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1. Introduction

For most fisheries, gauging the age information of fish via fishery-
independent surveys used in age-structured assessment models is considerably
expensive and difficult to obtain (Rudd and Thorson 2018). By contrast,
measuring and collecting body size information such as the lengths of fish
caught by a fishing fleet is easier and more economical. In this context, a length-
based assessment model that is more informative and has a higher resolution
than a surplus production model could be a viable option to assess the exploited
fish stock in most fisheries. With this in mind, I develop a length-based

assessment model.

This model, which is extended from Cohen and Fishman (1980), Deriso and
Parma (1988), and Quinn et al. (1998), has some differences from other
prominent length-based assessment models in CASAL, MULTIFAN-CL,
SCALE, Stock Synthesis, and others. Unlike the model in CASAL, a software
package developed by NIWA for modeling the population dynamics of marine
species (Bull et al. 2012), the proposed model utilizes the structure of imaginary
age class, which enables it to segregate cohorts based on the length distribution
of the population. MULTIFAN-CL, which uses identical assumptions in
MULTIFAN (Fournier et al. 1998), predicts the observed size-composition data

as the sum of normal distributions (Punt et al. 2013). By contrast, the proposed



model assumes that each cohort of the population follows a length distribution.
Furthermore, the proposed model assumes that length-based proportions of
numbers follow a normal distribution with a given mean and variance only at
the age of recruitment; the length distributions at the age after recruitment are
calculated by considering the process of mortality and growth, which differs
from the assumption made in SCALE. In SCALE, a statistical Catch-at-Length
model included in the NOAA Fish and Fisheries Toolbox, all cohorts are
assumed to follow given normal distributions for length at each age considered.
As the length-based assessment module in Stock Synthesis, which has been
applied in a wide variety of fish assessments globally, is based on an age-
structured model, some functions associated with fish length, such as gear
selectivity and fish body growth, are converted to the function for age (Methot
and Wetzel 2013; Methot et al. 2020). In the proposed model, most of the

functions are customized for fish lengths and not for age.

Another difference of the proposed model from other prominent length-based
assessment models is that it explicitly estimates the natural mortality rate. As
estimating the natural mortality rate in stock assessment models is difficult
(Vetter 1988; Quinn and Deriso 1999), it is commonly assumed to be known
and constant (Hilborn and Walters 2013). Although natural mortality in fish
likely varies among ages (sizes) and years (Deroba and Schueller 2013), it is

treated as a constant across fish of various lengths and years, reflecting that a



constant natural mortality rate performed better than the allometric relationship

of natural mortality to mass (Miller and Hyun 2018).

The other main features in this model include considering observation and
process errors, leading to a state-space framework, where I treat some time-
varying parameters as random effects (a.k.a. state variables). Traditional
assessment models do not separate variance of the observations from those
attributable to time-varying processes (Miller and Hyun 2018). However, the
utility of formal state-space models wherein process errors in time-varying
parameters are modeled and estimated is statistically significant (Miller and
Hyun 2018). Accounting for random variation and observation error arising
from the process of sampling from the population helps to better identify the
true state of the fish population (Rudd and Thorson 2018). In this context, the
proposed model treats the annual abundance at age as a random effect and the
probability distribution related to fishing mortality as a penalty to the likelihood

function.

I also explored the effects of the presence or absence of a stock—recruitment
relationship and process errors in annual abundance at age in the model
framework. The relationship between the biomass of reproductively mature
individuals (spawning stock biomass) and the resulting offspring added to the
population (recruitment), i.e. the stock—recruitment relationship, is a
fundamental challenge in population biology (Mangel et al. 2010). In some

3



cases, it is argued that recruitment is mainly determined by the environment and
is independent of spawning stock biomass. The steepness, which was
popularized by Mace and Doonan (1988), is set to 1 (Mangel et al. 2010). I try
to determine the impact of stock-recruitment relationship on the result of
estimation in this model. I also try to consider a length-based model without
random effects as well as a state-space length-based model and compare each
model’s performance to determine whether accounting for variation arising
from natural processes or measurement processes separately (Rudd and Thorson

2018) improves model performance.

The purpose of this study is to develop and demonstrate this state-space
length-based assessment model. This model requires yields, catch-per-unit-
effort (CPUE), and length composition data, all of which are readily available.
For demonstrating this model, I used actual data on Korean chub mackerel
(Scomber japonicus) stock. By conducting a simulation study and comparing
the goodness-of-fit for data and Mohn’s (1999) p, the measure of retrospective
pattern, I compared the relative performance of the models chosen for

comparison in this study.



2. Materials and Methods

2.1. A state-space length-based model

2.1.1. Fish length as discrete variable

I assumed that a length class x of individuals at recruitment, r in the

beginning of a year follows a discrete normal (Gaussian) random variable, X, :
ie., X, ~Normalp (g, o-rz) where the subscript D indicates the random

variable is ‘discrete’.

Thus, the probability mass function (PMF) of X, can be written

f (%) :exp[—ziz(x—ur)ﬂ / Zexp[—ziz(x—ﬂrf] (1)

where constants with respect to x are ignored. See Table 1 for notations. Then,

the abundance of recruitment at each length class at the beginning of year ¢ is

Nir (X) =N r - fr (X). )

2.1.2. Mortality
A distribution of population’s length frequency and abundances at age after
recruitment change over time with the processes of growth and mortality. I

followed Quinn et al. (1998)’s assumption that the mortality process occurs first

5



and then the growth process does. The total mortality rate is the sum of natural

and fishing mortality rate:
Zi(x) =M + R (x). (€)

I assumed the natural mortality rate to be constant across length classes and
years but have fishing mortality rate to differ by each length class and year.
Fishing mortality rate of length class x in year # is separable into the selectivity

for length class and annual fully-selected fishing mortality in year #:
R (x)=S(9)-F. (4)

I assumed a logistic selectivity at length class for the fishing fleet which is

considered to be large purse-sein in the proposed model:

1

P G

)

I treated annual fully-selected fishing mortality as a random walk with the

. 2
known variance, OjogF :

log(F) ~ Normal(log(Finit). ofog) (©6)
and
log(F.1) ~ Normal(log(F), 0'|%g E) (7)

wheret=1, ..., T- 1.



The relative length distribution at age a at the end of year ¢ where the process
of morality took place during year ¢ is derived from the PMF of the length class

at age a at the beginning of year ¢:

Praz(x) = fa(x)-e 2. (®)

2.1.3. Body growth
To account for body growth after fish experienced mortality, I used Quinn et
al. (1998)’s assumption that an individual of length class x will growth to length
class / in one time step according to a stochastic growth model (Quinn et al.

1998). The deterministic von Bertalanffy growth model is
Ly =L, 1—e *(27%)),

This equation can be transformed into the relationship of L,,; against L,

with the stochastic error term:
Loyt = Lo@-pg) + pcla + &6 ©)

where &g ~ Normal (0, 0'(2;) and the Brody coefficient pg is €™ . By

modifying this equation, the expected length and variance at age a + 1 can be
expressed by equation for length class x and age a, respectively, from Cohen

and Fishman (1980):



#(X) = L, (1= pg ) + po X (10)
and

) ) 1_p62(a+1—r)

2(a+l-r) 2
Oa+1 =0G 2 ( )Ur -
1-pc

)

+0G

Thus, length / of each individual at age a + 1 is considered to be a discrete

variable and has a distribution which is discrete normal with the mean, g (X)

and the variance, 0'§+1: re., L|x~ Normalp(g(X), O'§+1). The PMF of

length L at age @ + 1 given length class x can be written

farng(1X) =
exp(— - (I—ue(x)>2]/zexp(— 7 (|—ﬂG(X))2]- (12)
20511 | 205,

2.1.4. Combining the process of mortality and body growth

The relative length distribution at age a@ + 1 at the beginning of year ¢ + 1 is

pt+1,a+1(|) = Z Pt.a,z (X) fa+1,G (I | X)- (13)

The number of individuals of length class / at age a + 1 at the beginning of year
t + 1 is calculated using the number of individuals at age a at the beginning of

year t and eq. (13):



Nt+1,a+1(|) = Nt,a' pt+1,a+1(|)- (14)

Then, the abundance at age a + 1 at the beginning of year ¢ + 1 is

Nt+l,a+1 = Z Nt+l,a+1(|)- (15)
|

The PMF of a length class can be written

Pret,a+1(l)
f [y v A -
t+1,a+1( ) z pt+1’a+1(|) (16)
or
N 0
ft+1,a+1(|) 5 lil:1':+1l - (17)
+1,a+

2.1.5. Abundances at the first year

In the propsed model, the logarithm of abundances at all ages at the first year

(log(N¢-14)) is assumed to be distributed normally with mean |09(ﬂNt:1)

and the known variance O'I%g Ny -

log(Ne—y 2) ~ Normal(log(zy, . ). Tiogn,,) (18)

where @ =, ..., A. The known variance provides the constraining penalty for

the estimates of deviations of abundance at age at the first year (Methot et al.



2020).

As I assumed the distribution of length frequency at recruited age, I could
derive length frequency distribution at age after recruitment for each cohort by
considering both the mortality and the body growth process. However, as
abundances at age at the first year are not from certain one common cohort, I
needed to define the length frequency distribution by age. I assumed the

equilibrium state for total mortality rate to resolve it. I considered the mean

value, Z of the total mortality rates in all years by length class. This can be

written as

Dtaz (X) = fig a(x)- €720, (19)
Then, the process of growth occurs:

pt=1,a+1(|) =1 Z Pt=1,a,z (%) fa+1,G (I x). (20)

The PMF of length class at age a + 1 at the first year can be written:

~ Prganll)
fieraa(l) = —Z Pt () (21)

By repeating this calculation until the maximum age, each PMF of length
classes at all ages can be obtained. The number of individuals of length class x

at age a at the beginning of the first year is calculated

10



Nizga(l) =Niga- frea(l) (22)

wherea=2, ..., A+.

2.1.6. Spawning stock biomass
I estimated the spawning stock biomass by estimating the number of
spawners and considering maturation rates, the ratio of female fish to both sex
fish, and body weights. I applied the length-maturation relationship of a logistic

form (eq. (23)) and the ratio of the female fish, 0.5 following Kim et al. (2020):

1

Then, the number of spawners of length class x at age a at the beginning of year

t is expressed as

Spawners; 5 (x) = Nt 4(X) - Mat(x) - ratio tgmgje.- (24)

Summing spawners from eq. (24) over age and length classes, I get the number

of spawners at the beginning of year #:

Spawners; = > > Spawners; 5 (x) (25)

a X

Also, multiplying the number of spawners of length class x at age class a at the

beginning of year ¢ in the right side of eq. (25) by the mean weight at length

11



class (W(x)), spawning stock biomass at the beginning of year ¢ can be

acquired

SSBy = > > Spawners; , () -W (X) (26)

where the form of allometric length-weight relationship W (X) is as follows:

W(x)=a-xP. (27)

2.1.7. Recruitment
I considered two assumptions for estimating recruitment in all remaining
years except the first year. The first assumption is that Beverton—Holt stock—
recruitment model in which recruitment is related to spawning stock biomass is
applied to estimate recruitments. The second is the assumption that recruitment
is related independently spawning stock biomass. Two alternative assumptions
are as follows:

SSB,

asg + Psr - SSBy
Ny r = (28)

HR

wheret=2, ..., T. In the case that the second assumption is utilized in this model,

logarithm of recruitment at the beginning of year # (log(N¢ )) is assumed to

12



be distributed normally with mean log(xr) and fixed variance O'|%g R:

log(Ny ) ~ Normal(log(zg), oaogr) (29)

where t = 2, ..., T. The fixed variance provides the constraining penalty for the
estimates of recruitment deviations and it is not affected by data (Methot et al.

2020).

2.1.8. Abundance at length class x at each age
The following equation describes how the abundances at length class x at

each age are calculated. The eq. (22) presents those in the first year:
Ntzl,a(l) = Nt:l,a' ft=1,a(|)- (22)

And the eq. (30) presents those for year > 1:

N, - fr (%) for a=r
Nta(X) =9 Ntga-1-Pral(X) for 1<a<A (30)
Nit-ga-1°Pra(X)+Niga- P alX) for a=A

2.1.9. Random effects
I considered abundance at age and years as a random effects. Logarithm of

abundance for age and year > 1 are normally distributed conditional on the

13



calculated deterministic numbers at age (Miller and Hyun 2018):
Iog(N:a) ~ Normal (log(N 5), q%g n). fort>1 (31)

In this model, I considered process error in abundance at age separated by
recruitment and remaining abundance at older ages. Therefore, I can include
process errors in annual deviations around Beverton—Holt model stock—

recruitment curve or logarithm of recruitment 4 and in interannual transitions

of abundance at older ages. Although I considered random effects as two parts,
I assume there is only one common variance for the abundance at age and
estimate this parameter. The reason why I treat it is estimating a variance in
stock assessment is difficult, so I tried to lessen the number of free parameters
difficult to be estimated. Now, I can take into account several scenarios,
depending on which assumption for estimating recruitment to select, and
whether to consider both or either process error or not. How to set up a series of

scenarios will be explained further later.

2.1.10. Measurement error

I assumed the logarithm of fishery yields have observation errors, a normal

(Gaussian) random variable with the known variance G%gy :

14



log(Y;) ~ Normal(log(Yt), a|209Y ). (32)

The predicted catch at length class x in year # by the fishing fleet is

Ct(x) = Z%-(l—e‘zt(x))- Nt a (X). (33)
a

The predicted aggregate yield by the fishing fleet in year ¢ is

Yi =) Ct(x)-W(x). (34)

The observed logarithm of aggregate relative biomass indices for fishing

fleet which are equivalent to catch-per-unit-effort (CPUE) in this model are

assumed to follow a normal distribution with the known variance O'|%g |

log(ly) ~ Normal(log(it), cn%g 1)- (35)
The predicted relative biomass index at the beginning of year ¢ is

it=q-B. (36)

The biomass at the beginning of year ¢ is
By :ggl\lt,a(x)'w(x)- (37)

The catchability for the relative biomass index is assumed to be constant
regardless of year and estimated on a logit-scale to avoid boundary problems

15



during estimation (Miller and Hyun 2018):

|, Yalq
4=l Togit@ (38)

where |q and Ug are lower and upper bounds of parameter ¢ and logit(q)

is the actual free parameter estimated in the model (Miller and Hyun 2018).

The length frequencies by the fishing fleet catch are assumed to follow a

multinomial distribution:
m; ~ Multinomial (n;, py) (39)

where n; is the sample size of the length frequencies by the fishing fleet catch
in year ¢,and  f; is the vector of predicted catch proportions by length class in

year t:

B = Ct(x)
it th(x) (40)

2.2. Model scenarios

I considered six model scenarios and summarize them in (Table 2). The
criteria determining the model scenario are as follows: (1) model for estimating

recruitment after the first year, and (i1) how the population abundances at age

16



after the first year were treated. In the respective criterion, there are two and

three options to choose from, respectively.

In the first criterion, the options are (see eq. (28)): (i-1) Beverton—Holt
stock—recruitment model, (ii-2) mean-deviations which includes assumption
that recruitment is related independently spawning stock biomass. In the second
criterion, the options I can select are as follows: (ii-1) no random effects, (ii-2)
treating only annual recruitment after the first year as random effects, and (ii-3)
treating all abundances at age after the first year as random effects. Thus, a total
of 6 scenarios can be constructed by combining (i) and (ii) (Table 2). The first
three (M1-M3) are assumed to have Beverton—Holt stock—recruitment model,
while the later three (M4-M6) are assumed that recruitment is related
independently spawning stock biomass. The difference among model scenarios
M1-M3 and among M4-M6 are in the assumptions for process errors. Model
scenarios M1 and M4 are assumed to have no random effects. Model scenarios
M2 and M5 are assumed to treat only recruitment after the first year as random
effects, and model scenarios M3 and M6 are assumed to consider abundance at
age after the first year as random effects. Therefore, model scenarios M1 and
M4 are referred to as a length-based model and model scenarios M2, M3, M5,

and M6 are referred to as a state-space length-based model.

2.3. Objective function
17



Free parameters in the proposed model are the mean value of abundance
and all abundances at age at the first year (,uNtzl, Nt a), catchability for
relative biomass index (q), all selectivity parameters (7, Lsgo), some
growth parameters (k, og), initial fully-selected fishing mortality rate and
annual fully-selected fishing mortality rate at all years (Fy,t, ), and constant
natural mortality rate across length classes and years (M) . In model scenarios
M1, M2, and M3, the two parameters in Beverton—Holt stock—recruitment
model (agr, fsr) are commonly added as free parameter. However, in model
scenarios M4, M5, and M6, mean value of recruitment () is commonly
added as free parameter. Further, annual recruits after the first year (N;,) are

treated as free parameter in model scenario M4, whereas these are treated as
random effects in model scenarios M5, and M6. State-space model scenarios

M2, M3, M5, and M6 estimate additional free parameter for variance for
random effects (a|20gN). Therefore, it is different that what kind of and the

number of free parameters estimated for each model scenario fitted to the Korea

chub mackerel data (Table 3).

I estimated free parameters using the maximum likelihood approach (MLE),
and the likelihood components are defined according to eq. (6), (7), (18), (29),
(31), (32), (35), and (39). The likelihood component for eq. (6), and (7) for

logarithm of fully-selected fishing mortality rate is as follows:
18



Ly = Normal (Iog(Fy) | 10g(Fini), 1ogr2)-

T1 9
[ [ Normal (Iog(Ft+1) [109(F), o109 F )
t=1

The notation, Normal(X|Y, Z) indicates the normal pdf of X whose population

mean and variance are Y and Z , respectively.

The likelihood component for eq. (18) for logarithm of abundances at all ages

at the first year is as follows:

A
L, = [ Normal (Iog(Nt:La) [ log(en,_,), 0'|%g N, )

a=r
The likelihood component for eq. (29) for logarithm of recruitment is as follows:

T

Lg = ] Normal (log(N, 1) [ 10g(z1z), g )
=2

The likelihood component for eq. (31) for logarithm of abundance at age can

be divided into two parts depending on model scenario related to random effects.

.
1P = [ TNormal (Iog(Nt,r) [1og(N¢ ), UI%g N )
t=2

where Lgl) includes assumption corresponding (ii-2) option in model scenario.

T A
L&Z) =TI ] Normal (Iog(Nt,a) [10g(N¢ a). O'I%g N )

t=2a=r
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where L) includes assumption correspondin 11-3) option in model scenario.
4 p p g p

The likelihood component for eq. (32) for observed logarithm of aggregate

yields by the fishing fleet is as follows:

.
Ls =] [ Normal (Iog(Yt) [log(Yt), a,%QY )
t=1

The likelihood component for eq. (35) for observed logarithm of aggregate

relative biomass indices for fishing fleet is as follows:

T A
Ls = [ [ Normal (Iog(lt) [og(it), oy )
t=1

The likelihood component for eq. (39) for the multinomial distribution for the

length composition data for fishing fleet is as follows:

12 _]I[[nt ] P J

|
t=1 x Otx’

The likelihood components Ly, Ly, Ls, Lg, and L; are commonly included
in all of model scenarios I considered, whereas the likelihood components
Ls, LEP, and L&Z) are only involved in corresponding model scenarios (Table

2). Therefore, according to each model scenario, the joint likelihood function is
the product of the corresponding likelihood components in the model scenario.
I implemented the state-space length-based model in R package, TMB
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(Kristensen et al. 2015; Developer Core Team 2019). TMB uses Laplace
approximation to integrate joint log-likelihood over the random effects, then,
the marginal log-likelihood is computed and obtained. The “nlminb” function
for optimization is used to minimize the negative of the marginal log-likelihood

function (objective function). I showed my TMB code (cpp file) in the appendix.

2.4. Application to Korea chub mackerel (Scomber japonicus)

stock

I illustrated this model for the Korea chub mackerel stock. Chub mackerel
are one of the most important stocks for fishery in Korea. Chub mackerel are
mainly caught by the large purse-sein fishery, and the fishery catch accounts for
about 92% of the total catch of Chub mackerel in Korea. For this reason, I
assumed that catch of Chub mackerel by large purse-sein represents the whole
of catch of that. This model requires three kind of data that are fishing fleet
yields, relative biomass indices, and length frequencies by the fishing fleet catch.
I used annual total yields from 2000-2019 provided by the Korean Statistical
Information Service (KOSIS), and annual CPUE and length frequency data for
the fishing fleet catch from large purse-sein from 2000-2019 provided by the

National Institute of Fisheries Science (NIFS).

To apply this model to Korea chub mackerel, I made a few assumptions. I
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defined the age of recruitment as age 1 and the terminal age as age 6 for Korea
chub mackerel. Also, length bin width is defined as 1 cm and the number of
classes is 43 whose range is from 10.5-52.5 cm. In the length frequency data by
the fishing fleet catch assumed to follow a multinomial distribution, the numbers
of annual total sample size are assumed to be same and set as 200 individuals.
For some parameters that are difficult to be estimated or have some information
from previous studies or estimated value using related data outside this model,

those are declared as an input (Table 4).

In terms of weights for likelihood, the sample size of the length frequency
data for the fishing fleet catch is assumed to be same throughout all years to
allocate the same weight to every year I consider. Other than that, I did not have

any information for some weights for likelihoods such as fixed variances of

observation error and penalized likelihood G%gy, O'I%gI’ G|209|:, GI%ng and

G%g N~ For that reason, I performed a sensitivity analysis for these weights. |

expressed a variance of logarithm of random variable X as a coefficient of

variation of X, using following equation Ojggx =\/|0g((CVX)2+1) . In

sensitivity analysis for weights for likelihood components, I first assumed a set
of plausible candidates for each value of weights and then estimated parameters
repeatedly conditioned on those. In the next step, I compared the results of

sensitivity analysis using several criteria which include whether the numerical
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optimization was successful, maximum gradient value, etc. Consequently, the
best set of weights was determined based on the results and used in estimation

of parameters.

2.5. Model performance

To compare in performance among each model scenarios, I used measure of
a retrospective pattern and did a simulation study. For measure of a retrospective
pattern, I calculated Monh’s p and checked the consistency of model estimates.
I peeled off total five years from the terminal year in sequence and
simultaneously estimated parameters using data peeled off. Then, I compared
the estimates which are from data peeled off based on the estimates which are

from all of data.

1 & O yTy—OT-yT
pO)==% —+——~

= O1-yT
OrT-y —6tT
py(0) =——"——
Y o1

I defined 7= 2019, and y = 1, ..., 5 and calculated Mohn’s p for estimates of

annual fully-selected fishing mortality rate and annual spawning stock biomass.

For simulation (Figure 1), I generated 1000 sets of pseudo data which

consisted of annual yields by the fishing fleet, annual catch-per-unit-effort for
23



relative biomass indices for fishing fleet, and annual length frequencies by the
fishing fleet catch. I commonly considered observation errors in yield, CPUE,
length frequency data by the fishing fleet in all model scenarios, whereas
process errors in recruitment or abundance at age after the first year are included
only in a state-space model scenario (Table 5). The estimates of parameters by
each model scenario from the fits to the Korea chub mackerel data are used as
the true parameter values for generating pseudo data. I estimated parameters
using sets of pseudo data and checked the number of convergences of each

model scenario fitted to corresponding sets of pseudo data.

I used four criteria of convergence: (i) convergence flag that the nlminb
function returns, (ii) whether to generate Hessian matrix, (iii) whether estimates
are within the bounds I set, and (iv) the maximum gradient value. I use relative
difference to compare true parameter values | set and estimates of parameters

from the fits to the set of pseudo data. The relative difference of a parameter
estimate 6 from the true value & for pseudo data set i is as follows (Miller

and Hyun 2018):

RD; (6) :¥
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Table 1. Description of notations.

Notation Description

Indices

a Imaginary age class

A+ Terminal imaginary age class and its above classes

r Recruitment age

t Year

T Terminal year in all year considered

X Length class before the process of growth occurs

[ Length class after the process of growth occurs

Data

\ Observed aggregate yield by the fishing fleet in year ¢

| Observed aggregate relative biomass indices for fishing
t fleet in year ¢

o Vector of observed catch composition frequencies by
~ length class in year ¢

Iy Sample size of the length frequencies by the fishing fleet

catch in year ¢

Parameter(s)

Hy Mean of length distribution of recruitment

arz Variance of length distribution of recruitment

25



I:mit

2
OlogF
7+ Lsoos

L, &, 89

Length- and time-invariant natural mortality rate
Initial fully-selected fishing mortality rate

Fully-selected fishing mortality rate in year ¢

Variance of random walk for fully-selected fishing
mortality rate

Logistic selectivity parameters

Parameters in von Bertalanffy growth model

Variance of stochastic error term in von Bertalanffy growth
model

Mean abundance at the first year

Abundance at age a at the beginning of the first year
Variance of distribution of abundance at age at the first year
Logistic maturation parameters

Ratio of female fish

Parameters in allometric length-weight relationship
Parameters in Beverton—Holt stock—recruitment model
Mean of recruitment

Variance of distribution of recruitment

Variance of process error in abundance at age

Variance of observation errors for fishing fleet yield

Variance of observation errors for relative biomass indices
for fishing fleet

Catchability for relative biomass index for fishing fleet

26



Uy, |

g’ q

logit(q)

Derived
parameter(s)

Nt a

Nt a (X)
X r
£.(%)

R (X)

S(x)

Zy(x)
Ptaz(X)
La

Ps

£(X)

Tan
farrc(11X)
Pez,an(l)

f a(X)

Lower and upper estimation bounds for catchability q

Actual parameter for estimating catchability ¢

Abundance at age a at the beginning of year ¢

Abundance of length class x at age a at the beginning of
year ¢

Discrete random variable for length of recruitment

Probability mass function of X,
Fishing mortality rate at length class x in year ¢
Selectivity at length class x

Total mortality rate at length class x in year ¢

Relative length distribution at age a at the end of year ¢
where the process of morality in year ¢ took place

Length at age a

Brody coefficient, e~
Expected length when individuals of length class x grow
up

Variance of length distribution at age a + 1 when
individuals of length class x at age a grows up

Conditional probability of individuals of length class / of
which length class is x before growing up

Relative length distribution at age @ + 1 at the beginning of
year ¢t + 1

Probability of individuals of length class x at the beginning
of year ¢
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Z

Mat(x)

Spawnerst,a(x)

SSB;
W (X)

By

Predicted
value(s)

Yt

Ct(x)

Random
effects

*
Nt,a

The others
L
CVX

Mean of total mortality rate in all years

Maturation at length class x

Number of spawners of length class x at age a at the
beginning of year ¢

Spawning stock biomass at the beginning of year ¢
Average weight corresponding length class x

Biomass at the beginning of year ¢

Predicted aggregate yield by the fishing fleet in year ¢

Predicted catch of length class x by the fishing fleet in year
t

Predicted aggregate relative biomass indices for fishing
fleet in year ¢

Vector of predicted catch proportions by length class in
year ¢

Abundance at age a at the beginning of year ¢ treated as
random effects

Likelihood component i

Coefficient of variation of X
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Pt,y(0)

RD; (0)

Relative difference of estimate for parameter & in year ¢
when using data of which terminal year is 7 — y and
estimate for parameter €in year t when using data of which
terminal year is T

Relative difference of estimate and true value for
parameter & of pseudo data set
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Table 2. Description of model scenarios.

Model scenario

(1) Stock—recruitment relationship

(corresponding
likelihood components)

(i-1) Beverton—Holt model

(i-2) mean-deviations

(ii-1)
No random
effects

(i1) (ii-2)
Random  Only recruitment after
effects the first year

(11-3)
Abundance at age after
the first year

M1
(L, Ly, Ls, Lg, and Ly)

M2
(L, Ly, LY, Ls, Lg, and Ly)

M3
(L, Ly, '-(42)' Ls, Lg, and L7)

M4
(L, Ly, Ly, Ls, Lg, and Ly)

M35
(L, Ly, L, LY, Ls, Lg, and Ly)

M6
(L Lo, Ly, LY, Ls, Lg, and Ly)
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Table 3. Number of free parameters estimated for each model scenario fitted to

Korean chub mackerel data.

Parameter Ml M2 M3 M4 M5 M6
log(un,,) 1 1 1 1 1 1
10g(N¢—,2) 6 6 6 6 6 6
log(xr) 0 0 0 1 1 1
log(N¢,r) 0 0 0 19 0 0
log(arsr) 1 1 1 0 0 0
log(Bsr) 1 1 1 0 0 0
log(Fipit) 1 1 1 1 1 1
log(R) PO 00 TR W 20 U\ 720\ 20
log(M) 1 1 1 1 1 1
log(x) 1 1 1 1 1 1
log(og) 1 1 1 1 1 1
log(Lsgos) 1 1 1 1 1 1
log(y) 1 1 1 1 1 1
logit(q) 1 1 1 1 1 1
OlogN 0 1 1 0 1 1
Total 3 37 37 54 36 36
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Table 4. Input values used. The value of parameters £, L, ,and ratioemgie

are taken from previous studies (Choi et al. 2000; Kim et al. 2020) and the value
of parameter O'rz is assumed to be CV of 10% about z,. Using related data
from other sources, parameters by, and b, are externally estimated in the

length-maturation relationship, and o and g in the allometric length-weight

relationship. The estimates are used as input values in this model.

Parameter Input value

My 18.0 (cm)
ol (0.1-18.0)* (cm?)
L, 51.67 (cm)
by 20.11
by 0.7 (cm?)
a 0.0028 (g/cm>*%)
p 3.43

ratio emae 0.6
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Table 5. Level of observation and process errors used in generating pseudo data

for each model scenario.

Ml M2 M3 M4 M5 M6

Sample size 200 200 - 200 200 200
Cv, 0.1 0.1 - 01 01 0.l
CV, 0.1 0.1 - 01 01 0.1
CV; - 0.1 - - 0.1 0.1
CVy : x - - - 0.1
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Figure 1. Overall structure of the simulation study. First, all true values and the number of iterations (i) are set. A total of i pseudo
data sets considering process errors and observation errors are generated. A total of i estimations are performed using each pseudo

data set.
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3. Results

Among the six models I fit to the Korean chub mackerel data, five model
scenarios converged. Model scenario 3 (M3), which allowed process errors in
abundance at age and used the Beverton—Holt model for predicting annual
recruits, did not. The converged five model scenarios had an invertible Hessian
providing variance estimation of parameters estimated by ML (Miller and Hyun

2018).

3.1. Goodness-of-fit

The goodness-of-fit values of each model scenario (except M3) for annual
yields, CPUEs, and length frequency data were generally good (Figure 2, Figure
3, and Figure 4.). In particular, M6, the state-space model in which abundances
at age after the first year are treated as random effects and recruitment is related
independent of spawning stock biomass showed the best outcomes with respect
to goodness-of-fit for all data used in this length-based model. To compare
results, all model scenarios were divided into two classes depending on the form
of the stock—recruitment relationship, i.e., M1 and M2 (Beverton—Holt), and M4,

MS5, and M6 (mean-deviations).

Of the two model scenarios, M1 and M2, that use the Beverton—Holt model

for annual recruits, M1 performed better than M2 in goodness-of-fit for yields
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(Figure 2). Of the three model scenarios, M4, M5, and M6, where the logarithm
of recruitment is normally distributed about a mean value, the result of M6 was
best in goodness-of-fit for yields (Figure 2b). Although the results of M1 and
M6 in each class were the best in their respective classes, all models showed

good results in general.

M2 performed much better than M1 in goodness-of-fit for CPUE (Figure
3). Although the predicted line in M1 penetrated all CPUEs, it did not seem to
explain the annual variation of CPUE satisfactorily. In goodness-of-fit for the
CPUEs of M4, M5, and M6, all predicted lines of each model scenario seemed
to explain the annual variation of CPUE well (Figure 3). Within each class of
model scenarios (Beverton—Holt or mean-deviations), state-space models (M2,
MS5, and M6) outperformed non-state-space models (M1 and M4) with respect
to goodness-of-fit for CPUE. Furthermore, comparing the results of goodness-
of-fit for CPUE of M1 and M4, M4 (which included penalized likelihood for

annual recruitment) performed better than M1.

In goodness-of-fit for the length frequency data by the fishing fleet catch
assumed to follow a multinomial distribution, the difference between all model
scenarios was negligible (Figure 4.). Their annual predicted lines were almost
bell-shaped. For this reason, some annual length frequency data that do not have
a unimodal shape or have a skewed distribution did not fit well with the

predicted line.
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3.2. Retrospective pattern

Initially, when I peeled off the data from the terminal year for checking the
retrospective pattern and achieving Mohn’s p, the state-space models (M2, M5,
and M6) failed to converge. To mitigate this issue, the variance of process error
in state-space models was treated as an input value, which was set by the
estimate that is achieved when the state-space model converged for all Korean
chub mackerel data. The variance of process error in the state-space model out
of some free parameters was treated as the input value because it was the most

difficult to estimate compared to the others.

The highest absolute value of Mohn’s p estimates for fully-selected fishing
mortality rate and spawning stock biomass for all model scenarios was
approximately 0.227 and the suggested retrospective patterns were relatively
minor (Figure 5). M1 had the lowest absolute value of Mohn’s p estimates,
followed by M6. With respect to consistency of model estimates when data are
peeled off in sequence, M1 and M6 had better results than other model scenarios

(Figure 6).

3.3. Simulation study

In the simulation study, state-space models (M2, M5, and M6) did not
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noticeably converge owing to the difficulty of estimating the variance of process
errors. For this reason, the variance of process errors in state-space models was
also treated as an input value. Consequently, the relative difference of the

variance of process errors in state-space models could not be calculated.

The number of convergences among model scenarios in the simulation study
varied considerably (Table 6). M6, which outperformed the other model
scenarios with respect to the goodness-of-fit and retrospective pattern,
converged most frequently. Within each class of model scenarios (Beverton—
Holt or mean-deviations), state-space models (M2, M5, and M6) outperformed
the other models (M1 and M4). The more random effects that were considered,
the better the result of convergence (M5<M6). Among model scenarios
including varying stock—recruitment relationships with the same assumption
about random effects (M1 and M4) and (M2 and M5)), the model scenarios that

included the Beverton—Holt model converged less than others.

The relative differences of each parameter estimate were generally

distributed around zero in the simulation study (Figure 7). However, the

logarithm of the initial fully-selected fishing mortality rate (logFj;) and the

variance of the stochastic error term in the von Bertalanffy growth model

(logog) showed a wide distribution of relative differences. Furthermore, fits

of some model scenarios in the simulation study produced a bias in the estimate
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of these (logFt, 10gog). Whether the bias was positive or negative among

model scenarios was not consistent. M1 and M4 performed better than the other
model scenarios with respect to the degree of distribution of relative difference
and bias of each parameter estimate. This result is expected, given that M1 and
M4, which have no random effects, considered only observation error in
generating pseudo data sets. Given that state-space models (M2, M5, and M6)
included observation error as well as process error in abundance at age in

generating pseudo data sets, the results of relative difference seemed to be good.

3.4. Estimates

The estimates of the natural mortality rate for all model scenarios except M3
were reliable but differed depending on the model scenario (Table 7). The
estimate of natural mortality rate in M6 was 0.10 year '. This value was much
lower than that in the other model scenarios. Instead of having a lower estimate
of the natural mortality rate in M6 than in the others, however, estimates of
annual fully-selected fishing mortality rate were generally higher than those of
the others (Figure 8). Although the scale of estimates of annual fully-selected
fishing mortality rate differed for all model scenarios, their annual trends were

similar.
The estimates of parameters related to body growth caused length
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distributions by age to be different by each cohort. For example, the probability
mass function of length distributions by age of the cohort recruited at the
beginning of 2014 is described in Figure 9. As it was assumed that the length
distribution for recruitment is fixed, all length distributions for age 1 were the
same regardless of converging model scenarios. Although widening the variance
of length distribution with aging was similar for all model scenarios, the mean
values of length distribution by age were not. Remarkably, the gaps between the
mean values of length distribution by age decreased with aging until the
maximum age. This was consistent with the assumption that the process of body
growth follows the von Bertalanffy growth model where the growth rate of the
individual reduces as it grows. However, the gap between age 5 and maximum
age, age 6+, increased again, unlike the behavior for previous ages. This was
because age plus group was considered. In other words, the length distribution
for the maximum age of a certain cohort was calculated considering not only
the individuals of the cohort but also the remaining individuals from previous
cohorts that survived without dying. Comparing various models, the gaps
between the mean value of length distribution by age were the largest in M6. As
a result, the mean value of length distribution for the maximum age, 6+, was the

largest, i.e., approximately 31.5 cm.

There was no significant difference in the estimated selectivity curves for

various converging model scenarios (Figure 10). The overall shapes were
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similar; however, there was a slight difference in the selection below 30 cm. The

values of Lgpg, ranged between 29-31 cm and the values of selection of 1.0

were represented at approximately 40 cm for converging model scenarios.

The annual estimate of biomass and spawning stock biomass for all model
scenarios showed a similar trend, but the scale and range of those differed
considerably (Figure 11). The scale and range of estimated annual biomass and

stock spawning biomass in M6 was the lowest.

Within the class of models that included the Beverton—Holt model for
recruitment (M1 and M2), the shape and scale of estimated lines for the
Beverton—Holt model were different (Figure 12). The shape of the estimated
line for the Beverton—Holt model in M1 increased rapidly at the beginning of
spawning stock biomass. Once the spawning stock biomass was above a certain
level, there seemed to be no significant change in recruitment as the spawning
stock biomass changed. As M1 was assumed to have deterministic annual
recruitment depending on the estimated line for the Beverton—Holt model, all
points representing estimated annual recruit were on the line. These results
implied that recruitment in M1 was not significantly affected by spawning stock
biomass, though recruitment is related to spawning stock biomass when using
the Beverton—Holt model. By contrast, the shape of the estimated line for the
Beverton—Holt model in M2 gently increased as compared to that of M1, which

suggested that as the spawning stock biomass increases, recruitment also
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increases. As M2 treated recruitment as a random effect, however, all points
representing predicted annual recruit were distributed above or below the line,

unlike for M1.
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Table 6. Number of convergences by model scenario. 1000 denotes the total

number of iterations in the simulation study.

Model COIEYSB%ESHCG
MI 364
M2 585
M3 )
M4 448
My 787
pi 946
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Table 7. Estimates of natural mortality rate by model scenario.

Model Natural mortality rate

(year))
Ml 0.374
M2 0.500
M3 ;
M4 0.527
MS5 0.577
M6 0.100
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Figure 2. Goodness-of-fit for annual total yields of chub mackerel from 2000-2019. Panel (a) describes the results of M1 and

M2, and panel (b) represents those of M4, M5, and M6, respectively. The points are observed yields and each line represents

predicted values by model scenario.
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Figure 3. Goodness-of-fit for annual CPUE’s of chub mackerel from 2000-2019. Panel (a) describes the results of M1 and M2,
and panel (b) represents those of M4, M5, and M6, respectively. The points are observed CPUE’s and each line represents

predicted values by model scenario.
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Figure 4. Goodness-of-fit for length frequency data of chub mackerel by the fishing fleet catch from 2000-2019. The histograms

are observed data and each line is predicted values by model scenario.
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Figure 5. Mohn’s p for fully-selected fishing mortality and spawning stock

biomass by model scenario.
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Figure 6. Relative difference plot of retrospective patterns for fully-selected fishing mortality and spawning stock biomass by model

scenario. Five years from the terminal year in sequence are peeled off.
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Figure 7. Box plot of relative differences of estimates for pseudo data generated in simulation study by model scenario. The red

line indicates that the relative difference is zero.
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Figure 8. Estimates of fully-selected fishing mortality rate by model scenario.
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Figure 9. Estimated probability mass function (PMF) of length class by age of the cohort recruited at the beginning of 2014 by
model scenario. The black line represents estimated PMF of length class for age 1 in 2014. The red line represents estimated PMF
of length class for age 2 in 2015. This process is repeated and the pink line on the far right represents estimated PMF of length class
for age 6+ in 2019.
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Figure 10. Estimated selectivity curve by model scenario. The horizontal dotted
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Figure 11. Estimated (M1, M2, M4, and M5) or predicted (M6) annual biomass and spawning stock biomass by model scenario.
The black line and the red line describe estimated (M1, M2, M4, and M5) or predicted (M6) annual biomass and spawning stock

biomass, respectively. Note the change in the y-axis.
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Figure 12. Beverton—Holt stock—recruitment relationship by model scenario assumed that recruitment is related to spawning stock
biomass (M1 and M2). The solid line represents the estimated line for the Beverton—Holt model and the points are estimated (M1)

or predicted (M2) annual recruits. Note the change in the y-axis.
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4. Discussion

It was observed that the state-space models (M2, M3, M5, and M6) have
difficulty in reaching convergence when the variance of process error in
abundance at age and year is treated as a free parameter. Specifically, the
variances of process error in recruitment as well as in abundance at age except
recruitment in M3 and M6 were estimated, but convergence failed to occur. By
assuming that there is only one common variance of process error in all
abundance at age, M6 converged, but M3 did not. This seems to be because M3,
which allowed process error in abundance at age and used the Beverton—Holt
model for predicting annual recruitment, has more burdens with respect to
having multiple random effects and some free parameters that are difficult to

estimate, such as two parameters in the Beverton—Holt model (agg, Ssg) and

natural mortality rate (M).

Although M3 did not converge, the converged state-space model scenarios
(M2, M5, and M6) outperformed the models without random effects (M1 and
M4) with respect to goodness-of-fit for all data and convergence rate in the
simulation study. Furthermore, retrospective patterns in all model scenarios
were negligible. Considering the comprehensive results, it was observed that
M6, the state-space model in which the abundances at age after the first year are

treated as random effects and recruitment is related independent of spawning
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stock biomass, performed best among all models. In terms of the number of free
parameters, M4, which has the maximum number of free parameters (54) and
no random effects, was expected to show good results. However, even though
M5 and M6 have 36 free parameters, those that have random -effects
outperformed M4. This might suggest that considering observation errors in
data and process errors in time-varying parameters is meaningful in stock

assessment.

However, there were some disadvantages when allowing stochasticity in the
interannual transition in abundance. As can be seen from the result of
convergence in M3 and treating the variance of process error as an input value
in a retrospective pattern and simulation study, there were difficulties in
numerical optimization. In particular, the state-space models considered in this
study are sensitive to the weighing terms for likelihood in the model.
Furthermore, considering process error and including random effects in the
model considerably increases the computation time. Even though TMB, known
to be fast for implementing and fitting state-space models, was used, the process

was still time-intensive.

Annual variation of recruits was also found to potentially affect the result of
goodness-of-fit for CPUE. The M1’s predicted line about CPUE could not
adequately explain the annual variation of CPUE. The main difference between

M1 and the other models is that recruitment in M1 was not considered a random

62



variable. Consequently, there was no likelihood component for recruitment in
M1. This might imply that considering recruitment as a random variable would
result in a better outcome in goodness-of-fit for CPUE, regardless of the form

of penalized likelihood (M4) or random effects (M2, M5, and M6).

In the simulation study, it was determined that fishing mortality seems to be
most affected by variation of a set of pseudo data based on the result of the
relative difference of each parameter estimate. For various sets of pseudo data
generated by considering observation errors and process errors, most estimated
parameters, except fishing mortality, did not show a significant difference
depending on variation in pseudo data. However, the relative difference of
logarithm of initial fully-selected fishing mortality rate showed a wide
distribution, which might imply that the estimate of fishing mortality is more
sensitive to data than any other estimates. In other words, data used in estimating
parameters might be mainly explained by estimates of fishing mortality in this
model. Bias in the variance of stochastic error in the von Bertalanffy growth
model could also imply that the estimate was relatively imprecise. This implies
that estimating a variance in error term is not easy. In future studies, if some
biological information regarding the variance related to body growth could be

obtained, it could be treated as an input value, which may yield better results.

All free parameters in each model were estimated, except in M3. Specifically,

the length- and time-invariant natural mortality rate, which is conventionally
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fixed, was estimated. Crone and Hill (2015) assumed this natural mortality rate
as 0.5 year ! in stock assessment for the Pacific mackerel (Scomber japonicus).
Takahashi et al. (2019) provided the range of estimates of natural mortality
explicitly as 0.3-0.5 year ! for the North Pacific Chub mackerel; Castro and
Santana (2000) presented a slightly wider range. The estimates of natural
mortality in M1, M2, M4, and M5 were somewhat consistent with the values in

previous studies, but in M6 the value was quite different.

In respect to estimates of the parameter related to body growth of fish, there
was a considerable difference in the growth coefficient (k) in the von

Bertalanffy growth model and the value in the previous study referenced and

estimated in this model. While estimating parameters in this study, the input

value of Lgqg, Was set to 51.67 cm with reference to Choi et al. (2000), whereas

K was treated as a free parameter. Comparing to the value of &, i.e. 0.299
provided in Choi et al. (2000), the value in M6, i.e. 0.078, was much smaller.
Shiraishi et al. (2008), which studied the growth of Chub mackerel using body
length and age data estimated K using the von Bertalanffy growth model,
estimated this value as 0.372. This also suggests that estimate of XK in the
proposed model was very low. However, it might be significant that this study
estimated K without age data. Although estimate of X in the proposed
model was different from that in previous studies, length distributions by age in

Figure 9 were reliable and seem to follow the assumption in the von Bertalanffy
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model where the growth rate of the individual reduces as it grows. Estimating

K aswell as Lgge, in a future study could provide valuable insights.

In this model, applying the Beverton—Holt model for recruitment seems
inadequate to fulfill the purpose of associating annual recruitment with
spawning stock biomass. In M1, as the estimated line for Beverton—Holt model
had a drastic slope at the beginning of spawning stock biomass, the annual
recruitment appeared at a similar level, regardless of the level of spawning stock
biomass. In other words, the line in M1 that implied recruitment is almost
independent of spawning stock biomass. Although the estimated line for the
Beverton—Holt model in M2 indicated that recruitment is related to spawning
stock biomass, unlike that of M1, the annual predicted recruitment for which
process error is considered is distributed very far from the line. This also

suggested that recruitment is relatively independent of spawning stock biomass.

This study has some limitations such as the short period of time series data
used and the lack of actual survey data. The unit of time in this model was
defined as a year. The period of all annual data used was from 2000-2019, i.e.,
20 annual data. Given some details in this study such as the structural
complexity of this model, the presence of process errors, and the difficulty in
estimating some parameters, this period is not enough. Although the fact that all
parameters in this model could be estimated using short-term data is

encouraging, long-term data must be applied to this model. In a future study,
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long-term pseudo data could be used. The model could also be applied to
another stock for which actual long-term data is available. Another limitation in
terms of data was the lack of actual survey data. All actual data used in this study
were from fishing fleet catches. Owing to this lacuna, CPUEs were used for the
biomass index. If reliable survey data can be obtained, the estimation can be

more reliable.
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Appendix. TMB code for the state-space length-
based assessment model (M6)

/IA size-based model for the Korean mackerel stock assessment;
//Author: Doyul Kim and Saang-Yoon Hyun

#include <TMB.hpp>

/l pass missing values
template<class Type>
bool isNA(Type x){

return R_IsNA(asDouble(x));
}

/l square

template<class Type>

Type square(Type i) {
return i*i;

}

//objective function
template<class Type>
Type objective_function<Type>::operator() () {

//Data section
DATA_INTEGER(nages); /Inumber of imaginary age classes;

/lYield and CPUE data
DATA_MATRIX(data_yieldCPUE);

/Nlength frequency data

DATA_VECTOR(x);

DATA_MATRIX(data_length_freq);

DATA_SCALAR(neff); Ileffective sample size in the multinomial
likelihood for the length data;

/linput values of model structure

DATA_VECTOR(range_q);

/Nlength-weigth relationship
DATA_MATRIX(data_LW);
DATA_SCALAR(log_alpha_LW);
DATA_SCALAR(log_beta_LW);

/Nlength-maturation relationship
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DATA_MATRIX(data_maturation);
DATA_SCALAR(bO_mat);
DATA_SCALAR(b1_mat);
DATA_SCALAR(ratio_female);

/llikelihood weights
DATA_SCALAR(lambda); //weight for length freq data

//IParameter section
PARAMETER(mu_r);

/labundances in initial time
PARAMETER(logN_1st_time_mean);
PARAMETER_VECTOR(logN_ 1st_time);

/random effects in recruitments

PARAMETER(logRecruit_mean);

PARAMETER_VECTOR(logRecruits_re);  //random effects; the number of
parameters are 19 (2001 - 2019)

/frandom effects in abundances
PARAMETER_MATRIX(logN_re); /lfrandom effects; the matrix
dimension is 19 x 5 (except first row and column)

/ffishing mortality
PARAMETER(logFt_init);
PARAMETER_VECTOR(logFt); //annual fishing mortality over time;

/Inatural mortality
PARAMETER(log_M_constant);

//Ibiomass index
PARAMETER(logit_q); //qis from index = g*Bimoass;

//growth

PARAMETER(Linf);

PARAMETER(log_kappa); /Ivon-Bertalanffy growth equation
PARAMETER(log_sig_L); /Isig_L, where L is the L_{a+1} equation;
IIselectivity

PARAMETER(log_L50); /lgear selectivity parameter;
PARAMETER(log_gamma); /lgear selectivity parameter;

//stock-recruitment relationship
/IPARAMETER(log_aSR);
/IPARAMETER(log_bSR);
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//sd of likelihood (weight)
/frandom effect or penalized likelihood

PARAMETER(logN_1st_time_sd); /lknown value (outside CPP file)
PARAMETER(logRE_sd);

PARAMETER(logFt_sd); //known value (outside CPP file)
//measurement

PARAMETER(logYield_sd); /lknown value (outside CPP file)
PARAMETER(logCPUE_sd); //known value (outside CPP file)

/IDerived quantities

//Derived quantities of data

vector<Type> yield=data_yieldCPUE.col(3);  /lyield data in
data_yieldCPUE

vector<Type> CPUE=data_yieldCPUE.col(4); //cpue datain
data_yieldCPUE

int nlengths=x.size(); /lthe number of length classes;
//median length of maxFL = 53.5 cm;
int nyrs=yield.size(); /lthe number of years
int r=1; /lrecruitment is defined as the pop size at age
1;
vector<Type> L=x; /llength after growth;

vector<Type> data_length LW=data_LW.col(0);
vector<Type> data_weight LW=data_LW.col(1);
Type alpha_LW=exp(log_alpha_LW);

Type beta_LW=exp(log_beta_LW);

int size_data_LW=data_length_LW.size();

vector<Type> data_length_maturation=data_maturation.col(0);
vector<Type> data_rate_maturation=data_maturation.col(1);
int size_data_maturation=data_length_maturation.size();

Type q_lower=range_q(0);
Type q_upper=range_q(1);
/[Derived quantities of paremeter

Type sig2_r=square(0.1*mu_r); //variance in length distribution of
recruitment (CV: 10%)

vector<Type> Recruits(nyrs-1);
vector<Type> Ft=exp(logFt);
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Type kappa=exp(log_kappa);
Type Rho=exp(Type(-1.0)*kappa);
Type L50=exp(log_L50);

Type gamma=exp(log_gamma);
Type sig_L=exp(log_sig L);

/linstantaneous natural mortality
vector<Type> M(nlengths);

Type M_constant=exp(log_M_constant);

/lconstant
M.fil(M_constant);

vector<Type> pred_Wt(nlengths);
pred_Wt.setZero();

vector<Type> pred_Maturation(nlengths);

classes;
pred_Maturation.setZero();
vector<Type> Sel_PS(nlengths);
classes;
Sel_PS.setZero();
matrix<Type> F_tx(nyrs,nlengths);
considering selectivity
F_tx.setZero();
matrix<Type> Z_tx(nyrs,nlengths);
instantaneous natural mortality
Z tx.setZero();
matrix<Type> ExpZ_tx(nyrs,nlengths);
ExpZ_tx.setZero();
vector<Type> Mu(nlengths);
Mu.setZero();
vector<Type> SS(nages);
SS.setZero();
vector<Type> p(nlengths);
p.setZero();
vector<Type> p_plus(nlengths);
p_plus.setZero();
matrix<Type> f(nages,nlengths);
f.setZero();

/Ilvon Bertalanffy;
/[Brody coefficient;
/Igear selectivity;

/[gear selectivity;

//body weight by length classes;

//maturation rate by length

/Igear selectivity by length

/linstantaneous fishing mortality;

/linstantaneous fishing mortality +

/Isurvival rate
//differ by length

/[differ by age

/lthe last age class;

/Nlength frequency as pmf

array<Type> f_total(nages, nlengths, nyrs);

f_total.setZero();

array<Type> pp(nlengths,nlengths,nages);
(row) x nlengths (columns) at each level;

pp.setZero();
matrix<Type> N(nages,nyrs);
N.setZero();
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array<Type> NL(nyrs,nlengths,nages); //at the level of each age

NL.setZero();

matrix<Type> N_save(nages,nyrs);

N_save.setZero();

array<Type> NL_re(nyrs,nlengths,nages); //at the level of each age

NL_re.setZero();

matrix<Type> Spawners(nages,nyrs);

Spawners.setZero();

array<Type> SpawnersL(nyrs,nlengths,nages); //at the level of each age

SpawnersL.setZero();

matrix<Type> SpawnerBiomass(nages,nyrs);

SpawnerBiomass.setZero();

array<Type> SpawnerBiomassL(nyrs,nlengths,nages); //at the level of each
age

SpawnerBiomassL.setZero();

Type CNum;

CNum=Type(0.0);

Type CWH;

CWit=Type(0.0);

vector<Type> TCatch(nyrs);
TCatch.setZero();

matrix<Type> Catch(nyrs,nlengths);
Catch.setZero();

vector<Type> Yieldhat(nyrs);
Yieldhat.setZero();

vector<Type> Pop(nyrs);

Pop.setZero();

array<Type> ENx(nyrs,nlengths,nages);
ENXx.setZero();

vector<Type> EN(nyrs);

EN.setZero();

vector<Type> B(nyrs);

B.setZero();

vector<Type> EB(nyrs);

EB.setZero();

vector<Type> nll(7); /lelements of the objective funtion, which is the
negative loglikelihood;

//Weight, gear selectivity, and maturation rate by length
for(int xind=0; xind<nlengths; xind++) {
pred_Wit(xind)=alpha_LW*pow(x(xind),beta_LW)/Type(1000);
/lthe division of 1000 is to convert gram to kg;
Sel_PS(xind)=Type(1.0)/(Type(1.0)+exp(Type(-1.0)*gamma*(x(xind)-
L50)));
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pred_Maturation(xind)=Type(1.0)/(1+exp(b0_mat-b1_mat*x(xind)));
}; //mortality and survival rate by time and length

for(int t=0; t<nyrs; t++) { //t is year; //it is m, month in Quinns code;
for(int xind=0; xind<nlengths; xind++){
F_tx(t,xind)=Sel_PS(xind)*Ft(t);
Z tx(t,xind)=M(xind)+F_tx(t,xind);
ExpZ_tx(t,xind)=exp(Type(-1.0)*Z_tx(t,xind)); //survival;
2
%

vector<Type> ExpZ_tx_colsums(nlengths);
ExpZ_tx_colsums=ExpZ_tx.colwise().sum();
vector<Type> ExpZ_tx_mean(nlengths);
ExpZ_tx_mean=ExpZ_tx_colsums/nyrs;

//LVB body growth;
SS(0)=sig2_r; //SS(0): Var{lengths at age 1}

f.row(0)=dnorm(x, mu_r, sqrt(SS(0)))/sum(dnorm(x,mu_r,sqrt(SS(0))));

for(int xind=0; xind<nlengths; xind++) {
Mu(xind)=Linf-(Linf-x(xind))*Rho;
I3

for(int a=1; a<nages; a++) {
/Ithis SS is from Cohen and Fishman (1980); //it was used for the shrimp
in the Quinns paper;
SS(a)=square(sig_L)*(Type(1.0)-pow(Rho,(Type(2.0)*(a+1)-
Type(2.0)*r)))/(Type(1.0)-square(Rho))+pow(Rho,(Type(2.0)*(a+1)-
Type(2.0)*r))*sig2_r;
I3

Type KkKk;
for(int a=0; a<nages; a++) {
for(int xind=0; xind<nlengths; xind++) {
kkk=Type(0.0);
for(int Lind=0; Lind<nlengths; Lind++) {
pp(Lind,xind,a)=Type(0.0);

if(Lind>=xind
pp(Lind,xind,a)=dnorm(L(Lind),Mu(xind),sqrt(SS(a)));
/1 f(L|x) in Quinn et al. (1998);
kkk=kkk+pp(Lind,xind,a);

I3

2

for(int Lind=0; Lind<nlengths; Lind++) {
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pp(Lind,xind,a)=pp(Lind,xind,a)/kkk; //normalize f(L|x);

[nitial time length frequency
matrix<Type> f_1st_time(nages, nlengths);
f_1st_time.setZero();

f_1st_time.row(0)=f.row(0);

for(int a=1; a<nages; a++) {
for(int Lind=0; Lind<nlengths; Lind++) {
for(int xind=0; xind<nlengths; xind++) {
f_1st_time(a,Lind)+=f_1st_time(a-
1,xind)*ExpZ_tx_mean(xind)*pp(Lind,xind,a);

|3
h
5

for(int a=1; a<nages; a++) {
f_1st_time.row(a)=f_1st_time.row(a)/(f_1st_time.row(a).sum());

}

//Start of cohort loop

int a;

for(int m=0; m<nyrs; m++) {

if(m == 0) {
for(int a=0; a<nages; a++) {
for(int xind=0; xind<nlengths; xind++) {

NL(m,xind,a)=Type(0.0);
NL_re(m,xind,a)=Type(0.0);

NL(m,xind,a)=exp(logN_1st_time(a))*f_1st_time(a,xind);
N_save(a,m)+=NL(m,xind,a);
|3
N(a,m)=N_save(a,m);
|
} else if(m>0) {
a=0;

for(int xind=0; xind<nlengths; xind++) {
NL(m,xind,a)=Type(0.0);
NL_re(m,xind,a)=Type(0.0);

NL(m,xind,a)=exp(logRecruits_re(m-1))*f(a,xind);
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N_save(a,m)+=NL(m,xind,a);
b

N(a,m)=N_save(a,m);

for(int a=1; a<nages; a++) {
for(int Lind=0; Lind<nlengths; Lind++) {
p(Lind)=Type(0.0);
for(int xind=0;xind<nlengths;xind++) {
p(Lind)+=f(a-1,xind)*ExpZ_tx(m-1,xind)*pp(Lind,xind,a);
%

I3
if(al=nages-1) {
for(int Lind=0;Lind<nlengths;Lind++) {
NL(m,Lind,a)=Type(0.0);
NL_re(m,Lind,a)=Type(0.0);
NL(m,Lind,a)=N(a-1,m-1)*p(Lind);
N _save(a,m)+=NL(m,Lind,a);

/}N(a,m)=N_save(a,m);
N(a,m)=exp(logN_re(a-1,m-1));

} else if(a == nages-1) {
for(int Lind=0;Lind<nlengths;Lind++) {
p_plus(Lind)=Type(0.0);
for(int xind=0;xind<nlengths;xind++) {
p_plus(Lind)+=f(a,xind)*ExpZ_tx(m-
1,xind)*pp(Lind,xind,a);

|

for(int Lind=0;Lind<nlengths;Lind++) {
NL(m,Lind,a)=Type(0.0);
NL_re(m,Lind,a)=Type(0.0);
NL(m,Lind,a)=N(a-1,m-1)*p(Lind)+N(a,m-1)*p_plus(Lind);
N_save(a,m)+=NL(m,Lind,a);

%
//N(a,m)=N_save(a,m);
N(a,m)=exp(logN_re(a-1,m-1));

2
%/l a(2~6) ends here
2

for(int a=0;a<nages;a++) {
for(int Lind=0;Lind<nlengths;Lind++) {
f(a,Lind)=NL(m,Lind,a)/N_save(a,m);
I3
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|3

for(int a=0;a<nages;a++) {
for(int Lind=0;Lind<nlengths;Lind++){
f_total(a, Lind, m)=f(a, Lind);
2

h

for(int a=0;a<nages;a++) {
for(int Lind=0;Lind<nlengths;Lind++) {
NL_re(m,Lind,a)=N(a,m)*f(a, Lind);
¥

for(int Lind=0;Lind<nlengths;Lind++) {
SpawnersL(m,Lind,a)=NL_re(m,Lind,a)*pred_Maturation(Lind)*rati
o_female;

SpawnerBiomassL(m,Lind,a)=SpawnersL(m,Lind,a)*pred_Wt(Lind);
Spawners(a,m)+=SpawnersL(m,Lind,a);
SpawnerBiomass(a,m)+=SpawnerBiomassL(m,Lind,a);

2
¥

}; // m ends here

for(int m=0;m<nyrs;m++) {
for(int a=0;a<nages;a++) {
for(int xind=0;xind<nlengths;xind++) {
CNum=NL_re(m,xind,a)*(F_tx(m,xind)/Z_tx(m,xind))*(Type(1.0)-
ExpZ_tx(m,xind));
CWt=CNum*pred_Wt(xind); /lin kg
Catch(m,xind)+=CNum;
TCatch(m)+=CNum;
Yieldhat(m)+=CWt;
B(m)+=NL_re(m,xind,a)*pred_Wt(xind);
J§
%

}; /Imends here;

/lobjective functions
nll.setZero();
/lpart 1 of the objective funcion: multinomial for length-frequency data
matrix<Type> matrix_for_multinomial_prob(nyrs, nlengths);
/I effective sample size (yearly)
for(int m=0;m<nyrs;m++) {
vector<Type>
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data_length_freq_eff_ss_row=data_length_freq_eff_ss.row(m);
vector<Type> prob_length_freq=Catch.row(m)/Catch.row(m).sum();

matrix_for_multinomial_prob.row(m)=prob_length_freq;

nll(0)-=lambda*dmultinom(data_length_freq_eff ss row,
prob_length_freq, true);
2

/Ipart 2 of the objective function: lognormal for yield data
for(int m=0;m<nyrs;m++) {
nll(1)-= dnorm(log(yield(m)), log(Yieldhat(m)/Type(1000)), logYield_sd,
true);

%

/Ipart 3 of the objective function: lognormal for cpue data
/Nog(CPUE) ~ normal(log(q*Bt), sig2_logCPUE);

Type q=Type(0.0);
g=q_lower+(q_upper-q_lower)/(1+exp(-logit_q));

for(int m=0;m<nyrs;m++) {
nli(2)-= dnorm(log(CPUE(m)), log(q)+log(B(m)), logCPUE_sd, true);
I3

/Ipart 4 of the objective function: fishing mortality
/Nikelihood for logF1
nli(3)-= dnorm(logFt(0), logFt_init, logFt_sd, true);

/llikelihood for logF2 to logFT
for(int m=1; m<nyrs;m++) {

nll(3)-= dnorm(logFt(m), logFt(m-1), logFt_sd, true);
|3

/Ipart 5 of the objective function: abundances in initial time
for(int a=0; a<nages; a++) {
nli(4)-= dnorm(logN_1st_time(a), logN_1st_time_mean,
logN_1st_time_sd, true);

J#

/Ipart 6 of the objective function: recruitments from the 19 years of 2001 -
2019;
for(int m=0;m<nyrs-1;m++) {
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nll(5)-= dnorm(logRecruits_re(m), logRecruit_mean, logRE_sd, true);

J#

/lpart 7 of the objective function: logN_re;
for(int m=0; m<nyrs-1; m++){
for(int a=0; a<nages-1; a++) {
nll(6)-= dnorm(logN_re(a,m), log(N_save(a+1, m+1)), logRE_sd,
true);
2
¥

Type jnll=nll.sum();

return jnll;
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