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Chapter 1

Introduction

Let C' be a nonempty closed convex subset of a real Banach space X and let
T :C — C be a mapping. We say that T is a Lipschitzian mapping if, for each

n > 1, there exists a constant k,, > 0 such that
Tz — T"y|| < knllz —y||

for all xz,y € C'. In particular, a Lipschitzian mapping 7' is called nonezrpansive
if k, = 1 for all n and asymptotically nonexpansive [14] if lim, .k, = 1,
respectively. A point x € C'is a fized point of T provided Tx = x. Denote by
F(T) the set of fixed points of T; that is, F(T) = {x € C : Tx = z}. A point
p in C is said to be an asymptotic fized point of T' [33] if C' contains a sequence
{z,} which converges weakly to p such that lim, . (z, — Tx,) = 0. The set of
asymptotic fixed points of 7' will be denoted by F' (7).

Let X be a smooth Banach space and let X* be the dual of X. The gauge
function ¢ : X x X — R is defined by

$(@,y) = ll2|* = 2(z, Jy) + [ly|I”

for all =,y € X, where J is the normalized duality mapping from X to its dual



space X* such that
Jr={2" € X*: (z,2") = |[z]* = "]}

for each x € X. We say that a mapping 7' : C' — C' is relatively nonezxpansive
6, 7, 9] if

(i) F(T) is nonempty,
(i) F(T) = F(T), and
(i) o(p, Tx) < ¢(p,x) forall x € C, p e F(T);

see also [26]. As its dual concept, T': C' — C' is said to be generalized nonexpan-

sive if (i), (ii) and the following dual property (iii)’ instead of (iii) are satisfied:
(i)’ ¢(Tz,p) < ¢(z,p) forall x € C, pe F(T);

see [18] for definition with no condition (ii). Then it is well known in [26] that if
X is strictly convex and 7' is relatively nonexpansive, then F(T') is closed and
convex.

Construction of approximating fixed points of nonexpansive mappings is an
important subject in the theory of nonexpansive mappings and its applications
in a number of applied areas; in particular, in image recovery and signal process-
ing (see, e.g., [8, 28, 35, 42, 43]). However, the sequence {T"x} of Picard iterates
of the mapping 7" at a point € C' may not converge even in the weak topology.
Thus three averaged iteration methods often prevail to approximate a fixed point
of a nonexpansive mapping 7'. The first one is introduced by Halpern [16] and is
defined as follows: Take an initial guess 1 = u € C arbitrarily and define {z,}
recursively by

Tpi1 =tyu+ (1 —t,)Tx,, n>1, (1.1)
where {t,} is a sequence in the interval [0, 1].

2



The second iteration process is now known as Mann’s iteration process [24]

which is defined as
Tpt1 = Oy + (1 - Oén)T:Una n =1, (12)

where the initial guess z; = w is taken in C' arbitrarily and the sequence {a,}
is in the interval [0, 1].
The third iteration process is referred to as Ishikawa’s iteration process [17]

which is defined recursively by

Yn = ﬁnfn + (1 - ﬁn)T$n>

n>1, (1.3)
Tl = ATy + (1 - O‘n)T?/m

where the initial guess z; = w is taken in C arbitrarily and {«,} and {3,} are
sequences in the interval [0,1]. By taking 3, = 1 for all n in (1.3), Ishikawa’s
iteration process reduces to the Mann’s iteration process (1.2). It is known in
[10] that the process (1.2) may fail to converge while the process (1.3) can still
converge for a Lipschitz pseudo-contractive mapping in a Hilbert space.

In general, the iteration process (1.1) has been proved to be strongly con-
vergent in both Hilbert spaces [16, 23, 38] and uniformly smooth Banach spaces
[31, 36, 41], while Mann’s iteration (1.2) has only weak convergence even in a
Hilbert space [13].

Attempts to modify the Mann iteration method (1.2) or the Ishikawa itera-
tion method (1.3) so that strong convergence is guaranteed have recently been
made. Nakajo and Takahashi [27] proposed the following modification of Mann’s

iteration process (1.2) for a single nonexpansive mapping T with F(T') # ) in a



Hilbert space H:

(
u € C chosen arbitrarily,

Yn = QpTp + (1 - an)T‘/L‘na
Co= {2 € C g — 2l < llen — 4111, (1.4)
Qn={z€C:{(x,—z,u—u1x,) >0},

L Tnt1 = PCann%

where Pk denotes the metric projection from H onto a closed convex subset K
of H. They proved that if the sequence {a,} is bounded above from one, then
the sequence {z,} generated by (1.4) converges strongly to Ppryu. A recent
extension of the process (1.4) to asymptotically nonexpansive mappings can be
found in [21]. See also [20] for another modification of the Mann iteration process
(1.2) which also has strong convergence. Very recently, Martinez-Yanez and Xu
[25] generalized Nakajo and Takahashi’s iteration process (1.4) to the following
modification of Ishikawa’s iteration process (1.3) for a nonexpansive mapping
T:C — C with F(T) # (.in a Hilbert space H:

(
u € C chosen arbitrarily,

Yn = 0nTn'F (1 = @y JE2n,

Zn = BpZn + 8588 EXn,

Cn ={v € Ctllyn — > < atullzn = vl” + (1 = ow)l|zn — 0|17},
Qn={veC:{(zx,—v,z,—u) <0},

(1.5)

L Tnt1 = PCanuy

and proved that the sequence {z,} generated by (1.5) converges strongly to
Pp(ryu provided the sequence {a,,} is bounded above from one and lim,, ., (3,
=1.

On the other hand, Matsushita and Takahashi [26] extended Nakajo and Taka-

hashi’s iteration process (1.4) to the following modification of Mann’s iteration



process (1.2) using the hybrid method in mathematical programming for a rela-
tively nonexpansive mapping 71" : C' — C' in a uniformly convex and uniformly

smooth Banach space X:

(
u € C chosen arbitrarily,

yn = J HanJr, + (1 — ) JTxy),
W,={2¢€C:(x, -z Ju— Jx,) > 0},

L Tpy1 = HHann u,

where J is the normalized duality mapping. Then they proved that if the se-
quence {a,} is a sequence in [0,1) and limsup,,_, . o, < 1, then the sequence
{zn} generated by (1.6) converges strongly to [[pyu, where [, denotes the
generalized projection from X onto a closed convex subset K of X.

The paper is organized as follows. In the following chapter we give some
preparations relating to four projections in Banach spaces which play crucial
roles for our argument. In Chapter 3, motivated and inspired by their ideas
due to Martinez-Yanez and Xu [25] and Matsushita and Takahashi [26], we shall
prove some strong convergence theorems for a pair of relatively nonexpansive
mappings in Banach spaces. This chapter is organized as follows. In the section
3.1 we give a new equivalent to the Kadec-Klee property in a Banach space.
In Section 3.2, motivated by [25, 26], we extend Matsushita and Takahashi’s
iteration process (1.6) to the Mann or Ishikawa iteration type process for a pair
of relatively nonexpansive mappings.

In Chapter 4, we employ ideas due to Matsushita and Takahashi [26] and
Ibaraki and Takahashi [18] to prove some strong convergence theorems for gener-
alized nonexpansive mappings in uniformly convex Banach spaces, as analogues
of recent results due to Matsushita and Takahashi [26]. Finally, in section 4.2,

some applications are added.



Finally, in Chapter 5, we shall discuss the strong convergence problems re-
lating to the previous chapter for a finite family of generalized nonexpansive

mappings in uniformly convex Banach spaces.



Chapter 2

Preliminaries

In this chapter, we introduce some notations and prerequisites which are used

in the subsequent chapters.

2.1 Geometrical properties

Let X be a real Banach space with norm || - || and let X* be the dual of X.
Denote by (-,-) the duality product. When {z,} is a sequence in X, we denote
the strong convergence of {r,} to © € X by z,, — x and the weak convergence

by z, — x. We also denote the weak w-limit set of {z,} by
et I iy S
The normalized duality mapping J from X to X* is defined by
Jov={z" € X" (z,2") = [[z]|* = ||="[|"}

for zx € X.

Now we summarize some well known properties of the duality mapping J for

our further argument.



Proposition 2.1.1. ([12, 32, 37]) Let X be a real Banach space. The normalized
duality mapping J from X to X* satisfies the following basic properties:

(1) Jz is nonempty, bounded, closed and convex (hence weakly compact) for

all v € X.
(2) JO=0.
(3) J(Ax) = AJx for x € X and real \.
(4) J is monotone, that is, (z—vy, j.—j,) >0, Vz,y € X, Vj, € Jz, Vj, € Jy.
(5) llzl* = lylI* = 2(x —y, j) for 2,y € X and j € Jy.

Recall that a Banach space X is said to be strictly conver (SC) [4] if any
non-identically zero continuous linear functional takes maximum value on the
closed unit ball at most at one point. It is also said to be uniformly convex if
|Zn,—yn|| — 0 for any two sequences {z,}, {y,} in X such that ||z,| = ||y.|| =1
and [|(zn + ya) /2] = 1.

We introduce some equivalent properties of strict convexity of X ; see Propo-

sition 2.1.1 in [4] for the detailed proof.

Proposition 2.1.2. ([4]) A linear normed space X is strictly convex if and only

if one of the following equivalent properties holds:
(a) if ||z +y|| = ||z|| + |ly|| and x # 0, then y = tx for some t > 0;
(b) if ||z|| = |ly]| =1 and x # y, then ||Az + (1 — N)y|| <1 for all A € (0,1);
(c) if |lz|| = llyll =1 and @ # y, then |(z +y)/2|| < 1;

(d) the function x — ||z||?, x € X, is strictly convex.



Proof. The detailed proof of (b) < (d) will be given for our reference. It suffices
to show (b) = (d). Let z #y € X and X € (0,1). First, let ||z|| = ||y|]| =r > 0.
By (b), we obtain

1Az + (1= Nyl* <7 = Al=[* + (1 = N)ly* (2.1)
for all z,y € X with ||z|| = ||ly||. Next [|z|| # ||y||. Then, from the equality
Allzll* + (1 = Mlyll* = (Mlll + (1= llyl)* + A0 = NIzl = llyl)*
it follows that

Az + (@ =Nyl* < A=l + @ =Nyl
< Alll® + (@ = Vlyl? (2.2)

for all x,y € X with ||z] # |ly|]|. By (2.1) and (2.2), (d) is satisfied. O

Let S(X) :={x € X : ||z]| = 1} be the unit sphere of X. Then the Banach

space X is said to be smooth provided

o oty = o
t—0 t

(2.3)
exists for each z, y € S(X). In this ecase, the norm of X is said to be Gdteauz
differentiable. The space X is said to be a uniformly Gateauz differentiable norm
if for each y € S(X), the limit (2.3) is attained uniformly for x € S(X). the
norm of X is said to be Fréchet differentiable if for each x € S(X), the limit
(2.3) is attained uniformly for y € S(X). The norm of X said to be uniformly
Fréchet differentiable (or X is said to be uniformly smooth) if the limit in (2.3)
is attained uniformly for x,y € S(X).

A Banach space X is said to have the Kadec-Klee property if a sequence {x,,}
of X satisfying that z, — = € X and |z,|| — ||z|, then z, — x. It is known
that if X is uniformly convex, then X has the Kadec-Klee property; see [12, 37]

for more detalils.



Again, we introduce some well known properties of the duality mapping J

relating to geometrical properties of X.

Proposition 2.1.3. ([12, 32, 37])

(1)

(2)

X is smooth if and only if J is single valued. In this case, J is norm-to-

weak™* continuous;
if X is strictly convex, then J is one to one (or injective), i.e.,

r#y = JrnJy=0.
X is strictly convex if and only if J is a strictly monotone operator, i.e.,
T#Yy, jo €J, jy€Jy = (v —y,jz—Jy) > 0.
if X is reflexive, then J is a mappingof X onto X*.

if X* is strictly convex (resp., smooth), then X is smooth (resp., strictly

convex). Further, the converse is satisfied if X is relexive.
it X has a Fréchet differentiable norm, then .J is norm-to-norm continuous.

it X has a uniformly Gateaux differentiable norm, then J is norm-to-weak*

uniformly continuous on each bounded subset of X .

it X is uniformly smooth, then J is norm-to-norm uniformly continuous

on each bounded subset of X .

Finally, we shall add the well-known properties between X and its dual X*.

(9)

(10)

X is uniformly convex if and only if X* is uniformly smooth.

X is reflexive, strictly convex, and has the Kadec-Klee property if and only

if X* has a Fréchet differentiable norm.

10



2.2 Four projections on Banach spaces

Let C' be a nonempty subset of a real Banach space X. We say that C is
said to be a Chebyshev set with respect to the function f if to each z € X there

exists a unique u € C' such that
—ul| =d(z,C) = inf ||z — y||.
lv = ulf = d(@, C) = inf [lz —y]|

In this case, we may define the nearest point projection (or called metric projec-

tion) Po: X — C by assigning u to . Then we have the following

Proposition 2.2.1. ([15]; see Proposition 3.4; pp.13) Let C be a convex Cheby-
shev set in X and x € X. Then,

u=PFPer < 3Jjed(x—u) st (y—u,j) <0, VyeCl. (2.4)

Here, let us introduce the following well known existence theorem;see Theo-

rem 1.3.11 in [37] or Theorem 1.2 and Remark 1.2 in [4].

Theorem 2.2.2. ([4, 37]) Let X be a reflexive Banach space and let C' be a
closed convex subset of X. Let f be a proper convex lower semicontinuous
function of C' into (—oo,o0] and suppose f(x,) — oo as ||z,|| — oo. Then,
there exists u € C' such that

f(u) = inf f(y). (2.5)

yeC

Let X be a reflexive and strictly convex Banach space and let C be a
nonempty closed convex subset of X. For an arbitrary (fixed) point = € X,

consider f,(y) = ||z —y||* for y € C'. Then f, : C — [0,00) is a proper strictly

11



convex and continuous function and f,(y) — oo as |ly]] — oo. By Theorem

2.2.2, there exists u € C' such that

fa(u) = inf fi(y). (2.6)

yeC

Since X is strictly convex, f,(-) is a strictly convex function; see (d) of Propo-
sition 2.1.1. Therefore, such a u € C' is uniquely determined. Note that (2.6) is
equivalent to

o = ull = inf [l ~ yl| = d(z, C).

So, the closed convex subset C' of a reflexive and strictly convex Banach space
X is a Chebyshev set and hence Pr : X — C is a nearest point projection (or

metric projection). Combined with Proposition 2.2.1, we have the following

Proposition 2.2.3. Let C' be a nonempty closed convex subset of a reflexive,

strictly convex and smooth Banach space X . Then

y=Pox & Ay IS v)) <0, VyeC. (2.7)

On the other hand, let X be a smooth Banach space. Recall [2] that the

gauge function ¢ : X x X — R is defined by

Sy, ) = llyll* — 2{y, J=) + ||=])*

for all x,y € X; see also [19]. It is obvious from the definition of ¢ that, for

r,y,z€ X,

(@) (lyll = lI=1)? < oy, 2) < (lyll + [[=])?,
(b) ¢(l‘,y) = ¢($7 Z) + ¢(Z7y) + 2<3§' — % Jz — Jy>,

(c) o(x,y) = (z,Jo = Jy) + (y — x, Jy) < |lz|| [[Jz = Tyl + lly — =[[ ly]],

12



(d) if X is strictly convex, then ¢(z,y) =0 < x =y,
(e) (-, ) is a strictly convex function if and only if X is strictly convex,

(f) both ¢(-,x) and ¢(x,-) are continuous functions on X; further, ¢(-,x) is

convex, while ¢(z,-) is not convex.

Then applying for Theorem 2.2.2 again, we have the following result due to
Kamimura and Takahashi [19].

Proposition 2.2.4. ([19]; see Proposition 3) Let X be a reflexive, strictly convex
and smooth Banach space, let C' be a nonempty closed convex subset of X, and

let x € X . Then there exists a unique element u € C' such that

O, ) = inf 6(2, 7).

Let C and X be as Proposition 2.2.4. For z € X, define

BIEE .

Then a mapping [[, : X — C is well-defined (called the generalized projection
from X onto C); see [2, 3, 19]. In Hilbert spaces, notice that the generalized

?

projection is clearly coincident with the metric projection.

The following result is well known (see, for example, [2, 3, 19]).

Proposition 2.2.5. (2, 3, 19]) Let C' be a nonempty closed convex subset of a
smooth Banach space X, v € X and u € C'. Then

v=[[pz & (y—u, Jor—Ju) <0, VyeC. (2.8)

13



Let C' be a nonempty closed convex subset of a normed linear space X and let
F be a nonempty subset of C'. We say that R : C — F is retraction if R(x) =z
for all x € F'. A retraction R: C — F is said to be sunny [29] if whenever z € C
is on the ray from Rx to z (€ ('), we have Rz = Rz, that is, u = Rz implies
R(u+ Az —u)) =wu for all x € C and X € [0,1].

The following result is well known (see [29]). For our convenience, the proof

will be included.

Proposition 2.2.6. ([29]) Let C' be a nonempty closed convex subset of a
normed linear space X whose norm is Gateaux differentiable, and let F' be a
nonempty subset of C'. Let R:C — F' be a retraction. Then the followings are

equivalent:
(a) (r— Rz, J(y— Rx)) <0 for v € C' and y € F;
(b) Rz — Ryll® < (z —y. J(Rz — Ry)) for =,y € C;

(¢) R is both sunny and nonexpansive.

Proof. First, we show (a) < (b). Suppose (a) holds. Then, for z,y € C, we

have

(y — Ry, J(Rx — Ry))

IN
o

(r — Rz, J(Ry — Rx)) < 0.
Summing both sides yields
(y —x+ Rx — Ry, J(Rx — Ry)) <0,
which is equivalent to
|1Rz — Ry||* < (v —y, J(Rz — Ry)),

14



and so (b) is fulfilled. Now suppose (b) holds and let x € C, y € F. Since
y = Ry, it follows from (b) that

|Rx — y||* < (z —y, J(Rx — y)),

which immediately reduces to (a). Next we show (¢) < (a). Suppose R is
both sunny and nonexpansive. Then, for x € C and y € F', put v = Rx and
K={v+Az—-v):0<A<1} CcC. If we K, then sunny nonexpansive

retraction of R gives
o=yl =[[Rw — Ry|| < [lw—yl, VweC,
and so K is a Chebyshev set in X, by Proposition 2.2.3,
(w—v,J(y—wv)) <0, VweK.
In particular, taking w = x (when A = 1)€ K gives
(H D It K Ve [

Therefore (a) is obtained. Now suppose (a) holds, then it immediately follows
from (b) that R is nonexpansive. Finally to prove that R is sunny, let v = Pz,

and w=v+ Az —v), A €[0,1]. Then,
(=—"0, JRW*= v)) < 0.
Firstly multiplying by A and next inserting A\(x —v) = w — v, we have
(w—v, J(Rw—v)) <0. (2.9)
On the other hand, since v = Rz € (', it follows from (a) again that
(w— Rw, J(v — Rw)) <0. (2.10)
Summing (2.9) and (2.10) gives |[v — Rw|* = (v — Rw, J(v — Rw)) < 0, and so

v = Rw. Then the proof is completed. O]

Remark 2.2.7. Note that (b) of Proposition 2.2.6 holds if and if only R is firmly

NoNeTPansive.

15



Let X be a smooth Banach space and let C' be a nonempty closed convex
subset of X. Recall that a mapping T : C — (' is said to be generalized
nonezpansive [18] if F(T) # () and

o(Tx,q) < ¢(x,q), VereC, qe F(T), (2.11)

where F(T) is the set of fixed points of 7.

The following result is well known (see [18]). For our convenience, we shall

give the detail proof.

Proposition 2.2.8. ([18]; see Proposition 4.2) Let C' be a nonempty closed
convex subset of a smooth and strictly convex Banach space X and let F' be
a nonempty subset of C'. Let Rp be a retraction of C' onto F'. Then Rp is

sunny and generalized nonexpansive if and only if

(x —Rpz,Jy— JRpx) <0, VxeC, yeF. (2.12)

Proof. (=) Let z € C and let y € F € F(R). Putting
K ={Rpzx+#(x — Rpz) : t €]0,1]},

we get

Since ¢(-,y) is continuous for each y € F', we have
¢(Rpw,y) = min g(w, y).

Since Rpx = [[ vy from Proposition 2.2.5, we have (w — Rpx, Jy — JRpz) <0
for all w € K. In particular, taking w = x (with ¢t = 1) yields

(x — Rpx, Jy — JRpx) <0
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forall x € C' and y € F.
(<) Let x € C and p € F = F(Rp). Then it follows from the properties
(a)-(b) of ¢ and (2.12) that

o(x,p) = ¢(x, Rpx) + ¢(Rrx,p) + (x — Rpx, JRcx — Jp)

and so Rp is generalized nonexpansive. To prove that Rp is sunny, let z € C

and z; = Rpx + t(x — Rpx), t € [0,1]. From (2.12), we have
(x4 — Rpxy, JRpx — JRpxy) <0 (2.13)

and

(x — Rpz, JRpxy — JRpz) < 0. (2.14)

Since x; — Rpx = t(x — Rpx), it follows from (2.14) that
(Rrz= x4, JRpx — JRpxy) < 0. (2.15)

Combining (2.13) and (2.15) gives (Rpx — Rpzy, JRpr — JRpa) < 0. Since X

is strictly convex, this shows Rpz; = Rpx and so Ry is sunny. O]

Remark 2.2.9. Let €', F and X be as in Proposition 2.2.8. Notice that such
a sunny generalized nonexpansive retraction of C' onto F' is unique; see Ibaraki

and Takahashi [18].

2.3 Properties relating to the gauge function ¢
We begin with the following well known result; see, for example, [2, 3, 19]).

Proposition 2.3.1. (]2, 3, 19]) Let K be a nonempty closed convex subset of a

real Banach space X and let x € X .
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(a) If X is smooth, then, T = [[, z if and only if (z —y,Jx — J&) > 0 for

y € K ; see also Proposition 2.2.5.

(b) If X is reflexive, strictly convex and smooth, then, for all y € K the
following inequality holds:

P(y, HKx) + ¢<HKx»$) < o(y, x).

Lemma 2.3.2. Let X be a smooth Banach space. Then, for any fixed x € X,
¢(-,x) is weakly lower semicontinuous on X ; moreover, it is continuous and

convex on X .

Proof. Fix z € X and let z, — p € X. Clearly, (z,, Jx) — (p, Jz), and using

the weakly lower semicontinuity of the norm, we have

o(p,2) = lpll* = 2(p, Jz) + |2
< JTodiit (]|:Un]|2 — 2(x,, Jz) + ||ZBH2>

= liminf ¢(zp, ).

n—~o0o

Hence ¢(-, ) is weakly lower semicontinuous on X . Obviously, the continuity
and convexity of the function ¢(-,z) follow from the continuity and convexity of

| - ||*> and the linearity of Ja. =

Motivated by Lemmas 1.3 and 1.5 of Martinez-Yanes and Xu [25] in Hilbert

spaces, we present the following two lemmas.

Lemma 2.3.3. Let C' be a nonempty closed convex subset of a smooth Banach

space X, x,y,z € X and X\ € [0,1]. Given also a real number a € R, the set
Di={veC:p(u,2) < A(v,2) + (1 — No(v, ) + a}
is closed and convex.
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Proof. The closedness of D is obvious from the continuity of ¢(-,z) for z € X .
Now we show that D is convex. As a matter of fact, the defining inequality in

D is equivalent to the inequality
1
(v Mz + (1= ATy = Jz) < SAll2l* + (L= Vlyl” = 12]° + o).
This inequality is affine in v and hence the set D is convex. O

Lemma 2.3.4. Let X be a reflexive, strictly convex and smooth Banach space
with the Kadec-Klee property, and let K be a nonempty closed convex subset of
X. Let w € X and q := [[,;u, where [[, denotes the generalized projection
from X onto K. If {x,} is a sequence in X such that w,(x,) C K and satisfies

the condition
P(xn, u) < H(q, u) (2.16)

for all n. Then x, — q =[], u-

Proof. By (2.16), {¢(z,,u)} is bounded and, by the property (a) of ¢ in Chapter
2, {x,} is bounded; so w,(x,) # 0 by reflexivity of X. Since ¢(-,u) is weakly
lower semicontinuous on X by Lemma 2.2.2, and, by using (2.16) again, we get
o(v,u) < ¢(g,u) for all v € wy,(x,). However, since w,(z,) C K and ¢ = Qgu,
we must have v = ¢ for all v € w,(z,). Thus w,(z,) = {¢} and z, — ¢. On

the other hand, using the weakly lower semicontinuity of ¢(-,u) again, we have
¢(q,u) < liminf @(z,, u)

< limsup ¢(z,,u)

n—oo

< ¢lqu) by (2.16)
and so lim, . ¢(x,,u) = ¢(q,u). This implies lim, . ||z,|| = ||¢||. By the
Kadec-Klee property of X, we have x,, — q. O

Lemma 2.3.5. ([40]) Let X be a uniformly convex Banach space and let
B, = {z € X : ||z|| < r} be a closed ball with radius r > 0 in X. Then
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there is a continuous, strictly increasing and convex function g : [0, 00) — [0, 00),

9(0) =0, such that
lax + (1 = a)yll* < allz]* + (1 = )llyll* — a(l = a)g(l|z — ylI) (2.17)
for all x, y € B, and « € [0, 1].

Recently, Kamimura and Takahashi [19] proved the following result, which

plays a crucial role in our discussion.

Proposition 2.3.6. ([19]) Let X be a uniformly convex and smooth Banach
space and let {x,},{z,} be two sequences of X. If ¢(x,,z2,) — 0 and either
{z,} or {z,} is bounded, then x, — z, — 0.

Here we give the following converse of Proposition 2.3.6.

Proposition 2.3.7. Let X be a smooth Banach space and let {z,},{z,} be

two sequences in X . If x,, — z, — 0 and either {z,} or {z,} is bounded, then
¢(Tn, 2n) — 0.

Proof. Since z,, — z, — 0, it is not hard to see that if either {z,} or {z,} is
bounded, then the other is also bounded. Now let x € X be fixed. Then noticing
that

|6(zn, 7) — $(zns @) = Hlaal =Tal® + 2020 = 70, J7) |

[zl = llznlll(nll + T2nll) + 20120 = @l [l]]

AN

< lzn = zall(lznll + 20l + 2[l2]]) — 0
and using the identity equation the property (b) of ¢ in Chapter 2, we have

O(Tn,2n) = O(Tn, ) — d(2n, ) + 2(xy — 2, Jx — J2)

< | o(an, x) = ¢(zn, ) [ + 2|z — 2nll([[2]] + [|12n]) — 0
and the proof is complete. O]
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Now combing Proposition 2.3.6 and 2.3.7 gives the following equivalent form
in uniformly convex and smooth Banach spaces. This property will be also used

for proving our main result.

Proposition 2.3.8. Let X be a uniformly convex and smooth Banach space
and let {x,},{z,} be two sequences of X . If either {x,} or {z,} is bounded,

then ¢(x,,z,) — 0 if and only if x, — z, — 0.
As a easy observation of Proposition 2.3.8, we first prove the following results.

Proposition 2.3.9. Let C be a closed convex subset of a uniformly convex and
smooth Banach space X and T : C'— C be a relatively nonexpansive mapping.

Then T is continuous on F(T)).

Proof. Let p € F(T) and let x,, — p. To claim that Tx, — p, by Proposition
2.3.8, it suffices to show that ¢(p, Tz,) — 0. Indeed, since J is norm-to-weak*

continuous, Jz,, — Jp; in particular, (p, Ja,) — (p, Jp). Hence

O(p, ) = [|plI* = 2(p, Jzn) llall® — [IpII” = 2(p. Jp) + |Ip|I* = 0.

Now using the relative nonexpansivity of 7', we get

and so Tx, — Tp=p. O
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Chapter 3

Relatively nonexpansive

mappings and strong convergence

In this paper, motivated by an idea due to Matsushida and Takahashi [26],
we prove some strong convergence theorems of modified Ishikawa type iteration
processes for a pair of relatively nonexpansive mappings in Banach spaces, which
extend the recent result due to Matsushida and Takahashi in Banach spaces. Also

some applications for nonexpansive mappings in Hilbert spaces are added.

3.1 Kadec-Klee property and its equivalence

Recall that a Banach space X is said to have the Kadec-Klee property if a
sequence {x,} of X satisfying that z, — x € X and ||z,|| — ||z||, then z,, — z.
It is known that if X is uniformly convex, then X has the Kadec-Klee property;
see [12, 37] for more details.

In this section we consider the relationship between the Kadec-Klee property
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and the following weak property which is motivated by Proposition 2.3.8:

(KT)  Given a sequence {z,} in a smooth Banach space X and x(# 0) € X,

&(zn, ) — 0 if and only if z, — =.

Here, we prove that the property (KT) is equivalent to the Kadec-Klee property

in a reflexive, strictly convex and smooth Banach space.

Theorem 3.1.1. Let X be a smooth Banach space. Then,
(a) (KT) = (Kadec— Klee).

(b) if X is reflexive and strictly convex, (Kadec — Klee) = (KT).

Proof. (a) Let x, — x and ||z,|| — ||z||. Assume without loss of generality

that « # 0. Then, we have
$(@n, €) = ||zal® = 2(zn, J2) +llzall” — [12]” = 2{z, Jz) + [l2]* = 0.

From (KT), it follows that x, — =. Hence X satisfies the Kadec-Klee property.

(b) Let x(# 0) € X. Then it suffices to show that if ¢(z,,x) — 0, then
z, — x. Now let ¢(z,,z) — 0. Clearly, {¢(x,,x)} is bounded; by the prop-
erty (a) of ¢ in Chapter 2, {z,} is bounded and so wy(z,) # 0. Now if
Tp, — U € wy(x,), then, since ¢(-, ) is weakly lower semicontinuous by Lemma
2.2.2,

(v, x) < liminf ¢(z,, , z) = klg& &(Tn,,x) =0,

k—o00
which says that ¢(v,z) = 0. By strict convexity of X, we have v = x for all

v € wy(xy,). Therefore, wy,(z,) = {z}; so x, — x. On the other hand, since
(lzall = I2])* < d(wn, ) — 0,

we have ||z,|| — ||z||. By the Kadec-Klee property, we conclude that z,, — x. O
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3.2 Strong convergence theorems

In this section we first propose a modification of Ishikawa’s iteration process
(1.3), motivated by the idea due to [25, 26], to prove strong convergence for a

pair of relatively nonexpansive mappings in a Banach space.

Theorem 3.2.1. Let X be a uniformly convex and uniformly smooth Banach
space, let C' be a nonempty closed convex subset of X . Let & = {11,T, : C — C'}
be a pair of relatively nonexpansive mappings with F # (). Assume that {c,}
and {0, } are sequences in [0, 1] such that liminf, . a,(1—a,) > 0 and 3, — 1.
Define a sequence {z,} in C' by the algorithm:

.
x1 = u € C chosen arbitrarily,

Zn = BnZn+ (1 — Bn)en,

U = J HapFTozn + (1 = an)JFizy),

=T 0 50y e oI Zad)b(v, 7)),
W, #4v € C doag— v, JEm—%u) < 0},

| Tni1 = HHann u, 7

where J is the normalized duality mapping and {e,} is a bounded sequence in
C. If T, is uniformly continuous on C, then x, — [[,w, where [[ is the

generalized projection from X onto F'.

Proof. We employ the methods of the proofs in [26] and [25]. First, observe that
H,, is closed and convex by Lemma 2.3.3, and that W, is obviously closed and
convex for each n. Next we show that F' C H, for all n. Indeed, for all p € F,
2

we have, using convexity of || - ||* and relative nonexpansivity of T;, i = 1,2
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(noticing that z, € C'),

3D, yn) = (P, I~ (0 Tz + (1 = o) JT1,))
= |Ipl* = 2(p, T2 + (1 — ) JTh) + ||n I Tozn + (1 — ) J Ty, ||
< lplP* = 20 (p, TToza) = 2(1 — ) (p, TT12n) + | Tozn* + (1 — a) [ Tr |
= and(p, Tozn) + (1 = an)¢(p, Trvn)

nd(p; zn) + (1 — ) d(p, zn). (3.1)

IN

So p € H, for all n. Moreover, we show that
FCcH,NW, (3.2)

for all n. It suffices to show that F' C W,, for all n. We prove this by induction.
For n =1, we have F' C C = W;. Assume that F' C W), for some k£ > 2. Since
Tjy1 18 the generalized projection of u onto H;, MW, by Proposition 2.3.1 (a) we
have

(Tipr =2, = ST 1) >0

for all z € H,NWy. As F C Hyp N Wy, the last inequality holds, in particular,
for all z € F'. This together with the definition of Wj,, implies that F C Wj,;.
Hence (3.2) holds for all n. So; {x,} is well defined. Obviously, since z, = [, u
by the definition of ¥, and Proposition 2.3.1(a), and since F' C W,,, it follows
from the definition of [, that ¢(zn,u) < ¢(p,u) for all p € F. In particular,

we obtain that for all n,

O(2n,u) < Plq,u), where ¢ := [[u. (3.3)

Therefore, {¢(x,,u)} is bounded; so is {z,} by the property (a) of ¢ in

Chapter 2. Since {e,} is bounded, {z,} is also bounded. Noticing that

o(p, Tizy) < ¢(p, ) for all p € F(T;), {T;x,} is also bounded for i = 1,2.
Now we show that

|Tns1 — zn|| — 0. (3.4)
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Indeed, by the definition of W, and Proposition 2.3.1(a), we have z, = [, u
which together with the fact that x,., € H, N W,, C W,, implies that

¢($n7u) = zlgl}gl ¢<Z7U’) S ¢(xn+17u)7

which shows that the sequence {¢(x,,u)} is nondecreasing and so the lim,, ., ¢(z,, u)

exists. Simultaneously, from Proposition 2.3.1 (b), we have
¢($n+1, xn) = ¢ (xn—i-h HWHU) < Qb(xn—&-la U) - (b(HWnua u)
= ¢(xpi1,u) — d(zp,u) — 0. (3.5)

Hence, (3.4) is satisfied from Proposition 2.3.8.

Since 3, — 1, and {z,},{e,} are bounded, we have
|2n = znll = (1 = Bp)l|zn — exll — 0. (3.6)

Combining with (3.4) gives ||, 11—2,|| — 0, which is equivalent to ¢(z,41, 2,) — 0

by Proposition 2.3.8. Now since z,41 € H,,, we have

(b(xn—i-ly yn) = an¢<mn+la Zn) 1 (1 - an)¢<xn+la In) — 0,

hence ¢(Tn41,¥yn) — 0. Using Proposition 2.3.8 again, we obtain ||z,+1—yn| — 0.

This, together with (3.4), implies that ||z, — y,|| — 0 and also ||z, — y.| — 0.
Next, we show that ||z, — Tz, || — 0 forall i = 1,2. Since {Tiz,} and {T5z,}

are bounded, there exists r > 0 such that {T\z,} U {Tyz,} C B,. Applying for

Lemma 2.3.5 yields

ot J o2 + (1 — a) J 111, |12 < || Tozn||® + (1 — o) || Ty ||?

—an(1 —ap)g(|J 1oz, — JTi24||), (3.7)

where g : [0,00) — [0, 00) is a continuous, strictly increasing and convex function

with g(0) = 0. Using (3.7) instead of convexity of || - ||? in (3.1), we have

Oy yn) < and(p, 2n) + (1 = an)d(p, 2n) — an(1 = an)g([[ T Tozn — JTiznl])
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and so

an(1 = an)g(||JTez, — JTixy||)

< and(p, zn) + (1 = ) d(p, 1) — (P, Yn)- (3.8)

Notice that, for p € F', using the property (b) of ¢ in Chapter 2 repeatedly,

(b(pu yn) = (b(p? Zn) + ¢(zn7 yn) + 2<p — Zn, Jzp — Jyn>7

= o(p,zn) +Cn (3.9)
and
O, yn) = 0P, Tn) + O(Tn,yn) +2(p — 0, STy — JYn)
= @(p,xn) + dy, (3.10)
where
Cn A= O(zn,Yn) + 2(p = 205 J2n— Jyn) — 0,
G Qb(xmyn) + 2(]3 ST Jyn) — 0,

respectively, from Proposition 2.3.8: After multiplying «,, and 1 — a,, in (3.9)
and (3.10), respectively, summing both sides yields

O(D,Yn) = @ (D, 20) + (1 — ) d(p, ) + ancn + (1 — an)dy.
Since ¢,, d, — 0, we obtain
an@(p; 2n) + (1 = an)p(p, ) — ¢(p, yn) — 0.
Then it follows from (3.8), together with liminf, . o, (1 — ;) > 0, that
JLH;OQ(HJTQZYL — JTiz,||) = 0.
Since g is continuous, strictly increasing and ¢(0) = 0, we have
nh_}rglo |J Tz, — JT x| = 0.
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Since J~! is also uniformly norm-to-norm continuous on bounded sets, we have

2

Immediately, using convexity of || - ||* and Proposition 2.3.8 again, we have

¢(T1~Tn7 yn) = HTlxn||2 - 2<T1$n7 anJTZZn + (1 - O4n)JT‘1xn>
I Tz, + (1 — a) J Ty, ||?

< apd(Thxy,, Toz,) — 0.

Using Proposition 2.3.8 once more gives |71z, — y»|| — 0, this combined with
|4 — @nl| — O implies

|11z, — || — 0. (3.11)

Since J is uniformly norm-to-norm continuous on bounded sets, we have
Sz, = Jyn|| — 0, ||JTizn —Jx,| — 0. (3.12)
On the other hand, notice that

JTy —Jyy = Urn — (opddazn + (1 — a,)JTi,,)

= op(Jz, = JToz,) + (1 — ) (Jz,, — JTi2y) (3.13)

from the definition of v,,. Then using (3.12) and liminf, ., «, > 0 yields

1
|Jz, — JTaz,|| = — |(Jzn — Jyn) + (1 — ap) (JTh2 — J2)]|
1
< a—(||an — Jyall + (1 — o) || JThx, — Jxy]|) — 0.

Again, since J~! is also uniformly norm-to-norm continuous on bounded sets, we

have

|zn — Toz,]| — 0.
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Since ||z, — x,]| — 0 and T is uniformly continuous, this yields
|zn — Towy|| < ||zn — Toznl| + || Tozn — Toxna|| — O. (3.14)
With the help of (3.11) and (3.14), we have
wy(2,) C F(TY) N EF(Ty) = F(Ty) N F(T) = F.

Joining with (3.3) and Lemma 2.3.4 (with K := F'), we conclude that z,, — ¢ = [[u.
[

Remark 3.2.2. Note that if 75 = I, the processes of (3.7)-(3.11) are abundant.
Also, the parameter assumption liminf, ., o, (1—a;,) > 0 in Theorem 3.1 can be

weaken with limsup,,_, . a,, < 1 as readily seen in (3.13) to get ||z, —Tiz,| — 0.

Taking £, = 1 for n > 1 in Theorem 3.2.1, we have the following modifica-
tion of Mann’s iteration process (1.2) to prove strong convergence for a pair of

relatively nonexpansive mappings in a Banach space.

Theorem 3.2.3. Let X be a uniformly convex and uniformly smooth Banach
space, let C' be a nonempty closed convex subset of X . Let & = {11,T, : C — C'}
be a pair of relatively nonexpansive mappings with F = (). Assume that {«,} is
a sequence in [0, 1] such that liminf,, . o, (1 —a,,) > 0. Define a sequence {z,}

in C' by the algorithm:

x1 = u € C chosen arbitrarily,

Un = J HanJTow, + (1 — ap)JThz,),
Hy = {v € C: 6(0,9,) < 60,2},
W,={veC:{(x,—v Jr, — Ju) <0},

R HHann u, n 21,
where J is the normalized duality mapping. If either 11 or T, is uniformly
continuous on C, then x,, — [[u, where [[ is the generalized projection from

X onto F.
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Now taking T, = I, the identity operator of X and 77 =T in Theorem 3.2.3,
by Remark 3.2.2, we have the following result due to Matsushita and Takahashi
[26].

Corollary 3.2.4. ([26]) Let X be a uniformly convex and uniformly smooth
Banach space, let C' be a nonempty bounded closed convex subset of X and
let T : C — C be a relatively nonexpansive mapping. Assume that {o,} is
a sequences in [0,1] such that limsup,_,. o, < 1. Then the sequence {x,}
generated by the algorithm (1.6) converges in norm to [[ ) u, where [y is

the generalized projection from C onto F(T).

In Hilbert spaces, noticing that ¢(x,y) = ||[x—yl|? for all z,y € H, we see that
|Tx—Tyl|| < ||z —y|| is equivalent to ¢(Tx,Ty) < ¢(z,y). Also, the demiclosed-
ness principle of a nonexpansive mapping 7' yields that F (T') = F(T). Therefore,
every nonexpansive mapping is relatively nonexpansive (for more details, see the
proof of Theorem 4.1 in [26]). Now we have the following two variants of Theorem

3.2.1 and 3.2.3 for a pair of nonexpansive mappings in Hilbert spaces.

Theorem 3.2.5. Let C' be a closed convex subset of a Hilbert space H
and let & = {1},T> : C — C} be a pair of nonexpansive mappings such
that F' # (). Assume that {a,} and {3,} are sequences in [0,1] such that
liminf, . an(l — a,) > 0 and B, — 1. Define a sequence {x,} in C' by the

algorithm:

.
x1 = u € C chosen arbitrarily,

Zn = Bpn + (1 — By)en,

Yn = iy Tozy + (1 — o) Thxy,

Co={v € C:|lyn — o[> < oz — vl + (1 — o) llzn — 0|}
Qn={velC:{(xr,—v,x,—u) <0}

Tp+1 = PC’nﬂQnu7 n 2 17
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where {e,} is a bounded sequence in C'. Then the sequence {z,} converges in

norm to Pru.

Theorem 3.2.6. Let C' be a closed convex subset of a Hilbert space H and let
S = {11, T : C — C} be a pair of nonexpansive mappings such that F # ().
Assume that {«,} Is a sequence in [0,1] such that liminf, . a,(1 — a;,) > 0.
Define a sequence {z,} in C' by the algorithm:

)
x1 = u € C chosen arbitrarily,

Yn = anTan + (1 - an)Tlxna
Co={v€C:|lyn —v| < |z — v}
Qn={velC:(x,—vz,—u) <0}

| Tntl-= PCannU; n > 1,

Then the sequence {z,} converges in norm to Ppu.

As recalling Remark 3.2.2 again, taking 7, = I, Ty = T and the term
e, = Tx, for n > 1 in Theorem 3.2.5, and taking 7, = I and T} = T in
Theorem 3.2.6, respectively, we obtain the following subsequent results due to

Martinez-Yanez and Xu [25] and Nakajo and Takahashi [27], respectively.

Corollary 3.2.7. ([25]) Let C' be a nonempty closed convex subset of a Hilbert
space H, and let T : C' — C' be a nonexpansive mapping such that F(T) # (.
Assume that {«,} and {3,} are sequences in |0, 1] such that limsup,,_,, o, < 1
and (3, — 1. Then the sequence {x,} defined by the algorithm (1.5) converges

in norm to Ppryu.

Corollary 3.2.8. ([27]) Let C' be a nonempty closed convex subset of a Hilbert
space H, and let T : C' — C be a nonexpansive mapping such that F(T) # (.
Assume that {«,} is a sequence in [0, 1] such that limsup,, . «, < 1. Then the

sequence {x,} defined by the algorithm (1.4) converges in norm to Pp(ryu.
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Now we propose another modification of Ishikawa’s iteration process (1.3) to
have strong convergence for a pair of relatively nonexpansive mappings defined

on a Banach space.

Theorem 3.2.9. Let X be a uniformly convex and uniformly smooth Banach
space, and let & = {T1,T, : X — X} be a pair of relatively nonexpansive
mappings. Assume that T, is uniformly continuous and {«,} and {3,} are
sequences in [0, 1] such that limsup,,_, . «, <1 and 3, — 1. Define a sequence
{z,} by the algorithm:

(
x1 = u € X chosen arbitrarily,

Un = J HanTozy + (1 — ap)JThzy,),

zn = J N BnJxn + (1 = Bn)Jen),

H, = {56 X+ (0,4 < (0, 72) (1 — ), 20)},
W, = {v €X' {x, — v, Jz, = Ju) < 0},

/Tl s, qw, t ne 1,

where J is the normalized duality mapping and {e, } is a bounded sequence in X .
Then {z,} converges in norm to |[pu, where [],. is the generalized projection
from X onto F'.

Proof. Use the following (3.15)-(3.17) to prove ||z, — z,|| — 0 of (3.6) in the

proof of Theorem 3.2.1. Since x, 1 € H,, we have

A(Tpg1,Yn) < 0 d(Tng1, Tn) + (1 — ) d(@pg1, 2n).- (3.15)

However, using the convexity of || - ||* for the first inequality, and £, — 1,
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&(Tpi1,T,) — 0 and the boundedness of {z,} and {e,}, we get

O(Tni1,2n) = [ Tna]l? = 2(Tns1, Budzn + (1= Ba) Jen)
HBuTwn + (1 = Ba) Jenl|?

[@nsll” = 28n{znr1, Jra) — 2(1 = Bu)(@ns1, Jen)
+Bullznll” + (1 = Ba)llenll?

- Bngb(xn—khxn) + (1 - ﬁn)QS(xn-Ha en) - 0 (316>

IN

Therefore, the right hand of (3.15) converges to 0; hence ¢(z,41,¥n) — 0. Also,
from Proposition 2.3.8, ¢(2,41,2,) — 0 implies that ||z,41 — 2,|| — 0, and this,

together with (3.4), gives that
|z — zu]| — 0. (3.17)

Now repeating the remaining part of the proof of Theorem 3.2.1, we can prove

that x, — [[7u. O

Finally, we shall give examples of relatively nonexpansive self-mappings which
are not nonexpansive. This is motivated by the example in the Hilbert space ¢>

of Goebel and Kirk [14].

Example 3.2.10. Let B denote the unit ball in the space X = P, where
1 < p < oco. Obviously, X is uniformly convex and uniformly smooth. Let

T : B — B be defined by
Tz = (0,27, \owa, 323, . . .)

for all * = (z1,29,23,...) € B, where A\, = 1 — n—12 for n > 2 (hence
[I25A = %). Then T is Lipschitzian, ie., |[Tz — Ty| < 2|z — y| for all
x,y € B. Noticing that, for x = (x1,2,...) € B,

n+1 n+2

T'x = <0,...,O,ﬁ/\i$%,H/\i$2,H/\i$3,...)
=2 1=2 1=3
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and also for each n > 2, since [}, \; = % (1 + %) and
n+k—1
1 k
()
paies k n+k—1

n+k—1

2ﬁxi:1+%z H \;
1=2 i=k

for all k£ > 2. Thus we have | 7"z —T"y|| < 2][", Az —y]|| for all n > 2. Obvi-

as k — oo, we have

ously, since 2]/, A; | 1, T is asymptotically nonexpansive. On the other hand,
since |[Tx—Ty|| =2 > 1 = |lz—y]| for z = (1,0,0,...) and y = (1/2,0,0,...), T
is not nonexpansive. But T is relatively nonexpansive. Indeed, since ||[Tz|| < ||z|

for z € B and F(T) = {0}, where 0 = (0,0, ...) € B, we can see that
(0, Tz) = | T=|* < |lz]* = $(0, )

for all x € B. Also, from the demiclosedness principle of the asymptotically
nonexpansive mapping 7' (see Theorem 2 of [39]) it follows immediately that
F(T) ¢ F(T). Since the converse inclusion always holds true, it must be

F(T) = F(T). Therefore, T is relatively nonexpansive.

Next, consider an example in case that F'(7") is not singleton set.
Example 3.2.11. Let X = /P, where 2 < p < oo, and
C={r=(21,29,...) € X: 0< 2, <1}.

Then C is a closed convex subset of X. Note that C is not bounded. Let
T :C — C be defined by

Tr = (1'1, 0, ZE%, )\21’3, )\3[E47 .. )

for all x = (21, %9, x3,...) € C, where A\, = 1—n—12 for n > 2 as in Example 3.2.10.

In a similar way to Example 3.2.10, we see that T' is Lipschitzian, asymptotically
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nonexpansive, but not nonexpansive. Obviously,

F(T)={p=(p1,0,0,...):0<p; <1}

and
1
Jr = Wﬂxl]”’lsign w1, |zo|P tsign 2o, . . )
for © = (z1,29,...) € X. Now we claim that T is relatively nonexpan-

sive. Indeed, since ||[Tz| < ||z|| for x € C, for p = (p1,0,...) € F(T) and

r = (x1,29,...) € C, we have

(p,JTa) = puaf /|||

> pat||z|P? = (p, Jx),
and so
o(p, Tx) = |Ipl|> = 2(p, JTx) + | Tx|* < |Ipl|> = 2(p, Jx) + ||z||” = é(p, z).

Similarly to the argument of Example 3.2.10, we have F/(T) = F(T). Thus, T is

relatively nonexpansive.
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Chapter 4

Generalized nonexpansive

mappings and strong convergence

In this chapter, motivated by ideas due to Matsushida and Takahashi [26]
and Ibaraki and Takahashi [18], we prove some strong convergence theorems of
modified Mann type iteration processes for generalized nonexpansive mappings

in uniformly convex Banach spaces. Some applications are also added.

4.1 Strong convergence theorems

We begin with the following lemma, which is very important for our argument.

Lemma 4.1.1. Let C' be a nonempty closed convex subset of a reflexive, strictly
convex and smooth Banach space X with the Kadec-Klee property, and let K
be a nonempty subset of C'. Assume that the normalized duality mapping J is
weakly sequentially continuous. Let v € C' and q := Rxu, where Ry denotes the
sunny generalized nonexpansive retraction of C' onto K. If {z,} is a bounded

sequence in C' such that w,(x,) C K and satisfies the condition
(u—xp, Jy —Jr,) <0, YyeK. (4.1)
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Then x, — q(= Rgu).

Proof. Since {z,} is bounded, wy,(z,) # 0 by reflexivity of X. Let v € wy, (),

that is, x,, — v. As an equivalent form of (4.1), notice that
zall? < (u, Jop) — (u — x, Jy), Vy € K. (4.2)

After substituting {z,} in (4.2) for {z,, }, by using weakly lower semicontinuity

of || - || and weakly sequential continuity of J, we have

[l < liminf fa,, || < limsup ||z, [
oo

— 00

< limsup[{u, Jzn,) — (u — 2y, Jy)]

k—oo

= (u, Jv) — (u— v, Jy)
for all y € K. Equivalently,
(u—v,Jy— Ju)y <0, VyeK,
in particular, since q € K,
(u— v Jg—"Juv) < 0. (4.3)
On the other hand, since ¢ = Rxu, by Proposition 2.2.8,
(u=gq,dy=Jg<0; VyéeK;

especially, since v € K,

(u—q,Jv—Jg) <0. (4.4)
Now summing both sides of (4.3) and (4.4) yields
(q—v,Jqg— Jv)y <0.

Since X is strictly convex (hence .J is strictly monotone; see [37]), we obtain

v =gq for all v € wy,(z,). Thus w,(z,) = {¢} and z, — ¢. After taking y = ¢
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in (4.2), applying for weakly lower semicontinuity of || - || and weakly sequential
continuity of J again gives

ol < timinf [z, < limsup |2,

n—oo

< limsup[(u, Jz,) — (u — x,, Jq)]

n—oo

= (u,Jq) — (u—q,Jq) = ||q||*,

and so lim,,_ .« [|z,|| = ||¢||. By the Kadec-Klee property of X, we have x,, — q.
The proof is complete. 0

Now we prove strong convergence for generalized nonexpansive mappings in

uniformly convex Banach spaces.

Theorem 4.1.2. Let C' be a nonempty closed convex subset of a uniformly
convex Banach space X . Let a mapping 1" : C' — C be generalized nonex-
pansive with F(T) # (). Assume that the normalized duality mapping J is
weakly sequentially continuous and also that {«,} is a sequence in [0, 1] such

that limsup,,_,. o, < 1. Define a sequence {x,} in C' by the algorithm:

4
x1 = u € C chosen arbitrarily,

Yn = AUpdy ik (1 r 057L>T:C7L7
o5 Ce Wy i2r< o)t
Wo={2¢€C:{u—x,, Jz— Jz,) <0},

L Tpy1 = RHnﬁWnuu n > 1

Then x, — Rpryu, where Rp(r) is the sunny generalized nonexpansive retrac-

tion of C' onto F(T).

Proof. First, we show that F(T) C H, for all n. Indeed, for all p € F(T),
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using convexity of ¢(-,p) and generalized nonexpansivity of 7', we get

O(Yn:p) = ¢z + (1 — )T, p))
O‘ngb(xnap) + (1 - an)¢(Txn7p)

< nd(@n,p) + (1 = ) (20, p) = (20, D).

IN

So p € H, for all n. Next, we show that
F(T)cw, (4.5)

for all n. We prove this by induction. For n = 1, we have F(T) C C = W}.
Assume that F(T) C Wy for some k > 1. Since xp,; is the sunny generalized

nonexpansive retraction of u onto HpNW,, it follows from Proposition 2.2.8 that
(u— Tpy1,Jz — Jrp1) <0

for all z € H,NWy. As F(T) C H, N Wy, the last inequality holds, in partic-
ular, for all z € F(7"). This together with the definition of Wj; implies that
F(T) C Wy41. Hence (4.5) holds for all n. So, {z,} is well defined. Obviously,

from the construction of W,,, we see that

(Wp— T, J2 —fJxr) < 0,4 VzE W, (4.6)
and, in particular,

(u—x,, Jp— Jzr,) <0, Vpe F(T) (4.7)

because F'(T)) C W,. Putting ¢ := Rpmyu € F(T) C W,, this immediately

implies that

P(@n, @) + G(u, Tn) llall” + llull® + 2(|zall® = (za, Ja) — (u, Jza))

= llall* + [lull® + 2{u — z0, Jg = Jz) — 2(u, Jq)

IA

lall* + [full® = 2{u, Jg) Dby (4.7).
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Since both {¢(z,,q)} and {¢(u,x,)} are nonnegative by the property (a) of ¢
in Chapter 2, they are bounded; so is {z,}. Since ¢(Tz,,q) < ¢(x,,q), the

sequence {T'x,} is bounded and so is {y,}. Now we show that
|20 — @nia ] — 0. (4.8)
Indeed, since x,1 € W,,, it follows from (4.6) with z = z,,4; that
(u— 2y, Jrp1 — Ja,) <0 (4.9)
and so (u, Jr,y1 — Jr,) < (x,, Jr, — Jr,). Then, we have

O(u, 2n) — O(U, Tny1) = 2(u, JTpgr — Jap) + HanQ - “mn-I-lH2
< 2w, Jrpgn — Jzp) + [ 2al* = lza)?

= 2an, JTn11) = [20]* = 2 ]* <0,

which shows that {¢(u,x,)} is nondecreasing and so the lim, ., ¢(u, z,) exists.

Simultaneously, using the property (b) of ¢ in Chapter 2 and (4.9), we obtain

¢(U7 xn—&-l) = gb(“v xn) it (b(xna xn-i-l) y 2<u T, Iz, — Jmn-i-l)
> Oy, Tn) + Q20 1) (4.10)

and thus

0 < O(@n, Tpt1) < AU, Tny1) — d(u, z,) — 0.

Hence, ¢(zy,2ny1) — 0 and (4.8) is obtained by Proposition 2.3.8.

Now since x,,1 € H,, we have

S(Yn, Tpi1) < G(Tn, Trg1) — 0,

hence ¢(yn, Tny1) — 0. Using Proposition 2.3.8 again, we obtain ||y, —z,11] — 0.

This, together with (4.8), implies that ||z, — y,|| — 0.
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Next, we show that ||z, — T'z,|| — 0. Noticing that
[0 = Tanll < [len = ynll + lyn — Tzl
= |lzn — ynll + anllzn — Tan,

which is equivalent to

1

lzn = Tl < 5 [0 = ynll = 0 (4.11)

because limsup, .., o, < 1. So, we have wy(z,) C F(T) = F(T). Joining with
(4.7) and Lemma 4.1.1 (with K := F(T)), we conclude that z, — ¢ = Rpyu.
This completes the proof. n

Recently, Martinez-Yanez and Xu [25] modified the Halpern’s iteration method
(1.1) to enhance the convergence rate of the algorithm (1.1) in Hilbert spaces.

More precisely, they defined a sequence {xz, } recursively in a Hilbert space H by

)
x1 = u € C chosen arbitrarily,

Yn =ttt +H (1= it ) T4
Co={2€C: lyn =2I7 < llzh=2% + t.([ull® + 2(zn — u,2))}, (412)
Qn={z€ C :{z, — 2z, — upS0},

Tpt+1 = PCannU, n Z 1

\
Then they proved that if C' is a nonempty closed convex subset of H, T : C — C
is a nonexpansive mapping such that F(T') # 0, and if {¢,} C (0,1) is such that

t, — 0, then the sequence {x,} generated by (1.5) converges strongly to Ppr)u.

Here we propose some modification for the process (4.12), and discuss the
problem of strong convergence concerning generalized nonexpansive mappings in

uniformly convex Banach spaces.

Theorem 4.1.3. Let C, X, T and J as be in Theorem 4.1.2. Assume that {t,}

is a sequence in (0,1] such that t, — 0. Define a sequence {x,} in C' by the
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algorithm:

(

u € C chosen arbitrarily,

Yn = tou+ (1 —t,) Tz,

Hy = {2 € C: 6(yn, 2) < tnd(u, 2) + (1 = 1n)$(wn, 2) + bl wnl|*}
W,={2€C:{u—uxz,,Jz—Jz,) <0},

| Znt1 = Ba,aw, U

Then x, — Rpyu, where Rpr) is the sunny generalized nonexpansive retrac-

tion of C' onto F(T).

Proof. The proof is similar to one of Theorem 4.1.2. We sketch the differences

briefly. Since

¢ (Yn, ) < tnd(u,p) + (1 = tn)P(Tn, p)

for p € F(T), we have p € H, for all n. All the processes of (4.5)-(4.10) are
similarly satisfied. Now since z,1 € H,, ¢(zp, 1) — 0, t, — 0, and {z,} is

bounded, we have
G (Yn, Tns1) < tnd(ty@apr) + @ G)D(T 0, Tri1) + tnl|2n]* — 0.
Using Proposition 2.3.8 again, it follows that
lyn = wnsrll = 0. (4.13)
On the other hand, by the definition of y, we have
[Yn = Tan|| = tnllu — Txp|| — 0.

Since ||z, — yn|| — 0 in the process of the proof of Theorem 4.1.2, this implies

20 = Tan|| < [lzn = yall + llyn — Tal — 0. (4.14)

By (4.14), wy(z,) € F(T) = F(T). Joining with (4.7) and Lemma 4.1.1 (with
K := F(T)), we conclude that z,, — ¢ = Rp(yu. O
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Remark 4.1.4. Note that all our results remain true with no changes of the

proof for non-self mappings 7; : C' — X, 1 <i < N.

Finally we give an example of generalized nonexpansive mappings which is

not nonexpansive.

Example 4.1.5. Let X, C and T as in Example 3.2.11. Then recall that

T : C — C is relatively nonexpansive but not nonexpansive. Also, we observe
F(T)={p=(p1,0,0,...) : 0 <p; <1}

and
1

I E

Jx

(|x1|p_15igﬂ Z1, |$2|p_1sign:v2, o)

for all x = (xq1,x2,...) € X. Now we claim that T is generalized nonexpansie.

Indeed, for p = (p1,0,...) € F(T) and & = (x1,x2,...) € C, observing that

(Ta, Jp) = axph/IplPP* = 21917 = (2, Jp),
and ||Tz|| < ||z|| for all x € C', we have
MTw,p) "= |IT=|F=2(Tz, Jp) + |Ip||*
< lall +2(, Jp) + lIp)? = é(x, p).

Similarly to the argument of Example 3.2.10, we have F(T) = F(T). Hence, T

is generalized nonexpansive.

4.2 Some applications

Let X be a reflexive, strictly convex and smooth Banach space and let
A C X* x X be a maximal monotone operator. For each A > 0 and x € X,

since the set

hr:={zeX :ze€z+IAJz}
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consists of exactly one point, the mapping J, is well-defined with the domain
D(Jy) = R(I + MNAJ) and the range R(J)) = D(AJ) of Jy, where I is the
identity. Such a J, is called the generalized resolvent of A and is denoted by

Jy=(I+ AT

For more details, see [18]. For some applications of our theorem 4.1.2, we need

the following modification of Proposition 4.1 of Ibaraki and Takahashi [18].

Proposition 4.2.1. Let C' be a nonempty closed convex subset of a reflexive,
strictly convex and smooth Banach space X and let A C X* x X be a maximal
monotone operator with A='0 # (). Then F(Jy|¢) = (AJ)~*0NC for each A > 0,
where Jy|c means the restriction of J\ to C'. Moreover, if the normalized duality
mapping J is weakly sequentially continuous, then Jy|c : C' — X is generalized

nonexpansive.

Proof. Let A > 0. We claim that J,|c is generalized nonexpansive. Then it
suffices to show that F(Jy|a) € F(Jxle). Indeed, let p € F(Jx|c). Then there
exists a sequence {u,} in C' such that u, — p and w, — Jy|cu, — 0. Since
1 (un — Jrlc un) € AJJy|c Uy, monotonicity of A gives

Y/
(X(un—J,\](;un)—ﬁ), JJ)\|CU”—JU)> 20 (415)

for all w € X and w € AJw. Note that J : X — X* is a bijection mapping
under our assumptions. Since u,, — p and u, — Jy|c u, — 0, we get Jy|c u, — p
and the weakly sequential continuity of J implies JJy|cu, — Jp. Now letting

n — oo in (4.15), we have
(0 —w, Jp— Jw) >0

for all w € X and w € AJw. Then it follows from the maximality of A that
Jp € A710, which is equivalent to p € (AJ)7'0 and so p € (AJ)~0NC = F(Jy|¢).
O
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Now we have the following result from Proposition 4.2.1 and Remark 4.1.4

following Theorem 4.1.2.

Theorem 4.2.2. Let C' be a nonempty closed convex subset of a uniformly
convex Banach space X and let A C X* x X be a maximal monotone operator
with (AJ)"'0NC # 0. Let J, be the generalized resolvent of A for A > 0.
Assume that the normalized duality mapping J is weakly sequentially continuous
and that {a,} is a sequence in [0,1] such that limsup,,_, . «, < 1. Define a

sequence {x,} in C' by the algorithm:

(
x1 = u € C chosen arbitrarily,

Yn = QpTp + (1 - Oén)(])\‘c'rnv
H, = {Z s ¢(ynv Z) < gb(xm 2)}7
W, ={z e C:{u—z,,Jz— Jz,) <0}

T ma PN I U nfoah,

\
Then z, — Raj)-10nc u, where Ry py=10n¢ Is the sunny generalized nonexpan-

sive retraction of C' onto (AJ)~'0N C.

Proof. Notice that
e (A)) 0 & Jz e A7'0.

From Proposition 4.2.1, Jyl¢ : C — X is generalized nonexpansive, and
F(J\e¢) = (AJ)~'0N C for each A > 0. Therefore our conclusion immediately
follows from Theorem 4.1.2 and Remark 4.1.4. O

In Hilbert spaces, recalling that ¢(z,y) = ||z — y||* for all z,y € H, we see
that ||Tz — Ty|| < ||z — y|| is equivalent to ¢(Tz, Ty) < ¢(x,y). Also, the demi-
closedness principle of a nonexpansive mapping 7' yields that F(T) = F(T).
Therefore, every nonexpansive mapping is both relatively nonexpansive and gen-

eralized nonexpansive. Also, recall that both generalized projection [] F(T) and
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sunny nonexpansive retraction Rpr) coincide with the metric projection Pg(r)
of X onto F(T) in Hilbert space settings.

First, as an application of Theorem 4.1.2, we have the following result due to

Nakajo and Takahashi [27].

Corollary 4.2.3. ([27]) Let C' be a closed convex subset of a Hilbert space H
and let T : C — C be a nonexpansive mapping such that F(T) # (). Assume
that {a,} is a sequence in [0, 1] such that o, <1 — 9 for some § € (0,1]. Then

the sequence {x, } generated by the algorithm (1.4) converges in norm to Pp(ryu.

Next, as a consequence of Theorem 4.1.3, we obtain the following corollary

due to Martinez-Yanez and Xu [25] in Hilbert spaces.

Corollary 4.2.4. ([25]) Let H be a real Hilbert space, C' a closed convex subset
of H and T : C — C' a nonexpansive mapping such that F(T) # (. Assume
that {t,} C (0,1] is such that t, — 0. Then the sequence {x,} generated by

(1.5) or (1.5) converges strongly to Ppepyu.
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Chapter 5

Strong convergence for a finite
family of generalized

nonexpansive mappings

In this chapter, motivated by ideas due to Matsushida and Takahashi [26],
Ibaraki and Takahashi [18], and Acedo and Xu [1], we prove some strong con-
vergence theorems of modified Mann type iteration processes for a finite family
of generalized nonexpansive self mappings in uniformly convex Banach spaces
as analogues of the recent results due to Acedo and Xu [1] for strict pseudo-

contractions in Hilbert spaces. Some applications are also added.

5.1 Strong convergence theorems

Let C' be a nonempty closed convex subset of a real Banach space X . Recall that
T:C — C is called generalized nonezpansive if the following conditions (i)-(iii)

are fulfilled.
(a) F(T) is nonempty,
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(b) F(T) = F(T), and
(¢) ¢(Txz,p) < ¢(z,p) forall x € C, pe F(T).

We begin with following useful lemma for our argument.

Lemma 5.1.1. Let C' be a nonempty closed convex subset of a smooth and
strictly convex Banach space X. Given an integer N > 1, let {T;}Y, be

a finite family of generalized nonexpansive mappings from C' into itself with

F:=n{,F(T;) # 0. Let A: C — C be defined by

N
Az = Z Nz (5.1)
i=1

for all x € C, where {\;} is a finite sequence of positive numbers such that

Zfil Ai =1. Then A : C — C is generalized nonexpansive, that is,

(ii) F(A) = F(A), and

(i) ¢(Azx,p) < ¢(x,p) forall z € C and p € F.

Proof. To prove (i), it suffices to show C. For this end, let Az = x. Then for
p € F, use the convexity of ¢(:, p) and the property (c) for T;, 1 < i < N, to

derive
N N
$(x,p) = ¢(Az,p) <Y No(Tiwr,p) <Y Nid(z,p) = ¢(x,p),
=1 i=1

which shows

N
i=1
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Using the definition of the gauge function ¢ and Ax = z, this gives

0 = ZA ¢(Tiz,p) — d(x,p))
= STl -2 ) ~ )

N
= > AlTa|? - 2(Az — . p) — |Ja|?

i=1
N

= > AlTal —|l=)*
i=1

This jointed with Az = z again yields

N

N
S hé(Twa) = S ATl - 2Tia, Ja) + [2])
=1

=1

N

= > A|Tzl’ — 2(Ax, Jz) + ||=||?

i=1

= [|l2l* = 2(z, Jo) + |jz[* = 0.
By the property (a) of the gauge function ¢ and hypothesis, ¢(T;z,x) > 0 and
A > 0 for 1 < i < N. Therefore we obtain ¢(7T;z,x) =0 for all 1 <i < N.
Since X is strictly convex, Tyx = z/for all 1 <i¢ < N. Hence x € F' and so (i)
is proven.

Now to prove (ii), we first claim: if {z,} is a bounded sequence such that

|zn — Azy|| — 0, then ||z, — Tiz,|| — 0 for all 1 <i < N. Indeed, for p € F,

we observe

N
S OMITanl? = llzall* = 2(Az, = 22, Ip)
N

= LTl =l = 2(Tin = 0, T1)

=ZA O(Tin, p) — S, p) ] < 0,
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which implies
NN Tinll? = llzl® < 2(Azn — 20, Jp).
i=1
Since ||z, — Az,|| — 0 and {x,} is bounded by assumption, this gives
N N
Z Np(Tizn, vn) = Z Al Tzl = 2(Azp, Jan) + ||z
i=1 i=1

N
= Z)‘lHsznHz — ll@nll? = 2(Az, — 20, Ju,)
i=1

IN

2((Axy, — xy, Jp) — (Axy — xp, Jp))

< 20 Az — zll([lpll + llznll) — 0.

As in the last proof of (i), since all A\; > 0 and ¢(T;x,,x,) > 0, we have
O(Tixp, x,) — 0 for all 1 < i < N. Since X is uniformly convex, by Propo-

sition 2.3.8 we arrive at the conclusion:

To complete the proof of (ii), it suffices to show: F(A) C F. For this end,
let # € F(A), that is, there exists a sequence {z,} in C such that z, — =z
and ||z, — Az,|| — 0.. Then ||z, — T;z,|]| = 0 for 1 < i < N. Therefore
z € F(T;) = F(T;) for 1 <i<N. Hence, z € NY,F(T}) = F.

(iii) is easily obtained from convexity of ¢(-,p) for each fixed p € F'. O]

As a direct consequence of Theorem 4.1.2 and Lemma 5.1.1, we have strong

convergence of the following modified parallel algorithm.

Theorem 5.1.2. Let C' be a nonempty closed convex subset of a uniformly con-
vex Banach space X . Let {T;}, be a finite family of generalized nonexpansive
self-mappings of C' with F := NN, F(T;) # 0. Assume that the normalized

duality mapping J is weakly sequentially continuous and also that {«,} is a
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sequence in [0, 1] such that limsup,,_,. a, < 1. Define a sequence {z,} in C' by

the algorithm:

x1 :=u € C chosen arbitrarily,

YUn = Ty + (1 — ap) Zfil NT 2y,

H, ={z € C: ¢(yn, 2) < ¢(xn, 2)}, (5.2)
W,=4{2€C:{u—uz,,Jz— Jzr,) <0},

Tpt1 = Ry, nw,u,

\

where {\;} is a finite sequence of positive numbers such that 3", \; = 1. Then

x, — Rpu, where R is the sunny generalized nonexpansive retraction of C' onto

F.

In the algorithm (5.14), the weight {\,}Y, are constant in the sense that
they are independent of n, the number of steps of the iterative process. Below we

consider a more general case by allowing the weights {\;} to be step dependent.

Theorem 5.1.3. Let C be a nonempty closed convex subset of a uniformly con-
vex Banach space X . Let {T;}, be a finite family of generalized nonexpansive
self-mappings of C with F := N, F(T;) # (). Assume that the normalized
duality mapping J is weakly sequentially continuous and also that {«a,} is a
sequence in [0,1] such that limsup,,_,. o, < 1. Define a sequence {z,} in C' by

the algorithm:

x1 :=u € C chosen arbitrarily,

Yn = + (1= a) T N T,

H,={2€C:¢(yn,2) < oz, 2)}, (5.3)
W,=4{2€C:{u—uxz,,Jz—Jzr,) <0},

| Tt = Ry, ~w,u,

where {)\En)} is a finite sequence of positive numbers such that 3"V )\1(-”) =1 for

each n and inf,>, )\gn) >0 for 1 <i< N. Then z, — Rpu, where Ry is the
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sunny generalized nonexpansive retraction of C' onto F'.

Proof. On setting A,z = S~ ATz for all o € C', we see that

1=1""

o(Anz,p) < ¢(7,p) (5.4)

for x € C and p € F. First we show that F' C H, for all n. Indeed, for all

p € F, using convexity of ¢(-,p) and (5.4), we have

O (Yn, p) = (AT + (1 — an) Apn, p))
nd(Tn, p) + (1 — an)p(Anxp, p)

< Oén¢(xnap) + (1 - Oén)¢($n,p) = ¢($nap)'

IN

So p € H, for all n. Next, we claim that
FcW, (5.5)

for all n > 0. We prove this by induction. For n = 0, we have F' C C' = W,.
Assume that FF C W, for some k > 1. Since ., is the sunny generalized
nonexpansive retraction of u onto [Hy N W}, it follows from Proposition 2.2.8
that

{(u— zpq1y J2 — Jgg) <0

for all z € H,NWy. As FF C H, N W, the last inequality holds, in particular,
for all z € F'. This together with the definition of Wy, implies that F' C Wy,
Hence (5.5) holds for all n > 0. So, {z,} is well defined. Obviously, from the

construction of W,,, we see that

(u—ap, Jz — Jx,) <0 (5.6)
for all z € W,, and, in particular,

(u—xpy, Jp— Jx,) <0 (5.7)
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for all p € F' because F' C W,,. Putting q := Rpu € F' C W,,, this immediately
implies that

A@n, ) + S(u,20) = Nall* + lull* + 2([[zall* — (@, Ja) — (u, J2n))

= Nall* + [lull® + 2(u — @0, Jq = J23) — 2{u, Jq)

IN

lall* + llull* = 2(u, Jg) by (5.7).

Since both {¢(xn,q)} and {¢(u,z,)} are nonnegative by the property (a) of the
gauge function ¢, they are bounded; so is {z,}. Since ¢(A,xn,q) < d(zn,q),

the sequence {A,z,} is bounded and so is {y,}. Now we show that
|20 = Zp4all — 0. (5.8)
Indeed, since x,; € W,,, it follows from (5.6) with z = z,, 41 that
(U — Zp, JTpi1 — J27) <0 (5.9)
and so (u, Jrpy1 — JT,) < (@ JTp 10 %;,) . Then, ' we have

$(u, zn) — G, i) = 2{WITpir — Jn) + | z0l* — |z ||
< 2{@n, Jon i1 = Jon) + 2al* — 20|

= 2@, Sz} = [2a]* = 20 |® < 0.

Therefore, the sequence {¢(u,x,)} is nondecreasing and so the lim,, . ¢(u,z,)
exists. Simultaneously, using the property (b) of the gauge function ¢ and (5.9),

we obtain

¢(ua xn-‘rl) = ¢(u7 xn) + QZS(JZ,“ xn—i—l) + 2<u — Tn, J-Tn - Jmn—i—l)
> ¢(u,zn) + (T, Tngr) (5.10)

and thus

0< ¢<xn7 anrl) < ¢(u7 anrl) - (b(ua xn) — 0.
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Hence, ¢(xy, zny1) — 0 and (5.8) is satisfied from Proposition 2.3.8.

Now since x,4+1 € H,, we have

¢(yn:$n+1) < (b(xm anrl) — 0,

hence ¢(Yn, Tni1) — 0. Using Proposition 2.3.8 again, we obtain ||y, —2,+1] — 0.
This, together with (5.8), implies that ||z, — y,| — 0.

Next, we show that ||z, — A,x,|| — 0. Noticing that

|2 — Antnll < l2n = Yull + [y — Anzn ||

||xn - yn” + aonn - Anana

which is equivalent to

12 — yn|| — O (5.11)

1
|zr=5 24 1

n
because limsup,, ., o, < 1.
Next we prove that wy(z,) C F. To see this, let u € wy(z,), say z,, — u.

Without no loss of generality, we may assume that

i A SO N < ; < N (5.12)

k—o00
It is obvious to see that each \; > 0 and sz\; A; = 1. We also have
AT i,
k—o00

for all x € C, where A = sz\; AT;. Note that by Lemma 5.1.1, A is generalized
nonexpansive and F(A) = F'. Using (5.11) and (5.12) gives

[n, = Az |l < N2n, = Al + [[Anyn, — Az |

N
< an, = Anezn |+ 3 I = X[ Tz — 0
=1

as k — oo, noticing that {T;z,} is also bounded for 1 < i < N because
o(Tixn,p) < ¢(xn,p) for p € F. This with (ii) of Lemma 5.1.1 implies
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u € ﬁ(A) = F. Hence wy(z,) C F. Joining with (5.7) and Lemma 4.1.1
(with K := F'), we conclude that z,, — ¢ = Rpu. ]

Lopez Acedo and Xu [1] recently studied the convergence problems for the

following cyclic algorithm:

x1 :=u € C chosen arbitrarily,
To = 11 -+ (1 — 041>T1I1,

T3 = s + (1 — o) Ths,

ryi1 = ayey + (1 —an)Tyey,

TN+2 = AN+1TN+1 T (1 —any1) TNy,

where {«a,} be a sequence in [0,1]. The above cyclic algorithm can be written

in a more compact form as
O T [ T AR (5.13)

where Tjy = Ty moan for integer £ > 1. The mod function takes values in the set
{1,2,--- N} as
Ty, _it.g =0;
Iy =
Lr—ilB R gV
for k = N + ¢ for some integers 7 >0 and 0 < ¢ < N.

Then, we similarly have the following analogue for the cyclic algorithm (5.13).

Theorem 5.1.4. Let C' be a nonempty closed convex subset of a uniformly con-
vex Banach space X . Let {T;}Y., be a finite family of uniformly continuous and
generalized nonexpansive mappings from C' into itself with F := NN F(T;) # 0.
Assume that the normalized duality mapping J is weakly sequentially continuous

and also that {a,} is a sequence in [0, 1] such that limsup,,_,. o, < 1. Define
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a sequence {x,} in C by the algorithm:

)
x1 :=u € C chosen arbitrarily,

Yn = OnTp + (1 - O‘n)ﬂn}xna
H,={2€C:¢yn,2) < oz, 2)}, (5.14)
W,={2€C:(u—x,Jz—Jx,) <0},

L Tpt1 = RHnﬁWnua

where {)\En)} is a finite sequence of positive numbers such that SN )\1(-") =1 for
each n and inf,>, )\g") >0 for 1 <i< N. Then z, — Rpu, where Ry is the

sunny generalized nonexpansive retraction of C' onto F'.

Proof. First, to claim the following observations (i)-(vi), simply replace A,

with T}, in the proof of Theorem 5.1.3.
(i) x, is well defined for all n > 1.
(ii) (u— xpn, Ip = Ja,) < 0 for all pc F.
(iil) ||zpy1 — xn|| — 0, furthermore, |[Zp4; — x| — 0 for 1 < i < N.
(iv) ||zn = Tpyan|| — 0, in"particular, ||zt i — Tintq@nyl| — 0 for 1 <7 < N.
Since all Ty, 1 < k < N, are uniformly continuous, (iii) implies that
| TkTnis — Tixn)| = 0, 1<4, k<N,

equivalently,

[Tt ®nti — Tinrg@nl| = 0, 1<i<N (5.15)

as n — 0o. Use (iii), (iv) and (5.15) to derive the convergence to 0 as

|20 — T[nJri]xn” < lzn — Zogill + ([ 2ngi — T[nJri]xn-&-iH

+||,-T[n+z}xn+z - ﬂn+z]$n|| — 0.
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For simplicity, put ¢ := ||z, — Tjx,|| for 1 < i < N and n > 1. After first
taking i = N, N — 1, --- ,1 in the set {||z, — Tjn4qn|} and next enumerating

for n > 1 in turn, we have the following enumeration with N -rows.

1 2 3 N N+1  _N+42 on  2N+1
c; ¢ C3 - Cy O Cy oy o e — 0
12 3 N N+1  N+42 2n 2N+1
v G G ot v Oy G  CNo1 Cn o= 0 (5.16)
— 0
1 2 3 N N+1  _N+42 on L 2N+1
Cg €5 Cp -+ € G Cy e o C5 e = 0

It is not hard to find a sequence {c}} positioned at each N-diagonal repeatedly
such that ¢} = ||z, — T1x,|| — 0. Moving each row downwards once and the last
row to the first cyclically, we found the sequence {c5} at the same position with

{c}} such that ¢§ = ||z, — Thz,|| — 0. Repeating these processes, we have
2n — Tizn| =0, 1<4<AN. (5.17)

Now we claim: wy,(x,) C F. Indeed, assume u € wy(x,), say z, — u. By
(5.17), it follows that u € ﬂévzlﬁ(T]) = ML, F(T;) = F. Joining with (ii) and
Lemma 4.1.1 (with K := F'), we conclude that z,, — q := Rpu. O

Remark 5.1.5. (a) Taking 7; = 7] for 1 <i < N in Theorem 5.1.3 and 5.1.4,
our results then reduce to Theorem 4.1.2.
(b) Note that all our results remain true with no changes of the proof for

non-self mappings 7; : C' — X, 1 < < N.

5.2 Further development

Using the well known inequality due to Xu [40], we can easily observe the follow-

ing.

Lemma 5.2.4. Let X be a uniformly convex Banach space and let B.(0) be a

closed ball of X with center zero and radius r > 0. Then there exists a continuous
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strictly increasing convex function g : [0,00) — [0,00) with g(0) = 0 such that
Y " iwall® < Nl = Xidjg(llzi — a5]) (5.18)
i=1 i=1

for all n > 1 and some fixed i, j with i # j, where all z; € B,(0) and \; € [0, 1]

Proof. It suffices to show that (5.18) holds true for i = 1 and j = 2. For n = 2,
(5.18) is obviously satisfied; see Theorem 2 in [40] with p = 2. By mathematical

induction, assume that (5.18) holds true for some k > 2, that is,
k k
1Y B> < Billwll = BrBag(|lw1 — 25 ) (5.19)
i=1 i=1

for all z; € B,(0) and £; € [0,1] with 33F , 3 = 1. Then we claim that (5.18)
holds true for k + 1. Indeed, for all z; € B,(0) and \; € [0,1] with SF' A =1,

k+1 k

A
Nzill2 = Lo~ X o Lo Y N 2
| ;:1 | I k1) E W h 1T 1 |

=1l

IN

k
Ai
A0 ) el
i=1

On taking ; = 17;\\‘2“, we see that all 5; € [0,1] and Zle G; = 1. Hence this
combined with (5.19) implies that
k+1 k+1

Y "Nzl < 1D Nzl = (1= M) BiBag (|21 — 22))
i=1 i=1

k+1 A\
a2 — A2
I3l = 25 alen = w2l

k+1

1Y Xzl = Mdag(l|zn — 22)),

i=1

IN

IN

which completes the proof. O]
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Remark 5.2.5. Note that if n = 3 the above lemma reduces to Lemma 1.4

due to Cho et al. [11].
Now we similarly have the following variant of Theorem 5.1.4.

Theorem 5.2.6. Let C' be a nonempty closed convex subset of a uniformly
convex Banach space X. Let N > 2 and let {T;}Y., be a finite family of gener-
alized nonexpansive self-mappings of C' with F :=NY, F(T;) # (). Assume that
the normalized duality mapping J is weakly sequentially continuous. Define a
sequence {x,} in C by the algorithm:

(
x1 = u € C chosen arbitrarily,

Yn = Ty + (1 — ayy) Zfio ﬁg)ﬂxn,
H, = {Z q¢ (b(ymz) K 925(13”,2)},
W,=4z€C:{u—z,;Jz— Jzx,) <0},

| Tt = Ry cw, u, 2 W,

where Ty = I and J denote the identity mapping of X and the normalized
duality mapping, respectively. Assume that all control sequences {a,} and {Br(f)}
in [0, 1] satisfy the followings:

(C1) limsup,,_ .. o, <1;

(C2) limy_s ) = 0-and 3N, B = 1;

(C3) liminf,_c BY8Y) >0 for any i, j=1,2,...,N with i # ;.
Then x, — Rpu, where Rp is the sunny generalized nonexpansive retraction of

C onto F'.

Proof. Put z, = Zij\io ﬁ,(f)Tlxn and we first show that FF C H, for all n.

Indeed, for all p € F', using convexity of ¢(-,p) and generalized nonexpansivity
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of T; (i =1,2,...,N), we get

N N
¢(2n,p) = ¢<Zﬂﬁf)7}xn,p> Z ¢ (Tiwn, p)

1=0
N

Zﬁ (€0, p) = ¢(Tn,p) (5.20)

IN

and so

Hence p € H,, for all n. Next we claim that
Fcw, (5.21)

for all n. We prove this by induction. For n = 1, we have FF C C' = W;. Assume
that F' C Wy for some k > 2. Since xp, is the sunny generalized nonexpansive

retraction of u onto Hj N W), it follows from Proposition 2.2.8 that
Sr— ol , Wi i) X0

for all z € HLNWy. As F C Hyp N Wy, the last inequality holds, in particular,
for all z € F'. This together with the definition of W, implies that F C Wy;.
Hence (5.21) holds for all m. So, {®,} is well defined. Obviously, from the

construction of W,,, we see that
(u =gy Ja=z, ) <0, YzeW, (5.22)

and, in particular,

(u—ap,Jp—Jzr,) <0, VpeF (5.23)

because F' C W,,. Putting q := Rpu € F C W,,, this immediately implies that

P(@n, @) + P(u, Tn) lall” + llull® + 2(|zall® = (za, Ja) — (u, Jza))

= llall* + [lull® + 2(u — z0, Jq = Jz) — 2(u, Jq)

IA

lall* + [lull® = 2(u, Jg) Dby (5.23).
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Since both {¢(z,,q)} and {¢(u,x,)} are nonnegative by the property (a) of ¢
in Chaper 2, they are bounded; so is {z,}. Since ¢(Tyx,,q) < ¢(zn,q) for all
k > 1, the sequence {Tjx,} is bounded for all k£ > 1, and so are {z,} and {y,}.
Now we show that

|t — Znat|| — 0. (5.24)
Indeed, since x,.1 € W,,, it follows from (5.22) with z = x4, that
(u— 2y, Jrp — Ja,) <0 (5.25)
and so (u, Jr,11 — Jx,) < (x,, Jru1 — Jx,). Then, we have
S, 0n) = G, w0r1) = 2{u, Jrpr — Jan) + 2a]* = 2|

< 2w, JTst — Jzn) + 20l = 20|

= 2<J7m an+1> F Hxn”2 - ||mn+1||2 <0,

which shows that {é(u,z,)} is nondecreasing and so the lim,,_,o ¢(u, x,,) exists.

Simultaneously, using the property (b) of ¢ in Chapter 2 and (5.25), we obtain
AU, Tri1) = O, Tn) + Af@Ra®Rl 1) + 2(0 — Tp, JTp — JTr i)
> gb(u,xn) R ¢($n,$n+1)

and thus

0 S (b(xn;anrl) S ¢(u7 '/L.n+1) P ¢<U7 $n) — 0.

Hence, ¢(zn, Tni1) — 0 and (5.24) is satisfied from Proposition 2.3.8.

Now since x,.1 € H,, we have

¢(yn>$n+1) < ¢(xna anrl) — 0,

hence ¢(yn, Tn1) — 0. Using Proposition 2.3.8 again, we obtain ||y, —2,+1] — 0.

This, together with (5.24), implies that ||z, — y,|| — 0. Then, we have

[yn = znll = (1 = an)]2n = @nll;
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equivalently,
1

1—a,

[2n — @l = [yn — znll =0 (5.26)

as n — oo by (C1).

In the processes of the proof of Proposition 3.1.7, notice that

for all p € F'. We claim that ||z, — Tyx,| — 0 for all k=1,2,..., N. Applying

for Lemma 5.1.1 and generalized nonexpansivity of 7; (i =1,2,...N),

N
¢(zn,p) = ¢<Zﬁ£i)Tixn,p)
1=0
N N
= > 89T a,|* = 20> BT, Tp) + |Ip|)®
=0 1=0
N
= > BTl — BB g(|| T — Tyal))
1=0

N
—2 " 89 (B, p) + |p)|”

=0
N
= Y B Titm,p) — B BV 9(| Tin — Tyal))
=0
< @(xn,p) — BOBY (| Tz, = Tz, |)

for any ¢, j =1,2,..., N with 4 % j. This joined with (5.27) gives

B9 g(ITiwn — Tywall) < éanp) = 9z, p) — 0

and in turn (C3) yields
I T5en = Tjn|| — 0 (5.28)

for any 7, j =1,2,..., N with ¢ # j. Let k be a fixed number with 1 <k < N

and let p € F. Applying for Proposition 3.1.7 again yields
o(Tixy, Tyx,) — 0 (5.29)
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for every i # k. Since ¢(-,x) is convex on X for any fixed z € X, (5.30)
combined with (C2) yields

N N
= B0, Ten) + Y BVG(Tiwn, Than) — 0
1<i#£k<N

and Proposition 2.3.8 gives ||z, — Tyx,| — 0. Joined with (5.26), it implies
[0 = Thn|l < |0 = 2nll + 120 = Thwn|l = 0
for arbitrary fixed k with 1 <k < N. So, we have
wo(z,) € NN F(T}) = NY_, F(T},) = F.

Joining with (5.23) and Lemma 4.1.1 (with K := F'), we conclude that z, — ¢
= RFU. O

Remark 5.2.7. Note that taking ﬁ,(LO) =Q0foralln>land Ty =T, =--- =Ty
(:= T), we have S~ 72, = Tz, in Theorem 5.2.6 and therefore Theorem
5.2.6 directly reduces to Theorem 41:2.

Here we propose some modification for the process (1.5), and discuss the prob-
lem of strong convergence concerning a family of finite generalized nonexpansive

mappings in uniformly convex Banach spaces.

Theorem 5.2.8. Let C, X, & and J as be in Theorem 5.2.6. Define a sequence
{z,} in C by the algorithm:

u € C chosen arbitrarily,

Yn = apu + (1 — ayy) Zfio T(f)TZ-xn,

Hy = {2 € C: ¢(yn, 2) < and(u,2) + (1 = an)d(@n, 2) + anllza ]}
W,=4{2€C:{u—ux,,Jz—Jr,) <0}

Tnt1 = RHannU,
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where Ty = I denotes the identity mapping of X . Assume that control sequences
{a,} and {B,} in [0, 1] satisfy the followings:

(C1)" a, € (0,1 and lim, oo i, = 0;

(C2) limy_oo B =0 and 3N 8 =1;

(C3) liminf, o BYB8Y >0 for any i, j =1,2,...,N with i # j.
Then x, — Rpu, where Rp is the sunny generalized nonexpansive retraction of

C onto F'.

Proof. The proof is similar to one of Theorem 5.2.6. We sketch the differences

briefly. Since

O (Ynsp) < and(u,p) + (1 — an)p(xn, p)

for p € F', we have p € H, for all n. All the processes of (5.20)-(5.26) are
similarly satisfied. Now since z,41 € H,, ¢(Z;,2p11) — 0, a, — 0, and {z,,} is

bounded, we have
SYn, Tng1) < nd(ui@rr) + (1 DR (2, Trp1) + anl|z,])*> — 0.
Using Proposition 2.3.8 again, it follows that
9n = Tl =0 (5.30)
On the other hand, by the definition of y, and (C1) we have
[yn = 2l = om[lu = zn]| = 0.

Since ||z, — yn|| — 0 in the process of the proof of Theorem 5.2.6, we also have
|zn—2s|| — 0. Now for completing the proof, mimic from (5.27) to the remaining

proof of Theorem 5.2.6. O]
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