Thesis for the Degree Master of Education

Some Inclusion Properties for Certain Classes of Meromorphic Function

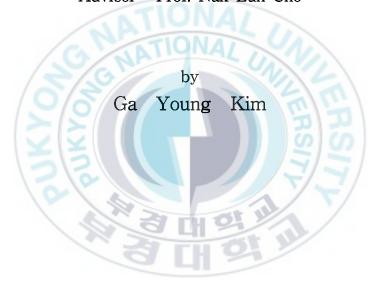
Graduate School of Education

Pukyong National University

August 2008

Some Inclusion Properties for Certain Classes of Meromorphic Function (유리형 함수족들에 대한 포함성질들)

Advisor: Prof. Nak Eun Cho



A thesis submitted in partial fulfillment of the requirement for the degree of

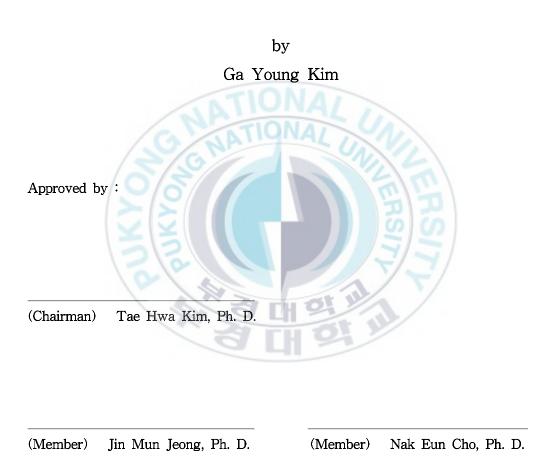
Master of Education

Graduate School of Education Pukyong National University

August 2008

Some Inclusion Properties for Certain Classes of Meromorphic Functions

A dissertation



August 27, 2008

CONTENTS

i

Abstract(Korean)		• • • • • • • • • • • • • • • • • • • •	····· ii
1. Introduction·····			1
2. Inclusion Properties	s Involving the	e Operator $I_{\lambda,\mu}$	3
3. Inclusion Properti		the Integral (
4. References · · · · · ·	3 CH 9	1 III	11

유리형함수들의 족들에 대한 포함성질들

김 가 영

부경대학교 교육대학원 수학교육전공

요 약

유리형 함수들의 다양한 기하학적 성질들에 관한 연구는 지금까지 많은 학자들에 의하여 연구되고 있다. 최근, Noor[8,11,12]는 개단위원 내부에서 정의된 해석함수들의 적분연산자를 소개하고 여러 함수족들을 정의하여 그들사이의 포함관계들을 연구하였다.

본 논문에서는 Noor에 의하여 소개된 적분연산자의 개념을 유리 형 함수들에도 확장하고, 이 새로운 연산자를 이용하여 새로운 유리 형 함수들의 족들을 소개하였다. 또한 Miller 와 Mocano [3,10]의 결과들을 응용하여 함수 족들에 대한 여러 가지 포함성질들을 조사하였으며 유리형 함수들의 적분 보존성질을 조사하였다.

1. Introduction

Let Σ denote the class of functions of the form

$$f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} a_k z^k$$

which are analytic in the punctured open unit disk $\mathcal{D} = \{z \in \mathbb{C} : 0 < |z| < 1\}$. If f and g are analytic in $\mathcal{U} = \mathcal{D} \cup \{0\}$, we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function w in \mathcal{U} such that f(z) = g(w(z)). For $0 \leq \eta, \beta < 1$, we denote by $\Sigma^*(\eta)$ and $\Sigma_k(\eta)$ and $\Sigma_c(\eta, \beta)$ the subclasses of Σ consisting of all meromorphic functions which are, respectively, starlike of order η and convex of order η and colse-to-convex of order β and type η in \mathcal{U} (for details, see, e.g. [5]).

Let \mathcal{M} be the class of analytic functions ϕ in \mathcal{U} normalized by $\phi(0) = 1$, and let \mathcal{N} be the subclass of \mathcal{M} consisting of those functions ϕ which are univalent in \mathcal{U} and for which $\phi(\mathcal{U})$ is convex and $\text{Re}\{\phi(z)\} > 0$ $(z \in \mathcal{U})$.

Making use of the principle of subordination between analytic functions, we introduce the subclasses $\Sigma^*(\eta, \phi)$, $\Sigma_k(\eta, \phi)$ and $\Sigma_c(\eta, \beta; \phi, \psi)$ of the class Σ for $0 \leq \eta, \beta < 1$ and $\phi, \psi \in \mathcal{N}$, which are defined by

$$\Sigma^*(\eta;\ \phi) := \left\{ f \in \Sigma: \ \frac{1}{1-\eta} \left(-\frac{zf'(z)}{f(z)} - \eta \right) \prec \phi(z) \text{ in } \mathcal{U} \right\},$$

$$\Sigma_k(\eta; \ \phi) := \left\{ f \in \Sigma : \ \frac{1}{1 - \eta} \left(-\left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} - \eta \right) \prec \phi(z) \text{ in } \mathcal{U} \right\},$$

and

$$\Sigma_c(\eta,\beta;\ \phi,\psi) := \left\{ f \in \Sigma : \exists g \in \Sigma^*(\eta;\ \phi) \ \text{s.t.} \frac{1}{1-\beta} \left(-\frac{zf'(z)}{g(z)} - \beta \right) \prec \psi(z) \text{ in } \mathcal{U} \right\}.$$

We note that the classes mentioned above is motivated essentially by the familiar classes which have been used widely on the space of analytic and univalent

functions in $\mathcal{U}(\text{see}, \text{ for details}, [2,6,9])$ and for special choices for the functions ϕ and ψ involved in these definitions, we can obtain the well-known subclasses of Σ [1,4,5].

Let

$$f_{\lambda}(z) = \frac{1}{z(1-z)^{\lambda+1}} \ (\lambda > -1; \ z \in \mathcal{D})$$

and let $f_{\lambda,\mu}$ be defined such that

$$f_{\lambda}(z) * f_{\lambda,\mu}(z) = \frac{1}{z(1-z)^{\mu}} \ (\lambda > -1; \ \mu > 0; \ z \in \mathcal{D}),$$
 (1.1)

where the symbol (*) stands for the Hadamard product(or convolution). Then we define the operator $I_{\lambda,\mu}: \Sigma \to \Sigma$ as follows:

$$I_{\lambda,\mu}f(z) = (f_{\lambda,\mu} * f)(z) \ (f \in \Sigma; \lambda > -1; \ \mu > 0).$$
 (1.2)

In particular, we note that $I_{0,2}f(z) = zf'(z) + 2f(z)$ and $I_{1,2}f(z) = f(z)$. In view of (1.1) and (1.2), we obtain the useful identities as follows:

$$z (I_{\lambda+1,\mu}f(z))' = (\lambda+1)I_{\lambda,\mu}f(z) - (\lambda+2)I_{\lambda+1,\mu}f(z).$$
 (1.3)

and

$$z (I_{\lambda,\mu} f(z))' = \mu I_{\lambda,\mu+1} f(z) - (\mu+1) I_{\lambda,\mu} f(z).$$
 (1.4)

The operator $I_{\lambda,\mu}$ is closely related to the Choi-Saigo-Srivastava operator for analytic and univalent functions [2], which extends the Noor integral operator studied by Liu [7](also, see [8,11,12]).

Next, by using the operator $I_{\lambda,\mu}$, we introduce the following classes of meromorphic functions for $\phi, \psi \in \mathcal{N}, \lambda > -1, \mu > 0$ and $0 \le \eta, \beta < 1$:

$$\Sigma^*(\lambda, \mu; \eta; \phi) := \{ f \in \Sigma : I_{\lambda,\mu} f \in \Sigma^*(\eta; \phi) \},$$

$$\Sigma_k(\lambda, \mu; \eta; \phi) := \{ f \in \Sigma : I_{\lambda,\mu} f \in \Sigma_k(\eta; \phi) \},$$

and

$$\Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi) := \{ f \in \Sigma : I_{\lambda, \mu} f \in \Sigma_c(\eta, \beta; \phi, \psi) \}.$$

We also note that

$$f(z) \in \Sigma_k(\lambda, \mu; \eta; \phi) \iff -zf'(z) \in \Sigma^*(\lambda, \mu; \eta; \phi).$$
 (1.5)

In particular, we set

$$\Sigma^* \left(\lambda, \mu; \ \eta; \ \frac{1 + Az}{1 + Bz} \right) = \Sigma^* (\lambda, \mu; \ \eta; \ A, B) \ (-1 \le B < A \le 1)$$

and

$$\Sigma_k \left(\lambda, \mu; \ \eta; \ \frac{1 + Az}{1 + Bz} \right) = \Sigma_k(\lambda, \mu; \ \eta; \ A, B) \ (-1 \le B < A \le 1).$$

In this paper, we investigate several inclusion properties of the classes $\Sigma^*(\lambda, \mu; \eta; \phi)$, $\Sigma_k(\lambda, \mu; \eta; \phi)$ and $\Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi)$ associated with the operator $I_{\lambda,\mu}$. Some applications involving integral operators are also considered.

2. Inclusion Properties Involving the Operator $I_{\lambda,\mu}$

The following results will be required in our investigation.

Lemma 2.1 [3]. Let ϕ be convex univalent in \mathcal{U} with $\phi(0) = 1$ and $\operatorname{Re}\{\kappa\phi(z) + \nu\} > 0$ $(\kappa, \nu \in \mathbb{C})$. If p is analytic in \mathcal{U} with p(0) = 1, then

$$p(z) + \frac{zp'(z)}{\kappa p(z) + \nu} \prec \phi(z) \quad (z \in \mathcal{U})$$

implies

$$p(z) \prec \phi(z) \quad (z \in \mathcal{U}).$$

Lemma 2.2 [10]. Let ϕ be convex univalent in \mathcal{U} and ω be analytic in \mathcal{U} with $\text{Re}\{\omega(z)\} \geq 0$. If p is analytic in \mathcal{U} and $p(0) = \phi(0)$, then

$$p(z) + \omega(z)zp'(z) \prec \phi(z) \quad (z \in \mathcal{U})$$

implies

$$p(z) \prec \phi(z) \quad (z \in \mathcal{U}).$$

At first, with the help of Lemma 2.1, we obtain the following

Theorem 2.1. Let $\phi \in \mathcal{N}$ with $\max_{z \in \mathcal{U}} \text{Re}\{\phi(z)\} < \min\{(\mu + 1 - \eta)/(1 - \eta), (\lambda + 2 - \eta)/(1 - \eta)\}\ (\lambda > -1; \ \mu > 0; \ 0 \le \eta < 1)$. Then

$$\Sigma^*(\lambda, \mu + 1; \eta; \phi) \subset \Sigma^*(\lambda, \mu; \eta; \phi) \subset \Sigma^*(\lambda + 1, \mu; \eta; \phi).$$

Proof. First of all, we will show that

$$\Sigma^*(\lambda, \mu + 1; \eta; \phi) \subset \Sigma^*(\lambda, \mu; \eta; \phi).$$

Let $f \in \Sigma^*(\lambda, \mu + 1; \eta; \phi)$ and set

$$p(z) = \frac{1}{1 - \eta} \left(-\frac{z(I_{\lambda,\mu} f(z))'}{I_{\lambda,\mu} f(z)} - \eta \right), \tag{2.1}$$

where p is analytic in \mathcal{U} with p(0) = 1. Applying (1.4) and (2.1), we obtain

$$-\mu \frac{I_{\lambda,\mu+1}f(z)}{I_{\lambda,\mu}f(z)} = (1-\eta)p(z) - (\mu+1-\eta). \tag{2.2}$$

Taking the logarithmic differentiation on both sides of (2.2) and multiplying by z, we have

$$\frac{1}{1-\eta} \left(-\frac{z(I_{\lambda,\mu+1}f(z))'}{I_{\lambda,\mu+1}f(z)} - \eta \right) = p(z) + \frac{zp'(z)}{-(1-\eta)p(z) + \mu + 1 - \eta} \quad (z \in \mathcal{U}).$$
(2.3)

Since $\max_{z \in \mathcal{U}} \operatorname{Re} \{ \phi(z) \} < (\mu + 1 - \eta)/(1 - \eta)$, we see that

$$\text{Re}\{-(1-\eta)\phi(z) + \mu + 1 - \eta\} > 0 \ (z \in \mathcal{U}).$$

Applying Lemma 2.1 to (2.3), it follows that $p \prec \phi$, that is, $f \in \Sigma^*(\lambda, \mu; \eta; \phi)$. To prove the second part, let $f \in \Sigma^*(\lambda, \mu; \eta; \phi)$ and put

$$s(z) = \frac{1}{1 - \eta} \left(-\frac{z(I_{\lambda+1,\mu}f(z))'}{I_{\lambda+1,\mu}f(z)} - \eta \right),$$

where s is analytic function with s(0) = 1. Then, by using the arguments similar to those detailed above with (1.3), it follows that $s \prec \phi$ in \mathcal{U} , which implies that $f \in \Sigma^*(\lambda + 1, \mu; \eta; \phi)$. Therefore we complete the proof of Theorem 2.1.

Theorem 2.2. Let $\phi \in \mathcal{N}$ with $\max_{z \in \mathcal{U}} \text{Re}\{\phi(z)\} < \min\{(\mu + 1 - \eta)/(1 - \eta), (\lambda + 2 - \eta)/(1 - \eta)\}$ $(\lambda > -1; \ \mu > 0; \ 0 \le \eta < 1)$. Then

$$\Sigma_k(\lambda, \mu + 1; \eta; \phi) \subset \Sigma_k(\lambda, \mu; \eta; \phi) \subset \Sigma_k(\lambda + 1, \mu; \eta; \phi).$$

Proof. Applying (1.5) and Theorem 2.1, we observe that

$$f(z) \in \Sigma_{k}(\lambda, \mu + 1; \ \eta; \ \phi) \iff I_{\lambda,\mu+1}f(z) \in \Sigma_{k}(\eta; \ \phi)$$

$$\iff -z(I_{\lambda,\mu+1}f(z))' \in \Sigma^{*}(\eta; \ \phi)$$

$$\iff I_{\lambda,\mu+1}(-zf'(z)) \in \Sigma^{*}(\eta; \ \phi)$$

$$\iff -zf'(z) \in \Sigma^{*}(\lambda, \mu + 1; \ \eta; \ \phi)$$

$$\iff -zf'(z) \in \Sigma^{*}(\lambda, \mu; \ \eta; \ \phi)$$

$$\iff I_{\lambda,\mu}(-zf'(z))' \in \Sigma^{*}(\eta; \ \phi)$$

$$\iff I_{\lambda,\mu}f(z) \in \Sigma_{k}(\eta; \ \phi)$$

$$\iff f(z) \in \Sigma_{k}(\lambda, \mu; \ \eta; \ \phi),$$

and

$$f(z) \in \Sigma_{k}(\lambda, \mu; \ \eta; \ \phi) \iff -zf'(z) \in \Sigma^{*}(\lambda, \mu; \ \eta; \ \phi)$$

$$\implies -zf'(z) \in \Sigma^{*}(\lambda + 1, \mu; \ \eta; \ \phi)$$

$$\iff -z(I_{\lambda+1,\mu}f(z))' \in \Sigma^{*}(\eta; \ \phi)$$

$$\iff I_{\lambda+1,\mu}f(z) \in \Sigma_{k}(\eta; \ \phi)$$

$$\iff f(z) \in \Sigma_{k}(\lambda + 1, \mu; \ \eta; \ \phi),$$

which evidently proves Theorem 2.2.

Taking

$$\phi(z) = \frac{1 + Az}{1 + Bz} \ (-1 \le B < A \le 1; \ z \in \mathcal{U})$$

in Theorem 2.1 and Theorem 2.2, we have

Corollary 2.1. Let
$$(1+A)/(1+B) < \min\{(\mu+1-\eta)/(1-\eta), (\lambda+2-\eta)/(1-\eta)\}(\lambda > -1; \ \mu > 0; \ 0 \le \eta < 1; \ -1 < B < A \le 1)$$
. Then

$$\Sigma^*(\lambda, \mu + 1; \eta; A, B) \subset \Sigma^*(\lambda, \mu; \eta; A, B) \subset \Sigma^*(\lambda + 1, \mu; \eta; A, B)$$

and

$$\Sigma_k(\lambda, \mu + 1; \eta; A, B) \subset \Sigma_k(\lambda, \mu; \eta; A, B) \subset \Sigma_k(\lambda + 1, \mu; \eta; A, B).$$

Next, by using Lemma 2.2, we obtain the following inclusion relation for the class $\Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi)$.

Theorem 2.3. Let $\phi, \psi \in \mathcal{N}$ with $\max_{z \in \mathcal{U}} \text{Re}\{\phi(z)\} < \min\{(\mu + 1 - \eta)/(1 - \eta), (\lambda + 2 - \eta)/(1 - \eta)\}$ $(\lambda > -1; \mu > 0; 0 \le \eta < 1)$. Then

$$\Sigma_c(\lambda, \mu + 1; \eta, \beta; \phi, \psi) \subset \Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi) \subset \Sigma_c(\lambda + 1, \mu; \eta, \beta; \phi, \psi).$$

Proof. We begin by proving that

$$\Sigma_c(\lambda, \mu + 1; \eta, \beta; \phi, \psi) \subset \Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi).$$

Let $f \in \Sigma_c(\lambda, \mu+1; \eta, \beta; \phi, \psi)$. Then, in view of the definition of the class $\Sigma_c(\lambda, \mu+1; \eta, \beta; \phi, \psi)$, there exists a function $r \in \Sigma^*(\eta; \phi)$ such that

$$\frac{1}{1-\beta} \left(-\frac{z(I_{\lambda,\mu+1}f(z))'}{r(z)} - \beta \right) \prec \psi(z) \ (z \in \mathcal{U}).$$

Choose the function g such that $I_{\lambda,\mu+1}g(z)=r(z)$. Then $g\in\Sigma^*(\lambda,\mu+1;\ \eta;\ \phi)$ and

$$\frac{1}{1-\beta} \left(-\frac{z(I_{\lambda,\mu+1}f(z))'}{I_{\lambda,\mu+1}g(z)} - \beta \right) \prec \psi(z) \quad (z \in \mathcal{U}). \tag{2.4}$$

Now let

$$p(z) = \frac{1}{1-\beta} \left(-\frac{z(I_{\lambda,\mu}f(z))'}{I_{\lambda,\mu}g(z)} - \beta \right), \qquad (2.5)$$

where p is analytic in \mathcal{U} with p(0) = 1. Using (1.4), we obtain

$$\frac{1}{1-\beta} \left(-\frac{z(I_{\lambda,\mu+1}f(z))'}{I_{\lambda,\mu+1}g(z)} - \beta \right) = \frac{1}{1-\beta} \left(\frac{I_{\lambda,\mu+1}(-zf'(z))}{I_{\lambda,\mu+1}g(z)} - \beta \right)
= \frac{1}{1-\beta} \left(\frac{z(I_{\lambda,\mu}(-zf'(z)))' + (\mu+1)I_{\lambda,\mu}(-zf'(z))}{z(I_{\lambda,\mu}g(z))' + (\mu+1)I_{\lambda,\mu}g(z)} - \beta \right)
= \frac{1}{1-\beta} \left(\frac{\frac{z(I_{\lambda,\mu}(-zf'(z)))'}{I_{\lambda,\mu}g(z)} + (\mu+1)\frac{I_{\lambda,\mu}(-zf'(z))}{I_{\lambda,\mu}g(z)}}{\frac{z(I_{\lambda,\mu}g(z))'}{I_{\lambda,\mu}g(z)} + \mu + 1} - \beta \right).$$
(2.6)

Since $g \in \Sigma^*(\lambda, \mu + 1; \eta; \phi) \subset \Sigma^*(\lambda, \mu; \eta; \phi)$, by Theorem 2.1, we set

$$q(z) = \frac{1}{1 - \eta} \left(-\frac{z(I_{\lambda,\mu}g(z))'}{I_{\lambda,\mu}g(z)} - \eta \right),\,$$

where $q \prec \phi$ in \mathcal{U} with the assupption for $\phi \in \mathcal{N}$. Then, by virtue of (2.5) and (2.6), we observe that

$$I_{\lambda,\mu}(-zf'(z)) = (1-\beta)p(z)I_{\lambda,\mu}g(z) + \beta I_{\lambda,\mu}g(z)$$
(2.7)

and

$$\frac{1}{1-\beta} \left(-\frac{z(I_{\lambda,\mu+1}f(z))'}{I_{\lambda,\mu+1}g(z)} - \beta \right) = \frac{1}{1-\beta} \left(\frac{\frac{z(I_{\lambda,\mu}(-zf'(z)))'}{I_{\lambda,\mu}g(z)} + (\mu+1)(1-\beta)p(z) + \beta)}{-(1-\eta)q(z) + \mu + 1 - \eta} - \beta \right). \tag{2.8}$$

Upon differentiating both sides of (2.7), we have

$$\frac{z(I_{\lambda,\mu}(-zf'(z)))'}{I_{\lambda,\mu}g(z)} = (1-\beta)zp'(z) - ((1-\beta)p(z) + \beta)((1-\eta)q(z) + \eta). \tag{2.9}$$

Making use of (2.4), (2.8) and (2.9), we get

$$\frac{1}{1-\beta} \left(-\frac{z(I_{\lambda,\mu+1}f(z))'}{I_{\lambda,\mu+1}g(z)} - \beta \right) = p(z) + \frac{zp'(z)}{-(1-\eta)q(z) + \mu + 1 - \eta} \prec \psi(z) \quad (z \in \mathcal{U}).$$
(2.10)

Since $\mu > 0$ and $q \prec \phi$ in \mathcal{U} with $\max_{z \in \mathcal{U}} \operatorname{Re}\{\phi(z)\} < (\mu + 1 - \eta)/(1 - \eta)$,

$$\text{Re}\{-(1-\eta)q(z) + \mu + 1 - \eta\} > 0 \ (z \in \mathcal{U}).$$

Hence, by taking

$$\omega(z) = \frac{1}{-(1 - \eta)q(z) + \mu + 1 - \eta},$$

in (2.10), and applying Lemma 2.2, we can show that $p \prec \psi$ in \mathcal{U} , so that $f \in \Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi)$.

For the second part, by using the arguments similar to those detailed above with (1.3), we obtain

$$\Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi) \subset \Sigma_c(\lambda + 1, \mu; \eta, \beta; \phi, \psi).$$

Therefore we complete the proof of Theorem 2.3.

3. Inclusion Properties Involving the Integral Operator F_c

In this section, we consider the integral operator F_c [1,4,5] defined by

$$F_c(f) := F_c(f)(z) = \frac{c}{z^{c+1}} \int_0^z t^c f(t) dt \quad (f \in \Sigma; \ c > 0).$$
 (3.1)

We first prove

Theorem 3.1. Let $\lambda > -1$, $\mu > 0$ and let $\phi \in \mathcal{N}$ with $\max_{z \in \mathcal{U}} \operatorname{Re}\{\phi(z)\}$ $< (c + 1 - \eta)/(1 - \eta)$ $(c > 0; 0 \le \eta < 1)$. If $f \in \Sigma^*(\lambda, \mu; \eta; \phi)$, then $F_c(f) \in \Sigma^*(\lambda, \mu; \eta; \phi)$.

Proof. Let $f \in \Sigma^*(\lambda, \mu; \eta; \phi)$ and set

$$p(z) = \frac{1}{1 - \eta} \left(-\frac{z(I_{\lambda,\mu} F_c(f)(z))'}{I_{\lambda,\mu} F_c(f)(z)} - \eta \right), \tag{3.2}$$

where p is analytic in \mathcal{U} with p(0) = 1. From (3.1), we have

$$z(I_{\lambda,\mu}F_c(f)(z))' = cI_{\lambda,\mu}f(z) - (c+1)I_{\lambda,\mu}F_c(f)(z).$$
(3.3)

Then, by using (3.2) and (3.3), we obtain

$$-c\frac{I_{\lambda,\mu}f(z)}{I_{\lambda,\mu}F_c(f)(z)} = (1-\eta)p(z) - (c+1-\eta). \tag{3.4}$$

Making use of the logarithemic differentiation on both sides of (3.4) and multiplying by z, we get

$$\frac{1}{1-\eta} \left(-\frac{z(I_{\lambda,\mu} f(z))'}{I_{\lambda,\mu} f(z)} - \eta \right) = p(z) + \frac{zp'(z)}{-(1-\eta)p(z) + c + 1 - \eta} \quad (z \in \mathcal{U}).$$

Hence, by virtue of Lemma 2.1, we conclude that $p \prec \phi$ in \mathcal{U} for $\max_{z \in \mathcal{U}} \text{Re} \{\phi(z)\} < (c+1-\eta)/(1-\eta)$, which implies that $F_c(f) \in \Sigma^*(\lambda, \mu; \eta; \phi)$.

Next, we derive an inclusion property involving F_c , which is given by

Theorem 3.2. Let $\lambda > -1$, $\mu > 0$ and let $\phi \in \mathcal{N}$ with $\max_{z \in \mathcal{U}} \operatorname{Re}\{\phi(z)\} < (c + 1 - \eta)/(1 - \eta)$ $(c > 0; 0 \leq \eta < 1)$. If $f \in \Sigma_k(\lambda, \mu; \eta; \phi)$, then $F_c(f) \in \Sigma_k(\lambda, \mu; \eta; \phi)$.

Proof. By applying Theorem 3.1, it follows that

$$f(z) \in \Sigma_{k}(\lambda, \mu; \ \eta; \ \phi) \iff -zf'(z) \in \Sigma^{*}(\lambda, \mu; \ \eta; \ \phi)$$

$$\implies F_{c}(-zf'(z))(z) \in \Sigma^{*}(\lambda, \mu; \ \eta; \ \phi)$$

$$\iff -z(F_{c}(f)(z))' \in \Sigma^{*}(\lambda, \mu; \ \eta; \ \phi)$$

$$\iff F_{c}(f)(z) \in \Sigma_{k}(\lambda, \mu; \ \eta; \ \phi),$$

$$(2.6)$$

which proves Theorem 3.2.

From Theorem 3.1 and Theorem 3.2, we have

Corollary 3.1. Let $\lambda > -1$, $\mu > 0$ and $(1 - \eta)(1 + A)/(1 + B) < (c+1-\eta) (c > 0; -1 < B < A \le 1; 0 \le \eta < 1)$. Then If $f \in \Sigma^*(\lambda, \mu; \eta; A, B)$ (or $\Sigma_k(\lambda, \mu; \eta; A, B)$), then $F_c(f) \in \Sigma^*(\lambda, \mu; \eta; A, B)$ (or $\Sigma^*(\lambda, \mu; \eta; A, B)$).

Finally, we prove

Theorem 3.3. Let $\lambda > -1$, $\mu > 0$ and let $\phi, \psi \in \mathcal{N}$ with $\max_{z \in \mathcal{U}} \operatorname{Re} \{ \phi(z) \}$ $< (c + 1 - \eta)/(1 - \eta)$ $(c > 0; 0 \le \eta < 1)$. If $f \in \Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi)$, then $F_c(f) \in \Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi)$.

Proof. Let $f \in \Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi)$. Then, in view of the definition of the class $\Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi)$, there exists a function $g \in \Sigma^*(\lambda, \mu; \eta; \phi)$ such that

$$\frac{1}{1-\beta} \left(-\frac{z(I_{\lambda,\mu}f(z))'}{I_{\lambda,\mu}g(z)} - \beta \right) \prec \psi(z) \quad (z \in \mathcal{U}). \tag{3.5}$$

Thus we set

$$p(z) = \frac{1}{1-\beta} \left(-\frac{z(I_{\lambda,\mu}F_c(f)(z))'}{I_{\lambda,\mu}F_c(g)(z)} - \beta \right).$$

where p is analytic in \mathcal{U} with p(0) = 1. Applying (3.3), we get

$$\frac{1}{1-\beta} \left(-\frac{z(I_{\lambda,\mu}f(z))'}{I_{\lambda,\mu}g(z)} - \beta \right) = \frac{1}{1-\beta} \left(\frac{I_{\lambda,\mu}(-zf'(z))}{I_{\lambda,\mu}g(z)} - \beta \right) \\
= \frac{1}{1-\beta} \left(\frac{z(I_{\lambda,\mu}F_c(-zf'(z))(z))' + (c+1)I_{\lambda,\mu}F_c(-zf'(z))(z)}{z(I_{\lambda,\mu}F_c(g)(z))' + (c+1)I_{\lambda,\mu}F_c(g)(z)} - \beta \right) \\
= \frac{1}{1-\beta} \left(\frac{\frac{z(I_{\lambda,\mu}F_c(-zf'(z))(z))'}{I_{\lambda,\mu}F_c(g)(z)} + (c+1)\frac{I_{\lambda,\mu}F_c(-zf'(z))(z)}{I_{\lambda,\mu}F_c(g)(z)}}{\frac{z(I_{\lambda,\mu}F_c(g)(z))'}{I_{\lambda,\mu}F_c(g)(z)}} - \beta \right).$$
(3.6)

Since $g \in \Sigma^*(\lambda, \mu; \eta; \phi)$, we see from Theorem 3.1 that $F_c(g) \in \Sigma^*(\lambda, \mu; \eta; \phi)$. Let us now put

$$q(z) = \frac{1}{1 - \eta} \left(-\frac{z(I_{\lambda,\mu} F_c(g)(z))'}{I_{\lambda,\mu} F_c(g)(z)} - \eta \right),$$

where $q \prec \phi$ in \mathcal{U} with the assupption for $\phi \in \mathcal{N}$. Then, by using the same techniques as in the proof of Theorem 2.3, we conclude that from (3.5) and (3.6) that

$$\frac{1}{1-\beta} \left(-\frac{z(I_{\lambda,\mu}f(z))'}{I_{\lambda,\mu}g(z)} - \beta \right) = p(z) + \frac{zp'(z)}{-(1-\eta)q(z) + c + 1 - \eta} \prec \psi(z) \quad (z \in \mathcal{U}).$$
(3.7)

Hence, upon setting

$$\omega(z) = \frac{1}{-(1-\eta)q(z) + c + 1 - \eta},$$

in (3.7), if we apply Lemma 2.2, we obtain that $p \prec \psi$ in \mathcal{U} , which yields that $F_c(f) \in \Sigma_c(\lambda, \mu; \eta, \beta; \phi, \psi)$. Therefore the proof of Theorem 3.3 is evidently completed.

Remark. If we take $\lambda = 1$ and $\mu = 2$ in all theorems of this section, then we extend the results by Goel and Sohi [4], which reduce the results earlier obtained by Bajpai [1].

References

- 1. S. K. Bajpai, A note on a class of meromorphic univalent functions, *Rev. Roumaine Math. Pures Appl.* **22**(1977), 295-297.
- 2. J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, *J. Math. Anal. Appl.* **276**(2002), 432-445.
- P. Eenigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential subordination, *General Inequalities*, 3 (Oberwolfach, 1981), International Series of Numerical Mathematics, Vol. 64, Birkhäuser Verlag, Basel, 1983, pp. 339-348.
- R. M. Goel and N. S. Sohi, On a class of meromorphic functions, Glas. Mat. 17(37)(1982), 19-28.
- 5. V. Kumar and S. L. Shukla, Certain integrals for classes of *p*-valent meromorphic functions, *Bull. Austral. Math. Soc.* **25**(1982), 85-97.

- Y. C, Kim and J. H. Choi and T. Sugawa, Coefficient bounds and convolution properties for certain classes of close-to-convex functions, *Proc. Japan Acad. Ser. A Math. Sci.* 76(2000), 95-98.
- 7. J.-L. Liu, The Noor integral and strongly starlike functions, *J. Math. Anal. Appl.*, **261**(2001), 441-447.
- 8. J.-L. Liu and K. I. Noor, Some properties of Noor integral operator, *J. Nat. Geom.*, **21**(2002), 81-90.
- 9. W. C. Ma and D. Minda, An internal geometric characterization of strongly starlike functions, *Ann. Univ. Mariae Curie-Sklodowska Sect.* A, **45**(1991), 89-97.
- 10. S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, *Michigan Math. J.*, **28**(1981), 157-171.
- 11. K. I. Noor, On new classes of integral operators, J. Natur. Geom., **16**(1999), 71-80.
- 12. K. I. Noor and M. A. Noor, On integral operators, *J. Math. Anal. Appl.*, **238**(1999), 341-352.