
 

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/disclaimer-popup?lang=kr


Thesis for the Degree of Master of Engineering
of Doctor of Philosophy

Analysis of Behaviors of Additive

Group Cellular Automata

by

Yoon Hee Hwang

Interdisciplinary Program of Information Security

The Graduate School

Pukyong National University

August 2008



Analysis of Behaviors of Additive

Group Cellular Automata

Advisor : Prof. Sung Jin Cho

by

Yoon Hee Hwang

A thesis submitted in partial fulfillment of the requirements
for the degree of

Master of Engineering of Doctor of Philosophy

in Interdisciplinary Program of Information Security, Graduate School,
Pukyong National University

August 2008



Analysis of Behaviors of Additive

Group Cellular Automata

A dissertation

by

Yoon Hee Hwang

Approved by:

(Chairman) Kyung-Hyune Rhee

(Member) Ki-Ryong Kwon (Member) Sang-Uk Shin

(Member) Weon Shin (Member) Sung-Jin Cho

August 2008



Contents

List of Figures vi

List of Tables vii

Abstract viii

Chapter 1 Introduction 1

Chapter 2 CA Preliminaries 6

2.1 Rule 6

2.2 State-Transition Matrix 12

2.3 Group CA 18

Chapter 3 Characterization of the Complemented CA

derived from Linear Uniform Group CA 22

3.1 Analysis of the Complemented CA derived from LUGCA 24

3.2 Relationship between Cycles of the Complemented CA 37

Chapter 4 Characterization of the Complemented CA

derived from Linear Hybrid Group CA 49

4.1 Analysis of the Complemented CA derived from LHGCA 49

4.2 Relationship between Cycles of the Complemented CA 58

Chapter 5 Phase Shifts of Sequences Generated by a

90/150 Maximum-Length CA 63

iv



5.1 Preliminaries 65

5.2 Analysis of Sequences Generated by a 90/150 MLCA 69

5.3 Algorithm to Compute Phase Shifts 77

Chapter 6 Modelling Linear CA with the minimum

stage corresponding to CCSG based on LFSR 81

6.1 Preliminaries 83

6.2 90/150 CA-based CCSG 88

6.3 Modelling Linear CA with the minimum stage 91

Chapter 7 Analysis of the structure and the charac-

teristic polynomial of GF (2p) group CA 93

7.1 GF (2p) CA Preliminaries 94

7.2 The cycle structure of GF (2p) CA 97

7.3 The characteristic polynomial of GF (2p) CA 103

Chapter 8 Conclusion 109

Bibliography 110

v



List of Figures

Figure 1 : Evolution of an 1-D CA 7

Figure 2 : A CA Cell 8

Figure 3 : NBCA, PBCA and IBCA 10

Figure 4 : 4-cell CA with < 150, 90, 150, 90 > 13

Figure 5 : Structure of the CA with < 150, 165, 105, 90 > 17

Figure 6 : State-transition diagram of the CA with < 150, 165, 105, 90 >

17

Figure 7 : State-transition diagram of the CA with < 150, 90, 150, 90 >

19

Figure 8 : 3-cell CA with < 150, 102, 90 > 20

Figure 9 : State-transition diagrams of 4-cell LUGCA

with rule 102 and its complemented CA 30

Figure 10 : Inter-relationship between these cycles

in the 5-cell UGCA with rule 153 or 195 46

Figure 11 : Key Agreement Property of the State Spaces 47

Figure 12 : The structure of a SG 84

Figure 13 : A GF (2p) CA structure 95

vi



List of Tables

Table 1 : Rule Table 8

Table 2 : Linear Rule 9

Table 3 : Complemented Rule 9

Table 4 : n-cell LUGCA C with rule 60 or 102

and Complemented CA derived from C 36

Table 5 : n-cell LHGCA C with rule 60, 102, 204

and Complemented CA derived from C 57

Table 6 : Matrices A and Bi for T =< 0, 1, 1 > 71

Table 7 : Matrices A and M for T =< 0, 1, 0, 1 > 74

Table 8 : Algorithm FindPhaseShifts 78

Table 9 : Phase shifts with respect to 0th cell 79

Table 10 : Phase shifts of the sequence u

with respect to the sequence s 80

Table 11 : Cho et al.’s Synthesis Algorithm 84

Table 12 : LFSRs A and B 85

Table 13 : Algorithm for modelling 90/150 CA 92

Table 14 : Multiplication and addition over GF (22) 96

vii



viii

가산 그룹 셀룰라 오토마타의 행동 분석

황 윤 희

부 경 대 학 교 대 학 원 정 보 보 호 학 협 동 과 정

요 약



  



Chapter 1

Introduction

The VLSI era has ushered in a new phase of activities into the research of

linear machines, and specially the local neighborhood Cellular Automata

(CA) structures. The VLSI design community prefer simple, regular, modu-

lar and cascadable structures with local interconnections. The CA provide a

wonderful solution in all these respect ([1]). Also another advantage of CA

is a class of machines constructed by inverting the linear state functions. CA

have the characters of simplicity of basic components, locality of CA inter-

actions, massive parallelism of information processing, and exhibit complex

global properties. These ensure that CA have higher speed and more poten-

tial applications than LFSR. The locality of signal path of CA contributes

more higher speed than LFSR. So in the form of VLSI implementation, CA

have more speed advantages than LFSR ([2]). Such a CA were originally

proposed by Von Neumann ([3]) as formal and good computational models

of self-reproducing organisms and computation capable to simulate complex

physical, biological and environmental phenomena. Research of CA was ini-

tiated as early as 1950. Wolfram ([4]) suggested a simplified structure, each

CA cell, arranged linearly in one dimension, having only two state(0 or 1),

with uniform three-neighborhood interconnection. Each cell is essentially

composed of a memory element and a combinatorial logic that generates the

next states of the cell from present states of neighboring cells(left, right and

self). Various researchers([5]-[8]) have accomplished far-reaching study in
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the modeling of CA and finding out better applications of automata. Later

Das et al. ([9]-[11]) developed a multipurpose matrix algebraic tool capable

of characterizing state transition of CA with linear next-state function. CA

have been employed in several applications ([12]-[15]). Cho et al. ([16]-[18])

and many researchers ([19]-[26]) analyzed CA to study hash function, data

storage, cryptography and so on. The state-transition matrix of a group

CA is nonsingluar. Furthermore group CA can be divided into two classes

: maximum-length and nonmaximum-length. All (2n − 1) nonzero states of

a linear n-cell maximum-length group CA form a single cycle. Such a group

CA has been projected as a generator of pseudorandom patterns of high qual-

ity. The CA-based scheme for generation of pseudoexhaustive patterns has

reported in ( [10], [27]-[30]) and so on. The states of a nonmaximum-length

group CA form multiple cycles. Das conjectured that if the order of uniform

group CA C is m, then the order of complemented group CA C′ derived from

C is m or 2m. Mukhopadhyay ([13]) investigated the state spaces of the fun-

damental transformations of a group CA and proved new properties which

relate the state spaces of the CA for the development of new encryption and

key distribution protocols. And he asserted that an essential requirement is

that the cycle length of a group CA has to be small, so that ciphering (or

deciphering) is performed at the expense of few clock cycles. Moreover the

length of the machines has to be equal so that the number of cycles required

to encrypt or decrypt is predicted.
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In ([31]) , they represented an encryption system implemented on a struc-

ture of HACA(Hybrid Additive CA) used for securing the medical data sent

over the internet.

The phase shift analysis of 90/150 CA ([4], [17], [18]), whose characterisitc

polynomials are primitive, has been investigated by Bardell ([27]). But the

phase shift with respect to a given cell position is not uniquely determined

by the characteristic polynomial. Nandi and Chaudhuri ([32]) proposed a

method for the study of phase shift analysis based on matrix algebra. Nandi

and Chaudhuri ([32]) showed that every cell position of a maximum-length

90/150 Null Boundary CA(NBCA) generates the same Pseudo-Noise (PN)

sequence corresponding to the characterisitc polynomial of the CA with a

phase shift.

Clock-controlled LFSRs have become important building blocks for keystream

generators in stream cipher applications, because they are known to produce

sequences of long period and high linear complexity ([33], [34]).

In ([35]), they showed that CCSGs can be described in terms of linear

CA configurations by using mirror image and the Cattell and Muzio synthesis

algorithm ([36]).

CA has been used as modeling and computing paradigm for a long time.

And CA has been used to model many physical systems. While studying

the models of such systems, it is seen that as the complexity of the physical

system increase, the CA based model becomes very complex and difficult to

track analytically. Also such models fail to recognize the presence of inherent

hierarchical nature of a physical system.
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To overcome these problems Sikdar et al. [37] and Cho et al. [38] studied

GF (2p) CA.

The outline of the thesis is as follows: Chapter 2 provides a comprehen-

sive survey on CA and the analysis of 90/150 Two Predecessor nongroup

CA(TPNCA). We analyze several complemented CA derived from a Linear

Uniform Group CA(LUGCA) with rule 60 or 102 according to the comple-

ment vector and investigate some properties of these CA and show that Das’s

conjecture is true in chapter 3. Also in chapter 3, the order of the state tran-

sition operator of the complemented CA derived from a LUGCA with rule

60 or 102 is characterized explicitly. We analyze a Linear Hybrid Group

CA(LHGCA) C with rules 60, 102 and 204 and the complemented CA C′ de-

rived from C. And we give the conditions for the complement vectors which

determine the state transition of the CA dividing the entire state space into

smaller spaces of equal maximum cycle lengths in chapter 4. In chapter 5, we

study the sequences obtained from a 90/150 Maximum-Length CA(MLCA)

algebraically. And we apply these to phase shifting of sequences generated

by a 90/150 MLCA. From these applications we give an improved method

to compute phase shifts, which is different from those methods of Bardell’s

([27]), Nandi and Chaudhuri’s ([32]) , and Sarkar’s ([29]). In chapter 6, we

analyze the period of CCSGs based on LFSR and propose a new method

of modelling linear CA with the minimum stage corresponding to CCSGs

based on LFSR using the analyzed period and the Cho et al.’s synthesis

algorithm([38]). By using the results in ([36], [40]) we analyze the transition

4



rule, the characteristic polynomial and the cycle structure of GF (2p) CA in

chapter 7. The work is concluded in chapter 8.
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Chapter 2

CA Preliminaries

In this chapter, we provide a survey on GF (2) CA.

CA is a collection of interconnected cells arranged spatially in a regular

manner([4]). CA can be classified according to four properties:

a. the structure of the arrangement of cells

b. neighborhood’s influence

c. the number of values per cell

d. the rules to compute next states

The CA structure investigated by Wolfram ([4]) can be viewed as a dis-

crete lattice of cells, where each cell can assume either the state 0 or 1.

The simplest CA are binary and 1-dimensional(1-D) array of cells, with two

possible states per cell and a cell’s neighborhoods defined as the cell on ei-

ther side of it. These were called elementary cellular automata by Wolfram,

who studied extensivly their properties([41]). The cells evolve in discrete

time steps according to some deterministic rule that depends only on logical

neighborhood(Figure 1).

2.1 Rule

In effect, each cell consists of a storage element (D flip-flop) and a com-

binatorial logic implementing the next-state function(Figure 2).
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Figure 1: Evolution of an 1-D CA

If qi(t) denotes the state of the ith CA cell at the tth time instant, the

next-state function for a 3-neighborhood CA cell can be represented as fol-

lows:

qi(t + 1) = f [qi−1(t), qi(t), qi+1(t)]

where f denotes the local transition function realized with a combinational

logic, and is known as a rule of the CA. For a 2-state, 3-neighborhood CA,

since f is a function of 3 variables, there can be 223
(=256) possible next-state

funtions. These 256 CA are generally referred to using a standard naming

convention invented by Wolfram[41]. The rule of CA is a decimal number

which gives the rule table in binary. For example, the following tables define

the rules 90 and 150:
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Figure 2: A CA Cell

Table 1. Rule Table

PS 111 110 101 100 011 010 001 000

NS 0 1 0 1 1 0 1 0 rule 90
NS 1 0 0 1 0 1 1 0 rule 150

Note. PS and NS stand for Present State and Next State.

The top row gives all eight possible states of the three neighboring cells

(the left neighborhood of the ith cell, the ith cell itself, and its right neighbor-

hood) at the time instant t. The second and third rows give the corresponding

states of the ith cell at time instant t + 1 for a illustrative CA rules. Ac-

cording to rule 90, the value of a particular ith cell is the XOR of the values

of its two neighborhoods on the previous time step t. On minimization, the

rule tables for the rules 15, 51, 60, 85, 90, 102, 105, 150, 153, 165, 170, 195,

204, and 240 result in the following logic functions, where ⊕ denotes XOR
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Table 2. Linear Rule

rule Linear Rule(with XOR)

60 qi(t + 1) = qi−1(t) ⊕ qi(t)
90 qi(t + 1) = qi−1(t)⊕ qi+1(t)
102 qi(t + 1) = qi(t) ⊕ qi+1(t)
150 qi(t + 1) = qi−1(t)⊕ qi(t)⊕ qi+1(t)
170 qi(t + 1) = qi+1(t)
204 qi(t + 1) = qi(t)
240 qi(t + 1) = qi−1(t)

Table 3. Complemented Rule

rule Complemented Rule (with XNOR)

195 qi(t + 1) = qi−1(t) ⊕ qi(t)

165 qi(t + 1) = qi−1(t)⊕ qi+1(t)

153 qi(t + 1) = qi(t) ⊕ qi+1(t)

105 qi(t + 1) = qi−1(t)⊕ qi(t)⊕ qi+1(t)

85 qi(t + 1) = qi+1(t)

51 qi(t + 1) = qi(t)

15 qi(t + 1) = qi−1(t)

logic.

We introduce definitions which are extensively used in the subsequent

chapters. These definitions are cited from ([1]).

Definition 2.1.1 If in a CA the next-state functions for each cell have

XOR or XNOR logic only, then the CA is called an additive CA.

Definition 2.1.2 If in a CA the next-state function is only XOR, then
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it is called a linear CA and the corresponding rule is referred to as linear

rule(Table 2). If in a additive CA the next-state function is not only XOR,

then it is called a complemented CA and the corresponding rule involving

the XNOR is called a complemented rule(Table 3).

According to the conditions, they are divided into 3 types: null boundary

CA, periodic boundary CA, and intermediate boundary CA.

Figure 3: NBCA, PBCA and IBCA

Definition 2.1.3 ([42]) A CA is said to be a Null Boundary CA(NBCA)

if the left neighborhood of the leftmost cell and right neighborhood of the

rightmost cell are regarded to be 0. A CA is said to be a Periodic Bound-

ary CA(PBCA) if the leftmost cell and the rightmost cell are regarded to be

adjacent to each other, i.e., the left neighborhood of the leftmost cell becomes

the rightmost cell, and the right neighborhood of rightmost cell becomes the
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leftmost cell. A CA is said to be a Intermediate Boundary CA(IBCA) if

the left neighborhood of the leftmost cell is regarded to be the second right

neighborhood, and right neighborhood of the rightmost cell is regarded to be

the second left neighborhood(Figure 3).

Definition 2.1.4 If all the CA cells are configured with same rule, then

the CA is said to be uniform CA, otherwise it is hybrid CA.

This thesis is restricted within the additive 1-D NBCA.
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2.2 State-Transition Matrix

Since a linear CA employs XOR logic only as the next-state function for

each cell, the next-state function of that can be represented as an n × n

matrix referred to as the state-transition matrix over GF(2). The char-

acterization of 1-D CA, using a matrix algebraic tools, has been reported in

([9]). An n-cell CA is characterized by an n×n state-transition matrix. The

state-transtion matrix T = (tij) is constructed as:

(tij) =

{
1, if the next state of the ith cell depends on

the present state of the jth cell
0, otherwise

For a 3-neighborhood CA, T is a tridiagonal matrix where the principal

diagonal specifies the self-denpendency(viz., for the ith cell T (i, i)) if the

next state of the ith cell depends on its present state. The other two diag-

onal specify the dependency of the corresponding cell on its left and right

neighborhoods.

The characteristic polynomial f(x) of a CA is defined by

f(x) = |T ⊕ xI |

where x is an indeterminate, I is the n × n identity matrix and T is the CA

state-transition matrix. Precisely, the polynimial of which T is a root is the

characteristic polynimial of the CA.

If f(x) = xn +an−1x
n−1 +an−2x

n−2 + · · ·+a1x+a0 is a given polynomial,

then one can always define

f(T ) = T n + an−1T
n−1 + an−2T

n−2 + · · · + a1T + a0
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for any n×n matrix T . There is an important interplay between polynomials

and matrices. The vital role of the characteristic polynomial has already

been observed, but there are other polynomials associated with a square

matrix. One of these is the minimal polynomial. The Cayley-Hamilton

theorem guarantees that for each n × n matrix T there is a polynomial (the

characteristic polynomial) f(x) of degree n such that f(T ) = 0. A polynomial

whose value is the O matrix at T is said to annihilate T . The unique monic

polynomial f(x) of minimum degree that annihilates T is called the minimal

polynomial of T .

Figure 4: 4-cell CA with < 150, 90, 150, 90 >

Example 2.2.1 The state-transition matrix of the CA configured with

the rule vector < 150, 90, 150, 90 > shown in Figure 4 is given by
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T =

⎛
⎜⎜⎝

1 1 0 0
1 0 1 0
0 1 1 1
0 0 1 0

⎞
⎟⎟⎠

and both the characteristic polynomial and the minimal polynomial of T is

the same as f(x) = x4 + x + 1.

If St represents the state at the time instant t, then the state of the next

instant can be expressed by the state transition equation:

St+1 = T · St

and hence,

St+2 = T · St+1 = T 2 · St

Similarly, the states appearing after the mth time step is

St+m = T m · St

Since the XNOR logic is not linear, the additive CA with complemented

rules cannot be expressed by the standard matrix notation. Those are for-

mulated as follows.

Definition 2.2.2 An n-cell complement vector associated with an

n-cell additive CA is n-cell binary vector in which a 1 in the ith position

indicates that the rule at the ith cell is an complemented one.

14



Rule 195 represented as qi−1(t) ⊕ qi(t) is the additive complement of rule

60 represented as qi−1(t)⊕qi(t). Let the XNOR function be represented as T .

Thus T represents the CA with XOR rules only and T with XNOR rules. In

a uniform complemented CA the next state is obtained first by obtaining the

XORed output and then complementing this state by XORing all the cells

with logical 1’s. This is equivalent to inverting the XORed output. Thus for

a complemented CA:

St+1 = T · St = F ⊕ T · St

Here, if n is the number of cells, complement vector F is an n-cell vector,

responsible for inversion after XORing. F has nonzero entries in places of

the cell positions where inversion is required.

Lemma 2.2.3([9]) Let T
p

denote p times application of the comple-

mented CA operator T . Then

T
p · St = [I ⊕ T ⊕ T 2 ⊕ · · · ⊕ T p−1]F ⊕ T p · St

where T is the state-transition matrix of the corresponding noncomplemented

rule vector and F is a complement vector, St is the present states.

Exmaple 2.2.4 A 4-cell NBCA with rule vector < 150, 90, 150, 90 >=<

150, 165, 105, 90 > shown in Figure 5 may be represented as follows:

St+1 = T · St =

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠ ⊕

⎛
⎜⎜⎝

1 1 0 0
1 0 1 0
0 1 1 1
0 0 1 0

⎞
⎟⎟⎠ · St

15



where complement vector is F = (0, 1, 1, 0)t.

For example, let the state at the time instant t be St = (0, 0, 1, 1)t, then

the next state of that is as follows:

St+1 =

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠ ⊕

⎛
⎜⎜⎝

1 1 0 0
1 0 1 0
0 1 1 1
0 0 1 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠

Figure 6 is the state-transition diagram of the CA in Example 2.2.4.

16



Figure 5: Structure of the CA with < 150, 165, 105, 90 >

Figure 6: State-transition diagram of the CA with < 150, 165, 105, 90 >

17



2.3 Group CA

The state-transition diagrams of CA have been charaterized from its

state-transtion matrix, characteristic polynomial and its minimal polynomial.

The detailed characterizations of CA state transition behavior are reported

in ([1],[10],[12]-[14],[16] etc.). Some fundamental results are presented below.

If all states in the state-transition diagram of a CA lie in cycles, it is

called a group CA; otherwise it is a nongroup CA.

The analysis follows the basic framework of matrix algebraic tools intro-

duced in ([1], [40]).

Since each of the states in the state-transtion diagram of a group CA

has a unique immediate predecessor state, the state-transition matix T of a

group CA is nonsingular, that is, det(T ) = |T | �= 0. In other words, there

must exist some positive integer m such that

T m = I

St+m = T m · St = St

A CA with such a property is referred to as a group CA.

A group CA has cycles whose length is m or factors of m with a nonzero

starting state iff det[T m⊕ I ] = 0. If the order of the group CA characterized

by T is a nonprime number, then the cycle lengths are equal to its factors

only ([1]).

18



Group CA can be classified as maximum- and nonmaximum- length

CA. The n-cell maximum-lengh CA(MLCA) which is a class of group CA

having a cycle of length 2n − 1 with all non-zero states generates excellent

psuedo-random sequence([43]). The characteristic polynomial of an n-cell

CA is the n-degree primitive polynomial. A primitive polynomial f(x) of

degree n is an irreducible polynomial(that is, it does not have any factor),

such that the minimum value of m for which f(x) divides xm + 1 is 2n − 1.

Example 2.3.2 Figure 7 shows the state-transition diagram of the CA

C whose characteristic polynomial is f(x) = x4 + x + 1 in Exmaple 2.2.1.

Figure 7: State-transition diagram of the CA with < 150, 90, 150, 90 >

Since the minimum value of m for which f(x) divides xm + 1 is 24 − 1, C

is MLCA having a cycle of length 24 − 1 with all non-zero states and f(x) is

a primitive polynomial.
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For a nonmaximum-length CA, the characteristic polynomial gets fac-

tored into invariant polynomials. the characteristic polynomial f(x) of the

T of such a CA can be represented as

f(x) = f1(x)f2(x) · · · fn(x)

Each of the invariant polynomials fi(x) forms a cyclic subspace. As a

result, multiple elementary divisors of f(x) lead to the generation multiple

cycles. The entire state space V of a nonmaximum-length CA is the direct

sum

V = I1 ⊕ I2 ⊕ · · · ⊕ In

where Ii is the cyclic subspace generated by the divisor fi(x)([44]).

Example 2.3.3 Figure 8 shows the state-transition diagram of the CA

with rule vector < 150, 102, 90 > whose characteristic polynomial is f(x) =

x3 + 1 = (x + 1)(x2 + x + 1).

Figure 8: 3-cell CA with < 150, 102, 90 >

The vector space S defined by T is decomposed into two sub-space I1 and

I2 such that

S = I1 ⊕ I2

20



Here I1 is the invariant space corresponding to x + 1 and I2 is the invariant

space corresponding to x2 + x + 1. Since I1 = N(T ⊕ I) = {0, 4} and

I2 = N(T 2 ⊕T ⊕ I) = {0, 3, 5, 6}, S = I1 ⊕ I2 = {0⊕ 0, 0⊕ 3, 0⊕ 5, 0⊕ 6, 4⊕
0, 4 ⊕ 3, 4 ⊕ 5, 4 ⊕ 6}, where N(A) is the null space of A.

C is a nonmaximum-length CA having cycles of length the divisors of

24 − 1.

We may obtain the cycle structure of the state-transition diagram of

any linear CA from the analysis of the characteristic polynomial of the T .

However, this is not sufficient to characterize such CA. So we may need the

minimal polynomial of T . In 1959, a linear machine has been characterized by

Elspas([40]). However, the machines having same characteristic and minimal

polynomials but different cycle structures could not be analyzed with the

algorithm proposed in ([40]).
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Chapter 3

Characterization of the Complemented CA

derived from Linear Uniform Group CA

The VLSI era has informed in advance a new phase of the research of

linear machines like the local neighborhood CA structures. The VLSI design

community prefer to have simple, regular, modular, and cascadable structure

with local interconnections. With the advancement of semiconductor tech-

nology, circuit delay due to interconnections on the silicon floor has become

a major concern. Further, in the next-generation submicron technology, in-

terconnections will behave more like a device on the silicon floor, thereby

contributing a lion’s share to the circuit delay. This situation invariably

forces the designers to have local interconnections as far as possible, for reli-

able high-speed operations of the circuit. The simple, regular, modular, and

cascadable structure of CA provides a solution in all these respects([1]). With

the ever increasing growth of data communication, the need for security and

privacy has become a necessity. Quality of randomness has been evaluated as

per the criterion set by Knuth([45]). The advent of wireless communication

and other handheld devices like presonal digital assistants and smart cards

have made the implementation of cryptosystems a major issue. One impor-

tant aspect of modern day ciphers is the scope for hardware sharing between

the encryption and decryption algorithms. The CA can be programmed to

perform both the operations without using any dedicated hardware.
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The states of a nonmaximum-length group CA form multiple cycles. Das

conjectured that if the order of the rule vector R of uniform group CA C is

m, then the order generated by the rule vectorR is m or 2m. Mukhopadhyay

([13]) investigated the state spaces of the fundamental transformations of a

group CA and proved new properties which relate the state spaces of the

CA for the development of new encryption and key distribution protocols.

And he asserted that an essential requirement is that the cycle length of a

group CA has to be small, so that ciphering (or deciphering) is performed

at the expense of few clock cycles. Moreover the length of the machines has

to be equal so that the number of cycles required to encrypt or decrypt is

predicted. So we need the analysis of group CA with special rules.

In this chapter, we analyze several complemented CA derived from a

linear uniform group CA(LUGCA) with rule 60 or 102 according to the

complement vector and investigate some properties of these CA. Also we

show that Das’s conjecture is true. And the order of the state transition

operator of the complemented CA derived from a LUGCA with rule 60 or

102 is characterized explicitly. And we extend and generalize the results of

Mukhopadhyay et al. ([13]). These properties will help the development of

new encryption and key distribution.
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3.1 Analysis of the Complemented CA

derived from LUGCA

Theorem 3.1.1 ([40]) If the period of an irreducible polynomial p(x) is

k, then the period of [p(x)]j is kqr, where qr−1 < j ≤ qr, q being the modulus.

Lemma 3.1.2 Let C be an n-cell linear uniform CA(LUCA) with rule

60 or 102. Then the minimal polynomial of the state-transition matrix T of

C is m(x) = (x + 1)n.

Proof. Let C be an n-cell LUCA with rule 60. Then (T ⊕ I)n = O and

(T ⊕ I)n−1 = (aij), where

aij =

{
1, if i = n, j = 1
0, otherwise

Hence m(x) = (x + 1)n.

The proof for an n-cell LUCA with rule vector R =< 102, 102, · · · > is

similar to the proof of the case of rule 60.

Let C be an n-cell LUCA with rule 60 or 102. Then the state-transition

matrix T of C is nonsingular because |T | = 0. Therefore C is linear uniform

group CA.

Lemma 3.1.3 ([46]) Let C be an n-cell LUGCA with rule 60 or 102 and

state-transition matrix T . Then the order of T , ord(T ) = 2a(a = 0, 1, 2, · · ·),
where 2a−1 < n ≤ 2a.
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Lemma 3.1.4 Let C be an n-cell LUGCA with rule 60 or 102 and

state-transition matrix T . Let F = (1, · · · , 1)t. Then (T ⊕ I)n−1F �= O.

Proof. We only show that (T ⊕ I)n−1F �= O. Let R =< 60, 60, · · · >.

Then (T ⊕ I)n−1 = (aij), where

aij =

{
1, if i = n, j = 1
0, otherwise

Thus (T ⊕ I)n−1F = (0, 0, · · · , 0, 1)t. Hence (T ⊕ I)n−1F �= O.

The proof for an n-cell CA with rule 102 is similar to the proof of the

case of rule 60.

Corollary 3.1.5 Let C be an n-cell LUGCA with rule 60 or 102 and

state-transition matrix T . Let F = (1, · · · , 1)t. If n = 2k, then

(I ⊕ T )2k−1F = (I ⊕ T ⊕ · · · ⊕ T 2k−1)F �= O

Lemma 3.1.6 Let C be a linear group CA with state-transition matrix

T . Let F �= O and ord(T ) = m. Then ord(T ) = m or 2m.

Proof. Since ord(T ) = m, T m = I and thus

T
2m

X = T 2mX ⊕ (T 2m−1 ⊕ · · · ⊕ T m ⊕ T m−1 ⊕ · · · ⊕ T ⊕ I)F

= T 2mX ⊕ {T m(T m−1 ⊕ · · · ⊕ T ⊕ I) ⊕ (T m−1 ⊕ · · · ⊕ T ⊕ I)}F

= T 2mX ⊕ {(T m−1 ⊕ · · · ⊕ T ⊕ I)⊕ (T m−1 ⊕ · · · ⊕ T ⊕ I)}F
= X ⊕ O

= X
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This means that ord(T ) is a divisor of 2m. Let ord(T ) = p. Then

X = T
p
X = T pX ⊕ (T p−1 ⊕ · · · ⊕ T ⊕ I)F

for all X. Therefore T pX = X and (T p−1 ⊕ · · · ⊕ T ⊕ I)F = O for all X.

Since ord(T ) = m and T pX = X for all X, m|p. Hence p = m or p = 2m.

The proof for an n-cell CA with rule 102 is similar to the proof of the case

of rule 60.

Let C be an n-cell LUGCA with rule 60 (resp. 102) and state-transition

matrix T . Let C′ be the complemented CA derived from C with the com-

plement vector F = (1, · · · , 1)t. Then C′ is an n-cell 195(resp. 153) UGCA

with state-transition matrix T .

The following theorem is an extension of Theorem 4 ([13]).

Theorme 3.1.7 Let C be an n-cell LUGCA with rule 60(resp. 102) and

T the state-transition matrix of C. Let C′ be an n-cell 195(resp. 153) UGCA

derived from C with state transition operator T and ord(T ) = m. Then

ord(T ) =

{
2m, if n is a nonnegative integer power of 2,
m, otherwise.

Proof. Case 1. n = 2a(a �= 0): By Lemma 3.1.3, ord(T ) = n = 2a = m.

Since m(x) = (1+x)m, (T ⊕I)m = (T ⊕I)2a
= T 2a⊕I = O and (T ⊕I)m−1 =
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T m−1 ⊕ T m−2 ⊕ · · · ⊕ T ⊕ I �= O. Therefore

T
m
X = T mX ⊕ (T m−1 ⊕ · · · ⊕ T ⊕ I)F

= X ⊕ (T m−1 ⊕ · · · ⊕ T ⊕ I)F

= X ⊕ (T ⊕ I)m−1F

�= X

by Corollary 3.1.5. Thus ord(T ) = 2m by Lemma 3.1.6.

Case 2. 2k−1 < n < 2k: By Lemma 3.1.3, ord(T ) = 2k = m and thus

n < m. Therefore (1 + x)n is a factor of (1 + x)m. Since m(x) = (1 + x)n,

(I ⊕ T )n = (I ⊕ T )n+1 = · · · = (I ⊕ T )m = O

Therefore

(I ⊕ T )m−1 = T m−1 ⊕ T m−2 ⊕ · · · ⊕ T ⊕ I = O

Hence

T
m
X = T mX ⊕ (T m−1 ⊕ · · · ⊕ T ⊕ I)F

= X ⊕ (T m−1 ⊕ · · · ⊕ T ⊕ I)F

= X

Therefore ord(T ) = m.

Remark Theorem 3.1.7 shows that Das’s conjecture([9]) is ture for a

LUGCA with rule 60 or 102.
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From Lemma 3.1.3 and Theorem 3.1.7, we obtain the following theorem.

Theorem 3.1.8 Let C be an n-cell LUGCA with rule 60(resp. 102) and

T the state-transition matrix of C. Let C′ be an n-cell 195(resp. 153) UGCA

derived from C with state transition operator T . Then the state-transition

diagram of C′ consists of equal maximum cycles.

Proof. Case 1. n = 2a : By Lemma 3.1.3 and Theorem 3.1.7, ord(T ) = 2a

and ord(T ) = 2a+1. Suppose that X is a state lying on a cycle in C′ whose

length is l = 2p(p ≤ a). Then

T
2p

X = T
2p+1

X = · · · = T
2a

X = T
2a+1

X = X

Since (T 2a−1 ⊕ T 2a−2 ⊕ · · · ⊕ T ⊕ I)F �= O by Corollary 3.5,

T
2a

X = T 2a

X ⊕ (T 2a−1 ⊕ T 2a−2 ⊕ · · · ⊕ T ⊕ I)F �= X

for all X. This is a contradiction. Hence the lengths of cycles in C′ are the

same as 2a+1. Therefore all the lengths of cycles in C′ are the same.

Case 2. n �= 2a: By Lemma 3.1.3 and Theorem 3.1.7, ord(T ) = 2k and

ord(T ) = 2k, where 2k−1 < n < 2k. Since m(x) = (x + 1)n,

(I ⊕ T )n = (I ⊕ T )n+1 = · · · = (I ⊕ T )2k

= O

Suppose that X is a state lying on a cycle in C
′ whose length is 2p(p < k).

Then

T
2p

X = T
2p+1

X = · · · = T
2k−1

X = T
2k

X = X
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In case X is a state lying on a cycle in C whose length is less than 2k, by

Corollary 3.1.5,

T
2k−1

X = T 2k−1

X ⊕ (T 2k−1−1 ⊕ · · · ⊕ T ⊕ I)F

= X ⊕ (T ⊕ I)2k−1−1F

�= X

This is a contradiction. In case X is a state lying on a cycle in C whose

length is 2k, let X = (a1, · · · , an)
t. Then

T
2k−1

X = T 2k−1

X ⊕ (T ⊕ I)2k−1−1F

=

⎛
⎜⎜⎜⎜⎜⎝

a1
...

1 + a2k−1

1 + a1 + a2k−1+1
...

⎞
⎟⎟⎟⎟⎟⎠ �=

⎛
⎜⎜⎜⎜⎜⎝

a1
...

a2k−1

1 + a1 + a2k−1+1
...

⎞
⎟⎟⎟⎟⎟⎠ = X

This is also a contradiction. Hence the lengths of cycles in C
′ are the

same as 2k. Therefore all the lengths of cycles in C′ are the same. The proof

for the case of the rule 153 is similar to the case of rule 195.

Corollary 3.1.9 If the uniform CA with rule 153 or 195 is a group CA,

then its state-transition diagram consists of equal cycles whose cycle length

is nonnegative integer power of 2.

Example 3.1.10 Let C be a 4-cell LUGCA with rule 102 and F =

(1, 1, 1, 1)t. Then we obtain the state-transtion diagrams of C and C′ in

Figure 9.
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Figure 9: state-transition diagrams of 4-cell LUGCA with rule 102 and its
complemented CA

The following lemma can be proved by mathematical induction.

Lemma 3.1.11 Let T (resp. S) be the state-transition matrix of an

n-cell LUGCA with rule 60 (resp. 102), where 2k−1 < n ≤ 2k. Let L (resp.

U) be the n × n tridiagonal matrix consisting of 1’s below (resp. above) the

main diagonal, and 0’s elsewhere. Then for each nonnegative integer a,

(∗) T 2a

= I ⊕ L2a

(resp. S2a

= I ⊕ U2a

)

where I is the n × n identity matrix.

Proof. First, T = I ⊕ L. We will show (∗) by induction on a. For a = 1,

T 2 = (I ⊕ L)2 = I ⊕ L2. Hence the statement is true for a = 1. Now assume

that the statement is true for a = k. T 2k+1
= T 2k

T 2k
= (I ⊕ L2k

)(I ⊕ L2k
) =
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I ⊕ L2k+1
. Hence the statement is true for a = k + 1. The proof for the case

of S is similar to the proof for the case of T.

Lemma 3.1.12 Let C be an n-cell LUGCA with rule 60 (resp. 102),

where 2k−1 < n ≤ 2k. Let T (resp. S) be the state-transition matrix of C.

Then T 2k
= S2k

= I and T 2k−1
= (tij), where

tij =

{
1, if i = j or i = j + 2k−1,
0, otherwise.

and S2k−1
= (sij), where

sij =

{
1, if j = i or j = i + 2k−1,
0, otherwise.

Proof. Let L be the n × n tridiagonal matrix consisting of 1’s below the

main diagonal, and 0’s elsewhere. Then L2a
= (bij), where

bij =

{
1, if i = j + 2a,
0, otherwise.

By Lemma 3.1.11, for each nonnegative integers a, T 2a
= I ⊕ L2a

= (tij),

where

tij =

{
1, if i = j or i = j + 2a,
0, otherwise.

The proof for the case of S is similar to the proof for the case of T .
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Theorem 3.1.13 Let C be an n-cell LUGCA with rule 60(resp. 102),

where 2k−1 < n ≤ 2k. Let T be the state-transition matrix of C and let

X = (1, a2, · · · , an)
t (resp. X = (a1, a2, · · · , an−1, 1)

t. Then X lies on a cycle

with maximum length in C.

Proof. Since ord(T ) = 2k by Lemma 3.1.2, T 2k
X = X. By Lemma 3.1.12,

T 2k−1

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0 0
0 1 0 · · · 0 0 0 0
0 0 1 · · · 0 0 0 0

. . .

1 0 0 · · · 1 0 · · · 0
...

0 1 0 · · · 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a2

a3
...

a2k−1

a2k−1+1

...
an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a2

a3
...

a2k−1

1 + a2k−1+1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and thus T 2k−1
X �= X. Hence X lies on a cycle with maximum length in C.

The proof for the case of the rule 102 is similar to the case of rule 60.

The following lemma can be easily proved.

Lemma 3.1.14 Let C be an n-cell LUGCA with rule 60 or 102. Let T

be the state-transition matrix of C. Let X = (x1, · · · , xn)
t be a state in C.

Then

(T ⊕ I)m−1X =

{
(0, 0, · · · , m

x1, x2, · · · , xn−m+1)
t, if < 60, 60, · · · >,

(xm, · · · , xn−1, xn, 0, · · · , 0)t, if < 102, 102, · · · >.
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The following theorem and corollary give the condition for the order of

the complemented CA derived from the n-cell LUGCA with rule 60 or 102

and state-transition matrix T is 2 · ord(T ) or ord(T ), where n is an integral

power of 2.

Theorem 3.1.15 Let C be an n-cell LUGCA with rule 60(resp. 102),

where n = 2k. Let T be the state-transition matrix of C. Let C′ be the

complemented CA derived from C with the complement vector F ( �= 0). Then

ord(T ) =

{
2 ord(T ), if F = (1, a2, · · · , an)

t (resp. F = (a1, a2, · · · , an−1, 1)
t),

ord(T ), otherwise.

Proof. Let X = (x1, · · · , xn)
t be a state in C′. Then by Lemma 3.1.3,

T
2k+1

X = T 2k+1

X ⊕ (T 2k+1−1 ⊕ · · · ⊕ T ⊕ I)F

= X ⊕ {T 2k

(T 2k−1 ⊕ · · · ⊕ T ⊕ I) ⊕ (T 2k−1 ⊕ · · · ⊕ T ⊕ I)}F
= X

Therefore ord(T ) divides 2k+1. Let ord(T ) = p. Since

X = T
p
X = T pX ⊕ (T p−1 ⊕ · · · ⊕ T ⊕ I)F

for all X, T pX = X and (T p−1 ⊕ · · · ⊕ T ⊕ I)F = 0. Therefore ord(T ) = 2k

divides p. Thus p = 2k or 2k+1.
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Case 1. Let F = (1, a2, · · · , an)
t. Then by Lemma 3.1.14

T
2k

X = T 2k

X ⊕ (T ⊕ I)2k−1F

= X ⊕ (0, 0, · · · , 1)t �= X

Therefore p = 2k+1.

Case II. Let F = (0, a2, · · · , an)
t. Then by Lemma 3.1.14

T
2k

X = T 2k

X ⊕ (T ⊕ I)2k−1F = X ⊕ (0, 0, · · · , 0)t = X

Therefore p = ord(T ) = 2k.

The proof for the case of the rule 102 is similar to the case of rule 60.

Theorem 3.1.16 Let C be an n-cell LUGCA with rule 60 or 102, where

2k−1 < n ≤ 2k. Let T be the state-transition matrix of C. Let C′ be the

complemented CA derived from C with the complement vector F . Then the

lengths of all cycles in C′ are equal in the following cases :

(1) < 60, 60, · · · >, F = (1, a2, · · · , an)
t.

(2) < 102, 102, · · · >, F = (b1, · · · , bn−1, 1)
t.

Proof. First, we prove for the case n = 2k.

(1) Let X be a state in C′. Since ord(T ) = 2k+1, T
2k+1

X = X. Further-

more, by Lemma 3.1.14

T
2k

X = T 2k

X ⊕ (T ⊕ I)2k−1F �= X
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Thus X lies on a cycle whose length is 2k+1. Hence the lengths of all cycles

in C′ are equal.

(2) We can prove the result by the similar method as the proof of (1).

Second, we prove for the case 2k − 1 < n < 2k.

(1) Let X be a state in C′. Since ord(T ) = 2k by Theorem 3.1.7, T
2k

X =

X. If X lies on a cycle in C whose cycle length is less than ord(T ) = 2k,

T
2k−1

X = T 2k−1

X ⊕ (T ⊕ I)2k−1−1F

= X ⊕ (T ⊕ I)2k−1−1F

�= X

by Lemma 3.1.14. If X lies on a maximum-length cycle in C,

T
2k−1

X = T 2k−1

X ⊕ (T ⊕ I)2k−1−1F

= (x1, x2, · · · , x2k−1, x2k−1+1 ⊕ x1, · · ·)t + (0, 0, · · · , 0, 2k−1

1 , a2, · · ·)t

= (x1, x2, · · · , x2k−1, a2 ⊕ x1 ⊕ x2k−1+1, · · ·)t

�= X

Therefore T 2k−1
X �= X and hence X lies on a maximum cycle in C′.

(2) We can prove the result by the similar method as the proof of (1).
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Table 4. n-cell LUGCA C with rule 60 or 102
and Complemented CA derived from C

rule 60 102

characteristic polynomial (x + 1)n

minimal polynomial (x + 1)n

F (complement vector) (1, a2, · · · , an) (b1, · · · , bn−1, 1)
ord(T ) 2a(:= m), (2k−1 < n ≤ 2k)

ord(T )

{
2m, n = 2s

m, o/w
(equal length)

The principal theorems in section 3.1 may be summarized as Table 4.
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3.2 Relationship between Cycles

of the Complemented CA

Mukhopadhyay et al.([13]) constructed two functions R1 and R2 and

showed the relation between the state spaces of fundamental transforma-

tions. In this section we construct several functions which are different from

R1 and R2 and analyze the properties of these functions.

Theorem 3.2.1 Let C be an n-cell uniform CA with rule 60(resp. 102).

Let T be the state-transition matrix of C. Let C′ be an UGCA with rule

195(resp. 153) and state transition operator T . Then the following hold :

(1) X and X ⊕ T
2
X ⊕ T

3
X lie on different cycles.

(2) X and X ⊕ T
4
X ⊕ T

5
X lie on different cycles.

(3) X and X ⊕ TX ⊕ T
5
X lie on different cycles.

Proof. We only prove for the case of rule 102 and (1). Let A = X ⊕

T
2
X ⊕ T

3
X. Then

A = (T 3 ⊕ T 2 ⊕ I)X ⊕ T 2F =

⎛
⎜⎜⎝

...
xn−2 ⊕ xn−1

xn−1 ⊕ xn

xn

⎞
⎟⎟⎠

and

T
a
X =

⎛
⎜⎜⎝

...
xn−2 ⊕ aC1xn−1 ⊕ aC2xn ⊕ a ⊕ aC2 ⊕ aC3

xn−1 ⊕ aC1xn ⊕ a ⊕ aC2

xn ⊕ a

⎞
⎟⎟⎠
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where X = (x1, x2, · · · , xn)
t. Suppose that there exists an integer a such that

T
a
X = A.

Case 1. a is even:

Since A =

( ...
xn

)
and T

a
X =

( ...
xn

)
, T

a
X �= A.

Case 1. a is odd :

(1) a = 4n + 1 :

Since A =

⎛
⎜⎜⎝

...
xn−2 ⊕ xn−1

xn−1 ⊕ xn

xn

⎞
⎟⎟⎠ and T

a
X =

⎛
⎜⎜⎝

...
xn−2 ⊕ xn−1

xn−1 ⊕ xn

xn

⎞
⎟⎟⎠, T

a
X �= A.

(2) a = 4n + 3 :

Since A =

⎛
⎝ ...

xn−1 ⊕ xn

xn

⎞
⎠ and T

a
X =

⎛
⎝ ...

xn−1 ⊕ xn

xn

⎞
⎠, T

a
X �= A.

This completes the proof. The proof for the case of 60 is similar to the case

of 102.

[Construction of functions]

Define the functions Ri as follows :

R1(X) = X ⊕ TX ⊕ T
2
X

R2(X) = X ⊕ TX ⊕ T
3
X

R3(X) = X ⊕ T
2
X ⊕ T

3
X
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R4(X) = X ⊕ T
4
X ⊕ T

5
X

R5(X) = X ⊕ TX ⊕ T
5
X

The following lemmas can be easily proved.

Lemma 3.2.2 Let C be an n-cell LUGCA with rule 60(resp. 102). Let T

be the state-transition matrix of C. Let C′ be an UGCA with rule 195(resp.

153) and state transition operator T . Then Ri(Rj(X)) = Rj(Ri(X)), where

i, j = 1, 2, 3, 4, 5.

Lemma 3.2.3 Let C be an n-cell LUGCA with rule 60(resp. 102).

Let T be the state transition matrix of C. Let C
′ be an UGCA with rule

195(resp. 153) and state transition operator T . Then for each i (1 ≤ i ≤ 5)

Ri(T
a
X) = T

a
(Ri(X)), where a is any index.

Corollary 3.2.4 Let C be an n-cell LUGCA with rule 60(resp. 102).

Let T be the state-transition matrix of C. Let C′ be an UGCA with rule

195(resp. 153) and state transition operator T . Then the following hold :

For all integers i and j (1 ≤ i, j ≤ 5),

T
a
(RiRj(T

b
(X))) = T

b
(RjRi(T

a
(X))),

where a and b are indices.
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Lemma 3.2.5 Let C be an n-cell LUGCA with rule 60(resp. 102). Let T

be the state-transition matrix of C. Let C′ be an UGCA with rule 195(resp.

153) and state transition operator T . Then the following hold :

(1) R1(X ⊕ Y ) = R1(X) ⊕ R1(Y ) ⊕ TF.

(2) R2(X ⊕ Y ) = R2(X) ⊕ R2(Y ) ⊕ (T 2 ⊕ T )F.

(3) R3(X ⊕ Y ) = R3(X) ⊕ R3(Y ) ⊕ T 2F.

(4) R4(X ⊕ Y ) = R4(X) ⊕ R4(Y ) ⊕ T 4F.

(5) R5(X ⊕ Y ) = R5(X) ⊕ R5(Y ) ⊕ (T 4 ⊕ T 3 ⊕ T 2 ⊕ T )F.

Corollary 3.2.6 Let C be an n-cell LUGCA with rule 60(resp. 102). Let

T be the state-transition matrix of C. Let C′ be the corresponding 195(resp.

153) UGCA with state transition operator T . Then for all integers i and j

(1 ≤ i, j ≤ 5), X and Ri(Rj(X)) lie on different cycles, where i �= j.

The following lemma can be proved by mathematical induction.

Lemma 3.2.7 Let C be an n-cell LUGCA with rule 60(resp. 102). Let

T be the state-transition matrix of C. Let C′ be the corresponding 195(resp.

153) UGCA with state transition operator T . Then for each nonnegative

integer a the following hold :

(1) R2a

1 (X) = X ⊕ T
2a

X ⊕ T
2a+1

X.

(2) R2a

2 (X) = X ⊕ T
2a

X ⊕ T
3·2a

X.

(3) R2a

3 (X) = X ⊕ T
2a+1

X ⊕ T
3·2a

X.

(4) R2a

4 (X) = X ⊕ T
2a+2

X ⊕ T
5·2a

X.
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(5) R2a

5 (X) = X ⊕ T
2a

X ⊕ T
5·2a

X.

The following theorem can be proved by Lemma 3.2.7.

Theorem 3.2.8 Let C be an n-cell LUGCA with rule 60(resp. 102). Let

T be the state-transition matrix of C. Let C′ be the corresponding 195(resp.

153) UGCA with state transition operator T . Then for each nonnegative

integer a the following holds:

For each integer i (1 ≤ i ≤ 3),

T
i·2a

R2a

i (X) = {(T ⊕I)3·2a

(T i⊕T ⊕I)2a⊕I}X⊕(T ⊕I)3·2a−1(T i⊕T ⊕I)2a

F

Proof. Case 1. i = 1 : We will show T
2a

R2a

1 (X) = {(T ⊕ I)3·2a ⊕ I}X ⊕
(T ⊕ I)3·2a−1F by induction on a. For a = 0,

TR1(X)

= T (X ⊕ TX ⊕ T
2
X)

= TX ⊕ T
2
X ⊕ T

3
X

= (T 3 ⊕ T 2 ⊕ T )X ⊕ (T 2 ⊕ I)F

= {(T ⊕ I)3 ⊕ I}X ⊕ (T ⊕ I)2F

Hence the statement is true for a = 0. Now assume that the statement is

true for a = k.

T
2k+1

R2k+1

1 (X)
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= T
2k

R2k

1 (T
2k

R2k

1 (X))

= T
2k

R2k

1 ({(T ⊕ I)3·2k ⊕ I}X ⊕ (T ⊕ I)3·2k−1F )

= {(T ⊕ I)3·2k ⊕ I}({(T ⊕ I)3·2k ⊕ I}X ⊕ (T ⊕ I)3·2k−1F )⊕ (T ⊕ I)3·2k−1F

= (T ⊕ I)3·2k

(T ⊕ I)3·2k

X ⊕ X ⊕ (T ⊕ I)3·2k

(T ⊕ I)3·2k−1F

= {(T ⊕ I)3·2k+1 ⊕ I}X ⊕ (T ⊕ I)3·2k+1−1F

Hence the statement is true for a = k + 1.

Case 2. i = 2 : We will show T
2a+1

R2a

2 (X) = {(T ⊕ I)3·2a
(T 2 ⊕ T ⊕ I)2a ⊕

I}X ⊕ (T ⊕ I)3·2a−1(T 2 ⊕ T ⊕ I)2a
F by induction on a. For a = 0,

T
2
R2(X) = T

2
(X ⊕ TX ⊕ T

3
X)

= T
2
X ⊕ T

3
X ⊕ T

5
X

= (T 5 ⊕ T 3 ⊕ T 2)X ⊕ (T 4 ⊕ T 3 ⊕ T ⊕ I)F

Since

T 5 ⊕ T 3 ⊕ T 2 = T 3(T 2 ⊕ I)⊕ (T 2 ⊕ I) ⊕ I

= (T ⊕ I)2(T 3 ⊕ I) ⊕ I

= (T ⊕ I)3(T 2 ⊕ T ⊕ I) ⊕ I

and

T 4⊕T 3⊕T ⊕I = T 3(T ⊕I)⊕(T⊕I) = (T 3⊕I)(T⊕I) = (T ⊕I)2(T 2⊕T ⊕I)
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T
2
R2(X) = {(T ⊕ I)3(T 2 ⊕ T ⊕ I) ⊕ I}X ⊕ (T ⊕ I)2(T 2 ⊕ T ⊕ I)F. Hence

the statement is true for a = 0. Now assume that the statement is true for

a = k.

T
2k+2

R2k+1

2 (X)

= T
2k+1

R2k

2 (T
2k+1

R2k

2 (X))

= T
2k+1

R2k

2 ({(T ⊕ I)3·2k

(T 2 ⊕ T ⊕ I)2k ⊕ I}X

⊕(T ⊕ I)3·2k−1(T 2 ⊕ T ⊕ I)2k

F )

= {(T ⊕ I)3·2k

(T 2 ⊕ T ⊕ I)2k ⊕ I}({(T ⊕ I)3·2k

(T 2 ⊕ T ⊕ I)2k ⊕ I}X

⊕(T ⊕ I)3·2k−1(T 2 ⊕ T ⊕ I)2k

F )⊕ (T ⊕ I)3·2k−1(T 2 ⊕ T ⊕ I)2k

F

= (T ⊕ I)3·2k

(T 2 ⊕ T ⊕ I)2k

(T ⊕ I)3·2k

(T 2 ⊕ T ⊕ I)2k

X ⊕ X

⊕{(T ⊕ I)3·2k

(T 2 ⊕ T ⊕ I)2k}{(T ⊕ I)3·2k−1(T 2 ⊕ T ⊕ I)2k}F

= {(T ⊕ I)3·2k+1

(T 2 ⊕ T ⊕ I)2k+1 ⊕ I}X

⊕(T ⊕ I)3·2k+1−1(T 2 ⊕ T ⊕ I)2k+1

F

Hence the statement is true for a = k + 1.

Case 3. i = 3 : We will show T
3·2a

R2a

3 (X) = {(T ⊕ I)3·2a
(T 3 ⊕ T ⊕ I)2a ⊕

I}X ⊕ (T ⊕ I)3·2a−1(T 3 ⊕ T ⊕ I)2a
F by induction on a. For a = 0,

T
3
R3(X) = T

3
(X ⊕ T

2
X ⊕ T

3
X)

= T
3
X ⊕ T

5
X ⊕ T

6
X

= (T 6 ⊕ T 5 ⊕ T 3)X ⊕ (T 5 ⊕ T 2 ⊕ T ⊕ I)F
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Since

T 5 ⊕ T 2 ⊕ T

= T 2(T 3 ⊕ I)⊕ (T ⊕ I) ⊕ I

= (T ⊕ I){T 2(T 2 ⊕ T ⊕ I) ⊕ I} ⊕ I

= (T ⊕ I)(T 4 ⊕ T 3 ⊕ T 2 ⊕ I) ⊕ I

= (T ⊕ I){T 3(T ⊕ I) ⊕ (T ⊕ I)2} ⊕ I

= (T ⊕ I)2(T 3 ⊕ T ⊕ I) ⊕ I

and

T 6 ⊕ T 5 ⊕ T 3 = T 5(T ⊕ I) ⊕ (T ⊕ I)(T 2 ⊕ T ⊕ I) ⊕ I

= (T ⊕ I)(T 5 ⊕ T 2 ⊕ T ⊕ I)⊕ I

= (T ⊕ I)(T ⊕ I)2(T 3 ⊕ T ⊕ I)⊕ I

= (T ⊕ I)3(T 3 ⊕ T ⊕ I) ⊕ I

T
3
R3(X) = {(T ⊕ I)3(T 3 ⊕ T ⊕ I) ⊕ I}X ⊕ (T ⊕ I)2(T 3 ⊕ T ⊕ I)F. Hence

the statement is true for a = 0. Now assume that the statement is true for

a = k.

T
3·2k+1

R2k+1

3 (X)

= T
3·2k

R2k

3 (T
3·2k

R2k

3 (X))

= T
3·2k

R2k

3 ({(T ⊕ I)3·2k

(T 3 ⊕ T ⊕ I)2k

⊕I}X ⊕ (T ⊕ I)3·2k−1(T 3 ⊕ T ⊕ I)2k

F )
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= {(T ⊕ I)3·2k

(T 3 ⊕ T ⊕ I)2k ⊕ I}[{(T ⊕ I)3·2k

(T 3 ⊕ T ⊕ I)2k ⊕ I}X

⊕(T ⊕ I)3·2k−1(T 3 ⊕ T ⊕ I)2k

F ] ⊕ (T ⊕ I)3·2k−1(T 3 ⊕ T ⊕ I)2k

F

= {(T ⊕ I)3·2k+1

(T 3 ⊕ T ⊕ I)2k+1 ⊕ I}X

⊕(T ⊕ I)3·2k+1−1(T 3 ⊕ T ⊕ I)2k+1

F

Hence the statement is true for a = k + 1.

The proof for the case of 60 is similar to the case of 102.

Corollary 3.2.9 Let C be an n-cell LUGCA with rule 60(resp. 102),

where 3 · 2a−1 ≤ n < 3 · 2a. Let T be the state-transition matrix of C. Let C′

be the corresponding 195(resp. 153) UGCA with state transition operator

T . Then the following hold :

For each integer i (1 ≤ i ≤ 3), X and R2a

i (X) lie on the same cycle.

Corollary 3.2.10 Let C be an n-cell LUGCA with rule 60(resp. 102),

where 3 · 2a−1 ≤ n < 3 · 2a. Let T be the state-transition matrix of C. Let C′

be the corresponding 195(resp. 153) UGCA with state transition operator

T . Then the following hold :

(1) T
3·2a

(R1R2)
2a

(X) = X.

(2) T
5·2a

(R2R3)
2a

(X) = X.

(3) T
4·2a

(R3R1)
2a

(X) = X.

(4) T
5·2a

(R1R2R3)
2a

(X) = X.
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Figure 10: Inter-relationship between these cycles in the 5-cell UGCA with
rule 153 or 195

Figure 10 shows the cycles of the state-transition diagram of the 5-cell

UGCA with rule 153 or 195. The length of each cycle is 8. All states are

divided in 4 cycles which are not loverlapping. Above theorems find out

an inter-relationship between these cycles. And we find out a new set of

functions. These can help elements to migrate from any position of the state

space to another. Recently many researchers have identified the CA as the

core of security algorithm. But to perform ciphering(or deciphering) at the

expence of few clocks and predicide the number of cycles required to encrypt

or decrypt, important requirements are that the length of cycles of the CA

has to be small and equal. The specific classes of the complemented CA

derived from LUGCA dealt with in this chapter perform an interesting key

agreement property.
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Figure 11: Key Agreement Property of the State Spaces

We will discuss a protocol that allows two parties to exchange a secret

key over an insecure communications link.

System set up:

1) All participants share system parameters as a state vector M1.

2) Each participant chooses a,b, and Ri(1 ≤ i, j ≤ 5) which can help to

migrate from any position of the state space to another. Participants keep

(a, i), (b, j) secret.

System uses:

Let us now assume that Alice and Bob want to communicate with each

other using a conventional cryptosystem, but that they have no secure chan-

nel to exchange a key. They can agree on the common secret key.

T
b
RjRiT

a
M1 = M2 = T

a
RiRjT

b
M1
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In Figure 11, M1 is an initial point of key agreement of two parties.

After the initial key agreement both takes up different paths as shown by the

dashed and the solid lines. From the above theorems, lemmas and corollarys,

two paths converge again at M2 which is the second point of collision or

key agreement. This property promises the development of an efficient key

agreement protocol based on CA.
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Chapter 4

Characterization of the Complemented CA

derived from Linear Hybrid Group CA

4.1 Analysis of the Complemented CA derived LHGCA

In ([31]) , they represented an encryption system implemented on a struc-

ture of HACA(Hybrid Additive CA) used for securing the medical data sent

over the internet. In this section, by using the results in chapter 3, we an-

alyze a linear hybrid group CA(LHGCA) C with rules 60, 102 and 204 and

the complemented CA C′ derived from C. And we give the conditions for the

complement vectors which determine the state transition of the CA dividing

the entire state space into smaller spaces of equal maximum cycle lengths.

Theorem 4.1.1 Let C be a linear hybrid n-cell CA with rule vector

RV and state-transition matrix T , where RV is a combination of rules 60,

102 and 204. Then C is a LHGCA if and only if rule 60 is not followed

immediately by rule 102.

Proof. Let T (= Tn) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 u1 0 0 · · · 0
l2 1 u2 0 · · · 0
0 l3 1 u3 · · · 0

...
0 0 · · · ln−1 1 un−1

0 0 0 · · · ln 1

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

.
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Then |Tn| = |Tn−1| = |Tn−2| = · · · = |T1| = 1 because liui−1 �= 1 for

i �= 1. Therefore C is a group CA. Conversely, suppose that RV is of the

form RV =< · · · , i

102, 60, · · · >t for some i with 1 ≤ i ≤ n − 1. Then the

i-th row and (i + 1)-th row of T are equal and thus |T | = 0. Therefore C is

not a group CA.

Corollary 4.1.2 Let C be a hybrid n-cell CA with rule vector RV and

state-transition matrix T , where RV is a combination of rules 60, 102 and

204. Then C is a nongroup CA if and only if rule 60 is followed immediately

by rule 102 for some cell position.

Theorem 4.1.3 Let C be an n-cell LHGCA with rule vector RV and

state-transition matrix T , where RV is a combination of rules 60, 102 and

204. Then the characteristic polynomial of T is (x + 1)n.

Proof. Let T be the same as Theorem 4.1.1. Then liui �= 1. Since rule 60

is not followed immediately by rule 102, liui−1 = 0 for i = 2, 3, · · · , n. Hence

c(x) = |T ⊕ xI | = det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + x u1 0 0 0 · · · 0
l2 1 + x u2 0 0 · · · 0
0 l3 1 + x u3 0 · · · 0

...
0 0 0 · · · ln−1 1 + x un−1

0 0 0 · · · 0 ln 1 + x

⎞
⎟⎟⎟⎟⎟⎟⎠

= (x + 1)n.
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By Theorem 4.1.1 C having the rule vector which is the only combination

of the rule vectors RVi(i = 1, · · · , 5) in Theorem 4.1.4 is a LHGCA. The

following theorem characterizes the order and the minimal polynomial of the

state transition matrix T of an n-cell LHGCA.

Theorem 4.1.4 Let C be an n-cell LHGCA and let m(x) be the minimal

polynomial of the state transition matrix T of C. Then m(x) = (x + 1)p in

the following cases:

(1) RV1 =<
a

60, · · · , 60,
b

102, · · · , 102>, p = max{a, b}

(2) RV2 =<
a

60, · · · , 60, 204,
b

60, · · · , 60>, p = max{a, b + 1}

(3) RV3 =<
a

60, · · · , 60, 204,
b

102, · · · , 102>, p = max{a, b}

(4) RV4 =<
a

102, · · · , 102, 204,
b

60, · · · , 60>, p = max{a + 1, b + 1}

(5) RV5 =<
a

102, · · · , 102, 204,
b

102, · · · , 102>, p = max{a + 1, b}

Proof. We only prove for the case (4). Let a +1 ≥ b +1. Partition T ⊕ I

into 2 × 2 block matrices of the form

T ⊕ I =

(
T1 O
A T2

)
= (aij)

, where T1 is a (a + 1) × (a + 1) matrix and

aij =

{
1, if (i = j − 1, i < a + 1) or (i = j + 1, i > a + 1),
0, otherwise
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Then

(T ⊕ I)q =

(
T q

1 O
T q−1

2 A T q
2

)

Here T a+1
1 = O, T j

1 �= O (j < a +1) and T b
2 = O. Since T q−1

2 A = (bij), where

bij =

{
1, if i = q, j = a + 1
0, otherwise

for 1 ≤ q ≤ b, T b
2A = O. Therefore

(T ⊕I)a+1 = O, (T ⊕I)j �= O (j < a+1) · · · (4.1)

Let a + 1 < b + 1. Partition T ⊕ I into 2 × 2 block matrices of the form

T ⊕ I =

(
S1 B
O S2

)
= (aij)

, where S1 is a a × a matrix and

aij =

{
1, if (j = i + 1, j < a + 2) or (j = i − 1, j > a),
0, otherwise

Then

(T ⊕ I)q =

(
Sq

1 Sq−1
1 B

O Sq
2

)

Here Sa
1 = O and Sb+1

2 = O but Sj
2 �= O (j < b + 1). Since Sq−1

1 B = (cij) for

1 ≤ q ≤ a, where

cij =

{
1, if i = a + 1 − q, j = 1
0, otherwise
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and Sa
1B = O,

(T ⊕ I)b+1 = O, (T ⊕ I)j �= O (j < b + 1) · · · (4.2)

By (4.1) and (4.2), m(x) = (x + 1)p.

Remark From Theorem 4.1.4 and Lemma in ([40]), we obtain ord(T ) =

2r, where 2r−1 < p ≤ 2r.

Theorem 4.1.5 Let C be an n-cell LHGCA with rule vector RVi(i =

1, · · · , 5) in Theorem 4.1.4 and state-transition matrix T. Let C′ be the

complemented group CA derived from C with complement vectors Fi(i =

1, · · · , 5) which are in below and state transition operator T .

(1) RV1 : F1 =

{
(1, f2, · · · , fn)

t, if a ≥ b
(f1, · · · , fn−1, 1)

t, if a < b

(2) RV2 : F2 =

{
(1, f2, · · · , fn)

t, if a ≥ b + 1
(f1, · · · , fa, 1, fa+2, · · · , fn)

t, if a < b + 1

(3) RV3 : F3 =

{
(1, f2, · · · , fn)

t, if a ≥ b
(f1, · · · , fn−1, 1)

t, if a < b

(4) RV4 : F4 =

{
(f1, · · · , fa, 1, fa+2, · · · , fn)

t, if a + 1 ≥ b + 1
(f1, · · · , fa, 1, fa+2, · · · , fn)

t, if a + 1 < b + 1

(5) RV5 : F5 =

{
(f1, · · · , fa, 1, fa+2, · · · , fn)

t, if a + 1 ≥ b
(f1, · · · , fn−1, 1)

t, if a + 1 < b

where f1, · · · , fn ∈ {0, 1}.
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Let the minimal polynomial m(x) of T be (x + 1)p. If ord(T ) = 2r , then

the following hold:

(a) All the lengths of cycles in C′ are the same.

(b) ord(T ) =

{
2r, if 2r−1 < p < 2r,
2r+1, if p = 2r

Proof. We only prove for the case (2) with a ≥ b+1. Let X = (x1, · · · , xn)
t

be a state in C′. Then

T
2r+1

X = T 2r+1

X ⊕ (T 2r+1−1 ⊕ · · · ⊕ T ⊕ I)F

= X ⊕ {T 2r

(T 2r−1 ⊕ · · · ⊕ T ⊕ I) ⊕ (T 2r−1 ⊕ · · · ⊕ T ⊕ I)}F = X.

Therefore ord(T )(:= l) divides 2r+1. Since X = T
l
X = T lX ⊕ (T l−1 ⊕ · · · ⊕

T ⊕I)F for all X, T lX = X and (T l−1⊕· · ·⊕T ⊕I)F = 0. Therefore ord(T )

divides l. Thus l = 2r or 2r+1.

Case 1. Let p = 2r. Then (T ⊕ I)2r−1 = (aij), where

aij =

{
1, if i = a, j = 1
0, otherwise

Thus

T
2r

X = T 2r

X ⊕ (T ⊕ I)2r−1F = X ⊕ (0, · · · , 0, a

1, 0, · · · , 0)t �= X

for all X. Therefore ord(T ) = 2r+1 and thus all the lengths of cycles in C′

are the same.
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Case 2. Let 2r−1 < p < 2r. Then (T ⊕ I)2r−1 = O. Thus

T
2r

X = T 2r

X ⊕ (T ⊕ I)2r−1F = X

Therefore ord(T ) = 2r. To show that all the lengths of cycles in C′ are the

same, suppose that X = (x1, · · · , xn)
t is a state lying on a cycle in C′ whose

length is 2c (c < r). Then

T
2c

X = T
2c+1

X = · · · = T
2r−1

X = T
2r

X = X

and

(T ⊕ I)2r−1−1F = (0, · · · , 0, 2r−1

1 , · · ·)t

First, let X be a state lying on a cycle in C whose cycle length is less

than 2r. Then

T
2r−1

X = T 2r−1

X ⊕ (T 2r−1−1 ⊕ · · · ⊕ T ⊕ I)F

= X ⊕ (T ⊕ I)2r−1−1F �= X

This is a contradiction.

Second, let X be a state lying on a cycle in C whose cycle length is 2r.

Partition T into 2 × 2 block matrices of the form

T =

(
T1 O
O T2

)
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, where T1 and T2 are the state transition matrices of uniform group CA with

rule 60. Therefore by Lemmas 3.1.12 and 3.1.14

T
2r−1

X = T 2r−1

X ⊕ (T 2r−1−1 ⊕ · · · ⊕ T ⊕ I)F

= T 2r−1

X ⊕ (T ⊕ I)2r−1−1F

=

(
T1

2r−1
O

O T2
2r−1

)
X ⊕

(
(T1 ⊕ I)2r−1−1 O

O (T2 ⊕ I)2r−1−1

)
F

= (· · · , 2r−1

x2r−1, · · ·)t ⊕ (· · · , 2r−1

1 , · · ·)t �= X

This is a contradiction. Therefore all the lengths of cycles in C
′ are the same.

By the similar method we can prove for the case (2) with a < b + 1.

Let C be an n-cell LHGCA with rule vector RVi(i = 1, · · · , 5) in Theorem

4.1.4 and state-transition matrix T. Let C′ be the complemented CA derived

from C with complement vector Fi in Theorem 4.1.5 and state transition

operator T . Let m(x) = (x + 1)p, (p = 2r) and ord(T ) = 2r. Then there

exists F such that ord(T ) = 2r (not 2r+1). For example, let C be an n-cell

LHGCA with rule vector RV2(a ≥ b + 1), F = (0, f2, · · · , fn)
t and p = 2r.

Then all the lengths of cycles in C′ are the same and ord(T ) = 2r because

T
2r

X = X ⊕ O = X.
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The principal theorems in section 4.1 may be summarized as Table 5.
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4.2 Relationship between Cycles of the Complemented CA

In this section, we show the relationship between cycles of complemented

CA. Our results extend and generalize Mukhopadhyay’s results([13]).

Theorem 4.2.1 Let C be an n-cell LHGCA with rule vector RVi(i =

1, · · · , 5) in Theorem 4.1.4 and state-transition matrix T. Let C′ be the com-

plemented group CA derived from C with complement vector Fi which is in

Theorem 4.1.5 and state transition operator T . Then the following hold:

(1) X and X ⊕ TX ⊕ T
2
X lie on different cycles.

(2) X and X ⊕ TX ⊕ T
3
X lie on different cycles.

(3) X and X ⊕ T
2
X ⊕ T

3
X lie on different cycles.

Proof. We only prove for the case (1) and RV4(a + 1 ≥ b + 1).

Let T be the 2 × 2 block matrix of the form

T =

(
T1 O
Q T2

)

, where T1 is a (a+1)×(a+1) matrix. Then T1 is the state-transition matrix

of (a+1)-cell uniform CA with rule 102 and T2 is the state-transition matrix

of b-cell uniform CA with rule 60, and

Q =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 1

0 0 0 · · · 0 0 0

· · · · · · · · ·
0 0 0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

b×(a+1)
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Let B = X ⊕ TX ⊕ T
2
X and X = (x1, x2, · · · , xn)

t. Then

B = (I ⊕ T ⊕ T 2)X ⊕ TF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...
xa ⊕ xa+1

xa+1

xa+1 ⊕ xa+2

xa+1 ⊕ xa+2 ⊕ xa+3
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

a + 1

and

T
v
X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

vC0xa ⊕ vC1xa+1 ⊕ vC2

vC0xa+1 ⊕ vC1

vC1xa+1 ⊕ vC0xa+2 ⊕ vC2

vC2xa+1 ⊕ vC1xa+2 ⊕ vC0xa+3 ⊕ vC3
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

a + 1

for a positive integer v. Suppose that there exists an integer v such that

T
v
X = B.

Case 1. v is even:

Since B = (· · · , a+1

xa+1, · · ·)t and T
v
X = (· · · , a+1

xa+1, · · ·)t, T
v
X �= B.

Case 2. v is odd: (i) v = 4m + 1.

Since B = (· · · ,
a+2

xa+1 ⊕ xa+2, · · ·)t and T
v
X = (· · · , a+2

xa+1 ⊕ xa+2, · · ·)t, T
v
X �=

B.

(ii) v = 4m + 3.

Since

B = (· · · , a+3
xa+1 ⊕ xa+2 ⊕ xa+3, · · ·)t
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and

T
v
X = (· · · ,

a+3

xa+1 ⊕ xa+2 ⊕ xa+3, · · ·)t,

T
v
X �= B.

This is a contradiction. By the similar method we can prove for the case

(1) and RV4(a + 1 < b + 1). This completes the proof. Define the operators

Ri as follows:

(1)R1(X) = X ⊕ TX ⊕ T
2
X

(2)R2(X) = X ⊕ TX ⊕ T
3
X

(3)R3(X) = X ⊕ T
2
X ⊕ T

3
X

Since

T (X1 ⊕ X2 ⊕ · · · ⊕ X2n−1)

= T (X1 ⊕ X2 ⊕ · · · ⊕ X2n−1) ⊕ F

= (TX1 ⊕ F )⊕ (TX2 ⊕ F ) ⊕ · · · ⊕ (TX2n−1 ⊕ F )

= TX1 ⊕ TX2 ⊕ · · · ⊕ TX2n−1

, T acts as a linear operator on any sum of odd states. Also T
v
(X1 ⊕ X2 ⊕

· · · ⊕ X2n−1) = T
v
X1 ⊕ T

v
X2 ⊕ · · · ⊕ T

v
X2n−1, where v is a positive integer.

The following lammas can be easily proved.
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Lemma 4.2.2 Let C be an n-cell LHGCA with rule vector RVi(i =

1, · · · , 5) in Theorem 4.1.4 and state-transition matrix T. Let C′ be the com-

plemented group CA derived from C with complement vector Fi which is in

Theorem 4.1.5 and state transition operator T .

Then the following hold:

T
v
(RαRβ(T

u
(X))) = T

u
(RβRα(T

v
(X)))

Lemma 4.2.3 Let C be an n-cell LHGCA with rule vector RVi(i =

1, · · · , 5) in Theorem 4.1.4 and state-transition matrix T. Let C′ be the com-

plemented group CA derived from C with complement vector Fi which is in

Theorem 4.1.5 and state transition operator T . Then for each nonnegative

integer v,

T
α·2v

R2v

α (X) = {(T⊕I)3·2v

(T α⊕T ⊕I)2v⊕I}X⊕(T⊕I)3·2v−1(T α⊕T ⊕I)2v

F

, where 1 ≤ α ≤ 3.

The following theorem can be proved by Lemmas 4.2.2 and 4.2.3.

Theorem 4.2.4 Let C be an n-cell LHGCA with rule vector RVi(i =

1, · · · , 5) in Theorem 4.1.4 and state-transition matrix T. Let C′ be the com-

plemented group CA derived from C with complement vector Fi which is in

Theorem 4.1.5 and state transition operator T . Then the following hold:

(1) T
α·2v

R2v

α (X) = X

(2) T
(α+β)·2v

(RαRβ)2v
(X) = X for α �= β

61



(3) T
6·2v

(R1R2R3)
2v

(X) = X

for α, β = 1, 2, 3, where v is a nonnegative integer satisfying 3·2v−1 ≤ p < 3·2v

and p is in Theorem 4.1.4.
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Chapter 5

Phase Shifts of Sequences

Generated by

a 90/150 Maximum-Length CA

The linear CA with rules 60, 102 and 204 have nonmaximum-length

cycles([1]). So In this chpater, we restrict 90/150 maximum-length CA. CA

based pseudorandom generator has been studied in ([9],[49],[50],[51],[52]).

Especially, the phase shift analysis of CA([4], [17], [18]), based on 90/150

matrices whose characterisitc polynomials are primitive, has been investi-

gated by Bardell ([27]). He calculated the phase shifts between the output

sequences generated by different stages of a maximum-length 90/150 CA by

using discrete logarithms of a binary polynomial. Nandi and Chaudhuri ([32])

proposed a method for the study of phase shift analysis based on matrix al-

gebra. They showed that every cell position of a 90/150 maximum-length

CA(MLCA) generates the same pseudo-noise sequence corresponding to the

characteristic polynomial of the CA with a phase shift.

Recently, Sarkar([29]) gave an algorithm to compute phase shifts. This

was achieved by developing the proper algebraic framework for the study of

CA sequences. Applications of CA sequences are in built-in self-test(BIST)

structures and in the design of secure stream ciphers. In particular, the

latter case is based on the fact that it is possible to choose a subset of the

CA sequences such that the phase shift between any two seuqences of the
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subset is exponentially large in the length of the CA. This property helps us

to avoid certain kinds of weakness of stream ciphers [53].

In this chapter, we study the sequences obtained from a 90/150 MLCA

algebraically. And we apply these to phase shifting of sequences generated

by a 90/150 MLCA. From these applications we give an improved method

to compute phase shifts, which is different from those methods of Bardell’s

([27]), Nandi and Chaudhuri’s ([32]) , and Sarkar’s ([29]).
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5.1 Preliminaries

In this section, we investigate some properties of sequences generated by

a 90/150 MLCA.

For example, if T6 =< 1, 0, 0, 0, 0, 0 > is the state-transition matrix for

a given 6-cell 90/150 CA C, then the characteristic polynomial is f(x) =

x6 + x5 + x4 + x + 1 which is primitive. Hence C is a 90/150 MLCA.

Tezuka and Fushimi ([28]) asserted that for a given primitive polynomial

f(x), there exist exactly two 90/150 MLCA whose characteristic polynomials

are f(x). If Tn =< a1, a2, · · · , an > is a state-transition matrix corresponding

to f(x), then the other is T ′
n =< an, an−1, · · · , a1 > . For example, let f(x) =

x6 + x5 + x4 + x + 1. Then T6 =< 1, 0, 0, 0, 0, 0 > and T ′
6 =< 0, 0, 0, 0, 0, 1 >

are state transition matrices corresponding to f(x).

Lemma 5.1.1 ([48]) For any n-cell 90/150 CA whose state-transition

matrix is Tn, the minimal polynomial for Tn is the same as the characteristic

polynomial for Tn.

Theorem 5.1.2 Let Tn be the state-transition matrix for a given

n-cell 90/150 MLCA and let v0 be a nonzero vector of Fn
2 , where Fn

2 =

{(b1, b2, · · · , bn)
T | bi ∈ GF (2), 1 ≤ i ≤ n}. For t ≥ 1, define vt = Tnvt−1.

Then the sequence V : v0, v1, v2, · · · has the maximal period 2n − 1.

Proof. Let f(x) be the characteristic polynomial for Tn. For a given

nonzero vector v ∈ Fn
2 , let fv(x) be the minimal polynomial for v. By Lemma
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5.1 fv(x) = f(x) for all nonzero vectors v ∈ Fn
2 . If r is the period of V, then

T r
nv0 = v0. Therefore fv0(x) divides xr − 1. Since fv0(x) = f(x) and f(x) is

primitive, r = 2n − 1.

Definition 5.1.3 ([54], [55]) Let f(x) = c0 + c1x+ · · ·+ cn−1x
n−1 +xn

be an n-degree primitive polynomial, where c0, c1, · · · , cn−1 ∈ GF (2). Then

f(x) generates a periodic sequence whose period is 2n − 1. This sequence is

called a pseudo-noise(PN) sequence.

Theorem 5.1.2 says that if Tn is the state-transition matrix for a given

n-cell 90/150 MLCA and if vt = (v0
t , v

1
t , · · · , vn−1

t )t ∈ Fn
2 , then {vi

t}(0 ≤ i ≤
n − 1) is a PN sequence.

Theorem 5.1.4 ([30]) Let f(x) be an n-degree primitive polynomial.

Also let {st} ∈ Ω(f(x)) and s(x) = s0+s1x+· · ·+sr−1x
r−1, where r = 2n−1.

If {ut} is the cyclic sequence such that u(x) = s∗(x), then {ut} ∈ Ω(f∗(x)).

Example 5.1.5 Let f(x) = x4 +x+1. Then st+4 = st + st+1. Therefore

we obtain a sequence {st} = 000100110101111000100110101111 · · · . Since

f∗(x) = x4 + x3 + 1, ut+4 = ut + ut+3. Hence we obtain a sequence {ut} =

011110101100100011110101100100 · · · .
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Let T be the following 90/150 tridiagonal matrix.

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

d1 1 0 0 · · · 0 0 0
1 d2 1 0 · · · 0 0 0
0 1 d3 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 dn−1 1
0 0 0 0 · · · 0 1 dn

⎞
⎟⎟⎟⎟⎟⎟⎠

(Hereafter we write T by T =< d1, d2, · · · , dn >, where di ∈ {0, 1}.)

Theorem 5.1.6 Let Tn be the state-transition matrix of an n-cell 90/150

MLCA. Then there exists p(1 ≤ p ≤ 2n − 2) such that In ⊕ Tn = T p
n .

Proof. Let f(x) be the characteristic polynomial for Tn and let f(α) = 0.

Since f(x) is primitive, {0, 1, α, · · · , α2n−2} is the finite field generated by α.

Thus there exists p(1 ≤ p ≤ 2n − 2) such that 1 + α = αp. Since α is an

eigenvector of Tn, In ⊕ Tn = T p
n .

Corollary 5.1.7 Let Tn be the state-transition matrix of an n-cell 90/150

MLCA. Then there exists k(1 ≤ k ≤ 2n − 2) such that T k
n ⊕ T k+1

n = In.

Proof. By Theorem 5.1.6 there exists p(1 ≤ p ≤ 2n − 2) such that

In⊕Tn = T p
n . Thus T 2n−1−p

n (In⊕Tn) = T 2n−1
n = In. Let k = 2n −1−p. Then

T k
n (In ⊕ Tn) = T k

n ⊕ T k+1
n = In.
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Example 5.1.8 We consider a 6-cell 90/150 CA whose state-transition

matrix T6 is as the following :

T6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

The characteristic polynomial of T6 is f(x) = x6 + x5 +x4 + x +1, which

is primitive. We obtain T 24
6 ⊕ T 25

6 = I6.

The neighborhood dependence of rule 90 and rule 150 differ in only one

position(self). Therefore, by allowing a single control line per cell, one can

apply both rule 90 and rule 150 on the same cell at different time steps.

Thereby, an n-cell CA structure can be used for implementing 2n CA con-

figurations. Realizing different CA configurations(cell updating rules) on the

same structure can be achieved using a control logic to control the appropriate

switches and a control program, stored in ROM, can be employed to acti-

vate the control. The 1(0) state of the ith bit of a ROM word closes(opens)

the switch that controls the ith cell. Such a structure is referred as to as a

programmable cellular automata([26]).
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5.2 Analysis of Sequences generated by 90/150 MLCA

In this section, we study the sequences generated by a particular cell of a

maximum-length 90/150 CA. Hereafter we will simply write Tn by T. Each

cell position generates PN sequences ([32]). Unlike LFSRs, the phase shift is

generally different between stages of a CA.

Theorem 5.2.1 Let T be the state-transition matrix for a given n-cell

90/150 MLCA. Then the ith row of T h and T m are always different, where

0 ≤ i ≤ n − 1, 1 ≤ h < m ≤ 2n − 2.

Proof. We may assume that w0 = (0, 0, · · · , 0, i

1, 0, · · · , 0) is the initial

configuration of T . Define wr = wr−1T , for r ≥ 1. Suppose that the ith

row of T h and T m are equal, where 0 ≤ i ≤ n − 1, 1 ≤ h < m ≤ 2n − 2.

Then wh = w0T
h = w0T

m = wm. Since w0, w1, · · · , w2n−2 are all different,

wh �= wm. Hence the ith row of T h and T m are always different.

The following theorem shows that the phase shift is different between

stages of a 90/150 MLCA.

Theorem 5.2.2 Let T be the state-transition matrix for a given n-cell

90/150 MLCA and let w0 �= (0, 0, · · · , 0) be the initial configuration of T .

Then for any 1 ≤ i < j ≤ n− 1, there exists an integer h such that qt+h
j = qt

i

for all t ≥ 0, where qt
i denotes the state of the ith cell at time t.

69



Proof. Let f(x) be the n-degree primitive characteristic polynomial of T .

Then the {qt
i} and {qt

j} are nth order homogeneous linear recurring sequences.

Also the periods of {qt
i} and {qt

j} are 2n − 1. Let wi = (qi
0, · · · , qi

n−1), 0 ≤ i ≤
2n−2. Then all w′

is are all nonzero and different by Theorem 4.1. Since each

cell position generates PN sequences, there exists an h such that qt+h
j = qt

i

for all t ≥ 0.

Let T be the state-transition matrix for a given n-cell maximum-length

90/150 CA and let w0 = (1, 0, · · · , 0) be the initial configuration of T . Then

we obtain (2n − 1) × n matrix A consisting of n independent PN sequences

generated by T as its columns. Let Bi be the (2n − 1) × (n − 1) matrix

obtained by deleting the ith column of A. Then the all-zeros (n−1)-tuple in

Bi appears only once and every other nonzero (n − 1)-tuple appears twice.

In this case, the first row vector in B0 is (0, 0, · · · , 0).
For example, let T =< 0, 1, 1 >. Then A and Bi(i = 0, 1, 2) are given in

Table 6.

Now we define the position of the all-zeros row vector in Bi as the row

phase shift of B0 with respect to Bi. In Table 6 the row phase shift of B0

with respect to B1 (resp. B2) is 1 (resp. 5). That is, the row phase shifts

of B1 and B2 with respect to B0 are −1 ≡ 6 (mod 7) and −5 ≡ 2 (mod 7),

respectively.
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Table 6. Matrices A and Bi for T =< 0, 1, 1 >

A B0 B1 B2

0 100 00 10 10
1 010 10 00 01
2 111 11 11 11
3 110 10 10 11
4 101 01 11 10
5 001 01 01 00
6 011 11 01 01

Theorem 5.2.3 Let T be the state-transition matrix of an n-cell 90/150

MLCA. Then there exists an integer ri(0 ≤ i ≤ n − 1) such that

T riwt
0 ⊕ T ri+1wt

0 = (0, 0, · · · , 0, i

1, 0, · · · , 0)t

Proof. We can find qi such that T qiwt
0 = (0, 0, · · · , 0, i

1, 0, · · · , 0)t. By

Theorem 5.1.6 there exists p such that (In⊕T ) = T p. Let ri ≡ qi−p (mod 2n−
1). This completes the proof.

We can find the position of the all-zeros (n−1)-tuple in Bi by the following

corollary.

Corollary 5.2.4 Let T be the state-transition matrix of an n-cell 90/150

MLCA. Let ri be an integer in Theorem 5.2.3. Then in Bi all-zeros tuple is

the (ri + p)th vector, where p is the integer in Theorem 5.1.6.
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The following theorem gives a method to compute phase shifts.

Theorem 5.2.5 Let T be the state-transition matrix of an n-cell 90/150

MLCA C. Let ui be the phase shift(with respect to the 0th cell) of the ith

cell in C, 0 ≤ i ≤ n − 1. Then ui ≡ −(ri + p) (mod 2n − 1), where ri and p

are in Theorem 5.2.3 and Theorem 5.1.6, respectively.

Proof. Let A be the (2n − 1) × n matrix consisting of n independent PN

sequences generated by T as its columns and let (1, 0, · · · , 0) be the initial

configuration of T . For each i(0 ≤ i ≤ n− 1) let Bi be the (2n − 1)× (n− 1)

matrix obtained by deleting the ith column of A. Let ki be the row phase

shift of B0 with respect to Bi. Then k0 = 0 and −ki (mod 2n − 1) is the row

phase shift of Bi with respect to B0. Since T is symmetric, the phase shift

of the ith cell with respect to the 0th cell is equal to the row phase shift of

Bi with respect to B0. By Corollary 5.2.4, T ri+p(1, 0, · · · , 0)t = (0, 0, · · · , 0, i

1

, 0, · · · , 0)t and hence ki = ri + p. Since C is a maximum-length CA, T

is invertible. Therefore T−(ri+p)(0, 0, · · · , 0, i

1, 0, · · · , 0)t = (1, 0, · · · , 0)t and

hence ui ≡ −(ri + p) (mod 2n − 1).

Example 5.2.6 Let T =< 1, 0, 0, 0, 0, 0 >. Then the characteristic poly-

nomial of T is x6+x5+x4+x+1 and I6⊕T = T 39. Since T 0(1, 0, 0, 0, 0, 0)t =

(1, 0, 0, 0, 0, 0)t, q0 = 0. Thus r0 = q0 − p = −39 ≡ 24 (mod 63). In fact,

T 24(1, 0, 0, 0, 0, 0)t ⊕T 25(1, 0, 0, 0, 0, 0)t = (1, 0, 0, 0, 0, 0)t. Since T 39(1, 0, 0, 0,

0, 0)t = (1, 0, 0, 0, 0, 0)t , r1 = q1 − p ≡ 0 (mod 63). Similarly r2 = 59, r3 =
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8, r4 = 57 and r5 = 56. Since ui ≡ −(ri + p) (mod 63) by Theorem 5.2.5, the

phase shifts are u0 = 0, u1 = 24, u2 = 28, u3 = 16, u4 = 30 and u5 = 31.

Let T be the state-transition matrix for a given n-cell maximum-length

90/150 CA and let w0 = (1, 0, · · · , 0) be the initial configuration of T . Then

we obtain a (2n − 1)×n matrix A consisting of n independent PN sequences

generated by T as its columns. The sum of some columns of A is also another

PN sequence([59]). The number of PN sequences generated by n columns is

equal to nC1 +nC2 + · · ·+nCn = 2n−1. Thus we can get a (2n−1)× (2n −1)

matrix whose columns consist of all PN sequences generated by A. Such a

matrix is referred to as matrix M .

For example, let T =< 0, 1, 0, 1 >. Then A and M are given in Table 7.

For two configurations v and w of T , we define the row phase shift h of

v with respect to w such that T hv = w. In Table 7 the row phase shift of v

with respect to w is 12, where w = (1, 1, 0, 0) and v = (0, 0, 1, 1).

The relative phase shift of one column of M with respect to the other is

specified in the following theorems. The PN sequence generated by some cell

positions of the CA C is
∑n−1

i=0 aiqi where ai is the dependency of qi.

For example, let a0 = a1 = 1, a2 = 0 and a3 = 1, then
∑3

i=0 aiqi =

q0 ⊕ q1 ⊕ q3. Therefore q0 ⊕ q1 ⊕ q3 = {qt
0 ⊕ qt

1 ⊕ qt
3} = 1100101 · · · is the 11th

column of M .
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Table 7. Matrices A and M for T =< 0, 1, 0, 1 >

A M
0 1000 100011100011101
1 0100 010010011011011
2 1110 111000101110001
3 1111 111100000011110
4 1100 110001111000110
5 1010 101010110101010
6 0001 000100101101111
7 0011 001101111011000
8 0110 011011001101100
9 1011 101110011000101
10 0010 001001010110111
11 0101 010110110110100
12 1101 110101010101001
13 1001 100111001110010
14 0111 011111100000011
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Theorem 5.2.7 Let T be the state-transition matrix of an n-cell 90/150

MLCA and let w =
∑n−1

i=0 aiwi and v =
∑n−1

j=0 bjwj, where wt
i is the transpose

of wi = (0, 0, · · · , 0, i

1, 0, · · · , 0) (0 ≤ i ≤ n− 1). Then there exists an integer

r such that

T rwt ⊕ T r+1wt = vt

Proof. We can find β such that T βwt = vt. By Theorem 5.1.6, there

exists p such that (In⊕T ) = T p. Let r ≡ β−p (mod 2n−1). This completes

the proof.

Theorem 5.2.7 says that −β is the row phase shift of v with respect to w

of A.

The following theorem gives a method to compute phase shifts.

Theorem 5.2.8 Let T be the state-transition matrix of an n-cell 90/150

MLCA C. Let s and u be given two columns of M , where s =
∑n−1

i=0 aiqi

and u =
∑n−1

j=0 bjqj. If h is the phase shift of u with respect to s, then

h ≡ −(r+p) (mod 2n−1), where r and p are in Theorem 5.2.7 and Theorem

5.1.6, respectively.

Proof. Let A be the (2n − 1)×n matrix consisting of n independent PN

sequences generated by T as its columns and let (1, 0, · · · , 0) be the initial

configuration of T . Let w =
∑n−1

i=0 aiwi and v =
∑n−1

j=0 bjwj. Since T is
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symmetric, the phase shift of u with respect to s is equal to the row phase

shift of v with respect to w. Therefore h ≡ −(r + p) (mod 2n − 1).

Example 5.2.9 Let C be the given CA with T =< 0, 1, 0, 1 > and

(1, 0, 0, 0) the initial configuration of T . Then we obtain matrices A and

M as Table 7. Since the characteristic polynomial of T is x4 + x + 1, p =

4 in Theorem 5.1.6. Let s = (1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)t and u =

(0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0)t in M . If we put w = (1, 1, 0, 0) and v =

(0, 0, 1, 1), then by Theorem 5.1.7 r = 14. Hence h ≡ −(14+4) ≡ 12(mod 15).

The phase shift of u (which is the sum of the 2nd cell position and the 3rd

cell position of C) with respect to s (which is the sum of the 0th cell and the

1st cell position of C) is 12.
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5.3 Algorithm to compute phase shifts

Now we give an algorithm to find the phase shifts in a given n-cell 90/150

MLCA. According to previous results, the following algorithm is introduced

in Table 8.

The correctness of this algorithm follows from Theorem 5.2.5. There

does not need the Shank’s algorithm for the completion of this algorithm

any more. The algorithm that we propose does not need any previous phase

shifts. Whereas, it is required to compute all previous in Sarkar’s method

([5]) which adopted the Shank’s algorithm in order to get the phase shifts of

the ith column with respect to the 0th cell. So, we can see that this is very

practically useful for sufficiently large n.
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Table 8. Algorithm FindPhaseShifts

Algorithm FindPhaseShifts

Input : The state transition n × n matrix T ,
initial vector w = (1, 0, · · · , 0).

Output : phaseshift[n].

Step 1 : mark1×n by 0; mark[0]=1;

power=1; phaseshift[0]=0.

Step 2 : While (all mark �= 1) do step 3 to step 5.

Step 3 : wt = Twt. /* Run the CA */

Step 4 : If ( w contains single 1)

then mark[position of 1]=1;

phaseshift[position of 1] ≡ −power (mod 2n − 1).

Step 5 : power=power+1.
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Table 9. Phase shifts with respect to 0th cell

Degree CA rule Phase shifts
4 0101 0, 14, 5, 9
8 01001011 0, 254, 147, 56, 131, 66, 126, 68
16 0001111001001000 0, 65534, 8108, 65532, 3385, 64168,

61463, 41934, 2370,54822, 47229,
1810, 63957, 6533, 63959, 63960

32 0000110001000111 0, 4294967294, 3963262907,
4294967292, 2182065471, 3478064023,

0000110000000110 2842396500, 3797410740, 2636154424,
1477132997, 2453647807, 3833928247,
4122644326, 2445882768, 3715941894,
3131603603, 3781145264, 724531189,
1964528637, 1178642835,1437488410,
2132417369, 2228497937, 2438002527,
3823282243,3142683718, 4037203264,
3657430022, 496625232, 3264387886,
25871502, 25871503

Phase shifts with respect to the 0th cell of the given CA up to degree 32

are in Table 9. And let s be the sequence combined the 0th column with

the 1st column and u the sequence combined the (n − 2)th column with the

(n − 1)th column of the matrix A obtained by the given CA rule and the

initial vector (1, 0, · · · , 0). Phase shifts of the sequence u with respect to the

sequence s are given in Table 10. Phase shifts in the table are obtained by

the above algorithm.
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Table 10. Phase shifts of the sequence u with respect to the
sequence s

Degree CA rule Phase shift
3 110 4
4 0101 12
5 01111 8
6 000110 23
7 1011001 75
8 01001011 9
9 010011100 44
10 1111000011 994
11 01000011010 1426
12 100101010011 3882
13 0111001110110 7649
14 01000111001111 14568
15 100000011000001 9538
16 0001111001001000 63960
17 10011000110011001 77544
18 110001000000010011 241877
19 1101011101101001011 282318
20 01101011100001010110 314775
21 010010011001010010010 1676666
22 0100011010101101100010 1345981
23 01011010101100101011010 6095661
24 110100111100100111001011 199263
25 1010000011111011100000101 17370017
26 11001101111101111010110011 66236246
27 000110100110001011101011000 132625967
28 0101101110000001100111011010 195968798
29 01001000100101111100100010010 205911726
30 101000100111001101101010000101 404894385
31 1111101101100001100011011011111 2015461719
32 00001100010001110000110000000110 25871503
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Chapter 6

Modelling Linear CA with the minimum stage

corresponding to CCSG based on LFSR

CA have the characters of simplicity of basic components, locality of CA

interactions, massive parallelism of information processing, and exhibit com-

plex global properties. These ensure that CA have higher speed and more po-

tential applications than LFSR. The locality of signal path of CA contributes

more higher speed than LFSR. So in the form of VLSI implementation, CA

have more speed advantages than LFSR ([2]).

Pseudorandom sequences were produced by generators which accompany

several LFSRs joined by nonlinear functions or irregular clocking techniques.

The theory for CA based pseudorandom number generator is well developed

([1]) and n-stage linear CA can be designed to generate sequences with de-

sirable properties: maximum period 2n − 1, uniform distribution of n-tuples

and balanced distribution of 1 and 0 ([56],[57]).

Pseudorandom sequence generators intend to be used in a stream cipher.

Especially, the Shrinking Generator(SG) proposed by Coppersmith et al.

([58]) is a popular form of pseudorandom sequence generators that employ

the irregular clocking. It has one or more LFSRs whose clocking is controlled

by the output sequence of one. Such a sequence is called a clock-controlled

sequence ([59]). The SG generally uses two sources of pseudorandom se-

quences to create the third source of pseudorandom sequence, having better
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cryptographic quality(long period, high linear complexity, good statistical

properties, etc.) than the original sources.

Clock-controlled LFSRs have become important building blocks for keystream

generators in stream cipher applications, because they are known to produce

sequences of long period and high linear complexity ([33], [34]).

In ([35]), they showed that CCSGs can be described in terms of linear

CA configurations by using mirror image and the Cattell and Muzio synthesis

algorithm ([36]). Since the CA obtained by the Sabater et al.’s method has

the maximum stage, the method has a waste of space. Also the sequence

obtained by CA is not secure because the rule of this CA is symmetrical.

In this chapter, we propose a new method of modelling linear CA with

the minimum stage corresponding to CCSGs based on LFSR using the Cho

et al.’s synthesis algorithm to overcome these weak points ([38]).
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6.1 Preliminaries

6.1.1 Synthesis of CA

A polynomial is said to be a CA-polynomial if it is the characteristic poly-

nomial of some CA [36]. All irreducible polynomials are CA-polynomials([36],

[38]).

In ([36]), authors proposed a method for the synthesis of one-dimensional

90/150 Linear Hybrid Group Cellular Automata(LHGCA) for irreducible

CA-polynomial.

In ([38]), Cho et al. proposed a new method for the synthesis of one-

dimensional 90/150 LHGCA for any CA-polynomial. In this case CA-polynomial

need not irreducible. This algorithm is efficient and suitable for all practical

applications. Table 11 shows an algorithm for finding the 90/150 CA for the

given CA-polynomial. In this paper we propose a new method of modelling

linear CA with the minimum stage corresponding to CCSGs based on LFSR

using this algorithm.

6.1.2 Clock-Controlled Shrinking Generator

Two LFSRs are used, both clocked regularly. If the output of the first

LFSR is 1, the output of the second LFSR becomes the output of the gen-

erator. If the output of the first LFSR is 0, however, the output of the

second is discarded. Figure 12 shows the structure of a SG. This mechanism

suffers from timing attacks on the second generator, since the speed of the

output is variable in a manner that depends on the second generator’s state.
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Table 11. Cho et al.’s Synthesis Algorithm

Algorithm Cho et al.’s Synthesis Algorithm

Input : CA-polynomial f(x)
Output : 90/150 group/nongroup CA
Step 1 : Make the matrix B which is the n × n matrix

obtained by reducing the n polynomials
xi−1 + x2i−1 + x2i (mod f(x)) (i = 1, 2, · · · , n).

Step 2 : Solve the equation Bv = (0, · · · , 0, 1)T .
Step 3 : Construct a Krylov matrix H = K(CT , v) by the seed vector v

which is a solution of the equation in Step 2.
Step 4 : Compute the LU factorization H = LU .
Step 5 : Compute CA for f(x) by the matrix U .

This can be alleviated by buffering the output. CCSGs are a class of clock-

controlled sequence generators [61]. They have applications to cryptography,

error correcting codes and digital signature. A CCSG consists of two LFSRs

A(control register) and B(generating register). The A is clocked normally,

but the B is clocked by one plus the integer value represented in selected

w fixed stages of the A. The output bits of the system are produced by

shrinking the output of B under the control of A as the following. At any

time t the output of B is taken if the current output of A is 1, otherwise it

is discarded. Suppose as the following Table 12.

Figure 12: The structure of a SG
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Table 12. LFSRs A and B

LFSR stage characteristic polynomial initial state
A m R(x) A0

B n S(x) B0

F is a function that acts on the state of A at a given time t to determine

the number of times which B is clocked such that

F (At) = 1 + 20Ai0(t) + 21Ai1(t) + · · · + 2w−1Aiw−1(t)

for w < m, and distinct integers i0, i1, · · · , iw−1 ∈ {0, 1, · · · , m − 1}, At is

the state at the time instant t. If no stages are selected (i.e. w = 0), define

F (At) = 1.

In this way, the output sequence of a CCSG is obtained from a double

decimation. First, the sequence {bi} of B is decimated by F (At) giving rise

to the sequence {b′i}. Next, if the output of A is 1, b′i becomes the output of

the generator, otherwise b′i is discarded.

Example 6.1.1 Let A be the 4-stage LFSR with the characteristic

polynomial R(x) = x4 + x + 1 and the initial state (0, 0, 0, 1). The sequence

{ai} generated by A is

{ai} = {0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, · · ·}
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with period 24 − 1 = 15. And let B be the 5-stage LFSR with the charac-

teristic polynomial S(x) = x5 +x2 +1 and the initial state (0, 0, 0, 0, 1). The

sequence {bi} generated by B is

{bi} = {0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1,

0, 0, 0, 0, 1, · · ·}

with period 25 − 1 = 31. If w = 1, then

F (At) = 1 + 20Ai0(t)

Thus {Xti} is produced by F (At) as the following:

{Xti} = {1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, · · ·}

In [25], they defined the cumulative function GA of A to be

GA(Xti) = 2m−1(2w + 1) − 1

Then GA(Xti) = 24−1(21 + 1) − 1 = 23. That is, 1 + 1 + 1 + 2 + 1 + 1 + 2 +

2 + 1 + 2 + 1 + 2 + 2 + 2 + 2 = 23. In brief, after clocking A 24 − 1(= 15)

times, B is clocked 23 times.

According to the following,

{
b′0 := b0

b′i+1 := bj, j =
∑i

k=0 Xti

the underlined bits 0 or 1 of {bi} are outputted in order to produce the

sequence {b′i}.
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{bi} 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, · · ·
{Xti} 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, · · ·
{b′i} 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, · · ·

Then the output sequence {zi} of the CCSG is given by shrinking {b′i}
with {ai}

{ai} 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, · · ·
{b′i} 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, · · ·
{zi} 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, · · ·

The underlined bits 0 or 1 of b′i are outputted.
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6.2 90/150 CA-based CCSG

In this section, we analyze the period of sequences generated by CCSG

based on LFSR.

Definition 6.2.1 Let {a′
i} be the sequence obtained by concatenations

of {Ci}’s.

C0 := 1

Ci :=

{ 1, Xti = 1,

(

k︷ ︸︸ ︷
0, · · · , 0, 1), Xti = k, (k ≥ 2).

Example 6.2.2 {b′i} in Example 6.1.1 can be obtained by shrinking {bi}
with {a′

i}. That is, {Xti} in Example 6.1.1 can be represented by {a′
i}.

{a′
i} = {1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, · · ·}

If a′
i is 1, bi becomes the output of the generator, otherwise the output of bi

is discarded. This is just b′i. The decimated sequence {b′i} is given by

{a′
i} 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, · · ·

{bi} 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, · · ·
{b′i} 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, · · ·

Theorem 6.2.3 Let A (resp. B) be an m (resp. n)-stage LFSR whose

characteristic polynomial is primitive. And let {a′
i} be the sequence obtained

by concatenations of {Ci}’s in Definition 4.1. The period of {a′
i} is 2m−1(2w+

1) − 1 for a given w.

88



Proof. Because GA(Xti) = 2m−1(2w + 1) − 1 for a given w, the period of

{a′
i} is 2m−1(2w + 1) − 1 by Definition 4.1.

Theorem 6.2.4 Let A (resp. B) be an m (resp. n)-stage LFSR whose

characteristic polynomial is primitive. And let {b′i} be a sequence given by

shrinking {bi} with {a′
i}. The period of {b′i} is

(2m − 1)lcm(GA(Xti), 2
n − 1)

GA(Xti)

Proof. The period of the output sequence {bi} of B is 2n−1. {a′
i} repeats

GA(Xti) period sequences
lcm(GA(Xti),2

n−1)

GA(Xti)
times and (2m − 1) 1’s occurs in a

full period of {a′
i}. Thus the period of {b′i} is

(2m − 1)lcm(GA(Xti), 2
n − 1)

GA(Xti)

Theorem 6.2.5 Let A (resp. B) be an m (resp. n)-stage LFSR whose

characteristic polynomial is primitive. And let {zi} be a sequence given by

shrinking {b′i} with {ai}. The period of {zi} is

2m−1lcm(GA(Xti), 2
n − 1)

GA(Xti)

Proof. The period of the output sequence {b′i} is (2m−1)
lcm(GA(Xti),2

n−1)

GA(Xti)
(:=

h). {ai} repeats
lcm(GA(Xti),2

n−1)

GA(Xti)
period sequences lcm(2m−1,h)

2m−1
times and (2m−1)

1’s occurs in a full period of {ai}. Thus the period of {zi} is
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2m−1 lcm(2m − 1,
lcm(GA(Xti),2

n−1)

GA(Xti)
)

2m − 1

= 2m−1lcm(GA(Xti), 2
n − 1)/GA(Xti)

Remark If 2n − 1 and GA(Xti) are relatively prime, lcm(GA(Xti), 2
n −

1)/GA(Xti) = 2n−1. Therefore in this case, the period of the output sequence

by CCSG is 2m−1(2n −1). Thus the characteristic polynomial of such output

sequence is of the form F (x) = (n stage primitive polynomial)N , 2m−2 <

N ≤ 2m−1.

In [35], they proposed the algorithm that converts a given CCSG into

a CA-based linear model using mirror image and the Cattell and Muzio

synthesis algorithm. Therefore N = 2m−1 is the maximum stage. Also this

CA-based linear model is symmetrical and has a waste of space.
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6.3 Modelling Linear CA with the minimum stage

In this section, we propose a method that converts a given CCSG into a

CA-based linear model by using Cho et al.’s Synthesis Algorithm [38].

According to the previous results, the following algorithm that converts

a given CCSG into a CA-based linear model is introduced in Table 13.

The following example shows modelling of linear CA with the minimum

stage corresponding to CCSG based on LFSR using this algorithm.

Example 6.3.1 Let A be the 4-stage LFSR with a primitive poly-

nomial of degree 4, and B be the 5-stage LFSR with a primitive poly-

nomial of degree 5. Let w = 1. Then CCSG with A and B has the

characteristic polynomial F (x) = (5 − stage primitive polynomial)(24−2−1) =

(x5+x2+1)3. By the proposed algorithm, we can compute a CA with T15 =<

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1 >. If the algorithm in [35] is used, they must

compute a CA with T20 =< 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 >

corresponding to F (x) = (x5 + x2 + 1)4.
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Table 13. Algorithm for modelling 90/150 CA

Algorithm ModellingOf90/150CA

Input : A CCSG characterized by:
The stages m of LFSR(A) and n of LFSR(B), w

(2n − 1 and GA(Xti) = 2m−1(2w + 1) − 1 are relatively prime.)

Output : Linear CA with the minimum stage corresponding
to CCSG based on LFSR

Step 1 : Compute the characteristic polynomial F (x) for the given CCSG,

where F (x) = (n stage primitive polynomial)N , N = 2m−2 + 1.

Step 2 : Compute CA by Algorithm “Cho et al.’s Synthesis Algorithm”.
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Chapter 7

Analysis of the structure

and the characteristic polynomial

of GF (2p) group CA

CA has been used as modeling and computing paradigm for a long time.

And CA has been used to model many physical systems. While studying

the models of such systems, it is seen that as the complexity of the physical

system increase, the CA based model becomes very complex and difficult to

track analytically. Also such models fail to recognize the presence of inherent

hierarchical nature of a physical system.

To overcome these problems Sikdar et al. [37] and Cho et al. [39] studied

GF (2p) CA.

In this chapter, by using the results in ([36], [38], [40], ) we analyze

the transition rule, the characteristic polynomial and the cycle structure of

GF (2p) CA.
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7.1 GF (2p) CA preliminaries

A GF (2p) CA can be viewed as an extension of GF (2) CA. It consists

of an array of cells, spartially interconnected in a regular manner, each cell

being capable of storing an element of GF (2p).

Under three neighborhood restriction, the next state of the ith cell is

given by a function of the weighted combination of the present states of the

(i−1)th, ith and (i+1)th cells, the weights being elements of GF (2p). Thus

if qi(t) is the state of the ith cell at the tth instant, then

qi(t + 1) = φ(wi−1qi−1(t), wiqi(t), wi+1qi+1(t))

where φ denotes the local transition function of the ith cell and wi−1, wi and

wi+1 ∈ GF (2p) specify the weights of interconnections as in Figure 13.

The transition rule for a three neighborhood GF (2p) CA cell is repre-

sented by a vector of length 3, < wi−1, wi, wi+1 >. Here wi−1 indicates the

weight of dependence of the cell on its left neighborhood, while wi and wi+1

indicate the weighted dependency on itself and its right neighborhood re-

spectively. If the same transition rule vector is applied to all the cells of a

GF (2p) CA, the CA is called an uniform GF (2p) CA, otherwise it is called

a hybrid GF (2p) CA.

An n cell GF (2p) CA can be characterized by an n × n state transition

matrix T = (tij) as follows:

tij =

{
wij, if the next state of the ith cell depends on the present

state of the jth cell by a weight wij ∈ GF (2p),
0, otherwise.
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For example, let the state transition matrix of a 3-cell GF (22) CA be the

following:

T =

⎛
⎝ 0 α2 0

α2 α α2

0 α2 1

⎞
⎠

where α is a generator of GF (22) = {0, 1, α, α2}. α is a solution of the

generator polynomial g(x) = x2 + x + 1 and the generating matrix M is as

the following form:

M =

(
1 1
1 0

)

Figure 13: A GF (2p) CA Structure

The next state X ′ of the present state X of an n-cell GF (2p) CA with

state transition matrix T is given by X ′ = TX. Here T is an n × n matrix

and X and X ′ are n × 1 vectors.

For the vectors X and X ′ we need a vector representation of each αi.

Each of the vectors X and X ′ consists of a string of elements αi ∈ GF (2p).
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Table 14. Multiplication and addition over GF (22)

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Therefore we need a binary representation of each of these αi. The last

column vector of M i is used as the vector representation of αi.

The addition and multiplication operations follow the additive and mul-

tiplicative rules of the underlying GF (22) as noted in Table 14.

In the above example M i (i = 2, 3) and αi (i = 1, 2, 3) are as the following

form:

M2 =

(
0 1
1 1

)
, M3 =

(
1 0
0 1

)

α =< 10 >= 2, α2 =< 11 >= 3, α3 =< 01 >= 1

The characteristic polynomial Δ(x) of the state transition matrix T of

a GF (2p) CA is Δ(x) = |T + xI |. In the above example the characteristic

polynomial of T is Δ(x) = x3 + 2x2 + 3x + 3. This polynomial is a primitive

polynomial on GF (22) and thus its period is 63.

Let C be a GF (2p) CA whose state transition matrix is T . If det(T ) �= 0,

then C is called a group GF (2p) CA, otherwise it is called a nongroup

GF (2p) CA.
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7.2 The cycle structure of GF (2p) CA

In this section we analyze the cycle structure of GF (2p) CA.

Let TR,n denote the matrix of a GF (2p) CA with n cells and with uniform

rule R. The rule vector R is of the form < αl, αs, αr > where αl, αs, αr ∈
GF (2p). The state transition matrix of such null boundary GF (2p) CA is as

the following form:

TR,n =

⎛
⎜⎜⎜⎜⎝

αs αr 0 0 0 · · · 0 0
αl αs αr 0 0 · · · 0 0
0 αl αs αr 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · αl αs

⎞
⎟⎟⎟⎟⎠

Theorem 7.2.1 Let C be an n-cell uniform GF (2p) CA with transition

rule < αl, αs, αr >, where αs �= 0 and αlαr = 0. Then C is a group CA.

Proof. For the case αl = αr = 0, the state transition matrix T of C

becomes a diagonal matrix. Since αs �= 0, det(T ) = αn
s �= 0. Therefore

C is a group GF (2p) CA. For the case αl = 0 (resp. αr = 0), the state

transition matrix T of C becomes an upper diagonal(resp. lower diagonal)

matrix. Since αs �= 0, det(T ) = αn
s �= 0. Therefore C is a group GF (2p) CA.

Theorem 7.2.2 Let C be an n-cell uniform GF (2p) CA with transition

rule < αl, αs, αr >, where αl �= 0, αs �= 0, αr �= 0, α2
s = αlαr and n(mod 3) �=

2 (resp. n(mod 3) = 2). Then C is a group(resp. nongroup) GF (2p) CA.

Proof. Let TR,n be the state transition matrix of C. Then the determinant

|TR,n| of TR,n satisfies the following:
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|TR,n| = αs|TR,n−1| + αlαr|TR,n−2|

For the case n = 1, |TR,1| = αs �= 0. For the case n = 2, |TR,2| =

α2
s+αlαr = 0. For the case n = 3, |TR,3| = αs|TR,2|+αlαr|TR,1| = αlαsαr �= 0.

Suppose that |TR,m| �= 0 for m = 3p or m = 3p + 1, and |TR,m| = 0 for

m = 3p + 2. Then

(i) |TR,3(p+1)| = |TR,3p+3| = αs|TR,3p+2|+αlαr|TR,3p+1| = αlαr|TR,3p+1| �= 0

(ii) |TR,3(p+1)+1| = |TR,3p+4| = αs|TR,3p+3|+αlαr|TR,3p+2| = αs|TR,3p+3| �= 0

(iii)

|TR,3(p+1)+2| = |TR,3p+5| = αs|TR,3p+4| + αlαr|TR,3p+3|

= (α2
s + αlαr)|TR,3p+3| = 0

Hence C is a group GF (2p) CA for n(mod 3) �= 2 and C is a nongroup GF (2p)

CA for n(mod 3) = 2.

Theorem 7.2.3 Let C be an n-cell uniform GF (2p) CA with transition

rule < αl, αs, αr >, where αs = 0, αl �= 0 and αr �= 0. Then C is a group(resp.

nongroup) CA for even(resp. odd) n.

Proof. (i) n = 2m + 1: Since |TR,1| = αs = 0,

|TR,2m+1| = αlαr|TR,2m−1| = (αlαr)
2|TR,2m−3| = · · · = (αlαr)

m|TR,1| = 0

(ii) n = 2m: Since |TR,2| = αlαr �= 0,

|TR,2m+1| = αlαr|TR,2m−1| = (αlαr)
2|TR,2m−3| = · · · = (αlαr)

m|TR,1| = 0
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By (i) and (ii) we obtain the following:

|TR,n| =

{
(αα)

n
2 , n:even

0, n:odd

Theorem 7.2.4 Let C be an n-cell hybrid GF (2p) CA with rule vector

Ri, where i = 1, 2. Let Ri(i = 1, 2) be of the following form.

R1 =

{
< αl, 0, αr >, the cell number is odd
< αl, αs, αr >, the cell number is even

R2 =

{
< αl, αs, αr >, the cell number is odd
< αl, 0, αr >, the cell number is even

Then the following hold:

|TR1,n| =

{
(αlαr)

n
2 , n: even

0, n:odd

|TR2,n| =

⎧⎨
⎩

(αlαr)
n
2 , n: even

αs(αlαr)
n−1

2 , n(mod 4)=1
0, otherwise

Proof. Let TRi,(k,n)(i = 1, 2) be the submatrix obtained from TRi,n by

deleting from the 1st row to the (k − 1)th row and from the 1st column to

the (k − 1)th column.

(i) n = 2m: |TRi,n| = 0 · |TRi,(2,n)|+ αlαr|TRi,(3,n)| = αlαr|TRi,(3,n)|. There-

fore we obtain |TRi,n| = (αlαr)
m.

(ii) n = 2m + 1:
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For the rule vector R1, |TR1,2m+1| = αlαr|TR1,2m−1| = (αlαr)
2|TR1,2m−3| =

· · · = (αlαr)
m|TR1,1| = (αlαr)

m · 0 = 0.

For the rule vector R2, since

|TR2,n| = αs|TR2,(2,n)| + αlαr|TR2,(3,n)|

= αs(0 + αlαr|TR2,(3,n)|) + αlαr(αs|TR2,(3,n)|+ αlαr|TR2,(4,n)|)

= (αlαr)
2|TR2,(4,n)|

we obtain

|TR2,n| =

{
(αlαr)

2mαs, n=4m+1
(αlαr)

2m|TR2,(4m+1,4m+3)| = 0, n=4m+3

This completes the proof.

Denote the minimal polynomial by m(x). Let m(x) = xdφ(x). If d > 0,

then C is a nongroup GF (2p) CA and if d = 0, then C is a group GF (2p)

CA. d determines the depth of the tree of the state-transition diagram of C.

Also φ(x) determines the cycle structure of the state-transition diagram of

C. We can write φ(x) as the following:

φ(x) = [f1(x)]r1[f2(x)]r2 · · · [fh(x)]rh

where fi(x) is an irreducible polynomial for all i = 1, 2, · · · , h.

Elspas [40] analyzed the cycle structure of GF (2) CA. By using the results

of Elspas [40] we can extend these results over GF (2p) CA.

(i) φ(x) = [f(x)]r (f(x) is an irreducible polynomial.)

100



Let the period of f(x) be k. Then the cycle structure is [1(1), μ1(k)],

where μ1 = 2np−1
k

.

(ii) φ(x) = [f(x)]r (f(x) is irreducible polynomial.)

Let the period of f(x) be k and 2r1−1 < r ≤ 2r1 . Then in the state-

transition diagram there exist cycles whose lengths are 1, k, 2k, 22k, · · · , 2r1k.

Also the cycle structures are [1(1), μ1(k), μ2(2k), μ3(2
2k), · · · , μr1+1(2

r1k)]. In

μi(ki), μi is the number of cycles whose period is ki.

Let Ui = {x|[f(T )]ix = 0} and x ∈ U2 − U1. Then [f(T )]2x = 0 and

f(T )x �= 0. This vector x belongs to the cycle with the period [f(x)]2. Thus

μi = n(Ui−1−Ui−2)
2i−1k

. Here n(A) is the number of elements of A.

Example 7.2.5 Let C be a 6-cell GF (22) CA with the minimal polyno-

mial (x2 +2x +2)3. Since x2 +2x +2 is a primitive polynomial over GF (22),

the period of x2 + 2x + 2 is 22·2 − 1 = 15. Also since 2 < 3 ≤ 22, the lengths

of all existing cycles are 1, 15, 2 × 15, 22 × 15, i.e., 1, 15, 30, 60. The number

of cycle containing the vector 0 is 1, the number of cycles of length 15 is

(22)2−1
15

= 1 and the number of cycles of length 30 is (22)4−(22)2

30
= 8. Finally,

the number of cycles of length 60 is (22)6−(22)4

60
= 64.

(iii) φ(x) = f(x)g(x) (f(x) and g(x) are irreducible polynomials.)

Let the degree of f(x) (resp. g(x)) be d1 (resp. d2) and the period of

f(x) (resp. g(x)) be k1 (resp. k2). Then the cycle generated by f(x) (resp.

g(x)) is [1(1), μ1(k1)] (resp. [1(1), μ2(k2)]). Thus the cycle structure is

[1(1), μ1(k1)][1(1), μ2(k2)] = [1(1), μ1(k1), μ2(k2), μ(k)]
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where μ = μ1μ2 gcd(k1, k2) and k = lcm(k1, k2).

Example 7.2.6 Let C be a 7-cell GF (22) CA with the minimal polyno-

mial m(x) = (x + 3)(x2 + x + 2)3. Then the cycle structure is

[1(1), 1(3)][1(1), 1(15), 8(30), 64(60)] = [1(1), 1(3), 4(15), 32(30), 256(60)]
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7.3 The characteristic polynomial of GF (2p) CA

In the state transition matrix T of GF (2p) CA C let the weight of the

right state and the weight of the left state be the same. Then this GF (2p)

CA is the natural extension of 90/150 GF (2) CA. Therefore the T is as the

following:

T =

⎛
⎜⎜⎜⎜⎝

d1 i 0 · · · 0 0
i d2 i · · · 0 0
0 i d3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · i dn

⎞
⎟⎟⎟⎟⎠

where i ∈ {0, 1, 2, · · · , 2p − 1} is the weight.

Remark We denote the state transition matrix T by T =< d1, d2, · · · , dn >i,

where dj ∈ GF (2p).

The following theorem can be proved by mathematical induction.

Theorem 7.3.1 Let C be an n-cell GF (2p) CA with the state transition

matrix T =< d1, d2, · · · , dn >i and with the characteristic polynomial Δn.

Then we obtain the following equation.

Δ−1 = 0

Δ0 = 1

Δk = (x + dk)Δk−1 + i2Δk−2 (7.1)

where Δk is the characteristic polynomial of < d1, d2, · · · , dk >i,k = 1, 2, · · · , n.
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Theorem 7.3.1 provides an efficient algorithm to compute the character-

istic polynomial of a GF (2p) CA. Initially, Δ−1 and Δ0 are set to zero and

one, respectively. Equation (7.1) is applied to obtain Δ1. It is then reapplied

to Δ0 and Δ1 to calculate Δ2. Continuing, the polynomials Δ3, Δ4, · · · , Δn

are computed. Since Δn is the characteristic polynomial of T , the calculation

of the characteristic polynomial is completed.

The following is an example of the calculation of the characteristic poly-

nomial of the GF (2p) CA with the rule vector < 0, 1, 2, 1 >2.

Example 7.3.2 Let C be a GF (22) CA with the rule vector < 0, 1, 2, 1 >2.

Δ−1 = 0

Δ0 = 1

Δ1 = (x + d1)Δ0 + 22Δ−1

= (x + 0) · 1 + 22 · 0
= x

Δ2 = (x + d2)Δ1 + 22Δ0 (7.2)

= (x + 1) · x + 22 · 1

= x2 + x + 3

Δ3 = (x + d3)Δ2 + 22Δ1

= (x + 2) · (x2 + x + 3) + 22 · x

= x3 + 3x2 + 2x + 1

Δ4 = (x + d4)Δ3 + 32Δ2
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= (x + 1) · (x3 + 3x2 + 2x + 1) + 22 · (x2 + x + 3)

= x4 + 2x3 + 2x2 + 3

This recurrence relation forms the basis for the synthesis of GF (2p) CA.

Initially, we show how recurrence (7.1) satisfies the division algorithm for

polynomials. Then we demonstrate that the repeated application of the

recurrence relation is a reverse GCD computation.

We now show that repeated application of the division algorithm reverses

the computation of the characteristic polynomial of a GF (2p) CA. Suppose

that Δn and Δn−1 are known. By the division algorithm, x + dn and Δn−2

are uniquely determined and easily calculated. If the division algorithm is

then applied to Δn−1 and Δn−2, it will calculate x+dn−1 and Δn−3. We may

continue this process until we have computed x + d1 and Δ−1 = 0.

Example 7.3.3 Let C be a 4-cell GF (22) CA with Δ4 = x4+2x3+2x2+3

and Δ3 = x3 + 3x2 + 2x + 1.

dividend divisor quotient remainder GF (22) CA byte
Δ4 Δ3 x + 1 22(x2 + x + 3) 1
Δ3 x2 + x + 3 x + 2 22x 2 (7.3)

x2 + x + 3 x x + 1 22 · 1 1
x 1 x + 0 22 · 0 0

From the calculation, we see that the divisor column is the same as the

dividend column shifted up one position and the remainder column is a shift

of the i2 times with the divisor column. Comparing (7.2) to (7.3), we see that
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the sequence of polynomial in (7.3) is the reverse of the sequence of interme-

diate polynomials in the characteristic polynomial calculation. Furthermore,

(7.3) yields the sequence of quotients

[x + 0, x + 1, x + 2, x + 1]

By taking the constant terms of these quotients and reversing, we obtain

the rule vector < 0, 1, 2, 1 >2.

In Example 7.3.3 let Δ3 = x3 + 3. Then we obtain the rule vector <

3, 1, 2, 2 >3. Also let Δ3 = x3. Then we obtain the rule vector < 0, 0, 0, 2 >3.

If C is an n-cell GF (2) 90/150 CA with the primitive polynomial as

the characteristic polynomial, then there exist two Δn−1. But the Δn−1 are

several in the Example 7.3.3.

By Theorem 7.3.1 we can obtain a GF (2p) CA with Δn and Δn−1. But

the method for finding Δn−1 does not exist until now.

Theorem 7.3.4 Let C be an n-cell GF (2p) CA with the state transition

matrix T =< d1, d2, · · · , dn >i. And let p(x) = xn + cn−1x
n−1 + · · ·+ c1x + c0

be the primitive polynomial which is the characteristic polynomial of T . For

the nonsingular upper tridiagonal matrix U and for the companion matrix

C of p(x), let U and C be as the following:

U = (uij) =

⎧⎪⎨
⎪⎩

ui, i = j
ai, i = j − 1
0, i > j
xij ∈ GF (2p), otherwise

C = (sij) =

⎧⎨
⎩

1, i = j + 1 (j < n)
ci−1, j = n
0, otherwise
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where ci is the coefficient of p(x). Then we obtain the following equation.

⎧⎨
⎩

d1 = u−1
1 a1

dk = u−1
k−1ak−1 + u−1

k ak (1 < k < n) (7.4)
dn = u−1

n−1an−1 + cn−1

Proof. Since the characteristic polynomials and the minimal polynomials

of T and C are the same, T and C are similar. So TU = UC . Then we obtain

the following:

⎧⎪⎨
⎪⎩

a1 = u1d1

ak = iak−1 + ukdk (1 < k < n)
cn−1un = ian−1 + undn (7.5)
ui+1 = iui

Since i = u−1
k−1uk, we obtain the following required result

⎧⎨
⎩

d1 = u−1a1

dk = u−1
k−1ak−1 + u−1

k ak (1 < k < n) (7.6)
dn = u−1

n−1an−1 + cn−1

Example 7.3.5 Let T =< 0, 3, 1 >2. Since the characteristic polynomial

of T is x3 + 2x2 + 3x + 3,

C =

⎛
⎝ 0 0 3

1 0 3
0 1 2

⎞
⎠

Since i = 2, we obtain U as the following:
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U =

⎛
⎝ u1 a1 ∗

0 2u1 a2

0 0 3u1

⎞
⎠

Solving TU = UC , we obtain U as the following:

U =

⎛
⎝ u1 0 ∗

0 2u1 u1

0 0 3u1

⎞
⎠ = u1

⎛
⎝ 1 0 ∗

0 2 1
0 0 3

⎞
⎠ , u1( �= 0) ∈ GF (22)

The possible U is the following:

U1 =

⎛
⎝ 1 0 ∗

0 2 1
0 0 3

⎞
⎠ , U2 =

⎛
⎝ 2 0 ∗

0 3 2
0 0 1

⎞
⎠ , U3

⎛
⎝ 3 0 ∗

0 1 3
0 0 2

⎞
⎠

By the equation (7.6) we obtain d1, d2, d3 as the following: d1 = 1 · 0 =

0, d2 = 0 + 2−1 · 1 = 3, d3 = 3 + 1 = 1
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Chapter 8

Conclusion

We provided a comprehensive survey on CA and analyzed several com-

plemented CA derived from a LUGCA with rule 60 or 102 according to the

complement vector and investigated some properties of these CA and showed

that Das’s conjecture is true. Also the order of the state transition opera-

tor of the complemented CA derived from a LUGCA with rule 60 or 102 is

characterized explicitly. we analyzed a LHGCA C with rules 60, 102 and 204

and the complemented CA C′ derived from C. And we gave the conditions

for the complement vectors which determine the state transition of the CA

dividing the entire state space into smaller spaces of equal maximum cycle

lengths. And we investigated the sequences obtained from a 90/150 MLCA

algebraically. And we applyed these to phase shifting of sequences generated

by a 90/150 MLCA. From these applications we gave an improved method

to compute phase shifts, which is different from those methods of Bardell’s

([27]), Nandi and Chaudhuri’s ([32]) and Sarkar’s ([29]). Also we proposed

a new method of modelling linear CA with the minimum stage correspond-

ing to CCSGs based on LFSR. Finally, by using the results in ([36], [40])

we analyzed the transition rule, the characteristic polynomial and the cycle

structure of GF (2p) CA.
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