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1. Introduction

Let Σ denote the class of functions of the form

f(z) =
1

z
+

∞∑
k=0

akz
k

which are analytic in the punctured open unit disk D = {z ∈ C : 0 < |z| < 1}.
If f and g are analytic in U = D ∪ {0}, we say that f is subordinate to g,

written f ≺ g or f(z) ≺ g(z), if there exists a Schwarz function w in U such

that f(z) = g(w(z)). For 0 ≤ η, β < 1, we denote by Σ∗(η) and Σk(η) and

Σc(η, β) the subclasses of Σ consisting of all meromorphic functions which are,

respectively, starlike of order η and convex of order η and colse-to-convex of

order β and type η in U (for details, see, e.g. [5]).

Let M be the class of analytic functions φ in U normalized by φ(0) = 1,

and let N be the subclass of M consisting of those functions φ which are

univalent in U and for which φ(U) is convex and Re{φ(z)} > 0 (z ∈ U).

Making use of the principle of subordination between analytic functions,

we introduce the subclasses Σ∗(η, φ), Σk(η, φ) and Σc(η, β; φ, ψ) of the class

Σ for 0 ≤ η, β < 1 and φ, ψ ∈ N , which are defined by

Σ∗(η; φ) :=

{
f ∈ Σ :

1

1− η

(
−zf

′(z)

f(z)
− η

)
≺ φ(z) in U

}
,

Σk(η; φ) :=

{
f ∈ Σ :

1

1− η

(
−

{
1 +

zf ′′(z)

f ′(z)

}
− η

)
≺ φ(z) in U

}
,

and

Σc(η, β; φ, ψ) :=
{
f ∈ Σ : ∃g ∈ Σ∗(η; φ) s.t.

1
1− β

(
−zf

′(z)
g(z)

− β

)
≺ ψ(z) in U

}
.

We note that the classes mentioned above is motivated essentially by the famil-

iar classes which have been used widely on the space of analytic and univalent
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functions in U(see, for details, [2,6,9]) and for special choices for the functions

φ and ψ involved in these definitions, we can obtain the well-known subclasses

of Σ [1,4,5].

Let

fλ(z) =
1

z(1− z)λ+1
(λ > −1; z ∈ D)

and let fλ,µ be defined such that

fλ(z) ∗ fλ,µ(z) =
1

z(1− z)µ
(λ > −1; µ > 0; z ∈ D), (1.1)

where the symbol (∗) stands for the Hadamard product(or convolution). Then

we define the operator Iλ,µ : Σ → Σ as follows:

Iλ,µf(z) = (fλ,µ ∗ f) (z) (f ∈ Σ;λ > −1; µ > 0). (1.2)

In particular, we note that I0,2f(z) = zf ′(z) + 2f(z) and I1,2f(z) = f(z). In

view of (1.1) and (1.2), we obtain the useful identities as follows:

z (Iλ+1,µf(z))′ = (λ+ 1)Iλ,µf(z)− (λ+ 2)Iλ+1,µf(z). (1.3)

and

z (Iλ,µf(z))′ = µIλ,µ+1f(z)− (µ+ 1)Iλ,µf(z). (1.4)

The operator Iλ,µ is closely related to the Choi-Saigo-Srivastava operator for

analytic and univalent functions [2], which extends the Noor integral operator

studied by Liu [7](also, see [8,11,12]).

Next, by using the operator Iλ,µ, we introduce the following classes of

meromorphic functions for φ, ψ ∈ N , λ > −1, µ > 0 and 0 ≤ η, β < 1:

Σ∗(λ, µ; η; φ) := {f ∈ Σ : Iλ,µf ∈ Σ∗(η;φ)},



3

Σk(λ, µ; η; φ) := {f ∈ Σ : Iλ,µf ∈ Σk(η;φ)},

and

Σc(λ, µ; η, β; φ, ψ) := {f ∈ Σ : Iλ,µf ∈ Σc(η, β;φ, ψ)}.

We also note that

f(z) ∈ Σk(λ, µ; η; φ) ⇐⇒ −zf ′(z) ∈ Σ∗(λ, µ; η; φ). (1.5)

In particular, we set

Σ∗
(
λ, µ; η;

1 + Az

1 +Bz

)
= Σ∗(λ, µ; η; A,B) (−1 ≤ B < A ≤ 1)

and

Σk

(
λ, µ; η;

1 + Az

1 +Bz

)
= Σk(λ, µ; η; A,B) (−1 ≤ B < A ≤ 1).

In this paper, we investigate several inclusion properties of the classes

Σ∗(λ, µ; η; φ), Σk(λ, µ; η; φ) and Σc(λ, µ; η, β; φ, ψ) associated with the op-

erator Iλ,µ. Some applications involving integral operators are also considered.

2. Inclusion Properties Involving the Operator Iλ,µ

The following results will be required in our investigation.

Lemma 2.1 [3]. Let φ be convex univalent in U with φ(0) = 1 and

Re{κφ(z) + ν} > 0 (κ, ν ∈ C). If p is analytic in U with p(0) = 1, then

p(z) +
zp′(z)

κp(z) + ν
≺ φ(z) (z ∈ U)

implies
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p(z) ≺ φ(z) (z ∈ U).

Lemma 2.2 [10]. Let φ be convex univalent in U and ω be analytic in

U with Re{ω(z)} ≥ 0. If p is analytic in U and p(0) = φ(0), then

p(z) + ω(z)zp′(z) ≺ φ(z) (z ∈ U)

implies

p(z) ≺ φ(z) (z ∈ U).

At first, with the help of Lemma 2.1, we obtain the following

Theorem 2.1. Let φ ∈ N with maxz∈URe{φ(z)} < min{(µ+1−η)/(1−
η), (λ+ 2− η)/(1− η)} (λ > −1; µ > 0; 0 ≤ η < 1). Then

Σ∗(λ, µ+ 1; η; φ) ⊂ Σ∗(λ, µ; η; φ) ⊂ Σ∗(λ+ 1, µ; η; φ).

Proof. First of all, we will show that

Σ∗(λ, µ+ 1; η; φ) ⊂ Σ∗(λ, µ; η; φ).

Let f ∈ Σ∗(λ, µ+ 1; η; φ) and set

p(z) =
1

1− η

(
−z(Iλ,µf(z))′

Iλ,µf(z)
− η

)
, (2.1)

where p is analytic in U with p(0) = 1. Applying (1.4) and (2.1), we obtain

−µIλ,µ+1f(z)

Iλ,µf(z)
= (1− η)p(z)− (µ+ 1− η). (2.2)
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Taking the logarithmic differentiation on both sides of (2.2) and multiplying

by z, we have

1

1− η

(
−z(Iλ,µ+1f(z))′

Iλ,µ+1f(z)
− η

)
= p(z) +

zp′(z)

−(1− η)p(z) + µ+ 1− η
(z ∈ U).

(2.3)

Since maxz∈URe{φ(z)} < (µ+ 1− η)/(1− η), we see that

Re{−(1− η)φ(z) + µ+ 1− η} > 0 (z ∈ U).

Applying Lemma 2.1 to (2.3), it follows that p ≺ φ, that is, f ∈ Σ∗(λ, µ; η; φ).

To prove the second part, let f ∈ Σ∗(λ, µ; η; φ) and put

s(z) =
1

1− η

(
−z(Iλ+1,µf(z))′

Iλ+1,µf(z)
− η

)
,

where s is analytic function with s(0) = 1. Then, by using the arguments

similar to those detailed above with (1.3), it follows that s ≺ φ in U , which

implies that f ∈ Σ∗(λ + 1, µ; η; φ). Therefore we complete the proof of

Theorem 2.1.

Theorem 2.2. Let φ ∈ N with maxz∈URe{φ(z)} < min{(µ+1−η)/(1−
η), (λ+ 2− η)/(1− η)} (λ > −1; µ > 0; 0 ≤ η < 1). Then

Σk(λ, µ+ 1; η; φ) ⊂ Σk(λ, µ; η; φ) ⊂ Σk(λ+ 1, µ; η; φ).

Proof. Applying (1.5) and Theorem 2.1, we observe that
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f(z) ∈ Σk(λ, µ+ 1; η; φ) ⇐⇒ Iλ,µ+1f(z) ∈ Σk(η; φ)

⇐⇒ −z(Iλ,µ+1f(z))′ ∈ Σ∗(η; φ)

⇐⇒ Iλ,µ+1(−zf ′(z)) ∈ Σ∗(η; φ)

⇐⇒ −zf ′(z) ∈ Σ∗(λ, µ+ 1; η; φ)

=⇒ −zf ′(z) ∈ Σ∗(λ, µ; η; φ)

⇐⇒ Iλ,µ(−zf ′(z)) ∈ Σ∗(η; φ)

⇐⇒ −z(Iλ,µf(z))′ ∈ Σ∗(η; φ)

⇐⇒ Iλ,µf(z) ∈ Σk(η; φ)

⇐⇒ f(z) ∈ Σk(λ, µ; η; φ),

and

f(z) ∈ Σk(λ, µ; η; φ) ⇐⇒ −zf ′(z) ∈ Σ∗(λ, µ; η; φ)

=⇒ −zf ′(z) ∈ Σ∗(λ+ 1, µ; η; φ)

⇐⇒ −z(Iλ+1,µf(z))′ ∈ Σ∗(η; φ)

⇐⇒ Iλ+1,µf(z) ∈ Σk(η; φ)

⇐⇒ f(z) ∈ Σk(λ+ 1, µ; η; φ),

which evidently proves Theorem 2.2.

Taking

φ(z) =
1 + Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U)

in Theorem 2.1 and Theorem 2.2, we have

Corollary 2.1. Let (1 +A)/(1 +B) < min{(µ+ 1− η)/(1− η), (λ+ 2−
η)/(1− η)}(λ > −1; µ > 0; 0 ≤ η < 1; −1 < B < A ≤ 1). Then

Σ∗(λ, µ+ 1; η; A,B) ⊂ Σ∗(λ, µ; η; A,B) ⊂ Σ∗(λ+ 1, µ; η; A,B)
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and

Σk(λ, µ+ 1; η; A,B) ⊂ Σk(λ, µ; η; A,B) ⊂ Σk(λ+ 1, µ; η; A,B).

Next, by using Lemma 2.2, we obtain the following inclusion relation for

the class Σc(λ, µ; η, β; φ, ψ).

Theorem 2.3. Let φ, ψ ∈ N with maxz∈URe{φ(z)} < min{(µ + 1 −
η)/(1− η), (λ+ 2− η)/(1− η)} (λ > −1; µ > 0; 0 ≤ η < 1). Then

Σc(λ, µ+ 1; η, β; φ, ψ) ⊂ Σc(λ, µ; η, β; φ, ψ) ⊂ Σc(λ+ 1, µ; η, β; φ, ψ).

Proof. We begin by proving that

Σc(λ, µ+ 1; η, β; φ, ψ) ⊂ Σc(λ, µ; η, β; φ, ψ).

Let f ∈ Σc(λ, µ+1; η, β; φ, ψ). Then, in view of the definition of the class

Σc(λ, µ+ 1; η, β; φ, ψ), there exists a function r ∈ Σ∗(η; φ) such that

1

1− β

(
−z(Iλ,µ+1f(z))′

r(z)
− β

)
≺ ψ(z) (z ∈ U).

Choose the function g such that Iλ,µ+1g(z) = r(z). Then g ∈ Σ∗(λ, µ+1; η; φ)

and

1

1− β

(
−z(Iλ,µ+1f(z))′

Iλ,µ+1g(z)
− β

)
≺ ψ(z) (z ∈ U). (2.4)

Now let

p(z) =
1

1− β

(
−z(Iλ,µf(z))′

Iλ,µg(z)
− β

)
, (2.5)

where p is analytic in U with p(0) = 1. Using (1.4), we obtain
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1

1− β

(
−z(Iλ,µ+1f(z))′

Iλ,µ+1g(z)
− β

)
=

1

1− β

(
Iλ,µ+1(−zf ′(z))
Iλ,µ+1g(z)

− β

)
=

1

1− β

(
z(Iλ,µ(−zf ′(z)))′ + (µ+ 1)Iλ,µ(−zf ′(z))

z(Iλ,µg(z))′ + (µ+ 1)Iλ,µg(z)
− β

)

=
1

1− β

 z(Iλ,µ(−zf ′(z)))′

Iλ,µg(z)
+ (µ+ 1)

Iλ,µ(−zf ′(z))

Iλ,µg(z)

z(Iλ,µg(z))′

Iλ,µg(z)
+ µ+ 1

− β

 .

(2.6)

Since g ∈ Σ∗(λ, µ+ 1; η; φ) ⊂ Σ∗(λ, µ; η; φ), by Theorem 2.1, we set

q(z) =
1

1− η

(
−z(Iλ,µg(z))

′

Iλ,µg(z)
− η

)
,

where q ≺ φ in U with the assupption for φ ∈ N . Then, by virtue of (2.5) and

(2.6), we observe that

Iλ,µ(−zf ′(z)) = (1− β)p(z)Iλ,µg(z) + βIλ,µg(z) (2.7)

and

1
1− β

(
−
z(Iλ,µ+1f(z))′

Iλ,µ+1g(z)
− β

)
=

1
1− β

 z(Iλ,µ(−zf ′(z)))′

Iλ,µg(z) + (µ+ 1)(1− β)p(z) + β)

−(1− η)q(z) + µ+ 1− η
− β

 .

(2.8)

Upon differentiating both sides of (2.7), we have

z(Iλ,µ(−zf ′(z)))′

Iλ,µg(z)
= (1− β)zp′(z)− ((1− β)p(z) + β)((1− η)q(z) + η). (2.9)

Making use of (2.4), (2.8) and (2.9), we get

1

1− β

(
−z(Iλ,µ+1f(z))′

Iλ,µ+1g(z)
− β

)
= p(z)+

zp′(z)

−(1− η)q(z) + µ+ 1− η
≺ ψ(z) (z ∈ U).

(2.10)

Since µ > 0 and q ≺ φ in U with maxz∈URe{φ(z)} < (µ+ 1− η)/(1− η),
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Re{−(1− η)q(z) + µ+ 1− η} > 0 (z ∈ U).

Hence, by taking

ω(z) =
1

−(1− η)q(z) + µ+ 1− η
,

in (2.10), and applying Lemma 2.2, we can show that p ≺ ψ in U , so that

f ∈ Σc(λ, µ; η, β; φ, ψ).

For the second part, by using the arguments similar to those detailed above

with (1.3), we obtain

Σc(λ, µ; η, β; φ, ψ) ⊂ Σc(λ+ 1, µ; η, β; φ, ψ).

Therefore we complete the proof of Theorem 2.3.

3. Inclusion Properties Involving the Integral Operator Fc

In this section, we consider the integral operator Fc [1,4,5] defined by

Fc(f) := Fc(f)(z) =
c

zc+1

∫ z

0

tcf(t)dt (f ∈ Σ; c > 0). (3.1)

We first prove

Theorem 3.1. Let λ > −1, µ > 0 and let φ ∈ N with maxz∈URe{φ(z)}
< (c + 1 − η)/(1 − η) (c > 0; 0 ≤ η < 1). If f ∈ Σ∗(λ, µ; η; φ), then

Fc(f) ∈ Σ∗(λ, µ; η; φ).

Proof. Let f ∈ Σ∗(λ, µ; η; φ) and set

p(z) =
1

1− η

(
−z(Iλ,µFc(f)(z))′

Iλ,µFc(f)(z)
− η

)
, (3.2)

where p is analytic in U with p(0) = 1. From (3.1), we have

z(Iλ,µFc(f)(z))′ = cIλ,µf(z)− (c+ 1)Iλ,µFc(f)(z). (3.3)
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Then, by using (3.2) and (3.3), we obtain

−c Iλ,µf(z)

Iλ,µFc(f)(z)
= (1− η)p(z)− (c+ 1− η). (3.4)

Making use of the logarithemic differentiation on both sides of (3.4) and mul-

tiplying by z, we get

1

1− η

(
−z(Iλ,µf(z))′

Iλ,µf(z)
− η

)
= p(z) +

zp′(z)

−(1− η)p(z) + c+ 1− η
(z ∈ U).

Hence, by virtue of Lemma 2.1, we conclude that p ≺ φ in U for maxz∈URe

{φ(z)} < (c+ 1− η)/(1− η) , which implies that Fc(f) ∈ Σ∗(λ, µ; η; φ).

Next, we derive an inclusion property involving Fc, which is given by

Theorem 3.2. Let λ > −1, µ > 0 and let φ ∈ N with maxz∈URe{φ(z)} <
(c + 1 − η)/(1 − η) (c > 0; 0 ≤ η < 1). If f ∈ Σk(λ, µ; η; φ), then

Fc(f) ∈ Σk(λ, µ; η; φ).

Proof. By applying Theorem 3.1, it follows that

f(z) ∈ Σk(λ, µ; η; φ) ⇐⇒ −zf ′(z) ∈ Σ∗(λ, µ; η; φ)

=⇒ Fc(−zf ′(z))(z) ∈ Σ∗(λ, µ; η; φ)

⇐⇒ −z(Fc(f)(z))′ ∈ Σ∗(λ, µ; η; φ)

⇐⇒ Fc(f)(z) ∈ Σk(λ, µ; η; φ),

(2.6)

which proves Theorem 3.2.

From Theorem 3.1 and Theorem 3.2, we have

Corollary 3.1. Let λ > −1, µ > 0 and (1 − η)(1 + A)/(1 + B) <

(c+1−η) (c > 0; −1 < B < A ≤ 1; 0 ≤ η < 1). Then If f ∈ Σ∗(λ, µ; η; A,B)

(or Σk(λ, µ; η; A,B) ), then Fc(f) ∈ Σ∗(λ, µ; η; A,B) (or Σ∗(λ, µ; η; A,B)).

Finally, we prove
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Theorem 3.3. Let λ > −1, µ > 0 and let φ, ψ ∈ N with maxz∈URe{φ(z)}
< (c + 1 − η)/(1 − η) (c > 0; 0 ≤ η < 1). If f ∈ Σc(λ, µ; η, β; φ, ψ), then

Fc(f) ∈ Σc(λ, µ; η, β; φ, ψ).

Proof. Let f ∈ Σc(λ, µ; η, β; φ, ψ). Then, in view of the definition of the

class Σc(λ, µ; η, β; φ, ψ), there exists a function g ∈ Σ∗(λ, µ; η; φ) such that

1

1− β

(
−z(Iλ,µf(z))′

Iλ,µg(z)
− β

)
≺ ψ(z) (z ∈ U). (3.5)

Thus we set

p(z) =
1

1− β

(
−z(Iλ,µFc(f)(z))′

Iλ,µFc(g)(z)
− β

)
.

where p is analytic in U with p(0) = 1. Applying (3.3), we get

1

1− β

(
−z(Iλ,µf(z))′

Iλ,µg(z)
− β

)
=

1

1− β

(
Iλ,µ(−zf ′(z))
Iλ,µg(z)

− β

)
=

1

1− β

(
z(Iλ,µFc(−zf ′(z))(z))′ + (c+ 1)Iλ,µFc(−zf ′(z))(z)

z(Iλ,µFc(g)(z))′ + (c+ 1)Iλ,µFc(g)(z)
− β

)

=
1

1− β

 z(Iλ,µFc(−zf ′(z))(z))′

Iλ,µFc(g)(z)
+ (c+ 1)

Iλ,µFc(−zf ′(z))(z)

Iλ,µFc(g)(z)

z(Iλ,µFc(g)(z))′

Iλ,µFc(g)(z)
+ c+ 1

− β

 .

(3.6)

Since g ∈ Σ∗(λ, µ; η; φ), we see from Theorem 3.1 that Fc(g) ∈ Σ∗(λ, µ; η; φ).

Let us now put

q(z) =
1

1− η

(
−z(Iλ,µFc(g)(z))

′

Iλ,µFc(g)(z)
− η

)
,

where q ≺ φ in U with the assupption for φ ∈ N . Then, by using the same

techniques as in the proof of Theorem 2.3, we conclude that from (3.5) and

(3.6) that

1

1− β

(
−z(Iλ,µf(z))′

Iλ,µg(z)
− β

)
= p(z)+

zp′(z)

−(1− η)q(z) + c+ 1− η
≺ ψ(z) (z ∈ U).

(3.7)
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Hence, upon setting

ω(z) =
1

−(1− η)q(z) + c+ 1− η
,

in (3.7), if we apply Lemma 2.2, we obtain that p ≺ ψ in U , which yields that

Fc(f) ∈ Σc(λ, µ; η, β; φ, ψ). Therefore the proof of Theorem 3.3 is evidently

completed.

Remark. If we take λ = 1 and µ = 2 in all theorems of this section,

then we extend the results by Goel and Sohi [4], which reduce the results earlier

obtained by Bajpai [1].
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