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1 Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H.
Let T : C — C be a self-mapping of C'. We use Fix(T) to denote the set of
fixed points of T'; that is, F(T) = {x € C : Tx = z}. (Throughout this paper,
we always assume that F(T) # ().)

I[terative methods are often used to solve the fixed point equation Tz = x. The
most well-known method is perhaps the Picard successive iteration method when
T is a contraction. Picard’s method generates a sequence {x,} successively as
rn, =Tx, 1 for n > 1 with xq arbitrary, and this sequence converges in norm to
the unique fixed point of T'. However, if T" is not a contraction (for instance, if T
is nonexpansive), then Picard’s successive iteration fails, in general, to converge.
Instead, Mann’s iteration method [14] or Ishikawa’s iteration method [6] prevails.
First, Mann’s method, an averaged process in nature, generates a sequence {z,}
recursively by

Tne1 = OB (T ac e B 1 >0, (1.1)

where the initial guess zp € C' is arbitrarily chosen and the sequence {a,, }22, lies

in the interval [0,1]. Ishikawa'’s averaged process [6] is also defined recursively by

Tpt1 = iy + (1 —an)Ty,, n >0,

(1.2)

where the initial guess z¢ € C is arbitrarily chosen and the sequences {a,}52,
and {8,}7, lie in the interval [0, 1].

Mann’s iteration method (1.1) or Ishikawa’s iteration method [6] has been
proved to be a powerful method for solving nonlinear operator equations involving

nonexpansive mappings, asymptotically nonexpansive mappings, and other type



of nonlinear mappings; see [1, 2, 5, 8, 9, 12, 15, 17, 18, 19, 20, 23, 24, 25, 26, 27,
28, 30, 31, 32, 33, 34, 35| and the references therein.
Recall that a mapping 7' : C' — (' is said to be a strict pseudo-contraction

[1] if there exists a constant 0 < k < 1 such that
1T = Ty||* < ||z = ylI* + sl = T)z — (I = T)ylI* (1.3)

for all z,y € C. (If (1.3) holds, we also say that T is a k-strict pseudo-
contraction.)
A 0-strict pseudo-contraction 7' is nonexpansive; that is, 7' is nonexpansive
if
[Tz — Tyl < [lz -y
for all z,y € C.
Recall also that a mapping 1" : C' — (' is said to be an asymptotically k-strict

pseudo-contraction [22] if, there exists a constant « € [0, 1) satisfying
1775 — T2 < (1 + )l — gl Bl = )0 = (T = T (14)

for all x,y € C and all integers n > 1, where 7, > 0 for all n and such that
Yn — 0 as n — oo; see also [10] or [21]. Note that if k = 0, then T is an
asymptotically nonexpansive mapping with k, :=/1 + 7,, a concept introduced
by Geobel and Kirk [4] in 1972. That is, T is asymptotically nonexpansive if

there exists a sequence {k,} C [1,00) with k, — 1 and such that
[Tz = Ty < kallz =y (1.5)

for all z,y € C' and all integers n > 1. Notice also that taking both ~, =0 and
T™ =T in (1.4) for all n > 1 reduces to (1.3).



Our iteration method to find a fixed point of an asymptotically k-strict
pseudo-contraction 7" is the modified Mann’s iteration method studied in [26,

27, 31, 11] which generates a sequence {x,} by
Tn41 = Qpdy + (1 - an)Tn$n> n 2 07 (16)

where the initial guess g € C' is arbitrary and the sequence {a,}22, lies in the
interval [0, 1].

It is known that Mann’s iteration method (1.1) is in general not strongly
convergent [3] for either nonexpansive mappings or strict pseudo-contractions.
Similarly, the modified Mann’s iteration method (1.6) is in general not strongly
convergent for either asymptotically nonexpansive mappings or asymptotically
strict pseudo-contractions. So to get strong convergence, one has to modify the
iteration method (1.6). In 2003, such an attempt has firstly been proposed by
Nakajo and Takahashi [18] for a single nonexpansive mapping 7" in Hilbert spaces,
namely, the fact that if the (n + 1)th iterate x,4; is defined as the projection of
the initial guess xq onto the intersection of two closed convex subsets C), and @,
which are appropriately constructed from the n-th iterate x,, such constructed
sequence {z,} is strongly convergent.

It is also known that if 7" is a nonexpansive mapping with a fixed point and
if the control sequence {a,}22 is chosen so that Y °  a,(1 — a;,) = oo, then
the sequence {z,} generated by Mann’s algorithm (1.1) converges weakly to a
fixed point of T'. (This is indeed true in a uniformly convex Banach space with a
Frechet differentiable norm; see [23]). This result has recently been extended to

the class of k-strict pseudo-contractions 7' by Marino and Xu [16] as follows.

Theorem MX (see Theorem 4.1 of [16]). Let C' be a closed convex subset

of a Hilbert space H. Let T : C'— C' be a k-strict pseudo-contraction for some



0 < kK < 1 and assume that the fixed point set F(T) of T is nonempty. Let
{zn}02 be the sequence generated by the following (CQ) algorithm:

(
xp € C chosen arbitrarily,

Yn = anTp + (1 — ay) Ty,
Co={2€C: |lyn — 2| < [lon — 2[I> + (1 — ) (k — an)||n — Ty |*},
Qn={2€C:(x,—2zx0—x,) >0},

Tnt1 = Po,no,To-
(1.7)

Assume that the control sequence {ay,}o2, is chosen so that o, < 1 for all n.
Then {x,} converges strongly to Ppr)xo, where Py denotes the nearest point

projection (or metric projection) from H onto a closed convex subset K of H.

Very recently, Theorem MX was carried over the wider class of asymptotically

strict pseudo-contractions as follows.

Theorem KX (see Theorem 4.1 of [10]). Let C' be a closed convex subset
of a Hilbert space H and let T': C' — ' be an asymptotically r-strict pseudo-
contraction for some 0 < xk < 1. Assume that the fixed point set F(T) of T is
nonempty and bounded. Let {x,}2 be the sequence generated by the following
(CQ) algorithm:

(
xp € C' chosen arbitrarily,

Yn = anTp + (1 — ap) Tz,
Co={2€C:|lyn —2|* < lzn — 2[* + (1 = ) (k — an)|wn — T"20|” + 60},
Qn={2€C:(x,—2z20—x,) >0},

Tn+1 = Po,no.To,



where
0, = A2(1 — an)yn — 0 as n — oo, A, =sup{ ||z, — z||*: 2z € F(T)} < oo.

Assume that the control sequence {a,}22 is chosen so that limsup,, . a, < 1.

Then {x,} converges strongly to Ppryto.

In this paper, we first consider the following modified Ishikawa type iteration
method (1.2) for two asymptotically k1, kg-strict pseudo-contractions 7 and

Ty, respectively:

xp € C chosen arbitrarily,

2 = Butn + (L= Bp)T1'Tn,

Yn = Qn@pn + (1 — Qs Zm,

Co={2€C |lyn— 2| < |z — 2| + (1 — )
+(1' = ) (1 ) Ba) (1 — Bn)l|Zn — TT2a?
+H(1 = an)[2llzn — T3 2all® = @ llzn — 75201},

Qn={2€C:{(xn— 2,20 T &n) = 0},

(1.9)

$n+1 — PCannx(b

where

On = Y[l + (1L — Bo)(1 + )] -sup{l|zn — 2|I* : 2 € F} — 0

as n — oo and {a,}52, and {3,}52, are sequences in [0, 1], and next prove
the strong convergence of the sequence {z,} to a common fixed point of T}
and T» under some suitable conditions of parameters and mappings. Also, some
corrections and modifications of typing errors in [10] are done, and applications

are added.



2 Preliminaries

Let H be a real Hilbert space with the duality product (-,-). When {z,} is a
sequence in H, we denote the strong convergence of {z,} to x € H by z,, — =

and the weak convergence by x, — x. We also denote the weak w-limit set of

{zn} by

Wy (Ty) = {x : Jzpn, — 7}

We now need some facts and tools in a real Hilbert space H which are listed

as lemmas below (see [17] for necessary proofs of Lemmas 2.2 and 2.4).

Lemma 2.1. Let H be a real Hilbert space. There hold the following iden-

tities (which will be used in the various places in the proofs of the results of this
paper).
() flo -yl = ol = lyl2 = 2(c = g, 9) Va,y € H.
(i) ftz+A-t)yl* = tlz|P+A-OlylPP—tA=t)llo—yl* Vt € [0,1], Vz,y € H.
(iii) If {z,} is a sequence in H weakly: convergent to z, then

limsup ||z, — || = limsup ||z, — 2|4 ||z — y||* Vy € H.

n—od n—00

Lemma 2.2. Let H be a real Hilbert space. Given a closed convex subset

C C H and points x,y,z € H. Given also a real number a € R. The set
fveCilly—ol? <l — ol + (zv) +a)
is convex (and closed).

Recall that given a closed convex subset K of a real Hilbert space H, the

nearest point projection Py from H onto K assigns to each x € H its nearest

6



point denoted Pxx in K from x to K; that is, Pxx is the unique point in K
with the property

|z — Pxx|| <[z —y|| foralyeK.

Lemma 2.3. Let K be a closed convex subset of real Hilbert space H. Given

x € H and z € K. Then z = Pkx if and only if there holds the relation:

(xr—2z,y—2)<0 forallyeK.

Lemma 2.4 Let K be a closed convex subset of H. Let {x,} be a sequence
in H and w € H. Let ¢ = Pgu. If {x,} is such that w,(x,) C K and satisfies
the condition

Nzni= il e\ Tor all.r: (2.1)

Then z, — q.
We also need the following lemma (see [30]).

Lemma 2.5 Assume {a,} is a sequence of nonnegative real numbers satis-
fying the property

An1 S (1 + f}/n)aTh n 2 07

where {7,} Is a sequence of nonnegative real numbers such that Y>>, v, < 00.

Then lim,,_,o a, €xists.

We need the following useful properties of asymptotically strict pseudo-

contractions which was proven in Kim and Xu [10].



Proposition 2.6 ([10]). Assume C' is a closed convex subset of a Hilbert

space H and let T : C' — C' be an asymptotically k-strict pseudo-contraction.

(i) For each n > 1, T™ satisfies the Lipschitz condition:

[Tz = T y|| < La(T)llz =yl Va,y € C, (2.2)

where L, (T) = SV 0m0=n) VItn(1=r)

1—-k

(ii) The demiclosedness principle holds for I —T in the sense that if {x,} is a se-
quence in C' such that z,, — & and limsup,,, . limsup,,_, . ||t,—T™z,| =0,

then (I —T)z = 0. In particular,

Tpn—z and (I-T)z,—0 = (I-T)x=0.

(iii) The fixed point set F(T) of T is closed and convex so that the projection
Prry is well-defined.

3 Strong convergence

In an infinite-dimensional Hilbert space, both Mann’s iteration method (1.1)
and Ishikawa’s iteration method (1.2) has only weak convergence, in general,
even for nonexpansive mappings (see the example in [3]). Hence attempts have
recently been made to modify (1.1) and (1.2) in order to get strong conver-
gence; see such modifications in [18, 8, 9, 17, 33]) for nonexpansive mappings, in
[9] for asymptotically nonexpansive mappings, and in [16, 13] for strict pseudo-
contractions. In this section we prove strong convergence of a modification of the
modified Ishikawa’s iteration method (1.2) for two asymptotically strict pseudo-

contractions, thus extending the corresponding result in [9] for asymptotically

8



nonexpansive mappings. (Some related modifications for maximal operators can

be found in [29, 7, 15].)

Theorem 3.1. Let C' be a closed convex subset of a Hilbert space H and, for
each i € {1,2}, let T; : C' — C' be an asymptotically k;-strict pseudo-contraction
for some 0 < k; < 1. Assume that the common fixed point set F' := F(T1)NF(T3)
of T1 and T, is nonempty and bounded, and also that {o,}2°, and {3,}2, are
sequences in [0,1]. Let {x,}°, be the sequence generated by the following (C'Q)

algorithm:
( xp € C chosen arbitrarily,
Zn = Bnxn + (1 — Bn)TTxn,
Yn = OnZp+ (1 — an) T3 20,
Crn ={2 € CAlyn = 2|* < |70 = 2| +.(1 — an)bn (3.1)
H(L— o)X+ ) (L~ Ba)(r1 = Bl 0 — TT2n||
+(1 = an)[r2]| 20 — T3 2alf* = 0|z — T5'2a]1%]},
Qn={2€C: {(tn— 2z, EEn) = 0},
| Zn1 = Feung. 2o,
where

bn = o[l + (L= B )1+ )l sup{flen — 2)* 1 2 € F} — 0

as n — oo. Assume that the following conditions are satisfied:
(i) ap <1 for all n > 1 and lim,,_ B, = 1;
(ii) there exists a positive real number L such that, for all distinct z,y € C

[Tve = Toyl| < Lz — yl|. (3.2)

Then {z,} converges strongly to Prxy.

9



Proof. First observe that (), is convex by Lemma 2.2. Next we show that F' C C),

for all n. Indeed, we have, for all p € F' and n,

1y — pl?

and

IN

llevn (@ = p) + (1 = ) (1320 — p)|I”

anllzn = pl* + (1 = @) | T3z = plI* = an(l — an)llzn — T3 20|
anllzn = pl* + (1= an)[(1+ )20 = pII* + Kol 20 — T5'zal?]
—an(1 = ap) ||z — Ty zn? (3.3)

120 = PII* = 18n(@n — p) + (1 = Ba) (T7'20 — p)|I”

Ballzn = plI* + (1 = B T¥ 2 = pl* = Ba(l = Ba) 20 — Ti'wa®
Ballzn = plI* + (1 = Bu) (L9020 = pII* + K1ll2n — T7'@n*]

—Bn(L = Ba)llza — TTzall”

[1+ 1 = Ba) vl lzn 20l* + (Vg Ba)(k1 — Bo)llzn — TTzal®. (3.4)

Now substituting (3.4) into (3.3) yields

|y — pl?

<

IN

anllzn = plI* + (L= an )@ )

([1+ (1 = Ba)yalllzn — PI* + (1 =80) (k1 — Bu)llzn — TT'zall?)
+hal2n = T3 2ull "] = an(l = o) llzn = T 20

Iz = pII* + (1 = an)yn [T+ (1 = Ba) (1 + 70)] 2w — pl”

(1 = an) (L +7) (1 = Ba) (51 = Bo)lzn — T2

+(1 = an)[k2ll 2w — T3 20l — anllzn — T3'20])%]

lzn = plI* + (1 = an)fn

(1 = an) (L +7) (1 = Ba) (51 = Ba)lzn — T2

(1 = an)[2llzn — T32all? = anllzn — T3zl

10



and hence p € C),, which shows F C C),, for each n > 0.
Next we show that
FcQ, foralln>0. (3.5)

We prove this by induction. For n = 0, we have F' C C' = (Jy. Assume that
F C @,. Since x,.1 is the projection of zy onto C, N Q,, by Lemma 2.3 we
have

(Tps1 — 2,0 — Tpg1) >0 Vz € O, N Q.

As F C C, N Q, by the induction assumption, the last inequality holds, in
particular, for all z € F'. This together with the definition of @), +; implies that
F C Qu+1. Hence (3.5) holds for all n > 0.

Notice that the definition of ), actually implies z, = Py, z¢. This together
with that fact F' C @), further implies

ez 2ol stfperilmteor all pic F,.
In particular, {z,} is bounded and
|xn— zo|| < ||[@= zo |[f™ Where ¢ = Przy. (3.6)
The fact z,4+1 € @, asserts that (r,.1 — *,, Ty — 7o) > 0. This together with
Lemma 2.1 (i) implies
[#n1 — 2nll? = |[(zn1 — 20) — (20 — z0) ||
= [lzny — zol|* = llzn — zol” = 2(xni1 — @0, 20 — o)

< s = @ol* = lon — zol” (3.7)

This implies that the sequence {||z, — x|} is increasing. Since it is also bounded,

we get that lim, . ||z, — 2| exists. Note that since {z,} is bounded, so are

11



{T"'z,}, {zn}, and {I7z,}, i = 1,2. Now it turns out from (3.7) that
[ €041 — znl| — 0. (3.8)
Since z, = Bnz, + (1 — 8,)1x, and [, — 1, we see that
[0 = znll = (1 = Bu) | T 2n — znl| — 0. (3.9)
Since T5 is uniformly Lipschitzian, it easily follows from (3.8) and (3.9) that
Ty e, — Ty e, || — 0 and || T9a, — Ty'zy|| — O. (3.10)
By the fact x,,1 € C,, we get

”yn - 517n+1||2 < Hxn T 55n+1”2 =+ (1 = O‘n)en
(1 S (1 +77,) (1= Bo) (Fr— Bn) [|2n — TT 20

+(1 = am)[kellzn 585" — aullza — T32a)%). (3.11)

On the other hand, since vy, = @@, + (1 =@y )T 2, , we have, using (ii) of Lemma

2.1

”yn - $n+1”2 = “O‘n(xn - xn+1) 5 (1 3 O‘n)(T;Zn ~ ZEn—H)”z
= anllzn — zoa P + (1 = an) |75 20 — Toga ||

—a, (1 — ay)||z, — Tznzn||2.

Substituting this equality into (3.11) and dividing by (1 — «,,) (note that a,, <1

for all n > 1), we get

|Zns1 = T3 2nll* < llwns — 2all® + On + f2ll2n — T2

+(1+90) (1 = Bn) (k1 — Bn)[|n —Tlnifn||2- (3.12)

12



Also, since

|1 = T3 zall® = lznir — zll® + llzn — T3'20ll* = 2(2n — Zpgr, 20 — T3 20)
= Nzner — znl? + 20 — Town||® + | T5'wn — T3 20
—2((T3xy — xp, T wp — T3 2) + (p — Tpg1, T — T 2n))

and

l2n = T32nll? = 2 = 2ol + 20 — To@a| + | T2, — T5'20]
+2((zn — T,y — To'zn) + (xy — Ty @y, Ty — T 2n))
by the parallelogram law, substituting these two equalities into (3.12) again and
doing the simple calculation yield that
(1 = r2)llzn — Tyanll® < (1 = w2)(lon — Ty@al® + 1520 — T32al|?)
< allwn — zall? + 262 (120 — wlllow T2kl + llow — T3l |1 T 20 — T 20l
+6n + (14 7) (1= Ba) (4 + Bn)llz, ]|
+2(|1 T3 an = 2|l | 1520 L2l +HIBRS Znall |20~ T5'20]1)-
Using (3.8)-(3.10), B, — 1 and 6,, — 0, we get
lim |z, & J=10. (3.13)
Since
20 = Tozal < 20 — zpsa || + lzne = T3 |
HIT 2 — T3 || + | T3 2 — Do
< (L Loni (o) llrn = o || + Jonrn = T3 2 |
+L1(To)[| 15 w0 — @yl

13



Using (3.8) and (3.10), this gives
|z — Tox,|| — O. (3.14)
By the condition (ii) and (3.9), we have

[z = Thanl| < [lon — Tozn| + | Tozn — Tazal| + [|T220 — Thzn|

< Nwn = Tozu|| + [Li(T) + L]|| 2 — zn|| — 0. (3.15)

Proposition 2.6(ii), (3.14) and (3.15) then guarantee that every weak limit

point of {z,} is a common fixed point of 77 and T,. That is,

This fact, the inequality (3.6) and Lemma 2.4 ensure the strong convergence of

{zn} to ¢ = Pruy. 0

4 Applications

Taking Ty = T3 := T in Theorem 3.1, 'we immediately obtain the strong con-
vergence of the following modified Ishikawa’s iteration process for asymptotically

k-strict pseudo-contraction.

Theorem 4.1. Let C' be a closed convex subset of a Hilbert space H and let
T : C — C be an asymptotically k-strict pseudo-contraction for some 0 < k < 1.
Assume that the fixed point set F(T') of T is nonempty and bounded, and also
that {a,}22, and {3,}52, are sequences in [0, 1] such that o, <1 for all n > 1

and lim, .o B, = 1. Let {x,}°, be the sequence generated by the following

14



(CQ) algorithm:

(
xp € C' chosen arbitrarily,

Zn = Bpxn + (1 = Bp) Tz,

Yn = apnTp + (1 — ) T2y,

Co={2€C: lyn —2[* < llzn — 2> + (1 — an)0s,
(1 = an)(L+7) (1 = Ba) (8 = Bo)llwn — T, |
(1= an)[Al120 — T2 = anllzn — T2 ]},

Qn={2€C:(xy,—2zx0—x,) >0},

(4.1)

Tn+1 = Po,no.o,

where
On = Y[l +(1 = Bn) 1+ )] - sup{flzn=2[* : 2 € F(T)} — 0
as n — oo. Then {z,} converges strongly to Prx.

Especially, taking 3, = 1 in the modified Ishikawa’s iteration algorithm (4.1)
reduces to the following modified Mann’s iteration algorithm (4.3), which was

originally due to Kim and Xu [10].

Corollary 4.2 ([10]). Let C' be a closed convex subset of a Hilbert space H
and let T : C' — C' be an asymptotically k-strict pseudo-contraction for some

0 < k < 1. Assume that the fixed point set F(T') of T' is nonempty and bounded.

15



Let {x,}22, be the sequence generated by the following (C'Q) algorithm:

(
xg € C' chosen arbitrarily,

Yn = anTp + (1 — ap) Tz,

Co={2€C:lyn —2[* < llzn — 2> + (1 — an)0s
(k= on)(1 = o)z — T"2n|?},

Qn={2€C:(xy,— 20— x,) >0},

| ZTnt1 = Fo,nqa2o,

where {a,,}7°, is a sequence in [0,1) and
On = Yo - sup{||zn — 2||* : 2 € F(T)} — 0

as n — oo. Then {x,} converges strongly to Pprxo.

Remark 4.1. Note that there are some typing errors in the statement of Theorem

4.1 in [10], which must be modified as the above Corollary 4.2.

Also, taking v, = 1 and T™ = T in the modified Ishikawa’s iteration algorithm
(4.1) the result reduces to the corresponding one due to Marino and Xu [16] for

strict pseudo-contractions; see Theorem MX.

Corollary 4.3 ([16]). Let C be a closed convex subset of a Hilbert space H
and let T : C — C be a k-strict pseudo-contraction for some 0 < k < 1. Assume

that the fixed point set F(T) of T is nonempty. Let {z,}5°, be the sequence

16



generated by the following (C'Q)) algorithm:

(
xp € C chosen arbitrarily,

Yn = anTp + (1 — ay)Txy,
Co={2€C: |lyn — 2| < [lon — 2[I* + (1 — ) (k — an)||n — T2y ?},
Qn={2€C:(x,—2zx0—x,) >0},

Tn+1 = Po,no. o,
(4.3)

where {ay,}7°, is chosen such that 0 < o, < 1. Then {x,} converges strongly

to PF(T)ZEO .

Since asymptotically nonexpansive mappings are asymptotically O-strict pseudo-
contractions, we have the following consequence which was originally studied in

Kim and Xu [9].

Corollary 4.4 ([9]). Let C be a closed convex subset of a Hilbert space H
and let T : C — C' be an asymptotically nonexpansive mapping. Assume that
the fixed point set F(T') of T is nonempty and bounded, and that {a,}5, is a
sequence in [0,1). Let {x,}°°, be the sequence generated by the following (CQ)
algorithm

(
xg € C' chosen arbitrarily,

Yn = anTp + (1 — ay)Txy,
Co=1{2€Ct|lyn— 2| < [z — 2]* = an(l — )| — T"2a|* + (1 — o )00},
Qn={2€C:(x,—2zx0—x,) >0},

| Tnt1 = FPe,.ng.o,

where

0, = (k2 — 1) -sup{|jan — z||*: 2 € F(T)} — 0

17



as n — 00. Then {x,}72, strongly converges to Ppiy1)Zo.

Remark 4.2. Note that Theorem 2.2 in [9] can be modified as the above Corollary

4.4.
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