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Abstract 

 

Proper operation and control of municipal wastewater treatment plants is 

important in producing an effluent which meets quality requirements of regulatory 

agencies and in minimizing detrimental effects on the environment. Predicting the 

plant water quality parameters using conventional experimental techniques is also 

a time consuming step and is an obstacle in the way of efficient control of such 

processes. For control and automation of the plant treatment processes, lack of 

reliable on-line sensors to measure water quality parameters is one of the most 

important problems to overcome. And the accuracy of existing hardware sensors 

is also not sufficient. This paper deals with the development of software sensor 

techniques that estimate the target water quality parameter from other water 

quality parameters.   

Here an artificial neural network (ANN) and a hybrid ANN model, 

combining with principal component analysis (PCA), both of them were applied 
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to predict the wastewater effluent quality parameters, biological oxygen demand 

(BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen 

(TN), total phosphorous (TP) of the primary settlement tank based on past 

information. The PCA was used to synthesize the input water quality parameters 

in order to reduce the dimension of the inputs. And the back-propagation feed-

forward neural network (FBNN) was chosen to model the wastewater treatment 

plant through this study, which is the South Wastewater Treatment Plant (WWTP) 

at Busan City, Korea. The tan-sigmoid function was used as activation function to 

transfer signal at the neural network. And the Levenberg-Marquart algorithm was 

used as learning algorithm to train neural network. All the 364 data sets, which 

were collected from the plant during 2005, 200 data sets and other 164 data sets, 

were used for training and validation，respectively. The hybrid ANN&PCA 

models for prediction of water quality parameters was also used in the primary 

settlement tank (PST) effluent, comparing with the prediction results by ANN. 

Following the prediction of first physical and chemical process in the wastewater 

treatment, it is the biological wastewater treatment process, which is commonly 

used to treat municipal and industrial wastewaters and so important process in the 

treatment. Special attention has been paid to biological processes modeling, both 

for wastewater treatment and sludge stabilization processes. In the prediction of 

secondary settlement tank (SST) effluent presented here is another hybrid ANN 

model, which is using some data from the activated sludge model (ASM) 

simulator in order to strength and advance ANN model. The hybrid ANN 

techniques show an enhancement of prediction capability and reduce the over-

fitting problem of neural networks. The results showed that the hybrid ANN 

technique can be used to extract information from noise data and can provide 

more accurate predictions of the primary and secondary settlement tank effluent 

stream and then further to describe the nonlinearity of complex wastewater 
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treatment. 

 

Key words: wastewater treatment plant, artificial neural network, principal 

component analysis, activated sludge model 
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I. Introduction 

 

 

With increasing stringent regulation of the effluent quality, process 

monitoring and concentration control have become more important. Serious 

environmental and public healthy problems may result from improper operation of 

a WWTP, as discharging contaminated effluent to a receiving water body can 

cause or spread various diseases to human beings. Accordingly, environmental 

regulations set restrictions on the quality of effluent that must be met by any 

WWTP. However, due to the complex biological characteristic of the activated 

sludge process, it is difficult to measure water quality parameters using on-line 

sensors. Many parameters required for control can’t be measured on-line as yet, 

and the reliability of existing on-line sensors is not sufficient for process 

automation. Although some parameters can be measured by laboratory analyses, a 

significant time delay in a range of tens of minute to few hours is usually 

unavoidable. It is normally too late to achieve well-timed adaptive process control 

accommodating influent fluctuation and other disturbances, especially for 

advanced wastewater treatment requiring more precise and timely controls. Two 

ways of dealing with these problems which have been discussed among 

researchers are to develop new methods for monitoring the desired parameters and 

to develop software sensors based on information from the existing on-line 

sensors. Safer operation and control of a WWTP can be achieved by developing a 

modeling tool for predicting the plant performance based on past observations of a 

certain key product quality parameters. Wastewater treatment plants involve 

several complex physical, chemical and biological processes. Often these 
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processes exhibit non-linear behaviors which are difficult to describe by linear 

mathematical models. In addition, the variability of the influent characteristics, in 

terms of composition, strength and flow rates, might influence model parameters, 

and consequently operational control, significantly. Therefore, modeling a WWTP 

is a difficult task and most of the available models are just approximations based 

on, probably severe, assumptions.  

In the recent decades, both domestic and overseas scholars have studied on 

the comprehensive evaluation methods of WWTP processes. A lot of evaluation 

methods and evaluation parameters were put forward, such as single-factor 

method, parametric methodology, graphic method and others. After 1980s, with 

the rapid progress of computers, modern mathematics theories were applied into 

the water environmental evaluation, and more and more complex statistical 

methods were used. In recent years, the techniques and algorithms of mathematics 

methods applied to WWTP performance evaluation integrated with computer 

technology are continuously appearing. These approaches and techniques are 

gathered together with a common purpose: to find a solution (usually in the form 

of models) to a wide variety of problems (such as pattern recognition, systems 

control, prediction, optimization and others) which share some characteristics: the 

nature of the problem is usually non-linear, and data is disturbed by noise, 

imprecision or uncertainty, and is often missing. Moreover, the source of these 

data can be very heterogeneous, ranging from discrete to continuous variables, 

which can also be scalar, vectorial combination, etc, and include a spatial or 

temporal component. The most common theories and methods employed make 

use of fuzzy mathematics, stochastic modeling, genetic algorithms, probabilistic 

reasoning, grey system, rough set theory, artificial intelligence and other methods. 

The artificial neural network are also applied this field as a part of artificial 

intelligence. Owing to their high accuracy, adequacy and quite promising 



 

3 

applications in engineering, artificial neural network can be used for modeling 

some WWTP processes. Artificial neural network (ANN) has been proved to be 

able to model nonlinear systems. ANN modeling approaches have been embraced 

enthusiastically by practitioners in water resources, as they are perceived to 

overcome some of the difficulties associated with traditional statistical approaches. 

Artificial neural network is a statistical tool for data analysis. In the words of 

Sarle (1994), users of ANN want their networks to be black boxes requiring no 

human intervention-data in, predictions out. More recently, researchers have 

examined ANN models from a statistical perspective (e.g. Hill et al., 1994; Sarle, 

1994; Wisra and Warner, 1996). Such studies indicate that certain models obtain 

when ANN geometry, connectivity and parameters changed are either equivalent, 

or very close to, existing statistical models. Consequently, some neural network 

models are not really new inasmuch as they represent variations on common 

statistical themes. Although ANN models are not significantly different from a 

number of standard statistical models, they are extremely valuable as they provide 

a flexible way of implementing them. Model complexity can be varied simply by 

altering the transfer function or network architecture. In addition, unlike some 

statistical models, ANN models can be extended easily from univariate to 

multivariate cases. However, as the number of different models that can be 

generated using ANNs is so vast, many have not yet been examined from a 

statistical perspective. As pointed by White, “the field of statistics has much to 

gain from the connectionist literature. Analyzing neural learning procedures poses 

a host of interesting theoretical and practical challenges for statistical method; all 

is not cut and dried.” Until recently, there has been little interaction between the 

neural network and statistical communities and ANN and statistical models have 

developed virtually independently.  

As preceding mentioned, artificial neural network (ANN) is a black-box 
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approach that depends only on the observed values, which attracts many 

researchers’ attention. Cote et al. (1995) used a two-step procedure to improve the 

accuracy of the mechanistic model of the activated sludge process. The first step 

is the parameter optimization of the mechanistic model using a least squares 

regression analysis based on a large set of experimental data for five key process 

variables. The second step is to use feed-forward neural network models 

simulating the prediction errors of the mechanistic model. Zhu et al. (1998) 

proposed a time-delay neural network modeling method for predicting the 

effectiveness of a biological treatment process. A procedure has been developed 

by Cote et al. (1995) using a neural network to improve the accuracy of an 

existing mechanistic model of the activated sludge process. Oliveira-Esquerre et 

al. (2002) obtained satisfactory prediction of the BOD in the output stream of a 

local biological wastewater treatment plant for the pulp and paper industry in 

Brazil. Hong et al. (2003) used the Kohonen Self-Organizing Feature Maps 

(KSOFM) neural network to analyze the multidimensional process data and to 

diagnose the inter-relationship of the process variables in a real activated sludge 

process. Hamed et al. (2004) developed ANN models to predict the performance 

of a WWTP based on past information. A hybrid neural network approach, which 

combines mechanistic and neural network models, has also been used to model 

wastewater treatment process. Krovvidy and Wee (1992) developed an intelligent 

hybrid system, combining inductive learning, artificial neural network approached 

and case-based reasoning for a wastewater treatment plant. Capodaglio et al. 

(1991) analyzed the input and output of the activated sludge system by applying 

stochastic models and artificial neural system models to treatment plant data. 

Wilcox et al. (1995) utilized a neural network simulation to classify potentially 

damaging events during the anaerobic digestion process with an on-line 

bicarbonate alkalinity sensor. 
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In this study, the effluent of the primary settlement tank and the secondary 

settlement tank was predicted here by artificial neural network. In the first section, 

it is the primary settlement tank effluent prediction, which is the physical and 

chemical process in the wastewater treatment. This section focuses on the 

development of a hybrid ANN as a software sensor in the wastewater treatment 

processes, which has been successfully applied in modeling wide range of non-

linear systems, especially chemical/physical engineering processes. Here it is the 

back-propagation feed-forward neural network (FBNN) that was developed to 

predict the performance of the South Wastewater Treatment Plant, based on the 

available historical data. As well known, ANN predicts values of unmeasured 

target parameters using the correlation between measured and target parameters. It 

is possible to reduce the measured parameters’ dimension for prediction of 

unmeasured parameters using PCA. And also PCA can minimize the influence of 

noise and outlier that is much harmful to ANN training. Therefore, a hybrid ANN 

model, back-propagation feed-forward neural network (FBNN) and principal 

component analysis (PCA) was also applied to predict the effluent wastewater 

quality parameters, comparing the prediction by ANN. Theoretically, the hybrid 

ANN model, combining with principal component analysis, would get better 

prediction results than the ones by ANN. The results that got from the ANN model 

and the hybrid ANN&PCA model proposed here also exemplify the hybrid ANN 

technique is a strong tool to predict the wastewater quality parameters. In the 

second section, it is the secondary settlement tank effluent prediction, which is the 

biological process in the wastewater treatment. This process includes aeration tank 

and secondary clarifier, which are the most important step and more complex in 

the treatment. Special attention has been paid to biological processes modeling, 

both for wastewater treatment and sludge stabilization processes. In this section, 

some data, getting from the activated sludge model (ASM) that is a mathematical 
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model of the activated sludge process and done through a task group pointed by 

the International Water Association, was used here in order to strength and 

advance the artificial neural network model.  

The main object of this research is to develop an estimation model that 

provides accurate predictions of BOD, COD, SS, TN and TP of primary and 

secondary settlement tank at a WWTP. This thesis is organized in four sections. In 

section 2 some concepts of the ANN and ANN hybrid model and data 

preprocessing are briefly described. The results obtained are given in section 3. 

Finally, section 4 presents the conclusion.   
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II. Method Study 

 

 

2.1 Plant Layout 

 

Wastewater treatment plants typically have two principal stages: first, the 

primary stage, which includes the bar racks, grit chamber and primary settlement 

tank whose objective is the removal of the organic load and solids in the 

wastewater to a degree of 30%-50%; and second, the secondary stage, whose 

objective is the biological treatment of the organic load and which is essential 

when a higher degree of treatment is required. In our study, some sensor models 

were applied to the South Wastewater Treatment Plant, at Korea, Busan City, the 

developed ANN and the ANN&PCA hybrid mode for physical and chemical 

process and the ANN with data materials from activated sludge model simulator 

for biological process, respectively. A schematic diagram of the plant, the South 

Wastewater Treatment Plant, is shown in Fig. 2.1. The crude sewage from 

different pumping stations is collected and screened for floating debris and 

removal of grit is carried out by the grit collector and grit chambers. Primary 

settlement tanks (PST) are utilized to settle 50%–70% of the solids. Settled solids 

are scrapped down in the hoppers of the PST with the help of mechanical drive 

scrappers. These settled solids are removed by the Hydro Valves which open in 

the Sludge Thicker Tank. And then this sludge is removed to the Sludge 

Consolidation Tank. Aerobic bacteria are activated by aeration and mixing with 

activated sludge to reduce the volume of mixed liquor. Primary treated effluent is 

mixed with the returned activated sludge from the secondary settlement tank and 
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uniformly distributed in channels for aeration with the help of mechanically 

driven aerators. Mixed liquor out of the aeration tank is made to settle in the 

secondary settlement tanks. The resulting stream, designated as final effluent, 

flows down into the wet well. The return-sludge from secondary settlement tank is 

returned to the aeration tank. And the waste-sludge from secondary settlement 

tank is removed to the centrifugal sludge tank and then mixed into the sludge 

consolidation tank with the waste-sludge from the primary settlement tank. The 

last step is the sludge treatment that is sludge digestion first and then sludge 

dewatering.  
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Fig. 2. 1 A schematic diagram of the South Wastewater Treatment Plant
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2.2 Artificial Neural Network  

 

Artificial neural network (ANN) is a black-box approach that depends only 

on the observed values. It can model complex nonlinear system. The ANN 

modeling approach simulated the operation features of human nervous system. 

Many simple computational elements called artificial neurons that are connected 

by variable weights are used. Artificial neural network is a statistical tool for data 

analysis，taking into account factors such as data pre-processing, the 

determination of adequate model inputs and a suitable network architecture, 

parameter estimation and model validation. In addition, careful selection of a 

number of internal parameters is also required. A typical neural network model 

consists of three independent layers: input, hidden and output layers. Each layer is 

comprised of several operation neurons. Input neurons receive the values of input 

variables that are fed to the network and store the scaled input values, while the 

calculated results in output layer are assigned by the output neurons. The hidden 

layer performs an interface to fully interconnect input and output layers. Each 

neuron is connected to every neuron in adjacent layers before being introduced as 

inputs to the neuron in the next layer by a connection weight, which determines 

the strength of the relationship between two connected neurons. Each neuron 

sums all of the inputs that it receives and the sum is converted to an output value 

based on a predefined activation or transfer function.   

The neural network used here, as shown in Fig. 2.2, is a multi-layered, 

supervised feed-forward neural network with back-propagation algorithm (FBNN). 

Back propagation artificial neural network is one of the most widely used neural 

networks. Typical FBNN structure consists of one input layer, one (or multiple) 

hidden layers and one output layer. Each layer could have a number of nodes 
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(processing elements), which are connected linearly by weights to the nodes in the 

neighboring layers. The training process adjusts weights to minimize the error 

between the measured output and the output produced by the network. Through 

this adjustment, the neural network learns the input-output behaviors of the 

system. Actually, the BP artificial neural network is a kind of highly non-linear 

mapping from input to output. In this work, the supervised FBNN neural network 

model with Levenberg-Marquardt (LM) algorithm was implemented in MATLAB, 

which is a common scientific programming language.  

 

 

 

Fig. 2. 2 Schematic of a multi-layer ANN structure 

 

And we give some detail information of artificial neural network as following: 

(1) Learning rule:  

A learning rule is defined as a procedure for modifying the weights and biases 

Input Hidden 1 Hidden 2 Output  

…
 

…
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of a network. The learning rule is applied to train the network to perform some 

particular task. Learning rules in the MATLAB toolbox fall into two broad 

categories: supervised learning and unsupervised learning. In un-supervised 

learning, the artificial neural network is not provided with the correct results 

during training, where the weights and biases are modified in response to 

network inputs only. Un-supervised artificial neural network usually performs 

some kind of data compression, such as dimensionality reduction or clustering. 

In supervised learning, the correct results (target values, desired outputs) are 

known and are given to the artificial neural network during training so that the 

artificial neural network can adjust its weights to try to match its outputs to the 

target values. The learning rule is used to adjust the weights and biases of the 

network in order to move the network outputs closer to the targets with the 

goal of minimizing the error between the model-predicted value and the actual 

value of the output variable by modifying the weights between neurons 

according to a learning rule. Therefore, here the supervised learning is a 

perfect choice. 

(2) Feed-forward neural network:  

Feed forward back propagation neural network is a single-direction network. 

In a feed-forward neural network, feed back loops are absent. Information is 

processed in a forward manner only from input to output, and thus it always 

gives the same output result for the same input. The output of a feed-forward 

neural network with one hidden layer and one output neural network is given 

by 

          ][
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where,  

      WHij: the weight of the link between the ith input and the jth hidden  
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           neuron;         

      m: the number of input neurons; 

      WOj: the weight of the link between the jth hidden neuron and the 

           output neuron;    

fh: the hidden neuron activation function; 

fo: the output neuron activation function; 

bj: the bias of the jth hidden neuron; 

bo: the bias of the output neuron,; 

HN: the number of hidden neurons; 

(3) Back-propagation:  

Back-propagation is the generalization of the Widrow-Hoff learning rule to 

multiple-layer network and nonlinear differentiable transfer functions. The 

back-propagation algorithm is a basic training optimization procedure for 

multi-layer networks, in which the weights are moved in the direction of the 

negative gradient and a mean square error performance index is minimized. In 

a back-propagation algorithm, the prediction error is generated at the output 

layer of neurons and then propagates backwards through the network. Each 

network has a learning rule that defines how the weights are modified to 

minimize prediction and the back-propagation algorithm is the most common 

rule used in process modeling.  

(4) Levenberg-Marquardt:  

The default FBNN training algorithm is the Levenberg-Marquardt (LM) 

algorithm. This is the fastest and the most robust method in the toolbox, but it 

can use large amounts of memory. The Levenberg-Marquardt used here may 

be considered to be a hybrid between the classical Newton and steepest 

descent algorithm. It is a modification of the classical Newton algorithm and 

its behavior is similar to that of gradient descent methods.   
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(5) Layer and neuron:  

ANN consists of an input layer, output layer and hidden layer between the 

input and output layers. The hidden layer is one or multiple. The number of 

neurons in the input layer is usually equal to the number of input variables. 

The number of output layer neurons is usually the same as the target variable 

number. The number of neurons in the hidden layer is determined by trial and 

error. Larger numbers of neurons in the hidden layer give the network more 

flexibility because the network has more parameters it can optimize. But if the 

hidden layer is set too large, it might cause the problem to be under-

characterized and optimize too much parameter to constrain them. So the 

perfect number of neurons in the hidden layer is according to the optimization 

performance. 

(6) Learning function:  

Here it is the learngdm that used in this paper, which is gradient descent with 

momentum weight/bias learning function. Gradient descent with momentum 

allows a network to respond not only to the local gradient, but also to recent 

trends in the error surface. With momentum a network can slide through a 

shallow local minimum. This learning function depends on two training 

parameters: learning rate (lr) and momentum constant (mc). 

(7) Activation function:  

The activation function defines how the net input received by a neuron is 

combined with its current state of activation to produce a new state of 

activation. These transfer functions that are most commonly used are linear 

transfer function (purelin) and sigmoid type functions such as the logistic (log) 

and hyperbolic tangent functions (tan). The output layer with the three transfer 

functions lets the network produce values in the range -∞ to +∞, 0 to 1, and -1 

to +1, respectively. Generally, the same transfer function is used in all layers. 
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In this work, the tan-sigmoid activation function was used with the following 

formula: 
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(8) Error function:  

The error function is the function that is minimized during training. The 

representative error functions are root mean squared error (RMSE), mean 

squared error (MSE) and correlation coefficient (R). Here the mean squared 

error (MSE) function was used to display the performance of the ANN model 

through the Matlab toolbox. We could know the difference between 

normalized target values and model predicted values through the MSE. The 

correlation coefficient R, which is also got directly from the Matlab program, 

was used to show the correlation between normalized target values and model 

predicted values. The last root mean squared error (RMSE) function shows the 

difference between the measured values and the model predicted values. Here 

the analysis of the ANN and ANN&PCA hybrid model performance will be 

hampered by the large standard deviations for R and MSE.   

                 
( ) NYYRMSE

N

n
PM /

2

1
å
=

-=
 

                 ( ) NYYMSE
N

n
PM /

2

1
å
=

-=  

where,   

      YM: model predicted value; 

      YP: measured value;  

         N: data points; 

(9) Training:  

The function train carries out a loop of calculation, proceeding through the 
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specified sequence of inputs, calculating the network output, error, and 

network adjustment for each input vector in the sequence as the inputs are 

present. Training proceeds through repeated presentation of data patterns to 

the ANN and subsequent weight modification until the prediction error is 

sufficiently small, as defined by the user, or until a maximum number of 

iterations have been reached. The training consisting of the following steps:  

1) initialize of the connection weights of the network; 

2) select a sample from the training data set as the input of the network; 

3) calculate the output value or output vector of the network; 

4) calculate the errors of the network; 

5) adjust the connection weights from the output layer back to the input layer; 

6) repeat 3), 4), 5) until the errors are acceptable; 

(10) Validation: 

Once the training phase has been completed, the performance of the trained 

network has to be validated on an independent data set. Because the function 

train doesn’t guarantee that the resulting network does its job and it is not 

sufficient to evaluate a model by testing the prediction capability for the data 

used for model construction. Verification of prediction capability for the data 

that is not used for setting up the model has to be followed. In addition, the 

decision of initial weights is an important step of using back-propagation 

neural network program during the training and validation phases. In the same 

back-propagation neural network, the connection weights will be the same 

when the training is accomplished with the same initial values. And different 

initial weights will lead to different connection weights. It is best to training 

several times with different initial weights until the errors of the network are 

acceptable. 
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2.3 Principal Component Analysis  

 

As in any prediction/forecasting model, the selection of appropriate model 

inputs is extremely important. However, in most ANN applications, little attention 

is given to this task. The main reason for this is that ANNs belong to the class of 

data driven approaches, whereas conventional statistical methods are model 

driven. Though ANN has the ability to determine which model inputs are critical, 

presenting a larger number of inputs to ANN model and relying on the network to 

determine the critical model inputs usually increases network size and bad results.  

Principal component analysis (PCA) is a conventional statistical method for 

data preprocessing. It’s also a factorial method because the number of the 

variables reduction is not effected by a simple selection, but constructing new 

synthetic variables obtained by combining initial variables. The PCA proceeds by 

reduction of the variables space dimension while eliminating correlations between 

initial variables.  

When P quantitative variables X1, X2…Xp are correlated, the expressed 

information is characterized by some redundancy. PCA extracts a non-redundant 

list of K new variables or factors Y1, Y2…Yk (k≤p) from a redundant list of p 

variables X1, X2…Xp. The non-redundancy condition of the factor list Y1, Y2…Yk 

(k≤p), each factor explains a part of the variability observed on the original 

variables. It makes it possible to summarize the information contained in the p 

initial variables thanks to a number of factors lower than p. This represents an 

appreciable information compression. Any correlation matrix R (p×p) can be 

analyzed and decomposed with PCA. And then we could choose the eigenvectors 

to make the new variables or factors, namely PCs, according to the larger 

eigenvalues of the correlation matrix.  

Here the calculation process of this method is described in detail as follows. 
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Step 1: get some data sets; take 3 water quality parameters as example, X1, X2, and 

X3. Step 2: subtract the mean; each parameter Xi minus X
_

i and then these are used 

as new vectors for matrix A. For PCA to work properly，step 2 is necessary and 

this produces a data set whose mean is zero. Step 3: calculate the covariance 

matrix. Through this step we could get the covariance matrix R from the matrix A 

through covariance formula, as follows:  

)1(

))((

)var( 1

-

--

=
å
=

n

xxxx

x

n

i
iiii

 

)1(

)()(

),cov( 1

-

--

=
å
=

n

yyxx

yx
ii

n

i
ii

 

Where,  

xi, yi: vectors of matrix A; 

 x
_

i, y
_

i: mean values of xi, yi ; 

And the covariance matrix is available in the following type 
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Step 4: calculate the eigenvalues and eigenvectors of the covariance matrix; since 

the covariance matrix is square, we can calculate the eigenvalues and eigenvectors 

for this matrix. These are rather important as they tell us useful information about 

the data sets. Step 5: form a feature vector and derive new data sets; here is where 

the notion of data compression and reduced dimensionality comes into it. The 

eigenvector with the highest eigenvalue is the principal component of the data set. 

In this example, the eigenvectors with the larger eigenvalues are the ones that 

point down the middle of the data, which is the most important relationship 
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between the data dimensions. Then choose the eigenvectors with the larger 

eigenvalues to form a feature vector according as the predefined 95% selection 

principal. At last, the new data set is available by taking the transpose of this 

feature vector and multiplying it on the left of the original mean-adjusted data set 

transposed. This new data sets are just the PCs that we need to train and evaluate 

artificial neural network model. With the biggish eigenvalues principal, we ignore 

and left out some components of less significance. Then the final data sets will 

have fewer dimensions than the original not losing much information.        

These PCs could capture the main trend of the data. And PCA can minimize 

the influence of noise and outlier, which will cause the over-fitting problem easily 

for ANN model. So the hybrid model ANN&PCA could get a better prediction 

theoretically.  

 

2.4 Model Development Process Steps  

 

A number of steps were carried out during the model development process. 

These are shown schematically in Fig. 2.3. The ANN model shares many of the 

attributes and steps relevant to other models of the non ANN types.   
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Fig. 2. 3 Steps of the model development process 

 

2.4.1 Data collection  

 

To develop successful ANN models of wastewater treatment processes, 

careful attention must be paid to the details of data collection and analysis, such as 

the format and reliability of the data. In collecting data, several factors need to be 

considered. First, the availability of the data must be ascertained. For data 

availability, the variables for which historical data exist, the time frame of 

historical measurements, and the frequency of data measurements must all be 

determined. The format and reliability of the data are also key considerations in 
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data collection. Historical data can originate from grab-samples or real-time 

measurements, and measurements can be discrete or aggregated from a number of 

samples. The reliability of the data should be ascertained through an examination 

of quality assurance and quality control protocols. Finally it is of considerable 

importance to note any process changes that may have been implemented during 

the time frame for which data are available. With the above considerations in 

mind, it is important to delineate a number of guidelines for selecting data to be 

used in ANN modeling. First and foremost, data for each of the variables known 

or suspected to affect the process being modeled must be available. The quantity 

of data required to develop a model is site specific and is affected by seasonal 

fluctuations and the frequency of process upsets. As such, it is important to ensure 

that the data are fully representative of the range of conditions that can be 

expected during periods of routine and upset operations. As a general guideline, at 

least one full cycle of data must ne available to ensure a representative data set. 

With respect to the format of the data, the variability of the process as well as data 

availability will dictate whether to use hourly data, daily average, or some other 

frequency for each of the variables. Successful process models can often be made 

using the daily average or some daily percentile value of each of the model 

variables. With respect to the effect of major process change on data collection, 

data collected prior to major process conditions. Finally to maintain the integrity 

of the data set, appropriate quality assurance and quality control protocols for the 

collection of each model variable must be in place.         

The available data for the South Wastewater Treatment Plant were carefully 

investigated. It was decided to relate the outputs of the primary settlement tank 

(PST) effluent to the inputs of the influent and PST influent stream, and the 

outputs of the secondary settlement tank (SST) effluent quality to the aeration 

tank (AT) conditions. Therefore, measurements of the Q, PH, T, BOD, COD, SS, 
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TN, TP in the influent, PST, AT and SST stream were collected over a one-year 

period. This period was satisfactory as it covers all probable seasonal variations in 

the studied variables. The schematic diagram of the plant is shown in Fig. 2.1. 

 

2.4.2 Data preprocessing 

 

Once an appropriate historical data set has been selected, it should be fully 

characterized and subjected to a comprehensive statistical analysis. Data 

characterization involves a qualitative assessment of hourly, daily, and seasonal 

trends of each potential model variable. The statistical analysis involves the 

determination of measures of central tendency, measures of variation, and a 

percentile analysis, as well as the identification of outliers, erroneous entries, and 

non-entries for each data available. In combination, the data characterization and 

statistical analysis help to identify the boundaries of the study domain as well as 

potential deficiencies in the data set.   

ANN modeling also requires data of good quality that reflect the dynamic of 

target system accurately. However, it’s often hard to get from real wastewater 

treatment processes, so noise and measurement error is the main obstacle in 

setting up an ANN model based on the raw measured data. Therefore, data 

preprocessing is necessary for ANN models to get a better prediction. Each data 

pattern should initially be examined for erroneous entries, outliers and blank 

entries because of the transcription or transposition or experimental errors or 

human errors. Data refining was performed on the raw experimental data by 

excluding all outliers which were unusual points.  

First, clip noise data by removing measurements that were not within the 

range of ±3σ, namely Upper Limit Control (ULC) and Low Limit Control (LCL):   
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sAXUCL +=  

                          sAXLCL -=  

Where, 

X: mean value; 

      σ: standard deviation; 

      A: constant (here 3); 

Table 2.1~Table 2.4 shows the water parameters’ statistical property of 

Influent, Primary Settlement Tank, Aeration Tank and Secondary Settlement 

Tank: 

 

Table 2. 1 Statistical properties of influent composition 

 

Q Tem PH BOD COD SS TN TP 
 

m3/d ℃  mg/l mg/l mg/l mg/l mg/l 
Min 241920 5.9 6.9 45.7 15.7 37 11 0.8 
Max 440780 27 7.9 123.6 74.3 142 45 4.8 
Mean 326084 17.7 7.3 93 45.5 93 26 2.7 
Std 37007 5.9 0.13 12 8.0 17 4.8 0.4 

 

Table 2. 2 Statistical properties of PST composition 

 

Tem PH BOD COD SS TN TP 
 

℃  mg/l mg/l mg/l mg/l mg/l 
Min 2.7 6.7 48.6 22.5 51 12.5 12.5 
Max 26.8 7.9 158 105.4 192 48.3 48.3 
Mean 17.7 7.3 109 58 118 28.8 28.8 
Std 5.8 0.1 18.7 13 25.8 5.7 5.7 
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Table 2. 3 Statistical properties of AT composition 

 

Tem PH DO MLSS SVI SV 
 

℃  mg/l mg/l   
Min 9 6.3 0.7 1184 77.4 10.6 
Max 27.2 7.2 6.4 2156 164.8 31.2 
Mean 18.7 6.5 2.3 1640 127 20.8 
Std 5.7 0.1 0.8 164 16 3.8 

 

Table 2. 4 Statistical properties of SST composition 

 

Tem PH BOD COD SS TN TP  
℃  mg/l mg/l mg/l mg/l mg/l 

Min 6.8 6 1.1 3.5 0.4 7.3 0.9 
Max 27 7.4 10.8 14.8 8.7 20 1.8 
Mean 18.4 6.7 5.9 8.9 2.5 15.2 1.5 
Std 5.7 0.2 2.6 2.1 1.1 2.6 0.2 

 

Where,  

Tem: temperature;  

Min: minimum value;  

Max: maximum value;  

Std: standard deviation; 

Secondly, various statistical manipulations can be performed in order to 

decipher trends in the data series. These are known as smoothing techniques and 

are designed to reduce or eliminate short-term volatility in the data. A smoothed 

series is preferred to a non-smoothed one because it can capture changes in the 

direction of the time series better than the unadjusted series; in addition, data 

smoothing eliminates the undesirable effect of possible noise in the process data. 

The conventional moving average technique was calculated for certain time series 

by consolidating the available data points into longer units of time; namely an 
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average of several historical data points. The formula of 5-day Moving Average 

Technology is  

5/)( 2112 ++-- ++++= iiiiii XXXXXX  

Where,  

Xi: measured variable;  

i: current time period;  

5: number of time periods in the average; 

In most cases, researchers use three-, four- or five-point moving averages. Here 

the five degree moving average, which is proved to be an appropriate value, was 

used to generate smoothed data from the raw data. 

Next, it is the data scaling in the data preparation procedure, namely zero-

mean normalizing. This is a standard procedure for the neural networks data 

preparation. The main objective here is to ensure that the statistical distribution of 

the values for each net input and output is roughly uniform. In addition, the values 

should be scaled to match the range of the input neurons. The data sets usually 

scaled so that they always fall within a specified range or they are normalized so 

that they have zero mean and unity standard deviation, using the following 

formula: 

)/()( min,max,min, iiiii XXXXX --=  

Where,  

Xi: measured value； 

Xi,max: maximum value; 

Xi,min: minimum value; 

 

2.4.3 Data division 
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The data distribution between learning and validation phases is significant. 

Because it is not sufficient to evaluate a model by testing the prediction capability 

for the data used for model construction. Verification of prediction capability for 

the data that is not used for setting up the model has to be followed. The training 

set is the largest and is used to train the model. The validation set is used as an 

independent validation of the model following training. Without the validation set, 

the model would simply memorize the interactions present in each of the training 

patterns and would not be able to provide accurate prediction on data from outside 

the training set. If the majority of the available data is used during the learning 

phase, the quantity of data usable to test its effective will be tiny and consequently 

non-representative of the whole distribution. Then, the performance will not 

characterize the learning smoothness. On the other hand, if the majority of data is 

used during the validation phase, the learning will be certainly very rough and the 

network generalization capability limited.   

Most ANN software packages periodically process the validation set through 

the model during the training to ensure that memorization does not occur. The 

trained model is applied to the validation data set patterns, to which the model has 

not been exposed, and an assessment of the accuracy of prediction is made. In our 

study, the data sets were divided into two subsets in the ANN and the hybrid 

model. That is, 200 data sets and 164 data sets were used for model learning and 

model evaluation, respectively.     
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III. Results and Discussions 

 

 

3.1 Prediction of Primary Settlement Tank Effluent 

 

3.1.1 Prediction by an artificial neural network model   

 

The modeling and simulation of physical and chemical process have been 

developed using ever more complex deterministic models, due to the recent 

evolution of personal computer. However, some circumstance makes application 

of these models impossible. For example, this is the case when some of the data to 

be used in the model is too difficult to obtain or when the model is very complex 

and requires a lot of simplification. Some studies that use neural networks to solve 

these kinds of problems have been published. Neural networks, a statistical tool 

for data analysis, could be applied to establish a relation between variables 

describing a process state and different measured quantities. This depends, in a 

not always obvious way, on the predictive variables used. The principal 

characteristic of neural networks is their capability to automatically establish 

relations between variables by means of a mechanism called training or learning. 

Neural networks are designed for a specific application and, after a training phase, 

able to generate a prediction, applying the relationship developed during the 

training period. Artificial neural network models make it impossible to develop 

non-linear empirical correlations. It is thus possible to connect a set of input 

variables, Pi (1≤i≤I), with a set of output variables, Yk (1≤k≤K), assuming 

that we have N relevant experimental values for the couples [Pi, Yk]n (1≤n≤N). 
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A neural network used here is FBNN that is a feed-forward back-propagation 

neural network with LM algorithm. Network architecture determines the number 

of connection weights (free parameters) and the way information flows through 

the network. Determination of appropriate network architecture is one of the most 

important but also one of the most difficult tasks in the model building process. 

Traditionally, optimal network architecture, including the optimum number of 

hidden layers, the optimum number nodes in each layer, the optimum number of 

epochs, and the optimum value of the internal parameters and so on, has been 

found by trial and error. In view of the multiple factors and parameters affecting 

complete WWTP process, a trial-and-error procedure is commonly used until each 

model architecture design has been found with minimal error.  

As in all empirical models, the users must bear in mind that the regression 

models quality Y=f (P), will depend on the relevance and the quality of the 

available experimental data used during the training phase. Moreover, getting a 

good prediction over a some given points with a regression model, does not 

guarantee an important generalization capability or a good prediction for a new 

number of couples [Pi, Yk]m (N+1≤m≤M). Keeping this in mind, a neural 

network must establish general mechanisms and be able to adapt them 

continuously to new and unknown situations by means of recalibration procedures.  

Therefore, it is not sufficient to evaluate a model by testing the prediction 

capability for the data used for model construction. Firstly, all 200 data sets are 

used for modeling and then the prediction capability of the model is evaluated by 

root mean square error (RMSE), R-square (R2) and average relative difference 

(ARD). As a second step, the remaining 164 data sets are used for verifying the 

prediction capability of the model, in the same way evaluating by RMSE, R2 and 

ARD. Fig. 3.1.1 represents the whole used ANN procedure. 
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Fig. 3.1. 1 General scheme of the prediction ANN stages 

 

To reach the suitable network architecture, several trials for each parameter 

have been conducted until the suitable number of hidden layer, number of neurons 

and epochs were determined, as shown in Table 3.1.1. The suitable architecture is 

the one which produced the minimal error term in both training and validating 

data. 

 

Table 3.1. 1 Model architectures and prediction results by ANN 

 

Architecture R2 RMSE ARD Target 
I-H1-H2-O-E MSE train validation train validation train validation 

BOD 8-5-0-1-300 0.002 0.96 0.86 2.12 6.74 0.03 0.114 
COD 8-5-0-1-100 0.001 0.99 0.92 1.17 2.94 0.03 0.086 

SS 8-5-0-1-300 0.002 0.98 0.78 2.38 8.86 0.03 0.132 
TN 8-3-3-1-100 0.001 0.99 0.90 0.91 3.01 0.02 0.092 
TP 8-5-0-1-300 0.002 0.96 0.89 0.16 0.36 0.04 0.091 

 

Where, 

I-H1-H2-O-E: Input layer--Hidden layer1--Hidden layer2--Output layer--Epoch;  

MSE: Mean Square Error (to show the model performance); 

R2: Correlation Coefficient (to show the correlativity between the normalized 

pretreatment 
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targets and the model outputs); 

RMSE: Root Mean Square Error (to show the difference between the measured 

data and the model predicted data); 
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Where, 

      YM: measured value;  

      YP: predicted value; 

      N: data point; 

As the Table 3.1.1 said, we applied the single and multi-layer feed-forward 

back-propagation neural network model for the prediction of BOD, COD, SS, TP 

and TN respectively. The situation is quite different if non-linear hidden neurons 

are inserted between the input and output layers. In this case, it seems natural to 

assume that the more layers are used, the greater power the networks processes. 

However, it is not the case in practice. According to our trials, an excessive 

number of hidden layers often proves to be unproductive. It causes slower 

convergence in the back-propagation learning because intermediate neurons not 

directly connected to output neurons have very small weight changes and learn 

very slowly. The error signals are numerically degraded when propagating across 

too many layers; extra layers tend to create additional local minima. Thus, it is 

essential to identify the proper number of layers. According to our tests, the single 

and two-hidden-layer were used for the prediction of BOD, COD, SS, TP and TN 

respectively in the present study. And the number of neurons placed in the 

network hidden layer and the number of iterations completed during the training 
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phase were also considered during every trial, due to the influence on the learning 

phase. The number of neurons placed in the network hidden layer and the number 

of iterations completed during the training phase are very important user-definable 

parameters. Although the relationship between the network performance and its 

hidden layer size is not well understood, a principle can be used as a guide: the 

principle of generalization versus convergence. Generalization means the network 

ability to produce good results with a data set that has not been used during the 

network learning phase. Convergence is the ability to learn the training data. As 

mentioned before, the trial-and-error method was used to find the proper network 

model architecture for each predicted target in our study.       

Fig. 3.1.2~Fig. 3.1.6 represent the training and validation results of the 

proposed neural network for these water quality parameters, respectively. 

Thereinto, the training and validation prediction results are separated by the line.  
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Fig. 3.1. 2 Prediction of BOD with ANN in the primary settlement tank 
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Fig. 3.1. 3 Prediction of COD with ANN in the primary settlement tank 
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Fig. 3.1. 4 Prediction of SS with ANN in the primary settlement tank 
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Fig. 3.1. 5 Prediction of TN with ANN in the primary settlement tank 
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Fig. 3.1. 6 Prediction of TP with ANN in the primary settlement tank 
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As shown in Table 3.1.1, during the training phase, the RMSE ranged from 

0.16 to 2.38, and the R-square ranged from 96% to 99%. The narrow bound of 

error measures throughout all training groups and for the five modeled parameters 

is an indication of the ANN’s robustness in model training. However, the RMSE 

and the R-square for the testing phase ranged from 0.36 to 8.86 and 78% to 92%, 

respectively. The model prediction for validation is not satisfying, especially SS 

and BOD with 8.86, 78% and 6.74 and 86%, respectively. And also the average 

relative difference of this two modeled parameters, SS and BOD, has exceeded 

10%, but not exceed 15%, which is acceptable within the allowable range in the   

practical, while others are all lower than 10%, as shown in Table 3.1.1. It is 

considered that for BOD and SS, this not good validation prediction capability of 

ANN is probably due to its over-fitting problem. The over-fitting problem that can 

occur during the learning phase has an extremely negative effect on the network 

generalization capability, which becomes unable to predict good behaviors. Over-

fitting usually arises due to too much training for noise data and outliers. 

Pretreatment cannot remove the noise within the data completely. This 

enhancement of prediction capability can be accepted as a result of data 

preprocessing with principal component analysis (PCA). It is thought that PCA 

can minimize the influence of noise and outlier, by capturing the main trend of the 

data set. The prediction procedure in the next section thus utilizes a PCA in order 

to optimize the neural network training. 

 

3.1.2 Prediction by a hybrid artificial neural network model  

 

As mentioned above, the data treatment by principal component analysis 

(PCA) is carried out to improve the necessary effectiveness of the neural network 

learning phase. The hybrid artificial neural network just means an artificial neural 
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network combining principal component analysis. As part of the prediction 

procedure, PCA is used in order to reduce the number of network inputs. The set 

of variables is used for its predictive character and the PCA enables to reduce its 

dimension in order to support the network learning process without notable 

information loss. The technique was applied to each of data group, used to predict 

the five effluent parameters in primary settlement tank. The data file is composed 

of influent (k), primary settlement tank influent (k), primary settlement tank 

effluent (k-1). These quantitative variables have a high degree of correlation and 

thus a redundant character. The PCA allows us to extract from this set of 

correlated variables a non-redundant list of new synthetic variables. These 

synthetic variables are linear combinations of the initial quantitative variables. 

They make it possible to minimize the risks of over-fitting which often and easily 

happened in ANN model. The prediction result by ANN model in the preceding 

section also exemplified it.  

In the same way, all 200 data sets are used for model constructing and the 

remaining 164 data sets are used for model validation, and also the performance 

function used for training and validation is evaluated in terms of error 

measurement root mean square error (RMSE), R-square and average relative 

difference (ARD). Fig.3.1.7 represents the whole used ANN&PCA procedure.  
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Fig. 3.1. 7 General scheme of the prediction ANN&PCA stages 

 

The 8 wastewater quality parameters, the same inputs to the 3.1.1 section, are 

reduced to five principal components (PCs), which become inputs of ANN. 

According to the obtained results, shown in Table 3.1.2 and Table 3.1.3, the 

number of preserved synthetic variables can vary but must always be 

representative of the information expressed by the set of initial variables. For 

Table 3.1.2 used for prediction of BOD, COD and SS, the first five principal 

components which express 96.19% of the system total variance are preserved. 

That means 96.19% of the variation within the data can be explained by this five 

PCs. It is important to emphasize that more than 60% of this total variance is 

expressed by the first principal component alone. The three principal components 

not selected to form part of the new synthetic data file express 2.02%, 1.02% and 

0.77% of the original variance, respectively. Their contribution is thus very low. 

The five new definite synthetic variables allow us to reduce considerably the data 

file dimension used for its predictive character, while preserving the information 

large majority. Table 3.1.3 presents the variance expressed by each of the 8 

principal components using data sets II for TN, TP. We also preserve for data sets 

II the first five principal components which express 95.11% of the system total 

variance. The first principal component express almost 70.25% of the total 
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variance, whereas not selected components express only 2.79%, 1.56% and 0.94% 

of this variance. As for data sets I, the five synthetic variables obtained by PCA 

make it possible to significantly reduce the data file dimension.   

   

Table 3.1. 2 Eigenvalues of the correlation matrix I for BOD, COD, SS 

 

PC Eigenvalue 
Contribution 

(%) 
Cumulative  

(%) 
Used 

PC1 95.80 75.27 75.27 Yes 
PC2 9.51 7.47 82.74 Yes 
PC3 8.19 6.45 89.18 Yes 
PC4 5.91 4.64 93.83 Yes 
PC5 3.00 2.36 96.19 Yes 
PC6 2.57 2.02 98.20 No 
PC7 1.30 1.02 99.23 No 
PC8 0.98 0.77 100 No 

 

Table 3.1. 3 Eigenvalues of the correlation matrix II for TN, TP 

 

PC Eigenvalue 
Contribution 

(%) 
Cumulative 

(%) 
Used 

PC1 75.91 70.25 70.25 Yes 
PC2 11.16 10.32 80.58 Yes 
PC3 6.93 6.41 86.99 Yes 
PC4 5.14 4.76 91.75 Yes 
PC5 3.63 3.36 95.11 Yes 
PC6 2.79 2.58 97.69 No 
PC7 1.56 1.44 99.13 No 
PC8 0.94 0.87 100 No 
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Fig. 3.1.8~Fig. 3.1.12 represent the training and validation results of the 

ANN&PCA hybrid neural network for these wastewater quality parameters, 

respectively. Thereinto, the training and validation phases are separated by line. 
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Fig. 3.1. 8 Prediction of BOD with ANN&PCA in the primary settlement tank 
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Fig. 3.1. 9 Prediction of COD with ANN&PCA in the primary settlement tank 
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Fig. 3.1. 10 Prediction of SS with ANN&PCA in the primary settlement tank 
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Fig. 3.1. 11 Prediction of TN with ANN&PCA in the primary settlement tank 

 

 



 

 40 

 

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361

sample(day)

T
P
(
m
g
/
l
)

Predicted TP Measured TP

 

 

Fig. 3.1. 12 Prediction of TP with ANN&PCA in the primary settlement tank 

 

Table 3.1. 4 Model architectures and prediction results by ANN&PCA 

 

Architecture R2 RMSE ARD Target 
I-H1-H2-O-E MSE train validation train validation train validation 

BOD 8-5-0-1-300 0.003 0.96 0.97 3.66 5.33 0.04 0.078 
COD 8-5-0-1-100 0.002 0.97 0.95 1.67 2.62 0.04 0.077 

SS 8-5-0-1-300 0.003 0.98 0.88 2.96 5.86 0.05 0.119 
TN 8-3-3-1-100 0.002 0.96 0.94 1.48 2.18 0.04 0.070 
TP 8-5-0-1-300 0.002 0.96 0.93 0.17 0.28 0.04 0.083 

 

As shown in Table 3.1.4, during the training phase, the RMSE ranged from 

0.17 to 3.66, and the R-square ranged from 96% to 98%, similar to the training 

phase by ANN. The RMSE and the R-square for the testing phase ranged from 

0.28 to 5.86 and 88% to 97%, respectively. The model prediction of training phase 

by ANN&PCA is similar to the one by ANN. However, the model prediction of 

validation phase by ANN&PCA is much better than the one by ANN, especially 

BOD and SS. With the same model architecture to ANN, the hybrid ANN model 
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that integrates the PCA reduced RMSE to 5.33 from 6.74 for BOD and from 8.86 

to 5.86 for SS. A point must be noted that all the average relative difference is 

lower than 9%, expect for SS with the value of 11.9%, a little more than 10%. The 

results obtained from this ANN&PCA hybrid model indicate that it is capable of 

producing accurate predictions over the range of the data used for model 

calibration.     

 

3.2 Prediction of Secondary Settlement Tank Effluent 

 

3.2.1 Prediction by a hybrid artificial neural network model 

 

The prediction tests carried out showed that a too large number of variables 

used as network inputs, combined with a too restricted number of data sets has a 

negative impact on the network training process and favors over-fitting. The 

reduction of the data file dimension used for the training phase could also be 

obtained by eliminating several variables but this would be to the detriment of the 

information they express. 

As mentioned before, the prediction results indicate that the hybrid ANN is 

valuable among the various techniques. In this section, the coupling of the hybrid 

neural network model to the activated sludge systems that are the most 

extensively used in wastewater treatment plants was used. In an activated sludge 

process, the wastewater, which contains organic matter, suspended solids and 

nutrients, enters an aerated tank where it is mixed with biological floc particles. 

After a sufficient contact time, this mixture is discharged into a settler that 

separates the suspended biomass from the treated water. Most of the biomass is 

recirculated to the aeration tank, while a little amount is purged daily (see Fig. 

2.1).     



 

 42 

Biological wastewater treatment processes are commonly used to treat 

municipal and industrial wastewaters, in despite that it is really difficult to 

understand, and thus difficult to be correctly operated and controlled. Special 

attention has been paid to biological processes modeling, both for wastewater 

treatment and sludge stabilization processes. Operational difficulties in 

wastewater treatment plants are often encountered. Increased regulation and 

operational difficulties of wastewater treatment plant has resulted in increased 

need for tools to evaluate the organic matter and nutrient-removal capabilities of 

wastewater treatment processes. As a consequence, a task group pointed by the 

International Water Association developed a mathematical model of the activated 

sludge process, Activated Sludge Model No.1, considered the processes of 

organic substrate removal, nitrification and denitrification. The task force further 

added phosphorus removal to the model and published the result as Activated 

Sludge Model No.2. Activated Sludge Model No.1 was later modified to develop 

Activated Sludge Model No.3 in 1999. Reliable performance evaluation treatment 

plants can be done by simulating the plant behavior over a wide range of influent 

disturbances, including series of rain events with different intensity and duration, 

seasonal temperature variables, holiday effects, etc. Such simulation-based 

WWTP performance evaluations are in practice limited by long simulation time of 

the mechanistic WWTP models.  

Activated sludge process is difficult to operate and control because of its 

complex operational behavior and usual significant process disturbances. And 

little work has been reported on addressing this operational problem because of its 

difficulty for acquiring operational knowledge that is well described and 

formulated for an activated sludge process. It is known that most of the problems 

of poor activated sludge effluent quality result from the inability of the secondary 

settler to efficiently remove the suspended biomass from the treated water. Owing 
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to the complex interaction caused by the recycle of sludge from the secondary 

settlement tank to the aerator, the operational behavior of activated sludge process 

is usually very complicated. To increase safety and improve operating 

performance of this biological wastewater treatment process, it is important to 

develop computer operational decision support systems. Operation, control and 

supervision of WWTP have been approached from many different points of view, 

including classical control methods, mechanistic models, knowledge-based 

systems, case-based reasoning, neural nets and hybrid approaches.  However, a 

direct cause-effect relationship for WWTP performance has been established only 

in s few cases and even in those, experimental results could lead to contradictory 

conclusions, avoiding the formulation of deterministic cause-effect relationship 

that could be used as prediction models. The identification of a model to predict in 

real-time with reasonable accuracy for the effluent quality parameters is therefore 

of great practical important. The intelligent computing system is able to assist 

ordinary operators to work at the level of domain expert in daily operation. The 

method used here is the artificial neural network, which is powerful because it can 

learn to represent complicated data patterns or data relationship between input and 

output variables of the system being studied. Nevertheless, it has limitations in 

performing heuristic reasoning of the domain problem. That means ANN are able 

to learn complex nonlinear between inputs and outputs of the activated sludge 

process to capture the knowledge, but are not able to help improve the heuristic 

understanding of the operational problems. In order to strength the extendibility of 

ANN model prediction, here some data values, getting from the ASM model were 

used to train the artificial neural network, together with the raw data from the 

wastewater treatment plant. As an alternative to activated sludge models, a hybrid 

neural network was used to model this strongly non-linear nature of the biological 

process. The flow of coupling of the artificial neural network to the activated 
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sludge model used in this section is shown in Fig. 3.2.1.  

 

 

 

 

Fig. 3.2. 1 Scheme of the proposed hybrid ANN model procedure 

 

Here some dissolved and particulate components, together with some raw 

material data, are used to characterize the influent wastewater or sludge and the 

active biomass. Table 3.2.1 gives us some detail information of the input variables 

for each wastewater quality parameters’ prediction.

Table 3.2. 1 Inputs and output targets for the ANN 

 

Targets Inputs 
BOD(k) T(k), BOD(k-1), COD(k-1), SS(k-1), S_S, X_S, X_H, X_A 
COD(k) T(k), BOD(k-1), COD(k-1), SS(k-1), S_S, X_S, X_H, X_A 
SS(k) MLSS(k), BOD(k-1), COD(k-1), SS(k-1), S_S, X_S, X_H, X_A, X_I 
TN(k) COD(k-1), TN(k-1), S_NO, X_ND, X_H, X_A, X_P 
TP(k) MLSS(k), TN(k-1), TP(k-1), S_NO, X_P, S_ND 

 

WWTP raw data 

 

Aeration tank data 

 

ANN model 

Result 

Deterministic 

WWTP model ASM 
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Where,    

S_S: ready biological substrate; 

     X_S: slowly biological substrate; 

X_H: heterotrophic organisms; 

X_A: nitrifying organisms; 

X_I: inert particular organic material; 

S_NO: nitrate and nitrite nitrogen; 

S_ND: soluble biodegradable organic nitrogen; 

X_ND: particular biodegradable organic nitrogen; 

X_P: particulate products arising from biomass decay; 

k: present; 

k-1: one day before; 

Input-target training data are usually pretreated as explained in the above 

section in order to improve the numerical condition for the optimization problem 

and for better behavior of the training process. And also the data sets are normally 

divided into two subsets; training and validation subsets. The training subsets data 

are used to accomplish the network learning and fit the network weights by 

minimizing an appropriate error function. Back-propagation is the training 

technique usually used for this purpose. It refers to the method for computing the 

gradient of the case-wise error function with respect to the weights for a feed-

forward network. The performance of the networks is then compared by 

evaluating the error function. The validation subset data are then used to measure 

the generalization of the network (i.e. how accurately the network predicts targets 

for inputs that are not in the training subset data).  

Selecting network structure is a critical step in the overall design of ANN, 

although there is no widely accepted best method of developing ANN models. 
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When all the possible options in building the ANN model architecture are 

considered, an almost infinite number of distinct architectures are possible. As 

such, each model developer may use a different protocol to reduce the number of 

architectures that are evaluated. The structure must be optimized to reduce 

computer processing, achieve good performance and avoid over-fitting. Table 

3.2.2 shows the ANN architectures of all the five quality parameters and the 

training and validation prediction results. 

 

Table 3.2. 2 ANN architecture and prediction result 

 

Architecture R2 RMSE ARD 
Target 

I-H1-H2-O-E MSE train validation train validation train validation 
BOD 8-3-3-1-300 0.001 0.99 0.987 0.25 0.68 0.03 0.112 
COD 8-3-3-1-300 0.001 0.99 0.982 0.23 0.42 0.02 0.046 

SS 9-3-3-1-100 0.001 0.99 0.95 0.27 0.66 0.08 0.186 
TN 7-3-3-1-300 0.001 0.99 0.927 0.46 0.88 0.02 0.054 
TP 6-3-3-1-300 0.002 0.97 0.94 0.04 0.06 0.02 0.033 

 

The selection of the best number of hidden units depends on many factors. 

The size of the training set, amount of noise in the targets, complexity of the 

sought function to be modeled, type of activation functions used and the training 

algorithm all have interacting effects on the sizes of the hidden layers. There is no 

way to determine the best number of hidden units without training several 

networks and estimating the generalization error of each. Here a common method, 

trial and error method, was used to select the best ANN architecture for each 

wastewater quality parameter. As Table 3.2.2 shown, ANN architectures were 

selected according to the principal of minimum prediction error. 

Fig. 3.2.2~Fig. 3.2.6 gives us the prediction result for the five wastewater 

quality parameters, respectively. 
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Fig. 3.2. 2 Prediction of BOD with hybrid ANN in the secondary settlement tank 
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Fig. 3.2. 3 Prediction of COD with hybrid ANN in the secondary settlement tank 
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Fig. 3.2. 4 Prediction of SS with hybrid ANN in the secondary settlement tank 
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Fig. 3.2. 5  Prediction of TN with hybrid ANN in the secondary settlement tank 

 



 

 49 

 

0.8

1

1.2

1.4

1.6

1.8

2

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361

Predicted TP Measured TP

 

 

Fig. 3.2. 6 Prediction of TP with hybrid ANN in the secondary settlement tank 

 

Fig 3.2.2 to Fig. 3.2.6 shows the training and validation prediction 

performance for the five modeled targets. From these figures, we could know that 

the modeled values were followed well in the direction of the measured values. As 

shown in Table 3.2.2, all of the R-squares, including training and validation 

phases, are above 93%. And the root mean square error values are also lower. 

Especially for COD, TN and TP, the average relative difference values are lower 

than 5%, although the value for BOD is a little more than 10%. But in evidence, 

the average relative difference value for SS is much more than 10% indubitably, 

even exceeding our allowable practical limitation 15%. This is probably because 

of the noise problem within the raw data from the WWTP. 

Looking over the result Table 3.1.1, Table 3.1.4 and Table 3.2.2, it is possible 

to know that effluent parameters COD, TN and TP, the average relative error 

made during learning and validation phases is very weak, lower than 10% for the 
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primary settlement tank and for the secondary settlement tank it is even lower 

than 5%. These parameters have weak variations which make easier their 

estimations. And also for the BOD in our study, it is a little more than 10% 

including the primary and secondary settlement tank. However, without a doubt, 

the error levels show that SS prediction is more difficult than others. Investing this 

reason, this is probably not because of possible shortcomings in the modeling 

technique, but because of possible shortcoming in the data used for model 

development, or the erroneous data used.        
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IV. Conclusions 

 

 

Modeling a WWTP is difficult to accomplish due to the high nonlinearity of 

the plant and the non-uniformity and variability of the crude supply as well as the 

nature of the strongly complex biological treatment. An ANN modeling approach 

was implemented to solve this problem and to discover the interdependence of 

input-output variables. The plant input-output data were used to predict the plant 

behavior. The modeling approaches used in this study, namely artificial neural 

network model and hybrid artificial neural network model, gave comparable 

predictions of the wastewater treatment plant performance.  

In the first section, a prediction procedure was presented based on a 12-

month-data set, to obtain BOD, COD, SS, TN, TP estimation for WWTP primary 

settlement tank effluent. Some parameters are not directly measurable and can not 

be evaluated by laboratory analysis which can be relatively long. Their estimation 

by neural network and hybrid neural network was carried out using past real data 

obtained from the South Wastewater Treatment Plant, Busan. Although the first 

neural network approach gave not very good predictions because of the over-

fitting problem, the error calculated is not exceeded 15%, the limited allowable 

practical range. During training of ANN, some degradation of prediction 

capability caused by over-fitting is frequently observed. Over-fitting usually arises 

due to too much training for the noise data. Pretreatment cannot remove the noise 

within the data completely. The following hybrid neural network approach that 

preprocesses inputs through PCA to ANN shows the most accurate prediction 

capability, as shown in Table 3.1.1 and Table 3.1.4, and root mean square error 
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and average relative difference of the hybrid artificial neural network model are 

all lower than that of artificial neural network during the training and validation 

phase, in the prediction of the primary settlement tank effluent. This indicates that 

the hybrid neural network is more capable of producing accurate predictions over 

the range of the data used for model calibration. It is confirmed that in modeling 

of the correlated noisy data, the preprocessing using PCA that enables to reduce 

the dimensionality of input variables is effective.  

In the complex biological treatment section, a hybrid neural network, 

combined with activated sludge models that are the most extensively used in 

wastewater biological treatment processes, was used to predict the secondary 

settlement tank effluent. From the result table, most of the five parameters are 

modeled well, except for SS with the average relative difference error exceeding 

out allowable practical limitation in this study. Determination of an appropriate 

model structure for biological treatment systems of industrial wastewater is a 

formidable task. It is not always clear whether the poor fit to the data owes to the 

structure of the model or to the estimation of model parameters or the input 

variables.  

When it is difficult to model a system by a separate approach due to 

nonlinearity and noise within data, the hybrid method that integrates the merits of 

different approaches can be a better alternative. Section 3.1 and section 3.2 

showed characteristics of hybrid artificial neural network and their applicability 

for the wastewater treatment system. The hybrid models provided a robust tool for 

the prediction in that the prediction error is acceptable in an allowable range. The 

limitation in data, however, should be highlighted. If more data were collected, 

and if the data were less noisy, this would have resulted in an improved predictive 

capability of the neural network. The main advantage of neural network is their 

ability to extract the underlying phenomena directly from historical plant data 
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whereas other artificial intelligence systems such as expert systems need human 

intervention to encode knowledge about the process. However, if the database is 

not sufficient, neural model could lead to erroneous interpolations, or restricted to 

a narrow range of operating conditions, neural model could lead to erroneous 

extrapolations. In either of these conditions, the using of neural network approach 

will be limited. The hybrid neural network models, combined with other 

approaches, are used mainly to improve the prediction quality of neural network 

and also weaken the influence of over-fitting. Nevertheless, the neural network 

and hybrid neural network are tools that are worth considerations in the prediction 

of WWTP. 
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요 약 

 

환경 규제가 점차적으로 강화됨에 따라, 하수처리장의 안정적이고 경제적인 

운전을 위한 ICA (Instrumentation Control and Automation) 기술들은 빠르게 발전해 

왔다. 개발된 대부분의 다른 모델들은 시간에 변화하는 많은 변수들을 가짐으로써 

보정하기 어럽다는 단점을 가지는 결정론적 모델들이었다. 

본 연구에서는 유출수 예측 모델의 필요성에 따라 공정으로부터 확보된 측정 

데이터를 기반으로 주어진 입력변수와 목표 변수 간의 변화 패턴만을 고려하여 

생성되는 Black-box 모델인 인공신경망을 사용하여, 실제 하수처리장의 1 차 침전지 

유출수질 뿐만 아니라 2 차 침전지 유출수질을 예측 할 수 있었다. 인공신경망은 그 

구조에 따라 Single Layer Feed-forward Network Multi-layer, Feed-back network 

recurrent network, self-organized network 으로 분류된다. 사용목적에 따라 적절한 

형태의 신경망 구조를 선택하게 된다. 유출수 예측이 목적이기 때문에 모델링과 예측 

분야에서 가장 일반적으로 사용되고 있는 feed-forward back-propagation 

network 을 사용하였다. 본 연구에서는 신호전달을 위한 전달함수로써 tan-sigmoid 

function 을 사용하였다. 그리고 역전파 알고리즘의 단점을 극복하고 더 빠른 학습이 

가능한 Levenberg-Marquart (LM) 알고리즘을 학습 알고리즘으로 사용하였다. 대상 

하수처리장에서 실제 측정된 2005 년 유입 수질 데이터들과 다른 데이터들을 
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수집하였고 전처리를 거친 200 개의 데이터을 예측 모델 개발을 위해 사용하였다. 

만들어진 신경망의 예측 성능을 검증하기 위해 나머지 164 개의 데이터를 사용하였다. 

1 차 침전지 유출수 예측의 경우에는 인공 신경망뿐만 아니라 결합성 신경망 모델을 

하였다. 2 차 침전지 유출수 예측에서는 IWA task group 에 의해 제안된 활성 슬러지 

모델 데이터와 포기조 안에 데이터들에 의해 만들어진 신경망을 사용하였다.  

따라서, 시행착오법 (Trial and Error Method)에 의해 적절한 신경망 의 구조와 

epoch 수를 바탕으로 만들어진 신경망을 일반화하기에 충분하게 가중치 값들을 

결정하였으며 상용소프트웨어인 MATLAB 에서 제공되는 neural network toolbox 를 

이용해서 모든 시뮬레이션 작업을 수행하였다. 
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