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Chapter 1

Introduction

Most of problems in real life situation such as economics, engineering, environ-

ment, social sciences and medical sciences not always involve crisp data. So we

cannot successfully use the traditional methods because of various types of un-

certainties presented in those problems. Since Zadeh [61] introduced fuzzy sets

in 1965, many new approaches and theories treating imprecision and uncertainty

have been proposed. Some of these theories, such as intuitionistic fuzzy set theory

pioneered by Atanassov [1, 2] and the generalized theory of uncertainty (GTU) in-

troduced by Zadeh [67] and interval-valued fuzzy set theory introduced by Zadeh

[62, 63, 64, 65, 66] and interval-valued intuitionistic fuzzy set theory introduced

by Atanassov and Gargov [5], are extensions of fuzzy set theory and have allowed

people to deal with uncertainty and information in much broader perspective,

and the others try to handle imprecision and uncertainty in different ways. Some

authors [5, 17] pointed out that there is strong connection between intuitionistic

fuzzy sets and interval-valued fuzzy sets, i.e., intuitionistic fuzzy set theory and

interval-valued fuzzy set theory are equipollent generalizations of fuzzy set theory.

The similarity measure, the distance measure, the subsethood measure and

the entropy of fuzzy sets are four important topics in fuzzy set theory. The simi-

larity measure indicates the similar degree of two fuzzy sets. Wang [53] first put

forward the concept of fuzzy set’ similarity measure and gave a computation for-
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mula. Since then, similarity measure of fuzzy sets has attracted some researchers’

interest and has been investigated further. For example, Li and Dick [32] pro-

posed the similarity measure for fuzzy rulebases based on linguistic gradients to

reveal linguistic structure. Mitchell [37] introduced the similarity of type-II fuzzy

sets and applied it to the classification problem in pattern recognition represented

by natural language. The similarity measure of fuzzy sets is now being exten-

sively applied in many research fields such as fuzzy clustering, image processing,

fuzzy reasoning and fuzzy neural network [25, 53].

The subsethood measure of fuzzy sets indicate the degree to which a fuzzy

set is contained in another fuzzy set. Subsethood measures are also called in-

clusion measure. Zadeh [61] first gave the definition of fuzzy set inclusion and

pointed out that inclusion was a crisp relation. In other words, a fuzzy set is

either included or included in another fuzzy set. After that, several researchers

used the axiomatic approach to study the inclusion measure of fuzzy sets. They

provided a list of properties (‘axioms’) that a ‘reasonable’ inclusion measure of

fuzzy sets should satisfy, and proposed some methods to calculate the inclusion

measure of fuzzy sets. For example, Sinha and Dougherty [43] introduced an ax-

iomatic definition of the inclusion measure of fuzzy sets, and Young [60] proposed

a different axiomatic definition from Sinha and Doughtery’s and showed the sig-

nificance of fuzzy subsethood by demonstrating how it is connected with fuzzy

entropy, probability and fuzzy logic. Later, Cornelis et al. [12] revised Sinha and

Doughtery’s axiom. Kehagias and Konstantinidou [26] introduced the concept

of L-fuzzy valued inclusion measure and investigated the relationship among the

L-fuzzy valued inclusion measure, the L-fuzzy similarity measure and the L-fuzzy

distance.

The entropy of a fuzzy set describes the fuzziness degree of a fuzzy set and was

first introduced by Zadeh [61] in 1965. Several scholars have studied it from dif-

ferent points of view. For example, in 1972, De Luca and Termini [13] introduced

some axioms which captured people’s intuitive comprehension to describe the

fuzziness degree of a fuzzy set. Kaufmann [25] proposed a method for measuring

the fuzziness degree of a fuzzy set by a metric distance between its membership
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function and the membership function of its nearest crisp set. Another method

proposed by Yager [58] was to view the fuzziness degree of a fuzzy set in terms of

a lack of distinction between the fuzzy set and its complement. Based on these

concepts and their axiomatic definitions, Zeng and Li [69] investigated the rela-

tionship among the inclusion measure, the similarity measure and the entropy of

fuzzy sets.

The distance measure is term that describes the difference between fuzzy

sets. Distance measure can be considered as a dual concept of similarity mea-

sure. Several researchers, such as Yager [58], Kosko [29] and Kaufmann [25]

had used distance measure to define fuzzy entropy. Liu [35] extended Yager’s

formula to give a general relationship among distance measure, entropy and sim-

ilarity measure. Fan et al. [18, 19] gave some properties of distance measure

and some new formulas of fuzzy entropy induced by distance measure and ex-

tended Kaufmann’s formula to some extent. Recently several researchers, mainly

[11, 49, 16, 57, 52, 59], focused on computing the distance between fuzzy numbers.

Diamond [16] defined a measure for fuzzy numbers in Euclidean space. Yang [59]

modified Diamond’s proposed measure with a function that captures more infor-

mation about vagueness. In [49] Tran and Duckstein introduced distance concept

based on the interval-numbers where the fuzzy number has transformed into an

interval number on the basis of the α-cut. Cheng [11] has proposed a distance in-

dex based on centroid points. Voxman [52] first introduced the concept of fuzzy

distance for fuzzy numbers. Chakraborty and Chakraborty [10] proposed new

fuzzy distance measure and showed that the proposed method computes a fuzzy

distance value with less fuzziness and ambiguity as compared that of Vaxman.

Aimed at these important numerical indexes in the fuzzy set theory, some

researchers extended these concepts to the interval-valued fuzzy set theory and

intuitionistic fuzzy set theory and investigated their related topics from different

points of view. For example, Bulliro and Bustince [6, 9] defined distance measure

between intuitionistic fuzzy sets and interval-valued fuzzy sets, such as Hamming

distance and Euclidean distance, and gave an axiomatic definition of intuition-

3



istic fuzzy entropy. The intuitionistic fuzzy entropy is magnitude which allow

us to measure the degree of intuitionism of an intuitionistic fuzzy set. Szimdt

and Kacprzyk [45] gave the three-dimension representation of an intuitionistic

fuzzy set and proposed new definitions of distances between intuitionistic fuzzy

sets by taking into account the three parameter characterization of intuitionistic

fuzzy sets. In [47], they also defined a different entropy of intuitionistic fuzzy

sets from Bulliro and Bustince’s. This entropy was a result of a geometric in-

terpretation of intuitionistic fuzzy sets, used a ratio of distances [45] between

them, and showed that the proposed entropy can be stated as ratio of the intu-

itionistic fuzzy cardinalities. Li and Cheng [31] proposed similarity measures of

intuitionistic fuzzy sets and applied these measures to pattern recognition. Liang

and Shi [33], Mitchell [36] and Park et al. [40] pointed out that Li and Cheng’s

measures are not always effective in some cases and made some modifications,

respectively. Zeng and Li [70] introduced the entropy of interval-valued fuzzy set

by using a different method and a general definition of the similarity measure

of the interval-valued fuzzy sets. In [69], they also investigated the relationship

between the similarity measure and the entropy of interval-valued fuzzy sets.

Wang and Li [54] studied the integral representation of the interval-valued fuzzy

degree and the interval-valued similarity measure. Grzegorzewski [21] proposed

a definition of the interval-valued fuzzy sets distance based on the Hausdorff

metric. Vlachos and Sergiadis [51] proposed a definition of subsethood of the

interval-valued fuzzy sets and discussed its relationship with entropy and cardi-

nality. Bustince [8] studied the indicator of inclusion grade for interval-valued

fuzzy sets and applied it to approximate reasoning of interval-valued fuzzy sets.

Zeng and Guo [68] introduced an axiomatic definition of the inclusion measure of

interval-valued fuzzy sets which is different from Bustince’s [8] and investigated

the relationships among the similarity measure, the inclusion measure and the

entropy of interval-valued fuzzy sets.

In this thesis, we consider some measures such as distance measure, similarity

measure, entropy and subsethood measure in interval-valued intuitionistic fuzzy
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set theory. We briefly summarize the contents of each chapter.

We, in Chapter 2, fristly review some definitions and related results. In Chap-

ter 3, we give a geometrical interpretation of the interval-valued fuzzy set and

take into account all three parameters describing the interval-valued fuzzy set. So,

based on the geometrical background, we propose new distance measures between

interval-valued fuzzy sets and compare these measures with above-mentioned dis-

tance measures proposed by Burillo and Bustince [6] and Grzegorzewski [21],

respectively. Furthermore, we extend three methods for measuring distances be-

tween interval-valued fuzzy sets to interval-valued intuitionistic fuzzy sets.

In Chapter 4, we study the relationship between entropy and similarity mea-

sure of interval-valued intuitionistic fuzzy sets, give three theorems that entropy

and similarity measure of interval-valued intuitionistic fuzzy sets can be trans-

formed by each other based on their axiomatic definitions and propose some

formulas to calculate the entropy and the similarity measure of interval-valued

intuitionistic fuzzy sets.

Finally, in Chapter 5, we establish a unified framework between the concepts

of subsethood, entropy and cardinality for interval-valued intuitionistic fuzzy sets.

Then we review the axioms of subsethood for interval-valued intuitionistic fuzzy

sets and propose an alternative axiomatic skeleton, in order for subsethood to

reduce to entropy. Based on the axioms, we also prove an interval-valued intu-

itionistic version of the entropy-subsethood theorem and derive new measures of

subsethood and entropy for interval-valued intuitionistic fuzzy sets. Furthermore,

the concepts of cardinality and average possible cardinality of interval-valued in-

tuitionistic fuzzy sets is presented. We carry out an algebraic and geometrical

analysis, which demonstrates a connection between the above-mentioned cardinal-

ity and the least and biggest cardinalities. Finally, based on the average possible

cardinality, we extend the fuzzy entropy theorem in the interval-valued intuition-

istic fuzzy setting and provide connections between the proposed measure and

corresponding measures for interval-valued fuzzy sets and fuzzy sets.
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Chapter 2

Preliminaries

Throughout this thesis, X denotes the discourse set, IVIFS(X), IVFS(X) and

IFS(X) stand for the set of all interval-valued intuitionistic fuzzy sets, interval-

valued fuzzy sets and intuitionistic fuzzy sets on X, respectively. The operation

“c” is the complement of interval-valued intuitionistic fuzzy set or interval-valued

fuzzy set or intuitionistic fuzzy set on X and ∅ stands for the empty set.

Let I = [0, 1] and [I ] be the set of all closed subintervals of the interval

[0, 1]. Then, by Zadeh’s extension principle [61], we can popularize the operations

such as ∨, ∧ and c to [I ] and thus ([I ],∨,∧, c) is a complete lattice with a

minimal element 0̄ = [0, 0] and a maximal element 1̄ = [1, 1]. Furthermore,

let ā = [a−, a+], b̄ = [b−, b+], then we have ā = b̄ ⇐⇒ a− = b−, a+ = b+,

ā ≤ b̄ ⇐⇒ a− ≤ b−, a+ ≤ b+, and ā < b̄ ⇐⇒ ā ≤ b̄ and ā �= b̄.

We recall the notion of interval-valued fuzzy set or Φ-fuzzy set introduced by

Zadeh [63, 62] and Sambuc [41].

Definition 2.0.1 An interval-valued fuzzy set (IVFS) A on X is defined as

A = {(x, MA(x)) : x ∈ X},

where the function MA : X → [I ] defines the degree of membership of an element

x to A.
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For each A ∈ IVFS(X), let A(x) = [M−
A (x), M+

A (x)], where M−
A (x) ≤ M+

A (x)

for any x ∈ X. Then fuzzy set M−
A : X → I and M+

A : X → I are called a lower

fuzzy set of A and a upper fuzzy set of A, respectively.

For A, B ∈ IVFS(X), the basic operations such as union, intersection and

complement are defined as follows: for all x ∈ X,

• A ∪ B(x) = [max(M−
A (x), M−

B (x)), max(M+
A (x), M+

B B(x))],

• A ∩ B(x) = [min(M−
A (x), M−

B (x))), min((M+
A (x), M+

B B(x))],

• A ⊂ B ⇐⇒ M−
A (x) ≤ M−

B (x), M+
A (x) ≤ M+

B (x),

• A = B ⇐⇒ A ⊂ B, B ⊂ A,

• Ac(x) = [1 − M+
A (x), 1 −M−

A (x)].

Note that IVFSs are called grey sets by Deng [14].

Zeng and Li [70] introduced the concepts of entropy and similarity measure

of IVFSs as follows:

Definition 2.0.2 [70] A real function E : IVFS(X) → [0, 1] is called entropy on

IVFS(X) if E satisfies the following properties:

(1) E(A) = 0 ⇐⇒ A is a crisp set;

(2) E(A) = 1 ⇐⇒ M−
A (x) = M+

A (x) for every x ∈ X;

(3) E(A) ≤ E(B) if A is less fuzzy than B, i.e., M−
A (x) ≤ M−

B (x) and

M+
A (x) ≤ M+

B (x) for M−
B (x) + M+

B (x) ≤ 1 or M−
A (x) ≥ M−

B (x) and M+
A (x) ≥

M+
B (x) for M−

B (x) + M+
B (x) ≥ 1;

(4) E(A) = E(Ac).

Definition 2.0.3 [70] A real function S : IVFS(X)× IVFS(X) → [0, 1] is called

similarity measure of IVFSs if S satisfies the following properties:

(1) S(A, Ac) = 0 if A is a crisp set;

(2) S(A, B) = 1 ⇐⇒ A = B;

(3) S(A, B) = S(B, A);

(4) for all A, B, C ∈ IVFS(X), if A ⊂ B ⊂ C , then S(A, C) ≤ S(A, B),

S(A, C) ≤ S(B, C).
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Intuitionistic fuzzy sets constitute a generalization of the notion of a fuzzy set

and introduced by Atanassov [1]. While fuzzy sets give the degree of member-

ship of an element in a given set, intuitionistic fuzzy set give both a degree of

membership and a degree of non-membership. In [1, 2] intuitionistic fuzzy sets

are defined as follows:

Definition 2.0.4 An intuitionistic fuzzy set (IFS) A on X is an object of the

form

A = {〈x, μA(x), νA(x)〉 : x ∈ X},
where μA, νA : X → I denote, respectively, the membership function and non-

membership function of A and satisfy μA(x) + νA(x) ≤ 1 for any x ∈ X.

The operations such as union, intersection and complement are defined as

follows: let A, B ∈ IFS(X), then

• A ∪ B = {〈x, max(μA(x), μB(x)), min(νA(x), νB(x))〉 : x ∈ X},
• A ∩ B = {〈x, min(μA(x), μB(x)), max(μA(x), μB(x))〉 : x ∈ X},
• A ⊂ B ⇐⇒ μA(x) ≤ μB(x), νA(x) ≥ νB(x), for all x ∈ X,

• A = B ⇐⇒ A ⊂ B, B ⊂ A,

• Ac = {〈x, νA(x), μA(x)〉 : x ∈ X}.
Bustince and Burillo [7] showed that the notion of vague sets defined by Gau

and Buehrer [20] is the same that of IFSs.

Atanassov and Gargov [5] prove that IFSs and IVFSs are equivalent general-

izations of fuzzy sets, using the following maps:

(a) the map f assigns to every IVFS A(= [M−
A , M+

A ]) an IFS B = f(A) given

by

μB(x) = M−
A (x) and νB(x) = 1 − M+

A (x)

(b) the map g assigns to every IFS B(= {〈x, μB(x), νB(x)〉 : x ∈ X}) an IVFS

A = g(B) given by

A(x) = [μB(x), 1 − νB(x)].

8



De Luca and Termini [13] first axiomatized non-probabilistic entropy. Szmidt

and Kacprzyk [47] extended De Luca and Termini axioms for fuzzy set to intro-

duce entropy of IFSs as follows:

Definition 2.0.5 [47] A real function E : IFS(X) → [0, 1] is called entropy on

IFS(X) if E satisfies the following properties:

(1) E(A) = 0 ⇐⇒ A is a crisp set;

(2) E(A) = 1 ⇐⇒ μA(x) = νA(x) for every x ∈ X;

(3) E(A) ≤ E(B) if A is less fuzzy than B, i.e., μA(x) ≤ μB(x) and νA(x) ≥
νB(x) for μB(x) ≤ νB(x) or μA(x) ≥ μB(x) and νA(x) ≤ νB(x) for μB(x) ≥ νB(x);

(4) E(A) = E(Ac).

Definition 2.0.6 A real function S : IFS(X) × IFS(X) → [0, 1] is called simi-

larity measure of IFSs if S satisfies the following properties:

(1) S(A, Ac) = 0 if A is a crisp set;

(2) S(A, B) = 1 ⇐⇒ A = B;

(3) S(A, B) = S(B, A);

(4) for all A, B, C ∈ IFS(X), if A ⊂ B ⊂ C , then S(A, C) ≤ S(A, B),

S(A, C) ≤ S(B, C).

As a generalization of the notion of IFSs, Atanassov and Gargov [5] introduced

the notion of interval-valued intuitionistic fuzzy sets in the spirit of IVFSs.

Definition 2.0.7 An interval-valued intuitionistic fuzzy set (IVIFS) A on X is

defined as

A = {(x, MA(x), NA(x)) : x ∈ X},

where MA : X → [I ] and NA : X → [I ] denote, respectively, membership function

and non-membership function of A and satisfy 0 ≤ M+
A (x) + N+

A (x) ≤ 1 for any

x ∈ X. For simplicity, we often denote A = (MA, NA).
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The basic operations are defined as follows: let A, B ∈ IVIFS(X), then

• A ∪ B = {(x, [max(M−
A (x), M−

B (x)), max(M+
A (x), M+

B B(x))],

[min(N−
A (x), N−

B (x)), min(N+
A (x), N+

B B(x))]) : x ∈ X},
• A ∩ B = {(x, [min(M−

A (x), M−
B (x)), min(M+

A (x), M+
B B(x))],

[max(N−
A (x), N−

B (x)), max(N+
A (x), N+

B B(x))]) : x ∈ X},
• A ⊂ B ⇐⇒ MA(x) ≤ MB(x), NA(x) ≥ NB(x), for all x ∈ X,

• A = B ⇐⇒ A ⊂ B, B ⊂ A,

• Ac = {(x, NA(x), MA(x)) : x ∈ X}.

Definition 2.0.8 Let A, B ∈ IVIFS(X). We call that A refines B (i.e., A is less

fuzzy than B), denoted as A ≤ B, if the following conditions are satisfied: for

every x ∈ X,

(a) If MB(x) ≥ NB(x), then MA(x) ≥ MB(x) and NA(x) ≤ NB(x);

(b) If MB(x) ≤ NB(x), then MA(x) ≤ MB(x) and NA(x) ≥ NB(x).

Theorem 2.0.9 If A refines B, A, B ∈ IVIFS(X), then we have

A ∩ Ac ⊂ B ∩ Bc and A ∪ Ac ⊃ B ∪ Bc.

Proof We prove only A ∩ Ac ⊂ B ∩ Bc.

(a) When MB(x) ≥ NB(x), then for every x ∈ X, we have NA(x) ≤ NB(x) ≤
MB(x) ≤ MA(x). Hence we get

MA∩Ac(x) = MA(x) ∩ NA(x) = NA(x),

MB∩Bc(x) = MB(x) ∩ NB(x) = NB(x),

NA∩Ac(x) = NA(x) ∪ MA(x) = MA(x),

NB∩Bc(x) = NB(x) ∪ MB(x) = MB(x)

and thus MA∩Ac(x) ≤ MB∩Bc(x) and NA∩Ac(x) ≥ NB∩Bc(x).
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(b) When MB(x) ≤ NB(x), then for every x ∈ X, we have NA(x) ≥ NB(x) ≥
MB(x) ≥ MA(x). Hence we get

MA∩Ac(x) = MA(x) ∩ NA(x) = MA(x),

MB∩Bc(x) = MB(x) ∩ NB(x) = MB(x),

NA∩Ac(x) = NA(x) ∪ MA(x) = NA(x),

NB∩Bc(x) = NB(x) ∪ MB(x) = NB(x)

and thus MA∩Ac(x) ≤ MB∩Bc(x) and NA∩Ac(x) ≥ NB∩Bc(x).

Therefore, in both cases, we obtain A ∩ Ac ⊂ B ∩ Bc. �

Corollary 2.0.10 If A refines B, A, B ∈ IVIFS(X), then we have

A ∩ Ac ⊂ B ∩ Bc ⊂ B ∪ Bc ⊂ A ∪ Ac.
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Chapter 3

Distances between

Interval-valued Fuzy Sets and

Interval-valued Intuitionistic

Fuzzy Sets

In this chapter, we give a geometrical interpretation of the IVFSs. So, based on

the geometrical background, we propose new distance measures between IVFSs

and compare these measures with distance measures proposed by Burillo and

Bustince [6] and Grzegorzewski [21], respectively. Furthermore, we extend three

methods for measuring distances between IVFSs to IVIFSs.

3.1 A geometrical interpretation of IVFSs

For each A ∈ IVFS(X), we will call the amplitude of membership of the element

x in the set A the following expression

WA(x) = M+
A (x)− M−

A (x) (3.1)

evidently 0 ≤ WA(x) ≤ 1 for all x ∈ X.
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If A is a fuzzy set, for each x ∈ X, M−
A (x) = M+

A (x), i.e. WA(x) = 0. So,

we should present the amplitude of membership for handling an IVFS but not a

fuzzy set.

To present the geometrical interpretation of the IVFS we consider a universe

X and subset Y in the Euclidean plane with Cartesian coordinates.

For a fixed IVFS A, a function fA from X to Y can be constructed, such that

if x ∈ X, then

y = fA(x) ∈ Y,

and the point y ∈ Y has the coordinates (M−
A (x), M+

A (x)) for which

0 ≤ M−
A (x) ≤ M+

A (x) ≤ 1.

Figure 3.1: A geometrical interpretation of an IVFS

The above geometrical interpretation can be used as an example when con-

sidering a situation at beginning of negotiations - cf. Fig. 3.2 (applications of

interval-valued fuzzy sets for group decision making, negotiations and other real

situations are presented in real life). Each expert i is represented as a point

having coordinates (M−(i), M+(i), W (i)). Expert A: (1, 1, 0) - fully accepts a

discussed idea. Expert B: (0, 0, 0) - fully rejects it. The experts placed on the

segment AB fixed their points of view (their amplitude margins equal zero for

segment AB, so each expert is convinced that the extent M−(i) is equal to the

extent M+(i); segment AB represents a fuzzy set). Expert C: (0, 1, 1) is abso-

lutely hesitant, i.e. undecided - he or she is the most open to the influence of the
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arguments presented. A line parallel to a segment AB describes a set of experts

with the same level of amplitude. For example, in Fig. 3.2, two sets presented

with amplitudes equal to W (m) and W (n), where 0 < W (m) < W (n) < 1.

In other words, Fig. 3.2 (the triangle ABD) is an orthogonal projection of the

real situation (the triangle ABC) presented in Fig. 3.3.

Figure 3.2: An orthogonal projection of the real (three-dimension) representation

(triangle ABD in Fig. 3.3) of an IVFS

Figure 3.3: A three-dimension representation of an IVFS
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An element of an IVFS has three coordinates (M−(i), M+(i), W (i)) (cf. (3.1)),

hence the most natural representation of an IVFS is to draw a cuboid (with edge

length equal to 1), and because of (3.1), the triangle ABC (Fig. 3.3) represents

an IVFS. As before (Fig. 3.2), the triangle ABD is the orthogonal projection of

the triangle ABC.

This representation of an IVFS will be another point of departure for consid-

ering the distances and entropy for IVFSs.

3.2 Distances between IVFSs

Burillo and Bustince [6] suggested some methods for measuring distances be-

tween IVFSs that are generalizations of the well known Hamming distance, Eu-

clidean distance and their normalized forms as follows: For any two IVFSs

A = {(xi, MA(xi)) : xi ∈ X} and B = {(xi, MB(xi)) : xi ∈ X} of the universe of

discourse X = {x1, x2, · · · , xn},
• the Hamming distance d′(A, B):

d′(A, B) =
1

2

n∑
i=1

[|M−
A (xi) − M−

B (xi)| + |M+
A (xi) − M+

B (xi)|], (3.2)

• the normalized Hamming distance l′(A, B):

l′(A, B) =
1

2n

n∑
i=1

[|M−
A (xi) − M−

B (xi)|+ |M+
A (xi) − M+

B (xi)|], (3.3)

• the Euclidean distance e′(A, B):

e′(A, B) =
{1

2

n∑
i=1

[(M−
A (xi) −M−

B (xi))
2 + (M+

A (xi) − M+
B (xi))

2]
} 1

2 , (3.4)

• the normalized Euclidean distance q′(A, B):

q′(A, B) =
{ 1

2n

n∑
i=1

[(M−
A (xi) −M−

B (xi))
2 + (M+

A (xi) − M+
B (xi))

2]
} 1

2 . (3.5)
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Now we modify these distances. So, we propose to take into account the three

parameter characterization of IVFSs: the lower degree of membership M−
A (x),

the upper degree of membership M+
A (x) and the amplitude margin WA(x).

• the Hamming distance d′′(A, B):

d′′(A, B) =
1

2

n∑
i=1

(|M−
A (xi) − M−

B (xi)| + |M+
A (xi) − M+

B (xi)|
+|WA(xi) − WB(xi)|), (3.6)

• the normalized Hamming distance l′′(A, B):

l′′(A, B) =
1

2n

n∑
i=1

(|M−
A (xi) − M−

B (xi)| + |M+
A (xi) − M+

B (xi)|
+|WA(xi) − WB(xi)|), (3.7)

• the Euclidean distance e′′(A, B):

e′′(A, B) =
{1

2

n∑
i=1

((M−
A (xi) − M−

B (xi))
2 + (M+

A (xi) − M+
B (xi))

2

+(WA(xi) −WB(xi))
2)
} 1

2 , (3.8)

• the normalized Euclidean distance q′′(A, B):

q′′(A, B) =
{ 1

2n

n∑
i=1

((M−
A (xi) − M−

B (xi))
2 + (M+

A (xi) − M+
B (xi))

2

+(WA(xi) −WB(xi))
2)
} 1

2 . (3.9)

We claim that our approach ensures that the distances for fuzzy sets and

IVFSs can be easily compared since it reflects distances in three dimensional

space, while distances due to Burillo and Bustince [6] are orthogonal projections

of the real distances. Obviously, these distances satisfy the conditions of the

metric.

Example 3.2.1 Let us consider following IVF sets A, B, C, G and E of X = {x}:
A = {(x, [1, 1])}, B = {(x, [0, 0])}, C = {(x, [0, 1])},
G =

{
(x, [

1

2
,
1

2
])
}
, E =

{
(x, [

1

4
,
3

4
])
}
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and their geometrical interpretation is presented in Fig. 3.4. We calculate the Eu-

clidean distances between the above IVFSs using the formula (3.4) (i.e. omitting

the third parameter):

e′(A, C) = e′(B, C) =

√
1

2
,

e′(A, B) = 1,

e′(A, G) = e′(B, G) = e′(C, G) =
1

2
,

e′(E, G) =
1

4
.

These results are not of the sort that one can agree with. As Fig. 3.3,

the triangle ABC (Fig. 3.4) has all edges equal to
√

2. So we should obtain

e′(A, C) = e′(B, C) = e′(A, B). But Burillo and Bustince’s results show only

that e′(A, C) = e′(B, C), but e′(A, C) �= e′(A, B) and e′(B, C) �= e′(A, B). Also

e′(E, G), i.e., it is half of the height of triangle ABC multiplied by 1√
2
, is not the

value we want.

Figure 3.4: An geometrical interpretation of the IVFSs in Example 1

Let us calculate the same Euclidean distances using (3.8). Then we obtain

e′′(A, C) = e′′(B, C) = e′′(A, B) = 1,

e′′(A, G) = e′′(B, G) =
1

2
,

e′′(E, G) =

√
3

4

17



e′′(C, G) =

√
3

2
.

Formula (3.8) gives the results we expect, i.e.

e′′(A, C) = e′′(B, C) = e′′(A, B) = 2e′′(A, G) = 2e′′(B, G)

and e′′(E, G) is equal to half of the height of the triangle with all edges equal to√
2 multiplied by 1√

2
, i.e.

√
3

4
.

Besides Hamming distance and Euclidean distance, some distances based on

the Hausdorff metric are also used in the fuzzy sets theory. For any two subsets

U and V of a Banach space X the Hausdorff metric is defined by

dH(U, V ) = max

{
sup
u∈U

inf
v∈V

|u− v|, sup
v∈V

inf
u∈U

|u − v|
}

. (3.10)

If X = R and U = [u1, u2] and V = [v1, v2] are intervals, then (3.10) reduces to

dH(U, V ) = max{|u1,−v1|, |u2,−v2|}. (3.11)

Grzegorzewski [21] suggested how to measure the distance between IVFSs on

arbitrary finite universe of discourse utilizing the Hausdorff metric. For any two

IVFss A = {(xi, MA(xi)) : xi ∈ X} and B = {(xi, MB(xi)) : xi ∈ X} of the

universe of discourse X = {x1, x2, · · · , xn},
• the Hamming distance dh(A, B):

dh(A, B) =
n∑

i=1

max{|M−
A (xi) − M−

B (xi)|, |M+
A (xi) −M+

B (xi)|}, (3.12)

• the normalized Hamming distance lh(A, B):

lh(A, B) =
1

n

n∑
i=1

max{|M−
A (xi) − M−

B (xi)|, |M+
A (xi) − M+

B (xi)|}, (3.13)

• the Euclidean distance eh(A, B):

eh(A, B) =
{ n∑

i=1

max{(M−
A (xi) − M−

B (xi))
2, (M+

A (xi) − M+
B (xi))

2}
}1

2 , (3.14)
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• the normalized Euclidean distance qh(A, B):

qh(A, B) =
{1

n

n∑
i=1

max{(M−
A (xi) − M−

B (xi))
2, (M+

A (xi) − M+
B (xi))

2}
} 1

2 . (3.15)

Now, we give some results on elementary properties of these concepts.

Proposition 3.2.2 Let X = {x1, x2, · · · , xn} be a finite universe of discourse.

Then function dh, lh, eh, qh : IVF(X) → R+ ∪ {0} given by (3.12)–(3.15), respec-

tively, are metrics.

Proof We give only the proof for dh.

Let A = {(xi, [M
−
A (xi), M

+
A (xi)]) : xi ∈ X}, B = {(xi, [M

−
B (xi), M

+
B (xi)]) :

xi ∈ X} and C = {(xi, [M
−
C (xi), M

+
C (xi)]) : xi ∈ X} be IVFSs of X.

(a) dh(A, B) given by (3.12) is positive definite, i.e. dh(A, B) ≥ 0 because of

the absolute value properties.

(b) If A = B then M−
A (xi) = M−

B (xi) and M+
A (xi) = M+

B (xi) for each xi ∈ X

and hence dh(A, B) = 0. Conversely, if dh(A, B) = 0 then for each xi ∈ X we have

max{|M−
A (xi)−M−

B (xi)|, |M+
A (xi)−M+

B (xi)|} = 0. Then both M−
A (xi)−M−

B (xi) =

0 and M+
A (xi) − M+

B (xi) = 0 and hence A = B.

(c) The symmetry property dh(A, B) = dh(B, A) holds because |M−
A (xi) −

M−
B (xi)| = |M−

B (xi)−M−
A (xi)| and |M+

A (xi)−M+
B (xi)| = |M+

B (xi)−M+
A (xi)| for

each xi ∈ X.

(d) Since for any nonnegative numbers a1, a2, a3, b1, b2, b3 such that a1+a2 ≥ a3

and b1 + b2 ≥ b3 we have max{a1, b1} + max{a2, b2} ≥ max{a3, b3}, we obtain

n∑
i=1

max{|M−
A (xi) −M−

B (xi)|, |M+
A (xi) − M+

B (xi)|}

+
n∑

i=1

max{|M−
B (xi) −M−

C (xi)|, |M+
B (xi) − M+

C (xi)|}

≥
n∑

i=1

max{|M−
A (xi) − M−

C (xi)|, |M+
A (xi) − M+

C (xi)|}.

Thus dh(A, B) + dh(B, C) ≥ dh(A, C), i.e. the triangle inequality holds. �
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Proposition 3.2.3 For any two IVFSs A = {(xi, MA(xi)) : xi ∈ X} and B =

{(xi, MB(xi)) : xi ∈ X} of the universe of discourse X = {x1, x2, · · · , xn}, the

following inequalities hold:

dh(A, B) ≤ n, (3.16)

lh(A, B) ≤ 1, (3.17)

eh(A, B) ≤ √
n, (3.18)

qh(A, B) ≤ 1. (3.19)

Proof Since |M−
A (xi) − M−

B (xi)| ≤ 1 and |M+
A (xi) − M+

B (xi)| ≤ 1 for each

xi ∈ X, we have dh(A, B) ≤ ∑n
i=1 1 = n, lh(A, B) ≤ 1

n

∑n
i=1 1 = 1, eh(A, B) ≤√∑n

i=1 1 =
√

n and qh(A, B) ≤
√

1
n

∑n
i=1 1 = 1. �

Proposition 3.2.4 For any two IVFSs A = {(xi, MA(xi)) : xi ∈ X} and B =

{(xi, MB(xi)) : xi ∈ X} of the universe of discourse X = {x1, x2, · · · , xn}, the

following inequalities hold:

d′(A, B) ≤ dh(A, B) ≤ d′′(A, B), (3.20)

l′(A, B) ≤ lh(A, B) ≤ l′′(A, B), (3.21)

e′(A, B) ≤ eh(A, B) ≤ e′′(A, B), (3.22)

q′(A, B) ≤ qh(A, B) ≤ q′′(A, B). (3.23)

Proof We give only the proof for eh and the other cases are left.

Since 1
2
(a + b) ≤ max{a, b} for any two numbers a and b, we have e′(A, B) ≤

eh(A, B). Moreover, since WA(xi) = M+
A (xi) − M−

A (xi) and WB(xi) = M+
B (xi)

−M−
B (xi) for each xi ∈ X, then

1

2

(
(M−

A (xi) − M−
B (xi))

2 + (M+
A (xi) − M+

B (xi))
2 + (WA(xi) − WB(xi))

2
)

=
1

2

(
(M−

A (xi) −M−
B (xi))

2 + (M+
A (xi) −M+

B (xi))
2

+(M−
B (xi) − M−

A (xi) + M+
A (xi) − M+

B (xi))
2
)

=
1

2

(
(M−

A (xi) −M−
B (xi))

2 + (M+
A (xi) −M+

B (xi))
2 + (M−

B (xi) − M−
A (xi))

2
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+2(M−
B (xi) − M−

A (xi))(M
+
A (xi) − M+

B (xi)) + (M+
A (xi) − M+

B (xi))
2
)

= (M−
A (xi) − M−

B (xi))
2 + (M+

A (xi) − M+
B (xi))

2

+(M−
B (xi) − M−

A (xi))(M
+
A (xi) −M+

B (xi))

≥ max{(M−
A (xi) −M−

B (xi))
2, (M+

A (xi) − M+
B (xi))

2}

for each xi ∈ X. Hence we have e′′(A, B) ≥ eh(A, B). �

Example 3.2.5 Let us consider the IVF sets A, B, C, E and G on X = {x} given

in Example 1. Let us calculate the same Euclidean distances using (3.14). Then

we get

eh(A, C) = eh(B, C) = eh(A, B) = 1,

eh(A, G) = eh(B, G) = eh(C, G) =
1

2
,

eh(E, G) = eh(C, E) =
1

4
,

eh(A, E) = eh(B, E) =
3

4
.

Formula (3.14) also gives the results we expect as formula (3.8), i.e.

e′′(A, C) = e′′(B, C) = e′′(A, B) = 2e′′(A, G) = 2e′′(B, G)

and e′′(E, G) is equal to half of the height of the triangle with all edges equal to√
2 multiplied by 1√

6
, i.e. 1

4
.

3.3 Distances between IVIFSs

Even though we can represent a fuzzy set in an intuitionistic-type representation,

we can not always represent any IVFS in interval-valued intuitionistic-type rep-

resentation. For example, let A be an IVFS on X = {x} such that MA = [ 1
4
, 1

2
].

Then (MA, M̄A) = ([ 1
4
, 1

2
], [ 1

2
, 3

4
]) is not IVIFS because M+

A + M̄AU = 1
2

+ 3
4
�≤ 1.

However, if an IVFS A satisfy the condition M+
A +M̄+

A ≤ 1, i.e. M+
A +1−M−

A ≤ 1,

then the IVFS A can represent interval-valued intuitionistic-type representation

(MA, M̄A).
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We extend the Burillo and Bustince’s distances to IVIFSs as (3.2)-(3.5). For

any two IVIFSs A = {(xi, MA(xi), NA(xi)) : xi ∈ X} and B = {(xi, MB(xi),

NB(xi)) : xi ∈ X} of the universe of discourse X = {x1, x2, · · · , xn},
• the Hamming distance d′

1(A, B):

d′
1(A, B) =

1

4

n∑
i=1

[|M−
A (xi) − M−

B (xi)| + |M+
A (xi) − M+

B (xi)|

+|N−
A (xi) − N−

B (xi)| + |N+
A (xi) − N+

B (xi)|], (3.24)

• the normalized Hamming distance l′1(A, B):

l′1(A, B) =
1

4n

n∑
i=1

[|M−
A (xi) − M−

B (xi)| + |M+
A (xi) − M+

B (xi)|

+|N−
A (xi) − N−

B (xi)| + |N+
A (xi) − N+

B (xi)|], (3.25)

• the Euclidean distance e′1(A, B):

e′1(A, B) =
{1

4

n∑
i=1

[(M−
A (xi) −M−

B (xi))
2 + (M+

A (xi) −M+
B (xi))

2

+(N−
A (xi) − N−

B (xi))
2 + (N+

A (xi) − N+
B (xi))

2]
} 1

2 , (3.26)

• the normalized Euclidean distance q′1(A, B):

q′1(A, B) =
{ 1

4n

n∑
i=1

[(M−
A (xi) −M−

B (xi))
2 + (M+

A (xi) −M+
B (xi))

2

+(N−
A (xi) − N−

B (xi))
2 + (N+

A (xi) − N+
B (xi))

2]
} 1

2 . (3.27)

Now, we consider the amplitude margin to modify these distances as (3.6)-

(3.9).

• the Hamming distance d′′
1(A, B):

d′′
1(A, B) =

1

4

n∑
i=1

[|M−
A (xi) − M−

B (xi)| + |M+
A (xi) − M+

B (xi)|

+|N−
A (xi) − N−

B (xi)| + |N+
A (xi) − N+

B (xi)|
+|WMA

(xi) − WMB
(xi)| + |WNA

(xi) − WNB
(xi)|], (3.28)
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• the normalized Hamming distance l′′1(A, B):

l′′1(A, B) =
1

4n

n∑
i=1

[|M−
A (xi) − M−

B (xi)| + |M+
A (xi) − M+

B (xi)|

+|N−
A (xi) − N−

B (xi)| + |N+
A (xi) − N+

B (xi)|
+|WMA

(xi) − WMB
(xi)| + |WNA

(xi) − WNB
(xi)|], (3.29)

• the Euclidean distance e′′1(A, B):

e′′1(A, B) =
{1

4

n∑
i=1

((M−
A (xi) − M−

B (xi))
2 + (M+

A (xi) − M+
B (xi))

2

+(N−
A (xi) − N−

B (xi))
2 + (N+

A (xi) − N+
B (xi))

2

+(WMA
(xi) −WMB

(xi))
2 + (WNA

(xi) − WNB
(xi))

2
} 1

2 , (3.30)

• the normalized Euclidean distance q′′1(A, B):

q′′1(A, B) =
{ 1

4n

n∑
i=1

((M−
A (xi) − M−

B (xi))
2 + (M+

A (xi) − M+
B (xi))

2

+(N−
A (xi) − N−

B (xi))
2 + (N+

A (xi) − N+
B (xi))

2

+(WMA
(xi) −WMB

(xi))
2 + (WNA

(xi) − WNB
(xi))

2
} 1

2 . (3.31)

Clearly these distances satisfy the conditions of the metric (cf. [24]). Finally,

we extend the Grzegorzewski’s distances to IVIFSs as (3.12)-(3.15). For any two

IVIFSs A = {(xi, MA(xi), NA(xi)) : xi ∈ X} and B = {(xi, MB(xi), NB(xi)) :

xi ∈ X} of the universe of discourse X = {x1, x2, · · · , xn},
• the Hamming distance dH(A, B):

dH(A, B) =
1

2

n∑
i=1

[max{|M−
A (xi) −M−

B (xi)|, |M+
A (xi) − M+

B (xi)|}

+max{|N−
A (xi) − N−

B (xi)|, |N+
A (xi) −N+

B (xi)|}], (3.32)

• the normalized Hamming distance lH(A, B):

lH(A, B) =
1

2n

n∑
i=1

[ max{|M−
A (xi) − M−

B (xi)|, |M+
A (xi) − M+

B (xi)|}

+max{|N−
A (xi) − N−

B (xi)|, |N+
A (xi) − N+

B (xi)|}], (3.33)
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• the Euclidean distance eH(A, B):

eH(A, B) =
{1

2

n∑
i=1

[(max{|M−
A (xi) − M−

B (xi)|, |M+
A (xi) − M+

B (xi)|})2

+(max{|N−
A (xi) − N−

B (xi)|, |N+
A (xi) − N+

B (xi)|})2]
} 1

2 , (3.34)

• the normalized Euclidean distance qH(A, B):

qH(A, B) =
{ 1

2n

n∑
i=1

[(max{|M−
A (xi) − M−

B (xi)|, |M+
A (xi) − M+

B (xi)|})2

+(max{|N−
A (xi) −N−

B (xi)|, |N+
A (xi) − N+

B (xi)|})2]
} 1

2 . (3.35)

Proposition 3.3.1 Let X = {x1, x2, · · · , xn} be a finite universe of discourse.

Then function dH , lH, eH, qH : IVIFS(X) → R+ ∪ {0} given by (3.32)–(3.35),

respectively, are metrics.

Proof We give only the proof for eH.

Let A = {(xi, MA(xi), NA(xi)) : xi ∈ X}, B = {(xi, MB(xi), NB(xi)) : xi ∈
X} and C = {(xi, MC(xi), NC(xi)) : xi ∈ X} be IVIFSs of X.

(a) eH(A, B) given by (3.34) is positive definite, i.e. eH(A, B) ≥ 0 because of

the absolute value properties.

(b) If A = B then MA(xi) = MB(xi) and NA(xi) = NB(xi) for each xi ∈ X

and hence eH(A, B) = 0. Conversely, if eH(A, B) = 0 then for each xi ∈ X

we have max{|M−
A (xi) − M−

B (xi)|, |M+
A (xi) − M+

B (xi)|} = 0 and max{|N−
A (xi) −

N−
B (xi)|, |N+

A (xi) − N+
B (xi)|} = 0. Then both M−

A (xi) − M−
B (xi) = 0, M+

A (xi) −
M+

B (xi) = 0, N−
A (xi) − N−

B (xi) = 0 and N+
A (xi) −N+

B (xi) = 0 and hence A = B.

(c) The symmetry property eH(A, B) = eH(B, A) holds because |M−
A (xi) −

M−
B (xi)| = |M−

B (xi) − M−
A (xi)|, |M+

A (xi) − M+
B (xi)| = |M+

B (xi) − M+
A (xi)|, and

|N−
A (xi) − N−

B (xi)| = |N−
B (xi) − N−

A (xi)| and |N+
A (xi) − N+

B (xi)| = |N+
B (xi) −

N+
A (xi)| for each xi ∈ X.

(d) Since for any nonnegative numbers ai, bi, ci, di (i = 1, 2, 3) such that a1 +

a2 ≥ a3, b1 + b2 ≥ b3, c1 + c2 ≥ c3 and d1 + d2 ≥ d3 we have max{a1, b1} +

24



max{a2, b2}+ max{c1, c2}+ max{d1, d2} ≥ max{a3, b3}+ max{c3, d3}, we obtain

n∑
i=1

[(max{|M−
A (xi) − M−

B (xi)|, |M+
A (xi) − M+

B (xi)|})2

+(max{|N−
A (xi) − N−

B (xi)|, |N+
A (xi) − N+

B (xi)|})2]

+
n∑

i=1

[(max{|M−
B (xi) −M−

C (xi)|, |M+
B (xi) − M+

C (xi)|})2

+(max{|N−
B (xi) − N−

C (xi)|, |N+
B (xi) − N+

C (xi)|})2]

≥
n∑

i=1

[(max{|M−
A (xi) − M−

C (xi)|, |M+
A (xi) − M+

C (xi)|})2

+(max{|N−
A (xi) − N−

C (xi)|, |N+
A (xi) − N+

C (xi)|})2].

Thus eH(A, B) + eH(B, C) ≥ eH(A, C), i.e. the triangle inequality holds. �

Proposition 3.3.2 For any two IVIFSs A = {(xi, MA(xi), NA(xi)) : xi ∈ X}
and B = {(xi, MB(xi), NA(xi)) : xi ∈ X} of the universe of discourse X =

{x1, x2, · · · , xn}, the following inequalities hold:

dH(A, B) ≤ n, (3.36)

lH(A, B) ≤ 1, (3.37)

eH(A, B) ≤ √
n, (3.38)

qH(A, B) ≤ 1. (3.39)

Proof The proof is similar to that of Proposition 3.3.3. �

Proposition 3.3.3 For any two IVIFSs A = {(xi, MA(xi), NA(xi)) : xi ∈ X}
and B = {(xi, MB(xi), NB(xi)) : xi ∈ X} of the universe of discourse X =

{x1, x2, · · · , xn}, the following inequalities hold:

d′
1(A, B) ≤ dH(A, B) ≤ d′′

1(A, B), (3.40)

l′1(A, B) ≤ lH(A, B) ≤ l′′1(A, B), (3.41)

e′1(A, B) ≤ eH(A, B) ≤ e′′1(A, B), (3.42)

q′1(A, B) ≤ qH(A, B) ≤ q′′1(A, B). (3.43)

25



Proof We give only the proof for eH and the other cases are left.

Since 1
4
(a+b+c+d) ≤ 1

2
(max{a, b}+max{c, d}) for any four numbers a, b, c and

d, we have e′1(A, B) ≤ eH(A, B). Moreover, since WMA
(xi) = M+

A (xi) − M−
A (xi),

WNA
(xi) = N+

A (xi) − N−
A (xi), WMB

(xi) = M+
B (xi) −M−

B (xi) and WNB
(xi) =

N+
B (xi) −N−

B (xi) for each xi ∈ X, then

1

4
[(M−

A (xi) − M−
B (xi))

2 + (M+
A (xi) − M+

B (xi))
2 + (N−

A (xi) − N−
B (xi))

2

+(N+
A (xi) − N+

B (xi))
2 + (WMA

(xi) − WMB
(xi))

2 + (WNA
(xi) − WNB

(xi))
2]

=
1

2
[(M−

A (xi) − M−
B (xi))

2 + (M+
A (xi) − M+

B (xi))
2

+(M−
B (xi) − M−

A (xi))(M
+
A (xi) − M+

B (xi))

+(N−
A (xi) −N−

B (xi))
2 + (N+

A (xi) − N+
B (xi))

2

+(N−
B (xi) −N−

A (xi))(N
+
A (xi) − N+

B (xi))]

≥ 1

2
[max{(M−

A (xi) − M−
B (xi))

2, (M+
A (xi) − M+

B (xi))
2}

+max{(N−
A (xi) −N−

B (xi))
2, (N+

A (xi) − N+
B (xi))

2}]

for each xi ∈ X. Hence we have e′′1(A, B) ≥ eH(A, B). �

When generalizing any notion it is desirable that the new object should be

consistent with the primary one and it should reduce to that primary one in

some particular cases. As it was mentioned above each IVFS can be IVIFS under

some conditions. Thus it would be desirable that our definitions (3.24)-(3.35)

should reduce to the Burillo and Bustince’s distances (3.2)-(3.5), our distances

(3.6)-(3.9) and Grzegorzewski’s distances (3.12)-(3.15), respectively, for ordinary

IVFSs. One can check easily that

Proposition 3.3.4 For any two IVIFSs A, B ∈ X = {x1, · · · , xn} such that

A = {(xi, MA(xi), M̄A(xi)) : xi ∈ X} and B = {(xi, MB(xi), M̄B(xi)) : xi ∈ X},
the following equalities hold:

d′(A, B) = d′
1(A, B), l′(A, B) = l′1(A, B),

e′(A, B) = e′1(A, B), q′(A, B) = q′1(A, B),
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d′′(A, B) = d′′
1(A, B), l′′(A, B) = l′′1(A, B),

e′′(A, B) = e′′1(A, B), q′′(A, B) = q′′1(A, B),

dh(A, B) = dH(A, B), lh(A, B) = lH(A, B),

eh(A, B) = eH(A, B), qh(A, B) = qH(A, B).

Remark 3.3.5 Since IFSs and IVFSs are equipollent generalizations of fuzzy

sets, our definitions (3.24)-(3.35) should also reduce to the Szmidt and Kacprzyk’s

distances [45] and Grzegorzewski’s distances [21], respectively, for ordinary IFSs.
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Chapter 4

Entropy and Similarity Measure

of Interval-valued Intuitionistic

Fuzzy Sets

In this chapter, we introduce concepts of entropy and similarity measure of IV-

IFSs, discuss their relationship between similarity measure and entropy of IVIFSs,

show that similarity measure and entropy of IVIFSs can be transformed by each

other based on their axiomatic definitions and give some formulas to calculate

entropy and similarity measure of IVIFSs.

4.1 Entropy of IVIFSs

De Luca and Termini [13] first axiomatized non-probabilistic entropy. Szmidt and

Kacprzyk [47] extended De Luca and Termini axioms for fuzzy set to introduce

entropy of IFSs. Based on this view point of Szmidt and Kacprzyk, Zeng and Li

[70] introduced the concept of entropy of IVFSs which is different from Bustince

and Burillo [6]. We introduce the concept of entropy of IVIFSs.

Definition 4.1.1 A real function E : IVIFS(X) → [0, 1] is called entropy on

IVIFS(X) if E satisfies the following properties:
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(E1) E(A) = 0 if A is a crisp set;

(E2) E(A) = 1 ⇐⇒ MA(x) = NA(x) for every x ∈ X;

(E3) E(A) ≤ E(B) if A refines B;

(E4) E(A) = E(Ac).

Then we can give the following formulas to calculate entropy of IVIFS A on

X:

E1(A) = 1 − 1

2n

n∑
i=1

(|M−
A (xi) − N−

A (xi)| + |M+
A (xi) −N+

A (xi)|), (4.1)

E2(A) = 1 −
√√√√ 1

2n

n∑
i=1

((M−
A (xi) − N−

A (xi))2 + (M+
A (xi) −N+

A (xi))2), (4.2)

E3(A) = 1 − 1

2(b − a)

∫ b

a
(|M−

A (x) −N−
A (x)| + |M+

A (x) − N+
A (x)|)dx, (4.3)

E4(A) =

∫ b
a (min(M−

A (x), N−
A (x)) + min(M+

A (x), N+
A (x)))dx∫ b

a (max(M−
A (x), N−

A (x)) + max(M+
A (x), N+

A (x)))dx
, (4.4)

where in Equations (4.1) and (4.2), X = {x1, x2, . . . , xn} is finite and in Equations

(4.3) and (4.4), M−
A (x), M+

A (x), N−
A (x) and N+

A (x) are continuous on the closed

interval X = [a, b] and the integral is Lebesgue integral.

Definition 4.1.2 A real function S : IVIFS(X) × IVIFS(X) → [0, 1] is called

similarity measure of IVIFSs if S satisfies the following properties:

(S1) S(A, Ac) = 0 if A is a crisp set;

(S2) S(A, B) = 1 ⇐⇒ A = B;

(S3) S(A, B) = S(B, A);

(S4) for all A, B, C ∈ IVIFS(X), if A ⊂ B ⊂ C , then S(A, C) ≤ S(A, B),

S((A, C) ≤ S(B, C).

Then we can give the following formulas to calculate similarity measure of

IVIFSs A and B in finite set X = {x1, x2, . . . , xn}:

S1(A, B) = 1 − 1

4n

n∑
i=1

(|M−
A (xi) −M−

B (xi)| + |M+
A (xi) − M+

B (xi)|
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+|N−
A (xi) − N−

B (xi)| + |N+
A (xi) −N+

B (xi)| ). (4.5)

S2(A, B) = 1 −
{ 1

4n

n∑
i=1

((M−
A (xi) − M−

B (xi))
2 + (M+

A (xi) − M+
B (xi))

2

+(N−
A (xi) − N−

B (xi))
2 + (N+

A (xi) −N+
B (xi))

2
}1

2 . (4.6)

Obviously, the axiomatic definition of similarity measure and entropy of IV-

IFSs can be extended from IFS theory or IVFS theory. Specially, if IVIFSs A

and B become IFSs (resp. IVFSs), then S(A, B) is similarity measure of IFSs

(resp. IVFSs). Based on this point of view, we have the following results.

Theorem 4.1.3 If S : IFS(X) × IFS(X) → [0, 1] is a similarity measure, then

E : IVIFS(X) → [0, 1] given by

E(A) =
S(A−, (A−)c) + S(A+, (A+)c)

2

is an entropy of IVIFS A, where A− and A+ are IFSs given by A− = 〈M−
A , N−

A 〉
and A+ = 〈M+

A , N+
A 〉, respectively.

Proof (E1) If A is a crisp set, then for every x ∈ X, we have either MA(x) = 1̄

and NA(x) = 0̄, or MA(x) = 0̄ and NA(x) = 1̄. It means that A− and A+ are

crisp sets, and then S(A−, (A−)c) = S(A+, (A+)c) = 0. Hence E(A) = 0.

(E2) By Definition 2.0.6 of similarity measure of IFSs, we have

E(A) = 1 ⇐⇒ S(A−, (A−)c) = S(A+, (A+)c) = 1

⇐⇒ A− = (A−)c, A+ = (A+)c

⇐⇒ M−
A (x) = N−

A (x), M+
A (x) = N+

A (x) for every x ∈ X

⇐⇒ MA = NA.

(E3) Since MB(x) ≤ MA(x) and NA(x) ≤ NB(x) for MB(x) ≥ NB(x) implies

NA(x) ≤ NB(x) ≤ MB(x) ≤ MA(x). It means (A−)c ⊂ (B−)c ⊂ B− ⊂ A−
and (A+)c ⊂ (B+)c ⊂ B+ ⊂ A+. By Definition 2.0.6, we have S(A−, (A−)c) ≤
S(A−, (B−)c) ≤ S(B−, (B−)c) and S(A+, (A+)c) ≤ S(A+, (B+)c) ≤ S(B+, (B+)c).

Hence E(A) ≤ E(B).
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When MA(x) ≤ MB(x) and NA(x) ≥ NB(x) for MB(x) ≤ NB(x), with the

same reason, we can obtain E(A) ≤ E(B).

(E4) Since Ac = (NA, MA), by Definition 2.0.6, we have

E(A) =
S(A−, (A−)c) + S(A+, (A+)c)

2

=
S((A−)c, A−) + S((A+)c, A+)

2

=
S((A−)c, ((A−)c)c) + S((A+)c, ((A+)c)c)

2
= E(Ac).

�

Theorem 4.1.4 If S : IVFS(X) × IVFS(X) → [0, 1] is a similarity measure

and A ∈ IVIFS(X) satisfies that IVFS NA is the complement of IVFS MA, then

E : IVIFS(X) → [0, 1] given by E(A) = S(MA, NA) is an entropy.

Proof (E1) If A is a crisp set, then for every x ∈ X, we have either MA(x) = 1̄

and NA(x) = 0̄, or MA(x) = 0̄ and NA(x) = 1̄. It means that MA and NA are

crisp sets, and hence E(A) = S(MA, NA) = S(MA, (MA)c) = 0.

(E2) By Definition 2.0.3 of similarity measure of IVFSs, we have

E(A) = S(MA, NA) = 1 ⇐⇒ MA = NA.

(E3) Since MB(x) ≤ MA(x) and NA(x) ≤ NB(x) for MB(x) ≥ NB(x) implies

NA(x) ≤ NB(x) ≤ MB(x) ≤ MA(x). That is, NA ⊂ NB ⊂ MB ⊂ MA. By

Definition 2.0.3, we have S(MA, NA) ≤ S(MA, NB) ≤ S(MB , NB) and hence

E(A) ≤ E(B).

When MA(x) ≤ MB(x) and NA(x) ≥ NB(x) for MB(x) ≤ NB(x), with the

same reason, we can obtain E(A) = S(MA, NA) ≤ S(MB , NB) = E(B).

(E4) Since Ac = (NA, MA), by Definition 2.0.3, we have E(A) = S(MA, NA) =

S(NA, MA) = E(Ac). �

Remark 4.1.5 The hypothesis in Theorem 4.1.4 leads to intuitionistic fuzzy

case: NA = M c
A implies N−

A = 1 − M+
A and N+

A = 1 − M−
A ; the condition

M+
A + N+

A ≤ 1 implies M+
A ≤ M−

A , that is M−
A = M+

A and N−
A = N+

A .
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4.2 Relationship between similarity measure

and entropy of IVIFSs

Having in mind that the real functions of similarity measure and entropy of IV-

IFSs are not unique as in shown in Section 4.1, we will discuss the relationship

between similarity measure and entropy of IVIFSs based on their axiomatic def-

initions.

First, we propose a transform method of setting up similarity measure of

IVIFSs based on entropy of IVIFSs. For A, B ∈ IVIFS(X), we define an IVIFS

I(A, B) on X as follows: for every x ∈ X,

M−
I(A,B)(x) =

1

2

[
1 + min{min(|M−

A (x) − M−
B (x)|, |M+

A (x) −M+
B (x)|),

min(|N−
A (x) − N−

B (x)|, |N+
A (x)− N+

B (x)|)}
]
,

M+
I(A,B)(x) =

1

2

[
1 + max{min(|M−

A (x) −M−
B (x)|, |M+

A (x) − M+
B (x)|),

min(|N−
A (x) − N−

B (x)|, |N+
A (x)− N+

B (x)|)}
]
,

N−
I(A,B)(x) =

1

2

[
1 − max{max(|M−

A (x) − M−
B (x)|, |M+

A (x)− M+
B (x)|),

max(|N−
A (x)− N−

B (x)|, |N+
A (x) − N+

B (x)|)}
]
,

N+
I(A,B)(x) =

1

2

[
1 − max{min(|M−

A (x) − M−
B (x)|, |M+

A (x) − M+
B (x)|),

min(|N−
A (x) − N−

B (x)|, |N+
A (x)− N+

B (x)|)}
]
.

Then we have the following result.

Theorem 4.2.1 If E : IVIFS(X) → [0, 1] is an entropy, then S : IVIFS(X) ×
IVIFS(X) → [0, 1] given by S(A, B) = E(I(A, B)) is a similarity measure.

Proof (S1) If A is a crisp set, then, for every x ∈ X, we have either MA(x) = 1̄

and NA(x) = 0̄, or MA(x) = 0̄ and NA(x) = 1̄, it means that, for every x ∈ X,

we have |M−
A (x) − M−

Ac(x)| = 1, |M+
A (x) − M+

Ac(x)| = 1, |N−
A (x) − N−

Ac(x)| =

1 and |N+
A (x) − N+

Ac(x)| = 1. Therefore, M−
I(A,Ac)(x) = M+

I(A,Ac)(x) = 1 and
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N−
I(A,Ac)(x) = N+

I(A,Ac)(x) = 0, it shows I(A, Ac) = X is a crisp set and hence

S(A, B) = E(I(A, Ac)) = 0.

(S2) By Definition 4.1.2 of entropy of IVIFSs, we have

S(A, B) = 1 ⇐⇒ E(I(A, B)) = 1

⇐⇒ MI(A,B)(x) = NI(A,B)(x) for every x ∈ X

⇐⇒ |M−
A (x) −M−

B (x)| = 0, |M+
A (x) − M+

B (x)| = 0,

|N−
A (x)− N−

B (x)| = 0, |N+
A (x) − N+

B (x)| = 0 for every x ∈ X

⇐⇒ M−
A = M−

B , M+
A = M+

B , N−
A = N−

B , N+
A = N+

B

⇐⇒ MA = MB , NA = NB

⇐⇒ A = B.

(S3) By the definition of I(A, B), since I(A, B) = I(B, A) is obvious, we have

S(A, B) = E(I(A, B)) = E(I(B, A)) = S(B, A).

(S4) Since A ⊂ B ⊂ C , for every x ∈ X, we have MA(x) ≤ MB(x) ≤ MC(x)

and NA(x) ≥ NB(x) ≥ NC(x). Thus, for every x ∈ X, we get |M−
A (x)−M−

C (x)| ≥
|M−

A (x) − M−
B (x)|, |M+

A (x) − M+
C (x)| ≥ |M+

A (x) − M+
B (x)|, |N−

A (x) − N−
C (x)| ≥

|N−
A (x)− N−

B (x)| and |N+
A (x) − N+

C (x)| ≥ |N+
A (x) − N+

B (x)|.
Further, for every x ∈ X, we have

min(|M−
A (x) − M−

C (x)|, |M+
A (x)− M+

C (x)|)
≥ min(|M−

A (x) −M−
B (x)|, |M+

A (x) − M+
B (x)|),

max(|M−
A (x) − M−

C (x)|, |M+
A (x) − M+

C (x)|)
≥ max(|M−

A (x) − M−
B (x)|, |M+

A (x) −M+
B (x)|),

min(|N−
A (x) −N−

C (x)|, |N+
A (x) − N+

C (x)|)
≥ min(|N−

A (x)− N−
B (x)|, |N+

A (x) − N+
B (x)|)

and

max(|N−
A (x)− N−

C (x)|, |N+
A (x) − N+

C (x)|)
≥ max(|N−

A (x)− N−
B (x)|, |N+

A (x) −N+
B (x)|).

33



Therefore, for every x ∈ X, we get M−
I(A,C)(x) ≥ M−

I(A,B)(x), M+
I(A,C)(x) ≥

M+
I(A,B)(x), N−

I(A,C)(x) ≤ N−
I(A,B)(x) and N+

I(A,C)(x) ≤ N+
I(A,B)(x) and by the defi-

nition of I(A, B), we have N−
I(A,B)(x) ≤ M−

I(A,B)(x) and N+
I(A,B)(x) ≤ M+

I(A,B)(x)

for every x ∈ X, i.e., NI(A,B)(x) ≤ MI(A,B)(x) for every x ∈ X. Hence, by Defini-

tion 4.1.2 of entropy of IVIFSs, S(A, C) = E(I(A, C)) ≤ E(I(A, B)) = S(A, B).

With the same reason, we obtain S(A, C) ≤ S(B, C). �

Corollary 4.2.2 If E : IVIFS(X) → [0, 1] is an entropy, then S : IVIFS(X) ×
IVIFS(X) → [0, 1] given by S(A, B) = E((I(A, B))c) is a similarity measure.

For A, B ∈ IVIFS(X), we define an IVIFS J(A, B) on X as follows: for every

x ∈ X and p > 0,

M−
J(A,B)(x) =

1

2

[
1 + min{min(|M−

A (x)− M−
B (x)|p, |M+

A (x) − M+
B (x)|p),

min(|N−
A (x) − N−

B (x)|p, |N+
A (x) − N+

B (x)|p)}
]
,

M+
J(A,B)(x) =

1

2

[
1 + max{min(|M−

A (x) − M−
B (x)|p, |M+

A (x)− M+
B (x)|p),

min(|N−
A (x) − N−

B (x)|p, |N+
A (x) − N+

B (x)|p)}
]
,

N−
J(A,B)(x) =

1

2

[
1 − max{max(|M−

A (x) − M−
B (x)|p, |M+

A (x)− M+
B (x)|p),

max(|N−
A (x)− N−

B (x)|p, |N+
A (x) −N+

B (x)|p)}
]
,

N+
J(A,B)(x) =

1

2

[
1 − max{min(|M−

A (x) −M−
B (x)|p, |M+

A (x) − M+
B (x)|p),

min(|N−
A (x) − N−

B (x)|p, |N+
A (x) − N+

B (x)|p)}
]
.

Then we have

Corollary 4.2.3 If E : IVIFS(X) → [0, 1] is an entropy, then S : IVIFS(X) ×
IVIFS(X) → [0, 1] given by S(A, B) = E(J(A, B)) or S(A, B) = E((J(A, B))c)

is a similarity measure.

Example 4.2.4 Let X = {x1, x2, · · · , xn}, A, B ∈ IVIFS(X) and

E(A) = 1 − 1

2n

n∑
i=1

(|M−
A (xi) − N−

A (xi)| + |M+
A (xi) −N+

A (xi)|).
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Then

S(A, B) = E(I(A, B))

= 1 − 1

4n

n∑
i=1

(
min(|M−

A (xi) − M−
B (xi)|, |M+

A (xi) − M+
B (xi)|,

|N−
A (xi) −N−

B (xi)|, |N+
A (xi) − N+

B (xi)|)
+max(|M−

A (xi) − M−
B (xi)|, |M+

A (xi) − M+
B (xi)|,

|N−
A (xi) −N−

B (xi)|, |N+
A (xi) − N+

B (xi)|)
+2max{min(|M−

A (xi) − M−
B (xi)|, |M+

A (xi) −M+
B (xi)|,

min(|N−
A (xi) − N−

B (xi)|, |N+
A (xi) − N+

B (xi)|)}
)

is a similarity measure of IVIFSs A and B.

Example 4.2.5 Let X = [a, b], A, B ∈ IVIFS(X) and

E(A) = 1 − 1

2(b − a)

∫ b

a
(|M−

A (x) −N−
A (x)| + |M+

A (x)− N+
A (x)|) dx,

where M−
A (x), M+

A (x), N−
A (x) and N+

A (x) are continuous on X = [a, b] and the

integral is Lebesgue integral. Then

S(A, B) = E(I(A, B))

= 1 − 1

4(b − a)

∫ b

a

(
min(|M−

A (x) − M−
B (x)|, |M+

A (x) −M+
B (x)|,

|N−
A (x) −N−

B (x)|, |N+
A (x) − N+

B (x)|)
+max(|M−

A (x)− M−
B (x)|, |M+

A (x) − M+
B (x)|,

|N−
A (x) −N−

B (x)|, |N+
A (x) − N+

B (x)|)
+2max{min(|M−

A (x) − M−
B (x)|, |M+

A (x)− M+
B (x)|,

min(|N−
A (x) −N−

B (x)|, |N+
A (x) − N+

B (x)|)}) dx

is a similarity measure of IVIFSs A and B.

Next, we propose another method of setting up an entropy of IVIFSs based

on similarity measure of IVIFSs. For A ∈ IVIFS(X), we define IVIFS m(A) and
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n(A) on X as follows: for every x ∈ X,

M−
m(A)(x) =

1 + (M−
A (x) − N−

A (x))4

2
, M+

m(A)(x) =
1 + (M−

A (x) −N−
A (x))2

2
,

N−
m(A)(x) =

1 − |M−
A (x)− N−

A (x)|
2

, N+
m(A)(x) =

1 − (M−
A (x)− N−

A (x))2

2
,

M−
n(A)(x) =

1 − |M+
A (x) − N+

A (x)|
2

, M+
n(A)(x) =

1 − (M+
A (x) − N+

A (x))2

2
,

N−
n(A)(x) =

1 + (M+
A (x) − N+

A (x))4

2
, N+

n(A)(x) =
1 + (M+

A (x)− N+
A (x))2

2
.

Then we have the following result.

Theorem 4.2.6 If S : IVIFS(X) × IVIFS(X) → [0, 1] is a similarity measure,

then E : IVIFS(X) → [0, 1] given by E(A) = S(m(A), n(A)) is an entropy.

Proof (E1) If A is a crisp set, then for every x ∈ X, we have either MA(x) =

1̄, NA(x) = 0̄ or MA(x) = 0̄, NA(x) = 1̄. Hence for every x ∈ X, we get

|M−
A (x) − N−

A (x)| = 1 and |M+
A (x) − N+

A (x)| = 1, it means that Mm(A)(x) = 1̄,

Nm(A)(x) = 0̄, Mn(A)(x) = 0̄ and Nn(A)(x) = 1̄. It shows that m(A) = X and

n(A) = ∅ are crisp sets. Therefore, E(A) = S(m(A), n(A)) = 0.

(E2) By the definitions of m(A) and n(A), m(A) and n(A) are IVIFSs and

thus

E(A) = S((m(A), n(A)) = 1

⇐⇒ m(A) = n(A)

⇐⇒ M−
A (x) = N−

A (x), M+
A (x) = N+

A (x) for every x ∈ X

⇐⇒ MA = NA.

(E3) Since MB(x) ≤ MA(x) and NA(x) ≤ NB(x) for MB(x) ≥ NB(x) implies

NA(x) ≤ NB(x) ≤ MB(x) ≤ MA(x). Hence, we get |N−
A (x)−M−

A (x)| ≥ |N−
B (x)−

M−
B (x)| and |N+

A (x) − M+
A (x)| ≥ |N+

B (x) − M+
B (x)|. It means that for every

x ∈ X, Mm(A)(x) ≥ Mm(B)(x), Nm(A)(x) ≤ Nm(B)(x), Mn(A)(x) ≤ Mn(B)(x) and

Nn(A)(x) ≥ Nn(B)(x). Then, we get n(A) ⊂ n(B) ⊂ m(B) ⊂ m(A) and thus we

obtain E(A) = S(m(A), n(A)) ≤ S(m(B), n(A)) ≤ S(m(B), n(B)) = E(B).
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When MA(x) ≤ MB(x) and NA(x) ≥ NB(x) for MB(x) ≤ NB(x), with the

same reason, we obtain E(A) = S(m(A), n(A)) ≤ S(m(B), n(B)) = E(B).

(E4) By the definitions of m(A) and n(A), we have m(A) = m(Ac) and

n(A) = n(Ac). Therefore, E(A) = S(m(A), n(A)) = S(m(Ac), n(Ac)) = E(Ac).

�

Corollary 4.2.7 If S : IVIFS(X) × IVIFS(X) → [0, 1] is a similarity measure,

then E : IVIFS(X) → [0, 1] given by E(A) = S((m(A))c, (n(A))c) is an entropy.

Example 4.2.8 Let X = {x1, x2, · · · , xn}, A, B ∈ IVIFS(X) and

S(A, B) = 1 − 1

4n

n∑
i=1

(|M−
A (xi) − M−

B (xi)| + |M+
A (xi) − M+

B (xi)|

+|N−
A (xi) − N−

B (xi)| + |N+
A (xi) −N+

B (xi)|).

Then

E(A) = S(m(A), n(A))

= 1 − 1

8n

n∑
i=1

((M−
A (xi) −N−

A (xi))
4 + 2(M−

A (xi) − N−
A (xi))

2

+|M−
A (xi) − N−

A (xi)| + (M+
A (xi) − N+

A (xi))
4

+2(M+
A (xi) − N+

A (xi))
2 + |M+

A (xi) − N+
A (xi)|)

is an entropy of IVIFS A.

Example 4.2.9 Let X = [a, b], A, B ∈ IVIFS(X) and

S(A, B) = 1 − 1

4(b − a)

∫ b

a
(|M−

A (x)− M−
B (x)| + |M+

A (x) − M+
B (x)|

+|N−
A (x) −N−

B (x)| + |N+
A (x) − N+

B (x)|)dx,

where M−
A (x), M+

A (x), N−
A (x), N+

A (x), M−
B (x), M+

B (x), N−
B (x) and N+

B (x) are

continuous on X = [a, b] and the integral is Lebesgue integral. Then

E(A) = S(m(A), n(A))
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= 1 − 1

8(b − a)

∫ b

a

(
(M−

A (x) − N−
A (x))4 + 2(M−

A (x) − N−
A (x))2

+|M−
A (x) − N−

A (x)|+ (M+
A (x) − N+

A (x))4

+2(M+
A (x) −N+

A (x))2 + |M+
A (x) − N+

A (x)|
)
dx

is an entropy of IVIFS A.

Theorem 4.2.10 If S : IVIFS(X) × IVIFS(X) → [0, 1] is a similarity measure,

then E : IVIFS(X) → [0, 1] given by E(A) = S(A, Ac) is an entropy.

Proof (E1) If A is a crisp set, then by Definition 4.1.2 of similarity of IVIFSs,

we have E(A) = S(A, Ac) = 0.

(E2) By Definition 4.1.2, we have

E(A) = S(A, Ac) = 1 ⇐⇒ MA = MAc , NA = NAc ⇐⇒ MA = NA.

(E3) Since MB(x) ≤ MA(x) and NA(x) ≤ NB(x) for MB(x) ≥ NB(x) implies

NA(x) ≤ NB(x) ≤ MB(x) ≤ MA(x). It means that we have Ac ⊂ Bc ⊂ B ⊂
A. Therefore, by Definition 4.1.2, we have E(A) = S(A, Ac) ≤ S(B, Ac) ≤
S(B, Bc) = E(B).

When MA(x) ≤ MB(x) and NA(x) ≥ NB(x) for MB(x) ≤ NB(x), with the

same reason, we obtain E(A) ≤ E(B).

(E4) E(A) = S(A, Ac) = S(Ac, A) = E(Ac) is obvious. �

Example 4.2.11 Let X = {x1, x2, · · · , xn}, A, B ∈ IVIFS(X) and

S(A, B) = 1 − 1

4n

n∑
i=1

(|M−
A (xi) − M−

B (xi)| + |M+
A (xi) − M+

B (xi)|

+|N−
A (xi) − N−

B (xi)| + |N+
A (xi) −N+

B (xi)|).
Then

E(A) = S(A, Ac)

= 1 − 1

2n

n∑
i=1

(|M−
A (xi) − N−

A (xi)| + |M+
A (xi) − N+

A (xi)|)
= E1(A)

is an entropy of IVIFS A.
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Example 4.2.12 Let X = [a, b], A, B ∈ IVIFS(X) and

S(A, B) = 1 − 1

4(b − a)

∫ b

a
(|M−

A (x)− M−
B (x)| + |M+

A (x) − M+
B (x)|

+|N−
A (x) −N−

B (x)| + |N+
A (x) − N+

B (x)|)dx,

where M−
A (x), M+

A (x), N−
A (x), N+

A (x), M−
B (x), M+

B (x), N−
B (x) and N+

B (x) are

continuous on X = [a, b] and the integral is Lebesgue integral. Then

E(A) = S(A, Ac)

= 1 − 1

2(b − a)

∫ b

a
(|M−

A (x) − N−
A (x)|+ |M+

A (x) −N+
A (x)|)dx

= E3(A)

is an entropy of IVIFS A.

39



Chapter 5

Subsethood Measure of

Interval-valued Intuitionistic

Fuzzy Sets

The main purpose of this paper is to establish a unified formulation of subset-

hood, entropy and cardinality for IVIFSs. We propose an axiomatic skeleton for

subsethood measures in the interval-valued intuitionistic setting, in order for sub-

sethood to reduce an entropy measure. The notion of average possible cardinality

is presented and its connection to least and biggest cardinalities is established.

Moreover, the entropy-subsethood and interval-valued intuitionistic fuzzy entropy

theorems are algebraically proved, which generalize the Kosko’s result [27, 28, 30]

for fuzzy sets and the Vlachos and Sergiadis’s result [51] for IVFSs. Finally, con-

nections of the proposed entropy measure for IVIFSs with corresponding measures

for fuzzy sets and IVFSs are provided.

5.1 Cardinality for IVIFSs

Szmidt and Kacprzyk [47] defined the concept of cardinality for IFSs. Vlachos

and Sergiadis [51] provided an interpretation of cardinality under a geometrical
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framework and present the concept of average possible cardinality for IFSs. We

extend these concepts in the interval-valued intuitionistic fuzzy setting.

Definition 5.1.1 For a set A ∈ IVIFS(X) the following two cardinalities are

defined:

• the least cardinality or min-sigma-count, which is given by

min
∑

Count(A) =
∑

xi∈X

M+
A (xi) + M−

A (xi)

2
(5.1)

• the biggest cardinality or max-sigma-count defined as

max
∑

Count(A) =
∑

xi∈X

2 − (N+
A (xi) + N−

A (xi))

2
. (5.2)

The cardinality of the IVIFS A is defined as the interval

card(A) =
[
min

∑
Count(A), max

∑
Count(A)

]
. (5.3)

For the smallest IVIFS O, for which MO(x) = [0, 0] and NO(x) = [1, 1] for all

x ∈ X, equivalently to Vlachos and Sergiadis’s definition of cardinality for IFSs,

we call the magnitude M(A) of the vector
−−→OA, using Hamming distance (3.24),

the average possible cardinality of the IVIFS A. The characterization of average

possible cardinality will be justified by the following analysis. The Hamming

distance between two IVIFSs A and B is given by

d′
1(A, B) =

1

4

n∑
i=1

(|M−
A (xi) − M−

B (xi)| + |M+
A (xi) −M+

B (xi)|

+|N−
A (xi) − N−

B (xi)| + |N+
A (xi) − N+

B (xi)|). (5.4)

Definition 5.1.2 For a set A ∈ IVIFS(X) the average possible cardinality M(A)

is defined as

M(A) = d′
1(O, A)

=
1

4

∑
xi∈X

(M−
A (xi) + 1 − N−

A (xi) + M−
A (xi) + 1 − N−

A (xi)). (5.5)
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From (5.5), taking into account (5.3), it follows that M(A) is the midpoint

of the interval [min
∑

Count(A), max
∑

Count(A)]. So, (5.5) encompasses the

notions of least, biggest and average possible cardinalities. Connections between

the aforementioned cardinalities will be discussed and applied in interval-valued

intuitionistic fuzzy decision making problems.

The axiomatic definition of cardinality and average possible cardinality of

IVIFSs can be extended from IFS theory or IVFS theory. Specially, if an IVIFS

A becomes an IFS, then M(A) is average possible cardinality of IFS. To derive

connection between the cardinality of IVIFSs and that of IFSs, for A ∈ IVIFS(X),

we consider the lower IFS AL = 〈M−
A , N−

A 〉 of A and upper IFS AU = 〈M+
A , N+

A 〉
of A. From (5.5) and Definition 18 of [51], we obtain

M(A) =
1

2

∑
xi∈X

(
M−

A (xi) + M+
A (xi)

2
+

2 − N−
A (xi) − N+

A (xi)

2

)

=
1

2

∑
xi∈X

(
M−

A (xi) +
πAL

(xi)

2
+ M+

A (xi) +
πAU

(xi)

2

)

=
M(AL) + M(AU)

2
. (5.6)

Thus, the average possible cardinality of IVIFS A is half of the sum of the average

possible cardinalities of AL and AU . Moreover, from Proposition 20 of [51], we

obtain the following result

M(A) = M(D0.5(AL)) + M(D0.5(AU)), (5.7)

where M(D0.5(AL)) and M(D0.5(AU)) are cardinalities of fuzzy sets D0.5(AL) and

D0.5(AU), respectively.

Motivated by Hamming version of the Pythagorean theorem proposed by

Kosko, Vlachos and Sergiadis [51] provided a geometrical interpretation of av-

erage possible cardinality of IFSs. In order to be consistent with Vlachos and

Sergiadis’s approach, we employ a modified Hamming distance for IVIFSs given

by

d′′
1(A, B) =

1

2

n∑
i=1

(|M−
A (xi) − M−

B (xi)| + |M+
A (xi) − M+

B (xi)|
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+|N−
A (xi) −N−

B (xi)| + |N+
A (xi) − N+

B (xi)|). (5.8)

Using (5.8), a modified definition of average possible cardinality is also obtained

as

M′(A) = d′′
1(O, A)

=
1

2

∑
xi∈X

(M−
A (xi) + 1 − N−

A (xi) + M−
A (xi) + 1 − N−

A (xi)), (5.9)

which will be called pseudo-average possible cardinality, since M′(A) does not

coincide with the midpoint of the interval [min
∑

Count(A), max
∑

Count(A)].

From (5.9), taking into account (5.6), we obtain the following

M′(A) =
M′(AL) + M′(AU)

2
. (5.10)

Figure 5.1: Representation of pseudo-average possible cardinality M′(A) in the

unit square and its geometrical connection with least and biggest cardinalities.

Fig. 5.1 depicts the notion of pseudo-average possible cardinality M′(A) in case

of an IVIFS A in X = {x}. One can observe that the vectors
−−→OAL and

−−−→OAU

can be projected onto the membership and non-membership axes, deriving the
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vectors a1, a2, b1 and b2, respectively, as illustrated in Fig. 5.1. The magnitudes

of projections are

|a1| = μAL
(x) = M−

A (x), |a2| = μAU
(x) = M+

A (x), (5.11)

and

|b1| = 1 − νAL
(x) = μAL

(x) + πAL
(x) = M−

A (x) + πAL
(x), (5.12)

|b2| = 1 − νAL
(x) = μAL

(x) + πAL
(x) = M+

A (x) + πAU
(x).

Moreover, from (5.11) and (5.12) we deduce that the magnitudes of the projec-

tions on the membership axis equal the min-sigma-counts of AL and AU , respec-

tively, in the case of an one element universe X = {x}, while the magnitudes

of the projections on the non-membership axis coincide with the max-sigma-

counts, respectively. Thus, from (5.10), the magnitude |a| of the projection on

the membership axis equal the min-sigma-count of A, while the magnitude |b| of

the projection on the non-membership axis coincides with the max-sigma-count.

5.2 Subsethood for IVIFSs

We axiomatize the properties of subsethood for IVIFSs, as well as extend the

works of Liu and Xiong [34] and Vlachos and Sergiadis [51], in order to estab-

lish a connection between subsethood, entropy and cardinality in interval-valued

intuitionistic fuzzy setting.

Definition 5.2.1 A real function Sh : IVIFS(X) × IVIFS(X) → [0, 1] is called

subsethood measure of IVIFSs if Sh satisfies the following properties:

(SH1) Sh(A, B) = 1 iff A ⊂ B;

(SH2) If Ac ⊂ A, then Sh(A, Ac) = 0 iff A = I;

(SH3) If B ⊂ A1 ⊂ A2, then Sh(A1, B) ≥ Sh(A2, B), and if B1 ⊂ B2, then

Sh(A, B1) ≤ Sh(A, B2).
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Theorem 5.2.2 For two IVIFSs A and B on finite universe X,

Sh(A, B)

= 1 −
∑

xi∈X(max{0, M−
A (xi) − M−

B (xi)} + max{0, M+
A (xi) − M+

B (xi)}∑
xi∈X (2 + (M−

A (xi) − N−
A (xi)) + (M+

A (xi) − N+
A (xi)))

+max{0, N−
B (xi) − N−

A (xi)} + max{0, N+
B (xi) − N+

A (xi)})∑
xi∈X (2 + (M−

A (xi) − N−
A (xi)) + (M+

A (xi) − N+
A (xi)))

(5.13)

is a subsethood measure of IVIFSs.

Proof (SH1) Let A ⊂ B. Then M−
A (xi) ≤ M−

B (xi), M+
A (xi) ≤ M+

B (xi),

N−
A (xi) ≥ N−

B (xi) and N+
A (xi) ≥ N+

B (xi) for all xi ∈ X. Thus, we have

max{0, M−
A (xi)−M−

B (xi)} = 0, max{0, M+
A (xi)−M+

B (xi)} = 0, max{0, N−
B (xi)−

N−
A (xi)} = 0 and max{0, N+

B (xi) − N+
A (xi)} = 0 for all xi ∈ X. Therefore, we

obtain Sh(A, B) = 1. Suppose now that Sh(A, B) = 1. Then,

∑
xi∈X

(max{0, M−
A (xi) − M−

B (xi)}+ max{0, M+
A (xi) − M+

B (xi)}

+max{0, N−
B (xi) − N−

A (xi)} + max{0, N+
B (xi) − N+

A (xi)}) = 0.

Since every term of the sum is non-negative, we deduce max{0, M−
A (xi)−M−

B (xi)}
= 0, max{0, M+

A (xi) − M+
B (xi)} = 0, max{0, N−

B (xi) − N−
A (xi)} = 0 and max{0,

N+
B (xi) − N+

A (xi)} = 0 for all xi ∈ X, which implies that M−
A (xi) ≤ M−

B (xi),

M+
A (xi) ≤ M+

B (xi), N−
A (xi) ≥ N−

B (xi) and N+
A (xi) ≥ N+

B (xi). Hence A ⊂ B.

(SH2) From (5.13) we obtain that

Sh(A, Ac) (5.14)

= 1 − 2
∑

xi∈X(max{0, M−
A (xi) − N−

A (xi)}+ max{0, M+
A (xi) − N+

A (xi)}∑
xi∈X(2 + (M−

A (xi) − N−
A (xi)) + (M+

A (xi) − N+
A (xi))

.

Assume that A = I ⊃ Ac. Evaluating (5.14) for A = I, we deduce that

Sh(A, Ac) = 0. Let us now consider that Sh(A, Ac) = 0 and Ac ⊂ A. Then,

(5.13) yields

∑
xi∈X

[(2 + (M−
A (xi) − N−

A (xi)) + (M+
A (xi) − N+

A (xi))

−2(max{0, M−
A (xi) − N−

A (xi)} + max{0, M+
A (xi) − N+

A (xi)})] = 0. (5.15)
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Since Ac ⊂ A, we obtain that N−
A (xi) ≤ M−

A (xi) and N+
A (xi) ≤ M+

A (xi) for all

xi. Hence max{0, M−
A (xi) − N−

A (xi)} + max{0, M+
A (xi) − N+

A (xi)} = (M−
A (xi) −

N−
A (xi))+(M+

A (xi)−N+
A (xi)) and from (5.15) we derive that

∑
xi∈X(2−(M−

A (xi)−
N−

A (xi))−(M+
A (xi)−N+

A (xi))) = 0. However, 2−(M−
A (xi)−N−

A (xi))−(M+
A (xi)−

N+
A (xi)) ≥ 0 for all xi ∈ X. Thus, every summand should equal zero, that is

2 − (M−
A (xi) − N−

A (xi)) + (M+
A (xi) − N+

A (xi)) = 0 for all xi ∈ X. Therefore,

A = I.

(SH3) Let A1, A2, B ∈ IVIFS(X) such that B ⊂ A1 ⊂ A2. Since B ⊂ A1, we

obtain

Sh(A1, B) =

∑
xi∈X(2 + (M−

B (xi) − N−
B (xi)) + (M+

B (xi) − N+
B (xi)))∑

xi∈X(2 + (M−
A1

(xi) − N−
A1

(xi)) + (M+
A1

(xi) − N+
A1

(xi)))
. (5.16)

Similarly, we get

Sh(A2, B) =

∑
xi∈X(2 + (M−

B (xi) − N−
B (xi)) + (M+

B (xi) − N+
B (xi)))∑

xi∈X(2 + (M−
A2

(xi) − N−
A2

(xi)) + (M+
A2

(xi) − N+
A2

(xi)))
. (5.17)

Moreover since A1 ⊂ A2, we obtain that M−
A2

(xi)−N−
A2

(xi) ≥ M−
A1

(xi)−N−
A1

(xi)

and M+
A2

(xi) − N+
A2

(xi) ≥ M+
A1

(xi) − N+
A1

(xi) for all xi ∈ X. Hence,
∑

xi∈X(2 +

(M−
A1

(xi)−N−
A1

(xi)) + (M+
A1

(xi)−N+
A1

(xi))) ≤ ∑
xi∈X(2 + (M−

A2
(xi)−N−

A2
(xi)) +

(M+
A2

(xi) − N+
A2

(xi))). Thus, from (5.16) and (5.17), we obtain Sh(A1, B) ≥
Sh(A2, B).

Now assume that B1 ⊂ B2. Then M−
A (xi) − M−

B1
(xi) ≥ M−

A (xi) − M−
B2

(xi),

M+
A (xi) − M+

B1
(xi) ≥ M+

A (xi) − M+
B2

(xi), N−
B1

(xi) − N−
A (xi) ≥ N−

B2
(xi) − N−

A (xi)

and N+
B1

(xi)−N+
A (xi) ≥ N+

B2
(xi)−N+

A (xi) for all xi ∈ X. Due to the monotonicity

of the max operator, it follows that

∑
xi∈X

(max{0, M−
A (xi) − M−

B1
(xi)} + max{0, M+

A (xi) − M+
B1

(xi)}

+max{0, N−
B1

(xi) − N−
A (xi)} + max{0, N+

B1
(xi) −N+

A (xi)})
≥ ∑

xi∈X

(max{0, M−
A (xi) − M−

B2
(xi)} + max{0, M+

A (xi) − M+
B2

(xi)}

+max{0, N−
B2

(xi) − N−
A (xi)} + max{0, N+

B2
(xi) −N+

A (xi)}).

Therefore, Sh(A, B1) ≤ Sh(A, B2). �
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Remark 5.2.3 Note that if A = O, (5.13) is undefined, due to the fact that

M(O) = 0. So, by definition, for any IVIFS B, we have that Sh(O, B) = 1, since

O is a proper subset of any IVIFS.

5.3 Relationship between subsethood measure

and entropy of IVIFSs

Generalizing the works of Kosko [27, 28, 30] and Vlachos and Sergiadis [51], we

state the entropy-subsethood theorem for IVIFSs, based on the axiomatic skeleton

(SH1)-(SH3).

Theorem 5.3.1 If Sh : IVIFS(X)× IVIFS(X) → [0, 1] is a subsethood measure,

then E : IVIFS(X) → [0, 1] given by

E(A) = Sh(A ∪ Ac, A ∩ Ac) (5.18)

is an entropy of IVIFS A.

Proof (E1) Let A be a crisp set. Then A ∪ Ac = I and A ∩ Ac = O. Since

A ∩ Ac = (A ∪ Ac)c, we have A ∪ Ac = I ⊃ (A ∪ Ac)c and thus from (SH2) we

obtain E(A) = 0. Suppose that E(A) = 0; that is S(A ∪ Ac, A ∩ Ac) = 0, which

can be written as (A∪Ac, (A∪Ac)c) = 0. Then, since A∪Ac ⊃ A∩Ac = (A∪Ac)c,

by (SH2) we obtain A ∪ Ac = I. Hence A is a crisp set.

(E2) Let us consider that MA(xi) = NA(xi) for all xi ∈ X. Then, A ∪ Ac =

A∩Ac = A = Ac and thus from (SH1), we obtain E(A) = 1. Let us assume that

E(A) = 1; that is S(A ∪ Ac, A ∩ Ac) = 1. Then, from (SH1), we deduce that

A ∪ Ac ⊂ A ∩ Ac. However, for any IVIF set A it hold that A ∪ Ac ⊃ A ∩ Ac.

Hence, A ∪ Ac = A ∩ Ac, which implies MA(xi) = NA(xi) for all xi ∈ X.

(E3) Suppose that A refines B. Then, from Corollary 2.0.10 and (SH3), we

derive that E(A) = S(A ∪ Ac, A ∩ Ac) ≤ S(B ∪ Bc, B ∩ Bc) = E(B). Hence

E(A) ≤ E(B).

(E4) It is evident that E(Ac) = S(Ac ∪ A, Ac ∩ A) = E(A). �
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Remark 5.3.2 Theorem 5.3.1 describes an interesting relationship between the

entropy and subsethood measure for IVIFSs. It states that for IVIFSs the entropy

of (5.18) expresses the degree to which the superset A∩Ac is a subset of its own

subset A ∩ Ac. Evaluating (5.18) for the proposed subsethood measure Sh of

(5.13), yields a new entropy for IVIFSs given by

E(A) =

∑
xi∈X

(
2 − max{M−

A (xi), N
−
A (xi)} + min{M−

A (xi), N
−
A (xi)}∑

xi∈X

(
2 + max{M−

A (xi), N
−
A (xi)} − min{M−

A (xi), N
−
A (xi)}

−max{M+
A (xi), N

+
A (xi)} + min{M+

A (xi), N
+
A (xi)}

)
+max{M+

A (xi), N
+
A (xi)} −min{M+

A (xi), N
+
A (xi)}

) . (5.19)

Since Sh(A, B) satisfies the axiomatic requirements (SH1)-(SH3), by Theorem

5.3.1, E(A) is an entropy measure.

Now, we state a relationship between the entropy and average possible cardi-

nality of IVIFSs, which generalize the works of Kosko [27, 28, 30] and Vlachos

and Sergiadis [51].

Theorem 5.3.3 If M is an average possible cardinality of IVIFSs on X and

A ∈ IVIFS(X), then E : IVIFS(X) → [0, 1] given by

E(A) =
M(A ∩ Ac)

M(A ∪ Ac)
(5.20)

is an entropy of IVIFS A.

Proof For A ∈ IVIFS(X) and its complement Ac, it hold that

A ∪ Ac = {(xi, [max{M−
A (xi), N

−
A (xi)}, max{M+

A (xi), N
+
A (xi)}],

[min{N−
A (xi), M

−
A (xi)}, min{N+

A (xi), M
+
A (xi)}] : xi ∈ X} (5.21)

and

A ∩ Ac = {(xi, [min{M−
A (xi), N

−
A (xi)}, min{M+

A (xi), N
+
A (xi)}],

[max{N−
A (xi), M

−
A (xi)}, max{N+

A (xi), M
+
A (xi)}] : xi ∈ X}. (5.22)
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From the definition of average possible cardinality we obtain that

M(A ∪ Ac) =
1

4

∑
xi∈X

(
2 + max{M−

A (xi), N
−
A (xi)} − min{M−

A (xi), N
−
A (xi)}

+max{M+
A (xi), N

+
A (xi)} − min{M+

A (xi), N
+
A (xi)}

)
(5.23)

and

M(A ∩ Ac) =
1

4

∑
xi∈X

(
2 + min{M−

A (xi), N
−
A (xi)} − max{M−

A (xi), N
−
A (xi)}

+min{M+
A (xi), N

+
A (xi)} − max{M+

A (xi), N
+
A (xi)}

)
. (5.24)

Substituting (5.23) and (5.24) into (5.19) yields (5.20). This completes the proof.

�

5.4 Modified entropy-subsethood theorem

In [47], the intuitionistic fuzzy entropy, as a generalized form of the fuzzy entropy,

was defined as

ESK(A) =
1

n

n∑
i=1

max Count(Ai ∩ Ac
i)

max Count(Ai ∪ Ac
i)

, (5.25)

where n is the cardinality of the finite universe X and Ai denotes the single-

element IFS corresponding to the ith element of the universe X and is described

as Ai = {〈xi, μAi(xi), νAi(xi)〉}. Szmidt and Kacprzyk [47] used the notation

max Count(Ai) instead of max
∑

Count(Ai) to denote the biggest cardinality of

Ai, since Ai contains only one element.

A desirable property an entropy measure should possess, is described as

E(A) =
n∑

i=1

E(Ai), (5.26)

which states that the sum of the entropy of separate of a set is equal to the

entropy of the set. Comparing ESK with the proposed entropy E for IVIFSs, it
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is evident that E does not satisfy (5.26), while ESK does; that is

E(A) �=
n∑

i=1

E(Ai) and ESK(A) =
n∑

i=1

ESK(Ai). (5.27)

In order to overcome the above-mentioned drawback, we can consider the analysis

of Sections 5.2 and 5.3 to be carried out element-wisely, instead of considering

the entire set. Thus, the following modified subsethood measure for IVIFSs is

obtained

S ′
h(A, B)

= 1 − 1

n

∑
xi∈X

(max{0, M−
A (xi) − M−

B (xi)} + max{0, M+
A (xi) − M+

B (xi)}
2 + (M−

A (xi) − N−
A (xi)) + (M+

A (xi) − N+
A (xi))

+max{0, N−
B (xi) − N−

A (xi)} + max{0, N+
B (xi) − N+

A (xi)})
2 + (M−

A (xi) − N−
A (xi)) + (M+

A (xi) − N+
A (xi))

. (5.28)

It is easy to verify that S ′
h also satisfies the axiomatic properties (SH1)-(SH3).

Thus, from the entropy-subsethood theorem for IVIFSs of (5.18), the following

modified entropy measure E ′ is derived

E ′(A) =
1

n

∑
xi∈X

(2 − max{M−
A (xi), N

−
A (xi)} + min{M−

A (xi), N
−
A (xi)}

(2 + max{M−
A (xi), N

−
A (xi)} − min{M−

A (xi), N
−
A (xi)}

−max{M+
A (xi), N

+
A (xi)} + min{M+

A (xi), N
+
A (xi)})

+max{M+
A (xi), N

+
A (xi)} − min{M+

A (xi), N
+
A (xi)}) , (5.29)

which can be re-written as

E ′
IVIFS(A) =

1

n

n∑
i=1

M(Ai ∩ Ac
i)

M(Ai ∪ Ac
i)

. (5.30)

From (5.29) and (5.30), we obtain E ′(A) =
∑n

i=1 E ′(Ai). Note that in (5.30)

the average possible cardinality M is calculated over the single-element universe

X = {xi}, where the set Ai is defined. One may easily observe the connections

of (5.28) and (5.29) with (5.13) and (5.19), respectively. Finally, if A is either

an IVFS such that M+
A = (M−

A )c or a fuzzy set, then (5.29) and (5.30) reduce,

respectively, the following modified entropy measures E ′
IVFS proposed by Vlachos
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and Sergiadis [51] for IVFSs and ESJ proposed by Shang and Jiang [42] for fuzzy

sets

E ′
IVFS(A) =

1

n

n∑
i=1

M(Ai ∩ Ac
i)

M(Ai ∪ Ac
i)

(5.31)

and

ESJ(A) =
1

n

n∑
i=1

μA∩Ac(xi)

μA∪Ac(xi)
. (5.32)
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