commons

O N § D E E D

@creatlve

ASZAEMN-HS3-MIASA 2.0 Mz
O 2A= OHNHS] =4S M2= ASMH 50 ARSA

o 0 HE=SS SH, HE, 32, 84, &3 5 28T 2 2UsLCH

— f=Rr—T0—

Ch5d 2= 245 Mdor gLk

HEZAEA. Flot= EHSME £ AIGHHDE 2HLICH

H2d. #5l= 0| == 2cl 5

14
o
ot
2
o
m
I
£
I3
Irey
r

o Fgts, 0 HEEY HOIS0ILEHH=ES 22, 01 AEEH HEE
ZTEH LHEHH MOE 2HLICH

o REATZSE U2 5718 wom Ol2E 2SS MSEA Falil

HESAEH OIE 0IEAS Ad= A2 HWEN Sotl IS BA BSLLL

0lZ1Z DIEHE A= Legal CodeyE Ol 2H 2 SIRLIC

Disclairmer B

Collection



http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/disclaimer-popup?lang=kr

Thesis for the Degree

Master of Education

A Numerical Study of
a Discontinuous Galerkin Method for
Boundary Value Problems

by

Chung-Hwa Lee

Graduate School of Education

Pukyong National University

August 2008



A Numerical Study of
a Discontinuous Galerkin Method for
Boundary Value Problems

BAR A 3 BAE dh a7 e £XF AT

a

Advisor : Prof. Jun Yong Shin

by
Chung-Hwa Lee

A thesis submitted in partial fulfillment

of the requirement for the degree of
Master of Education
Graduate School of Education

Pukyong National University
August 2008



A Numerical Study of a Discontinuous Galerkin Method
for Boundary Value Problems

A dissertation

by
Chung-Hwa Lee

Approved by :

(Chairman) Do Sang Kim

(Member) Jin Mun Jung (Member) Jun Yong Shin

August 27, 2008



Contents

List of Tables . ... e ii
List of Figures ... ..o v
Abstract(Korean) ....... ..o vii
1. Introduction ........ ... e 1
2. NOtationS ... 3
3. A Discontinuous Weak Formulation ................. ... ... .. ... 5
4.  Numerical Experiments ..........c.ooiiiiiiiiiiiin i 9

4.1. Homogeneus Neumann Boundary Conditions .................. 9

4.2. Homogeneus Mixed Boundary Conditions .................... 34
5. Conclusions ..[.70 . [.="= [ N S . T o T 45
References ........0 .o 4 e 0 U IR 0. T Tl 47

Typeset by AAMS-TEX



List of Tables

Table 4.1. The computed L? norm of u—uy, in Case 1-1 when u(z) = (z—22)2,

p=1,2, and N = 5,10,20,40,80. .oovereireeieennii., 2
Table 4.2. The computed L? norm of u—uy, in Case 1-2 when u(z) = (z—=x
p=1,2, and N = 5,10,20,40,80. .oovereireeeeeinii., 2%
Table 4.3. The computed L? norm of u—uy, in Case 1-3 when u(z) = (z—=x
p=1,2, and N = 5,10,20,40,80. ..oovvreireeieeinin., 2
Table 4.4. The computed L? norm of u—uy, in Case 1-4 when u(z) = (z—22)2,
p=1,2, and N = 5,10,20,40,80. .oovereereeieeinin., 927
Table 4.5. The computed L? norm of u—uy, in Case 1-5 when u(z) = (z—=x
p=1,2, and N = 5,10,20,40,80. .oovereireeeeeinin., 97
Table 4.6. The computed L? norm of u—uy, in Case 1-6 when u(z) = (z—=x
p=1,2, and N = 5,10,20,40,80. ..+ renesesoinnnnnnns, 97
Table 4.7. The computed L? norm of u—uy, in Case 1-1 when u(z) = cos(nz),
p=1,2 jand N'=5,10, 20740080 WS .. 0L 28
Table 4.8. The computed L? norm of u—uy, in.Case 1-2 when u(z) = cos(nz),
p=1,2and"N =510, WA NSF . ... i) ... 28
Table 4.9. The computed L2 norm of u—uy, in Case 1-3 when u(x) = cos(rz),
p=1,2, and N =5,10,20,40 /807 oo e 28
Table 4.10. The computed L? norm of u—uy, in Case 1-4 when u(x) = cos(rz),
p=1,2, and N = 5,10,20,40,80. .. \overeeereenenan., 29
Table 4.11. The computed L? norm of u—uy, in Case 1-5 when u(x) = cos(rz),

p=1,2,and N = 5,10,20,40,80. ....uvvereeeennnnnnean., 29

ii



Table 4.12.

Table 4.13.

Table 4.14.

Table 4.15.

Table 4.16.

Table 4.17.

Table 4.18.

Table 4.19.

Table 4.20.

Table 4.21.

Table 4.22.

The computed L? norm of u—uy, in Case 1-6 when u(x) = cos(mx),
p=1,2,and N = 5,10,20,40,80. ...oovreereennainennn., 29
Convergence rates of the computed L? norm of u—uy, in Case 1-1

22 30

when u(z) = (z — =z
Convergence rates of the computed L? norm of u—uy, in Case 1-2
2)2.

when u(x) = (T — @)% 30

Convergence rates of the computed L? norm of u—uy, in Case 1-3
2)2

when u(x) = (T — @)% o 31

Convergence rates of the computed L? norm of u—uy, in Case 1-4
2)2,

when u(x) = (T — @)% 31

Convergence rates of the computed L? norm of u—uy, in Case 1-5
2)2,

when u(x) = (T — @)% 31

Convergence rates of the computed L? norm of u—wuy, in Case 1-6
when u(z) = (z — 2?)2.
Convergence rates of the computed L? norm of w—uy, in Case 1-1

when u{x)= ¢oS(7r ) 4 S . T .. . 0L L 32

Convergence rates of the computed L? norm of u—wuy, in Case 1-2

when u(z)= ¢os(rZjl W R TS ... ... .. /... 32

Convergence rates of the computed L? norm of u—uy, in Case 1-3

when u(z) 2. costEmp~ 5. LH.- =2~ % .- ........ 33

Convergence rates of the computed L? norm of u—uy, in Case 1-4

when u(x) = CoS(TT). .ot 33

iii



Table 4.23. Convergence rates of the computed L? norm of u—uy, in Case 1-5
when u(x) = CoS(TT). .ot 33
Table 4.24. Convergence rates of the computed L? norm of u—uy, in Case 1-6
when u(x) = CoS(TT). oo 34
Table 4.25. The computed L? norm of u — u; in Case 2-1: p = 1,2
u(x) = sin(wz) + 7, N =5,10,20,40,80. .........c.conen... 43
Table 4.26. The computed L? norm of u — u; in Case 2-2: p = 1,2
u(x) = sin(wz) + 7, N =5,10,20,40,80. ..........coen... 43
Table 4.27. Convergence rates of the computed L? norm of u—uy, in Case 2-1
when u(x) =sin(mz) + 7. oo 43
Table 4.28. Convergence rates of the computed L? norm of u—uy, in Case 2-2

when u(x) =sin(mz) + 7. oo 44

iv



List of Figures

Figure 4.1. The graph of a(z) in (4.3). ..o 11
Figure 4.2. The graphs of the solution u(z) = (z—22)? and the approximate
solution uy, in Case 1-2 when p =1 and h = 0.2,0.1,0.05....13

Figure 4.3. The graphs of the solution u(z) = (z—22)? and the approximate
solution uy, in Case 1-2 when p =2 and h =0.2,0.1......... 14

Figure 4.4. The graphs of the solution u(z) = (z—22)? and the approximate
solution up.1,, in Case 1-2 whenp=1,2.................... 15

Figure 4.5. The graphs of the solution u(x) = cos(7wz) and the approximate
solution uy, in Case 1-2 when p =1 and h =0.2,0.1,0.05....16

Figure 4.6. The graphs of the solution u(x) = cos(7wz) and the approximate
solution uy, in Case 1-2 when p =2 and h =0.2,0.1......... 17

Figure 4.7. The graphs of the solution u(z) = cos(mx) and the approximate
solution gowphin Gase 12 wihiel e 172 CWad . dom N ... .. 18

Figure4.8. The graphs of the solution u(z) = (z—2%)? and the approximate
solution uy, in Case 1-4 when p =1 and A = 0.2,0.1,0.05....20

Figure 4.9. The graphs of the solution u(z) = (#—22)? and the approximate
solution uy in Case 1-4 when p =2 and h=0.2,0.1......... 21
Figure 4.10. The graphs of the solution u(x) = (z—22)? and the approximate
solution ug.1,, in Case 1-4 when p=1,2................... 22

Figure4.11. The graphs of the solution u(x) = cos(7wz) and the approximate
solution uj, in Case 1-4 when p =1 and A = 0.2,0.1,0.05. . 23



Figure 4.12.

Figure 4.13.

Figure 4.14.

Figure 4.15.

Figure 4.16.

Figure 4.17.

Figure 4.18.

Figure 4.19.

The graphs of the solution u(x) = cos(mz) and the approximate
solution uy, in Case 1-4 when p =2 and h =0.2,0.1....... 24
The graphs of the solution u(x) = cos(mz) and the approximate
solution ugp.2, in Case 1-4 when p=1,2................... 25
The graphs of the solution u(x) = sin(mx)+m and the approxi-
mate solution uy, in Case 2-1 when p =1 and h = 0.2,0.1,0.05.

The graphs of the solution u(z) = sin(mx)+m and the approxi-
mate solution uj in Case 2-1 when p = 2 and h = 0.2,0.1..38
The graphs of the solution u(x) = sin(mx)+m and the approxi-
mate solution .1, in Case 2-1 whenp=1,2. ........... 39
The graphs of the solution u(z) = sin(mx)+m and the approxi-
mate solution uy, in Case 2-2 when p =1 and h = 0.2,0.1,0.05.

The graphs of the solution u(z) = sin(mz)+7 and the approxi-
mate solution uj in Case 2-2 when p = 2 and h = 0.2,0.1. .41
The graphs of the solution u(z) = sin(mx)+7 and the approxi-

mate solution up.1,, in Case 2-=22when p =1,2. .......... 42

vi



)
R0

~
o™

TS

ol

ol

Azt EXol cHeiM UF TEEIE 7R



1. Introduction

Discontinuous Galerkin methods with interior penalties for elliptic prob-
lems were introduced by several authors [1, 8, 15]. These methods, referred
to as interior penalty Galerkin schemes but not locally mass conservative,
generalized Nitche method in [11] to treat the Dirichlet boundary condition

with penalty terms on the boundary of the domain.

New types of elementwise conservative discontinuous Galerkin methods
for diffusion problems were introduced and a priori error estimates were an-
alyzed in [4,9,12,13,14]. Theoretical stability analysis and optimal error es-
timates of all existing discontinuous Galerkin methods for elliptic problems
were discussed in a unified framework in [2] and the relationship of various
discontinuous finite element methods for second order elliptic equations were
also discussed in [5, 6]. For a general overview and wide applications of

discontinuous Galerkin methods, we refer to [7].

Recently, Babuska et al. [3] introduced a disecontinuous Galerkin method
for second order boundary value problems with a Dirichlet boundary condi-
tion and a Neumann boundary condition and analyzed a priori error estimates
in the energy and L? norms. But their error estimate in the L? norm was
not optimal. And Larson and Niklasson [10] analyzed the error in the L?
norm of a family of discontinuous Galerkin methods, depending on two real
parameters, for one dimensional elliptic problem with a Dirichlet boundary
condition and a Neumann boundary condition. When & = —1, the error in

the L? norm is optimal and when & # —1, one in the L? norm is optimal if



p is odd and suboptimal if p is even.
In this thesis, we consider the following boundary value problem with the

mixed boundary conditions

_i<a(d_“ +bu)) +du=f inI=(apQ)

dr \ “dx
d—u-i—bu:O at r=«a and x =0
dx

where a is a positive, bounded smooth function, b is a bounded smooth
function, and d is a bounded nonnegative function.

The objectives of this thesis are to introduce a discontinuous Galerkin
method for the boundary value problem with the mixed boundary conditions
and to present the numerical results of the method - especially, the computed
L? error of discontinuous Galerkin approximations and their convergence
rates. These numerical results will give us some motivations for further
theoretical studies on discontinuous Galerkin methods for the boundary value
problem with the mixed boundary conditions

The outline of this thesis is organized as follows. Some notations are given
in section 2 and a discontinuous weak formulation of the boundary value
problem is also given in section 3. In section 4 we present some results of the
numerical experiments for the problem. The main results of our numerical

study are summarized in section 5.



2. Notations

Let I = (o, 5) be a bounded open interval in R and P}, denote a partition
of I, i.e., Py afinite collection of N open subintervals K; = (z;—1,%;), xi—1 <

x;, 1=1,2,---, N, such that

[(l/,ﬁ] = U K

K;ePy

andifh, = x;—x;—1, i =1,2,--+ | N, hmax = max{h;} and hpin = min{h;},
then hmax/hmin is bounded below and above by positive constants, indepen-
dent of partitions P.
For a given partition Py, we introduce the sets I' and I';,,; as follows:
= U 0K; = {xo,21, - ,ZN}
K;ePy
and

Fint :FhaI:{xlafo" 7ZL’N—1}

where 0K; = {x;_1,2;} denotes the boundary of the interval K; and 0I =
{zo,zn}. We define h = hyax and h; as follows:
A %, x; € 0K; N0l
h; =

! hithiyr ; oK. oK. T,

2 ’ ZT; € ( i N H—l) C Lint.

The unit normal vector outward from K; is denoted by n|;. For each point
z; € I' we will associate a unit normal vector n. The unit normal vector n
is defined as n = —1 if x; € I';,+ and n = —1 or 1 for xg or x, respectively.
Therefore,

nlit1(x;) = —nli(z;) =n, x € Lipg

3



and
nli(zo) = =1, n|y(zn) =1.
Let [ be a nonnegative integer. For any given open interval S (S may be
the whole interval I or an element K; of Py), the space H'(S) will denote

the usual Sobolev space with norm || - ||;,s. The so-called (mesh-dependent)

broken space H'(Py) will be defined as
HY(P,) = {v e L*(I);v|k, € H(K;), VK; € Py}.

The norm associated with the space H!(P},) is given as
1/2
lolln = (3 lole,) "
K,ep,

Finite element subspaces V}, of polynomial functions will be defined as
Vi = {v € LAy e eB70G [ VKL € (PA);

where P,(K;) is the space of polynomial of degree less than or equal to p on
K; for a given integer p > 1.
For any function v € HY(K;) x H'(K;.1), I > 1/2, we denote the jump

and average of v at z; € ', by [v] and {v}, respectively, i.e.,

[U](l’z) =v xl) Bl 1 U(xl) K> Xy e Fint,

( 3
() = 5 (o(a)

Kiyq ay U(xl) Ki)? i < B

And at xzgandzry, we define

[v](z0) = [v](zn) =



3. A Discontinuous Weak Formulation

We consider the following boundary value problem with the boundary

conditions
d du )
——— (G +buw)) +du=f in I=(a,) (3.1)
d_u+bu_0 at r=a and x =0 (3.2)
dx

where a is a positive, bounded smooth function, b is a bounded smooth
function, and d is a bounded nonnegative function.

Multiplying both sides of (3.1) by v and integrating both sides, we have

/I (— %( (Z—Z + bU))v + duv)das = /vadas. (3.3)

And decomposing (3.3) over K;, we obtain

Z / - —+bu vd:v+ Z / duvdr = Z / Judz.

K;ePy K;ePy, K;ePy,

Then integration by parts gives us

Z / —+bu g—;-i-duv)d

K EPh

—Z na—-l—bu
i=0

= /vadas.

Using the formula below

(3.4)

K; (xl)

N
K1k Z na—+bu )
=1

ac—bd—Q(a-i-b)( d)-i—%(a—b)(c-l—d)



where a, b, c and d are real numbers and using the average and jump opera-
tors, we have

(na(d—u + bu)v)

T Kii (xi)-l-(na(d—u + bu))

= ({ra G + o) }o) + [ral G + )] 0} ) o0

for a given point x; € I';,,;. Therefore, we have

N-1
Z na—-l—bu )
1=0

N—-1

al du
Ky (xl) + Z (na(@ + bu)v) K; (xl)

s <{ (Z_Z +bu)}[ ]+ [”G(Z_Z -l-bu)} {v})(xi)
+ na(g—z + bu)v )(ZEO) + <na(j—z -l-bu)v) (zn)

= 3 ({na(Gt + b)) ),

i=1
because the jump of a(g—z + bu)-is zero on I';,; and g—; + bu is zero at OI.

Consequently, (3.4) can now be reduced to

du dv dv
Z / a%% + abud— + duv)d
K,cP,

_Z<{na—} v] + {nabu}[v] Z / fvdz.

Now, we introduce the following bilinear form B(-, ) defined on H?(P},) x
H?(Py,) and the linear form F(-) defined on H?(P,) as follows:

du dv dv
Z / %%-ﬁ-abu@ -l-duv)d
K EPh



And we introduce the bilinear form J(-,-) defined on H?(P,) x H%(P;,) as

follows: o
Ty = Y ({na%}[v] + {nabu} o] (2:)
= f];lu,v) + Ja(u,v), Nu,v € H*(P),
where .
T (u, ) = ({na%}[v])(m
" -
Towv) = 3 ({nabule]) (@s).

Thus, we define a discontinuous weak formulation of the problem (3.1) and

(3.2) as follows: find u € H?(P) such that
B(u,v) — Ji(u,v) — Jo(u,v) = F(v), Vo€ H*(Py).

Introducing the following penalty term

J7 () = i (7 1) @)

and defining the bilinear forms B7(-,-) on HZ(P,) x H*(P,) as follows:
B? (u,v) = B(u,v) — Ji(u,v) —Jo(u,v) — J1(v,u) + J (u,v),

we obtain the discontinuous weak formulation of the problem (3.1) and (3.2)

with an interior penalty: find u € H?(P,) such that

B (u,v) = F(v), Yve H*(Py).

7



where o represents a penalty parameter with oy = inf, cp, , 0 > 0. And

int

a discontinuous Galerkin method of the problem (3.1) and (3.2) with an

interior penalty is: find up € V3 such that

B? (up,v) = F(v), Yv € V. (3.5)



4. Numerical Experiments

In this section, we want to present numerical results for the following

boundary value problem

—%(a(g—z -l—bu)) +du=f, inI=(0,1)

with the homogeneous Naumann boundary conditions

Z—Z =0 at =0 and z =1 (provided that 5(0) = 0 and b(1) = 0)

or the homogeneous mixed boundary conditions

Z—Z +bu=0 at =0 and x =1 (provided that b(0) # 0 and b(1) # 0)

where a is a positive, bounded smooth function, b is a bounded smooth

function, and d is a bounded nonnegative function.
4.1. Homogeneus Neumann Boundary Conditions

In this subsection, we consider the following boundary value problem with

the homogeneous Neumann boundary conditions

(B b))+ du= o E=(0,), (4.1)
Z—Z:O at r=0 and x =1, (4.2)

provided that b(0) = 0 and b(1) = 0. The function f is chosen so that the

problem (4.1)-(4.2) is satisfied with the appropriate choices of a(x), b(x), and

9



d(z) and the exact solution u(z) = (z — 2%)? or cos(mx). To perform the
numerical experiments of (3.5), we consider the following six cases:
Case 1-1. a(z) =1, b(x) = 0, and d(z) =
Case 1-2. a(x) =1, b(x) = (1 — =), and d(x) =
Case 1-3. a(x) = 1, b(x) = sin7zx, and d(z) = 1.
0, d(z)

Case 1-4. b(x) =

T

x) =1, and a(x) are given as following:

9(z —0.1)2+0.1, if 0<2<0.1,
a(r) =< 0.1, if 0.1<x<0.9, (4.3)
9(z —0.9)%2+0.1, if 09<x<1,

Case 1-5. b(z) = (1 — x), d(x) = 1, and a(z) is the same as (4.3).
Case 1-6. b(x) = sinmzx, d(x) = 1, and a(z) is the same as (4.3).

The graph of a(x) in (4.3) are given in Figure 4.1.

10



The graph of alx]
DE 1 1 1

0.05 : :

Figure 4.1. The graph of a(z) in (4.3).
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To implement the discontinuous Galerkin method (3.5)
B (up,v) = F(v), Yv €& Vy,

we take Py as the collection of N uniform subintervals in I with its length

h =1/N and

Vi ={veL*(); v

K; € Pp(Ki), VK; € Ph},

as the finite dimensional subspace of H2(P,) where p > 1.

In Figure 4.2 and Figure 4.3(or in Figure 4.5 and Figure 4.6), we plot
the exact solution u = (z — 22)?(or u = cos(nx), respectively) and the
approximate solution uy, of (3.5) with different values of h for Case 1-2 when
p =1 and p = 2, respectively. We know from Figure 4.2 and Figure 4.3(or
from Figure 4.5 and Figure 4.6) that the approximate solution uj, converges
to the exact solution u = (z — 2%)?(or u = cos(mz), respectively) as the size
of h decreases.

In Figure 4.4, we plot the exact solution u = (z—a%)? and the approximate
solution ug.1,, of (3.5) with p = 1,2 for Case 1-2 when A = 0.1. We know
from Figure 4.4 that the approximate solution g 12 is more close to the
exact solution u = (z — x2)? than the approximate solution ug. 1 1. In Figure
4.7, we plot the exact solution u = cos(nz) and the approximate solution
uo.2,p of (3.5) with p = 1,2 for Case 1-2 when h = 0.2. We know from Figure
4.7 that the approximate solution ug.2 2 is more close to the exact solution

u = cos(mz) than the approximate solution ug 2,1

12



The graphs of u=(x-x2)2 and u,
|:||:||-'Ir 1 1 1 1 1 1 1 1 1

(.06

(.05

0.04

= 003

0.02

0.01

_|:||:|1 ] ] ] ] ] ] ] ] ]
0 O <02\ SR N0"SDgeete™ 07 <05 08 1

Figure 4.2. The graphs of the solution u(x) = (x — 2?)? and the approximate
solution uy in Case 1-2 when p = 1 and A = 0.2,0.1,0.05. The solid green
line (the solution w), the solid blue line (ug.2), the dotted red line (ug.1), the

dotted black line (ug.g5).
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The graphs of (x-xz)z and u,
|:||:||-'Ir 1 1 1 1 1 1 1 1 1

006

00aF

0.04

= 003

002

001

0 O% «02% oINSl Jee 07 0o 09 1

Figure 4.3. The graphs of the solution u(x) = (x —z?)? and the approximate
solution up in Case 1-2 when p = 2 and h = 0.2,0.1. The solid green line

(the solution ), the solid blue line (ug.2), the dotted red line (ug.1).
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The graphs of u=(}{'}{2:'2 and Uy, b
DD? I I I I I I I I I

(.06

(.05

0.04

0.03

LI,LID__,I

0.02

0.01

_|:||:|1 ] ] ] ] ] ] ] ] ]

Figure 4.4. The graphs of the solution u(x) = (x —z?)? and the approximate
solution ug.1,, in Case 1-2 when p = 1,2. The solid green line (the solution

u), the solid blue line (ug.1,1), the dotted red line (ug.1,2).
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The graphs of i=cos( x) and u,
15 1 1 1 1 1 1 1 1

15

Figure 4.5. The graphs of the solution u(z) = cos(wz) and the approximate
solution uy in Case 1-2 when p = 1 and A = 0.2,0.1,0.05. The solid green
line (the solution w), the solid blue line (ug.2), the dotted red line (ug.1), the

dotted black line (ug.g5).
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The graphs of u=cos(a ) and U,

0.8

06

0.4

02

0.2

1.4

1.6

.8

Figure 4.6. The graphs of the solution u(z) = cos(wz) and the approximate
solution up in Case 1-2 when p = 2 and h = 0.2,0.1. The solid green line

(the solution ), the solid blue line (ug.2), the dotted red line (ug.1).

17



The graphs of u=cos(n %) and Un2g

Yoo

1.6

.8

T
"
i
K
i
E
¥
1

Figure 4.7. The graphs of the solution u(z) = cos(wz) and the approximate
solution ug 2, in Case 1-2 when p = 1,2. The solid green line (the solution

u), the solid blue line (ug.2,1), the dotted red line (ug.2,2).
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In Figure 4.8 and Figure 4.9 (or in Figure 4.11 and Figure 4.12), we plot
the exact solution u = (z — 22)?(or u = cos(nx), respectively) and the
approximate solution uy, of (3.5) with different values of h for Case 1-4 when
p =1 and p = 2, respectively. We know from Figure 4.8 and Figure 4.9(or
from Figure 4.11 and Figure 4.12) that the approximate solution u;, converges
to the exact solution u = (z — 22)?(or u = cos(wx), respectively) as the size
of h decreases.

In Figure 4.10, we plot the exact solution u = (z — 22)? and the approx-
imate solution ug 1, of (3.5) with p = 1,2 for Case 1-4 when h = 0.1. We
know from Figure 4.10 that the approximate solution ug.1,2 is more close to
the exact solution u = (x — 22)? than the approximate solution up.1,1- In
Figure 4.13, we plot the exact solution u = cos(wz) and the approximate
solution ug.2,, of (3.5) with p = 1,2 for Case 1-4 when A = 0.2. We know
from Figure 4.13 that the approximate solution g 22 is more close to the
exact solution u = cos(mx) than the approximate solution g 21

In Tables 4.1-4.6(or in Tables 4.7-4.12), we present the computed L? norm
of u — up in Cases 1-1, 1-2, 1-3, 1-4, 1-5, and 1-6 when the discontinuous
Galerkin method (3.5) is used to approximate the exact solution u(z) =
(x — 2%)%(or u = cos(mz), respectively) for p = 1,2 and N = 5,10, 20, 40, 80.
We know from Tables 4.1-4.6(or in Tables 4.7-4.12) that the computed L?

norm of u — uy, decreases as the size of h decreases.
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The graphs of u=(x-x2)2 and u,
|:||:||-'Ir 1 1 1 1 1 1 1 1 1
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Figure 4.8. The graphs of the solution u(x) = (x — 2?)? and the approximate
solution uy in Case 1-4 when p = 1 and A = 0.2,0.1,0.05. The solid green
line (the solution w), the solid blue line (ug.2), the dotted red line (ug.1), the

dotted black line (ug.g5).
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The graphs of u=(x-x2)2 and u,
|:||:||-'Ir 1 1 1 1 1 1 1 1 1
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Figure 4.9. The graphs of the solution u(x) = (x —2?)? and the approximate
solution up in Case 1-4 when p = 2 and h = 0.2,0.1. The solid green line

(the solution ), the solid blue line (ug.2), the dotted red line (ug.1).
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The graphs of u=(}{'}{2:'2 and Uy, b
DD? I I I I I I I I I
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Figure 4.10. The graphs of the solution u(z) = (z—22)? and the approximate
solution ug.1,, in Case 1-4 when p = 1,2. The solid green line (the solution

u), the solid blue line (ug.1,1), the dotted red line (ug.1,2).
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The graphs of u=cos(a ) and U,

Figure 4.11. The graphs of the solution u(z) = cos(mx) and the approximate
solution uy in Case 1-4 when p = 1 and A = 0.2,0.1,0.05. The solid green
line (the solution w), the solid blue line (ug.2), the dotted red line (ug.1), the

dotted black line (ug.g5).
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The graphs of u=cos(a ) and U,

Figure 4.12. he graphs of the solution u(x) = cos(mx) and the approximate
solution up in Case 1-4 when p = 2 and h = 0.2,0.1. The solid green line

(the solution ), the solid blue line (ug.2), the dotted red line (ug.1).
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The graphs of u=cos{n x) and u , ]

Figure 4.13. The graphs of the solution u(z) = cos(mx) and the approximate
solution ug 2, in Case 1-4 when p = 1,2. The solid green line (the solution

u), the solid blue line (ug.2,1), the dotted red line (ug.2,2).
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Table 4.1. The computed L? norm of u—uy, in Case 1-1 when u(z) = (z—22)

p=1,2, and N = 5,10, 20,40, 80.

N

p=1

p=2

)
10
20
40
80

9.953610087696579E-003
1.996926760365519E-003
3.985452619237015E-004
8.049477747141389E-005
1.688806627370424E-005

2.474883001083669E-004
2.788361382458024E-005
3.230876615689099E-006
3.854248624324413E-007
4.693422770262065E-008

Table 4.2. The computed L? norm of u—uy, in Case 1-2 when u(z) = (z—22)

p=1,2, and N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

1.008759853006282E-002
2.009883017787915E-003
3.999603469688148E-004
8.066290664956095E-005
1.690871900584171E-005

2.474876354671905E-004
2.788359792118674E-005
3.230876252946803E-006
3.854248521377996E-007
4.693422739587137E-008

Table 4.3. The computed L? norm of u—uy, in Case 1-3 when u(z) = (z—22)

p=1,2, and N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

1.047758966574634E-002
2.046443497883973E-003
4.039021089603619E-004
8.111214647928727E-005
1.695718883572350E-005

2.474781830465663E-004
2.788342483102578E-005
3.230872572321048E-006
3.854247492646964E-007
4.693422423783653E-008
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Table 4.4. The computed L? norm of u—uy, in Case 1-4 when u(z) = (z—22)

p=1,2, and N = 5,10, 20,40, 80.

N

p=1

p=2

)
10
20
40
80

1.160035209043823E-002
2.086408645031970E-003
4.070988201503124E-004
8.258434258019848E-005
1.726725774412796E-005

1.530525067065913E-003
3.883212118173793E-005
4.687778454455222E-006
5.782568858044225E-007
7.185920782352317E-008

Table 4.5. The computed L? norm of u—uy, in Case 1-5 when u(z) = (z—22)

p=1,2, and N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

1.171286284826308E-002
2.093441680547620E-003
4.077089964103946E-004
8.264633906571690E-005
1.727387934991122E-005

1.531193383114409E-003
3.883214671299329E-005
4.687779172060500E-006
5.782569068722837E-007
7.185920841606181E-008

Table 4.6. The computed L? norm of u—uy, in Case 1-6 when u(z) = (z—x2)

p=1,2, and N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

1.203533820175762E-002
2.111563333979656E-003
4.091709449596473E-004
8.276911139676766E-005
1.727933541315180E-005

1.540061232552839E-003
3.883246536713067E-005
4.687788281918771E-006
5.782571767266118E-007
7.185921662812752E-008

27

2

2

2

bl

bl

bl



Table 4.7. The computed L? norm of u—uy, in Case 1-1 when u(z) = cos(nz),

p=1,2, and N = 5,10, 20,40, 80.

N

p=1

p=2

)
10
20
40
80

7.853369062906306E-002
1.277632758534509E-002
2.389065194578182E-003
4.895849362524466E-004
1.078315442788144E-004

6.191721695028490E-004
7.480029694394360E-005
9.267642213583770E-006
1.155870694472144E-006
1.444029921092537E-007

Table 4.8. The computed L? norm of u—uy, in Case 1-2 when u(z) = cos(nz),

p=1,2, and N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

7.871944593592956E-002
1.272098979378700E-002
2.376641402721869E-003
4.875145782297269E-004
1.075162369734709E-004

6.191701436555256E-004
7.480021263942763E-005
9.267639419728970E-006
1.155870605388768E-006
1.444029898124735E-007

Table 4.9. The computed L? norm of u—uy, in Case 1-3 when u(z) = cos(nz),

p=1,2, and N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

8.006365752057222E-002
1.279858374297926E-002
2.383660444324945E-003
4.877449205107439E-004
1.073231585596627E-004

6.191417005480168E-004
7.479900893029372E-005
9.267599428851199E-006
1.155869337289699E-006
1.444029499832295E-007
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Table 4.10. The computed L? norm of u — uy in Case 1-4 when u(x)
cos(mz), p=1,2, and N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

7.834650733441401E-002
1.158396867628605E-002
2.088796340979553E-003
4.146895611995628 E-004
8.718656287071192E-005

6.685725516488358E-003
1.171001827487290E-004
1.464711764342016E-005
1.831291118230662E-006
2.289245803782336E-007

Table 4.11. The computed L? norm of u — uy in Case 1-5 when u(z)

cos(mz), p=1,2, and N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

7.887411184553758E-002
1.156238352382213E-002
2.079586599955892E-003
4.126296014714767E-004
8.682852248043320E-005

6.720183895275394E-003
1.171003936604371E-004
1.464712441202760E-005
1.831291334325205E-006
2.289245839405780E-007

Table 4.12. The computed L? norm of u — uy in Case 1-6 when u(z)

cos(mz), p=1,2, and N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

8.087740920742839E-002
1.162402333707581E-002
2.082891216358673E-003
4.129869475281320E-004
8.687126689651546E-005

7.051855680467116E-003
1.171034347214642E-004
1.464722162508282E-005
1.831294387358310E-006
2.289246792473843E-007
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To get the numerical convergence rate of the computed L? norm of u— up,

we define C'Ry, by

log([|u — unl|/||u — up/2||)
Chp = log 2 ’

Using the values in Tables 4.1-4.12, we obtain the values of C'R;, in Tables
4.13-4.24. We know from Tables 4.13-4.24 that the numerical convergence
rates of the computed L? norm of u — up are O(hP™!), where p denotes

the degree of polynomials in V},. Notice that these results are not proved

theoretically.

Table 4.13. Convergence rates of the computed L? norm of u — uy, in Case

1-1 when u(z) = (z — %)%

N p=1 =2

5 P82 3:15
10 2.33 3.11
20 2.31 3.07
40 P23 3.04

Table 4.14. Convergence rates of the computed L? norm of u — uy, in Case

1-2 when u(z) = (z — %)%

N R=F B2
) 2.33 3.05
10 2.32 3.01

20 2.31 3.00
40 2.25 3.00
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Table 4.15. Convergence rates of the computed L? norm of v — uj, in Case

1-3 when u(z) = (z — %)%

) 2.36 3.15
10 2.34 3.11
20 2.32 3.07
40 2.26 3.04

Table 4.16. Convergence rates of the computed L? norm of v — uj, in Case

1-4 when u(z) = (z — %)%

) 2.48 5.30
10 2.36 3.05
20 2.30 3.02
40 WA 3.01

Table 4.17. Convergence rates of the computed L? norm of u — uj, in Case

1-5 when u(z) = (z — 22)?.

5 2.48 95.30
10 2.36 3.05
20 2.30 3.02
40 =28 3.01

31



Table 4.18. Convergence rates of the computed L? norm of v — uj, in Case

1-6 when u(z) = (z — %)%

) 2.51 5.31
10 2.37 3.05
20 2.31 3.02
40 2.26 3.01

Table 4.19. Convergence rates of the computed L? norm of v — uj, in Case

1-1 when u(z) = cos(mx).

) 2.62 3.05
10 2.42 3.01
20 2.29 3.00
40 v 4R ! 3.00

Table 4.20. Convergence rates of the computed L? norm of u — uj, in Case

1-2 when u(z) = cos(mx).

5 2.63 3.05
10 2.42 3.01
20 223 3.00
40 £ 3.00
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Table 4.21. Convergence rates of the computed L? norm of v — uj, in Case

1-3 when u(z) = cos(mx).

) 2.65 3.05
10 2.43 3.01
20 2.29 3.00
40 2.18 3.00

Table 4.22. Convergence rates of the computed L? norm of v — uj, in Case

1-4 when u(z) = cos(mx).

) 2.76 5.84
10 2.47 3.00
20 2.33 3.00
40 2.25 3.00

Table 4.23. Convergence rates of the computed L? norm of u — uj, in Case

1-5 when u(z) = cos(mx).

5 2L 5.84
10 2.48 299
20 2:33 299
40 2.25 3.00
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Table 4.24. Convergence rates of the computed L? norm of v — uj, in Case

1-6 when u(z) = cos(mx).

N p=1 p=2

) 2.80 5.91
10 2.48 3.00
20 2.33 3.00
40 2.25 3.00

4.2. Homogeneus Mixed Boundary Conditions

In this subsection, we consider the following boundary value problem with

homogeneous mixed boundary condtions

(S b)) du = ffor 1= (0,1), (4.4)
du
%-i-bu:O gt o OV P A .1 (4.5)

provided that b(0) # 0 and b(1) # 0. The function f is chosen so that the
problem (4.4)-(4.5) is satisfied with the appropriate choices of a(x), b(x), and

d(z) and the exact solution u(x) = sin(wz) + .

To perform the numerical experiments of (3.5), we consider the following

two cases:
Case 2-1. a(z) =1, b(x) = 2(x — 1/2) and d(z) = 1,
Case 2-2. a(x) is the same as (4.3), b(z) = 2(z — 1/2) and d(z) = 1.
To implement the discontinuous Galerkin method (3.5)
B?(up,v) = F(v), Yv eV,
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we take Py as the collection of N uniform subintervals in I with its length

h =1/N and

Vi ={ve L*(1); v

K; € Pp(Ki), VK; € Ph},

as the finite dimensional subspace of H2(P,) where p > 1.

We plot the exact solution u = sin(mzx) + 7 and the approximate solution
up, of (3.5) in Figure 4.14 and Figure 4.15 for Case 2-1 with different values
of h when p = 1 and p = 2, respectively. We know from Figure 4.14 and
Figure 4.15 that the approximate solution uj converges to the exact solution
u = sin(7x) + 7w as the size of h decreases. And in Figure 4.16, we plot the
exact solution u = sin(mz) + 7 and the approximate solution ug.1,, of (3.5)
with p = 1,2 for Case 2-1 when A = 0.1. We know from Figure 4.16 that the
approximate solution u 1,2 is more close to the exact solution u = sin(7wz) -+
than the approximate solution ug 1 1-

In Figure 4.17 and Figure 4.18, we plot the exact solution v = sin(7x) + 7
and the approximate solution wuy, of (3.5) with different values of h for Case
2-2 when p = 1 and p = 2, respectively. We know from Figure 4.17 and
Figure 4.18 that the approximate solution u; converges to the exact solution
u = sin(7x) + 7w as the size of h decreases. And in Figure 4.19, we plot the
exact solution u = sin(mz) + 7 and the approximate solution ug.1,, of (3.5)
with p = 1,2 for Case 2-2 when A = 0.1. We know from Figure 4.19 that the
approximate solution u 1,2 is more close to the exact solution u = sin(7wz)+m
than the approximate solution ug.1 1.

In Tables 4.25-4.26, we present the computed L? norm of u — wuj in
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Cases 2-1 and 2-2 when the discontinuous Galerkin method (3.5) is used
to approximate the exact solution u(x) = sin(rmx) + m for p = 1,2 and
N = 5,10,20,40,80. We know from Tables 4.25-4.26 that the computed
L? norm of u — uy, decrease as the size of h decreases. We have some diffi-
culty in obtaining the approximate solution u; in Case 2-2 with p = 1 and
N = 80.

Using the values in Tables 4.25-4.26, we obtain the values of C' Ry, in Tables
4.27-4.28. We know from Tables 4.27-4.28 that the numerical convergence

rates of the computed L? norm of u — uy, are
O(h%/?) when p=1 and O(h®) when p = 2

where p denotes the degree of polynomials in V},. Notice that these results

are not proved theoretically.
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The graphs of u=sin(x x)+x and U,

Figure 4.14. The graphs of the solution u(z) = sin(mz) + © and the ap-
proximate solution u; in Case 2-1 when p = 1 and h = 0.2,0.1,0.05. The
solid green line (the solution u), the solid blue line (ug2), the dotted red line

(ug.1), the dotted black line (ug.o5).
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The graphs of u=sin(x x)+x and U,

Figure 4.15. The graphs of the solution u(z) = sin(wz) + 7 and the approx-
imate solution uy, in Case 2-1 when p = 2 and h = 0.2,0.1. The solid green

line (the solution u), the solid blue line (ug.2), the dotted red line (ug.1).
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The graphs of u=gin{t x)+x and u .

Figure 4.16. The graphs of the solution u(z) = sin(wz) + 7 and the approx-
imate solution w1, in Case 2-1 when p = 1,2. The solid green line (the

solution u), the solid blue line (ug.1,1), the dotted red line (ug.12).
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The graphs of u=sin(x x)+x and U,

Figure 4.17. The graphs of the solution u(z) = sin(mz) + m and the ap-
proximate solution u; in Case 2-2 when p = 1 and h = 0.2,0.1,0.05. The
solid green line (the solution u), the solid blue line (ug2), the dotted red line

(ug.1), the dotted black line (ug.o5).
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The graphs of u=sin(x x)+x and U,

Figure 4.18. The graphs of the solution u(z) = sin(wz) + 7 and the approx-
imate solution uy, in Case 2-2 when p = 2 and h = 0.2,0.1. The solid green

line (the solution u), the solid blue line (ug.2), the dotted red line (ug.1).
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The graphs of u=gin{t x)+x and u .

Figure 4.19. The graphs of the solution u(z) = sin(wz) + 7 and the approx-
imate solution wug.1, in Case 2-2 when p = 1,2. The solid green line (the

solution u), the solid blue line (ug.1,1), the dotted red line (ug.12).
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Table 4.25. The computed L? norm of u — uy, in Case 2-1: p = 1,2, u(x)

sin(rz) + x, N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

2.225969606782825E-001
6.616494882870272E-002
2.204014562927687E-002
7.616910129077757E-003
2.667814632869868E-003

7.666019200147692E-004
8.525429197474917E-005
9.958587117385645E-006
1.200208807141774E-006
1.472098247661973E-007

Table 4.26. The computed L? norm of u — uy, in Case 2-2: p = 1,2, u(x)

sin(rz) + x, N = 5,10, 20, 40, 80.

N

p=1

p=2

)
10
20
40
80

2.617116864029930E-001
7.002147178905178E-002
2.245694781209066E-002
7.799379182176414E-003

2.553209603894086E-003
1.217649195356966E-004
1.478781957367325E-005
1.829844805572084E-006
2.277663477514139E-007

Table 4.27. Convergence rates of the computed L? norm of u — uj, in Case

2-1 when u(z) = sin(7x) + 7.

N =1 p=2
5 1.75 AT
10 1.59 3.10
20 1.53 3.05
40 1.51 3.03

43



Table 4.28. Convergence rates of the computed L? norm of v — uj, in Case

2-2 when u(z) = sin(mzx) + 7.

N p=1 p=2
) 1.90 4.39
10 1.64 3.04

20 1.53 3.01
40 3.01
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5. Conclusions

In this thesis, we introduce a discontinuous Galerkin method for the
boundary value problem with the mixed boundary conditions and present
the numerical results of the method - especially, the computed L? error of
discontinuous Galerkin approximations and their convergence rates. The

main results of this study are summarized as follows:

(1) For the boundary value problem

—%(a(g—z -l—bu)) +du=f, inI=(0,1)

with the homogeneous Naumann boundary conditions

Z—Z =0 at 2 =0 and =1 (provided that b(0) = 0 and b(1) = 0),

we know from the numerical experiments that the convergence rates of the
computed L? norm of u — u;, are O(h?T1), where p denotes the degree of

polynomials in V}, and p = 1, 2.
(2) For the boundary value problem

(oG b)) Fdu=f L= (0,1)

with the homogeneous mixed boundary conditions

Z—Z +bu=0 at x=0 and x =1 (provided that 6(0) # 0 and b(1) # 0),
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we also know from the numerical experiments that the convergence rates of

the computed L? norm of u — uy, are
O(h%/?) when p=1 and O(h®) when p = 2
where p denotes the degree of polynomials in V},.

Notice that the numerical results of this thesis give us some motivations
for further theoretical studies on discontinuous Galerkin methods for the
boundary value problem with the mixed boundary conditions. And notice

that it is open problems to prove these numerical results theoretically.
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