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1. Introduction

Let X denote the class of functions of the form

f(z) = % + Zakzk
k=0

which are analytic in the punctured open unit disk D = {z € C: 0 < |z] < 1}.
If f and g are analytic in Y = D U {0}, we say that f is subordinate to g,
written f < g or f(z) < g(z), if there exists a Schwarz function w in U such
that f(z) = g(w(z)). For 0 < n,[ < 1, we denote by ¥*(n) and Xx(n) and
Yc(n, ) the subclasses of ¥ consisting of all meromorphic functions which are,
respectively, starlike of order 1 and convex of order 7 and colse-to-convex of
order § and type n in U (for details, see, e.g. [5]).

Let M be the class of analytic functions ¢ in U normalized by ¢(0) = 1,
and let A be the subclass of M consisting of those functions ¢ which are
univalent in U and for which ¢(U) is convex and Re{¢(z)} > 0 (z € U).

Making use of the principle of subordination between analytic functions,
we introduce the subclasses ¥*(n,¢), Xg(n, ¢) and X.(n, 5; ¢,1) of the class
Y for 0 <n,0<1and ¢, €N, which are defined by

E——%(#
1—n< f(2)

St ) = {7 € 35 “n) <o) inu},

and

z2f'(2)
9(2)

Ye(n, B; ¢, 1) = {f €X:3dgeX(n; ¢) S-t-liﬁ < ﬁ) < (z) in U}-

We note that the classes mentioned above is motivated essentially by the famil-

iar classes which have been used widely on the space of analytic and univalent



functions in U (see, for details, [2,6,9]) and for special choices for the functions
¢ and v involved in these definitions, we can obtain the well-known subclasses
of ¥ [1,4,5].
Let
1
M=) = S0 =P (A>-1; 2€D)

and let f), be defined such that

1

fA(Z)*fA,#(z):m (A>—1; u>0; z€ D), (1.1)

where the symbol (x) stands for the Hadamard product(or convolution). Then

we define the operator I, , : X — X as follows:

Douf @)= {fxu* () (g2 > —1; 1> 0). (1.2)

In particular, we note that lyaf(2) = 2f'(2) + 2f(2) and L 2f(2) = f(2). In

view of (1.1) and (1.2), we obtain the useful identities as follows:

2(Dgref(2)) =X+ 1)L uf (2) = (A4 2) g, f (2). (1.3)

and

2 (Duf (2)) = phper f(2) = (e + DD f (2). (1.4)

The operator I, is closely related to the Choi-Saigo-Srivastava operator for
analytic and univalent functions [2], which extends the Noor integral operator
studied by Liu [7](also, see [8,11,12]).

Next, by using the operator I,,, we introduce the following classes of

meromorphic functions for ¢,y e N, A > -1, u>0and 0<n,3 < 1:

S Ay ¢) =A{f eX: Lf € X (n;0)},



S my ) ={f e Lf e Xno)},

and

Se(N s n, 8, d,00) :={f € X : Ly f € Ze(n, B;0,9)}

We also note that

f(2) € BN my 0) <= —2f'(2) € 2"\, 15 05 @) (1.5)

In particular, we set

L A
YEAN o om; = (WA & A B=[Zillfe B.< A <1
<’M’n’1+Bz) (A m A, By (-1<B<A<L1)
and
1+ Az
el A w n; SN, e B (—1-<< B <A< 1).
k(,,u, n; 1+Bz) k( s 15 T3 ) )( = = —)

In this paper, we investigate several inclusion properties of the classes

S 3 5 @), Be(A s my @) and X (A s 1, 85 ¢, ) associated with the op-

erator I, ,. Some applications involving integral operators are also considered.

2. Inclusion Properties Involving the Operator I, ,

The following results will be required in our investigation.

Lemma 2.1 [3]. Let ¢ be convexr univalent in U with ¢$(0) = 1 and
Re{ko(z) + v} > 0 (k,v € C). If p is analytic in U with p(0) =1, then

)+ PO oy ew

implies



p(z) < o(z) (2 €U).

Lemma 2.2 [10]. Let ¢ be convexr univalent in U and w be analytic in
U with Re{w(z)} > 0. If p is analytic in U and p(0) = ¢(0), then

p(z) +w(z)zp'(2) < 9(2) (2 €U)

implies

p(z) < ¢(2) (2 €lU).

At first, with the help of Lemma 2.1, we obtain the following

Theorem 2.1. Let ¢ € N with max_qRe{¢(2)} < min{(p+1—n)/(1—
n),A+2-n)/1-n}A>=1 u>00<n<1). Then

S p+ 1 @) XN w1 0) C XA+ 1,5 15 B).

Proof. First of all, we will show that

SN p+1m o) CET (N ;@)

Let f € ¥ (A, p+1; n; ¢) and set

1 I !
M=y (_Z<I;:L}f(<;>> _”)’ 2y
where p is analytic in Y with p(0) = 1. Applying (1.4) and (2.1), we obtain
D) (1) — (1), 22)

]/\,uf(z)



Taking the logarithmic differentiation on both sides of (2.2) and multiplying

by z, we have

1 _Z(I)\,;Hrlf(z)),_ — (= ' (2) <
1—77( T /() ") SRS ETTERTES RS 6283)

Since max,eyRe{o(2)} < (u+1—mn)/(1 —n), we see that

Re{—(1—n)o(z) +pu+1—n} >0 (z €U).

Applying Lemma 2.1 to (2.3), it follows that p < ¢, that is, f € Z*(\, u; n; ¢).

To prove the second part, let f € ¥*(\, ui; n; ¢) and put

Ml _Z<I)\+1,uf(z)), =
1&T 1 ( Druf(2) 77) :

where s is analytic function with s(0) = 1. Then, by using the arguments
similar to those detailed above with (1.3), it follows that s < ¢ in U, which
implies that f € X*(A + 1,u; n; ¢). Therefore we complete the proof of
Theorem 2.1.

Theorem 2.2. Let ¢ € N with max,cRe{¢p(2)} < min{(u+1—n)/(1—
n),AN+2-n)/1-n)} AN>-1; u>0; 0<n<1). Then

Seh 415 5 @) CEp(N gy my @) CEAN+1, 5 15 @)

Proof. Applying (1.5) and Theorem 2.1, we observe that



f(z) € BN p+1; n; 9) D1 f(2) € Zi(n; ¢)
—2(I i f(2)) € X5 (n; ¢)
Doy (—2f'(2) € Z5(n; ¢)
—zf'(z) XN\ p+ 15 m; @)
—zf'(z) € Z°(\, 1 m; @)
Dou(=2f"(2)) € Z*(n; ¢)
—2(Iuf(2)) € E*(n; ¢)
Louf(z) € Bi(n; ¢)

f(z) € B\ m; ¢),

[ D B

and

f(2) € (X ms o)== —2f(z) € =" (N, ;75 )
= —=fEeX (A1, n; ¢)
— &b f(2) €X(n; 9)
= Iiuf(z) € Zi(ny ¢)
= flz) XA+ 1 n; ),

which evidently proves Theorem 2.2.
Taking

1+ Az
in Theorem 2.1 and Theorem 2.2, we have

(-1<B<A<1; z€U)

Corollary 2.1. Let (1+A)/(1+B) <min{(p+1—n)/(1—n), A\ +2—
m/(L—=mtA>-1;, p>0;, 0<n<1l, —-1<B<A<LL1). Then

YN p+1 s A B) CE (A m; A, B) CEY(A+ 1, m; A, B)



and

YA+ 1 A B) CEp(A s my A B) CEk(A+ 1,5 m; A, B).

Next, by using Lemma 2.2, we obtain the following inclusion relation for
the class X.(A, 5 1, B; ¢,v).

Theorem 2.3. Let ¢, € N with max,cyRe{d(2)} < min{(p + 1 —
m/A=n),A+2=n)/0=n} A>-1L p>0;, 0<n<1). Then

S p+1n,6; 6,9) C X\ pyn,B5-0,7) C E(A+ 1,15 1,6 ¢,9).

Proof. 'We begin by proving that

(A g+ 15 0B @) C B8 (s 7, B ¢, 1))

Let f € 3.(\, u+1; n,3; ¢,4). Then, in view of the definition of the class
YA p+1; 0,05 ¢,1), there exists a function r € ¥X*(n; ¢) such that

1 2huif(2)
1-p r(2)
Choose the function g such that ) ,+19(2) = 7(z). Then g € *(\, p+1; 1; ¢)

and

2 ﬁ) <Y(z) (z €lU).

1 _Z(IMMHJC(Z))’ _ ) (2
1—5< I p19(2) ﬁ) < Y(z) (z€U). (2.4)
Now let
p(z) = 1 i 3 (— Z(Ili’:;((j ) 6) : (2.5)

where p is analytic in ¢/ with p(0) = 1. Using (1.4), we obtain



1 (_z(h,u+1f(z))’ _ 5) __1 (Ixm(—zf’(z)) _ ﬁ)

1-p IA,u+19(2) 1-p ]A,u+1g(2)

_ (zm,u(—zf’(z)))’ (et Dhu(=2f'(2) /3)
1-5 2(Dug(2)) + (1 + 1)1 (2)

1 (Z(IA—’?:‘,“;{;Y”” v 5)

1= Abuws@) 1

(2.6)

I)\,y,g(z)

Since g € (N, u+ 1; n; ¢) C Z*(\, w; n; ¢), by Theorem 2.1, we set

-ty )

where ¢ < ¢ in U with the assupption for ¢ € N. Then, by virtue of (2.5) and
(2.6), we observe that

Iu(=21(2)) = (1 = B)p(2)au9(z) + B1x,.9(2) (2.7)

and

1 <_z([,\,u+1f(z))’ - ﬁ) A" &W (bt DA - B)p(x) +5) 5
1-7 Iy u119(2) b0 —(1=n)q(2) +u+1-n '

(2.8)

Upon differentiating both sides of (2.7), we have

2 Duu(=2f(2)))
]A,,ug(z)

= (1 =0)20'(2) = (1 = P)p(z) + A) (1 = n)a(=) +n). (2.9)

Making use of (2.4), (2.8) and (2.9), we get

1 (_z(IA,le(z))'

-6 =pz ' (2) 2) (2
1-3 [)\,;Hrlg(z) ﬁ) _p( )+_ '<’17Z)( ) ( EU)

(I=mq(z) +p+1-n
(2.10)

Since p > 0 and ¢ < ¢ in U with max,cRe{o(2)} < (p+1—1n)/(1 —n),



Re{—(1—=n)q(z) +p+1—n}>0 (z €U).

Hence, by taking

1
1 =nq(z) +p+1-n
in (2.10), and applying Lemma 2.2, we can show that p < ¢ in U, so that
fE€Ze(N s . By ¢,0).
For the second part, by using the arguments similar to those detailed above

with (1.3), we obtain

w(z) = —

Se(A w3 0,05 é,9) C B A+ 1,15 0,65 &,1).

Therefore we complete the proof of Theorem 2.3.

3. Inclusion Properties Involving the Integral Operator F,
In this section, we consider the integral operator F. [1,4,5] defined by

c

R = FDG) =5 [ [FI0a (eSie0. (1)

We first prove

Theorem 3.1. Let A > —1, ;>0 and let ¢ € N with max,cRe{p(2)}
<(e+l-=n)/(L=m)(c>00<n<1). IffeX\umn ¢), then
Fe(f) € XN 5 ).

Proof. Let f € ¥X*(\, u; 1; ¢) and set

(A EDE)
p(z) = 1—mn ( D Fe(f)(2) 77) ’ 32

where p is analytic in ¢ with p(0) = 1. From (3.1), we have

(I Fe(f)(2))" = eluf (2) = (e + 1)L Fe(f)(2). (3-3)



10

Then, by using (3.2) and (3.3), we obtain

e [/\,,uf(z)
DoFe(f)(2)

Making use of the logarithemic differentiation on both sides of (3.4) and mul-

=1 =npz) = (c+1-n) (3.4)

tiplying by z, we get

RO () )
1—n< () ”) P T ) verioy W

Hence, by virtue of Lemma 2.1, we conclude that p < ¢ in U for max,cRe
{6(2)} < (c+1—=mn)/(1 —n), which implies that F.(f) € X*(\, u; n; ¢).

Next, we derive an inclusion property involving F., which is given by

Theorem 3.2. Let X > —1, p > 0 and let ¢ € N with max,cyRe{d(z)} <
(c+1-=n)/(L=n) (c >0 0.<n <) Jf f € 5\ n @), then
Fe(f) € Zi(X py w5 @)

Proof. By applying Theorem 3.1, it follows that

f(2) € S\ s m; @) = —2f'(2) € X (A 1 9)
= F(=zf'(2))(2) € Z"(\, 11 m; &)
= —2(F(f)(2) €Z (A m )
= F(f)(2) € Ze(\ s m; 9),

(2.6)

which proves Theorem 3.2.

From Theorem 3.1 and Theorem 3.2, we have

Corollary 3.1. Let A > —1, > 0 and (1 — n)(1 + A)/(1 + B) <
(c+1-n) (¢>0; -1 < B<A<1;0<n<1). ThenlIf f € ¥*(\, u; n; A, B)
(or (A, ; m; A, B) ), then F.(f) € X*(\,p; m; A, B) (or X*(\, 5 1; A, B)).

Finally, we prove
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Theorem 3.3. Let A > —1, pu > 0 and let ¢,v € N withmax,cRe{p(2)}
<(e+1-m)/1=n)(c>0; 0<n<1). IffeX(\wnpB; ¢¢), then
Fo(f) € Ze(A s 0,85 ¢,¢).

Proof. Let f € X.(\ p; n,03; ¢,1). Then, in view of the definition of the
class X.(\, p; m, 8; ¢, 1), there exists a function g € X*(\, u; 1; ¢) such that

1 (_Z([A,uf('z)),
1-— 6 IA,uQ(’Z)

—ﬁ) < d(2) (zeU). (3.5)

Thus we set

p(z) =

L (CHBEOGY Y,
1-0 IhuFe(g)(2)
where p is analytic in & with p(0) = 1. Applying (3.3), we get

1 (_Z(Ix,uf(z))' —ﬁ) # 1[3 (I)\’H< 2f'(2)) ﬁ>

1-8\ Lug(2) Ly g (2)
_ 1 ( A uFe(=2f ()R) + (c + DB uFe(—2(2))(2) _ﬁ>

1-8 (D Fe(g)(2)) + (e DB . F(9)(2) (3.6)
B 1 z(I, ;}i(Fc( () (c+ 1)IA’HII;C§FCZ(];)((?))(Z) /s

I\ T s

Since g € ¥*(\, u; n; @), we see from Theorem 3.1 that F.(g) € X*(\, u; 1; ¢).

Let us now put

(U EGE)
q(2) = 1—n ( I, Fe(9)(2) 77) 7

where ¢ < ¢ in U with the assupption for ¢ € A. Then, by using the same

techniques as in the proof of Theorem 2.3, we conclude that from (3.5) and
(3.6) that

1 _Z(IA,Hf<Z))/ o _ p zp’(z) . .
(e ) “>+—u—m«@+c+1_n<w<><ézy
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Hence, upon setting

1
(I=mn)q(z) +c+1—n

w(z) ==

in (3.7), if we apply Lemma 2.2, we obtain that p < ¢ in U, which yields that
F.(f) € 3.(A\, 5 n,8; ¢,v). Therefore the proof of Theorem 3.3 is evidently

completed.

Remark. If we take A = 1 and g = 2 in all theorems of this section,

then we extend the results by Goel and Sohi [4], which reduce the results earlier

obtained by Bajpai [1].

—_
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