
 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/disclaimer-popup?lang=kr


Thesis for the Degree of Doctor of Philosophy

Strong Convergence of Iterative 

Algorithms for Nonlinear Self-

Mappings in Banach Spaces

by

Hwa Jung Lee

Department of Applied Mathematics 

The Graduate School 

Pukyong National University 

August 2008



Strong Convergence of Iterative 

Algorithms for Nonlinear Self-  

mappings in Banach Spaces

(Banach공간 내에서 비선형자기사상들에 

대한 반복알고리즘들의 강수렴)

Advisor : Tae Hwa Kim

by

Hwa Jung Lee

A thesis submitted in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy

in the Department of Applied Mathematics, Graduate School,

Pukyong National University 

August  2008



Iterative Algorithms and Their Convergence Theorems

A dissertation

by

Kui Yeon Kim

Approved by:

                         

  (Chairman)   Il Bong Jung,   Ph. D.

                                        
       
  (Member) Oh Sang Kwon,   Ph. D.            (Member)  Nak Eun Cho,   Ph. D. 

                                      
 
  (Member)  Jin Mun Jeong,   Ph. D.            (Member) Tae Hwa Kim,   Ph. D. 

 

August 27, 2008



Contents

Abstract (Korean) iii

1 Introduction 1

2 Preliminaries 7

2.1 Geometrical properties . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Four projections on Banach spaces . . . . . . . . . . . . . . . . . 11

2.3 Properties relating to the gauge function φ . . . . . . . . . . . . . 17

3 Relatively nonexpansive mappings and strong convergence 22

3.1 Kadec-Klee property and its equivalence . . . . . . . . . . . . . . 22

3.2 Strong convergence theorems . . . . . . . . . . . . . . . . . . . . . 24

4 Generalized nonexpansive mappings and strong convergence 36

4.1 Strong convergence theorems . . . . . . . . . . . . . . . . . . . . . 36

4.2 Some applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Strong convergence for a finite family of generalized nonexpan-

sive mappings 47

5.1 Strong convergence theorems . . . . . . . . . . . . . . . . . . . . . 47

5.2 Further development . . . . . . . . . . . . . . . . . . . . . . . . . 57

i



References 65

Acknowledgements 70

ii



Banach공간 내에서 비선형자기사상에 대한 반복알고리즘들의 강수렴

이 화 정

부경대학교 대학원 응용수학과 

요    약

  집합 ∅을 Banach공간  의 닫힌볼록집합이라 할 때, 사상  →가 모든 ∈에 대하여 

 ≤ 을 만족할 때 비확대(nonexpansive)라 한다. 또한  ∈  는 의 부동점들

의 집합이고  는 의 근사부동점(approximating fixed point)들의 집합이다. 이제 가 매끄러운 공간

이고, 함수    ×→ℝ가 

   〈〉  ∈
라 할 때, 사상  →가 (ⅰ) ∅,(ⅱ)  , 그리고 (ⅲ) ≤ ∈ ∈
을 만족할 때 상대적비확대(relatively nonexpansive)라 한다. 한편, 쌍대개념으로, 사상  →가 (ⅲ) 

대신에 (ⅲ)' ≤ ∈ ∈을 만족할 때 일반화된 비확대(generalized nonexpansive)라 

한다. 

   비확대사상에 대한 근사부동점의 구축은 이미지 복구, 부호처리, 균형문제 등 다양하게 응용되며, 근사

부동점을 구축하는 방법으로는 Picard 반복구조∈     가 잘 알려져 있지만, 가 비확대사상

이면 그러한 반복구조는 일반적으로 수렴하지 않는다. 반면에, 평균반복방법(average iteration method)을 

적용하는 세 종류의 반복알고리즘, 즉 Halpern, Mann, Ishikawa방법이 있다.   ∈을 닻으로 고정하여  

반복적으로       ⊂처럼 구축되는 Halpern방법은 HIlbert공간에서 강수렴을 하

지만, Mann과 Ishikawa구조는 일반적으로 그렇지 않다.

                        ⊂   ∈   (Mann)
                             ⊂  (Isjikawa)

   2003년 Nakajo와 Takahashi는 혼합형의 방법(hybrid method)을 적용하여, Mann방법이 강수렴함을 처음으

로 밝혔다. 그 후 많은 수학자들이 그들의 방법을 이용하여 더 일반적인 비선형사상으로 확장시켜왔다.

   본 연구는 이러한 측면에서 일반적인 Banach공간 내에서 위에 소개한 상대적비확대사상과 일반화된 비확

대사상에 대한 강수렴 문제를 연구하였다. 특히, 본 논문의 3장에서는 상대적 비확대사상들의 유한 족에 대

한 Mann형의 반복방법에 대한 강수렴 정리를 밝혔고, 4장에서는 일반화된 비확대사상에 대한 강수렴 문제를 

연구했다. 더욱, 5장에서는 4장에서 연구한 결과를 일반화된 비확대사상들의 유한 족에 대한 강수렴 정리로 

확장시켰다. 

iii



Chapter 1

Introduction

Let C be a nonempty closed convex subset of a real Banach space X and let

T : C → C be a mapping. We say that T is a Lipschitzian mapping if, for each

n ≥ 1, there exists a constant kn > 0 such that

‖T nx− T ny‖ ≤ kn‖x− y‖

for all x, y ∈ C . In particular, a Lipschitzian mapping T is called nonexpansive

if kn = 1 for all n and asymptotically nonexpansive [14] if limn→∞ kn = 1,

respectively. A point x ∈ C is a fixed point of T provided Tx = x . Denote by

F (T ) the set of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x} . A point

p in C is said to be an asymptotic fixed point of T [33] if C contains a sequence

{xn} which converges weakly to p such that limn→∞(xn − Txn) = 0. The set of

asymptotic fixed points of T will be denoted by F̂ (T ).

Let X be a smooth Banach space and let X∗ be the dual of X . The gauge

function φ : X ×X → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all x, y ∈ X , where J is the normalized duality mapping from X to its dual
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space X∗ such that

Jx = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.

for each x ∈ X . We say that a mapping T : C → C is relatively nonexpansive

[6, 7, 9] if

(i) F (T ) is nonempty,

(ii) F̂ (T ) = F (T ), and

(iii) φ(p, Tx) ≤ φ(p, x) for all x ∈ C , p ∈ F (T );

see also [26]. As its dual concept, T : C → C is said to be generalized nonexpan-

sive if (i), (ii) and the following dual property (iii) ′ instead of (iii) are satisfied:

(iii) ′ φ(Tx, p) ≤ φ(x, p) for all x ∈ C , p ∈ F (T );

see [18] for definition with no condition (ii). Then it is well known in [26] that if

X is strictly convex and T is relatively nonexpansive, then F (T ) is closed and

convex.

Construction of approximating fixed points of nonexpansive mappings is an

important subject in the theory of nonexpansive mappings and its applications

in a number of applied areas, in particular, in image recovery and signal process-

ing (see, e.g., [8, 28, 35, 42, 43]). However, the sequence {T nx} of Picard iterates

of the mapping T at a point x ∈ C may not converge even in the weak topology.

Thus three averaged iteration methods often prevail to approximate a fixed point

of a nonexpansive mapping T . The first one is introduced by Halpern [16] and is

defined as follows: Take an initial guess x1 = u ∈ C arbitrarily and define {xn}

recursively by

xn+1 = tnu+ (1− tn)Txn, n ≥ 1, (1.1)

where {tn} is a sequence in the interval [0, 1].
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The second iteration process is now known as Mann’s iteration process [24]

which is defined as

xn+1 = αnxn + (1− αn)Txn, n ≥ 1, (1.2)

where the initial guess x1 = u is taken in C arbitrarily and the sequence {αn}

is in the interval [0, 1].

The third iteration process is referred to as Ishikawa’s iteration process [17]

which is defined recursively by yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn,
n ≥ 1, (1.3)

where the initial guess x1 = u is taken in C arbitrarily and {αn} and {βn} are

sequences in the interval [0, 1]. By taking βn = 1 for all n in (1.3), Ishikawa’s

iteration process reduces to the Mann’s iteration process (1.2). It is known in

[10] that the process (1.2) may fail to converge while the process (1.3) can still

converge for a Lipschitz pseudo-contractive mapping in a Hilbert space.

In general, the iteration process (1.1) has been proved to be strongly con-

vergent in both Hilbert spaces [16, 23, 38] and uniformly smooth Banach spaces

[31, 36, 41], while Mann’s iteration (1.2) has only weak convergence even in a

Hilbert space [13].

Attempts to modify the Mann iteration method (1.2) or the Ishikawa itera-

tion method (1.3) so that strong convergence is guaranteed have recently been

made. Nakajo and Takahashi [27] proposed the following modification of Mann’s

iteration process (1.2) for a single nonexpansive mapping T with F (T ) 6= ∅ in a
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Hilbert space H : 

u ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, u− xn〉 ≥ 0},

xn+1 = PCn∩Qnu,

(1.4)

where PK denotes the metric projection from H onto a closed convex subset K

of H . They proved that if the sequence {αn} is bounded above from one, then

the sequence {xn} generated by (1.4) converges strongly to PF (T )u . A recent

extension of the process (1.4) to asymptotically nonexpansive mappings can be

found in [21]. See also [20] for another modification of the Mann iteration process

(1.2) which also has strong convergence. Very recently, Martinez-Yanez and Xu

[25] generalized Nakajo and Takahashi’s iteration process (1.4) to the following

modification of Ishikawa’s iteration process (1.3) for a nonexpansive mapping

T : C → C with F (T ) 6= ∅ in a Hilbert space H :

u ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Tzn,

zn = βnxn + (1− βn)Txn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ αn‖xn − v‖2 + (1− αn)‖zn − v‖2},

Qn = {v ∈ C : 〈xn − v, xn − u〉 ≤ 0},

xn+1 = PCn∩Qnu,

(1.5)

and proved that the sequence {xn} generated by (1.5) converges strongly to

PF (T )u provided the sequence {αn} is bounded above from one and limn→∞ βn

= 1.

On the other hand, Matsushita and Takahashi [26] extended Nakajo and Taka-

hashi’s iteration process (1.4) to the following modification of Mann’s iteration
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process (1.2) using the hybrid method in mathematical programming for a rela-

tively nonexpansive mapping T : C → C in a uniformly convex and uniformly

smooth Banach space X :

u ∈ C chosen arbitrarily,

yn = J−1(αnJxn + (1− αn)JTxn),

Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},

Wn = {z ∈ C : 〈xn − z, Ju− Jxn〉 ≥ 0},

xn+1 =
∏

Hn∩Wn
u,

(1.6)

where J is the normalized duality mapping. Then they proved that if the se-

quence {αn} is a sequence in [0, 1) and lim supn→∞ αn < 1, then the sequence

{xn} generated by (1.6) converges strongly to
∏

F (T ) u , where
∏

K denotes the

generalized projection from X onto a closed convex subset K of X .

The paper is organized as follows. In the following chapter we give some

preparations relating to four projections in Banach spaces which play crucial

roles for our argument. In Chapter 3, motivated and inspired by their ideas

due to Martinez-Yanez and Xu [25] and Matsushita and Takahashi [26], we shall

prove some strong convergence theorems for a pair of relatively nonexpansive

mappings in Banach spaces. This chapter is organized as follows. In the section

3.1 we give a new equivalent to the Kadec-Klee property in a Banach space.

In Section 3.2, motivated by [25, 26], we extend Matsushita and Takahashi’s

iteration process (1.6) to the Mann or Ishikawa iteration type process for a pair

of relatively nonexpansive mappings.

In Chapter 4, we employ ideas due to Matsushita and Takahashi [26] and

Ibaraki and Takahashi [18] to prove some strong convergence theorems for gener-

alized nonexpansive mappings in uniformly convex Banach spaces, as analogues

of recent results due to Matsushita and Takahashi [26]. Finally, in section 4.2,

some applications are added.
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Finally, in Chapter 5, we shall discuss the strong convergence problems re-

lating to the previous chapter for a finite family of generalized nonexpansive

mappings in uniformly convex Banach spaces.
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Chapter 2

Preliminaries

In this chapter, we introduce some notations and prerequisites which are used

in the subsequent chapters.

2.1 Geometrical properties

Let X be a real Banach space with norm ‖ · ‖ and let X∗ be the dual of X .

Denote by 〈·, ·〉 the duality product. When {xn} is a sequence in X , we denote

the strong convergence of {xn} to x ∈ X by xn → x and the weak convergence

by xn ⇀ x . We also denote the weak ω -limit set of {xn} by

ωw(xn) = {x : ∃xnj
⇀ x}.

The normalized duality mapping J from X to X∗ is defined by

Jx = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for x ∈ X .

Now we summarize some well known properties of the duality mapping J for

our further argument.
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Proposition 2.1.1. ([12, 32, 37]) Let X be a real Banach space. The normalized

duality mapping J from X to X∗ satisfies the following basic properties:

(1) Jx is nonempty, bounded, closed and convex (hence weakly compact) for

all x ∈ X .

(2) J0 = 0 .

(3) J(λx) = λJx for x ∈ X and real λ .

(4) J is monotone, that is, 〈x−y, jx−jy〉 ≥ 0, ∀x, y ∈ X, ∀jx ∈ Jx, ∀jy ∈ Jy.

(5) ‖x‖2 − ‖y‖2 ≥ 2〈x− y, j〉 for x, y ∈ X and j ∈ Jy .

Recall that a Banach space X is said to be strictly convex (SC) [4] if any

non-identically zero continuous linear functional takes maximum value on the

closed unit ball at most at one point. It is also said to be uniformly convex if

‖xn−yn‖ → 0 for any two sequences {xn}, {yn} in X such that ‖xn‖ = ‖yn‖ = 1

and ‖(xn + yn)/2‖ → 1.

We introduce some equivalent properties of strict convexity of X ; see Propo-

sition 2.1.1 in [4] for the detailed proof.

Proposition 2.1.2. ([4]) A linear normed space X is strictly convex if and only

if one of the following equivalent properties holds:

(a) if ‖x+ y‖ = ‖x‖+ ‖y‖ and x 6= 0 , then y = tx for some t ≥ 0 ;

(b) if ‖x‖ = ‖y‖ = 1 and x 6= y , then ‖λx+ (1− λ)y‖ < 1 for all λ ∈ (0, 1) ;

(c) if ‖x‖ = ‖y‖ = 1 and x 6= y , then ‖(x+ y)/2‖ < 1 ;

(d) the function x→ ‖x‖2 , x ∈ X , is strictly convex.
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Proof. The detailed proof of (b)⇔ (d) will be given for our reference. It suffices

to show (b)⇒ (d). Let x 6= y ∈ X and λ ∈ (0, 1). First, let ‖x‖ = ‖y‖ = r > 0.

By (b), we obtain

‖λx+ (1− λ)y‖2 < r2 = λ‖x‖2 + (1− λ)‖y‖2 (2.1)

for all x, y ∈ X with ‖x‖ = ‖y‖ . Next ‖x‖ 6= ‖y‖ . Then, from the equality

λ‖x‖2 + (1− λ)‖y‖2 = (λ‖x‖+ (1− λ)‖y‖)2 + λ(1− λ)(‖x‖ − ‖y‖)2

it follows that

‖λx+ (1− λ)y‖2 ≤ (λ‖x‖+ (1− λ)‖y‖)2

< λ‖x‖2 + (1− λ)‖y‖2 (2.2)

for all x, y ∈ X with ‖x‖ 6= ‖y‖ . By (2.1) and (2.2), (d) is satisfied.

Let S(X) := {x ∈ X : ‖x‖ = 1} be the unit sphere of X . Then the Banach

space X is said to be smooth provided

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.3)

exists for each x, y ∈ S(X). In this case, the norm of X is said to be Gâteaux

differentiable. The space X is said to be a uniformly Gâteaux differentiable norm

if for each y ∈ S(X), the limit (2.3) is attained uniformly for x ∈ S(X). the

norm of X is said to be Fréchet differentiable if for each x ∈ S(X), the limit

(2.3) is attained uniformly for y ∈ S(X). The norm of X said to be uniformly

Fréchet differentiable (or X is said to be uniformly smooth) if the limit in (2.3)

is attained uniformly for x, y ∈ S(X).

A Banach space X is said to have the Kadec-Klee property if a sequence {xn}

of X satisfying that xn ⇀ x ∈ X and ‖xn‖ → ‖x‖ , then xn → x . It is known

that if X is uniformly convex, then X has the Kadec-Klee property; see [12, 37]

for more details.
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Again, we introduce some well known properties of the duality mapping J

relating to geometrical properties of X .

Proposition 2.1.3. ([12, 32, 37])

(1) X is smooth if and only if J is single valued. In this case, J is norm-to-

weak∗ continuous;

(2) if X is strictly convex, then J is one to one (or injective), i.e.,

x 6= y ⇒ Jx ∩ Jy = ∅.

(3) X is strictly convex if and only if J is a strictly monotone operator, i.e.,

x 6= y, jx ∈ Jx, jy ∈ Jy ⇒ 〈x− y, jx − jy〉 > 0.

(4) if X is reflexive, then J is a mapping of X onto X∗ .

(5) if X∗ is strictly convex (resp., smooth), then X is smooth (resp., strictly

convex). Further, the converse is satisfied if X is relexive.

(6) if X has a Fréchet differentiable norm, then J is norm-to-norm continuous.

(7) if X has a uniformly Gâteaux differentiable norm, then J is norm-to-weak∗

uniformly continuous on each bounded subset of X .

(8) if X is uniformly smooth, then J is norm-to-norm uniformly continuous

on each bounded subset of X .

Finally, we shall add the well-known properties between X and its dual X∗ .

(9) X is uniformly convex if and only if X∗ is uniformly smooth.

(10) X is reflexive, strictly convex, and has the Kadec-Klee property if and only

if X∗ has a Fréchet differentiable norm.

10



2.2 Four projections on Banach spaces

Let C be a nonempty subset of a real Banach space X . We say that C is

said to be a Chebyshev set with respect to the function f if to each x ∈ X there

exists a unique u ∈ C such that

‖x− u‖ = d(x,C) = inf
y∈C
‖x− y‖.

In this case, we may define the nearest point projection (or called metric projec-

tion) PC : X → C by assigning u to x . Then we have the following

Proposition 2.2.1. ([15]; see Proposition 3.4; pp.13) Let C be a convex Cheby-

shev set in X and x ∈ X . Then,

u = PCx ⇔ ∃ j ∈ J(x− u) s.t. 〈y − u, j〉 ≤ 0, ∀y ∈ C. (2.4)

Here, let us introduce the following well known existence theorem; see Theo-

rem 1.3.11 in [37] or Theorem 1.2 and Remark 1.2 in [4].

Theorem 2.2.2. ([4, 37]) Let X be a reflexive Banach space and let C be a

closed convex subset of X . Let f be a proper convex lower semicontinuous

function of C into (−∞,∞] and suppose f(xn) → ∞ as ‖xn‖ → ∞ . Then,

there exists u ∈ C such that

f(u) = inf
y∈C

f(y). (2.5)

Let X be a reflexive and strictly convex Banach space and let C be a

nonempty closed convex subset of X . For an arbitrary (fixed) point x ∈ X ,

consider fx(y) = ‖x− y‖2 for y ∈ C . Then fx : C → [0,∞) is a proper strictly

11



convex and continuous function and fx(y) → ∞ as ‖y‖ → ∞ . By Theorem

2.2.2, there exists u ∈ C such that

fx(u) = inf
y∈C

fx(y). (2.6)

Since X is strictly convex, fx(·) is a strictly convex function; see (d) of Propo-

sition 2.1.1. Therefore, such a u ∈ C is uniquely determined. Note that (2.6) is

equivalent to

‖x− u‖ = inf
y∈C
‖x− y‖ = d(x,C).

So, the closed convex subset C of a reflexive and strictly convex Banach space

X is a Chebyshev set and hence PC : X → C is a nearest point projection (or

metric projection). Combined with Proposition 2.2.1, we have the following

Proposition 2.2.3. Let C be a nonempty closed convex subset of a reflexive,

strictly convex and smooth Banach space X . Then

u = PCx ⇔ 〈y − u, J(x− u)〉 ≤ 0, ∀y ∈ C. (2.7)

On the other hand, let X be a smooth Banach space. Recall [2] that the

gauge function φ : X ×X → R is defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2

for all x, y ∈ X ; see also [19]. It is obvious from the definition of φ that, for

x, y, z ∈ X ,

(a) (‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2 ,

(b) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉,

(c) φ(x, y) = 〈x, Jx− Jy〉+ 〈y − x, Jy〉 ≤ ‖x‖ ‖Jx− Jy‖+ ‖y − x‖ ‖y‖,

12



(d) if X is strictly convex, then φ(x, y) = 0 ⇔ x = y ,

(e) φ(·, x) is a strictly convex function if and only if X is strictly convex,

(f) both φ(·, x) and φ(x, ·) are continuous functions on X ; further, φ(·, x) is

convex, while φ(x, ·) is not convex.

Then applying for Theorem 2.2.2 again, we have the following result due to

Kamimura and Takahashi [19].

Proposition 2.2.4. ([19]; see Proposition 3) Let X be a reflexive, strictly convex

and smooth Banach space, let C be a nonempty closed convex subset of X , and

let x ∈ X . Then there exists a unique element u ∈ C such that

φ(u, x) = inf
z∈C

φ(z, x).

Let C and X be as Proposition 2.2.4. For x ∈ X , define

∏
C x = u.

Then a mapping
∏

C : X → C is well-defined (called the generalized projection

from X onto C ); see [2, 3, 19]. In Hilbert spaces, notice that the generalized

projection is clearly coincident with the metric projection.

The following result is well known (see, for example, [2, 3, 19]).

Proposition 2.2.5. ([2, 3, 19]) Let C be a nonempty closed convex subset of a

smooth Banach space X , x ∈ X and u ∈ C . Then

u =
∏

C x ⇔ 〈y − u, Jx− Ju〉 ≤ 0, ∀y ∈ C. (2.8)
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Let C be a nonempty closed convex subset of a normed linear space X and let

F be a nonempty subset of C . We say that R : C → F is retraction if R(x) = x

for all x ∈ F . A retraction R : C → F is said to be sunny [29] if whenever z ∈ C

is on the ray from Rx to x (∈ C), we have Rz = Rx , that is, u = Rx implies

R(u+ λ(x− u)) = u for all x ∈ C and λ ∈ [0, 1].

The following result is well known (see [29]). For our convenience, the proof

will be included.

Proposition 2.2.6. ([29]) Let C be a nonempty closed convex subset of a

normed linear space X whose norm is Gâteaux differentiable, and let F be a

nonempty subset of C . Let R : C → F be a retraction. Then the followings are

equivalent:

(a) 〈x−Rx, J(y −Rx)〉 ≤ 0 for x ∈ C and y ∈ F ;

(b) ‖Rx−Ry‖2 ≤ 〈x− y, J(Rx−Ry)〉 for x, y ∈ C ;

(c) R is both sunny and nonexpansive.

Proof. First, we show (a) ⇔ (b). Suppose (a) holds. Then, for x, y ∈ C , we

have

〈y −Ry, J(Rx−Ry)〉 ≤ 0,

〈x−Rx, J(Ry −Rx)〉 ≤ 0.

Summing both sides yields

〈y − x+Rx−Ry, J(Rx−Ry)〉 ≤ 0,

which is equivalent to

‖Rx−Ry‖2 ≤ 〈x− y, J(Rx−Ry)〉,

14



and so (b) is fulfilled. Now suppose (b) holds and let x ∈ C , y ∈ F . Since

y = Ry , it follows from (b) that

‖Rx− y‖2 ≤ 〈x− y, J(Rx− y)〉,

which immediately reduces to (a). Next we show (c) ⇔ (a). Suppose R is

both sunny and nonexpansive. Then, for x ∈ C and y ∈ F , put v = Rx and

K = {v + λ(x − v) : 0 ≤ λ ≤ 1} ⊂ C . If w ∈ K , then sunny nonexpansive

retraction of R gives

‖v − y‖ = ‖Rw −Ry‖ ≤ ‖w − y‖, ∀w ∈ C,

and so K is a Chebyshev set in X , by Proposition 2.2.3,

〈w − v, J(y − v)〉 ≤ 0, ∀w ∈ K.

In particular, taking w = x (when λ = 1)∈ K gives

〈x− v, J(y − v)〉 ≤ 0, ∀y ∈ F.

Therefore (a) is obtained. Now suppose (a) holds, then it immediately follows

from (b) that R is nonexpansive. Finally to prove that R is sunny, let v = Px ,

and w = v + λ(x− v), λ ∈ [0, 1]. Then,

〈x− v, J(Rw − v)〉 ≤ 0.

Firstly multiplying by λ and next inserting λ(x− v) = w − v , we have

〈w − v, J(Rw − v)〉 ≤ 0. (2.9)

On the other hand, since v = Rx ∈ C , it follows from (a) again that

〈w −Rw, J(v −Rw)〉 ≤ 0. (2.10)

Summing (2.9) and (2.10) gives ‖v − Rw‖2 = 〈v − Rw, J(v − Rw)〉 ≤ 0, and so

v = Rw . Then the proof is completed.

Remark 2.2.7. Note that (b) of Proposition 2.2.6 holds if and if only R is firmly

nonexpansive.
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Let X be a smooth Banach space and let C be a nonempty closed convex

subset of X . Recall that a mapping T : C → C is said to be generalized

nonexpansive [18] if F (T ) 6= ∅ and

φ(Tx, q) ≤ φ(x, q), ∀x ∈ C, q ∈ F (T ), (2.11)

where F (T ) is the set of fixed points of T .

The following result is well known (see [18]). For our convenience, we shall

give the detail proof.

Proposition 2.2.8. ([18]; see Proposition 4.2) Let C be a nonempty closed

convex subset of a smooth and strictly convex Banach space X and let F be

a nonempty subset of C . Let RF be a retraction of C onto F . Then RF is

sunny and generalized nonexpansive if and only if

〈x−RFx, Jy − JRFx〉 ≤ 0, ∀x ∈ C, y ∈ F. (2.12)

Proof. (⇒) Let x ∈ C and let y ∈ F ∈ F (R). Putting

K = {RFx+ t(x−RFx) : t ∈ [0, 1]},

we get

φ(RFx, y) = φ(RFw, y) ≤ φ(w, y), ∀w ∈ K.

Since φ(·, y) is continuous for each y ∈ F , we have

φ(RFx, y) = min
w∈K

φ(w, y).

Since RFx =
∏

K y from Proposition 2.2.5, we have 〈w − RFx, Jy − JRFx〉 ≤ 0

for all w ∈ K . In particular, taking w = x (with t = 1) yields

〈x−RFx, Jy − JRFx〉 ≤ 0
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for all x ∈ C and y ∈ F .

(⇐) Let x ∈ C and p ∈ F = F (RF ). Then it follows from the properties

(a)-(b) of φ and (2.12) that

φ(x, p) = φ(x,RFx) + φ(RFx, p) + 〈x−RFx, JRCx− Jp〉

≥ φ(x,RFx) + φ(RFx, p) ≥ φ(RFx, p)

and so RF is generalized nonexpansive. To prove that RF is sunny, let x ∈ C

and xt = RFx+ t(x−RFx), t ∈ [0, 1]. From (2.12), we have

〈xt −RFxt, JRFx− JRFxt〉 ≤ 0 (2.13)

and

〈x−RFx, JRFxt − JRFx〉 ≤ 0. (2.14)

Since xt −RFx = t(x−RFx), it follows from (2.14) that

〈RFx− xt, JRFx− JRFxt〉 ≤ 0. (2.15)

Combining (2.13) and (2.15) gives 〈RFx − RFxt, JRFx − JRFxt〉 ≤ 0. Since X

is strictly convex, this shows RFxt = RFx and so RF is sunny.

Remark 2.2.9. Let C , F and X be as in Proposition 2.2.8. Notice that such

a sunny generalized nonexpansive retraction of C onto F is unique; see Ibaraki

and Takahashi [18].

2.3 Properties relating to the gauge function φ

We begin with the following well known result; see, for example, [2, 3, 19]).

Proposition 2.3.1. ([2, 3, 19]) Let K be a nonempty closed convex subset of a

real Banach space X and let x ∈ X .
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(a) If X is smooth, then, x̃ =
∏

K x if and only if 〈x̃ − y, Jx − Jx̃〉 ≥ 0 for

y ∈ K ; see also Proposition 2.2.5.

(b) If X is reflexive, strictly convex and smooth, then, for all y ∈ K the

following inequality holds:

φ(y,
∏

K x) + φ(
∏

K x, x) ≤ φ(y, x).

Lemma 2.3.2. Let X be a smooth Banach space. Then, for any fixed x ∈ X ,

φ(·, x) is weakly lower semicontinuous on X ; moreover, it is continuous and

convex on X .

Proof. Fix x ∈ X and let xn ⇀ p ∈ X . Clearly, 〈xn, Jx〉 → 〈p, Jx〉 , and using

the weakly lower semicontinuity of the norm, we have

φ(p, x) = ‖p‖2 − 2〈p, Jx〉+ ‖x‖2

≤ lim inf
n→∞

(
‖xn‖2 − 2〈xn, Jx〉+ ‖x‖2

)
= lim inf

n→∞
φ(xn, x).

Hence φ(·, x) is weakly lower semicontinuous on X . Obviously, the continuity

and convexity of the function φ(·, x) follow from the continuity and convexity of

‖ · ‖2 and the linearity of Jx .

Motivated by Lemmas 1.3 and 1.5 of Martinez-Yanes and Xu [25] in Hilbert

spaces, we present the following two lemmas.

Lemma 2.3.3. Let C be a nonempty closed convex subset of a smooth Banach

space X , x, y, z ∈ X and λ ∈ [0, 1] . Given also a real number a ∈ R , the set

D := {v ∈ C : φ(v, z) ≤ λφ(v, x) + (1− λ)φ(v, y) + a}

is closed and convex.
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Proof. The closedness of D is obvious from the continuity of φ(·, x) for x ∈ X .

Now we show that D is convex. As a matter of fact, the defining inequality in

D is equivalent to the inequality

〈v, λJx+ (1− λ)Jy − Jz〉 ≤ 1

2
(λ‖x‖2 + (1− λ)‖y‖2 − ‖z‖2 + a).

This inequality is affine in v and hence the set D is convex.

Lemma 2.3.4. Let X be a reflexive, strictly convex and smooth Banach space

with the Kadec-Klee property, and let K be a nonempty closed convex subset of

X . Let u ∈ X and q :=
∏

K u , where
∏

K denotes the generalized projection

from X onto K . If {xn} is a sequence in X such that ωw(xn) ⊂ K and satisfies

the condition

φ(xn, u) ≤ φ(q, u) (2.16)

for all n . Then xn → q =
∏

K u .

Proof. By (2.16), {φ(xn, u)} is bounded and, by the property (a) of φ in Chapter

2, {xn} is bounded; so ωw(xn) 6= ∅ by reflexivity of X . Since φ(·, u) is weakly

lower semicontinuous on X by Lemma 2.2.2, and, by using (2.16) again, we get

φ(v, u) ≤ φ(q, u) for all v ∈ ωw(xn). However, since ωw(xn) ⊂ K and q = QKu ,

we must have v = q for all v ∈ ωw(xn). Thus ωw(xn) = {q} and xn ⇀ q . On

the other hand, using the weakly lower semicontinuity of φ(·, u) again, we have

φ(q, u) ≤ lim inf
n→∞

φ(xn, u)

≤ lim sup
n→∞

φ(xn, u)

≤ φ(q, u) by (2.16)

and so limn→∞ φ(xn, u) = φ(q, u). This implies limn→∞ ‖xn‖ = ‖q‖ . By the

Kadec-Klee property of X , we have xn → q .

Lemma 2.3.5. ([40]) Let X be a uniformly convex Banach space and let

Br = {x ∈ X : ‖x‖ ≤ r} be a closed ball with radius r > 0 in X . Then
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there is a continuous, strictly increasing and convex function g : [0,∞)→ [0,∞) ,

g(0) = 0 , such that

‖αx+ (1− α)y‖2 ≤ α‖x‖2 + (1− α)‖y‖2 − α(1− α)g(‖x− y‖) (2.17)

for all x, y ∈ Br and α ∈ [0, 1] .

Recently, Kamimura and Takahashi [19] proved the following result, which

plays a crucial role in our discussion.

Proposition 2.3.6. ([19]) Let X be a uniformly convex and smooth Banach

space and let {xn}, {zn} be two sequences of X . If φ(xn, zn) → 0 and either

{xn} or {zn} is bounded, then xn − zn → 0 .

Here we give the following converse of Proposition 2.3.6.

Proposition 2.3.7. Let X be a smooth Banach space and let {xn}, {zn} be

two sequences in X . If xn − zn → 0 and either {xn} or {zn} is bounded, then

φ(xn, zn)→ 0 .

Proof. Since xn − zn → 0, it is not hard to see that if either {xn} or {zn} is

bounded, then the other is also bounded. Now let x ∈ X be fixed. Then noticing

that

|φ(xn, x)− φ(zn, x)| = | ‖xn‖2 − ‖zn‖2 + 2〈zn − xn, Jx〉 |

≤ |‖xn‖ − ‖zn‖|(‖xn‖+ ‖zn‖) + 2‖zn − xn‖ ‖x||

≤ ‖xn − zn‖(‖xn‖+ ‖zn‖+ 2‖x‖)→ 0

and using the identity equation the property (b) of φ in Chapter 2, we have

φ(xn, zn) = φ(xn, x)− φ(zn, x) + 2〈xn − zn, Jx− Jzn〉

≤ |φ(xn, x)− φ(zn, x) |+ 2‖xn − zn‖(‖x‖+ ‖zn‖)→ 0

and the proof is complete.
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Now combing Proposition 2.3.6 and 2.3.7 gives the following equivalent form

in uniformly convex and smooth Banach spaces. This property will be also used

for proving our main result.

Proposition 2.3.8. Let X be a uniformly convex and smooth Banach space

and let {xn}, {zn} be two sequences of X . If either {xn} or {zn} is bounded,

then φ(xn, zn)→ 0 if and only if xn − zn → 0 .

As a easy observation of Proposition 2.3.8, we first prove the following results.

Proposition 2.3.9. Let C be a closed convex subset of a uniformly convex and

smooth Banach space X and T : C → C be a relatively nonexpansive mapping.

Then T is continuous on F (T ) .

Proof. Let p ∈ F (T ) and let xn → p . To claim that Txn → p , by Proposition

2.3.8, it suffices to show that φ(p, Txn) → 0. Indeed, since J is norm-to-weak∗

continuous, Jxn
∗
⇀ Jp ; in particular, 〈p, Jxn〉 → 〈p, Jp〉 . Hence

φ(p, xn) = ‖p‖2 − 2〈p, Jxn〉+ ‖xn‖2 → ‖p‖2 − 2〈p, Jp〉+ ‖p‖2 = 0.

Now using the relative nonexpansivity of T , we get

φ(p, Txn) ≤ φ(p, xn)→ 0.

and so Txn → Tp = p .
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Chapter 3

Relatively nonexpansive

mappings and strong convergence

In this paper, motivated by an idea due to Matsushida and Takahashi [26],

we prove some strong convergence theorems of modified Ishikawa type iteration

processes for a pair of relatively nonexpansive mappings in Banach spaces, which

extend the recent result due to Matsushida and Takahashi in Banach spaces. Also

some applications for nonexpansive mappings in Hilbert spaces are added.

3.1 Kadec-Klee property and its equivalence

Recall that a Banach space X is said to have the Kadec-Klee property if a

sequence {xn} of X satisfying that xn ⇀ x ∈ X and ‖xn‖ → ‖x‖ , then xn → x .

It is known that if X is uniformly convex, then X has the Kadec-Klee property;

see [12, 37] for more details.

In this section we consider the relationship between the Kadec-Klee property
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and the following weak property which is motivated by Proposition 2.3.8:

(KT) Given a sequence {xn} in a smooth Banach space X and x(6= 0) ∈ X,

φ(xn, x)→ 0 if and only if xn → x.

Here, we prove that the property (KT) is equivalent to the Kadec-Klee property

in a reflexive, strictly convex and smooth Banach space.

Theorem 3.1.1. Let X be a smooth Banach space. Then,

(a) (KT ) ⇒ (Kadec−Klee) .

(b) if X is reflexive and strictly convex, (Kadec−Klee) ⇒ (KT ) .

Proof. (a) Let xn ⇀ x and ‖xn‖ → ‖x‖ . Assume without loss of generality

that x 6= 0. Then, we have

φ(xn, x) = ‖xn‖2 − 2〈xn, Jx〉+ ‖xn‖2 → ‖x‖2 − 2〈x, Jx〉+ ‖x‖2 = 0.

From (KT ), it follows that xn → x . Hence X satisfies the Kadec-Klee property.

(b) Let x (6= 0) ∈ X . Then it suffices to show that if φ(xn, x) → 0, then

xn → x . Now let φ(xn, x) → 0. Clearly, {φ(xn, x)} is bounded; by the prop-

erty (a) of φ in Chapter 2, {xn} is bounded and so ωw(xn) 6= ∅ . Now if

xnk
⇀ v ∈ ωw(xn), then, since φ(·, x) is weakly lower semicontinuous by Lemma

2.2.2,

φ(v, x) ≤ lim inf
k→∞

φ(xnk
, x) = lim

k→∞
φ(xnk

, x) = 0,

which says that φ(v, x) = 0. By strict convexity of X , we have v = x for all

v ∈ ωw(xn). Therefore, ωw(xn) = {x} ; so xn ⇀ x . On the other hand, since

(‖xn‖ − ‖x‖)2 ≤ φ(xn, x)→ 0,

we have ‖xn‖ → ‖x‖ . By the Kadec-Klee property, we conclude that xn → x .
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3.2 Strong convergence theorems

In this section we first propose a modification of Ishikawa’s iteration process

(1.3), motivated by the idea due to [25, 26], to prove strong convergence for a

pair of relatively nonexpansive mappings in a Banach space.

Theorem 3.2.1. Let X be a uniformly convex and uniformly smooth Banach

space, let C be a nonempty closed convex subset of X . Let = = {T1, T2 : C → C}

be a pair of relatively nonexpansive mappings with F 6= ∅ . Assume that {αn}

and {βn} are sequences in [0, 1] such that lim infn→∞ αn(1−αn) > 0 and βn → 1 .

Define a sequence {xn} in C by the algorithm:

x1 = u ∈ C chosen arbitrarily,

zn = βnxn + (1− βn)en,

yn = J−1(αnJT2zn + (1− αn)JT1xn),

Hn = {v ∈ C : φ(v, yn) ≤ αnφ(v, zn) + (1− αn)φ(v, xn)},

Wn = {v ∈ C : 〈xn − v, Jxn − Ju〉 ≤ 0},

xn+1 =
∏

Hn∩Wn
u, n ≥ 1,

where J is the normalized duality mapping and {en} is a bounded sequence in

C . If T2 is uniformly continuous on C , then xn →
∏

F u , where
∏

F is the

generalized projection from X onto F .

Proof. We employ the methods of the proofs in [26] and [25]. First, observe that

Hn is closed and convex by Lemma 2.3.3, and that Wn is obviously closed and

convex for each n . Next we show that F ⊂ Hn for all n . Indeed, for all p ∈ F ,

we have, using convexity of ‖ · ‖2 and relative nonexpansivity of Ti , i = 1, 2
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(noticing that zn ∈ C ),

φ(p, yn) = φ(p, J−1(αnJT2zn + (1− αn)JT1xn))

= ‖p‖2 − 2〈p, αnJT2zn + (1− αn)JT1xn〉+ ‖αnJT2zn + (1− αn)JT1xn‖2

≤ ‖p‖2 − 2αn〈p, JT2zn〉 − 2(1− αn)〈p, JT1xn〉+ αn‖T2zn‖2 + (1− αn)‖T1xn‖2

= αnφ(p, T2zn) + (1− αn)φ(p, T1xn)

≤ αnφ(p, zn) + (1− αn)φ(p, xn). (3.1)

So p ∈ Hn for all n . Moreover, we show that

F ⊂ Hn ∩Wn (3.2)

for all n . It suffices to show that F ⊂ Wn for all n . We prove this by induction.

For n = 1, we have F ⊂ C = W1 . Assume that F ⊂ Wk for some k ≥ 2. Since

xk+1 is the generalized projection of u onto Hk ∩Wk , by Proposition 2.3.1 (a) we

have

〈xk+1 − z, Ju− Jxk+1〉 ≥ 0

for all z ∈ Hk ∩Wk . As F ⊂ Hk ∩Wk , the last inequality holds, in particular,

for all z ∈ F . This together with the definition of Wk+1 implies that F ⊂ Wk+1 .

Hence (3.2) holds for all n . So, {xn} is well defined. Obviously, since xn =
∏

Wn
u

by the definition of Wn and Proposition 2.3.1 (a), and since F ⊂ Wn , it follows

from the definition of
∏

Wn
that φ(xn, u) ≤ φ(p, u) for all p ∈ F . In particular,

we obtain that for all n ,

φ(xn, u) ≤ φ(q, u), where q :=
∏

F u . (3.3)

Therefore, {φ(xn, u)} is bounded; so is {xn} by the property (a) of φ in

Chapter 2. Since {en} is bounded, {zn} is also bounded. Noticing that

φ(p, Tixn) ≤ φ(p, xn) for all p ∈ F (Ti), {Tixn} is also bounded for i = 1, 2.

Now we show that

‖xn+1 − xn‖ → 0. (3.4)
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Indeed, by the definition of Wn and Proposition 2.3.1 (a), we have xn =
∏

Wn
u

which together with the fact that xn+1 ∈ Hn ∩Wn ⊂ Wn implies that

φ(xn, u) = min
z∈Wn

φ(z, u) ≤ φ(xn+1, u),

which shows that the sequence {φ(xn, u)} is nondecreasing and so the limn→∞ φ(xn, u)

exists. Simultaneously, from Proposition 2.3.1 (b), we have

φ(xn+1, xn) = φ
(
xn+1,

∏
Wn
u
)
≤ φ(xn+1, u)− φ(

∏
Wn
u, u)

= φ(xn+1, u)− φ(xn, u)→ 0. (3.5)

Hence, (3.4) is satisfied from Proposition 2.3.8.

Since βn → 1, and {xn}, {en} are bounded, we have

‖xn − zn‖ = (1− βn)‖xn − en‖ → 0. (3.6)

Combining with (3.4) gives ‖xn+1−zn‖ → 0, which is equivalent to φ(xn+1, zn)→ 0

by Proposition 2.3.8. Now since xn+1 ∈ Hn , we have

φ(xn+1, yn) ≤ αnφ(xn+1, zn) + (1− αn)φ(xn+1, xn)→ 0,

hence φ(xn+1, yn)→ 0. Using Proposition 2.3.8 again, we obtain ‖xn+1−yn‖ → 0.

This, together with (3.4), implies that ‖xn − yn‖ → 0 and also ‖zn − yn‖ → 0.

Next, we show that ‖xn−Tixn‖ → 0 for all i = 1, 2. Since {T1xn} and {T2zn}

are bounded, there exists r > 0 such that {T1xn} ∪ {T2zn} ⊂ Br . Applying for

Lemma 2.3.5 yields

‖αnJT2zn + (1− αn)JT1xn‖2 ≤ αn‖T2zn‖2 + (1− αn)‖T1xn‖2

−αn(1− αn)g(‖JT2zn − JT1xn‖), (3.7)

where g : [0,∞)→ [0,∞) is a continuous, strictly increasing and convex function

with g(0) = 0. Using (3.7) instead of convexity of ‖ · ‖2 in (3.1), we have

φ(p, yn) ≤ αnφ(p, zn) + (1− αn)φ(p, xn)− αn(1− αn)g(‖JT2zn − JT1xn‖)
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and so

αn(1− αn)g(‖JT2zn − JT1xn‖)

≤ αnφ(p, zn) + (1− αn)φ(p, xn)− φ(p, yn). (3.8)

Notice that, for p ∈ F , using the property (b) of φ in Chapter 2 repeatedly,

φ(p, yn) = φ(p, zn) + φ(zn, yn) + 2〈p− zn, Jzn − Jyn〉,

= φ(p, zn) + cn (3.9)

and

φ(p, yn) = φ(p, xn) + φ(xn, yn) + 2〈p− xn, Jxn − Jyn〉

= φ(p, xn) + dn, (3.10)

where

cn := φ(zn, yn) + 2〈p− zn, Jzn − Jyn〉 → 0,

dn := φ(xn, yn) + 2〈p− xn, Jxn − Jyn〉 → 0,

respectively, from Proposition 2.3.8. After multiplying αn and 1 − αn in (3.9)

and (3.10), respectively, summing both sides yields

φ(p, yn) = αnφ(p, zn) + (1− αn)φ(p, xn) + αncn + (1− αn)dn.

Since cn, dn → 0, we obtain

αnφ(p, zn) + (1− αn)φ(p, xn)− φ(p, yn)→ 0.

Then it follows from (3.8), together with lim infn→∞ αn(1− αn) > 0, that

lim
n→∞

g(‖JT2zn − JT1xn‖) = 0.

Since g is continuous, strictly increasing and g(0) = 0, we have

lim
n→∞

‖JT2zn − JT1xn‖ = 0.
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Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we have

‖T2zn − T1xn‖ → 0.

Immediately, using convexity of ‖ · ‖2 and Proposition 2.3.8 again, we have

φ(T1xn, yn) = ‖T1xn‖2 − 2〈T1xn, αnJT2zn + (1− αn)JT1xn〉

+‖αnJT2zn + (1− αn)JT1xn‖2

≤ αnφ(T1xn, T2zn)→ 0.

Using Proposition 2.3.8 once more gives ‖T1xn − yn‖ → 0, this combined with

‖yn − xn‖ → 0 implies

‖T1xn − xn‖ → 0. (3.11)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

‖Jxn − Jyn‖ → 0, ‖JT1xn − Jxn‖ → 0. (3.12)

On the other hand, notice that

Jxn − Jyn = Jxn − (αnJT2zn + (1− αn)JT1xn)

= αn(Jxn − JT2zn) + (1− αn)(Jxn − JT1xn) (3.13)

from the definition of yn . Then using (3.12) and lim infn→∞ αn > 0 yields

‖Jxn − JT2zn‖ =
1

αn
‖(Jxn − Jyn) + (1− αn)(JT1xn − Jxn)‖

≤ 1

αn
(‖Jxn − Jyn‖+ (1− αn)‖JT1xn − Jxn‖)→ 0.

Again, since J−1 is also uniformly norm-to-norm continuous on bounded sets, we

have

‖xn − T2zn‖ → 0.
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Since ‖zn − xn‖ → 0 and T2 is uniformly continuous, this yields

‖xn − T2xn‖ ≤ ‖xn − T2zn‖+ ‖T2zn − T2xn‖ → 0. (3.14)

With the help of (3.11) and (3.14), we have

ωw(xn) ⊂ F̂ (T1) ∩ F̂ (T2) = F (T1) ∩ F (T2) = F.

Joining with (3.3) and Lemma 2.3.4 (with K := F ), we conclude that xn → q =
∏

F u .

Remark 3.2.2. Note that if T2 = I , the processes of (3.7)-(3.11) are abundant.

Also, the parameter assumption lim infn→∞ αn(1−αn) > 0 in Theorem 3.1 can be

weaken with lim supn→∞ αn < 1 as readily seen in (3.13) to get ‖xn−T1xn‖ → 0.

Taking βn = 1 for n ≥ 1 in Theorem 3.2.1, we have the following modifica-

tion of Mann’s iteration process (1.2) to prove strong convergence for a pair of

relatively nonexpansive mappings in a Banach space.

Theorem 3.2.3. Let X be a uniformly convex and uniformly smooth Banach

space, let C be a nonempty closed convex subset of X . Let = = {T1, T2 : C → C}

be a pair of relatively nonexpansive mappings with F 6= ∅ . Assume that {αn} is

a sequence in [0, 1] such that lim infn→∞ αn(1−αn) > 0 . Define a sequence {xn}

in C by the algorithm:

x1 = u ∈ C chosen arbitrarily,

yn = J−1(αnJT2xn + (1− αn)JT1xn),

Hn = {v ∈ C : φ(v, yn) ≤ φ(v, xn)},

Wn = {v ∈ C : 〈xn − v, Jxn − Ju〉 ≤ 0},

xn+1 =
∏

Hn∩Wn
u, n ≥ 1,

where J is the normalized duality mapping. If either T1 or T2 is uniformly

continuous on C , then xn →
∏

F u , where
∏

F is the generalized projection from

X onto F .
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Now taking T2 = I , the identity operator of X and T1 = T in Theorem 3.2.3,

by Remark 3.2.2, we have the following result due to Matsushita and Takahashi

[26].

Corollary 3.2.4. ([26]) Let X be a uniformly convex and uniformly smooth

Banach space, let C be a nonempty bounded closed convex subset of X and

let T : C → C be a relatively nonexpansive mapping. Assume that {αn} is

a sequences in [0, 1] such that lim supn→∞ αn < 1 . Then the sequence {xn}

generated by the algorithm (1.6) converges in norm to
∏

F (T ) u , where
∏

F (T ) is

the generalized projection from C onto F (T ) .

In Hilbert spaces, noticing that φ(x, y) = ‖x−y‖2 for all x, y ∈ H , we see that

‖Tx−Ty‖ ≤ ‖x−y‖ is equivalent to φ(Tx, Ty) ≤ φ(x, y). Also, the demiclosed-

ness principle of a nonexpansive mapping T yields that F̂ (T ) = F (T ). Therefore,

every nonexpansive mapping is relatively nonexpansive (for more details, see the

proof of Theorem 4.1 in [26]). Now we have the following two variants of Theorem

3.2.1 and 3.2.3 for a pair of nonexpansive mappings in Hilbert spaces.

Theorem 3.2.5. Let C be a closed convex subset of a Hilbert space H

and let = = {T1, T2 : C → C} be a pair of nonexpansive mappings such

that F 6= ∅ . Assume that {αn} and {βn} are sequences in [0, 1] such that

lim infn→∞ αn(1 − αn) > 0 and βn → 1 . Define a sequence {xn} in C by the

algorithm:

x1 = u ∈ C chosen arbitrarily,

zn = βnxn + (1− βn)en,

yn = αnT2zn + (1− αn)T1xn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ αn‖xn − v‖2 + (1− αn)‖zn − v‖2}

Qn = {v ∈ C : 〈xn − v, xn − u〉 ≤ 0},

xn+1 = PCn∩Qnu, n ≥ 1,
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where {en} is a bounded sequence in C . Then the sequence {xn} converges in

norm to PFu .

Theorem 3.2.6. Let C be a closed convex subset of a Hilbert space H and let

= = {T1, T2 : C → C} be a pair of nonexpansive mappings such that F 6= ∅ .

Assume that {αn} is a sequence in [0, 1] such that lim infn→∞ αn(1 − αn) > 0 .

Define a sequence {xn} in C by the algorithm:

x1 = u ∈ C chosen arbitrarily,

yn = αnT2xn + (1− αn)T1xn,

Cn = {v ∈ C : ‖yn − v‖ ≤ ‖xn − v‖}

Qn = {v ∈ C : 〈xn − v, xn − u〉 ≤ 0},

xn+1 = PCn∩Qnu, n ≥ 1,

Then the sequence {xn} converges in norm to PFu .

As recalling Remark 3.2.2 again, taking T2 = I , T1 = T and the term

en = Txn for n ≥ 1 in Theorem 3.2.5, and taking T2 = I and T1 = T in

Theorem 3.2.6, respectively, we obtain the following subsequent results due to

Martinez-Yanez and Xu [25] and Nakajo and Takahashi [27], respectively.

Corollary 3.2.7. ([25]) Let C be a nonempty closed convex subset of a Hilbert

space H , and let T : C → C be a nonexpansive mapping such that F (T ) 6= ∅ .

Assume that {αn} and {βn} are sequences in [0, 1] such that lim supn→∞ αn < 1

and βn → 1 . Then the sequence {xn} defined by the algorithm (1.5) converges

in norm to PF (T )u .

Corollary 3.2.8. ([27]) Let C be a nonempty closed convex subset of a Hilbert

space H , and let T : C → C be a nonexpansive mapping such that F (T ) 6= ∅ .

Assume that {αn} is a sequence in [0, 1] such that lim supn→∞ αn < 1 . Then the

sequence {xn} defined by the algorithm (1.4) converges in norm to PF (T )u .
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Now we propose another modification of Ishikawa’s iteration process (1.3) to

have strong convergence for a pair of relatively nonexpansive mappings defined

on a Banach space.

Theorem 3.2.9. Let X be a uniformly convex and uniformly smooth Banach

space, and let = = {T1, T2 : X → X} be a pair of relatively nonexpansive

mappings. Assume that T2 is uniformly continuous and {αn} and {βn} are

sequences in [0, 1] such that lim supn→∞ αn < 1 and βn → 1 . Define a sequence

{xn} by the algorithm:

x1 = u ∈ X chosen arbitrarily,

yn = J−1(αnJT2zn + (1− αn)JT1xn),

zn = J−1(βnJxn + (1− βn)Jen),

Hn = {v ∈ X : φ(v, yn) ≤ αnφ(v, xn) + (1− αn)φ(v, zn)},

Wn = {v ∈ X : 〈xn − v, Jxn − Ju〉 ≤ 0},

xn+1 =
∏

Hn∩Wn
u, n ≥ 1,

where J is the normalized duality mapping and {en} is a bounded sequence in X .

Then {xn} converges in norm to
∏

F u , where
∏

F is the generalized projection

from X onto F .

Proof. Use the following (3.15)-(3.17) to prove ‖xn − zn‖ → 0 of (3.6) in the

proof of Theorem 3.2.1. Since xn+1 ∈ Hn , we have

φ(xn+1, yn) ≤ αnφ(xn+1, xn) + (1− αn)φ(xn+1, zn). (3.15)

However, using the convexity of ‖ · ‖2 for the first inequality, and βn → 1,
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φ(xn+1, xn)→ 0 and the boundedness of {xn} and {en} , we get

φ(xn+1, zn) = ‖xn+1‖2 − 2〈xn+1, βnJxn + (1− βn)Jen〉

+‖βnJxn + (1− βn)Jen‖2

≤ ‖xn+1‖2 − 2βn〈xn+1, Jxn〉 − 2(1− βn)〈xn+1, Jen〉

+βn‖xn‖2 + (1− βn)‖en‖2

= βnφ(xn+1, xn) + (1− βn)φ(xn+1, en)→ 0. (3.16)

Therefore, the right hand of (3.15) converges to 0; hence φ(xn+1, yn)→ 0. Also,

from Proposition 2.3.8, φ(xn+1, zn)→ 0 implies that ‖xn+1 − zn‖ → 0, and this,

together with (3.4), gives that

‖xn − zn‖ → 0. (3.17)

Now repeating the remaining part of the proof of Theorem 3.2.1, we can prove

that xn →
∏

F u . 2

Finally, we shall give examples of relatively nonexpansive self-mappings which

are not nonexpansive. This is motivated by the example in the Hilbert space `2

of Goebel and Kirk [14].

Example 3.2.10. Let B denote the unit ball in the space X = `p , where

1 < p < ∞ . Obviously, X is uniformly convex and uniformly smooth. Let

T : B → B be defined by

Tx = (0, x2
1, λ2x2, λ3x3, . . .)

for all x = (x1, x2, x3, . . .) ∈ B , where λn = 1 − 1
n2 for n ≥ 2 (hence∏∞

n=2 λn = 1
2
). Then T is Lipschitzian, i.e., ‖Tx − Ty‖ ≤ 2‖x − y‖ for all

x, y ∈ B . Noticing that, for x = (x1, x2, . . .) ∈ B ,

T nx =
( n︷ ︸︸ ︷

0, . . . , 0,
n∏
i=2

λi x
2
1,

n+1∏
i=2

λi x2,

n+2∏
i=3

λi x3, . . .
)
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and also for each n ≥ 2, since
∏n

i=2 λi = 1
2

(
1 + 1

n

)
and

n+k−1∏
i=k

λi =

(
1− 1

k

)(
n+ k

n+ k − 1

)
↑ 1

as k →∞, we have

2
n∏
i=2

λi = 1 +
1

n
≥

n+k−1∏
i=k

λi

for all k ≥ 2. Thus we have ‖T nx−T ny‖ ≤ 2
∏n

i=2 λi‖x−y‖ for all n ≥ 2. Obvi-

ously, since 2
∏n

i=2 λi ↓ 1, T is asymptotically nonexpansive. On the other hand,

since ‖Tx−Ty‖ = 3
4
> 1

2
= ‖x−y‖ for x = (1, 0, 0, . . .) and y = (1/2, 0, 0, . . .), T

is not nonexpansive. But T is relatively nonexpansive. Indeed, since ‖Tx‖ ≤ ‖x‖

for x ∈ B and F (T ) = {0} , where 0 = (0, 0, . . .) ∈ B , we can see that

φ(0, Tx) = ‖Tx‖2 ≤ ‖x‖2 = φ(0, x)

for all x ∈ B . Also, from the demiclosedness principle of the asymptotically

nonexpansive mapping T (see Theorem 2 of [39]) it follows immediately that

F̂ (T ) ⊂ F (T ). Since the converse inclusion always holds true, it must be

F̂ (T ) = F (T ). Therefore, T is relatively nonexpansive.

Next, consider an example in case that F (T ) is not singleton set.

Example 3.2.11. Let X = `p , where 2 < p <∞ , and

C = {x = (x1, x2, . . .) ∈ X : 0 ≤ xn ≤ 1}.

Then C is a closed convex subset of X . Note that C is not bounded. Let

T : C → C be defined by

Tx = (x1, 0, x
2
2, λ2x3, λ3x4, . . .)

for all x = (x1, x2, x3, . . .) ∈ C , where λn = 1− 1
n2 for n ≥ 2 as in Example 3.2.10.

In a similar way to Example 3.2.10, we see that T is Lipschitzian, asymptotically
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nonexpansive, but not nonexpansive. Obviously,

F (T ) = {p = (p1, 0, 0, . . .) : 0 ≤ p1 ≤ 1}

and

Jx =
1

‖x‖p−2
(|x1|p−1signx1, |x2|p−1signx2, . . .)

for x = (x1, x2, . . .) ∈ X . Now we claim that T is relatively nonexpan-

sive. Indeed, since ‖Tx‖ ≤ ‖x‖ for x ∈ C , for p = (p1, 0, . . .) ∈ F (T ) and

x = (x1, x2, . . .) ∈ C , we have

〈p, JTx〉 = p1x
p−1
1 /‖Tx‖p−2

≥ p1x
p−1
1 /‖x‖p−2 = 〈p, Jx〉,

and so

φ(p, Tx) = ‖p‖2 − 2〈p, JTx〉+ ‖Tx‖2 ≤ ‖p‖2 − 2〈p, Jx〉+ ‖x‖2 = φ(p, x).

Similarly to the argument of Example 3.2.10, we have F̂ (T ) = F (T ). Thus, T is

relatively nonexpansive.
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Chapter 4

Generalized nonexpansive

mappings and strong convergence

In this chapter, motivated by ideas due to Matsushida and Takahashi [26]

and Ibaraki and Takahashi [18], we prove some strong convergence theorems of

modified Mann type iteration processes for generalized nonexpansive mappings

in uniformly convex Banach spaces. Some applications are also added.

4.1 Strong convergence theorems

We begin with the following lemma, which is very important for our argument.

Lemma 4.1.1. Let C be a nonempty closed convex subset of a reflexive, strictly

convex and smooth Banach space X with the Kadec-Klee property, and let K

be a nonempty subset of C . Assume that the normalized duality mapping J is

weakly sequentially continuous. Let u ∈ C and q := RKu , where RK denotes the

sunny generalized nonexpansive retraction of C onto K . If {xn} is a bounded

sequence in C such that ωw(xn) ⊂ K and satisfies the condition

〈u− xn, Jy − Jxn〉 ≤ 0, ∀y ∈ K. (4.1)
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Then xn → q (= RKu) .

Proof. Since {xn} is bounded, ωw(xn) 6= ∅ by reflexivity of X . Let v ∈ ωw(xn),

that is, xnk
⇀ v . As an equivalent form of (4.1), notice that

‖xn‖2 ≤ 〈u, Jxn〉 − 〈u− xn, Jy〉, ∀y ∈ K. (4.2)

After substituting {xn} in (4.2) for {xnk
} , by using weakly lower semicontinuity

of ‖ · ‖ and weakly sequential continuity of J , we have

‖v‖2 ≤ lim inf
k→∞

‖xnk
‖2 ≤ lim sup

k→∞
‖xnk
‖2

≤ lim sup
k→∞

[〈u, Jxnk
〉 − 〈u− xnk

, Jy〉]

= 〈u, Jv〉 − 〈u− v, Jy〉

for all y ∈ K . Equivalently,

〈u− v, Jy − Jv〉 ≤ 0, ∀y ∈ K,

in particular, since q ∈ K ,

〈u− v, Jq − Jv〉 ≤ 0. (4.3)

On the other hand, since q = RKu , by Proposition 2.2.8,

〈u− q, Jy − Jq〉 ≤ 0, ∀y ∈ K;

especially, since v ∈ K ,

〈u− q, Jv − Jq〉 ≤ 0. (4.4)

Now summing both sides of (4.3) and (4.4) yields

〈q − v, Jq − Jv〉 ≤ 0.

Since X is strictly convex (hence J is strictly monotone; see [37]), we obtain

v = q for all v ∈ ωw(xn). Thus ωw(xn) = {q} and xn ⇀ q . After taking y = q
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in (4.2), applying for weakly lower semicontinuity of ‖ · ‖ and weakly sequential

continuity of J again gives

‖q‖2 ≤ lim inf
n→∞

‖xn‖2 ≤ lim sup
n→∞

‖xn‖2

≤ lim sup
n→∞

[〈u, Jxn〉 − 〈u− xn, Jq〉]

= 〈u, Jq〉 − 〈u− q, Jq〉 = ‖q‖2,

and so limn→∞ ‖xn‖ = ‖q‖ . By the Kadec-Klee property of X , we have xn → q .

The proof is complete.

Now we prove strong convergence for generalized nonexpansive mappings in

uniformly convex Banach spaces.

Theorem 4.1.2. Let C be a nonempty closed convex subset of a uniformly

convex Banach space X . Let a mapping T : C → C be generalized nonex-

pansive with F (T ) 6= ∅ . Assume that the normalized duality mapping J is

weakly sequentially continuous and also that {αn} is a sequence in [0, 1] such

that lim supn→∞ αn < 1 . Define a sequence {xn} in C by the algorithm:

x1 = u ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Txn,

Hn = {z ∈ C : φ(yn, z) ≤ φ(xn, z)},

Wn = {z ∈ C : 〈u− xn, Jz − Jxn〉 ≤ 0},

xn+1 = RHn∩Wnu, n ≥ 1.

Then xn → RF (T )u , where RF (T ) is the sunny generalized nonexpansive retrac-

tion of C onto F (T ) .

Proof. First, we show that F (T ) ⊂ Hn for all n . Indeed, for all p ∈ F (T ),
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using convexity of φ(·, p) and generalized nonexpansivity of T , we get

φ(yn, p) = φ(αnxn + (1− αn)Txn, p))

≤ αnφ(xn, p) + (1− αn)φ(Txn, p)

≤ αnφ(xn, p) + (1− αn)φ(xn, p) = φ(xn, p).

So p ∈ Hn for all n . Next, we show that

F (T ) ⊂ Wn (4.5)

for all n . We prove this by induction. For n = 1, we have F (T ) ⊂ C = W1 .

Assume that F (T ) ⊂ Wk for some k ≥ 1. Since xk+1 is the sunny generalized

nonexpansive retraction of u onto Hk∩Wk , it follows from Proposition 2.2.8 that

〈u− xk+1, Jz − Jxk+1〉 ≤ 0

for all z ∈ Hk ∩Wk . As F (T ) ⊂ Hk ∩Wk , the last inequality holds, in partic-

ular, for all z ∈ F (T ). This together with the definition of Wk+1 implies that

F (T ) ⊂ Wk+1 . Hence (4.5) holds for all n . So, {xn} is well defined. Obviously,

from the construction of Wn , we see that

〈u− xn, Jz − Jxn〉 ≤ 0, ∀z ∈ Wn, (4.6)

and, in particular,

〈u− xn, Jp− Jxn〉 ≤ 0, ∀p ∈ F (T ) (4.7)

because F (T ) ⊂ Wn . Putting q := RF (T )u ∈ F (T ) ⊂ Wn , this immediately

implies that

φ(xn, q) + φ(u, xn) = ‖q‖2 + ‖u‖2 + 2(‖xn‖2 − 〈xn, Jq〉 − 〈u, Jxn〉)

= ‖q‖2 + ‖u‖2 + 2〈u− xn, Jq − Jxn〉 − 2〈u, Jq〉

≤ ‖q‖2 + ‖u‖2 − 2〈u, Jq〉 by (4.7).
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Since both {φ(xn, q)} and {φ(u, xn)} are nonnegative by the property (a) of φ

in Chapter 2, they are bounded; so is {xn} . Since φ(Txn, q) ≤ φ(xn, q), the

sequence {Txn} is bounded and so is {yn} . Now we show that

‖xn − xn+1‖ → 0. (4.8)

Indeed, since xn+1 ∈ Wn , it follows from (4.6) with z = xn+1 that

〈u− xn, Jxn+1 − Jxn〉 ≤ 0 (4.9)

and so 〈u, Jxn+1 − Jxn〉 ≤ 〈xn, Jxn+1 − Jxn〉 . Then, we have

φ(u, xn)− φ(u, xn+1) = 2〈u, Jxn+1 − Jxn〉+ ‖xn‖2 − ‖xn+1‖2

≤ 2〈xn, Jxn+1 − Jxn〉+ ‖xn‖2 − ‖xn+1‖2

= 2〈xn, Jxn+1〉 − ‖xn‖2 − ‖xn+1‖2 ≤ 0,

which shows that {φ(u, xn)} is nondecreasing and so the limn→∞ φ(u, xn) exists.

Simultaneously, using the property (b) of φ in Chapter 2 and (4.9), we obtain

φ(u, xn+1) = φ(u, xn) + φ(xn, xn+1) + 2〈u− xn, Jxn − Jxn+1〉

≥ φ(u, xn) + φ(xn, xn+1) (4.10)

and thus

0 ≤ φ(xn, xn+1) ≤ φ(u, xn+1)− φ(u, xn)→ 0.

Hence, φ(xn, xn+1)→ 0 and (4.8) is obtained by Proposition 2.3.8.

Now since xn+1 ∈ Hn , we have

φ(yn, xn+1) ≤ φ(xn, xn+1)→ 0,

hence φ(yn, xn+1)→ 0. Using Proposition 2.3.8 again, we obtain ‖yn−xn+1‖ → 0.

This, together with (4.8), implies that ‖xn − yn‖ → 0.
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Next, we show that ‖xn − Txn‖ → 0. Noticing that

‖xn − Txn‖ ≤ ‖xn − yn‖+ ‖yn − Txn‖

= ‖xn − yn‖+ αn‖xn − Txn‖,

which is equivalent to

‖xn − Txn‖ ≤
1

1− αn
‖xn − yn‖ → 0 (4.11)

because lim supn→∞ αn < 1. So, we have ωw(xn) ⊂ F̂ (T ) = F (T ). Joining with

(4.7) and Lemma 4.1.1 (with K := F (T )), we conclude that xn → q = RF (T )u .

This completes the proof.

Recently, Martinez-Yanez and Xu [25] modified the Halpern’s iteration method

(1.1) to enhance the convergence rate of the algorithm (1.1) in Hilbert spaces.

More precisely, they defined a sequence {xn} recursively in a Hilbert space H by

x1 = u ∈ C chosen arbitrarily,

yn = tnu+ (1− tn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + tn(‖u‖2 + 2〈xn − u, z〉)},

Qn = {z ∈ C : 〈xn − z, xn − u〉 ≤ 0},

xn+1 = PCn∩Qnu, n ≥ 1.

(4.12)

Then they proved that if C is a nonempty closed convex subset of H , T : C → C

is a nonexpansive mapping such that F (T ) 6= ∅ , and if {tn} ⊂ (0, 1) is such that

tn → 0, then the sequence {xn} generated by (1.5) converges strongly to PF (T )u .

Here we propose some modification for the process (4.12), and discuss the

problem of strong convergence concerning generalized nonexpansive mappings in

uniformly convex Banach spaces.

Theorem 4.1.3. Let C, X, T and J as be in Theorem 4.1.2. Assume that {tn}

is a sequence in (0, 1] such that tn → 0 . Define a sequence {xn} in C by the
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algorithm:

u ∈ C chosen arbitrarily,

yn = tnu+ (1− tn)Txn,

Hn = {z ∈ C : φ(yn, z) ≤ tnφ(u, z) + (1− tn)φ(xn, z) + tn‖xn‖2}

Wn = {z ∈ C : 〈u− xn, Jz − Jxn〉 ≤ 0},

xn+1 = RHn∩Wnu.

Then xn → RF (T )u , where RF (T ) is the sunny generalized nonexpansive retrac-

tion of C onto F (T ) .

Proof. The proof is similar to one of Theorem 4.1.2. We sketch the differences

briefly. Since

φ(yn, p) ≤ tnφ(u, p) + (1− tn)φ(xn, p)

for p ∈ F (T ), we have p ∈ Hn for all n . All the processes of (4.5)-(4.10) are

similarly satisfied. Now since xn+1 ∈ Hn , φ(xn, xn+1)→ 0, tn → 0, and {xn} is

bounded, we have

φ(yn, xn+1) ≤ tnφ(u, xn+1) + (1− tn)φ(xn, xn+1) + tn‖xn‖2 → 0.

Using Proposition 2.3.8 again, it follows that

‖yn − xn+1‖ → 0. (4.13)

On the other hand, by the definition of yn we have

‖yn − Txn‖ = tn‖u− Txn‖ → 0.

Since ‖xn − yn‖ → 0 in the process of the proof of Theorem 4.1.2, this implies

‖xn − Txn‖ ≤ ‖xn − yn‖+ ‖yn − Txn‖ → 0. (4.14)

By (4.14), ωw(xn) ⊂ F̂ (T ) = F (T ). Joining with (4.7) and Lemma 4.1.1 (with

K := F (T )), we conclude that xn → q = RF (T )u .
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Remark 4.1.4. Note that all our results remain true with no changes of the

proof for non-self mappings Ti : C → X , 1 ≤ i ≤ N .

Finally we give an example of generalized nonexpansive mappings which is

not nonexpansive.

Example 4.1.5. Let X , C and T as in Example 3.2.11. Then recall that

T : C → C is relatively nonexpansive but not nonexpansive. Also, we observe

F (T ) = {p = (p1, 0, 0, . . .) : 0 ≤ p1 ≤ 1}

and

Jx =
1

‖x‖p−2
(|x1|p−1signx1, |x2|p−1signx2, . . .)

for all x = (x1, x2, . . .) ∈ X . Now we claim that T is generalized nonexpansie.

Indeed, for p = (p1, 0, . . .) ∈ F (T ) and x = (x1, x2, . . .) ∈ C , observing that

〈Tx, Jp〉 = x1p
p−1
1 /‖p‖p−2 = x1p

p−2
1 = 〈x, Jp〉,

and ‖Tx‖ ≤ ‖x‖ for all x ∈ C , we have

φ(Tx, p) = ‖Tx‖2 − 2〈Tx, Jp〉+ ‖p‖2

≤ ‖x‖ − 2〈x, Jp〉+ ‖p‖2 = φ(x, p).

Similarly to the argument of Example 3.2.10, we have F̂ (T ) = F (T ) . Hence, T

is generalized nonexpansive.

4.2 Some applications

Let X be a reflexive, strictly convex and smooth Banach space and let

A ⊂ X∗ × X be a maximal monotone operator. For each λ > 0 and x ∈ X ,

since the set

Jλx := {z ∈ X : x ∈ z + λAJz}
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consists of exactly one point, the mapping Jλ is well-defined with the domain

D(Jλ) = R(I + λAJ) and the range R(Jλ) = D(AJ) of Jλ , where I is the

identity. Such a Jλ is called the generalized resolvent of A and is denoted by

Jλ = (I + λAJ)−1.

For more details, see [18]. For some applications of our theorem 4.1.2, we need

the following modification of Proposition 4.1 of Ibaraki and Takahashi [18].

Proposition 4.2.1. Let C be a nonempty closed convex subset of a reflexive,

strictly convex and smooth Banach space X and let A ⊂ X∗ ×X be a maximal

monotone operator with A−10 6= ∅ . Then F (Jλ|C) = (AJ)−10∩C for each λ > 0 ,

where Jλ|C means the restriction of Jλ to C . Moreover, if the normalized duality

mapping J is weakly sequentially continuous, then Jλ|C : C → X is generalized

nonexpansive.

Proof. Let λ > 0. We claim that Jλ|C is generalized nonexpansive. Then it

suffices to show that F̂ (Jλ|C) ⊂ F (Jλ|C). Indeed, let p ∈ F̂ (Jλ|C). Then there

exists a sequence {un} in C such that un ⇀ p and un − Jλ|C un → 0. Since

1
λ
(un − Jλ|C un) ∈ AJJλ|C un , monotonicity of A gives

〈1
λ

(un − Jλ|C un)− w̃, JJλ|C un − Jw〉 ≥ 0 (4.15)

for all w ∈ X and w̃ ∈ AJw . Note that J : X → X∗ is a bijection mapping

under our assumptions. Since un ⇀ p and un−Jλ|C un → 0, we get Jλ|C un ⇀ p

and the weakly sequential continuity of J implies JJλ|C un
∗
⇀ Jp . Now letting

n→∞ in (4.15), we have

〈0− w̃, Jp− Jw〉 ≥ 0

for all w ∈ X and w̃ ∈ AJw . Then it follows from the maximality of A that

Jp ∈ A−10, which is equivalent to p ∈ (AJ)−10 and so p ∈ (AJ)−10∩C = F (Jλ|C).

44



Now we have the following result from Proposition 4.2.1 and Remark 4.1.4

following Theorem 4.1.2.

Theorem 4.2.2. Let C be a nonempty closed convex subset of a uniformly

convex Banach space X and let A ⊂ X∗ ×X be a maximal monotone operator

with (AJ)−10 ∩ C 6= ∅ . Let Jλ be the generalized resolvent of A for λ > 0 .

Assume that the normalized duality mapping J is weakly sequentially continuous

and that {αn} is a sequence in [0, 1] such that lim supn→∞ αn < 1 . Define a

sequence {xn} in C by the algorithm:

x1 = u ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Jλ|Cxn,

Hn = {z ∈ C : φ(yn, z) ≤ φ(xn, z)},

Wn = {z ∈ C : 〈u− xn, Jz − Jxn〉 ≤ 0},

xn+1 = RHn∩Wnu, n ≥ 1.

Then xn → R(AJ)−10∩C u , where R(AJ)−10∩C is the sunny generalized nonexpan-

sive retraction of C onto (AJ)−10 ∩ C .

Proof. Notice that

x ∈ (AJ)−10 ⇔ Jx ∈ A−10.

From Proposition 4.2.1, Jλ|C : C → X is generalized nonexpansive, and

F (Jλ|C) = (AJ)−10 ∩ C for each λ > 0. Therefore our conclusion immediately

follows from Theorem 4.1.2 and Remark 4.1.4.

In Hilbert spaces, recalling that φ(x, y) = ‖x − y‖2 for all x, y ∈ H , we see

that ‖Tx− Ty‖ ≤ ‖x− y‖ is equivalent to φ(Tx, Ty) ≤ φ(x, y). Also, the demi-

closedness principle of a nonexpansive mapping T yields that F̂ (T ) = F (T ).

Therefore, every nonexpansive mapping is both relatively nonexpansive and gen-

eralized nonexpansive. Also, recall that both generalized projection
∏

F (T ) and
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sunny nonexpansive retraction RF (T ) coincide with the metric projection PF (T )

of X onto F (T ) in Hilbert space settings.

First, as an application of Theorem 4.1.2, we have the following result due to

Nakajo and Takahashi [27].

Corollary 4.2.3. ([27]) Let C be a closed convex subset of a Hilbert space H

and let T : C → C be a nonexpansive mapping such that F (T ) 6= ∅ . Assume

that {αn} is a sequence in [0, 1] such that αn ≤ 1− δ for some δ ∈ (0, 1] . Then

the sequence {xn} generated by the algorithm (1.4) converges in norm to PF (T )u .

Next, as a consequence of Theorem 4.1.3, we obtain the following corollary

due to Martinez-Yanez and Xu [25] in Hilbert spaces.

Corollary 4.2.4. ([25]) Let H be a real Hilbert space, C a closed convex subset

of H and T : C → C a nonexpansive mapping such that F (T ) 6= ∅ . Assume

that {tn} ⊂ (0, 1] is such that tn → 0 . Then the sequence {xn} generated by

(1.5) or (1.5) converges strongly to PF (T )u .
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Chapter 5

Strong convergence for a finite

family of generalized

nonexpansive mappings

In this chapter, motivated by ideas due to Matsushida and Takahashi [26],

Ibaraki and Takahashi [18], and Acedo and Xu [1], we prove some strong con-

vergence theorems of modified Mann type iteration processes for a finite family

of generalized nonexpansive self mappings in uniformly convex Banach spaces

as analogues of the recent results due to Acedo and Xu [1] for strict pseudo-

contractions in Hilbert spaces. Some applications are also added.

5.1 Strong convergence theorems

Let C be a nonempty closed convex subset of a real Banach space X . Recall that

T : C → C is called generalized nonexpansive if the following conditions (i)-(iii)

are fulfilled.

(a) F (T ) is nonempty,
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(b) F̂ (T ) = F (T ), and

(c) φ(Tx, p) ≤ φ(x, p) for all x ∈ C , p ∈ F (T ).

We begin with following useful lemma for our argument.

Lemma 5.1.1. Let C be a nonempty closed convex subset of a smooth and

strictly convex Banach space X . Given an integer N ≥ 1 , let {Ti}Ni=1 be

a finite family of generalized nonexpansive mappings from C into itself with

F := ∩Ni=1F (Ti) 6= ∅ . Let A : C → C be defined by

Ax =
N∑
i=1

λiTix (5.1)

for all x ∈ C , where {λi} is a finite sequence of positive numbers such that∑N
i=1 λi = 1 . Then A : C → C is generalized nonexpansive, that is,

(i) F (A) = F ,

(ii) F̂ (A) = F (A) , and

(iii) φ(Ax, p) ≤ φ(x, p) for all x ∈ C and p ∈ F .

Proof. To prove (i), it suffices to show ⊂ . For this end, let Ax = x . Then for

p ∈ F , use the convexity of φ(·, p) and the property (c) for Ti , 1 ≤ i ≤ N , to

derive

φ(x, p) = φ(Ax, p) ≤
N∑
i=1

λiφ(Tix, p) ≤
N∑
i=1

λiφ(x, p) = φ(x, p),

which shows
N∑
i=1

λiφ(Tix, p) = φ(x, p).
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Using the definition of the gauge function φ and Ax = x , this gives

0 =
N∑
i=1

λi(φ(Tix, p)− φ(x, p))

=
N∑
i=1

λi(‖Tix‖2 − 2〈Tix− x, p〉 − ‖x‖2)

=
N∑
i=1

λi‖Tix‖2 − 2〈Ax− x, p〉 − ‖x‖2

=
N∑
i=1

λi‖Tix‖2 − ‖x‖2.

This jointed with Ax = x again yields

N∑
i=1

λiφ(Tix, x) =
N∑
i=1

λi(‖Tix‖2 − 2〈Tix, Jx〉+ ‖x‖2)

=
N∑
i=1

λi‖Tix‖2 − 2〈Ax, Jx〉+ ‖x‖2

= ‖x‖2 − 2〈x, Jx〉+ ‖x‖2 = 0.

By the property (a) of the gauge function φ and hypothesis, φ(Tix, x) ≥ 0 and

λi > 0 for 1 ≤ i ≤ N . Therefore we obtain φ(Tix, x) = 0 for all 1 ≤ i ≤ N .

Since X is strictly convex, Tix = x for all 1 ≤ i ≤ N . Hence x ∈ F and so (i)

is proven.

Now to prove (ii), we first claim: if {xn} is a bounded sequence such that

‖xn − Axn‖ → 0, then ‖xn − Tixn‖ → 0 for all 1 ≤ i ≤ N . Indeed, for p ∈ F ,

we observe

N∑
i=1

λi‖Tixn‖2 − ‖xn‖2 − 2〈Axn − xn, Jp〉

=
N∑
i=1

λi(‖Tixn‖2 − ‖xn‖2 − 2〈Tixn − xn, Jp〉)

=
N∑
i=1

λi[φ(Tixn, p)− φ(xn, p) ] ≤ 0,
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which implies

N∑
i=1

λ
(n)
i ‖Tixn‖2 − ‖xn‖2 ≤ 2〈Axn − xn, Jp〉.

Since ‖xn − Axn‖ → 0 and {xn} is bounded by assumption, this gives

N∑
i=1

λiφ(Tixn, xn) =
N∑
i=1

λi‖Tixn‖2 − 2〈Axn, Jxn〉+ ‖xn‖2

=
N∑
i=1

λi‖Tixn‖2 − ‖xn‖2 − 2〈Axn − xn, Jxn〉

≤ 2(〈Axn − xn, Jp〉 − 〈Axn − xn, Jxn〉)

≤ 2‖Axn − xn‖(‖p‖+ ‖xn‖)→ 0.

As in the last proof of (i), since all λi > 0 and φ(Tixn, xn) ≥ 0, we have

φ(Tixn, xn) → 0 for all 1 ≤ i ≤ N . Since X is uniformly convex, by Propo-

sition 2.3.8 we arrive at the conclusion:

‖xn − Tixn‖ → 0, 1 ≤ i ≤ N.

To complete the proof of (ii), it suffices to show: F̂ (A) ⊂ F . For this end,

let x ∈ F̂ (A), that is, there exists a sequence {xn} in C such that xn ⇀ x

and ‖xn − Axn‖ → 0. Then ‖xn − Tixn‖ → 0 for 1 ≤ i ≤ N . Therefore

x ∈ F̂ (Ti) = F (Ti) for 1 ≤ i ≤ N . Hence, x ∈ ∩Ni=1F (Ti) = F .

(iii) is easily obtained from convexity of φ(·, p) for each fixed p ∈ F .

As a direct consequence of Theorem 4.1.2 and Lemma 5.1.1, we have strong

convergence of the following modified parallel algorithm.

Theorem 5.1.2. Let C be a nonempty closed convex subset of a uniformly con-

vex Banach space X . Let {Ti}Ni=1 be a finite family of generalized nonexpansive

self-mappings of C with F := ∩Ni=1F (Ti) 6= ∅ . Assume that the normalized

duality mapping J is weakly sequentially continuous and also that {αn} is a
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sequence in [0, 1] such that lim supn→∞ αn < 1 . Define a sequence {xn} in C by

the algorithm: 

x1 := u ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)
∑N

i=1 λiTxn,

Hn = {z ∈ C : φ(yn, z) ≤ φ(xn, z)},

Wn = {z ∈ C : 〈u− xn, Jz − Jxn〉 ≤ 0},

xn+1 = RHn∩Wnu,

(5.2)

where {λi} is a finite sequence of positive numbers such that
∑N

i=1 λi = 1 . Then

xn → RFu , where RF is the sunny generalized nonexpansive retraction of C onto

F .

In the algorithm (5.14), the weight {λn}Ni=1 are constant in the sense that

they are independent of n , the number of steps of the iterative process. Below we

consider a more general case by allowing the weights {λi} to be step dependent.

Theorem 5.1.3. Let C be a nonempty closed convex subset of a uniformly con-

vex Banach space X . Let {Ti}Ni=1 be a finite family of generalized nonexpansive

self-mappings of C with F := ∩Ni=1F (Ti) 6= ∅ . Assume that the normalized

duality mapping J is weakly sequentially continuous and also that {αn} is a

sequence in [0, 1] such that lim supn→∞ αn < 1 . Define a sequence {xn} in C by

the algorithm: 

x1 := u ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)
∑N

i=1 λ
(n)
i Txn,

Hn = {z ∈ C : φ(yn, z) ≤ φ(xn, z)},

Wn = {z ∈ C : 〈u− xn, Jz − Jxn〉 ≤ 0},

xn+1 = RHn∩Wnu,

(5.3)

where {λ(n)
i } is a finite sequence of positive numbers such that

∑N
i=1 λ

(n)
i = 1 for

each n and infn≥1 λ
(n)
i > 0 for 1 ≤ i ≤ N . Then xn → RFu , where RF is the
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sunny generalized nonexpansive retraction of C onto F .

Proof. On setting Anx =
∑N

i=1 λ
(n)
i Tx for all x ∈ C , we see that

φ(Anx, p) ≤ φ(x, p) (5.4)

for x ∈ C and p ∈ F . First we show that F ⊂ Hn for all n . Indeed, for all

p ∈ F , using convexity of φ(·, p) and (5.4), we have

φ(yn, p) = φ(αnxn + (1− αn)Anxn, p))

≤ αnφ(xn, p) + (1− αn)φ(Anxn, p)

≤ αnφ(xn, p) + (1− αn)φ(xn, p) = φ(xn, p).

So p ∈ Hn for all n . Next, we claim that

F ⊂ Wn (5.5)

for all n ≥ 0. We prove this by induction. For n = 0, we have F ⊂ C = W0 .

Assume that F ⊂ Wk for some k ≥ 1. Since xk+1 is the sunny generalized

nonexpansive retraction of u onto Hk ∩ Wk , it follows from Proposition 2.2.8

that

〈u− xk+1, Jz − Jxk+1〉 ≤ 0

for all z ∈ Hk ∩Wk . As F ⊂ Hk ∩Wk , the last inequality holds, in particular,

for all z ∈ F . This together with the definition of Wk+1 implies that F ⊂ Wk+1 .

Hence (5.5) holds for all n ≥ 0. So, {xn} is well defined. Obviously, from the

construction of Wn , we see that

〈u− xn, Jz − Jxn〉 ≤ 0 (5.6)

for all z ∈ Wn and, in particular,

〈u− xn, Jp− Jxn〉 ≤ 0 (5.7)
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for all p ∈ F because F ⊂ Wn . Putting q := RFu ∈ F ⊂ Wn , this immediately

implies that

φ(xn, q) + φ(u, xn) = ‖q‖2 + ‖u‖2 + 2(‖xn‖2 − 〈xn, Jq〉 − 〈u, Jxn〉)

= ‖q‖2 + ‖u‖2 + 2〈u− xn, Jq − Jxn〉 − 2〈u, Jq〉

≤ ‖q‖2 + ‖u‖2 − 2〈u, Jq〉 by (5.7).

Since both {φ(xn, q)} and {φ(u, xn)} are nonnegative by the property (a) of the

gauge function φ , they are bounded; so is {xn} . Since φ(Anxn, q) ≤ φ(xn, q),

the sequence {Anxn} is bounded and so is {yn} . Now we show that

‖xn − xn+1‖ → 0. (5.8)

Indeed, since xn+1 ∈ Wn , it follows from (5.6) with z = xn+1 that

〈u− xn, Jxn+1 − Jxn〉 ≤ 0 (5.9)

and so 〈u, Jxn+1 − Jxn〉 ≤ 〈xn, Jxn+1 − Jxn〉 . Then, we have

φ(u, xn)− φ(u, xn+1) = 2〈u, Jxn+1 − Jxn〉+ ‖xn‖2 − ‖xn+1‖2

≤ 2〈xn, Jxn+1 − Jxn〉+ ‖xn‖2 − ‖xn+1‖2

= 2〈xn, Jxn+1〉 − ‖xn‖2 − ‖xn+1‖2 ≤ 0.

Therefore, the sequence {φ(u, xn)} is nondecreasing and so the limn→∞ φ(u, xn)

exists. Simultaneously, using the property (b) of the gauge function φ and (5.9),

we obtain

φ(u, xn+1) = φ(u, xn) + φ(xn, xn+1) + 2〈u− xn, Jxn − Jxn+1〉

≥ φ(u, xn) + φ(xn, xn+1) (5.10)

and thus

0 ≤ φ(xn, xn+1) ≤ φ(u, xn+1)− φ(u, xn)→ 0.
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Hence, φ(xn, xn+1)→ 0 and (5.8) is satisfied from Proposition 2.3.8.

Now since xn+1 ∈ Hn , we have

φ(yn, xn+1) ≤ φ(xn, xn+1)→ 0,

hence φ(yn, xn+1)→ 0. Using Proposition 2.3.8 again, we obtain ‖yn−xn+1‖ → 0.

This, together with (5.8), implies that ‖xn − yn‖ → 0.

Next, we show that ‖xn − Anxn‖ → 0. Noticing that

‖xn − Anxn‖ ≤ ‖xn − yn‖+ ‖yn − Anxn‖

= ‖xn − yn‖+ αn‖xn − Anxn‖,

which is equivalent to

‖xn − Anxn‖ ≤
1

1− αn
‖xn − yn‖ → 0 (5.11)

because lim supn→∞ αn < 1.

Next we prove that ωw(xn) ⊂ F . To see this, let u ∈ ωw(xn), say xnk
⇀ u .

Without no loss of generality, we may assume that

lim
k→∞

λ
(nk)
i = λi, 1 ≤ i ≤ N. (5.12)

It is obvious to see that each λi > 0 and
∑N

i=1 λi = 1. We also have

Ax = lim
k→∞

Ank
x

for all x ∈ C , where A =
∑N

i=1 λiTi . Note that by Lemma 5.1.1, A is generalized

nonexpansive and F (A) = F . Using (5.11) and (5.12) gives

‖xnk
− Axnk

‖ ≤ ‖xnk
− Ank

xnk
‖+ ‖Ank

xnk
− Axnk

‖

≤ ‖xnk
− Ank

xnk
‖+

N∑
i=1

|λ(nk)
i − λi|‖Tixn‖ → 0

as k → ∞ , noticing that {Tixn} is also bounded for 1 ≤ i ≤ N because

φ(Tixn, p) ≤ φ(xn, p) for p ∈ F . This with (ii) of Lemma 5.1.1 implies
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u ∈ F̂ (A) = F . Hence ωw(xn) ⊂ F . Joining with (5.7) and Lemma 4.1.1

(with K := F ), we conclude that xn → q = RFu .

Lopez Acedo and Xu [1] recently studied the convergence problems for the

following cyclic algorithm:

x1 := u ∈ C chosen arbitrarily,

x2 = α1x1 + (1− α1)T1x1,

x3 = α2x2 + (1− α2)T2x2,
...

xN+1 = αNxN + (1− αN)TNxN ,

xN+2 = αN+1xN+1 + (1− αN+1)T1xN+1,
...

where {αn} be a sequence in [0, 1]. The above cyclic algorithm can be written

in a more compact form as

xn+1 = αnxn + (1− αn)T[n]xn, n ≥ 1, (5.13)

where T[k] = TkmodN for integer k ≥ 1. The mod function takes values in the set

{1, 2, · · · , N} as

T[k] =

 TN , if q = 0;

Tq, if 0 < q < N

for k = jN + q for some integers j ≥ 0 and 0 ≤ q < N .

Then, we similarly have the following analogue for the cyclic algorithm (5.13).

Theorem 5.1.4. Let C be a nonempty closed convex subset of a uniformly con-

vex Banach space X . Let {Ti}Ni=1 be a finite family of uniformly continuous and

generalized nonexpansive mappings from C into itself with F := ∩Ni=1F (Ti) 6= ∅ .

Assume that the normalized duality mapping J is weakly sequentially continuous

and also that {αn} is a sequence in [0, 1] such that lim supn→∞ αn < 1 . Define
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a sequence {xn} in C by the algorithm:

x1 := u ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)T[n]xn,

Hn = {z ∈ C : φ(yn, z) ≤ φ(xn, z)},

Wn = {z ∈ C : 〈u− xn, Jz − Jxn〉 ≤ 0},

xn+1 = RHn∩Wnu,

(5.14)

where {λ(n)
i } is a finite sequence of positive numbers such that

∑N
i=1 λ

(n)
i = 1 for

each n and infn≥1 λ
(n)
i > 0 for 1 ≤ i ≤ N . Then xn → RFu , where RF is the

sunny generalized nonexpansive retraction of C onto F .

Proof. First, to claim the following observations (i)-(vi), simply replace An

with T[n] in the proof of Theorem 5.1.3.

(i) xn is well defined for all n ≥ 1.

(ii) 〈u− xn, Jp− Jxn〉 ≤ 0 for all p ∈ F .

(iii) ‖xn+1 − xn‖ → 0, furthermore, ‖xn+i − xn‖ → 0 for 1 ≤ i ≤ N .

(iv) ‖xn − T[n]xn‖ → 0, in particular, ‖xn+i − T[n+i]xn+i‖ → 0 for 1 ≤ i ≤ N .

Since all Tk , 1 ≤ k ≤ N , are uniformly continuous, (iii) implies that

‖Tkxn+i − Tkxn‖ → 0, 1 ≤ i, k ≤ N,

equivalently,

‖T[n+i]xn+i − T[n+i]xn‖ → 0, 1 ≤ i ≤ N (5.15)

as n→∞ . Use (iii), (iv) and (5.15) to derive the convergence to 0 as

‖xn − T[n+i]xn‖ ≤ ‖xn − xn+i‖+ ‖xn+i − T[n+i]xn+i‖

+‖T[n+i]xn+i − T[n+i]xn‖ → 0.
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For simplicity, put cni := ‖xn − Tixn‖ for 1 ≤ i ≤ N and n ≥ 1. After first

taking i = N, N − 1, · · · , 1 in the set {‖xn − T[n+i]xn‖} and next enumerating

for n ≥ 1 in turn, we have the following enumeration with N -rows.

c11 c22 c33 · · · cNN cN+1
1 cN+2

2 · · · c2nN c2N+1
1 · · · → 0

c1N c21 c32 · · · cNN−1 cN+1
N cN+2

1 · · · c2nN−1 c2N+1
N · · · → 0

...
...

... · · · ...
...

... · · · ...
... · · · → 0

c12 c23 c34 · · · cN1 cN+1
2 cN+2

3 · · · c2n1 c2N+1
2 · · · → 0

(5.16)

It is not hard to find a sequence {cn1} positioned at each N -diagonal repeatedly

such that cn1 = ‖xn− T1xn‖ → 0. Moving each row downwards once and the last

row to the first cyclically, we found the sequence {cn2} at the same position with

{cn1} such that cn2 = ‖xn − T2xn‖ → 0. Repeating these processes, we have

‖xn − Tixn‖ → 0, 1 ≤ i ≤ N. (5.17)

Now we claim: ωw(xn) ⊂ F . Indeed, assume u ∈ ωw(xn), say xnk
⇀ u . By

(5.17), it follows that u ∈ ∩Nj=1F̂ (Tj) = ∩Nj=1F (Tj) = F . Joining with (ii) and

Lemma 4.1.1 (with K := F ), we conclude that xn → q := RFu .

Remark 5.1.5. (a) Taking Ti = T for 1 ≤ i ≤ N in Theorem 5.1.3 and 5.1.4,

our results then reduce to Theorem 4.1.2.

(b) Note that all our results remain true with no changes of the proof for

non-self mappings Ti : C → X , 1 ≤ i ≤ N .

5.2 Further development

Using the well known inequality due to Xu [40], we can easily observe the follow-

ing.

Lemma 5.2.4. Let X be a uniformly convex Banach space and let Br(0) be a

closed ball of X with center zero and radius r > 0 . Then there exists a continuous
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strictly increasing convex function g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖
n∑
i=1

λixi‖2 ≤
n∑
i=1

λi‖xi‖2 − λiλjg(‖xi − xj‖) (5.18)

for all n ≥ 1 and some fixed i, j with i 6= j , where all xi ∈ Br(0) and λi ∈ [0, 1]

with
∑n

i=1 λi = 1 .

Proof. It suffices to show that (5.18) holds true for i = 1 and j = 2. For n = 2,

(5.18) is obviously satisfied; see Theorem 2 in [40] with p = 2. By mathematical

induction, assume that (5.18) holds true for some k ≥ 2, that is,

‖
k∑
i=1

βixi‖2 ≤
k∑
i=1

βi‖xi‖2 − β1β2g(‖x1 − x2‖) (5.19)

for all xi ∈ Br(0) and βi ∈ [0, 1] with
∑k

i=1 βi = 1. Then we claim that (5.18)

holds true for k+ 1. Indeed, for all xi ∈ Br(0) and λi ∈ [0, 1] with
∑k+1

i=1 λi = 1,

‖
k+1∑
i=1

λixi‖2 = ‖(1− λk+1)
k∑
i=1

λi
1− λk+1

xi + λk+1xk+1‖2

≤ (1− λk+1)‖
k∑
i=1

λi
1− λk+1

xi‖2 + λk+1‖xk+1‖2.

On taking βi = λi

1−λk+1
, we see that all βi ∈ [0, 1] and

∑k
i=1 βi = 1. Hence this

combined with (5.19) implies that

‖
k+1∑
i=1

λixi‖2 ≤ ‖
k+1∑
i=1

λixi‖2 − (1− λk+1)β1β2g(‖x1 − x2‖)

≤ ‖
k+1∑
i=1

λixi‖2 −
λ1λ2

1− λk+1

g(‖x1 − x2‖)

≤ ‖
k+1∑
i=1

λixi‖2 − λ1λ2g(‖x1 − x2‖),

which completes the proof.
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Remark 5.2.5. Note that if n = 3 the above lemma reduces to Lemma 1.4

due to Cho et al. [11].

Now we similarly have the following variant of Theorem 5.1.4.

Theorem 5.2.6. Let C be a nonempty closed convex subset of a uniformly

convex Banach space X . Let N ≥ 2 and let {Ti}Ni=1 be a finite family of gener-

alized nonexpansive self-mappings of C with F := ∩Ni=1 F (Ti) 6= ∅ . Assume that

the normalized duality mapping J is weakly sequentially continuous. Define a

sequence {xn} in C by the algorithm:

x1 = u ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)
∑N

i=0 β
(i)
n Tixn,

Hn = {z ∈ C : φ(yn, z) ≤ φ(xn, z)},

Wn = {z ∈ C : 〈u− xn, Jz − Jxn〉 ≤ 0},

xn+1 = RHn∩Wnu, n ≥ 1,

where T0 = I and J denote the identity mapping of X and the normalized

duality mapping, respectively. Assume that all control sequences {αn} and {β(i)
n }

in [0, 1] satisfy the followings:

(C1) lim supn→∞ αn < 1 ;

(C2) limn→∞ β
(0)
n = 0 and

∑N
i=0 β

(i)
n = 1 ;

(C3) lim infn→∞ β
(i)
n β

(j)
n > 0 for any i, j = 1, 2, . . . , N with i 6= j .

Then xn → RFu , where RF is the sunny generalized nonexpansive retraction of

C onto F .

Proof. Put zn :=
∑N

i=0 β
(i)
n Tixn and we first show that F ⊂ Hn for all n .

Indeed, for all p ∈ F , using convexity of φ(·, p) and generalized nonexpansivity
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of Ti (i = 1, 2, . . . , N ), we get

φ(zn, p) = φ

(
N∑
i=0

β(i)
n Tixn, p

)
≤

N∑
i=0

β(i)
n φ (Tixn, p)

≤
N∑
i=0

β(i)
n φ(xn, p) = φ(xn, p) (5.20)

and so

φ(yn, p) ≤ αnφ(xn, p) + (1− αn)φ(zn, p) ≤ φ(xn, p).

Hence p ∈ Hn for all n . Next we claim that

F ⊂ Wn (5.21)

for all n . We prove this by induction. For n = 1, we have F ⊂ C = W1 . Assume

that F ⊂ Wk for some k ≥ 2. Since xk+1 is the sunny generalized nonexpansive

retraction of u onto Hk ∩Wk , it follows from Proposition 2.2.8 that

〈u− xk+1, Jz − Jxk+1〉 ≤ 0

for all z ∈ Hk ∩Wk . As F ⊂ Hk ∩Wk , the last inequality holds, in particular,

for all z ∈ F . This together with the definition of Wk+1 implies that F ⊂ Wk+1 .

Hence (5.21) holds for all n . So, {xn} is well defined. Obviously, from the

construction of Wn , we see that

〈u− xn, Jz − Jxn〉 ≤ 0, ∀z ∈ Wn (5.22)

and, in particular,

〈u− xn, Jp− Jxn〉 ≤ 0, ∀p ∈ F (5.23)

because F ⊂ Wn . Putting q := RFu ∈ F ⊂ Wn , this immediately implies that

φ(xn, q) + φ(u, xn) = ‖q‖2 + ‖u‖2 + 2(‖xn‖2 − 〈xn, Jq〉 − 〈u, Jxn〉)

= ‖q‖2 + ‖u‖2 + 2〈u− xn, Jq − Jxn〉 − 2〈u, Jq〉

≤ ‖q‖2 + ‖u‖2 − 2〈u, Jq〉 by (5.23).
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Since both {φ(xn, q)} and {φ(u, xn)} are nonnegative by the property (a) of φ

in Chaper 2, they are bounded; so is {xn} . Since φ(Tkxn, q) ≤ φ(xn, q) for all

k ≥ 1, the sequence {Tkxn} is bounded for all k ≥ 1, and so are {zn} and {yn} .

Now we show that

‖xn − xn+1‖ → 0. (5.24)

Indeed, since xn+1 ∈ Wn , it follows from (5.22) with z = xn+1 that

〈u− xn, Jxn+1 − Jxn〉 ≤ 0 (5.25)

and so 〈u, Jxn+1 − Jxn〉 ≤ 〈xn, Jxn+1 − Jxn〉 . Then, we have

φ(u, xn)− φ(u, xn+1) = 2〈u, Jxn+1 − Jxn〉+ ‖xn‖2 − ‖xn+1‖2

≤ 2〈xn, Jxn+1 − Jxn〉+ ‖xn‖2 − ‖xn+1‖2

= 2〈xn, Jxn+1〉 − ‖xn‖2 − ‖xn+1‖2 ≤ 0,

which shows that {φ(u, xn)} is nondecreasing and so the limn→∞ φ(u, xn) exists.

Simultaneously, using the property (b) of φ in Chapter 2 and (5.25), we obtain

φ(u, xn+1) = φ(u, xn) + φ(xn, xn+1) + 2〈u− xn, Jxn − Jxn+1〉

≥ φ(u, xn) + φ(xn, xn+1)

and thus

0 ≤ φ(xn, xn+1) ≤ φ(u, xn+1)− φ(u, xn)→ 0.

Hence, φ(xn, xn+1)→ 0 and (5.24) is satisfied from Proposition 2.3.8.

Now since xn+1 ∈ Hn , we have

φ(yn, xn+1) ≤ φ(xn, xn+1)→ 0,

hence φ(yn, xn+1)→ 0. Using Proposition 2.3.8 again, we obtain ‖yn−xn+1‖ → 0.

This, together with (5.24), implies that ‖xn − yn‖ → 0. Then, we have

‖yn − xn‖ = (1− αn)‖zn − xn‖,

61



equivalently,

‖zn − xn‖ =
1

1− αn
‖yn − xn‖ → 0 (5.26)

as n→∞ by (C1).

In the processes of the proof of Proposition 3.1.7, notice that

φ(xn, p)− φ(zn, p)→ 0 (5.27)

for all p ∈ F . We claim that ‖xn − Tkxn‖ → 0 for all k = 1, 2, . . . , N . Applying

for Lemma 5.1.1 and generalized nonexpansivity of Ti (i = 1, 2, . . . N),

φ(zn, p) = φ

(
N∑
i=0

β(i)
n Tixn, p

)

= ‖
N∑
i=0

β(i)
n Tixn‖2 − 2〈

N∑
i=0

β(i)
n Tixn, Jp〉+ ‖p‖2

=
N∑
i=0

β(i)
n ‖Tixn‖2 − β(i)

n β
(j)
n g(‖Tixn − Tjxn‖)

−2
N∑
i=0

β(i)
n 〈Tixn, Jp〉+ ‖p‖2

=
N∑
i=0

β(i)
n φ(Tixn, p)− β(i)

n β
(j)
n g(‖Tixn − Tjxn‖)

≤ φ(xn, p)− β(i)
n β

(j)
n g(‖Tixn − Tjxn‖)

for any i, j = 1, 2, . . . , N with i 6= j . This joined with (5.27) gives

β(i)
n β

(j)
n g(‖Tixn − Tjxn‖) ≤ φ(xn, p)− φ(zn, p)→ 0

and in turn (C3) yields

‖Tixn − Tjxn‖ → 0 (5.28)

for any i, j = 1, 2, . . . , N with i 6= j . Let k be a fixed number with 1 ≤ k ≤ N

and let p ∈ F . Applying for Proposition 3.1.7 again yields

φ(Tixn, Tkxn)→ 0 (5.29)
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for every i 6= k . Since φ(·, x) is convex on X for any fixed x ∈ X , (5.30)

combined with (C2) yields

φ(zn, Tkxn) = φ

(
N∑
i=0

β(i)
n Tixn, Tkxn

)
≤

N∑
i=0

β(i)
n φ(Tixn, Tkxn)

= β(0)
n φ(xn, Tkxn) +

∑
1≤i 6=k≤N

β(i)
n φ(Tixn, Tkxn)→ 0

and Proposition 2.3.8 gives ‖zn − Tkxn‖ → 0. Joined with (5.26), it implies

‖xn − Tkxn‖ ≤ ‖xn − zn‖+ ‖zn − Tkxn‖ → 0

for arbitrary fixed k with 1 ≤ k ≤ N . So, we have

ωw(xn) ⊂ ∩Nk=1F̂ (Tk) = ∩Nk=1F (Tk) = F.

Joining with (5.23) and Lemma 4.1.1 (with K := F ), we conclude that xn → q

= RFu .

Remark 5.2.7. Note that taking β
(0)
n = 0 for all n ≥ 1 and T1 = T2 = · · · = TN

(:= T ), we have
∑N

i=0 β
(i)
n Tixn = Txn in Theorem 5.2.6 and therefore Theorem

5.2.6 directly reduces to Theorem 4.1.2.

Here we propose some modification for the process (1.5), and discuss the prob-

lem of strong convergence concerning a family of finite generalized nonexpansive

mappings in uniformly convex Banach spaces.

Theorem 5.2.8. Let C, X, = and J as be in Theorem 5.2.6. Define a sequence

{xn} in C by the algorithm:

u ∈ C chosen arbitrarily,

yn = αnu+ (1− αn)
∑N

i=0 β
(i)
n Tixn,

Hn = {z ∈ C : φ(yn, z) ≤ αnφ(u, z) + (1− αn)φ(xn, z) + αn‖xn‖2}

Wn = {z ∈ C : 〈u− xn, Jz − Jxn〉 ≤ 0},

xn+1 = RHn∩Wnu,
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where T0 = I denotes the identity mapping of X . Assume that control sequences

{αn} and {βn} in [0, 1] satisfy the followings:

(C1) ′ αn ∈ (0, 1] and limn→∞ αn = 0 ;

(C2) limn→∞ β
(0)
n = 0 and

∑N
i=0 β

(i)
n = 1 ;

(C3) lim infn→∞ β
(i)
n β

(j)
n > 0 for any i, j = 1, 2, . . . , N with i 6= j .

Then xn → RFu , where RF is the sunny generalized nonexpansive retraction of

C onto F .

Proof. The proof is similar to one of Theorem 5.2.6. We sketch the differences

briefly. Since

φ(yn, p) ≤ αnφ(u, p) + (1− αn)φ(xn, p)

for p ∈ F , we have p ∈ Hn for all n . All the processes of (5.20)-(5.26) are

similarly satisfied. Now since xn+1 ∈ Hn , φ(xn, xn+1)→ 0, αn → 0, and {xn} is

bounded, we have

φ(yn, xn+1) ≤ αnφ(u, xn+1) + (1− αn)φ(xn, xn+1) + αn‖xn‖2 → 0.

Using Proposition 2.3.8 again, it follows that

‖yn − xn+1‖ → 0. (5.30)

On the other hand, by the definition of yn and (C1) we have

‖yn − zn‖ = αn‖u− zn‖ → 0.

Since ‖xn − yn‖ → 0 in the process of the proof of Theorem 5.2.6, we also have

‖xn−zn‖ → 0. Now for completing the proof, mimic from (5.27) to the remaining

proof of Theorem 5.2.6.
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