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One-Stage Copula Modeling Approaches

for Clustered Multivariate Survival Data

Sook Hee Kwon

Department of Statistics, The Graduate School,
Pukyong National University

Abstract

Copula survival and frailty models have been widely used to
analyze clustered multivariate survival data. The copula models
consist of copula function with marginal distribution. The copula
model is a marginal model, while the frailty model is a conditional
model. In particular, the family of Archimedean copula functions,
a broad class of copulas, is useful for modeling such dependency
among survival data. However, the inference of copula survival
models has been relatively less studied. In general, one- and
two-stage estimation methods have been used for likelihood-based
inference. The two-stage procedure can provide inefficient
estimation results because it estimates the copula's marginal and
association parameters separately. However, a more efficient
one-stage procedure has been mainly developed under a
restrictive parametric assumption of the marginal distribution due
to the complexity of the likelihood with an unknown marginal
baseline hazard function.

In this thesis, we propose a flexible M-spline Archimedes copula
modeling approach using a one-stage likelihood procedure. To
reduce the complexity of the likelihood, the unknown marginal
baseline hazard is modeled based on the cubic M-spline basis
function that does not require a specific parametric form. The
estimation procedure of the proposed method is derived and
theoretical properties are also studied. Simulation results show
that the proposed one-stage estimation method gives a consistent

estimator and also provides more efficient estimation results than

Vi



the existing one- and two-stage methods. The proposed method is
illustrated with three practical data examples.

In this thesis, we also propose a variable selection procedure in
the copula model using a one-stage estimation method based on a
penalized likelihood. The performance of the proposed method is
evaluated through simulation studies, and the usefulness of the

new method is illustrated using clinical data sets.
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I. INTRODUCTION

In survival analysis, clustered survival time data are mainly obtained
by a cluster, such as a center or a subject, and the dependence
among the event times has often been modeled using copula model or
frailty model (Hougaard, 2000; Duchateau and Janssen, 2000). Here,
frailty refers to an unobserved random effect that multiplicatively
affects each individual's hazard rate (Duchateau and Janssen, 2008;
Ha et al.,, 2017). Copula is also one of the convenient ways to
describe the dependence between random variables. According to
Sklar's (1959) theorem, the joint distribution of random variables can
be expressed as a copula function with the marginal distribution of
each random variable. In particular, it is worth noting that the frailty
model is a conditional model, and the copula model is a marginal
model, and so the two models are different (Goethals et al., 2008;
Prenen et al.,, 2017a). Joint survival function of the copula model is
easily constructed by specifying both copula and marginal survival
functions, while that of the frailty model is generally obtained by
computing difficult integrations for frailty term. A basic comparative
study between copula and frailty modeling approaches has been
conducted for correlated or multivariate survival data with the same
or different cluster sizes (Duchateau and Janssen, 2008; Goethals et
al., 2008; Prenen et al., 2017a). However, the estimation for the
copula models was relatively less studied.

In this thesis, we study an efficient estimation method of copula
survival models. For the inference of a copula—based survival model,
one—stage or two—stage estimation method has been generally used.
In previous studies, for copula—based models where maximum

likelihood inference is computationally difficult, the two—stage



estimation procedure has been widely used for survival data with the
same cluster size (Shih and Louis, 1995; Andersen et al.,, 2005).
However, the two—stage estimation procedure is based on a separate
estimation between parameters in marginal distribution and association
parameters in copula function. Thus, the resulting two—stage
estimates may not effectively reflect the dependence information
among survival times, which may be statistically less efficient. In
different types of copula models with bivariate survival data, Marra
and Radice (2020), through simulation studies, pointed out that the
two—stage estimation is inefficient especially with a strong
dependence, but that the one—stage estimation shows a good
performance (Cheng et al,, 2014; Romeo et al.,, 2018). In particular,
Chen et al. (2006) studied a one—stage estimation procedure without
covariates in multivariate survival data. Recently, Prenen et al.
(2017a) proposed a new method of Archimedean copula model for
multivariate survival data with different cluster sizes, as well as
several estimation procedures including one—stage and two—stage
estimation methods.

In the Archimedean copula survival model, the two—stage procedure
provides both parametric and non—parametric (i.e., Breslow's (1972)
method) estimates of marginal baseline hazards. However, for the
one—stage procedure, Prenen et al.'s (2017a) method provides only
parametric approaches (e.g. Weibull, piecewise exponential) for
marginal baseline hazards as the derivation of Breslow's (1972)
estimator 1is difficult due to the complexity of the likelihood
formulation wunder Archimedean copula survival model with an
unknown baseline hazard function. The use of piecewise exponential
for the baseline hazard may give flexible estimation results, but it

requires choosing a suitable partition (i.e. cut—point) of the follow—up



time. Furthermore, the piecewise exponential hazard function is
discontinuous at chosen locations of the partitions. Under these
situations, a spline—based method can be a better alternative owing to
its computational efficiency and flexibility of the model. Overall, the
one—stage approach is preferred and it especially leads to less biased
estimates in small sample cases (Prenen et al.,, 2017a).

Therefore, in this thesis, we propose a flexible parametric
Archimedean copula survival regression modeling approach using a
one—stage likelihood procedure. To reduce the complexity of the full
likelihood, the unknown marginal baseline hazards are modeled based
on a cubic M-—spline basis function (Ramsay, 1988). The estimation
procedure of the proposed method is also derived. The simulation
results demonstrate that the proposed one—stage estimation method
gives a consistent estimator and also provides more efficient
estimation results over existing one— and two—stage methods (Emura
et al.,, 2017, 2019, 2020). In addition, we study the sensitivity of the
proposed method against misspecification of the Archimedes copula
regression model for correlated survival data with different cluster
sizes. The usefulness of this new method is illustrated using three
well—=known clinical data sets, i.e. kidney infection data (McGilchrist
and Aisbett, 1991), chronic granulomatous disease (CGD) recurrence
data (Fleming and Harrington, 1991) and bladder cancer recurrence
data (Oddens et al.,, 2013) from a multicenter clinical trial conducted
by the European Organization for Research and Treatment of Cancer
(EORTC). In addition, our results are compared with existing one—
and two—stage results using the three data sets.

In this thesis, we also propose a variable selection method in a



copula survival regression model with a parametric marginal
distribution using a one—stage estimation method based on penalized
likelihood. Here we also study four penalty functions, i.e. least
absolute shrinkage and selection operator (LASSO; Tibshiran, 1996),
adaptive LASSO (ALASSO; Zou, 2006), smoothly clipped absolute
deviation (SCAD; Fan and Li, 2001) and h-—likelihood (HL; Lee and
Oh, 2014). The new variable selection procedures are derived. Thus
the performance of the proposed methods 1is evaluated using
simulation studies. The usefulness of the proposed method 1is
illustrated using two clinical data sets: the kidney infection data and
the CGD recurrence data.

This thesis is organized as follows. In Chapter 2, we review copula
and frailty survival models and provide background knowledge of this
thesis. In Chapter 3, we propose a one—stage procedure for
estimating regression and association parameters using the M-—spline
method. The results of simulation studies are presented in Chapter 4.
In Chapter 5, the proposed one—stage method is illustrated with three
real—data examples. In Chapter 6, we propose a variable selection
method using a penalized likelihood for the copula model, and also
present the simulation results and real data examples. Discussion is
given in Chapter 7. Finally, technical details including R codes and

further simulation results are given in the Appendix.



II. COPULA AND FRAILTY MODELS

We first review the basic quantities (e.g. survival and hazard
functions) for survival analysis. Let 7 be survival time. We assume
that 7" is an absolute continuous random variable taking on
non—negative value. Therefore, 7 has a cumulative distribution

function F(t), defined as

t

f(r)dk, t=0.

=
1
X
N
IA
m
o\

By the continuity of 7, the probability density function f(t) of 7 is
given by

_ dFt)
)= ~ B

Thus, the survival function S(t) of 7 is defined as
S(t)= P(T>t)=1— Flt)= f Flodi; t =0,
t

which measures the probability that the event does not occur until
time ¢. For examples, S(t) means the probability that the patient
survives beyond time ¢ or the machine does not fail until time ¢.

The hazard function A¢) of 7 at time t is defined by



O =1 Pt < T<t+At|T2t)_l. Pt < T<t+At)
A At AN A (T 1)

B ? Pt<T<t+At)] f@)
T AT=0) (4% At EON

and

Cf 0 ds) 1 dlogSt)
S(t) dt St a

The hazard function shows the instantaneous failure rate at time t if
the event has not yet occurred at that moment. However, care is
necessary in that the hazard function 1s not a probability. The

cumulative hazard function A(t) is defined as
t
AR)= f k) S
0

and
S(t)=exp{—=A(t)}.
2.1. Correlated survival models

In this section, we review the basic concepts and differences
between the copula model and the frailty model which are widely
used in the analysis of correlated survival data.

Let 7} be event time (time—to—event) for the jth (j=1, - n,)

observation of the ith (i=1, ---,¢) cluster (or subject) and let G, be



the censoring time corresponding to 7;;. Here, n; is the cluster size, ¢

is the number of clusters, and N=Y,% n, is the total sample size.

Then the observable random variables are as follows:

Y, =min(7, G

ij ij

) and &, =AT; = C),

where ¢;; is an event indicator function, indicating whether censoring

1s occurred or not.
2.1.1. Copula model

Copula models assume that the joint survival function of the
individuals within a cluster is given by a copula function with the
marginal survival function of each individual (Sklar, 1959). There are
many copula functions describing rich patterns of tail dependence,
ranging from tail independence to tail dependence, and different kinds
of asymmetry. Among all types of copulas, frequently used copulas
include Gaussian copula and T copula from elliptical copula family, and
Gumbel copula, Clayton copula and Frank copula from Archimedean
copula family (Nelson, 1999; Cherubini et al., 2004; Skoglund, 2010).
The forms of these five major copulas and their bivariate copula

functions are shown in Figure 2.1.1.



o FEl pEw 1 v’ —20uv+*
[ Lo | Cylu.v)= [ f expy— = dudv
1 Gausslan § BT | Guv= L S :

2(1-6%
o

Elliptical = ¢~ - ): the inverse function of CDF o( - )

copula
- 2 —(v4+2)/2
L g u®— 20up +0°

v)= [ / ex {1+4— dudv
olu. uz P (1—6)

t;lf + ): the inverse function of CDF ¢/ + )

| Copulas | AFGEOT-I

_______ |l & Gyl v)= expi= [(=1nuw)® + (- Inv)*®]°}. 0< < 1

Archimedean . o | ol
copula i Clayton |l g Golu.v)= {f £ — 1}1.?'8! 6>0

Coluv)=logel 1+ (0*~1)(g°=1)/(6-1)}.6 > 0

Others

Figure 2.1.1. The five primary copulas and their bivariate copulas
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Below we begin with the definition of a copula survival model.

Definition 2.1. Let St;)=P(7;>t;) be a marginal survival function for
the jth event time 7} (j=1,---,J) within a cluster. Then the joint
survival function for J—variable event times 173,--, 7, can be

expressed as a copula survival function with each marginal function as

follows:

S(t], 7tj):P(Tl >t]a ) Tj>tj)

= 09{51<t1)’ o SJ(t.I)}’ (2'1'1)

where Cy(:) is a J—variate copula function which is a distribution

function on [0,1]7—[0,1], and @ is an association parameter that

explains the dependency among survival data.

Definition 2.2. The Archimedean copula model considered in this

thesis is defined as follows (Joe, 1997; Prenen et al., 2017a):
C@(wl, ---,wJ)zwe{zﬁ;l(wl)—f— +w;l<wJ)}, (2.1.2)

where the generator ,:[0,00)—[0,1] is a continuous strictly
monotonic decreasing function, and v,(0)=1, v,(c0)=0 and ' is the
inverse function of . The generator 1, of the Archimedean copula
depends on the association parameter 6.

Consider a vector of p—dimensional covariates, denoted by

)T, corresponding to survival time 7’

Lij = (%’17 T Ligp ij*



Definition 2.3. For the Archimedean copula family Joe, 1997;

Prenen et al, 2017a), the joint survival function of 7, ---, 7, for
cluster ¢ given z; (j=1, - n,) is expressed as
S<ti1’ vt;‘,r“'xij’ Vj) = P(Tn >ty o vTiyh >tin,,‘mi]" Vj)
= Zpe{w;l{sl(tzl‘l'zl)} +w6‘ { ( in; m)}} ? (213)

where Sj(tijlxij) 1s a marginal survival function for T given
Ty (=1, -~ mn), and the generator i, of the Archimedean copula can

be expressed as a Laplace transform of the positive distribution

function Gy(-) with G,(0)=0:

o (R f " exp(— m)dGyly), & = 0. (2.1.4)

Thus, the joint survival function above for cluster i can be rewritten

as

yzwel{ﬁ’ tijleij) } | dGyly)

St oty |1 V) = f exp

= /Hexp[—yd);l{b’ t12,) )] dGy(y) (2.1.5)

In this thesis, we assume that the marginal survival function Sjtlz)

is obtained from the proportional hazard (PH) model:

()= A(texp (2] 8), (2.1.6)

10



where )/ -) is a baseline hazard function, which can be a parametric

or non—parametric form and £= (4, -~,ﬁp)T is a px1 vector of the
regression parameters corresponding to covariates z;. For a
parametric case of Aj(t), let {, >0 be the scale parameter and ¢>0 be
the shape parameter. Then, for example, \(t)=(¢t" ' for the Weibull
distribution and A (t)=¢exp(¢t) for the Gompertz distribution.

Below we consider two popular members of the Archimedean copula

family, 1.e., the Clayton and the GH copulas.

* Clayton copula model
For the Clayton copula model, the generator having a gamma

distribution function Gj( -) with mean 1 and variance 6 is as follows:
Py (s)= (1+6s)" " for 6 >0, (2.1.7)

with @D;l(s): (876—1>/9.

The Clayton copula model has a lower tail dependence and its
Kendall's tau is given by 7=0/(0+2). This means a positive
association among event times when 6 >0 and independence when
0—0. From (2.1.5)-(2.1.7), the joint survival function under the

Clayton copula model is given by an explicit form:

n,; —-1/6
Stis -ty |7 Y5} ;g(tw%})f@_nﬁl . (2.1.8)

where the marginal survival function is given by

"



Sj(%" f’fz'j): eXP{_ A(tij| %)} (2.1.9)

Here, the corresponding marginal cumulative hazard function from

(2.1.6) is given by
At 2)= Ayt )exo(x ). (2.1.10)

and the baseline cumulative hazard function:
&
A= [ Nfwla, (2.1.11)
0

« Gumbel Hougaard (GH) copula
The GH copula's generator with a positive stable distribution

function Gy(+) (Hougaard, 2000; Prenen et al., 2017a; Gumbel, 1960)

1s given by
Yyls)= exp(—s?) for 0<6<1, (2.1.12)

with 1, 1(s)=(~1log 3)1/9.

The GH copula has an upper tail dependence and its Kendall's tau
is given by 7=1—6, which means a positive association among event
times when 6—0 and independence when 6—1. Thus, the joint
survival function under the GH copula model has also an explicit

form:

S(tins sty L35 V)= expl {2 1og5t|x))1/9ﬂ. (2.1.13)

12



2.1.2. Frailty model

Vaupel et al. (1979) introduction the concept of frailty to describe
the impact of individual heterogeneity in univariate (independent)
survival data. Furthermore, Oakes (1989) provided one way to
account for a dependence among survival times within a cluster (or
subject). Generally, frailty is a common unobserved random effect

that affects multiplicative on the hazard function of survival time.

Definition 2.4. Denote by U, the unobserved random effect of the ith
cluster. The frailty model (Duchateau and Janssen, 2008; Ha et al.,
2017) is defined as follows. Given U, =w,; the conditional hazard

function for the survival time is of the form:
Az’j(t ;5 %)Z A(t)exp (-’Bgﬁ)ul (2.1.14)

where )\0( - ) is a specified or unspecified baseline hazard function, and

the frailty U, is assumed to be independently and identically

distributed.
Traditionally it is assumed that E(U)=1 and var(U)=6 for the

gamma frailty model and V,=loglU, ~ M0,6) for the lognormal frailty

model. Note that #€[0,0) means the strength of association among
survival times within a cluster. The 6 in (2.1.8) is an association
parameter of the copula model, whereas the 6 in (2.1.14) indicates
the frailty variance. Afterwards, it can be seen that the two results
are different in (2.1.17). However, when 6 —0, there is no correlation

between survival times, so that the two models give almost the same

13



results (Duchateau and Janssen, 2008; Ha et al., 2017).

Definition 2.5. The marginal joint survival function of 7, -, T |

in;
denoted by S*<tﬂ, st Ix”, Vj), can be derived by Iintegrating out

the frailty from the conditional survival function, S(tﬂ, ot 2 g, V])

277,

Under the conditional independence of 7;, ---, T, given u, (Nielsen et

2

al., 1992), we have

( i1 "7 zn “rzﬂ V] /S 717 & t |$ 77u v]>d%(ui)

—‘/Pexp

UE%{ (til2i)) } dGy(w,), (2.1.15)

where Gy(v,) is the distribution function of the frailty U, and the jth
marginal survival function of the cluster ¢ is as follows:
[l = f Stdo, 1))
(2.1.16)

= Pl Altylz;;)

Here, A(t;lz;)= Ayt )exp(x3) is the cumulative hazard function. Note
that the generator v, of the Archimedean copula is expressed as the

Laplace transform of distribution function G, of frailty.

The two joint survival functions (2.1.5) and (2.1.15) are similar
(Goethals et al., 2008; Prenen et al., 2017a) in that both joint
survival functions take the same copula form. However, in the

following marginal survival functions, it can be seen that the copula

14



and frailty models have major differences;
5 (tijmz‘j);é ‘Sj(tz’j|xij>' (2.1.17)

Note also that the association parameter 6 shows up in S]*( Ixi].) of
(2.1.16), but not in S(-lz;) of (2.1.9). Under the gamma frailty

model with mean 1 and variance 6, the marginal joint survival function

(2.1.15) has an explicit form:

n; —1/6
S*(til’ st |2y V)= J;*S}*<tn|xij)_9_”i+1 . (2118)

where S (t; |z, )= {1+0A(t;|z;)} "/?. Therefore, we can clearly confirm

the difference in (2.1.17) from the two joint survival functions (2.1.8)

and (2.1.16).
2.2. The estimation procedures of copula models

In this section, we study one—stage and two—stage estimation
methods in copula survival model. Let @Z(ﬂT, Ay H)T be the unknown
parameters depending on the two methods, where A,=A4,a) is the

known or unknown baseline cumulative hazard function inherent in the
marginal hazard function, and « is the unknown baseline parameter

dependent on the A,.

(i) One-—stage estimation procedure

First, the one—stage estimation procedure was proposed by Chen et
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al. (2006) and Prenen et al. (2017a) to find the maximum likelihood
estimators (MLEs) of ¢ that maximizes the copula—based

log—likelihood function £(y), as defined in (3.1.3).

Definition 2.6 Under the copula model, the MLEs of g; is defined as

~

o= argmjxéc(gp), (2.2.1)

. A (AT a AT
where argmax denotes the arguments of the maximum. p= (5 s Ay 9)

and a more detailed procedure for finding the MLEs of (2.2.1) can be
found in Prenen et al. (2017a).

Note that gOZ(ﬁT,AO(a),G)T is obtained by solving the following

estimating equations:

_atle)
Uy) = A 0
LB, Ay 0
a0 e 2y
) B 856(5, Ay, 9) _
1.e. Uva(ﬂ,/lo, 9)— T—O,
aﬁc(ﬁ, Ay 0)
Ui A )= =0

(ii) Two—stage estimation procedure

Unlike the one—stage procedure, the two—stage procedure proposed
by Shih and Louis (1995) and Andersen (2005) is an approach for

estimating the unknown parameter ¢ by proceeding the following two
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steps.

Note that in first step, (3,4, are estimated by maximizing the
classical log—likelihood of (3, 4,), denoted by (8, 4,).
In second step, the association parameter 6 is estimated by plugging
the first—step estimates (B, /TO) under the marginal hazard in (2.1.14)

into the following pseudo likelihood:

* a7

O= 0B, A0, 0)= 08, A, O)l,_5 4 7

which is then maximized for the association parameter 6. Thus

two—stage estimator of 8 is obtained by solving

Note that the main difference between the two estimation methods
above 1is to estimate (ﬂ,AO). That 1is, (B,/Alo) is updated when ¢ is
estimated in the one—stage method of (2.2.1), whereas (@, /~10) 1s not

updated at all in the two—stage estimation method because of the use

of £/(6) in the second step.

2.3. Comparison of Copula and Frailty Models

In this thesis, both one—stage and two—stage estimation methods
are used to estimate the copula model. To estimate the frailty model,
we can use marginal likelihood (Nielsen et al., 1992) and hierarchical

likelihood (h—likelihood; Lee and Nelder, 1996; Ha et al., 2017). The
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estimation method’s are applied to the simulation in Section 2.3.3 and

the illustration in Section 2.3.4.

Let cpz(ﬁT, Ay, H)T be the unknown parameters dependent on the two
models. Here A,=A,(a) is the known or unknown baseline cumulative

hazard function in the marginal hazard function, and « is an unknown

baseline parameter that depends on the parametric function A,.

The marginal likelihood method (Nielsen et al., 1992), which is
obtained by integrating the unobserved frailty with the frailty model
inference method, has been commonly used. However, if the frailty
distribution is not a gamma distribution or if the frailty model is
complex, the marginal likelithood method requires a difficult
integration. In order to overcome this problem, the h-—likelihood
method (Lee and Nelder, 1996; Ha et al., 2017) that does not require
integration itself has also been proposed. For detailed explanations of
these two likelihood approaches to the frailty model, we recommend
three books, Hougaard (2000), Duchateau, Janssen (2008), and Ha et
al. (2017).

2.3.1. Comparison of R packages

For the fit of the copula and frailty models for analyzing correlated
survival data, this section considers three recently developed R
packages. For the copula models, we use the Sunclarco R package
(Prenen et al.,, 2017b), and for the frailty model, we use the
frailtyEM R package based on marginal likelihood (Balan and Putter,
2017) and the frailtyHL R package based on h-likelihood (Ha et al.,
2017, 2018).

The characteristics of the three R packages used in this thesis are
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summarized in Table 2.3.1. First, the Sunclarco provides one—stage
and two—stage procedure methods allowing for parametric or
non—parametric (NP) distributions for the baseline hazard function in
the marginal hazard function (2.1.6). For the parametric basis
distribution, we can use the PE (Piecewise Exponential) which is an
exponential distribution with constant hazards within each time
interval and the Weibull distribution. For the non—parametric basis
distribution, the Cox PH model, where the estimated baseline
cumulative hazard is assumed to be a discrete step function, can be
used (Breslow, 1972). For the parameteric estimation methods, we
use the classical likelihood and for non—parametric methods we use

partial likelihood (PL) obtained by eliminating A,.

Secondly, in the case of frailtyEM, the marginal likelihood function
and EM method are used. Here, the non—parametric method is used
for an unknown baseline hazard function, but various parametric
distributions, such as gamma distribution and positive stable
distribution are allowed for the frailty distribution.

Finally, frailtyHL uses a h-—likelihood procedure. For the baseline
hazard function, a non—parametric method is used as in frailtyEM, and
a gamma distribution and a log—normal distribution are allowed for

the frailty distribution.
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Table 2.3.1. R packages for fitting copula and frailty models (Kwon and Ha,
2019)

R package / R function

Model ) Estimation procedure Distributions
(Literature)
Sunclarco / PE
Copula model SunclarcoModel() partial likelihood Weibull ’ NP
(Prenen et al,, 2017b) ’
. frailtyEM / emfrail() . - gamma, PS, IG,
Frailty model (Balan and Putter, 2017) marginal likelihood CP. PVF
Frailty model frailtyHL / frailtyHL() h-likelihood gamma, LN

(Ha et al., 2018)

PE=piecewise exponential ; NP=non-parametric; PS=positive stable; IG=inverse gaussian;
CP=compound Poisson; PVF=power variance function; LN=log-normal.

2.3.2. Data description

(1) Kidney infection data

McGilchrist and Aisbett (1991) presented a bivariate survival data
set which consists of times to the first and second infections (.e.

n; =2 for all i) on the same patient among 38 kidney patients using a

portable dialysis machine. Infections can occur at the location of
insertion of the catheter. The catheter is later removed if any
infections occur, and it can also be removed for other reasons, which
1s regarded as censoring. Here, each survival time is the time to
infection since insertion of the catheter. The survival time from the
same patient may be correlated due to a common patient effect.

Table 2.3.2 describes the kidney data and provides their basic
statistics. Here, in the case of continuous variables, the mean, median
and range were summarized, and in the case of categorical variables,

the frequency was used. In particular, the censoring rate for infection
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time is about 23.7%.

Table 2.3.2. Description and basic statistics of variables for kidney infection

data
Variables Description Basic statistics
. time to infection since insertion of the Meqn: .101'6
time catheter Median: 39.5
Range (2.0~562.0)
. disease type (0=GN, 1=AN, 2=PKD, GN: 18, AN: 24
disease . . .
3=Other) PKD: 8, Other: 26
Mean: 43.7
age age (in years) Median: 45.5
Range (10.0~69.0)
sex sex type (1=male, 2=female) Male: 10, Female: 28
id Subject’ s identification number (¢=38, n; =2)
status event status (0; No infection, 1; infection; censoring rate; about 23.7%)

(2) Recurrent CGD data

The chronic granulomatous disease (CGD; Fleming and Harrington,
1991) data set is from a placebo—controlled randomized trial of
gamma interferon (y—IFN) in CGD. The trial is aimed to investigate
the effectiveness of y=IFN in reducing the rate of serious infections
in the CGD patients. In total, 135 patients from 13 centers (hospitals)
were observed for about 1 year. This data set shows that there are
recurrences of different cluster sizes (i.e. recurrences were 1 to 8
per patient).

Table 2.3.3 describes the recurrent CGD data and provides their

basic statistics as in Table 2.3.2. The censoring rate is about 63%.
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Table 2.3.3. Description and basic statistics of variables for the recurrent CGD

data
Variables Description Basic statistics
) placebo: 120
treatment placebo or gamma interferon HIFN-g: 83
sex sex type (male, female) male : 168
’ female: 35
Mean: 13.7
age age (in years) at study entry Median: 12.0
Range (1.0~44.0)
Mean: 138.1
height height in cm at study entry Median: 140.0
Range (76.3~189.0)
Mean: 39.34
weight weight in kg at study entry Median: 33.40
Range (10.40~101.50)
inherit pattern of inheritance &inked: _131
autosomal: 72
steroids use of steroids at study entry,1=yes 0.03448
oropylac use of prophylactic antibiotics at study 0.8473
entry
o Mean: (69.5, 254.1)
istart, tstop (sttsat;trtarlgtoer)ld of each time interval Median: (140.0, 273.0)
g P Range (76.3~189.0)
id Subject’ s identification number (135)
center enrolling center (NIH:41, Scripps Institute:36, Amsterdam:28, Univ. of
Zurich:21, Mott Children’s Hosp:20, L.A. Children’s Hosp:13, Other:44)
status the event status (0; No infection, 1; infection; censoring; about 63%)

(3) Bladder cancer data

The bladder cancer data set is the multicenter bladder cancer
clinical trial which was conducted by the EORTC (Oddens et al.,
2013). The survival data set used in this study was the duration of
the disease—free interval (DFI): the time (days) to the first
recurrence after surgery (transurethral resection) of 1,066 patients
having bladder cancer from 46 centers in 13 European countries. The

Bacillus Calmette—Guerin (BCG) was given after surgery to try for
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reducing the risk of recurrence. In order to reduce its toxicity, a
disadvantage of BCG, the two different doses (1/3 dose and full
dose), and the durations of maintenance BCG therapy (1 year and 3
years) were assessed. In this thesis, we aim to evaluate the risk

factors for the time to recurrence.

Table 2.3.4. Description and basic statistics variables for the Bladder cancer data

Variables Description Basic statistics
Mean: 1314.39
timeDFI Time to the first recurrence after surgery (days) Median: 93.5
Range (2.0~4743.0)
statusDF | Indicator of the recurrence of the bladder cancer No: 264
(0: No, 1: Yes) Yes: 202
Tridose Amount of yhe dose of BCG (1: 1/3 dose BCG, 1/3 dose BCG: 245
2: full-dose BCQG) full-dose BCG: 221
) ) . ’ . 1 year: 221
Trtduration Duration of maintenance (0: 1 year, 1: 3 years) 3 years: 245
Mean: 75.50
Age Years Median: 75
Range (70~85)
Gender 0: Male, 1: Female e ?’82
Female: 84
Type of the bladder cancer (0: Primary, 1: Primary: 260
TypeBC Recurrent) Recurrent: 206
Mean: 18.14
Tumsize Largest tumor diameter (mm) Median: 15
Range (2~98)
Mean: 2.95
Nbtum No. of tumors Median: 2
Range (1~10)
Tstage T category of the bladder cancer (0: pTa, 1: pT1) pTa.: 279
pT1: 187
. . G1: 122
WHO grade of the bladder cancer (1: G1, 2: G2, )
Ggrade 3 G3) G2: 202
' G3: 142
patientid subject patients number (1,066)
institution 46 institution in 13 European countries.
status 1=the recurrence of the patients (44.3% )

Table 2.3.4 provides a description of the wvariables used in this
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analysis; the censoring variable indicates whether a recurrence was
observed or not, with a recurrence being noted in 44.3% of the

patients, leading to censoring rate 54.7%.

2.3.3. Simulation study

Below are the simulation design and estimation results for

comparing copula model and frailty model for correlated survival data.

First, the method of Prenen et al. (2017a) based on the sampling
algorithm of Marshall and Olkin (1988) was used to generate survival
time data under the Clayton copula model. The correlation parameter
of Clayton copula model is set with a small correlation strength 8=0.1
(i.e. Kendall's tau 7=0.048) and a slightly larger =10 (ie 7=0.333)
respectively. The standard exponential distribution was assumed for
the baseline distribution of the marginal hazard function, and the
standard normal distribution was used for one single covariate x. The
corresponding regression parameter was fixed as =1, the censoring
time was generated from a uniform distribution with about 20%
censoring rate, and the sample size was considered as (¢ n,)=(100,4)
for all i=1, -, q.

Next, in the case of the frailty model, survival time data were
generated under the gamma frailty model using the simulation scheme
by Ha et al. (2019). The frailty U, (i=1, ---,100) was generated from
the gamma distribution considering the mean 1 and the variance
0=0.1 and 1.0. The rest of the design is the same as the design of
Clayton copula model presented above, and the number of replications

of the simulation was 200 times.
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The mean, mean of estimated standard errors(SE), and standard

deviation (SD) were calculated for each of 3 and é respectively.

The one—stage and two—stage copula modeling methods using the
Sunclarco package were performed as shown in Table 2.3.5. As the
baseline distribution of the marginal hazard function (2.1.6), the PE
and Weibull in one—stage and Weibull and NP (Cox) distributions in
two—stage were applied, respectively. For the fit and comparison of
the models, the Clayton copula model was first used as a true model
and two models (Clayton copula model, gamma frailty model) were
fitted. Similarly, the gamma frailty model was taken as a true model

and then the two models were fitted.

The abbreviations and notations used in the tables of this thesis are
as follows:
* Est: estimator
* Mean and SD: mean and standard deviation for estimates

 SE: mean of estimated standard error

The simulation results are shown in Table 2.3.5, and the results are
shown below.
(1) 0#=0.1: When the Clayton copula model is assumed as a true
model, § is estimated well in terms of small bias of [3 in both Clayton
copula and the gamma frailty models. However, 6 is overestimated in
the two—stage method (Weibull and Cox) of Clayton copula model.
Assuming that the gamma frailty is a true model, both 8 and 6 are
well estimated for fitting the gamma frailty model, but fitting Clayton
copula model seems to be relatively slightly underestimated for g.
When the correlation strength is small (.e. 6=0.1), it is observed

that the estimation results of the two models (i.e. Clayton and gamma
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frailty models) are overall well estimated.

(ii) #=1.0: When the Clayton copula model is assumed as the true
model, 8 and 6 could be estimated well in terms of small biases of 3

and 6 in fitting Clayton copula model, but for the gamma frailty
model, 8 is overestimated and # is underestimated. Assuming that the
gamma frailty is a true model, fitting the gamma frailty model is well
estimated, whereas fitting the Clayton copula model tends to estimate
both the one—stage and two—stage estimation for (§ erroneously, and
leads to an underestimated of 6.

Therefore, according to Table 2.3.5 when the correlation strength is
small as #=0.1, it was observed that the estimation results of the two
models are generally good in estimating parameters even if each
model is incorrectly fitted. However, when the correlation strength is
high as #=1.0, the estimation results of the two models are relatively
sensitive to the true model. That is, when 6#=1.0, if both models fit
the true model, they fit well, but if they are incorrectly specified,
both models show a large bias for the estimator. From these results,
it can be seen that when the correlation between the survival data is
small, the two models give similar results. However, when the
correlation is large, the two models give different results; this means
that fitting a proper model for the clustered survival data is important

in model—based data analysis.
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Table 2.35. (g m;)= (100, 4): Simulation results on the estimation for correctly or

incorrectly fitted model when the true model is the Clayton copula model or the
gamma frailty model, respectively; 5=1

Fitted model
Clayton
Gamma frailty
Baseline One-stage Two-stage
hazard function
Weibull PE Weibull Cox frailtyEM frailtyHL
True SE SE SE SE SE SE
model Est| Mean D Mean sD Mean D Mean D Mean D Mean D
0=0.1
A 0.070 0.067 0.070 0.069 0.084 0.076
. 3| 1.013 0.068 1.024 0071 1.014 0.069 1.012 0.072 1.058 0.079 1.064 0.080
ayton
A 0.066 0.066 0.068 0.068 0.061 0.061
9| 0.102 0.065 0.102 0,066 0.188 0.058 0.109 0.058 0.075 0.056 0.087 0.058
- 0.070 0.072 0.072 0.073 0.084 0.077
— 3| 0965 0.073 0.962 0075 0.964 0.075 0.956 0.077 1.010 0.084 1.015 0.084
frailty - 0.065 0.067 0.066 0.058 0.067 0.066
0.095 0.067 0.098 0.069 0.099 0.060 0.102 0.061 0.089 0.062 0.102 0.064
=1
S 0.184 0.187 0.075 0.078 0.100 0.093
o p| 1018 0.197 ocs 0.200 1.008 0.073 1.004 0.078 142 0.097 1.428 0.097
layton
- 0.054 0.067 0.186 0.179 0.153 0.147
g | 1.009 0.064 1.010 0,064 1.001 0.189 0.994 0190 0.742 0156 0.762 0.158
N 0.054 0.055 0.076 0.076 0.091 0.086
Garma 3| 0631 0.064 0.599 0,060 0.620 0.080 0.636 0.078 0.999 0.087 1.004 0.088
fraitty A 0.175 0.190 0.202 0.203 0.189 0.185
9| 0.859 0218 0.943 0214 0.835 0.195 0.922 0.195 0.995 0183 1.022 0.187

2.3.4. Illustration

In this section, we consider three real data sets for the correlated
survival data described in Section 2.3.2. The first data set is kidney
infection data (McGilchrist et al., 1991) with the same cluster size,
and second one is CGD recurrence data (Fleming et al., 1991) with
different cluster sizes. The third one is bladder cancer data (Oddens

et al. 2013; Park and Ha, 2019) from a multicenter clinical trial. As
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shown in the simulation in Section 2.3.3, the Clayton copula model
uses the Sunclarco package, and the gamma frailty model uses two
packages (frailtyHL, frailtyEM). We fit the two models (Clayton
copula and gamma frailty models) on three real data sets and
compare the results. In particular, the estimated regression
coefficients of the two models and the estimated associated
parameters are compared in terms of the validity and sensitivity to

the fitted results of model.

(1) Kidney infection data
Table 2.3.6 shows the results of fitting the Clayton copula model
and the gamma frailty model with Age (age) and Sex (1 = male, 2 =

female) as covariates. Following the results of the Wald test statistic,

(Estimate/SE)?, the Age effect is not significant at the 5% significance
level in both models (Clayton copula model, gamma f{railty model).
However, the Sex effect is crucial in one—stage estimation and
gamma frailty model, whereas it is not significant in two—stage
estimation (Weibull and Cox). The estimated value of the correlation
coefficient 8 is about 0.2 for the Clayton copula between the two
models, and about twice or three times of the gamma frailty model
(i.e. 0.397 in frailtyEM and 0.561 in frailtyHL). The estimate of the
correlation parameter 6 is reflected to the estimates of the regression
parameters (effects of age and sex) in one—stage estimation and the
estimation of gamma frailty model, as shown in the simulation results
in Table 2.3.5 for both models. As a result, there seems to be a
large difference in the absolute values of the regression estimates

between the two models.
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Table 2.3.6. Estimation results of fitting Clayton copula and gamma frailty models

for kidney data

Clayton a rail
" amma frailty
Baseline - _
hazard One-stage Two-stage
function ) . : .
Weibull PE Weibull Cox frailtyEM frailtyHL
Est SE Est SE Est SE Est SE Est SE Est SE
Age 0.003 0.010 0.002 0.010 0.004 0.009 0.002 0.008 0.005 0.012 0.007 0.013
Sex: F | -0.937 0.301  -0.947 0.309 -0.875 0510 -0.829 0483 | -1.553 0.445 -1.691 0.483
0 0.207 0.196 0.205 0.212 0.211 0.473 0.209 0.110 0.397 0.235 0.561 0.280

(2) Recurrent CGD data

Table 2.3.7 shows the results of fitting the two models with Age

(age) and treatment (Treat; O=false drug, 1 ~=IFN) as covariates.

The estimated correlation parameter 0 is around 0.1 in both models,
which is relatively small as compared to the results in Table 2.3.5. In
the in Table 2.3.5, the

parameters of both models are similar. In particular, according to the

estimated regression

simulation results

results of the Wald test statistic, the treatment (i.e. y—IFN) is very

significant at the 5% significance level in both models.

Table 2.3.7. Estimation results of fitting Clayton copula and gamma frailty models
for CGD data

Clayton
’ Gamma frailty
Baseline One-stage Two-stage
hazard
function . ) . .
Weibull PE Weibull Cox frailtyEM frailtyHL
Est SE Est SE Est SE Est SE Est SE Est SE
Age -0.026 0.013  -0.025 0.013  -0.029 0.004  -0.029 0.011 | -0.029 0.011 -0.027 0.014
Treat -1.088 0.261  -1.049 0.258  -1.092 0.049 -1.052 0.138 | -1.114 0.168 -1.130  0.270
0 0.093 0.107 0.110 0.120 0.069 0.000 0.184 0.147 0.184  0.000 0.090  0.109
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(3) Multicenter bladder cancer data
Table 2.3.8 shows the results of fitting the Clayton copula model

and the gamma frailty model for bladder cancer data. The estimated

correlation parameter 0 is 0.093 in the one—stage PE of the Clayton
copula model, which i1s less than 0.114 in frailtyEM and 0.129 in
frailtyHL under the gamma frailty model. Following penalized variable
selection by Park and Ha (2019), significant variables in bladder
cancer data were known as Trtduration, TypeBC, Nbtum, and G1. In
the Table 2.3.8, according to the results of the Wald test statistic,
Trtduration, TypeBC, and Nbtum are very significant at the 5%
significance level for both models. However, the G1 is all significant
except for one—stage Weibull. In addition, Trtdose is significant in

one— and two—stage Weibull and two—stage Cox.
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Table 2.3.8. Estimation results of fitting Clayton copula and gamma frailty models
for bladder cancer data

Clayton
’ Gamma frailty
Basgline One-stage Two-stage
hazard
function ) ) : .
Weibull PE Weibull Cox frailtyEM frailtyHL
Est SE Est SE Est SE Est SE Est SE Est SE

Trtdose | -0.181 0089 -0.144 0.090 -0.148 0064 -0.153 0060 | -0.153 0.093 -0.153  0.093

Trtdu

-0.339 0.090 -0.193 0.091  -0.229 0.083  -0.204 0.079 | -0.198 0.094 -0.197 0.094
—ration
Age -0.003 0.004  -0.002 0.004  -0.001 0.005  -0.003 0.004 | -0.002 0.005 -0.002 0.005

Cender 0.182 0.110 0.167 0.114 0.147 0.152 0.162 0.146 0.180 0.118 0.182  0.118

TypeBC 0.383 0.101 0.375 0.102 0.386 0.080 0.386 0.076 0.391  0.106 0.392  0.106

Tumsize 0.000 0.004 0.002 0.004 ~ -0.001 00004 0.000 0.004 0.003  0.004 0.003  0.004

Nbtum 0.147 0.024 0.129 0.025 0.136 0.032 0.135 0.030 0.137  0.026 0.137  0.026

Tstage 0.206 0.122 0.069 0.125 0.021 0.146 0.038 0.137 0.076  0.128 0.078  0.129

G1 -0.196 0.159  -0.318 0.159  -0.344 0.167  -0.302 0.152 | -0.326 0.164 -0.326  0.164
G2 -0.128 0137  -0.215 0.137  -0.259 0.134  -0.213 0.125 | -0.217 0.805 -0.217  0.142
0 0.168 0.057 0.093 0.052 0.184 0.053 0.183 0.000 0.114  0.064 0.129  0.069
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. ESTIMATION OF COPULA
SURVIVAL MODELS

In this chapter, we propose a one—stage procedure for estimating
the regression and association parameter under copula survival models
in Section 2.1.1. Specifically, we use the M-—spline method for

estimating the baseline hazards.
3.1. Copula—based likelihood

Let 7 and Cj; be the survival time and censoring time for the j

—th observation of the i—th cluster(or subject) (i=1, -, g j=1,--,n,),

respectively. Here, ¢ is the number of clusters, and n, is the number

of individuals in cluster ¢ and NZE?Z n, 1s the total sample size.

The observable random variables in the clustered survival data are;

Y, =min(7}, C

ij j -1

) and 0, =I(T; < C)). (3.1.1)

where Cj7 1s the censoring time corresponding to event time 7. In

this thesis, we assume the following two usual assumptions iIn

survival analysis (Prenen et al., 2017a; Ha et al., 2017).

Assumption (Al): Given covariates z;, T, and C; are conditionally

independent, and pairs (T C;j) are also conditionally independent

i
(Z:L Qs ]:17 anz)

Assumption (A2): Given covariates z; C; are conditionally
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noninformative of 7.

Let Yy be the observed value of Y. According to Prenen et al.
(2017a), the contribution of cluster ¢ to the likelihood function,

denoted by Z,, is obtained from the derivative of the n,—dimensional

17

joint survival function over all uncensored individuals in the cluster %;

d,,.

L=(- { =y (ym "'7yml|m7:j7 Vj), i=1,2, - (3.1.2)

where {6;=1} is the set of uncensored individuals in the cluster 4,

and d_27—15u is the size of this set. We denote the marginal

survival and density functions given «; as S;=9(yjr;) and

fiJ»:fj(yZ-jb:ij): —SZ-;, respectively. Since the generator of Archimedean

Y, is the Laplace transform of G,, from (2.1.5) and (3.1.2) the

copula—based log—likelihood 4, for Vmn, individuals is as follows:

~
Il

0.

K3

M@ IM@

iéza{logfij_logwéf{%1(&,7)}}+10g7/10 [Z% (”)H (3.1.3)

1Ly

where ¢, =logL,. Here, under the marginal hazard model (2.1.6)

)‘ij(ﬂ%): )\U(t)eXp<x,§ﬁ) we have that

Fi = Ml )exp(z26)8, and 8, = exp{— Ay(y,)e™ "}, (3.1.4)
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Definition 3.1. The k—th derivative of the Clayton copula

Yy(s)= (1+6s)" "% is given by

9(5)= (= 1)1 +5)~ VO T (1+a0). (3.1
a=0

In the Clayton copula model with the Weibull marginal hazard model
(2.1.6), the log—likelihood (3.1.3) has a closed form;

‘ —Z Alog A (y,)+ o8 0log S, }

i=1

di—1
-y [(di +9*1)1og(25;;9—ni +1)— 3 log(1 +ze)} , (3.1.6)
j =0

Definition 3.2. The k—th derivative of the GH copula ,(s)= exp(—s)

(0<h<1) is given by

3

d;! b —
yors } : d’)%(s). (3.1.7)

(g

We can show that under the GH copula model, the corresponding

likelihood also has an explicit form:

n; i ’
=3 Z Jlogf,;—log{05,(~ 10%51:.;)11/0})—(2(— 10%57:,7)1/0)

SfS[S S B | o

b=1
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Definition 3.3. Under the Clayton copula model with the Weibull
marginal hazard model (2.1.6), the log—likelihood (3.1.6) has a closed

form:

di—1

q
0= 36, {logh; +04,;}— Y [(d+6 Nog(t+5, )= Dlog(t+ah)|, (3.1.9)
ij i=1 a=0

where A\, =Myl 'exp(zl8), A, =A(y,)exp(a]8)= Ayl exp(z]5)  and

SL=30 (801,

In the copula survival models, two types of estimation methods,
one— and two—stage methods, have commonly been used. Let
ap:(BT7 Ao» 0)T be unknown parameters in the copula survival models.

Here, )\, is the parameter in the baseline hazard ,(t). For example,

X = (65 ¢)" in the Weibull case. The one—stage estimation procedure

(Prenen et al., 2017a) is performed by maximizing /£(p) in (3.1.3). In

other words, one—stage MLEs (;) are defined by

ng: argmax /().
4

(3.1.10)

Here aﬁz (BT, 5\0, é)T reflects the dependence among the survival data.
The two—stage estimation procedure (Shih and Louis, 1995;
Duchateau and Janssen, 2008) consists of two steps. As mentioned in
Section 2.2, the two—stage estimation procedure estimates (ﬁ, /\O)
easily in the first step, but it estimates the association parameter 6

without updating (6, ;) in the second step. The details of one— and
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two—stage estimation procedures will be described in later sections.

3.2. M—spline modeling for baseline hazards

When the functional form of marginal baseline hazard A,(t) in (2.1.6)
is unknown, X(t) (or A,(t)) has originally infinite dimensional

parameters. The estimation of the parameters of interest (5,6) is in

the presence of the nuisance )\0(-) under the copula model (2.1.5)
with (2.1.6). However, the estimation of A (t) by direct maximization
of ¢, in (3.1.3) is difficult because of its dimensional issue. To

overcome this problem, we consider a M-—spline function with finite
dimensional parameters via a computationally efficient M-—spline

method for A\J(t) (Ramsay, 1988; Emura et al., 2017).

Definition 3.4. The cubic M-—spline for the marginal baseline hazard

() is specified as
L
Nt )= Mi(t), (3.2.1)
=1

where h=(hy, -~~,hL)T and h,'s are unknown positive parameters, and
]Wl(t)'s are called the M—spline basis functions (Ramsay, 1988). Here,

the number of bases L also represents the number of free variables.
The M-spline introduced by Ramsay(1988) can be considered as a

normalized of B—spline (basis spline: B(t)) with unite integral within

boundary knots. That is, an M—spline polynomial with order k can be

expressed as
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Definition 3.5. The corresponding baseline cumulative hazard function

and survival functions are, respectively given by

L
At h)= Z;hl],(t), (3.2.2)
and
SiGul)= exp{— éh,],(t)} (3.2.3)
=1

where [(t) is the integration of Mft), called the I-spline (or

integrated spline) basis functions (Ramsay, 1988).

Following the suggestions of Emura et al. (2017, 2019a) and
Commenges and Jacgmin—Gadda (2016), we use the number L=35,
giving a five—parameter spline model with flexible functional forms
(Appendix A). This number allows flexible shapes, including
increasing, decreasing, constant, convex, and unimodal hazard
functions, keeping the over—fitting phenomenon. The characteristics of
the flexible shape's parameter specifications are shown in the

following Example 3.6 (Shih and Emura, 2020).

Example 3.6. For a five—parameter spline model with flexible

functional forms, let

6,=1h: 0=

—3(4hy —3hy + hy)
o) <1f, 6,



Then, for all h >0, I=1,2, ---,5, the proposed spline model yields the

following shapes of hazard functions;

(1) Increasing hazard:
2h, < hy < hy < 2hs, {6(hy—2h,)—9(4h; —3h, + 1y )*/a, (W) }(hEG,)= 0
and [3(h, —hy,)/2—9(hy — 2hy +h, )/ {4ay(h)} | [RE6,) > 0,
(ii) Decreasing hazard:
2hy = hy = Ry = 2hs, {6(hy —2h,)—9(4h, —3h, + 1,/ a, (W) }(hE6,)< 0
and [3(hy—hy,)/2—9(hy —2hy +hy)*/ {4ay(h)} | [(hE6,) < 0,
(iii) Convex hazard:
4h, —3hy+hy =0, hy—2h,+h, =0 and hy—3h, +4h; =0,
(iv) Concave hazard:
4hy —3hy+hy <0, hy—2hs+h, <0 and hy—3h, +4h, <0,

(v) Constant hazard:

where  a,(h)=—12h, +10.5h, —6h;+1.5h, and  a,(h)=—1.5h, +6h,—10.5h, +
12h;.

Definition 3.7. We define the basis functions M(t)'s and Z(t)'s on the
support t& [51, 53], where ¢ is the lower limit, & is the upper limit,
and & =(&§ +&)/2 is the midpoint. In data analysis, one can choose

&= min(%:j) and &§ = max<yij)'
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M-spline bases I-spline bases

Figure 3.2.1. M-spline (left) and I-spline basis functions (right) with =5

Figure 3.2.1 displays the M— and I—spline basis functions with L=5
and the knots & =1, =2, and & =3 (Emura et al, 2017). The
joint.Cox R package (Emura, 2019b) provides M.spline() and
I.spline() functions and allows the calculation of M) and Z(t). In the
univariate PH regression model for independent survival data, the
M-spline method provides essentially the same estimation results for
regression parameters as the semi—parametric Cox's (1972)

regression method using the partial likelihood (Shih and Emura,
2020).

3.3. One-—stage estimation procedure

Now, we propose a one—stage estimation procedure for semi—parametric
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copula model (2.1.5) with unknown marginal baseline hazard using the
M-—spline method proposed by Emura et al. (2017, 2019a). Let
cpZ(ﬁT,hT,H)T be unknown parameters in the copula model. Here,
h=(hy, ---,h5)T is a vector of unknown positive parameters in (3.2.1).

For the existence of MLEs, we add the following assumption.

Assumption (A3): () in (3.1.3) is continuous on £2.

Note here that (ZZ{(BT, I H)TIﬁER?ﬂhi >000=1,2,3,4,5), #>0} is the

parameter space which has finite dimension.

Theorem 3.8. Under the two assumptions (Al) and (A2), the

M-spline—based ~log—likelihood £(p) of ¢=(8%h%0)" under the

Clayton copula model can be expressed as

Llo)= 25, {log Mol B) 28— 0y, h)ezi’%}
ij

di—1

(d +9_1)108(26Xp{0/10(yij; h)ex'"Tﬂ}— n, + 1)— > log(l +ze)] . (33.0)
J =0

-3

i=1

where the M-—spline based hazards Ay(y;;;k) and A(y;;h) are given in

(3.2.1) and (3.2.2), respectively. Here h=(hy, --, hy

5]

)T is a vector of the

unknown positive parameters and ¢ (€f2) is an unknown true

parameter.

Under (A1l)—(A3), the one—stage MLEs c; of ¢ are obtained by

o= arg max/,(¢).
rax! (3.3.2)
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Proof. Under (A1), and (A2), the log—likelihood (3.3.1) based on the

M-spline is constructed by replacing marginal baseline hazard A,(t) in
(3.1.3) and marginal cumulative baseline hazard A,() in (3.1.4) with

the M—spline hazard (3.2.1) and I—spline hazard (3.2.2), respectively.

Under (A3), the MLEs of ¢=(8% h7, 9)" exists (Cox and Hinkley,

~ N ~ ~N\T
1974). Thus, we can find the MLEs ¢=(3% A% 8) by solving the

following three estimating equations simultaneously:

ol (

Sa1Y
o

al (
Cw):m
oh

al (
c@)zo‘
o0

These three estimating equations are non—linear with respect to

o=(6", n’, 0)". ]

Property 3.9.
(i) The estimated SEs of g; denoted by SE(g;) can be obtained

directly because the estimated asymptotic variances of (B,é) are

obtained from the inverse of the observed information matrix

—8260/8¢8¢T|¢:#; (Cox and Hinkley, 1974).

~ N ~ NVA
(ii) The one—stage MLEs cpZ(ﬁT,hT,9> reflects the dependence

among the survival times. Here, (3,0) are parameters of interest, but
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h 1s a vector of nuisance parameters.

For the implementation of (3.3.2), we use the optim() R function,
including the computation of the estimated SEs from the asymptotic
variance above. Here, X/(t;h) and AthR) in (3.3.1) are easily
calculated using the joint.Cox R package. These facts indicate that the
proposed procedure is easily implemented with existing algorithms
such as, the joint.Cox R packages. We have found through simulation
studies in Chapter 4 and illustrations in Chapter 5 that our one—stage
procedure provides a very fast fitting algorithm with the number of
bases L=5 in (3.2.1).

In fact, the proposed one—stage semi—parametric procedure can
also be viewed as computationally efficient sieve maximum likelihood
(ML) approach (Grenander, 1981; Geman and Hwang, 1982). In this
aspect, the proposed procedure may also be constructed by replacing
an infinite—dimensional parameter space for the unknown baseline

hazard function /\O(t) with a finite—dimensional parameter space (.e.
L=5) through the M-—spline function X(t;h) in (3.2.1) (Ma et al.,
2015; Chen et al., 2017).

3.4. Two—stage estimation procedures

Definition 3.10. The two—stage estimation procedure consists of the
following two steps.

First step. The parameters (G, ), where X =X/(-), are easily
estimated using the classical ordinary censored likelihood, assuming
that all individuals as independent according to the marginal hazard

model (2.1.6), where the baseline hazard A\, can be parametric or
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non—parametric.
Second step. The copula association parameter 6 is estimated by

maximizing the pseudo log—likelihood, defined by E:(@),
00)=2(B.X.0), (3.4.1)

where £,(8,\);0) is given by (3.1.3) and
0B 2 0)= (B 2 O) 5, (3.4.2)

Here B and 5\0 are MLEs obtained in the first step, but they are fixed

in the second step for estimating 0, so that they are not updated. In
this regard, in the two—stage estimation, the estimates of the

regression and baseline parameters (5, /\0) are equal to the estimates

arising from the marginal hazard model (2.1.6) which leads to an

independence model with
Stas vt Jy V)= Stalin) - St b)) (3.4.3)

Property 3.11.

(i) The two—stage estimation of (3, ) is based on the marginal

hazard model (2.1.6) with independent event times, rather than the

copula model (2.1.5) allowing for dependency among event times.
(i1) The resulting two—stage estimates (B, 5\0,5> may not effectively

reflect the dependence among the survival data. The likelihood
function produces a direct variance estimate that is not wvalid,

especially when there is a strong dependency among the data.
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In particular, in two—stage semi—parametric estimation (Prenen et
al., 2017a), the regression parameters and baseline hazards are
estimated under the PH model of the marginal Cox in the first step,
giving the same estimates as the generalized estimation equation
(GEE; Liang and Zeger, 1986).

Using the robust sandwich estimator of the GEE approach
introduced by Liang and Zeger (1986), the two—stage method gives a
variance —covariance matrix of estimated regression parameters that
account for the dependency due to clustering. Even the two—stage
method considers within—cluster correlation through robust variance
estimates by the GEE approach, it cannot explicitly explain the

strength of these correlations.

3.5. Comparison of one—stage and two—stage procedures

In this section, we compare the proposed one—stage and the
two—stage estimation procedures.
As mentioned in Section 3.4, the two—stage estimation procedure

consists of two steps. In the first step, (ﬁ,)\o), where the baseline
hazard ), can be parametric or non—parametric, are easily estimated

using the classical right—censored likelihood by assuming all
individuals as independent under the marginal hazard model (2.1.6). In

the second step, the copula association parameter 6 is estimated by
maximizing a pseudo log—likelihood ¢ () in (3.4.1) which is used to
estimate the dependence parameter 6, but when implementing £, (f), it

is not updated (.e. fixed) the estimates of regression parameter and

baseline hazard from the first step. Thus, the two—stage estimation of
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(ﬂ, AO) is based on the marginal hazard model (2.1.6) with independent

event times, not in the copula survival model (2.1.5) allowing for

dependency among event times, so that this pseudo—likelihood
approach using £, (f) may not be effective to the estimation of

unknown parameters. Since our one—stage procedure estimates
simultaneously marginal and dependence parameters using Ec(go) in
(3.3.1), the proposed one—stage estimates including our SEs properly
reflect such dependence.

To evaluate the performance of our proposed method, the simulation
study in Chapter IV is conducted, with the illustration in Chapter V.
As can be seen in these two chapters, we recommend using an
M-spline—based one—step procedure that avoids the potential loss of

efficiency of the two—step estimation.
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Iv. SIMULATION STUDY FOR COPULA
SURVIVAL MODELS

In this chapter, the simulation study is conducted to evaluate the
performance of the proposed one—stage estimation method under the
copula survival model with unknown marginal baseline hazard. We
present simulation results for two classes, depending on whether the

assumed Clayton copula model is correctly specified or misspecified.

4.1. Correctly specified copula models

We first consider the case where the assumed Clayton copula model
1s correctly specified. In order to evaluate the performance of the
proposed one—stage estimation method, the simulation schemes are as
follows. It was performed on a copula model with an unknown
marginal baseline hazard using 500 replications of simulation data.
Event times are simulated from a Clayton copula survival model
(2.1.8) with association parameter at #=0.5, 2 and 8 which give
corresponding Kendall's tau 7=0/(0+2)=0.2, 0.5 and 0.8, respectively.
Here, we consider the marginal PH model with the Gompertz

distribution as the true baseline hazard:

At|z)= exp(¢t + 6, + fz), (4.1.1)

where we set the shape parameter ¢=0.2, 1 and 3; its hazard
exponentially increases with ¢. Data are generated using the sampling
algorithm of Marshall and Olkin (1988) as follows (Prenen et al.,
2017a; Ha et al., 2019). For i=1, ---,q and j=1, ---,n,, define
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A =1(—log U,/ 7). (4.1.2)

where (s)=(1+60s)""" for 6>0, U,/s follow independent and
identically U(0,1) and Z's follow independent and identically gamma
distribution with mean 1 and variance 6. Then survival times 7}'s are

generated from
T, = (1/¢)log{1—¢log A;/exp(6, + Bz,;)}. (4.1.3)

Here, we set a log—scale parameter (,=0 and a regression
parameter 3=1, and a single covariate z; is generated from MO, 1).

We consider the three cases of multivariate cluster sizes:

Case A. The same cluster size: n; =2 ; (g n;)=(50,2), (200,2) for all i.
Case B. The same cluster size: n, =4 ; (50,4), (100,4), (200,4) for all i.

Case C. The different cluster size, based on multicenter bladder

cancer data in Section 5.3.

The corresponding censoring times C;j's are generated from an

exponential distribution having a parameter empirically determined to
achieve approximately about 20% censoring rates.

In this chapter, we first fit simulation model above (i.e. Clayton
model with Gompertz marginal hazard) using the one—stage Clayton
copula method based on a cubic M-—spline. We investigate the
behaviors for the estimates of parameters of interest (3,0). For 500

replications of simulated data, we calculate the mean, standard
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deviation (SD), the mean of the estimated standard errors (SE), and

mean squared error (MSE) for each (B, é) We also compute the
empirical coverage probability (CP) for a nominal 95% confidence
interval (CI) for B and 6, respectively. In addition, we compare the
performance of the proposed method with that of the five existing
methods: one—stage Weibull and partial exponential (PE), two—stage
Weibull, PE, and Cox of Prenen et al. (2017a). Here, the existing five
methods are implemented with the Sunclarco R package by Prenen et

al. (2017b); these two—stage procedures use a sandwich variance

estimator for 3  that takes the dependence into account among
survival times. Now we present the simulation results of three cases

according to the cluster size.

Case A. The same cluster size: n, =2

The simulation results for Case A are summarized in Tables 4.1.1

and 4.1.2.

(i) Table 4.1.1 with a small sample n=(50,2):
Overall the proposed method works well in terms of biases of f

and 6. The estimated SEs of 3 and 0 are also very close to the

corresponding empirical SDs, which are the estimates of the true

{Var(B)}l/2 and {Var(é)}l/z, respectively. As a result, the CPs of the
95% CI match well with the nominal value of 0.95. On the other hand,
all the two—stage estimators show some underestimation for @6,
leading to substantially lower CPs. The one—stage Weibull method is
very sensitive against misspecification of the marginal hazard

distribution, leading that it gives seriously lower performances in

terms of bias, MSE, and CP for (3, ), particularly when ¢ or 6
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increases. The results of the one—stage PE method are compared
with those of the proposed method under a small 6=0.5 (i.e. Kendall's
tau 7=0.2). However, when 6 is large as 6=8 (.e. 7=0.8), the
one—stage PE gives larger variations for 8 (i.e. SD and MSE), leading
to very lower CPs. The trends of very lower performances from the

two—stage Weibull method are similar to the one—stage Weibull

method. The two—stage PE method gives fewer biases for 3, but its

SE is underestimated as compared to the SD, leading to very lower

CPs for 0. Moreover, 6 is seriously downward biased, giving very
lower CPs for 6. As expected from the GEE—-based marginal Cox's
modeling approach (Spiekerman and Lin, 1998), the results of the

two—stage Cox method are comparable to those of the proposed
method in terms of the bias of 3 and CP for S8, but the two—stage

Cox method gives larger variations (i.e. SE, SD, and MSE) for §,

~

especially when 0 increases. In the two—stage Cox method, 6 is again
seriously biased downward, leading to very lower CPs.
(ii) Table 4.1.2 with sample n= (200, 2):

As the sample size increases from n=(50,2) to n=1(200,2), we
observe that our estimators for (B, 6) are consistent and the SE
estimates perform well as judged by the very good agreement
between SE and SD. In particular, the proposed method's CPs for (3,
f) are in the 93% ~96% range in almost all cases.

As shown in the box plots in Figures 4.1.1 and 4.1.2, it is observed
that the performance of the proposed method performs well. In the
case of =2, the simulation results for n=100 and 400 are presented
in Tables D1 and D2 in the Appendix D which are similar to the

previous results.
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Table 4.1.1. (¢ n) = (50, 2): Simulation results on one-stage and two-stage

estimation methods over 500 replications under Clayton copula models with
Gompertz marginal hazard; 20% censoring rate; =1

SE SE SE
0 ¢ Est| Mean MSE CP Mean MSE CP Mean MSE CP
SD SD SD
Bascine. One-stage
hazard function Weibull PE Proposed
R 0.139 0.146 0.146
05 02 g 0.986 0.017 0.968 1.040 0.023 0.946 1.082 0.024 0.934
' 0.131 0.148 0.151
~ 0.319 0.320 0.324
0 0.532 0.095 0.954 0.545 0.139 0.923 0.544 0.130 0.904
0.307 0.370 0.358
N 0.135 0.147 0.148
3 3 0.863 0.037 0.792 1.037 0.024 0.952 1.038 0.021 0.956
0.136 0.152 0.141
~ 0.347 0.328 0.327
0 0.587 0.131 0.946 0.557 0.145 0.925 0.541 0.108 0.950
0.352 0.378 0.327
. 0.098 0.114 0.104
8 02 g3 0.973 0.014 0.868 1.075 0.024 0.886 1.060 0.019 0.8%4
i 0.116 0.134 0.123
~ 1.7%4 2445 2.032
0 7.550 3.441 0916 9.885 14.087 0.936 8.595 5132 0.958
1.801 3.249 2.188
N 0.087 0.112 0.045
3 3 0.803 0.052 0.402 1.068 0.024 0.794 1.027 0.008 0.928
0.116 0.140 0.085
A 1.29 2470 2.056
0 5.263 9.145 0.388 9.967 14.348 0.916 8.723 5.631 0.954
1.288 3.240 2.262
Baseline Two-stage
hazard function Weibull PE Cox
. 0.139 0.126 0.142
05 02 g 0.990 0.018 0.962 1.037 0.024 0.866 1.023 0.021 0.952
0.133 0.152 0.144
R 0.321 0.153 0.197
0 0.454 0.042 0.940 0.433 0.050 0.642 0.449 0.047 0.680
0.201 0.215 0.212
. 0.126 0.127 0.144
3 I3 0.883 0.025 0.660 1.034 0.026 0.882 1.025 0.022 0.940
0.132 0.157 0.147
A 0.404 0.157 0.196
0 0473 0.031 0.800 0.435 0.050 0.666 0.443 0.049 0.676
0213 0.214 0.214
N 0.151 0.140 0.158
8 02 g 1.000 0.027 0.938 1.049 0.034 0.862 1.018 0.028 0.936
0.165 0.179 0.168
A 1.862 1.664 2.030
0 6.135 6.698 0.674 5.285 9.604 0518 5.151 10.482 0.610
1.796 1.496 1.539
~ 0.141 0.141 0.159
3 3 0.883 0.037 0.808 1.049 0.035 0.860 1.018 0.029 0.934
0.153 0.182 0.169
« 1.225 1.583 1.950
0 4.466 14.065 0.234 4.862 11.783 0.440 4732 12.753 0.524
1.256 1.393 1.440
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Figure 4.1.1. (¢, n;)= (50,2): Simulation result of Copula M-spline over 500

replications; 20% censoring rate; dotted ling, true values of B and 6, respectively
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Table 4.1.2. (¢ n) = (200, 2): Simulation results on one-stage and two-stage

estimation methods over 500 replications under Clayton copula models with
Gompertz marginal hazard; 20% censoring rate; g=1

SE SE SE
0 ¢ Est | Mean MSE CP | Mean MSE CcpP Mean MSE CP
SD SD SD
Baseline. One-stage
hazard function Weibul PE Proposed
R 0.067 0.070 0.070
05 02 g 0.967 0.005 0922 1.002 0.005 0.942 1.007 0.005 0.952
' 0.066 0.071 0.069
~ 0.155 0.155 0.153
0 0.521 0024 0964 | 0.521 0.025 0.952 0.512 0.024 0.946
0.153 0.157 0.156
X 0.066 0.070 0.071
3 3 0.838 0030 0308 | 0.99% 0.005 0.946 1.006 0.005 0.952
0.062 0.069 0.069
A 0.173 0.156 0.155
0 0.573 0035 0960 | 0513 0.026 0.950 0.511 0.026 0.950
0.174 0.161 0.160
R 0.047 0.051 0.047
8 02 g3 0.944 0006 0716 | 1.002 0.003 0.922 1.011 0.003 0932
' 0.054 0.056 0.051
« 0.845 0.965 0.943
0 7.170 1.328 0800 | 8221 1.035 0.942 8.147 0.909 0.966
0.800 0.99%4 0.943
. 0042 0.049 0.050
3 5 0773 0055 0010 | 0974 0005 0842 | 1012 0003 0938
0.053 0.062 0.052
N 0.605 0.941 0.946
[ 4902 9924  0.010 | 8049 0.930 0.946 8.136 0.929 0.946
0573 0.961 0.955
Baseline Two-stage
hazard function Weibull PE Cox
N 0.069 0.071 0.073
05 02 g 0.970 0006 0926 | 1.002 0.005 0.934 1.000 0.005 0.938
0.069 0.073 0.073
~ 0.155 0.125 0.132
0 0.501 0017 0972 | 0488 0.018 0.828 0.489 0.018 0.834
0.131 0.132 0.133
. 0.126 0.127 0.144
3 I} 0.883 0025 0660 1.034 0.026 0.882 1.025 0.022 0.940
0.132 0.157 0.147
A 0.404 0.157 0.196
0 0473 0.031 0.800 | 0.435 0.050 0.666 0.443 0.049 0.676
0213 0.214 0214
N 0.075 0.078 0.080
8 02 g 0.977 0.007 0920 | 1.008 0.007 0.928 1.007 0.007 0.942
0.078 0.083 0.083
A 0.968 1.112 1.152
0 6.655 2.501 0690 | 6.667 2616 0.752 6.493 3.053 0.740
0.833 0917 0.886
N 0.070 0.077 0.080
3 G 0.862 0024 0448 | 1.004 0.007 0.936 1.002 0.006 0.944
' 0.070 0.083 0.080
« 0612 1.106 1.189
0 4541 12347 0004 | 6.261 3.903 0.616 6.319 3.623 0.686
0.620 0.939 0.894
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Figure 4.1.2. (g, n;)=(200,2): Simulation result of Copula M-spline over 500

replications; 20% censoring rate; dotted line, true values of G and 8, respectively

Case B. The same cluster size:

y;

4

(i) Table 4.1.3 with a small sample n=(50,4):

As expected,
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the proposed method works well overall.

As the



association parameter 6 and shape parameter ¢ increase in the
one—stage and two—stage Weibull methods, the estimated marginal
hazard parameters are sensitive to the specification of Gompertz
marginal hazard.

e The result of the one—stage PE method gives lower performance
for § as 6 increases, and the two—stage PE method is severely
biased downward toward é, giving very low CPs. The two—stage Cox

method, as 6 and ¢ increase, results in very low CPs for 9.

(ii) Tables 4.1.4 with sample n=1(200,4):

As the sample size increases, the estimates for (5, 9) are
consistent, and in particular, it is observed that the proposed method
performs well with a good agreement between SE and SD. When the
sample size is (200, 4), the CP is in the 95% range in almost all
cases.

As shown in the box plot of Figure 4.1.3—4.1.4, it is observed that
the performance of the proposed method performs better than the
other methods. When 6=2, the simulation results for n=200 and 800
are presented in Tables D3 and D4 of the Appendix D, and are
similar to the previous results.

Summarizing the same cluster size, as compared to the proposed
method, the performances of the existing five methods are generally
lower, especially when 6 increases. In particular, the existing
one—stage methods (Weibull and PE) are sensitive to the estimation
of 3. However, the conventional two—stage methods (Weibull, PE, and
Cox) are sensitive to the estimation of both 3 and 6. However, the
proposed method performs well, and it is also more efficient in terms

of MSE, especially when the intensity of dependence increases.
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Table 4.1.3. (¢, n;) = (50, 4): Simulation results on one-stage and two-stage

estimation methods over 500 replications under Clayton copula models with
Gompertz marginal hazard; 20% censoring rate; g=1

SE SE SE
0 ¢ Est| Mean MSE CP Mean MSE CP Mean MSE CP
SD SD SD
Baseline One-stage
hazard function Weibul PE Proposed
N 0.09 0.100 0.100
05 02 4 0977 0.010 0.930 1.023 0.011 0.942 1.026 0.011 0.938
0.098 0.104 0.104
R 0.179 0177 0.175
0 0.519 0.040 0916 0.508 0.038 0916 0.503 0.037 0.908
0.19 0.194 0.193
N 0.093 0.101 0.101
3 8 0.829 0.038 0518 1.018 0.011 0932 1.025 0.012 0.934
0.095 0.105 0.105
R 0214 0.179 0.177
0 0.610 0.069 0.938 0.509 0.038 0.908 0.504 0.037 0.902
0.240 0.195 0.193
. 0.074 0.080 0.068
8 02 g 0.930 0.013 0.799 1.004 0.009 0.904 1.031 0.007 0.918
0.087 0.097 0.081
~ 1.281 1.480 1.408
0 7.227 1.934 0.884 8433 2559 0.952 8.138 2067 0.956
1.157 1.541 1.432
N 0.059 0.076 0.045
3 I3 0.753 0.068 0.090 0.963 0014 0.794 1.027 0.008 0.928
0.083 0.111 0.085
R 0922 1474 1.419
0 5.050 9.264 0218 8.358 2.369 0.952 8.152 2.124 0.950
0.751 1.498 1.451
Baseline Two-stage
hazard function Weibull PE Cox
~ 0.098 004 0.104
05 02 p 0.991 0.011 0.920 1.031 0.015 0.866 1.019 0013 0.920
0.105 0.120 0.111
A 0.175 0.120 0.146
2] 0.480 0025 0920 0.450 0.031 0.710 0.465 0.025 0816
0.156 0.170 0.153
. 0.091 0.087 0.105
3 I} 0.874 0025 0660 1.023 0013 0.864 1.020 0013 0.924
0.09%6 0.112 0.113
~ 0.19 0.112 0.147
2] 0515 0.025 0.960 0.456 0.025 0.740 0.463 0.024 0.822
0.156 0.152 0.151
N 0.122 0.117 0.132
8 02 f 0.939 0018 0920 1.029 0.023 0.870 1.020 0.021 0.936
0.134 0.150 0.144
~ 1.339 1.327 1.446
/] 6.317 4467 0684 6.057 5639 0.598 5282 8832 0.496
1.279 1.367 1.203
N 0.115 0.112 0.132
3 e 0874 0.031 0.736 1.025 0.022 0.874 1.022 0.022 0.940
0.123 0.146 0.146
R 0.801 1512 1403
0 4424 13485 0048 5.136 9614 0.3%4 4911 10.732 0.406
0.835 1.189 1.091
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Table 4.1.4. (¢ n,) = (200, 4): Simulation results on one-stage and two-stage

estimation methods over 500 replications under Clayton copula models with
Gompertz marginal hazard; 20% censoring rate; g=1

SE SE SE
0 ¢ Est | Mean MSE  CP | Mean MSE CcpP Mean MSE CP
SD SD SD
Baseline. One-stage
hazard function Weibul PE Proposed
R 0.046 0.049 0.049
05 02 g 0.960 0004 0838 | 1.000 0.003 0.950 1.005 0.003 0.942
' 0.047 0.050 0.050
~ 0.089 0.087 0.087
0 0.521 0008 095 | 0.503 0.007 0.960 0.503 0.007 0.954
0.088 0.086 0.083
. 0.046 0.049 0.049
3 3 0.810 0038 0028 | 0.991 0.003 0.950 1.004 0.002 0.946
0.045 0.049 0.049
A 0.107 0.088 0.087
0 0.617 0025 0844 | 0.506 0.008 0.946 0.504 0.007 0.962
0.108 0.087 0.084
. 0.036 0.038 0.030
8 02 g3 0.913 0009 0368 | 0971 0.003 0.824 1.005 0.001 0.944
' 0.042 0.043 0.031
« 0.633 0.705 0.689
0 7.172 1024 0.704 | 8091 0.512 0.950 8.019 0.509 0.948
0.582 0.705 0.714
X 0.029 0.036 0.038
3 3 0.733 0.073 0| 0929 0.008 0.794 1.007 0.001 0.962
0.039 0.050 0.037
o 0454 0.703 0.695
[ 4976 9.269 0| 8008 0477 0.930 8.009 0.510 0.948
0.356 0.691 0.715
Baseline Two-stage
hazard function Weibull PE Cox
N 0.050 0.051 0.053
05 02 g 0.971 0004 0902 | 1.001 0.003 0.922 1.003 0.003 0.942
0.052 0.056 0.056
~ 0.087 0.081 0.085
[ 0.511 0007 0966 | 0.494 0.007 0.928 0.494 0.007 0.930
0.085 0.084 0.084
. 0.046 0.051 0.054
3 I} 0.854 0023 0132 | 099 0.003 0.930 1.003 0.003 0.938
0.046 0.056 0.056
« 0.098 0.081 0.086
0 0.563 0011 0992 | 0493 0.007 0.928 0.492 0.007 0.942
0.086 0.084 0.085
X 0.063 0.065 0.067
8 02 g 0.967 0005 0920 | 1.000 0.004 0.944 1.002 0.004 0.956
0.065 0.065 0.066
A 0.702 0.851 0.874
0 6.799 1818 0600 | 7.026 1.507 0.776 6.820 1.889 0.734
0.615 0.749 0.706
N 0.058 0.065 0.067
3 G 0.855 0024 0284 | 0994 0.004 0.942 1.002 0.004 0.956
' 0.057 0.065 0.066
« 0426 0.828 0.901
0 4.525 12.247 0| 6625 2403 0.594 6.528 2,654 0.602
0410 0.717 0.698
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Figure. 4.1.4 (g, n,)=(200,4): Simulation result of copula M-spline over 500

replications; 20% censoring rate; dotted line, true values of G and 8, respectively

Case C. The different cluster size
For the data generation of the different multivariate cluster size, we
use the multicenter bladder cancer data structure (1,066 patients with

g=46 centers; 55.7% censoring) with different cluster (center) sizes.
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For this purpose, the data are generated from the same simulated

model above, i.e. the Clayton model with the Gompertz hazard
Atlz)=exp(¢t+ 5, +8"),

where ¢=1, 8,=0 and z=(z,, -, 2;,)" is equal to the 10 covariates in

Table 5.3.1 for all 500 replications. Here, we used the proposed
estimates in Section 5.3 as the true parameters, i.e. the true

regression parameters are

B= (Bp ﬂga ﬁga 547 /857 B(j’ ﬂw ﬁga 597 ﬁm)T
= (— 0.146,—0.203,0.002,0.162, 0.382, 0.002, 0.135, 0.056, — 0.344, — 0.233)T,

and the true association parameter is #=0.083. We also consider 6 =2
which gives a larger association. The remaining simulation schemes
are the same as before.

For the simplicity of comparison, the simulated data are fitted using
the four Clayton copula models (one—stage Weibull and proposed
one—stage M—spline, and two—stage Weibull and Cox). The simulation
results are summarized in Table 4.1.5, 4.1.6 and Figure 4.1.5. The
trends of the estimation results are overall similar to those evident in
the previous tables and figures in this Section. That is, the proposed
method still performs efficiently, except for giving a low CP of 6

under a small 6=0.083. As expected, the one—stage and two—stage

Weibull methods lead to lower performances for (B, é) particularly for
a larger association as in §=2. We again find that the estimates of (

of the proposed method are similar to those of the two—stage Cox
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method. However, for (B, é) the Cox method gives larger variations

(i.e. SE, SD and MSE) as well as lower CPs under =2 as shown in

the previous tables and figures in this Section.

Table 4.1.5. Different cluster size: Simulation results on one-stage and two-stage
estimation methods with different cluster size over 500 replications under Clayton

copula models with Gompertz marginal

cancer data structures; 8 =0.083

hazard having the multicenter bladder

One-stage Two-stage
Baseline
hazard function
Weibull Proposed Weibull Cox
PN True | Men S5 MSE CP Men S5 MSE CP | Men S5 MSE CP Men S MSE  CP
014 0077 0080 0074 0078
B, 6 -01% o0 0006 092 09 o 0006 0%R| 018 wi 006 096 0180 o 007 0%%
020 0078 0080 0073 0078
By s 018 oot 0006 0%+ 020 g 0007 0%4| 016 o 006 092 0214 oo 0007 096
-0.00 0004 0004 0004 0004
B, ) -0002 oot 0000 0% 002 oy 000 0% 002 o 0006 094 002 o 00D 092
000 0102 00% 0.100
B, 02| ol %, 000 094 0164 (i 0011 09| 087 (oo 0006 094 067 (i 001 09%
0090 00 0087 0093
By 032 | 03 g 000 090 03D g 008 0%0| 032 o 006 092 03 g 0010 09
0008 0008 0008 0008
Bs 0002 | 0o e 000 098 002 ype 000 088 002 gep 006 08% 00@ o 000 096
0024 0024 0023 0024
B, 015 | 01% o 0001 09% 018 o 0001 09| 0131 o 006 090 01 me 0001 0918
0108 01 0.106 0113
By 00% | 0086 oo 0011 096 007 “gig 001 0| 008 i@ 006 092 008 e 005 09%
034 0140 0143 0137 0147
By A 0314 o 008 096 0F0 e 000 09B| 0B o 0006 092 0¥ (o 006 09U
023 0n9 012 0116 0123
Bio 3 -0207 o 0013 090 028 o 0016 090| 0215, 006 0918 0281 2 008 0916
0081 0067 0019 0081
6 0083 | 0148 0014 0914 000 0001 0904 00 0006 08% 000 0001 07%
0009 0089 0064 008
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Table 4.1.6. Different cluster size: Simulation results on one-stage and two-stage
estimation methods with different cluster size over 500 replications under Clayton
copula models with Gompertz marginal hazard having the multicenter bladder
cancer data structures; 6 =2

One-stage Two-stage
Baseline
hazard function
Weibull Proposed Weibull Cox

Param SE SE SE SE
eter True Mean 3D MSE CP  Mean 3D MSE CP | Mean D MSE CP  Mean D MSE CP

0%

B v | oe 0@ 0@ 0 0 omi 06| 04 X oo 094 0161 o 0006 0%
00% .

B, -me|-om 0 00@ 0%8 026 000 e ogs| -0 X2 os 0o -0z (T2 oos 0ou
00

Gy | @ o 000 068 02 0% om0l -0mR oy 0D 092 002 Oge 000 094
004

B v | oo 009 0 o 007 ooe 0| 0 oo 009 092 O Q0% 00l 0%
004

B om | 0sm . 009 0ED 048 0% oms ows| ox0 (1% 006 096 046 Do 004 0g
0001 00w 0007 0007

fr 02| o0 o 000 0B 00R GOR 000 O0SH| 00R OUF 000 085 000 o0k 000 08t
0012

B, o | ome 00 0% 01 00 omo ooe| om A oo oms ows 0% oo oam
000

By 0B | 0B oo o8 00 OB oo ows| oo UMl oo 0wz oo 4P oo o
007 0.061 0153 0164
0056

, 0 | 0 o0 os2 038 1 oo6  0%4| w om0 Bl oom o

B 0z 000 0s2 08 MUl oms ol 030 (oy 00 00 0 2 00m  0dB
005

028 | 029 006 088 041 9% o oge| 0m1 UL oom oo 021 28 oop  oms

Pro 0076 gg 0% 3 8}% 8%}2
0373 038 062 0376

9 oms | 216 026 0872 2017 0% 090| 165 051 0B 13 0511 0512
0506 035 033 03
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4.2. Misspecified copula models

With a small numerical study, we now investigate the performance
of the proposed method when the assumed Clayton copula model is
misspecified. For this, we consider the Gumbel—Hougaard (GH) copula
as the true copula function. Thus, the event times are simulated from
a GH copula survival model (2.1.3) with association parameter 6=0.6
and 0.3 which give corresponding Kendall's tau (i.e. 7=1—6) 0.4 and

0.7, and Weibull distribution as the true marginal hazard function
At|z)= exp(¢plogt+ 4, + fx),

where we set a shape parameter ¢=1.5 (i.e. an increasing hazard), a

log—scale parameter 3, =0 and a regression parameter [F=0.5.

Similarly to (4.1.3), the survival times 7;;'s are generated from
T;; = {log J,; fexp(By + ) |7,

where ]Wijzw(—log Uij/Zi) with  (s)=exp(—s’) for 0<6<1, and
U, ~iid U00,1) and Z ~iid positive stable distribution with shape
parameter (i.e. association parameter) 6. The sample size is set as
n=(50,4) and n=1(200,4), and censoring rate is 20%. The remaining
schemes are the same as that of Section 4.1.

The simulated data are fitted using the two Clayton copula methods,
1.e. the proposed one—stage M—spline method and the two—stage Cox
method. For the presentation of the degree of association, we here
report the estimation results of Kendall's tau (.e. 7=6/(#+2)), rather

than 6 itself, by the two fitted Clayton copula methods. Here, we
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investigate the behaviors for the estimates of parameters of interest
(3, 0). The simulation results are summarized in Table 4.2.1. Table
4.2.1 shows that for estimation of 3, the proposed method can lead to
a wrong estimate 1if the assumed Clayton copula model is

misspecified, whereas the two—stage Cox method seems to give

consistent and robust estimates. However, in the proposed method 7
is less biased with smaller MSEs, whereas in the Cox method it is
seriously biased downward. Care is necessary for the inference of (
by the proposed method when a copula function, not a marginal

hazard distribution, is misspecified.

Table 4.2.1. Simulation results on 500 replications of fitting the proposed
one-stage M-spline and two-stage Cox methods under Gumbel-Hougaard
(GH) copula models with Weibull marginal hazard; shape parameter ¢=1.5;
20% censoring rate; 3=0.5

Baseline hazard function Proposed Two-stage Cox

(q,n,;) T EST | Mean  SE SD MSE CP | Mean  SE SD MSE CP
(50,4) 04 B 0420 0.066 ~0.087 0.014 0664 | 0.509 0.089 0094 0009 0.940
T 0379 0.063 0.081 0.007 0852 | 0299 0054 0050 0013 0.530
0.7 B 0295 0.038 0.080 0.048 0.132 | 0.508 ~0.093 0.102 0.010 0.912
T 0728 0.041 0.072 0.006- 0.536 | 0541 0.060 0.056 0.029 0.258
(2004) 04 B 0410 0.032 0.040 0010 0250 | 0499 0.045 0049 0002 0.926
T 0375 0.031 0.035 0.002 0834 | 0298 0027 0027 0011 0.048
0.7 [3 0272 0.019 0.058 0.055 0.002 | 0.503 0.047 0049 0.002 0.934
T 0.742 0.021 0.054 0005 0.162 | 0.560 0.029 0.029 0.021 0
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V. ILLUSTRATION FOR COPULA SURVIVAL
MODELS

For the illustration of the proposed method in Section 4.1, we
consider three data sets of correlated survival data. The first data set
is on the bivariate kidney infection survival times (McGilchrist and
Aisbett, 1991). The second one is on the CGD (chronic
granulomatous disease) recurrent infection survival times with
different cluster sizes. The third one is data from a multicenter
bladder cancer trial (Oddens et al. 2013; Park and Ha, 2019). We fit
the Clayton copula survival models with unknown marginal baseline
hazard using the proposed one—stage procedure using the M-—spline

method.

5.1. Kidney infection data

The event times from the same patient can be correlated due to a
shared patient effect. We consider two covariates in the kidney data:
Age and Sex(1=F(female), O=M(male)). The fitted results (i.e. the
estimated regression coefficients and their SEs) of the copula models
via the proposed method are summarized in Table 5.1.1.

The estimates of association parameter 6 in the six methods are all
similar. Note that as mentioned in Section 4.1, the two—stage Cox
estimates and SEs for regression parameters (.e. Age and Sex
effects) are the same as the marginal Cox estimates based on the
GEE approach (Spiekerman and Lin, 1998). Following the Wald test
statistic, the Age effect is not significant at the 5% significance level

for all six methods, but the Sex effect gives different significance.
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The Sex effect is significant according to the one—stage method, but
it 1s not in the two—stage method due to larger SE of Sex effect
which is also confirmed from the simulation results in Tables
4.1.1-4.1.2. It i1s well-known that the Sex effect is significant
according to the results of many literatures (Hougaard, 2000; Ha et
al., 2017; MecGilchrist and Aisbett, 1991). Care is necessary in
conducting the inference using the two—stage method in clustered

survival data.

Table 5.1.1. Kidney infection data: estimation results of Clayton copula models
using the proposed and existing five methods

Basdline One-stage Two-stage
hazard
function Weibull PE Proposed Weibull PE Cox
Parameter Est Est Est Est Est Est
(SE) (SE) (SE) (SE) (SE) (SE)
Age 0.003 0.001 0.002 0.004 0.002 0.002
9 (0.010) (0.010) (0.010) (0.009) (0.006) (0.008)
Sex -0.937 -0.924 -0.890 -0.875 -0.871 -0.829
‘Female (0.301) (0.310) (0.312) (0.510) (0.576) (0.483)
P 0.207 0.202 0.213 0.211 0.196 0.209
(0.196) (0.211) (0.212) (0.473) (0.065) (0.110)

5.2. Recurrent CGD data

The event times for a given patient can be correlated as in the
above kidney infection data. We model the recurrent infection survival

times, with the two covariates: Treatment z; (O=placebo, 1=7—IFN)
and Sex zg (0=M(male), 1=F(female)). Notes that z; is the main

covariate in the clinical trial. The fitted results are given in Table
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5.2.1. Here, the two—stage Cox estimates and SEs for Treatment and
Sex effects are again the same as the marginal Cox estimates by the
GEE approach (Spiekerman and Lin, 1998). All six methods give
similar estimation results for fixed effects. According to the Wald test
statistic, the Treatment effect at the 5% significance level is
significant, but the Sex effect is not. The estimates of 6 are different;
the one—stage estimates are larger than the two—stage estimates due
to underestimation of #; this fact is confirmed from the simulation
results of Tables 4.1.1—4.1.6. The one—stage proposed and PE
methods give similar estimation results; this 1s also confirmed from

the simulation results of Tables 4.1.1-4.1.4.

Table 5.2.1. Recurrent CGD data: estimation results of Clayton copula models
using the proposed and existing five methods

One-stage Two-stage
Baseline

flazard Weibull PE Proposed |  Waeibull PE Cox

Parameter Est Est Est Est Est Est

(SE) (SE) (SE) (SE) (SE) (SE)
Sex -0.189 -0.162 -0.162 -0.272 -0.255 -0.257
‘Female (0.351) (0.353) (0.352) (0.372) (0.384) (0.372)
Treatment -0.828 -0.860 -0.883 -1.025 -1.058 -1.080
: y—IFN (0.281) (0.283) (0.285) (0.302) (0.384) (0.372)
0 1.288 1.492 1.458 0.710 0.786 0.770
(0.586) (0.663) (0.647) (0.385) (0.311) (0.336)

5.3. Multicenter bladder cancer data

We illustrate the proposed method wvia data from a multicenter
bladder cancer clinical trial 30962 conducted by the EORTC (Oddens
et al.,, 2013). The data set used in this study was the duration of
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disease—free interval (DFI): the time (days) to the first recurrence
after surgery (transurethral resection) in 1,066 patients having the
bladder cancer from ¢=46 centers in 13 European countries. Here, the

number of patients per center n, varied from 1 to 63, with mean 23.2

and median 7. Bacillus Calmette—Guerin (BCG) was given after
surgery to try for reducing the risk of recurrence. In order to reduce
its toxicity which is a disadvantage of BCG, two different doses (1/3
dose, and full dose) and durations of maintenance BCG therapy (1
year and 3 years) were assessed. Out of the 1,066 patients, 594
patients (55.7 per cent) without recurrence were censored at the
date of last follow up. In this paper, we aim to find the significant
risk factors affecting the time to recurrence among 9 ninepence
potential prognostic factor. That is, Trtdose, Trtduration, Age, Gender,
TypeBC, Tumsize, Nbtum, Tstage, and Ggrade (G1, G2, G3) which
were considered in Table 5.3.1. In previous analysis (Park and Ha,
2019) of the bladder cancer data using AFT (accelerated failure
time) random—effect model, the four variables (i.e. Trtduration,
TypeBC, Nbtum, and G1) were found to be significant variables.
Table 5.3.1 summarizes the estimation results using the one—stage
and two—stage methods. We observe that our method gives very
similar results to the two—stage Cox models for estimated regression
parameters and 6. We also find that by the Wald test statistic, the
same four variables above are significant at the 5% significance level
for all 6 methods on Table 5.3.1, which confirms the previous results

by Park and Ha (2019).
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Table 5.3.1. Bladder cancer data: estimation results of Clayton copula models using
the proposed and existing five methods

One-stage Two-stage
Baseline hazard
function Weibull PE Proposed Weibull PE Cox
Parameter Est Est Est Est Est Est
(SE) (SE) (SE) (SE) (SE) (SE)
-0.144 -0.145 -0.146 -0.148 -0.150 -0.153
x, : Trtdose
(0.091) (0.090) (0.090) (0.064) (0.037) (0.059)
. -0.225 -0.193 -0.203 -0.229 -0.203 -0.204
x, = Trtduration
(0.092) (0.091) (0.091) (0.083) (0.050) (0.079)
o : Age -0.001 -0.002 -0.002 -0.001 -0.003 -0.003
o (0.005) (0.004) (0.004) (0.005) (0.003) (0.004)
0.142 0.167 0.162 0.147 0.161 0.162
z,: Gender
(0.114) (0.114) (0.114) (0.152) (0.090) (0.146)
0.389 0.375 0.382 0.386 0.386 0.386
x5 : TypeBC
(0.102) (0.102) (0.102) (0.080) (0.048) (0.076)
o 0.001 0.002 0.002 -0.001 0.000 0.000
xg: Timsize
(0.004) (0.004) (0.004) (0.004) (0.002) (0.004)
0.134 0.129 0.135 0.136 0.134 0.135
2+ Nbtum
(0.025) (0.025) (0.025) (0.032) (0.020) (0.030)
0.060 0.069 0.056 0.021 0.042 0.038
xg: Tstage
(0.125) (0.125) (0.124) (0.146) (0.082) (0.137)
ot G -0.334 -0.319 -0.344 -0.344 -0.301 -0.302
o (0.160) (0.159) (0.159) (0.167) (0.095) (0.152)
o G2 -0.240 -0.216 -0.233 -0.259 -0.214 -0.213
v (0.138) (0.137) (0.137) (0.134) (0.077) (0.125)
p 0.068 0.094 0.083 0.063 0.082 0.086
(0.035) (0.052) (0.045) (0.033) (0.030) (0.053)
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VI. PENALIZED VARIABLE SELECTION
IN COPULA SURVIVAL MODELS

In this chapter, we propose a one—stage method for variable
selection in the copula survival models based on penalized likelihood.

For this purpose, we study four penalty functions.
6.1 Construction of penalized likelihood

For wvariable selection of the regression parameters under the
copula survival models, we consider the Clayton copula survival model
having a parametric marginal hazard. For simplicity, we consider only

the Weibull marginal hazard having a scale parameter 6, and a shape

parameter ¢ in Clayton copula model with (2.1.5) and (2.1.6), even
if our variable selection method can be easily extended to other
marginal parametric hazard functions. Here, the Weibull marginal

hazard function is given by
At} = Xg(t) exp (%{5) (6.1.1)

where A (t)=0,0t" " =¢t* 'exp(8,) with 3, =log(d,) is Weibull baseline
hazard. Then, in (6.1.1) the regression parameters 3= (BB - 03,)"

iﬂ,"-,:cijp)T are expressed as (p+1)x1

and the covariates Jﬁij:(l,w
vectors.
For the existence of MLEs, we add the following assumption as in

Assumption (A3).
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Assumption (A4): The penalized log—likelihood £,(6, ¢,0) is continuous
on f2.

Here Q:{(BT, o7 0) 1 BERTY, $>0,0>0} is the parameter space

having a finite dimension.

Proposition 6.1. For the variable selection of regression coefficients f
in the copula survival models, we propose a one—stage estimation

method using the following penalized log—likelihood ép

0.6, 6 0)=C.(5, & 6)—n )1 (15:]). (6.1.2)

k=0

where /, is the log—likelihood in (3.1.3) and J(|-|) is a penalty
function having tuning parameter .

Under (A1), (A2) and (A4), the penalized MLEs (3, &, ) of (3, ¢, 0)

are obtained by maximizing ¢ , l.e.,

(3, QZS, é)z arg max/ .
(5. 0V (6.1.3)

Proof. Because the parameter space (2 is a finite dimension and
Ep(ﬁ, ¢, 0) is continuous on 2, the penalized MLEs (3, & 0) can be

easily obtained by maximizing £, of (6.1.2) (Green, 1987; Ha et al.,

2014). Thus, we can find the MLEs (B, g?), é) by solving the following

three estimating equations simultaneously:
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Here we use the local quadratic approximation (LQA; Fan and Li,

2001) for the derivative of the penalty function J(|3,]) in (6.1.4).
[]

For the penalty function .J(-), we use the four functions, LASSO,
ALASSO (adaptive LASSO), SCAD and HL; the forms are shown in

Table 6.1.1.

Table 6.1.1. Description of the four penalty function

Penalty function Description
LASSO Z(181)= 418l
(Tibshiran, 1996)
ALASSO J,(181) =718l wy, w, = 1/]5]
(Zou, 2006) w, denotes a known weights vector
, (ay—151)
SCAD LD =~1(18l = )+ —————1(B]> ), a=3.7
(Fan and Li, 2001) 2, the positive part of z
_ __ 7 (w—2)logu(|8])  u(lB])
HL 8= L (18D= 557+ e
(Lee and Oh, 2014) u(ﬁ)z [{8?)62/014'(2*(.&))2}1/2“!‘(270))]/4

A good penalty function must produce estimates satisfying the three
oracle properties, which are unbiasedness, sparsity and continuity

(Fan and Li, 2001). The LASSO function is the most usual penalty
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function, but does not satisfy the oracle properties. However, Fan and
Li (2001, 2002) and Zou (2006) have shown that SCAD and ALASSO

perform well with oracle properties, respectively.

HL (©=0) : Ridge HL (0=2) : LASSO SCAD HL (0=30)

/

penaity
penaity

penaity
penaity

Figure 6.1.1. The four penalty functions

The four penalty functions are shown in Figure 6.1.1. In particular,
the HL function changes its shape for the value of w in the HL
penalty function in Table 5.1.1, it becomes a ridge penalty when w=0
and becomes a LASSO penalty when w=2. When w > 2, it becomes an
unbounded form at the origin (Lee and Oh, 2014). The HL (Lee and
Oh, 2014) also satisfies the oracle property and provides shrinkage
estimators when w>2. In this thesis, we use w=30 in the HL of

Table 6.1.1 from the suggestion by Lee and Oh (2014).

6.2 Penalized variable selection procedure

For penalized variable selection of (3, we should estimate

parameters (3, ¢, 0). Below, we show how to estimate these
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parameters using the penalized log—likelihood ¢, in (6.1.2). In this
thesis, we present an efficient profile likelihood procedure which
gives a fast convergence. Given association parameter 6, the penalized

MLEs (3, g?)) of parameters (3, ) in the marginal hazard are obtained

by solving the following estimating equations:

afp 36 o P
o8, o8, ' oB, {,Z]U‘]W ’““}:0’ (b=0,1, - p) (6.2.1)
and
ot, ol
e | (6.2.2)

Note that (6.2.1) is adjusted estimating equations derived by adding
the penalty terms, while (6.2.2) is the same as standard estimating
equation of marginal PH model without penalty. However, with four
penalty functions considered in Table 6.1.1, Jv() in the estimating
equations of B8 of (6.2.1) becomes non—differentiable at the zero, and
does not have continuous second—order derivatives. These problems
lead to difficulties in solving (6.2.1). Therefore, we use the LQA (Fan
and Li, 2001) for such penalty functions. That is, given an initial
value ﬁ<°) close to the true value of (3, the penalty function Jv( -) can

be locally approximated by a quadratic function as
(L8] = (18] )sen (8y) = {J (|ﬁk0)|)/|ﬁk |}ﬁk for g, ~pa. (6.2.3)

According to Ha et al. (2014), the negative Hessian matrix of (83, ¢)
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using £, is given by

a2, . 2%,
T Ly -
H = azfp _ apap” ' apog" (6.2.4)
v 3(ﬁ7 ¢)2 _ 62[(’ _ 82€C ' ' '
a¢oB” o¢*

where X = diag{JW'(

B1)/18,]} is a (p+1)x(p+1) diagonal matrix. The
estimating equations of (6.2.1) and (6.2.2) are solved using the
Newton—Raphson method with A, as in Ha et al.(2014); for the
derivation of H, see Appendix B.

Next, the association parameter 6 is estimated by maximizing a

profile likelihood based on ¢, in (2.1.5). That is, since 6£p/80:
ol /o0 =0, we use a copula—based profile likelihood of # (denoted by

£.,(0))

cp

0,0)=£,(0. 50)-30))= €00, 5,85 _ 510, o s0)- (6.2.5)

Thus, the profile MLE of € is defined by

0=arg max/,,(0),
0

(6.2.6)

and it is obtained by solving the estimating equation (6.2.7)

ol

p —_—
20 1 8=80), 0=d0) = 0: (6.2.7)
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where /@(9) and (Z)(G) are updated in each iteration. The equation

(6.2.7) is also solved by using the Newton—Raphson method with
2 2

oL,/ 00"

In order to select tuning parameter -, we use a type of Bayesian

information criterion (BIC) criterion (Ha et al., 2014),

BIC(y) =—20(3, )+ e(v)log(n), (6.2.8)

where £(5, qﬁ)zzij(éijlog/\ij—/lij) is the ordinary log—likelihood for the
marginal hazard model (2.1.6). Here, e(fy)ztr[(H3+n2w)71Hﬁ] is the

effective number of parameters (Lee and Nelder, 1996; Ha et al.,

2014). Here, Hﬁz—azﬁ/aﬁaﬁTZXTWX, where X is model matrix for j

and W=diag(4,) is weight matrix with Aijz/lo(yij)exp<x§ﬂ). Notice that
A= arg min L, BIC(v)

is computed via a simple grid search method.

6.3 Fitting algorithm for the variable selection

The variable—selection algorithm for the copula models (2.1.5)

having a Weibull marginal hazard is summarized as follows.

e Step O: Find the initial values of (8, ¢, 0).
(i) The initial estimates (3, ¢, 8) of LASSO: use of no—penalty

solutions

(ii)) The initial estimates of ALASSO, SCAD and HL: use of LASSO
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solutions

e Step 1: In the inner loop, we estimate (3, ¢, ).

(i) The estimation of (8, ¢): It is obtained by solving the (6.2.1) and
(6.2.2)

(ii) The estimation of 6: It is obtained by solving equation (6.2.7)

e Step 2! In the outer loop, we select tuning parameter -~ that

minimizes BIC(y) using a grid search method.

After convergence, the estimated SEs of 3 is calculated as follows.
Because this penalized procedure gives the parameter estimation and
variable selection simultaneously, the SEs can be directly obtained via

the Newton—Raphson method. Following Fan and Li(2001) and Ha et

al. (2014), the SEs for (3 are obtained from a sandwich formula:
cov(B)= (Hy+nZ ) "Hy(H, +nZ) ", (6.3.1)

y

where Hj is given by

me |-l
B 6ﬁ65T

6.4 Simulation study for penalized variable selection

2 2, \~1 2
N (.
PP |\ g’ agap’|) *?

The simulation study is demonstrated conducted to evaluate the
performance of the proposed variable selection method in a Clayton
copula model with Weibull marginal hazard using 200 simulation data.

Here, we compare the performances of four variable selection
methods using LASSO, ALASSO, SCAD and HL penalties.
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According to Kwon et al. (2020), the simulation scheme is designed
as follows:

* Event times are simulated from a Clayton copula survival model
(2.1.8) having association parameter 6=0.5 and Weibull marginal
function Stlz)=exp{—t’exp(z78)} with #=0.8 which is decreasing
hazard.

* As in Prenen et al. (2017a) and Ha et al. (2019), data are
generated via the sampling algorithm of Marshall and Olkin (1988) as
described in Chapter IV.

* Following the simulation setting by Fan and Li (2002), the

regression parameters are set to

B= 8y By By B> By Bs: By B» Bs)" = (1,08,0,0,1,0,0,06,0)".  (6.4.1)

"
. . €3
The corresponding covariates are :c=(1,3c ) j
. . . . *
* For multicollinearity among the covariates, =« Z(xl,-~-,m8)T are

generated from an AR(1l) structure having the correlation coefficient
p=005 (Ha et al., 2014; Park and Ha, 2019). Note that z,, x, and z,
are important covariates.

* We use three types of sample sizes: n= )7 ,n, =200, 400, 600 with
(¢:m;)=(100,2), (100,4), (300,2) for all i, where ¢ is the number of
clusters and n, is the cluster size.

* The censoring times C; are generated from an exponential
distribution having a parameter that is empirically determined to

achieve around 20% and 40% censoring rates.
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6.5 Simulation result for penalized variable selection

As the measures for variable selection, we consider the following
quantities:

e C (Here, the best is 5): The average number of regression
coefficients, of the five true zeros that were correctly found to zero.

« IC (Here, the best is 0): The average number of the four true
nonzeros incorrectly set to zero.

* PT: The probability of choosing the true model.

« MSE: The mean squared error; it is defined by (Zhang and Lu,
2007)

~ X T ~
MSE(@)= (3-6) =(5-p),
where X is the population covariance matrix of covariates.

(1) The simulation results are presented in Table 6.3.1. The MSE is
increased as the censoring rate is increased and it is decreased as
the sample size is increased. The ALASSO, SCAD, and HL methods
with oracle properties overall perform better, and are all superior to
LASSO in terms of 'PT' 'C' and 'MSE'. The SCAD and HL methods
are also improved as the sample size ¢ or n, increases, even if the
censoring rate is as high as 40%. Particularly, SCAD offers the

smallest MSE among all the settings, but HL consistently outperforms

ALASSO and SCAD in terms of 'PT' and 'C".
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Table 6.3.1. Simulation results using 200 replications under copula survival models

Censoring 20% Censoring 40%
(a:m;) Method C(5) IC(0) PT MSE C() IC(0) PT MSE
(100,2)  LASSO 1.76 0 0 0.068 1.66 0 0.01 0.084
ALASSO | 3.61 0 0.1 0.042 3.41 0 0.12 0.053
SCAD 4.49 0 0.65 0.030 4.53 0 0.68 0.044
HL 4.67 0 0.71 0.041 4.74 0 0.75 0.050
(100,4)  LASSO 1.70 0 0 0.042 1.81 0 0 0.052
ALASSO | 392 0 0.16 0.018 4.00 0 0.14 0.021
SCAD 455 0 0.73 0.017 4.46 0 0.67 0.023
HL 477 0 0.79 0.017 4.76 0 0.78 0.025
(300,2)  LASSO 1.75 0 0.01 0.027 1.86 0 0 0.032
ALASSO | 392 0 0.12 0.013 3.95 0 0.15 0.015
SCAD 463 0 0.77 0.010 4.59 0 0.77 0.013
HL 470 0 0.73 0.012 476 0 0.78 0.017

(i1) In Table 6.3.2, we also summarize the frequency which each
variable was selected among 200 replications. Four all methods
(LASSO, ALASSO, SCAD, and HL) identify almost correctly the three
important variables (x;, z,, and =) including the intercept .
However, LASSO selects unimportant variables (z,, x;, 5, x5, and xg)
much more often than the other three methods (ALASSO, SCAD, and
HL) in all the settings, as evident in the simulation results of the
frailty models (Fan and Li, 2002; Ha et al., 2014) and AFT

random—effect survival models ( Park and Ha, 2019).
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Table 6.3.2 Simulation results using 200 replications: frequency of variable
selection under copula survival models

Censoring 20%

(‘I: "1’) Method Lo ! Ly T3 Ty Ty L Z7 Ty
(100,2) LASSO 200 200 129 135 200 124 129 200 131
ALASSO 200 200 59 51 200 53 51 200 64

SCAD 200 200 23 23 200 22 17 200 18

HL 200 200 10 9 200 9 9 200 16

(100,4)  LASSO | 200 200 133 131 200 120 134 200 143
ALASSO | 200 200 43 34 200 38 48 200 53
SCAD 200 200 19 20 200 16 15 200 20
HL 200 200 15 5 200 9 9 200 9

(300,2) LASSO | 200 200 126 112 200 137 123 200 153
LASSO | 200 200 41 46 200 52 44 200 34

SCAD 200 200 11 15 200 13 20 200 15
HL 200 200 12 10 200 14 10 200 14
Censoring 40%
(¢n;)  Method i P x, 4 x, x, E z, A

(100,2) LASSO 200 200 131 140 200 135 132 200 131
ALASSO | 200 200 69 51 200 68 62 200 68

SCAD 200 200 19 23 200 17 19 200 16

HL 200 200 10 1 200 10 11 200 11

(100,4) LASSO | 200 200 128 117 200 132 125 200 136
ALASSO | 200 200 38 39 200 37 40 200 47

SCAD 200 200 21 17 200 28 21 200 21

HL 200 200 15 11 200 10 8 200 11

(300,2) LASSO | 200 200 119 117 200 131 128 200 134
ALASSO | 200 200 35 47 200 46 44 200 39

SCAD 200 200 12 16 200 14 19 200 21

HL 200 200 10 14 200 " 11 200 10

(iii) In Table 6.3.3, we summarize the mean, SE, SD, MSE and CP
on Bl, 34 and 37 estimated from 200 simulations, respectively, for

20% censoring rates in the four variable selection methods. The
biases of the SCAD and the HL estimates of (8 are the smallest
compared to those of LASSO and ALASSO. The proposed SE is
consistently underestimated as compared to SD in a smaller sample

n=200 (Hunter and Li, 2005; Ha et al.,, 2014). However, the SEs in
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ALASSO, SCAD and HL are

improved because

such mismatch

between SE and SD is decreased as ¢ or n,; increases to n=400 or

n = 600.

Table 6.3.3. Simulation results

coefficients of B under copula survival

for

coefficients of 3;,, B,and 3; among non-zero

models with Censoring rate 20%

B 1 ﬁ4 57
(¢m;) Method | Mean  SE SO MSE CP | Mean SE SO MSE CP | Mean SE SO MSE CP
True value =038 B,=1 =0.6

(100,2) LASSO | 0713 0067 0073 0015 0715| 0897 0075 0080 0019 0715|0531 0068 0080 0009 0805
ALASSO | 0783 0076 0090 0008 0910| 0984 0006 0085 0010 0885 0546 0.075 0.093 0007 0890

SCAD | 0806 0088 0079 0008 0925| 1.003 008 0091 0008 0920 0603 0072 0071 0005 0940

HL 0805 0082 008 0008 0935( 1.005 0090 0.104 0011 0915| 059 0076 0076 0006 0.950

(100,4) LASSO | 0735 0052 0053 0007 0.715| 0924 0059 0060 0009 0680 0.546 0045 0051 0006 0.710
ALASSO | 0796 0051 0054 0003 0950| 0916 0057 0060 0004 0925| 0589 0.046 0060 0003 0900

SCAD | 0805 0053 0052 0003 0955 1.010 0062 0057 0004 0910( 0597 0047 0050 0003 0840

HL 0799 0052 0057 0003 0925| 1.002 0057 0064 0003 0925| 059 0047 0050 0002 0920

(300,2) LASSO | 0739 0043 0045 0006 0665| 0935 0048 0055 0007 0675| 0548 0.040 0045 0005 0695
ALASSO | 0795 0045 0050 0003 0925| 0995 0049 0053 0003 0950 0596 0.041 0046 0002 0925

SCAD 0802 0045 0046 0002 0955| 1.010 0050 0054 0003 0925| 0602 0042 0044 0002 0930

HL 0800 0045 0050 0002 0925| 0997 0049 0052 0003 0940| 0601 0.042 0046 0002 0920

For the convenience of

(B» By B;) in Table 6.3.3, the estimation results of n=200, n=400, and

identification of the estimation results of

n=0600 in Figure 6.3.1, 6.3.2 and 6.3.3, were visualized as a box plot,

respectively. The results of 200 simulations, under the 40% censoring
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rate, of the four variable selection methods, respectively, presented in
Table D5 and Figures D1, D2, and D3 of the Appendix D. The results
are similar to those using 20% censoring rate.

In summary, we recommend the use of ALASSO, SCAD or HL
method to conduct variable selection of regression parameters in the
copula survival models (2.1.7) since the three methods identify well
both zero and non—zero coefficients.

As shown in the box plots in Figures 6.3.1—6.3.3, the biases of the
estimated regression parameters of ALASSO, SCAD and HL are
generally smaller than those of LASSO.
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Figure 6.3.1. (q, nl-): (100,2): Simulation result of copula variable selection using 200 replications;

20% censoring rate; dotted line, true values of 3,, B,and (3., respectively
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6.6. Illustration for penalized variable selection

(1) Kidney infection data

We consider five covariates in the kidney infection data (in R
package frailtyHL):
* x;0 Age (in years);
* x,¢ Sex (O=male, 1=female);
* z;0 GN (disease type=0);
* z,0 AN (disease type=1);
* z.: PKD (disease type=2).

Here, Age only is standardized because other covariates are all
binary. It is well known that the Sex covariate in the kidney data is
of great importance by various survival modeling approaches (Ha et
al., 2014, 2017). The fitted estimation results (i.e. the estimated
coefficients and their SEs) of the copula survival model via the
proposed penalized method are summarized in Table 6.4.1.

The tuning parameters values selected by BIC in (5.2.8) were
0.035, 0.028, 0.218 and 0.066 for the LASSO, ALASSO, SCAD, and HL,
respectively. The estimates of the Weibull shape parameter ¢ and
association parameter 6 are given by ((25, 0)=(1.034, 0.000), (0.877, 0.143),
(0.937,0.112), (0.995, 0.054) and (0.923, 0.122) for the no—penalty, LASSO,
ALASSO, SCAD and HL, respectively. Four all variable selection
methods (LASSO, ALASSO, SCAD, and HL) select the intercept term,
z,. The covariate Sex and PKD are significant in all five methods.

In Table 6.4.1, the LASSO and ALASSO, respectively, choose four

covariates (z, x,, ¥,, and z;) and three covariates (z,, x,, and z;).
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Notice here that the LASSO selects two more covariates (z; and z,)

which are not significant under no—penalty. This confirms the
simulation results in Table 6.2.1 because the LASSO chooses
unimportant variables more frequently than the other two methods, as
evident in lower ‘C’ values of the LASSO in Table 6.3.1. These
findings indicate that the LASSO might not properly identify important
covariates in the copula survival models, as shown in the frailty
survival models (Ha et al.,, 2014). The SCAD and HL select two

covariates (z, and z;) which are significant under no—penalty (y=0).

Note that the SCAD and HL give high shrinkage estimators that are
beneficial in prediction, even though the SCAD shrinks less than the
HL. It is also known that the LASSO chooses many covariates with

excessive shrinkage in the non—zero regression coefficients (Ha et
al., 2017, Lee et al., 2017).

Table 6.4.1. Kidney infection data: estimated coefficients and standard errors
using copula survival models

Variable No-penalty LASSO ALASSO SCAD HL
(SE) (SE) (SE) (SE) (SE)
r: Intercept -2.093 -1.632 -1.916 -1.910 -1.803
(0.721) (0.352) (0.488) (0.624) (0.456)
. Age 0.029 0.001 0 0 0
(0.165) (0.003) (0) (0) (0)
W Sex -1.663 -1.429 -1.425 -1.565 -1.431
? (0.367) 0.217) (0.268) (0.345) (0.259)
. GN 0.051 0 0 0 0
s (0.408) 0) 0) (0) 0)
. AN 0.538 0.189 0.109 0 0
! (0.396) (0.131) (0.068) (0) 0)
o KD -1.388 -0.718 -0.952 -1.413 -0.962
§ (0.601) (0.246) (0.335) (0.513) (0.329)
b 1.034 0.877 0.937 0.995 0.923
0 0.000 0.143 0.112 0.054 0.122
BIC 691.042 680.744 679.826 681.192 679.895
tuning 0 0.035 0.028 0.218 0.066
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In addition, it is interested to select a proper variable selection
model using the BIC in (6.2.8). Note that the smaller value of BIC
indicates a better model. Thus, the BIC in Table 6.4.1 chooses the

ALASSO and HL models among the four variable selection models.

(2) Recurrent CGD data

We consider eight covariates in the CGD data (in R package

frailtyHL):

* z, treatment (O=placebo, 1=~7—IFN);

* x,' pattern of inheritance (O=autosomal recessive,
1=X-linked);

* x3' age (in years);

* z,' height (in cm);

+ x; weight (in kg);

* x4 the use of corticosteroids at the time of study entry
(O=no, l=yes);

* z,i the use of prophylactic antibiotics at the time of study entry
(O=no, 1l=yes);

* a3 sex (O=male, 1=female).

Notice that =z, is the main covariate in this clinical trial. Here, the
three covariates (age z;, height z,, and weight z;) are standardized

because other covariates are all binary. The fitted estimation results
of the Clayton copula models using the proposed penalized method are
presented in Table 6.4.2.

In Table 6.4.2, the selected values of the tuning parameters 7y by

89



BIC were, respectively, 0.016, 0.019, 0.189 and 0.191 for LASSO,
ALASSO, SCAD and HL. The estimates of ¢ and 6 are given by
(¢, 6)=(1.003, 0.980),  (0.830, 1.026),  (0.937, 1.344),  (0.978, 1.376)  and
(0.937, 1.323) for no—penalty, the LASSO, ALASSO, SCAD and HL,
respectively. All four variable selection methods (i.e. LASSO,
ALASSO, SCAD and HL) also choose the intercept term (z,), as
shown in Table 6.4.2. The LASSO, ALASSO and SCAD select three
covariates (z;, x; and x,), three covariates (x;, z; and z;), and two
covariates (=, z4), respectively. Particularly, the LASSO chooses z;
which 1s non-—significant under no—penalty, whereas the ALASSO
selects three covariates (z;, z; and z;) which are significant under
no—penalty. However, HL selects only the main covariate (z;) which
is also confirmed in the variable selection of the frailty survival model
(Ha et al., 2014). We again confirm that the HL shrinks more than
the SCAD does. From Table 6.4.2, we also find that selections of
covariates of the proposed method are similar to those of the Ha et
al.'s (2014) method, as shown in Table 6.4.1.

Furthermore, the BIC in Table 6.4.2 selects the HL model as a
proper model for the CGD data, which confirms good performances of

the HL in the simulation results of Table 6.3.1.
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Table 6.4.2. CGD infection data: estimated coefficients and standard errors
using copula survival models

Variable No-penalty LASSO ALASSO SCAD HL

(SE) (SE) (SE) (SE) (SE)
2y Intercept -5.922 -4.856 -5.900 -6.065 -5.821
(0.587) (0.402) (0.485) (0.519) (0.483)
r: Gamma-IFN -0.870 -0.666 -0.520 -0.816 -0.726
(0.266) (0.189) (0.161) (0.258) (0.222)
Xyt Inheritance 0.542 0 0 0 0
(0.263) ) 0 0) 0
Ty Age -0.795 -0.183 -0.124 0 0
(0.336) (0.093) (0.076) 0 (0)
2y Height 0.173 0 0 0 0
(0.319) (0) (0) (0) (0)
. ) 0.339 0 0 0 0
o Weight (0.348) 0 0) 0) 0)
25 Steroids 1.567 0 0 0.896 0
(0.590) 0 0 (0.451) (0)
z Prophylac -0.434 -0.384 0 0 0
(0.305) (0.166) (0) (0) (0)
g Sex -0.578 0 0 0 0
(0.385) (0) (0) (0) (0)
P 1.003 0.830 0.937 0.978 0.937
7 0.980 1.026 1.344 1.376 1.323
BIC 1099.521 1080.299  1076.776 1079.694 1075.524
tuning 7y 0 0.016 0.019 0.189 0.191
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VI. DISCUSSION

It is well known that optimization for a copula—based full likelihood
involving an unknown baseline hazard function in an
infinite —dimensional parameter space is very difficult. In order to
overcome this problem, we reduced the infinite dimension to a finite
dimension by approximating the baseline hazard to the M—spline basis
function with the number L =5 of bases, regardless of sample size or
censoring rate. In this consideration, we proposed a one—stage
M-spline copula modeling approach which effectively reflects on the
dependence among survival times.

In copula models, the two—stage likelihood approach estimates
separately the marginal parameters and the association parameter,
which leads to an inefficient inference result. However, the use of
one—stage likelihood approach gives an efficient inference result by
jointly estimating both parameters (Marra and Radice, 2020; Cheng et
al,, 2014; Romeo et al., 2018).

We have first shown that the proposed one—stage M-—spline method
performs well via simulation study and three real data sets. In
particular, we have found through simulation study that the proposed
method gives similar estimation results with the one—stage PE
method when the strength of association is not high. However, our
method provides better estimation results when the strength of
association is high because the one—stage PE method gives larger
variations (.e. SD and MSE) for estimated regression parameters,
leading to lower CPs. The remaining methods (one—stage Weibull, and
two—stage Weibull, PE and Cox) have shown inferior performances in
the estimation of S and/or 6. The implementation of proposed method

1s simple and gives a fast fitting algorithm for clustered copula
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regression models by using the five basis functions in the cubic
M-—spline.

As shown in the simulation study, the proposed one—stage spline
method is robust against misspecification of baseline hazard due to
the flexibility of the M-—spline to the underlying hazard function.
However, we have also found via simulation study that when the
assumed Clayton copula model is incorrectly specified as
Gumbel—Hougaard copula model, the estimated regression parameters
B by the proposed method are biased. Care is necessary for the
inference of (¢ by the proposed method when a copula function is
misspecified.

For the wvariable selection procedure in copula models, we also
proposed a one—stage copula estimation method based on the
penalized likelihood. We have demonstrated via simulation studies and
two real data sets that the proposed procedure with SCAD or HL
penalty works well. In particular, we have found that the HL method
gives better performance in terms of measures of variable selection.
The advantage of our variable selection method is that it can be
easily implemented by a slight modification to the existing likelihood
estimation procedures (Ha et al., 2019).

In this thesis, we have proposed one—stage M-—spline and variable
selection methods under Clayton copula models only. For further
extensive study, it would be necessary to extend the proposed
method to other parametric copula (e.g. Gumbel—Hougaard) or robust
copula function (Gribkova and Lopez, 2015). Another extensions to
clustered competing risks (Emura et al., 2020) or interval censoring
(Sun and Ding, 2019) would be also an interesting future work. In
addition, developing a penalized variable selection using a M-—spline

copula modeling approach would be also an interested topic.
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Appendix A. M—Spline Basis Functions

This appendix defines the M-—spline basis functions used iIn
NBR)= D10 hM(t)=h"M(t). For a knot sequence & <& <& with an
equally spaced  mesh A=¢,—¢ =66, let 7 (t)=(t—¢&)/A,
2(t)= (t—&)/A and z(t)=(t—&)/A. Define M—spline basis functions as

=T =EEE) )
=TT g o om0} ¢ TSSO L L ]
My(t) 1¢ < At <&) (- QZl(t)3+3zl(t)2}+w{222(t)3—3z2(t)2+1},
2= =tf &) { Y z1<t>3}

R ZSO LT e e a0 ]
=" 2=

t
Define the [7—spline basis function, ]l(t):/ M(w)dw, which can be
13

1

written as

LO=1¢ <t <&){-%0"}+1,

Lt)=1¢ <t< 52){%21(75)4 —32,(t)° +321(t)2}+1(§2 <t< 53){— %24(75)3 + 1},

Lit)=1¢ <t < 52){_ %Zl(ty +z1(t)3}
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16 = 1 < &) 320 0P +0)+ 1,

4= 1e <t<e){ 100

+1¢ <t< 53){— %22(@‘l + %zz(t)B + %zz(t)Q + %zQ(tH % }

K= 16 <t <&) =0}
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Appendix B. Derivations

Derivations of the second derivatives in H, of (6.2.4) and

(6.2.7) under the Clayton copula model with Weibull marginal

hazard

The log—likelihood in (3.3.1) under the copula model with Weibull

marginal hazard is given by

di—1

0, =6, {logh,;+04,}— f] (d+0 Yog(1+5" )— 3 1 +as)|,
ij i=1

a=0

where A; =A%, Ay=A(y,)exo(zp)=yjexplefp) and s =330, (5;—1)

with S, = S,(y,lz;)=exp(—4;). Given 6, the first derivatives of (5, ¢)

2,

are as follows:

agc
P D 20,(1+04,)z,,

k ij

~S(d,+o 1){20/1”60%%/ (S5 + 1)} (k=0,1,-,p).
J

(3

8&3 —
o0 = %}%{qﬁ T+ (1 +9Aij)log(ym»)}

(g +6 1){20/1“60/1”10g<yﬁ) /(S0 + 1)}, (k=0,1,---.p).

K3

For the variable selection of (3, we use the penalized likelihood ¢, in

(5.1.1) with the copula—based likelihood ¢, in (3.3.1). For this
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purpose, we need to compute the following estimating equations of [
using €p2
ol

T
B, 9B,

(18 Dsen(|Bil): (k=0.1,--p),

where sgn(-) is the sign function. Note that of/o¢p=0(/0¢. The
negative Hessian matrix H, in (5.2.4) with the second derivatives of

¢, with respect to (6, ¢) is given by

0%, 5 2%,
2 +nd., —
g % 08087 opog”
"B ) 0%, 0%, |
agop” ¢’
where
2[ .
8[}]\36 EILJL(SUOA Iz]s Z‘rmk{(d T )0/11']'69/1”/(5;4- +1>}x1‘js
+ZTUL:((11‘, +6 )[(9/1 e’ — (@A, 0 (ST +1)] /(5 +1)a,
d@ 3¢> EIUké 9/1 IOg yu ZTA/]»{< )9/1”69/1”/(52; +1>}10g(yij)
+§]L1]k(dl+a )[(0/1”)2 (94, /(87 +1)] /(8] +1)logly,,)
and

—Zlog y;;)8,,04, 1og (y;;) — Elog(y”){(di+0’1)9/1”eo‘4"/($++1)}log(y1»j)
+Elog v )4 +071)[(04,))% s — (04, ") /(ST +1) ] /(ST +1)log(y,,)
+¢> 224/

Hﬂk 3¢

Next, for the estimation of association parameter 6, we use /, since

aﬁp/éﬁzaﬁc/ée. The first derivative of # is given by
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o, .
= %]61._7/11.] + 92;log(51. L +1)
di—1

fZ(dinLH’l){;AijeM” (s, +1)}+E§] ot

This leads to the negative second derivative, given by

26
06*

2E(S++1)/0g+221uk /{‘92(51’:+1)}
+E(dv+9 ){Z(A”)”f“ /(85 1)+ {EA oM (51*++1)}2]

722{ (1+a )

i oa

Thus, the estimating equation (5.2.7) of 0 is easily solved using the

Newton Raphson method, with the first and second derivatives above.
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Appendix C. R Codes

(C.1) one—stage M-spline copula estimation for kidney, CGD and
Bladder cancer data

rm (list=1s())

library (survival)

library (joint.Cox)

##### Define log—likelihood function #####

logL= function(para) {

beta = parall:p]

theta=para[p+1]

gl=exp(paral(p+2):(p+tk+1)]) #gl=exp(h) :baseline—hazard parameters in
M-—spline

eta <— exp(X%+*%beta)

tmin = min(t_event);tmax = max(t_event)

lam<— M.spline (t_event,tmin,tmax) %*%gl*eta #M—spline for hazard

Lam<— I.spline (t_event,tmin,tmax) %*%gl*eta #l—spline for cumulative hazard

Sur <— exp(—Lam)

Sur_s <= t(Z) %*% (Sur” (—theta)) —ni

di <= t(Z) %*%event

suml <= 0
for(i in 1:q){
sul <=0

for(a in O:(dili]—=1)){

sul<— sul+log(1+a*theta)

ifelse (di[il<1,sul<=0,sul) }

suml<—suml + sul }

loglike
<—sum (event* (log(lam) +theta*Lam)) —sum ((di+1/theta) *log (1 +Sur_s)) +
suml

return (loglike) #log—likelihood
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)

##### Model fitting for kidney data #####

data (kidney)

t_event = kidney$time; event = kidney$status

sex=as.integer (kidney$sex) —1

X<—model.matrix (~0+kidney$age +sex)

p<—ncol(X) # No. of covariates

g<—length (unique (kidney$id)) # No. of clusters

n<—nrow(X) # n: total sample size

7Z=model.matrix (~O+factor (kidney$id))

ni <— t(Z) %*%as.matrix(rep(1,n)) # ni: cluster size

k<—5 # No. of knots

para_est = ¢(0,0,0.5,rep(0,k)) # initial values of (beta,theta,h)
kid_fit = optim (para_est,logl.,method = "BFGS",

TRUE)

V <— solve(—kid_fit$hessian) # inverse of negative Hessian matrix
Estimate<—kid_fit$par[1: (p+1)]

SE<— sqgrt(diag(V)) [1:(p+1)]

kidney_result<—rbind (Estimate,SE)

control = list(fnscale = —1),hessian

colnames (kidney_result) <—c("Age", "Sex","theta")
print (kidney_result)

##### Model fitting for CGD data #####
data(cgd)

time=cgd$tstop—cgd$tstart

t_event = time; event = cgd$status
treat=as.integer (cgd$treat) —1

sex=as.integer (cgd$sex) —1
X<—model.matrix (~0+ treat +sex)
p<—ncol(X) # No. of covariates
g<—length (unique (cgd$id)) # No. of clusters
n<—nrow (X) # n: total sample size

Z=model.matrix (~0+factor (cgd$id))
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ni <= t(Z) %*%as.matrix(rep(1,n)) # ni: cluster size

k<—5 # No. of knots

para_est = ¢(0,0,0.5,rep(0,k)) # initial values of (beta,theta,h)

cgd_fit = optim(para_est,logl.,method = "BFGS",

control = list(fnscale = —1) hessian = TRUE)

V <— solve(—cgd_fitShessian) # inverse of negative Hessian matrix

Estimate<—cgd_fit$par[1:(p+1)]

SE<— sqrt(diag(V)) [1:(p+1)]

cgd_result<—rbind (Estimate,SE)

colnames (cgd_result) <—c("Treat","Sex","theta")

print (cgd_result)

####4# Model fitting for Bladder cancer data #####

eortc<—read.csv(’ eortecdata_BCG.csv' ,sep="," ,header=T)

data(eortc)

eortcPgl=ifelse (eortcPggrade==1,1,0)

eortc$g2=ifelse (eortc$ggrade==2,1,0)

time=eortc$timeDFI

t_event = time; event = eortc$statusDFIc

treat=as.integer (cgd$treat) —1

sex=as.integer (cgd$sex) —1

X<—model.matrix (~O+trtdose+trtduration+age+gender+typeB
+tumsize+nbtum+tstage+gl+g2, data=p<—ncol(X) # No. of covariates

g<—length (unique (eortc$institution)) # No. of clusters

n<—nrow(X) # n: total sample size

Z=model.matrix (~O+factor (eortc$institution))

ni <— t(Z) %*%as.matrix(rep(1l,n)) # ni: cluster size

k<—=5 # No. of knots

c(rep(1,10),0.5,rep(0,k)) # initial values of (beta,thetah)

para_est
eortc_fit = optim (para_est,logl.,method = "BFGS",

control = list(fnscale = —1),hessian = TRUE)

V <— solve(—eortc_fit$hessian) # inverse of negative Hessian matrix

Estimate<—eortc_fit$par[1:(p+1)]
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SE<— sqrt(diag(V)) [1:(p+1)]
eortc_result<—rbind (Estimate,SE)

nn non nn

colnames (eortc_result) <—c ("trtdose","trtduration","age","gender","typeBC",

"tumsize","nbtum","tstage","g1","g2", "theta")

print (eortc_result)

(C.2) Penalized variable selection of copula regression model

#Prior to running, set working directory to file location

rm (list=1s())

setwd ("G:/Copula")

source ("Copula_VS_NR.txt")

#== kidney infection data(5 covariates)==

library (frailtyHL)

data (kidney)

kidney$age<— (kidney$age—mean (kidney$age))/sd (kidney$age)

kidney$GN<—as.numeric (kidney$disease=="GN")

kidney$AN<—as.numeric (kidney$disease=="AN")

kidney$PKD<—as.numeric (kidney$disease=="PKD")

kidney$sex<—kidney$sex

kidney$id<—kidney$id

attach (kidney)

kidney.formula<— Surv (time,status)~age+sex+GN+AN+PKD +id

beta00<—c(0,0,0,0,0,0) #initial values

phi0=1

theta0=0.01

# NO_PENALTY

kid_res<—copula.vs (kidney.formula,penalty="LASSO",
tun_range=c (0), beta=beta00,phi=phi0,
theta=theta0,data="kidney" maxiter=2000)

kid_res

betaO<—kid_res$Est_betal,1] #initial values using No_penalty

phiO<—kid_res$Est_phi[l] #initial values using No_penalty

109



thetaO<—kid_res$Est_theta[1l] #initial values using No_penalty
# LASSO
kid_res.LASSO<—copula.vs (kidney.formula,penalty="LASSO",
tun_range=seq(0,0.1, 0.001),beta=beta0,phi=phiO,
theta=theta0, data="kidney",maxiter=2000)
kid_res.LASSO
betaOL<—kid_res.LASSO$Est_betal[,1] #initial values using LASSO
phi0L<—kid_res.LASSO$Est_phil[1] #initial values using LASSO
thetaOL<—kid_res.LASSO$Est_theta[l] #initial values using LASSO
# ALASSO
kid_res.ALASSO<—copula.vs (kidney.formula,penalty="ALASSO",
tun_range=seq(0,0.1,0.001) ,beta=betaOL,phi=phiOL,
theta=thetaOL, weightO=abs(1/beta0), data="kidney",
maxiter=2000)
kid_res.ALASSO
# SCAD
kid_res.SCAD<—copula.vs (kidney.formula,penalty="SCAD",
tun_range=seq(0,0.3,0.001) ,beta=betaOL,phi=phiOL,
theta=thetaOL, data="kidney" maxiter=2000)
kid_res.SCAD
# HL
kid_res.HL<—copula.vs (kidney.formula,penalty="HL",
tun_range=seq(0.001,0.2,0.001) ,beta=beta0L,phi=phiOL,
theta=thetaOL, data="kidney",maxiter=2000)
kid_res.HL

=== kidney infection data(8 covariates) ==
library (survival)
data (kidney)
kidney$age<— (kidney$age—mean (kidney$age))/sd (kidney$age)
kidney$GN<—as.numeric (kidney$disease=="GN")
kidney$AN<—as.numeric (kidney$disease=="AN")
kidney$PKD<—as.numeric (kidney$disease=="PKD")
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kidney$sex<—kidney$Psex
kidney$id<—kidney$id
S.GN<—kidney$sex*kidney$GN
S.AN<—kidney$sex+kidney$AN
S.PKD<—kidney$sex+kidney$PKD
data_kid <— kidney
attach (data_kid)
kidney.formulal<— Surv (time,status)~age+sex+GN+AN+PKD

+S.GN+S.AN+S.PKD+id
beta00<-¢(0,0,0,0,0,0,0,0,0)
phi0=1
theta0=0.01
# NO_PENALTY
kid_res1<—copula.vs(kidney.formulal,penalty="LASSO",tun_range=c (0) ,beta=b

eta00, phi=phi0, theta=theta0,data="data_kid",maxiter=2000)
kid_res1
betaO<—kid_res1$Est_betal,1] #No_penalty
phiO<—kid_res1$Est_phil[l] #No_penalty
thetaO<—kid_res1$Est_theta[l] #No_penalty
thetaO<— ifelse (thetaO <= 0.00001 , theta0<—0.001,

thetaO <— theta0)

# LASSO
kid_res.LASSO1<—copula.vs(kidney.formulal,penalty="LASSO",
tun_range=seq(0,0.1, 0.001),beta=beta0,phi=phiO,
theta=theta0, data="data_kid",maxiter=2000)
kid_res.LASSO1
betaOL<—kid_res.LASSO1$Est_beta[,1] #LASSO
phiOL<—kid_res.LASSO1$Est_phi[1] #LASSO
thetaOL<—kid_res.LASSO1$Est_theta[1] #LASSO
thetaOL<— ifelse (thetaOL <= 0.00001 , thetaOL<—0.001, thetaOL <— thetaOL)
# ALASSO
kid_res.ALASSO1<—copula.vs (kidney.formulal,penalty="ALASSQO",
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tun_range=seq(0,0.1,0.001) ,beta=betaOL,phi=phiOL,
theta=thetaOL, weightO=abs(1/betal), data="data_kid",
maxiter=2000)

kid_res.ALASSO1

# SCAD

kid_res.SCAD1<—copula.vs (kidney.formulal,penalty="SCAD",
tun_range=seq(0,0.3,0.001) ,beta=betaOL,phi=phiOL,
theta=thetaOL, data="data_kid",maxiter=2000)
kid_res.SCAD1

# HL

kid_res.HL1<—copula.vs (kidney.formulal,penalty="HL",
tun_range=seq(0.001,0.2,0.001) ,beta=beta0L,phi=phiOL,
theta=thetaOL, data="data_kid", maxiter=2000)
kid_res.HL1
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Appendix D. Further Simulation Results

Table D1. (g, n,) = (50, 2): Simulation results on one-stage and two-stage estimation

methods over 500 replications under Clayton copula models with Gompertz marginal hazard;
20% censoring rate; S=1; # =2 (Kendal's tau: 7= 0.5); PE, piecewise exponential

SE SE SE
¢  Est | Mean MSE CP Mean MSE CP Mean MSE CP
SD SD SD
One-stage Weibull PE Proposed
N 0.118 0.131 0.130
0.2 3 0.986 0.016  0.924 | 1.055 0.022 0932 | 1.053 0.022 0.922
0.128 0.137 0.138
. 0.632 0.703 0.669
0 2.042 0.433 0.944 | 2.232 0.643 0.946 | 2.152 0554 0.930
0.657 0.769 0.730
R 0.113 0.130 0.129
1 Jé] 0.896 0.028 0.778 | 1.052 0.021 0932 | 1.050 0.021 0.926
0.129 0.137 0.138
. 0.600 0.698 0.668
[ 1.947 0.345 0.932 | 2.236 0.663 0.936 | 2.171 0550 0.940
0.586 0.780 0.723
R 0.111 0.131 0.130
3 6] 0.828 0.047 0.594 | 1.050 0.022 0.936 | 1.047 0.021  0.930
' 0.131 0.138 0.136
. 0.602 0.712 0.679
0 1.937 0.325 0.948 | 2.254 0.701 0.934 | 2.180 0561 0.942
0.567 0.798 0.727
Two-stage Weibull PE Cox
. 0.141 0.133 0.152
0.2 Jé] 1.002 0.023 0.934 | 1.056 0.031 0.858 | 1.033 0.026 0.924
0.151 0.168 0.158
. 0.600 0.450 0.591
0 1.847 0.295 0.900 | 1.764 0.338 0.752 | 1.790 0.322 0.854
0.521 0.532 0.528
. 0.135 0.132 0.151
1 Ié] 0.934 0.024 0.894 | 1.053 0.030 0.864 | 1.034 0.026 0.932
‘ 0.142 0.165 0.159
R 0.561 0.447 0.593
0 1.765 0.314 © 0.868 | 1.727 0.356  0.746 | 1.757 0.333 0.858
0.509 0.531 0.524
R 0.131 0.133 0.153
3 Je] 0.881 0.033 0.830 | 1.052 0.030 - 0.872 | 1.033 0.027 0.928
0.137 0.167 0.162
R 0.572 0.453 0.603
0 1.740 0.323 0.876 | 1.712 0.360 0.752 | 1.752 0.345 0.848
0.506 0.527 0.533
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Table D2. (g, m;) = (200, 2): Simulation results on one-stage and two-stage estimation

methods over 500 replications under Clayton copula models with Gompertz marginal hazard;
20% censoring rate; S=1; # =2 (Kendal's tau: 7= 0.5); PE, piecewise exponential

SE SE SE
¢  Est | Mean MSE CP Mean MSE CP Mean MSE CP
SD SD SD
One-stage Weibull PE Proposed
N 0.057 0.061 0.061
0.2 B 0.960 0.005 0.844 | 1.005 0.004 0.954 | 1.011 0.004 0.942
0.060 0.063 0.062
R 0.307 0.320 0.316
0 1.982 0.095 0.940 | 2.046 0.016  0.934 | 2.035 0.103 0.944
0.308 0.337 0.319
R 0.069 0.061 0.061
1 Jé] 0.911 0.013 0.738 | 0.997 0.004 0944 | 1.011 0.004 0.950
0.069 0.062 0.061
. 0.285 0.317 0.315
0 1.831 0.114 0.878 | 2.043 0.105 0.942 | 2.041 0.101  0.946
0.292 0.322 0.316
R 0.067 0.061 0.061
3 Je] 0.859 0.024 0.438 | 0.996 0.004 0.950 | 1.011 0.004 0.950
0.067 0.063 0.062
. 0.287 0.321 0.319
[ 1.798 0.127 0.870 | 2.041 0.104  0.950 | 2.039 0.103 0.946
0.295 0.320 0.319
Two-stage Weibull PE Cox
. 0.072 0.075 0.076
0.2 Jé] 0.976 0.006 0.924 | 1.008 0.006 0.948 | 1.007 0.006 0.952
‘ 0.072 0.075 0.075
R 0.305 0.302 0.319
0 1.937 0.093 0.928 | 1.926 0.095 0914 | 1.920 0.093 0.936
0.299 0.299 0.295
. 0.069 0.074 0.076
1 Jé] 0.911 0.013 0.738 | 1.004 0.006 0.958 | 1.007 0.006 0.956
0.069 0.075 0.075
. 0.285 0.296 0.316
0 1.831 0.114 0.878 | 1.907 0.095 0.910 | 1.904 0.091  0.930
0.292 0.294 0.286
R 0.067 0.075 0.077
3 Jé] 0.859 0.024  0.438 | 1.003 0.006 0.954 | 1.007 0.006 0.952
0.067 0.076 0.076
R 0.287 0.302 0.319
0 1.798 0.127 0.870 | 1.898 0.098 0.918 | 1.892 0.095 0.932
0.295 0.297 0.289
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Table D3. (g, n;) = (50, 4): Simulation results on one-stage and two-stage estimation

methods over 500 replications under Clayton copula models with Gompertz marginal hazard;
20% censoring rate; S=1; # =2 (Kendal's tau: 7= 0.5); PE, piecewise exponential

SE SE SE
¢ Est | Mean MSE CP Mean MSE CP Mean MSE CP
SD SD SD
One-stage Weibull PE Proposed
~ 0.082 0.101 0.091
0.2 B 0.967 0.008 0.914 | 1.027 0.011  0.952 | 1.032 0.009 0.932
0.083 0.101 0.091
R 0.423 0.493 0.433
0 1.986 0.165 0.936 | 2.082 0.261 0.946 | 2.031 0.184 0.952
0.406 0.504 0.428
N 0.077 0.092 0.092
1 Je] 0.865 0.025 0.562 | 1.016 0.009 0.952 | 1.031 0.009 0.954
0.083 0.092 0.091
. 0.409 0.448 0.436
0 1.920 0.150 0.928 | 2.066 0.207 0.952 | 2.039 0.197 0.942
0.379 0.450 0.442
. 0.073 0.092 0.092
3 Je] 0.785 0.053 0.218 | 1.011 0.009 0.952 | 1.028 0.009 0.958
0.081 0.092 0.090
. 0.412 0.450 0.439
0 1.944 0.143 0.942 | 2.070 0.207  0.950 | 2.038 0.192 0.946
0.374 0.450 0.437
Two-stage Weibull PE Cox
. 0.109 0.103 1.023 0.116
0.2 Ie] 0.992 0.012 0.948 | 1.029 0.018 0.850 0.016  0.938
0.111 0.131 0.123
A 0.406 0.350 0.417
0 1.897 0.164 0.920 | 1.857 0211 0.794 | 1.807 0.188 0.870
0.392 0.437 0.388
. 0.104 0.098 0.116
1 B 0.926 0.016 0.876 | 1.028 0.016 0.890 | 1.022 0.015 0.930
0.103 0.122 0.122
A 0.372 0.317 0.414
0 1.793 0.179 0.864 | 1.785 0.203 0.758 | 1.779 0.197 0.850
0.370 0.397 0.385
R 0.100 0.099 0.117
3 Je] 0.872 0.026  0.746 | 1.026 0.016 0.876 | 1.022 0.016  0.924
0.099 0.124 0.124
. 0.369 0.320 0.416
0 1.762 0.186 . 0.860 | 1.780 0202 0.768 | 1.771 0200 0.844
0.360 0.392 0.385
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Table D4. (g, n;) = (200, 4): Simulation results on one-stage and two-stage estimation

methods over 500 replications under Clayton copula models with Gompertz marginal
hazard; 20% censoring rate; f=1; =2 Kendals tau: 7=0.5); PE, piecewise

exponential
SE SE SE
¢  Est | Mean MSE CP | Mean MSE CP | Mean MSE CP
SD SD SD
One-stage Weibull PE Proposed
. 0.040 0.044 0.044
02 3 | 0947 0.004 0.702 | 0.995 0.002 0966 | 1.007 0.002 0.954
0.041 0.042 0.044
. 0.211 0.219 0.214
0 1.976 0.039 0950 | 2.022 0.046 0.956 | 2.011 0.046  0.940
0.196 0213 0.214
R 0.038 0.044 0.045
1 B | 0.848 0.025 0.050 | 0.985 0.002 0.930 | 1.008 0.002 0.950
0.041 0.044 0.045
R 0.204 0.219 0.216
0 1.914 0.038 0944 | 2.023 0.045 0954 | 2.010 0.046 0.944
0.176 0.211 0.214
R 0.036 0.044 0.045
3 B | 0.769 0.055 0 | 0.980 0.002 0916 | 1.007 0.002 0.948
0.040 0.044 0.045
. 0.206 0.220 0.217
0 1.943 0.032 0970 | 2.024 0.045 0958 | 2.010 0.046 0.942
0.171 0.211 0.215
TWO(;StaQ Weibul PE Cox
R 0.056 0.059 0.060
02 B |0973 0.004 0.900 | 1.004 0.004 0.930 | 1.006 0.004 0.942
0.058 0.063 0.063
. 0.211 0.212 0.223
0 1.934 0.045 0926 | 1.938 0.048 0912 | 1.923 0.050 0914
0.202 0.210 0.209
R 0.053 0.059 0.061
1 B | 0.909 0.011 0584 | 1.000 0.004 0912 | 1.006 0.004 0.938
0.055 0.063 0.063
R 0.193 0.209 0.222
0 1.822 0.065  0.848 | 1.918 0.050 0.900 | 1.913 0.051 0.904
0.183 0.208 0.208
. 0.051 0.208 0.061
3 B | 0.856 0.024 0.194 | 0.998 0.004 0934 | 1.006 0.004 0932
0.053 0.063 0.064
R 0.193 0.208 0.222
0 1.793 0.075 0.808 | 1.906 0.051 0.896 | 1.904 0.051  0.904
0.179 0.206 0.204

116



Table D5. Simulation

results

coefficients of g under copula survival models with Censoring rate 40%

for coefficients of f,, B,and (3, among non-zero

By By By
(q, ni) Method Mean SE SD MSE CP | Mean SE SD MSE CP | Mean SE SD MSE CP
True value B8, =0.8 B8,=1 B, =06

(100,2) LASSO | 0712 0080 0092 0016 0730| 0900 008 007 0020 0740| 0529 0075 0080 0011 0810
ALASSO | 0781 0084 0104 0011 08% | 0982 0092 0110 0012 089% | 0577 0093 0104 0010 08%

SCAD 0811 0087 0101 0010 0915| 1013 0102 0102 0010 0945| 0605 0075 008 0007 0915

HL 0791 0080 0091 0008 0930| 0994 0095 0093 0012 08%| 0589 0080 0080 0008 0930

(100,4) LASSO | 0736 0054 0059 0008 0745| 0926 0060 0071 0011 0715|0539 0051 0059 0007 0720
ALASSO | 0792 0057 0060 0004 0930 | 0998 0063 0067 0004 0950 | 0589 0052 00% 0003 0930

SCAD 0806 0058 0060 0003 0955 | 1.011 0064 0072 0005 0920 | 054 0053 0057 0003 0935

HL 0797 0057 0064 0004 0925| 1.002 0063 0069 0005 0920 0593 0053 0060 0004 0910

(300,2) LASSO | 0743 0048 0048 0005 0745| 0936 0052 0059 0008 0695| 0549 0045 0052 0005 0765
ALASSO | 0792 0049 0055 0003 0930| 09% 0054 0056 0003 0945| 0592 0044 0051 0003 0910

SCAD 0806 0050 0050 0003 0950 | 1.010 0054 0058 0003 0960 ( 0605 0046 0051 0003 0940

HL 0798 0049 0051 0003 0955 | 099 0054 0055 0003 0945| 0593 0046 0050 0003 0945
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(100,2): Simulation- result of copula variable selection using 200 replications;

Figure D1. (g, n;)

40% censoring rate; dotted line, true values of 3,, B,and 3, respectively
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Figure D2. (g, n;)= (100,4): Simulation result of copula variable selection using 200 replications;
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Figure D3. (g, n;)= (300,2): Simulation result of copula variable selection using 200 replications;

40% censoring rate; dotted line, true values of 3, 3,, B,and (,, respectively
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