

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

• 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

工學碩士 學位論文

유해물질용 보호 장갑의 성능평가에 관한 연구

朴孝珍

工學碩士 學位論文

유해물질용 보호 장갑의 성능평가에 관한 연구

指導教授 李 來 雨

이 論文을 工學碩士 學位論文으로 提出함

2008년 12월

釜慶大學校 産業大學院

安全工學科

朴孝珍

朴孝珍의 工學碩士 學位論文으로 인준함

副審 權 五 憲 (인)

副審 李來雨(인)

목 차

List of Tables · · · iii
List of Figures · · · · iii
1. 서론
2. 이론적 고찰
2. 이론적 고찰····································
2.2. 경화제의 특성 7
3. 실험재료 및 방법 9
3.1. 실험재료 ····· 9
3.1.1. 경화제의 종류 9
3.1.2. 보호용 장갑의 종류 · · · · 9
3.2. 실험방법 10
3.2.1. 분석방법 · · · · · · · · · · · · · · · · · · ·
(1) Ghost Wipe Pads ······ 10
(2) 감지셀11
(3) 세탁기를 이용한 방법12
3.2.2. 시안화물의 분석13
(1) HPLC에 의한 분석 ······13
(2) 측정범위13
(3) 고정액과 용해액의 제조 14
4. 실험결과

4.1. 최적화 실험	15
4.1.1. 고정액	· 15
4.1.2. 용해액 · · · · · · · · · · · · · · · · · · ·	· 18
4.1.3. Ghost Wipe Pads ······	20
4.2. 장갑의 성능 실험	22
4.2.1. 장갑재질에 미치는 유기용제의 영향	22
4.2.2. 장갑재질에 미치는 이소시안화물의 영향	25
4.2.3. 작업강도에 의한 장갑재질의 변화	28
5. 결론	29
참고문헌	31
ABSTRACT	36
THE TO HILL PS	

LIST OF TABLES

- Table 1. Comparison between toluene and methylene chloride for derivative solution
- Table 2. Recovery of different dissolving solutions to extract isocyanate(NCO-) in hardener
- Table 3. Efficiency of isopropyl alcohol as a wiping solution
- Table 4. Breakthrough times of glove materials with different solvents(n=3; runned three times)
- Table 5. Breakthrough times and permeation rates of selected glove materials with different composition of hardeners

LIST OF FIGURE

- Fig. 1 Top 10 agents for occupational ashma, 2003-2005
- Fig. 2 Most common isocyanates in hardener of polyurethane painters
- Fig. 3 Disposure Test cell.

1. 서론

보호구의 용도는 다양하고 종류도 매우 많으며, 이들은 근로자의 신체를 보호하기 위하여 작업복, 안전화, 보호 안경, 보호 장갑 등의 여러 가지 형태로 사용되고 있으나^{1,2)}, 적절하게 사용하고 있는지, 원래의 목적대로 성능을 발휘하고 있는지 여부가 대단히 중요한 부분이다.

그 중에서 노출된 피부에 피해를 입힐 수 있는 요소로서는 열적인자와 독성물질에 의한 인자로 크게 나눌 수 있으며, 현장의 근로자들에게는 피부를 통한 흡수가 대단히 위험하기 때문에 평가의 중요성에 대해 계속 적으로 발전되어 왔다.

유해물질이 체내로 유입되는 경로는 호흡기, 피부, 음식물 섭취 등이 있으며, 이들 경로 중에서 호흡기와 피부를 통한 유해물질의 유입에 대 한 많은 연구와 평가가 이루어지고 있다³⁾.

이러한 관점에서 미국의 ACGIH(American Conference of Governmental Industrial Hygienists)에서는 피부를 통한 침투 위험성에 대하여 주의를 환기시켰고, ACGIH-TLV(Threshold Limit Value)에서는 물질에 따른 위험의 종류를 구분하였다⁴⁾.

특히 자동차, 비행기, 가구관련 산업 등에서 많이 사용하는 표면처리용 분사페인트의 경화제는 이소시안화물(Isocyanate)이 대부분으로 이소시안화계중에서 가장 많이 쓰이는 HDI(Hexamethylene diisocyanate)의 피부접촉은 호흡에 의한 흡수보다 심각 하며^{5~8)}, 독성이 매우 강한 물질이기 때문에 천식, 알레르기, 기침을 유발하거나 호흡곤란 때문에 사망할 수도 있는 물질로

서 건강에 심각한 장애를 일으킨다9~11).

이외에도 여러 가지 산업에서 많이 쓰이고 있는 HDI는 직업성 천식의 주범이며^{12~14)}, 특히 유의하여야 할 점은 HDI가 인체내부에 유입되면 내부에 존재하는 항체와 반응하여 항체를 소비시키며 HDI에 노출되었던 일부의 근로자들은 소비된 항체가 다시 생성되지 않는다고 하는 사실이다^{15,16)}.

이러한 이유들 때문에 이소시안화물의 피부노출에 대한 연구는 오랫동안 계속되어 왔고, 최근에는 영국의 산업안전보건청에 의해서 더욱 발전하였으며, 2006년에는 이에 대한 분석표준을 제시하였다^{17~19)}. 그러므로 표면처리 공정에 종사하는 근로자는 노출되기 쉬운 피부를 보호하기 위하여 당연히 개인보호구 (PPE; personal protective equipment)를 착용하여야 하나 착용한 보호 장갑 등을 통과하여 피부오염을 일으킬 수 있다.

따라서 이러한 약품들을 취급하고 있는 산업현장에서는 유독성 약품의 폭로에 대비하여 보호구에 대한 검정이 필요하다. 특히, 보호 장갑이 위험물질과 접촉되었을 때의 재질특성인 내구성과 투과율(permeation rate)및 파과시간 (breakthrough time) 등은 매우 중요한 인자이다. 이와 같은 재질특성의 검토는 우리나라의 산업현장에 적용하는 화학물질의 노출기준 제정에도 활용될 수 있는 실질적인 자료로 제시될 수 있으며, 근로자들의 직업성 질환을 예방하기 위한 중요한 대책이 될 것이다.

본 연구에서는 이소시안화물이 함유된 차량도장용 분사 페인트를 사용하는 근로자들의 피부를 통한 독성유입에 의한 인명피해를 최소화하기 위하여, 이소 시안화물의 분석기법 개선과 이들이 사용하는 여러 가지 장갑재질의 투과율 및 파과특성을 정확히 규명하여 보호 장갑의 성능을 평가하고 이러한 물질을 취급하는 현장 근로자들의 직업병 발생을 예방하는데 그 목적을 두었다.

2. 이론적 고찰

2.1 이소시안화물의 독성

특수한 물질을 취급하는 작업장에서는 사람의 기도가 생물학적으로 변화하여 직업성 천식이 발생하며 동일한 물질에 대한 연속적인 노출은 천식 발작을 야기시킨다. 이러한 물질을 사용하는 산업에서는 잠재적인 천식의 원인이 광범위하여, 위험에 노출된 근로자들의 전체 수는 정확하게 파악하기 어렵다.

세계적인 연구동향²⁰⁾(Fig. 1)에 의하면 직업성 천식의 약40%는 HDI와 MDI[Methylene bis(4-phenyl isocyanate)]때문에 발생되고, 17%는 TDI (Toluene diisocyanate)때문이라고 한다.

Fig.1은 2003-2005년의 기간동안 Great Britian에서 매년 Surveillance of Work-related and Occupational Respiratory Disease (SWORD)와 Industrial Injuries Scheme (IIS)에서 각각의 직업 및 산업별로 100,000명의 작업자를 대상으로 조사한 평균으로서 몇 년 동안 직업성 천식을 일으키는 여러 화학 물질 중 Isocyanate를 가장 높은 원인 인자로 포함시키고 있으며 현재 직업성 천식의 원인이 되는 활동과 작업장의 종류를 유추할 수 있다.

IIS와 SWORD 데이터 간의 차이에 대한 원인은 여러 가지 요소가 있다. IIS는 명기된 용제들 중의 하나에 대한 노출로 인한 경우 또는 정해진 직업성 원인의 개인적 증거를 포함하며, 물질이 증가하는 경우나 잘

알려지지 않거나 입증되지 않은 천식과 관련된 직업적 설정은 포함하지 않았다. 특히 IIS는 자영업자는 포함하지 않고 심각한 장애를 가진 사람을 위한 유효한 보상 범위를 정하기 위해서는 모든 개인이 적용 받을 수 있는 충분한 보상을 제공하지 못한다.

반면 SWORD의 데이터에서는 적어도 3번 이상의 천식 진단을 통하여 발병률로 포함시키며 직업성 호흡기 질환에 대한 경우들에 대해 언급되 지 않아 직업성 천식에 대한 발병률이 과소평가 되어 있기 때문에 실질 적으로는 아주 높은 발병률을 나타내고 있을 것으로 생각된다.

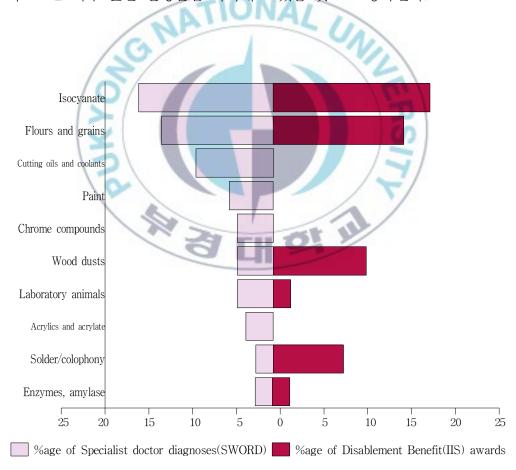


Fig. 1 Top 10 agents for occupational ashma, 2003-2005

경화제로서 많이 쓰이는 이소시안화물 HDI의 분자구조는 OCN-(CH₂)₆-NCO 외에 Fig. 2에 나타낸 바와 같이 삼량체 구조를 가진 것도 있다.

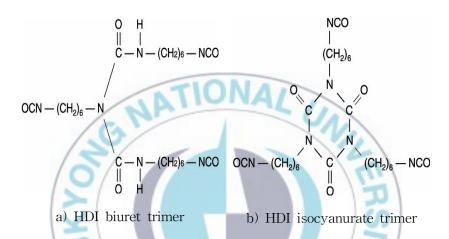


Fig. 2 Most common isocyanates in hardener of polyurethane painters

우리나라에서도 Lee등^{5,6)}이 경화제 성분이 포함된 페인트를 사용하는 자동차 관련 산업이나 가구공장 근로자들의 직업병 발생 가능성을 예견하였다.

미국의 ACGIH⁴⁾에서는 이소시안화물에 대한 구체적인 폭로기준을 알레르기 반응이나 감작반응을 대비한 TWA만을 0.005ppm(0.034mg/m³)으로 제시하고 있으나, NIOSH(National Institute of Occupational Safety and Health) 에서는 노출기준에 대한 추천치(REL; recommended exposure limit)로 TWA 0.005ppm, (0.035mg/m³), STEL 0.07mg/m³과 ceiling(10min) 0.020ppm(0.140mg/m³)을 제시하고 있다.

그러나 한국의 노동부 고시(제2008-26호 화학물질 및 물리적 인자의 노출기

준)²¹⁾에는 이에 대한 기준조차 제정되지 않고 있으므로, 산업현장의 실질적인 관리가 불가능한 실정이며, 이러한 독성 물질을 취급하는 산업분야에 종사하는 근로자들의 직업병 발생을 예방하기 위하여 관련 규정의 보완과 대책이 시급 한 물질이다.

2.2 경화제의 특성

직업성 천식의 가장 흔한 원인인 Isocyanate는 반응성 -NCO기를 가지고 있어 -OH를 갖고 있는 polyol과 반응하여 폴리우레탄을 생산하는데이때 Isocyanate는 경화제로 작용한다. 폴리우레탄은 가구, 악기, 자동차등의 표면도장제 및 광택제로 사용되고 있으며 접착제, 단열제, 절연제등의로 널리 사용되고 있다. Isocyanate에는 toluene diisocyanate(TDI), diphenylmethane diisocyanate(MDI), hexamethylene diisocyanate(HDI), naphtalene diisocyanate(NDI)등이 있으며, 이중 HDI와 MDI가 경화제로주로 쓰이고 있다.

가장 널리 쓰이는 경화제는 TDI의 MDI이나, HDI는 TDI와 MDI보다 값은 더 비싸지만 직선형 구조 때문에 UV선에 더 긴 저항을 가지며 이러한 이유 때문에 HDI는 특별히 자동차 페인팅에 더 유용하게 사용되고 있다.

Isocyanate는 국내에서 발생되는 직업성 천식의 가장 흔한 원인 물질로서, 반응성이 높은 -NCO가 포함되어 있어 수소원자를 함유하는 있는생체 분자와 쉽게 결합함으로서 여러 가지 건강 문제를 야기 시킨다.

본 연구에서는 자동차 페인팅에 사용하는 경화제인 PPG(2K[™] MS Hardener Normal, 980-35239)와 Spies Hecker(2K-Acryl-System, Permacron®MS Hardener Plus 3030 Slow, 975- 65507)를 사용하였다.

두 경화제의 조성은 조금 차이가 있으나, HDI, N-butyl acrtate, Xylene, Solvent naphtha(petroleum)이 기본으로 사용되며 그외 제품 마

다 다른 물질들이 포함되어 있으며, 이중 HDI는 제품의 구성 물질 중 $25\sim50\%$ 가 포함되어 있다.

경화제에 대한 호흡, 피부접촉, 섭취로 인한 위험에 대해 경고하였으며 이중 피부 접촉에 의해 피부 염증을 발생시키며, 피부를 통해 장시간 흡 수되면 알레르기 반응을 유발시킨다.

또 호흡에 의한 흡수로 인해 폐에 염증 및 알레르기 반응이 일어날 수 있으며 높은 증기 농도로 반복적으로 노출되게 되면 호흡기 염증 및 뇌와 신경계에 큰 손상을 줄 수가 있다. 그러므로 장기적 또는 반복적으로 호흡기와 피부를 통한 노출을 피해야 한다.

이들 경화제에는 Isocyanate가 포함되어 있고 흡입에 의해 코, 목, 페에 격렬한 자극 및 기능 저하를 발생시키며, 지속적 흡입에 의해 페에 손상을 입히며, 알레르기 반응을 일으킨다. Isocyanate에 의한 알레르기 반응은 조임, 헐떡거림, 짧은 호흡 및 기침 등 천식과 같은 증상을 보인다.

그러므로 작업 시 피부를 보호하기 위한 Neoprene 또는 Nitrile Rubber등의 불침투성 보호복 및 보호장갑등의 개인보호구를 착용하여야 한다고 명시되어 있다. 또 호흡기를 통한 흡입을 막기 위해서 작업 공간을 충분히 환기시킬 수 있는 설비가 되어 있어야 한다.

본 연구에서는 피부를 통한 독성유입에 의한 인명피해를 최소화하기 위하여 위 두 경화제를 사용하여 위에서 명시된 Neoprene, Nitrile Rubber 외 다른 재질의 보호장갑을 선정하여 투과율 및 파과특성을 평가하였다.

3. 실험재료 및 방법

3.1. 실험재료

본 연구를 위하여 사용된 공업용 표면처리제(HDI 순도 25~50%)속에 포함되는 경화제와 보호 장갑의 종류는 아래와 같고, 보호 장갑의 성능시험을 위한 두께측정은 마이크로메타를 사용하였으며, 경화제의 분사방법은 재래식방법(high-pressure)과 HVLP(high volume, low pressure)의 분사건을 사용하였다.

3.1.1. 경화제의 종류

본 실험에 사용한 경화제는 시판되고 있는 PPG(2K™ MS Hardener Normal, 980-35239)와 Spies Hecker(2K-Acryl-System, Permacron®MS Hardener Plus 3030 Slow, 975-65507)의 두 가지 종류이다.

3.1.2. 보호용 장갑의 종류

본 실험에 사용한 실험용 보호 장갑은 시판되고 있으며 현장에서 사용하고 있는 서로 다른 제품 5가지를 사용하였다.

3.2. 실험방법

3.2.1. 분석방법

(1) Ghost Wipe Pads

이 Ghost Wipe Pads는 표면에 있는 오염물질의 분석용으로 사용되며 AIHA(American Industrial Hygiene Association)에서 공인된 방법으로 거친 표면까지 닦아낼 수 있도록 되어 있다.

OSHA방법²²⁾에서는 이소시안화물 노출로 인한 오염물질을 Ghost wipe pads에 의해 간접평가 방법을 제시하고 있으며, 이 Pads는 직물로 짠 섬유가 아니고, 가교형 폴리비닐알콜수지로서 크기는 12cm x 12cm로 되어 있다. 기지량의 경화제액을 깨끗한 유리 판위에 바르고, 습윤제를 이 pads위에 처리하여 닦아내었다. 시료를 닦아내기 위하여 집게로 이 pads를 집고, 이소프로필알콜 (Isopropylalcohol; IPA)이 처리된 표면을 여러번 문질러 낸 것을 HPLC로서 분석하였다. 그리고 이 Pads에 처리된 IPA의 농도를 50%와 100%로 하였을 때를 비교하였다.

(2) 감지셀

보호 장갑의 재질에 대한 이소시안화물의 투과율(permeation rate)과 파과시간(breakthrough time)을 정량적으로 측정하기 위하여 Fig.3과 같이 감지셀이 활용되었으며, 일단 Paper Tape에 의해 파과상태가 감지되면 투과율을 측정하기 위해 Ghost Wipe Pads로 셀 표면을 닦아낸 후에 측정하였다. 경화제와 함께 존재하는 용제에 대한 투과성능을 실험하기 위하여 Fig.3과 같이 ASTM 셀(Pesce Lab Sales, Inc. USA)을 활용하였고, 용량과면적은 각각 18.2㎡와 4.91cm² 로서 교정은 AS/NZS²³⁾를 활용하였다.

Fig.3 Disposure Test Cell

(3) 세탁기를 이용한 작업시험

새 보호 장갑의 재질 내구성을 시험하기 위하여 장갑을 세탁기에 넣고 $Ansell^{24}$ 이 추천한 방법으로 온수 $(60^{\circ}C)$ 와 합성세제(약 110ml)를 함께 넣고 운전하였다. 세탁기는 20분간 운전한 후 $60^{\circ}C$ 온수로 세척하고, 세척된 보호 장갑은 실내에서 건조하여 실험에 사용하였다.

3.2.2. 시안화물의 분석

(1) HPLC에 의한 분석

보호 장갑의 표면을 닦아내어 이소시안화물의 존재가 확인되면 10ml의고정액[1ml methylene chloride에 500μg 1-(2-methoxy phenyl)piparazine : 1-2MP을 녹인 용액]에 침적시켜 24시간 동안 실온(25°C)에 정치하고, 무수초산을 가하여 30분 동안에 무수초산과 1-2MP의 반응이 완료되었는지를 확인하였다. 용해된시료 약 10ml를 취하여 HPLC에 의해 분석하였으며, 외부공기의 유입을 방지하기 위하여 헬륨 가스를 유입시겼다. 분석조건은 HSE방법²⁵⁾에 의한 운전조건으로 온도 30°C, 유량 1.5ml/min이고 UV 검지기의 파장은 242nm로 측정하였다. 유동상은 초산나트륨과 초산완충액으로 pH 6.0으로 조정된 67% 아세트니트릴(acetonitrile ; ACN) 수용액을 사용하였다.

(2) 측정범위

이소시안화물의 단량체와 다량체 분석은 각각 3.08, 7.8분에 측정하였고, EC 및 UV 검지기에 의한 측정한계는 0.01gNCO/ml이었다. 지방족이소시안화물의 시료채취는 표면을 닦아낸 후의 색변화를 확인하기 위하여 Paper Tape를 사용하였다. Paper Tape의 효율은 HPLC 감도보다 높으며, HPLC에 의한 측정농도의 효율을 높이기 위하여 묽은 희석액을 사용하였다. Paper Tape시험은 희석용액을 사용하여 정량분석을 행하였다.

(3) 고정액과 용해액의 제조

이소시안화물 시료로부터 -NCO를 안정화시키기 위한 고정액으로서 HSE방법²⁵⁾에서 제시한 톨루엔과 다른 고정액으로서 염화메틸렌을 비교 하였다. HSE법은 건조톨루엔에 1-(2-methoxy phenyl)piperazin -e)(1-2MP)을 용해하여 사용하는 방법이나 용해 시에 흰색의 침전형태가생기므로, 염화메틸렌에 1-2MP를 용해시켜 제조된 고정액에 기지량의이소시안화물을 안정시키고, 용해효율을 높이기 위한 용해액은 HSE방법²⁵⁾에서 제시한 순수 Acetonitrile(ACN)용액과 메틸알콜로 비교하였으며, 기지의경화제(0.15gNCO/ml)양이 포함된 액으로 검토하였다.

4. 실험 결과

4.1. 최적화 실험

4.1.1. 고정액

일반적으로 공산품에 포함되어 있는 -NCO기는 대단히 불안정하여 H₂O나 -OH 등과 반응성이 높기 때문에 이것을 정확하게 정량하기 위하여 톨루엔에 용해된 1-2MP로 -NCO기를 안정화시키도록 HSE법²⁵⁾에서 고정액의 필요성을 강조하고 있다.

따라서 분사용 페인트 중의 경화제로 포함되어 있는 이소시안화물을 분석할때 1-2MP가 용해된 톨루엔 용액을 사용하였다. 이것은 함량분석에서이소시안화물의 단량체나 고분자 물질의 형태 전부를 포함시키기 위한과정이며, 고정액에 포함된 톨루엔은 질소기체 등을 통하여 적절히 건조시켜제거하고, 시료를 분석하기 전에 -NCO기를 용해액으로 용해시켜 분석한다.

만약에 대기 중에 존재하는 시료를 여과지에 흡수시켰을 경우에도 당연히 분석하기 전에 용해액에 용해시켜야 한다. HSE법²⁵⁾에서는 이소시안화물을 안정화시킬 때 0.05mg의 1-2MP를 톨루엔 1ml에 용해시킨 고정액을 사용하도록 추천하고 있으나, 0.05mg/ml의 1-2MP는 겨우 -NCO기를 감지할 수 있는 적은 양이다.

그러나 현장에서 고농도의 이소시안화물을 채취하려고 할 때 흡착여재를 사용하게 되며, 흡착여재를 취급하면 작업 중에 흡착여재가 찢어지는 등의 사고가 일어날 가능성이 있을 뿐만 아니라, 표면이나 얼굴 및 대기 중에 얼마나 많은 이소시안화물이 존재하는지를 예측하기가 어렵다. 따라서 시료로부터 이소시안화물의 손실을 최소화하기 위하여 많은 양의 1-2MP를 사용할 수 있는 고정액을 만들 필요가 있다. 이러한 관점에서 보면 톨루엔은 아주 적은 양의 1-2MP를 사용하기에는 좋으나 0.5mg/ml 정도의 고농도에 사용하기에는 적합하지 않음을 알 수 있었다.

따라서 고농도의 1-2MP를 흡착여재에 처리하면 고농도의 이소시안화물을 처리할 수 있기 때문에 고농도처리 방법을 검토하게 되었으며, -NCO가 안정화되기 전에는 알콜류와 반응성이 대단히 강하기 때문에 고정액으로 사용할 수 없다는 것도 알 수 있었다. 한편 OSHA법 NO.42²⁶⁾에 있는 MDI분석법은 염화메틸렌을 1-2PP(1-(2-pyridyl) piperazine)의 고정액으로 추천하고 있다. 본 연구에서는 고농도의 HDI분석을 위한 고정액으로 톨루엔 대신에 염화에틸렌의 사용가능성을 검토하였다.

그 결과 톨루엔과 염화에틸렌 사이에 큰 차이가 없음을 알 수 있었다. Table 1은 이소시안화물의 고정율을 두 가지 약품에 대하여 비교한 것으로 1-2MP의 용해도 차이 때문에 여러 가지 농도의 톨루엔과 염화메틸렌에 용해시켜 회수율을 비교하였다. Table 1에 나타난 결과에 의하면 톨루엔보다염화메틸렌이 조금 높은 회수율을 나타내고 있으며, HPLC로 분석시에 톨루엔보다염화메틸렌이 큰 피크를 나타내고 있다.

Table 1. Comparison between toluene and methylene chloride for derivative solution

Sample	Recovery rate (%)	AM (%)	SD
R-T	97.3		
(reference in	96.2	97.1	0.77
toluene)	97.7		
R-MC	97.8		
(reference in	97.3	97.5	0.25
methylene chloride)	97.4	1/2	

* AM: arithmetic mean, SD: standard deviation

4.1.2. 용해액

안정화된 경화제의 용해액으로 HSE방법²⁵⁾에서 추천된 순수 ACN은 Table 2에 나타낸 바와 같이 순수 메틸알콜, ACN과 메틸알콜이 혼합된 몇 가지용해액으로 검토되었으며, 그 이유는 일단 안정화된 이소시안화물은 알콜류에 대하여 안전하기 때문이다. 특히, 고분자 물질과 함께 공존하는 이소시안화물 경화제의 용해도는 순수 ACN에 녹일 때 현탁액과 같은 모습으로 존재하기때문에 경화제가 완전하게 용해되지 않을 가능성이 큰 것으로 추측되었기때문에 완전 용해의 가능성에 대하여 검토하였다.

용제로서는 톨루엔과 같은 다른 종류의 유기용제들도 많이 있지만 HPLC로 분석되는 기법에서는 HPLC의 감도에 영향을 주게 되는 용제들을 사용하기 어렵기 때문에 알콜류로 검토하였다. 실험결과에 의하면 메틸알콜이에틸알콜과 프로필알콜보다 이소시안화물의 조성에 영향을 주지 않고 완전용해가 가능하다는 것을 알 수 있었다. 이 결과에서 순수 메틸알콜에 의한 -NCO그룹의 회수율은 순수ACN에 의한 회수율보다 높으며, 특히 ACN과 메틸알콜의 혼합비율을 10:90으로 하였을 때는 순수 ACN만으로 용해시켰을 때보다 -NCO그룹의 회수율이 18%정도 크다는 것을 알 수 있었다.

그리고 메틸알콜에 의한 용해율이 순수 ACN에 의한 경우보다 용해도가 낮은 것은 메틸알콜의 농도가 50%이하인 경우로 나타났다. 결론적으로 ACN과 메틸알콜의 혼합용제는 HPLC로서 이소시안화물을 분석할 때 빠르고 완전하게 분석이 가능한 방법이라는 것을 알 수 있었다.

Table 2. Recovery of different dissolving solutions to extract isocyanate(-NCO) in hardener

Sample	Measured area on EC	Comparison of analytical	
	detector(mV · Sec)	recovery rate (%)	
H100ACN	4504674	82.03	
Н100МОН	4713593	85.84	
Н90МОН	5491251	100.00	
Н50МОН	3776861	68.78	
H10MOH	3512319	63.96	

*H100ACN: hardener sample extracted by pure acetonitrile(ACN)

4.1.3. Ghost Wipe Pads

오염된 표면이나 피부를 닦아내기 위하여 톨루엔 보다 인체의 피부에 독성이 적은 IPA를 사용하여 50%와 100%의 2종류로 시험하였으며, 여러가지의 적용사례에 대하여 비교하였다.

Table 3은 다른 적용사례에서 닦아내는 용제를 IPA농도별로 비교한 것을 나타내었다. 실험결과에 의하면 50% IPA를 Ghost wipe pads에 뿌렸을 때 분사된 50% IPA의 양은 약140mg이었고, 이소시안화물의 회수율은 75~91%이었다. 100% IPA에 의한 회수율은 70~92%로서 50% IPA에 의한 결과와 비교하면 두 가지의 적용사례에서 회수율이 거의 유사하게 나타났다. 따라서 본 연구에서는 Ghost wipe pad의 습윤제로 100% IPA를 포함한 두 가지의 적용사례가 채택되었다. 공업용 경화제(technical grade hardener; PPG) 30ℓ가 부드러운 유리표면에 적용되었고, 습윤제는 분사기로 표면에 분사시켜 HPLC로서 각각 3번씩 실험하였다.

Table 3. Efficiency of isopropyl alcohol as a wiping solution

Sample*	No. of spray applications [#]	Time before placing in derivatizing solution(min) [®]	Average recovery for HDI (AM; %)
50% IPA	1	Immediately (zero)	86.0
50% IPA	2	Immediately (zero)	83.0
50% IPA	5	Immediately (zero)	91.0
50% IPA	1	3	82.0
50% IPA	2	3	75.0
50% IPA	5	3	82.0
100% IPA	1	Immediately (zero)	70.0
100% IPA	2	Immediately (zero)	92.0
100% IPA	5	Immediately (zero)	88.0
100% IPA	1	3	88.0
100% IPA	2	3	81.0
100% IPA	5	3	80.0

AM: Arithmetic mean,

- * 50% IPA means 50% isopropyl alcohol in distilled water and 100% IPA is pure isopropyl alcohol
- # Spraying time of each solution on glass contaminated by isocyanate spike
- @ After spraying wetting solution on glass surface, delay time of keeping $Ghost^{TM}$ Wipe pads before derivatization.

4.2. 장갑의 성능실험

4.2.1. 장갑재질에 미치는 유기용제의 영향

차량수리공장에서는 희석제로 크실렌과 톨루엔을, 세척제로 아세톤 등을 사용하며, 오염표면이나 피부를 닦아내는 습윤제로는 IPA가 사용된다. 일반적으로 페인트를 분사하거나 오염된 표면을 닦아낼 때 습윤제를 사용하는 근로자는 보호 장갑을 착용하지 않은 경우가 많았지만 보호장갑의 착용은 필수적으로 요구된다. 이러한 용제 사용과 관련하여 장갑재질과 용제의 종류와의 상관성을 검토할 필요가 있으므로, Table 4에서는 이 실험에 관련된 여러 가지 용제에 대한 장갑재질의 파과시간 (breakthrough time)에 대하여 나타내었으며, 이 결과에서 선택된 유기 용제는 대부분의 장갑재질을 빠르게 파과하는 것을 알 수 있다. 이 실험에 사용한 제품의 종류에 따라 주성분에 많은 차이가 있었으나 대체로 Neoprene, Latex, Nitrile rubber, Natural rubber latex, Nitrile 혼합물 등으로 이루어져 있으나 개별적인 상품명은 공개하지 않았다.

Table 4. Breakthrough times of glove materials with different solvents $(n=3;runned\ three\ times)$

Chemical substance	Product of Glove material	Thickness(mm) (AM ± SD)	Breakthrough time (min) (AM ± SD)
	Product A	0.42 ± 0.02	10.2 ± 0.02
Pure	Product B	0.12 ± 0.01	0.27 ± 0.01
acetone	Product C	0.28 ± 0.04	1.12 ± 0.03
	Product D	0.11 ± 0.002	0.28 ± 0.01
/	Product E	0.38 ± 0.01	4.25 ± 0.31
	Product A	0.42 ± 0.02	7.47 ± 0.02
Pure	Product B	0.14 ± 0.01	0.25 ± 0.01
xylene	Product C	0.28 ± 0.02	8.28 ± 0.13
×	Product D	0.12 ± 0.01	2.47 ± 0.03
13	Product E	0.37 ± 0.02	74. 05 ± 4.48
0	Product A	0.42 ± 0.02	>480.00
Pure	Product B	0.13 ± 0.01	1.51 ± 0.04
IPA	Product C	0.27 ± 0.03	>480.00
	Product D	0.12 ± 0.003	>480.00
	Product E	0.39 ± 0.004	>480.00
	Product A	0.42 ± 0.03	4.38 ± 0.02
Pure	Product B	0.12 ± 0.01	< 1.0
toluene	Product C	0.28 ± 0.05	6.09 ± 0.08
	Product D	0.12 ± 0.002	1.03 ± 0.04
	Product E	0.38 ±0.01	22.02 ± 1.01

^{*}AM: arithmetic mean, SD: standard deviation

Latex성분의 장갑은 모든 유기용제에 대하여 가장 나쁜 결과를 나타내었으며, 대부분의 차량수리 공장에서 사용하고 있는 Product E(Nitrile 혼합물)장갑의 경우는 가장 긴 파과시간이 측정되었다. 예를 들면 희석제로 쓰이는 크실렌에 연속적으로 노출되었을 때 한 시간 이상으로 파과를 허용하지 않았으나 다른 희석제인 톨루엔에는 22분의 파과시간을 나타내었고, 세정액으로 쓰이는 아세톤에 대하여는 재질을 파과시키는데 단지 4분이었다. Neoprene성분의 장갑은 세척제인 아세톤에서는 10분의 파과시간을 나타내는데 대하여 Nitrosolve 장갑은 4분의 파과시간을 나타내었고, 습윤제인 IPA에는 두 가지 종류의 장갑이 공통적으로 480분이나 되는 파과시간을 나타내었다. 그러므로 단순히 분사기 등을 세척만 하는 작업이라면 이에 대한 적절한 보호 장갑으로 Neoprene 성분의 장갑을 추천할 수도 있다.

4.2.2. 장갑재질에 미치는 이소시안화물의 영향

여러 가지 장갑재질에 대하여 경화제 Spies Hecker과 PPG Normal이라는 이소시안화물 제품의 파과시간(BTs)과 투과율(PRs)을 Table 5에 나타내었다. 여기서 50%경화제는 희석제인 크실렌으로 희석시켜 농도를 조정한 것으로서, 순수공업용 경화제를 장갑재질에 대하여 파과실험을 하였을 때와 50%경화제로 파과실험을 하였을 때의 결과를 비교하면 순수 경화제의 경우가 파과시간이 길고, 투과율이 적다는 것을 알 수 있다. 이것은 Table 5에서 크실렌은 장갑재질의 투과를 촉진하여 파과시간을 짧게 하고, 투과율을 크게 한다는 것을 의미한다.

Table 5. Breakthrough times and permeation rates of selected glove materials with different composition of hardeners

Glove material	Chemical substance	Appli- cation	Thickness (mm) (AM.±SD)	BT(Min), (AM±SD)	PR (ug/cm²/min) (AM±SD)
	PPG	Pure ¹⁾	0.42 ± 0.02	11.5±0.08	1.77±0.14
Product	normal	50%2)	$0.42 ~\pm~ 0.02$	5.6±0.04	3.97±0.08
A	Spies	Pure	0.41 ± 0.02	8.0±0.06	2.57±0.16
	hecker	50%	0.42 ± 0.02	5.2±0.08	1.38±0.03
	PPG	Pure	0.12 ± 0.01	1.5±0.06	0.17±0.01
Product	normal	50%	0.13 ± 0.01	0.4±0.06	0.16±0.004
В	Spies	Pure	0.14 ± 0.01	1.5±0.0	0.17±0.02
/	hecker	50%	0.12 ± 0.01	0.3±0.0	0.13±0.01
	PPG	Pure	0.29 ± 0.02	53.3±0.16	3.53±0.04
Product	normal	50%	0.29 ± 0.02	31.3±0.08	2.25±0.08
C	Spies	Pure	0.29 ± 0.01	45.4±0.4	3.88±0.19
	hecker	50%	0.29 ± 0.03	33.3±0.1	3.11±0.03
	PPG	Pure	0.12 ± 0.01	31.2±0.03	1.09±0.07
Product	normal	50%	0.11 ± 0.001	18.1±0.01	0.27±0.03
D	Spies	Pure	0.11 ± 0.001	21.1±0.1	0.43±0.01
	hecker	50%	0.12 ± 0.01	17.1±0.1	0.69±0.02
	PPG	Pure	0.40 ± 0.01	>480.00	ND ³⁾
Product E	normal	50%	0.36 ± 0.01	>480.00	ND
	Spies	Pure	0.37 ± 0.03	>480.00	ND
	hecker	50%	0.38 ± 0.04	>480.00	ND

^{*}AM: arithmetic mean, SD: standard deviation

¹⁾ Pure technical grade hardener,

^{2) 50%} technical grade hardener in xylene, 3) Not detected within 8 hours.

Latex 성분의 장갑은 다른 재질로 된 것과 비교하면 짧은 파과시간과 큰 투과율을 나타내었으며, 이러한 재질의 장갑은 이소시안화물 분사페인트와 분사건이나 용기세척을 하는 작업에서 사용되어서는 안 된다는 것이다. 따라서 Product E(Nitrile 혼합물)장갑은 이소시안화물의 보호에 가장 좋은 재질로서 노출 8시간 후에도 감지되지 않았다. 경화제는 이소시안화물의 단량체보다 주로 다량체로 구성되어 있으며, HPLC(EC/UV)분석에서는 이소시안화물 다량체속에 단량체가 존재한다는 것을 나타내었다.

4.2.3. 작업강도에 의한 장갑재질의 변화

차량수리공정에서는 분사페인트작업을 할 때 Latex 장갑을 사용하는 작업장도 상당히 있지만, 이 장갑은 다른 장갑에 비하여 파과시간이 짧고 투과율이 크다는 것을 Table 5에서 알 수 있었다. 따라서 경화제 용액을 취급하는 공정에서 세척용기를 취급하거나 경화제와 접촉하게 되는 경우는 Product E(Nitrile 혼합물)장갑의 사용이 바람직하다는 것을 파과 시간과 투과율의 측정결과로부터 알 수 있었다. 작업강도에 의한 영향은 재질 내구성으로 시험하기 위하여 Ansell²⁴⁾이 추천한 방법으로 인공적이고 물리적인 힘을 가하기 위한 실험이 수행되었으며, 운전한 후에는 60℃ 온수로서 세척하고, 세척된 보호 장갑은 실내에서 건조하였다. 이 실험에는 Product E(Nitrile 혼합물)장갑이 사용되었으며, 장갑의 성능을 비교, 평가하기 위하여 세척되지 않은 새 장갑, 한 번, 두 번 및 세 번 세척된 장갑의 4종류에 대하여 실시하였다. 이 실험에 사용된 순수 공업용 경화제는 PPG(2K MS Normal Hardener)로서 사용된 경화제의 이소시안화물 조성은 다량체가 380g/ℓ이고, 단량체가 3g/ℓ이며, 실제 작업강도에 해당하는 정도로 희석된 경화제에 대하여 시험하였으나, 장갑재질에 이소시안화물이 투과하여 감지되는 시간이 8시간 이상이 소요되는 경우도 있었다. 즉, 이소시안화물의 투과 가능성은 장갑의 사용시간에 따른 물리적 외력에는 거의 영향을 받지 않는다는 것을 의미한다.

5. 결 론

본 연구는 자동차 산업에서 분사형 이소시안화물 페인트를 사용하는 공정에서 이소시안화물이 피부에 노출될 가능성을 중심으로 수행되었으며, 근로자들의 피부를 통한 독성유입에 대비하고자 이소시안화물의 분석기법 개선과 근로자들이 사용하는 여러 가지 장갑재질의 투과율 및 파과특성을 고찰하였으며, 그 결과를 요약하면 다음과 같다.

- 1) HDI가 포함된 분사페인트를 취급하는 공정에서 Latex 장갑이 사용되기도 하였으나, 이 장갑은 상당히 짧은 시간의 접촉에도 HDI 침투로부터 보호할 수 없고, 피부에 감작반응, 염증반응, 피부염 등과 같은 문제를 야기시킬 것으로 예측된다.
- 2) 보호장갑에 대한 파과시간과 투과율과 같은 성능시험을 정확히 할 수 있는 분석기법을 발전시켰으며, 이 결과로부터 염화메틸렌이 1-2MP의 용제로서 가장 좋고, 용해액으로는 ACN중의 90% 메틸알콜이 가장 좋은 회수율을 나타내었으며, IPA를 뿌리고 Ghost wipe Pads로 닦아내었을 때는 92%의 회수율을 나타내었다.
- 3) 보호 장갑의 성능시험결과에 의하면 재질의 유기용제에 대한 저항은 경화제의 파과시간과 관련성이 있고, 같은 재질인 경우에도 장갑 두께가 두꺼울수록 파과시간은 길었다. 따라서 용제와 경화제에 대한 파과성능시험은 장갑재질의 특성과 두께에 의존되었다. 특히, Product E(Nitrile 혼합물)장갑은 유기용제 뿐만 아니라 유기용제가 함유된 이소시안화물 경화제의 사용에도

추천할 수 있는 제품이었다.

4) 산업현장에 적용하는 '화학물질 및 물리적 인자의 노출기준'에 활용할수 있는 실질적 자료가 될 것이며, 산업현장에서 근무하는 근로자의 직업병 발생을 예방하기 위하여 관련법규의 보완이 시급한 물질이다.

참고문헌

- 1) 박종원, 신대혁, 이명구, 이종권, 최상구, 최상복, 산업안전 보호장구, 도서출판 동화기술, PP. 13-18, 1995.
- 2) 최상복, 보호구 강의, 도서출판 골드, PP. 35-38, 2005.
- 3) S. Semple, "Dermal Exposure to Chemicals in the Workplace: Just How Important is Skin Absorption?", Occup. Environ. Med., Vol. 61, pp. 376-382, 2004.
- 4) ACGIH, Documentation of the Threshold Limit Values and Biological Exposure Indices, 7th Edition, American Conference of Governmental Industrial Hygienists, Cincinnati, OH, 2001.
- 5) 이수길, 이내우, Dino Pisaniello, "가구산업에 사용되는 이소시안화물의 폭로 에 대한 평가", 한국안전학회지, 제21권 2호, pp. 138-142, 2006.
- 6) 이수길, 이내우, "분사페인트에 의한 이소시안화물의 노출이 건강에 미치는 영향에 관한 연구", 한국안전학회지, 제23권 3호 pp. 79-86, 2008.
- 7) F.V. Bergerova, T. Pierce and P.O. Droz, "Dermal Absorption Potential of

Industrial Chemicals, Criteria for Skin Notation", American Journal of Industrial Medicine, Vol. 17, pp. 617-635, 1990.

- 8) J. De Cock, D. Heederick, H. Kromhout and J.S.M. Boleij, "Strategy for Assigning a 'skin notation', A Comment", American Occupational Hygiene, Vol. 40, pp. 611-614, 1996.
- 9) W. A. Heitbrink, T. C. Cooper, M. A. Edmonds, C. J. Bryant and W. E. Ruch, "In-DEPTH Survey Report- Control Technology for Autobody Repair and Painting Shops, Occupational Safety & Health Administration (OSHA)", U.S Department of Labor, Report No. ECTB 179-14a, 1993.
- 10) T.C. Cooper, W.A. Heitbrink, M.A. Edmonds, J. Bryant and W. E. Ruch, "In-Depth Survey Report: Control Technology for Autobody Repair and Painting Shops at Jeff Wyler Autobody Shop", Batavia, Ohio, June 16-19, and July 21, 1992. U.S.DHHS, PHS, CDC, NIOSH, NTIS Pub. No. PB-93-216182, 1993.
- M. Cushmac, D. Difiore and C. Hetfield, "New Chemical Environmental Technology Initiative-Automotive Refinishing Industry Isocyanate Profile", U.S. Environmental Protection Agency(EPA), SAIC Project No. 01-1029-07-8088, 1997.
- 12) R.T. Gun, A. Langley, S.J. Dundas and K. McCall, "The Human Cost of

Work-Occupational Respiratory Disease ", 2ndEdition, SA Health Commission, Adelaide, 1996.

- 13) N. J. Rattray, P.A. Botham, P.M. Hext, D.R. Woodcock, I. Fielding, R.J. Dearman and I. Kimbler, "Induction of Respiratory Hypersensitivity to Diphenolmethane-4,4-diisocyanate(MDI) in Guinea Pigs", Influence of Route of Exposure, Toxicology., Vol. 88, pp. 15-30, 1994.
- 14) Y.C. Liu, M. Stowe, F. Walsh, J. Sparer, M.R. Cullen, C.T. Holm and C.A. Redich, "Surface Contamination and Skin Exposure to Aliphatic Isocyanate Skin Exposure in Auto Body shops; A quantative assessment", Am. Ind. Hyg. Conf. Exp., New Orleans, Louisiana, June 2-7, 2001.
- 15) ATSDR, "Toxicological Profile for. Hexamethylene Diisocyanate(HDI)". CAS# 822-06-0. Agency for Toxic Substances and Disease Registry, August, 1998,.
- 16) OSHA HCS, "Title 29 Code of Federal Regulations 1910. 1200", Occupational Safety and Health Administration Hazard Communication Standard (OSHA HCS), Updated July 3, 1998.
- 17) B. McArthur, "Dermal Measurement and Wipe Sampling Methods: A Review", Appl. Occup. Environ. Hyg., Vol. 7, No. 9, pp. 599-606, 1992.

- 18) R.A. Fenske, "Dermal Exposure Assessment Techniques", Ann. Occu. Hyg., Vol. 37, No. 6, pp. 687-706, 1993.
- 19) S.A. Ness, "Surface and Dermal Monitoring for Toxic Exposures", Van Nostrand Reinhold, New York, 1994.
- 20) C. McCammon, "NIOSH Health Hazard Evaluation, Occupational Safety & Health Administration(OSHA)", U.S Department of Labor, Report No. HETA 95-0405-2600, 1996.
- 21) 노동부 고시 제2008-26호, 화학물질 및 물리적인자의 노출기준, 2008.
- 22) OSHA, "Aliphatic Diisocyanate on Surfaces by Colorimetric Swype Indicators", U.S Department of Labour, Occupational Safety & Health Administration, 2002.
- 23) Australian/New Zealand Standard TM, "Occupational Protective Gloves Part 10.3: Protective Gloves Against Chemicals and Micro-Organisms-Determination of Resitance to Permeation by Chemicals", 2002.
- Ansell, Ansell Protective Products Chemical Registance Guide Permeation
 Degradation Data, U.S., 1998.
- 25) HSE, "Methods for the Determination of Hazardous Substances (MDHS)

- 25/3 Organic Isocyanates in Air", Health & Safety Executive, January, 1999.
- 26) S. G. Lee, "Dermal and Ocular Exposure During The Spray Application of Selected Industrial Chemicals", PhD Thesis, Descipline of Public Health, The University of Adelaide, South Australia, 2005.
- 27) D. Pisaniello and L. Muriale, "The Use of Isocyanate Paints in Auto Refinishing: A Survey of Isocyanate Exposure and Related Work Practices in South Australia", Annals of Occupational Hygiene, Vol. 33 (4), pp. 563-572, 1989.
- 28) Y.C. Liu, J. Sparer, S. R. Woskie, M. R. Cullen, J. S. Chung, C. T. Holm and C. A. Redlich, "Qualitative Assessment of Isocyanate Skin Exposure in Auto Body Shops: A Pilot Study", American Journal of Industrial Medicine, Vol. 37, pp. 265-274, 2000.

A Study on Performance Assessment of Protective Gloves to Hazardous Material

Hyo-Jin Park

Department of Safety Engineering Graduate School of Industry Pukyong National University

Abstract

It is the most common process to use spray painters including isocyanate in the automobile or furniture industry.

Therefore the possibility of isocyanate exposure to the skin, especially hands, is very important.

Of course, the personal protective equipment for employees is necessary in their workplace. Also the guideline for preventing skin contacts and occupational disease of employees engaged in this areas.

This study was performed specifically for performance assessment of protective gloves to the possibility of the isocyanate exposure to the skin from using spray painters in the car repairing industry.

The most employees generally did not use protective gloves to

protect their hands.

The results we have investigated may be summarized as follows.

- 1) Although latex gloves were once used during the process of handling spray painters, these gloves were unable to protect hands from the penetration of HDI(hexamethylene diisocyanates) at relatively short time contact. It is caused problems like sensitization response, inflammatory response, and dermatitis.
- 2) The analysis methods for conducting a performance test on the breakthrough time and the permeation rate of protective gloves were advanced. The results we have obtained that chloromethane was the best as solvent for 1-2MP, and as derivatization solution, 90% methylene chloride in ACN showed the best collection rates. With IPA spraying and wiping with Ghost Wipe Pads, 92% collection rate was shown.
- 3) The resistance against organic solvent to glove material was related to the breakthrough time permeation rate. In case of thicker gloves of the same materials, the breakthrough time were longer. In particular, Nitrosolve glove(product E) could be recommended for the usage not only organic solvent but also the hardener containing isocyanate.

4) The performance test results could be utilized for the legislation revision on 'the exposure standard of chemicals and physical factors' appling to the Korean industrial fields, and this should be promptly complemented for preventing the outbreak of occupational diseases.

