx(m,xind)/Z_tx(m,xind))*(Type(1.0)-
ExpZ_tx(m,xind)); 
    CWt=CNum*pred_Wt(xind);              //in kg 
    Catch(m,xind)+=CNum;  
    TCatch(m)+=CNum;  

Yieldhat(m)+=CWt; 
    B(m)+=NL_re(m,xind,a)*pred_Wt(xind); 
 }; 
    };   
 };  //m ends here;   
  
  
 //objective functions 
 nll.setZero();  
 //part 1 of the objective funcion: multinomial for length-frequency data 
 matrix<Type> matrix_for_multinomial_prob(nyrs, nlengths); 
 // effective sample size (yearly)  
  for(int m=0;m<nyrs;m++) { 
     vector<Type> 
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data_length_freq_eff_ss_row=data_length_freq_eff_ss.row(m); 
     vector<Type> prob_length_freq=Catch.row(m)/Catch.row(m).sum(); 
      
     matrix_for_multinomial_prob.row(m)=prob_length_freq; 
      
     nll(0)-=lambda*dmultinom(data_length_freq_eff_ss_row, 
prob_length_freq, true); 
  }; 
 
 
 //part 2 of the objective function: lognormal for yield data 
 for(int m=0;m<nyrs;m++) { 
    nll(1)-= dnorm(log(yield(m)), log(Yieldhat(m)/Type(1000)), logYield_sd, 
true); 
 }; 
 
 
 //part 3 of the objective function: lognormal for cpue data 
 //log(CPUE) ~ normal(log(q*Bt), sig2_logCPUE); 
 Type q=Type(0.0); 
 q=q_lower+(q_upper-q_lower)/(1+exp(-logit_q)); 
 
 for(int m=0;m<nyrs;m++) { 
    nll(2)-= dnorm(log(CPUE(m)), log(q)+log(B(m)), logCPUE_sd, true); 
 }; 
   
 
 //part 4 of the objective function: fishing mortality 
 //likelihood for logF1 
 nll(3)-= dnorm(logFt(0), logFt_init, logFt_sd, true); 
   
 //likelihood for logF2 to logFT 
 for(int m=1; m<nyrs;m++) { 
    nll(3)-= dnorm(logFt(m), logFt(m-1), logFt_sd, true); 
 }; 
 
 
 //part 5 of the objective function: abundances in initial time 
 for(int a=0; a<nages; a++) { 
    nll(4)-= dnorm(logN_1st_time(a), logN_1st_time_mean, 
logN_1st_time_sd, true); 
 }; 
 
 
 //part 6 of the objective function: recruitments from the 19 years of 2001 - 
2019;   
 for(int m=0;m<nyrs-1;m++) {   
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    nll(5)-= dnorm(logRecruits_re(m), logRecruit_mean, logRE_sd, true); 
 }; 
  
 
 //part 7 of the objective function: logN_re;      
 for(int m=0; m<nyrs-1; m++){ 
    for(int a=0; a<nages-1; a++) {  
        nll(6)-= dnorm(logN_re(a,m), log(N_save(a+1, m+1)), logRE_sd, 
true);       
    }; 
 }; 
 
  Type jnll=nll.sum();  
   
  return jnll; 
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