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One-Stage Copula Modeling Approaches 
for Clustered Multivariate Survival Data

Sook Hee Kwon

Department of Statistics, The Graduate School,
Pukyong National University

Abstract
Copula survival and frailty models have been widely used to 
analyze clustered multivariate survival data. The copula models 
consist of copula function with marginal distribution. The copula 
model is a marginal model, while the frailty model is a conditional 
model. In particular, the family of Archimedean copula functions, 
a broad class of copulas, is useful for modeling such dependency 
among survival data. However, the inference of copula survival 
models has been relatively less studied. In general, one- and 
two-stage estimation methods have been used for likelihood-based 
inference. The two-stage procedure can provide inefficient 
estimation results because it estimates the copula's marginal and 
association parameters separately. However, a more efficient 
one-stage procedure has been mainly developed under a 
restrictive parametric assumption of the marginal distribution due 
to the complexity of the likelihood with an unknown marginal 
baseline hazard function. 
  In this thesis, we propose a flexible M-spline Archimedes copula 
modeling approach using a one-stage likelihood procedure. To 
reduce the complexity of the likelihood, the unknown marginal 
baseline hazard is modeled based on the cubic M-spline basis 
function that does not require a specific parametric form. The 
estimation procedure of the proposed method is derived and 
theoretical properties are also studied. Simulation results show 
that the proposed one-stage estimation method gives a consistent 
estimator and also provides more efficient estimation results than 
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the existing one- and two-stage methods. The proposed method is 
illustrated with three practical data examples.
  In this thesis, we also propose a variable selection procedure in 
the copula model using a one-stage estimation method based on a 
penalized likelihood. The performance of the proposed method is 
evaluated through simulation studies, and the usefulness of the 
new method is illustrated using clinical data sets.
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Ⅰ. INTRODUCTION

  In survival analysis, clustered survival time data are mainly obtained 

by a cluster, such as a center or a subject, and the dependence 

among the event times has often been modeled using copula model or 

frailty model (Hougaard, 2000; Duchateau and Janssen, 2000). Here, 

frailty refers to an unobserved random effect that multiplicatively 

affects each individual's hazard rate (Duchateau and Janssen, 2008; 

Ha et al., 2017). Copula is also one of the convenient ways to 

describe the dependence between random variables. According to 

Sklar's (1959) theorem, the joint distribution of random variables can 

be expressed as a copula function with the marginal distribution of 

each random variable. In particular, it is worth noting that the frailty 

model is a conditional model, and the copula model is a marginal 

model, and so the two models are different (Goethals et al., 2008; 

Prenen et al., 2017a). Joint survival function of the copula model is 

easily constructed by specifying both copula and marginal survival 

functions, while that of the frailty model is generally obtained by 

computing difficult integrations for frailty term. A basic comparative 

study between copula and frailty modeling approaches has been 

conducted for correlated or multivariate survival data with the same 

or different cluster sizes (Duchateau and Janssen, 2008; Goethals et 

al., 2008; Prenen et al., 2017a). However, the estimation for the 

copula models was relatively less studied.

  In this thesis, we study an efficient estimation method of copula 

survival models. For the inference of a copula-based survival model, 

one-stage or two-stage estimation method has been generally used. 

In previous studies, for copula-based models where maximum 

likelihood inference is computationally difficult, the two-stage 
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estimation procedure has been widely used  for survival data with the 

same cluster size (Shih and Louis, 1995; Andersen et al., 2005). 

However, the two-stage estimation procedure is based on a separate 

estimation between parameters in marginal distribution and association 

parameters in copula function. Thus, the resulting two-stage 

estimates may not effectively reflect the dependence information 

among survival times, which may be statistically less efficient. In 

different types of copula models with bivariate survival data, Marra 

and Radice (2020), through simulation studies, pointed out that the 

two-stage estimation is inefficient especially with a strong 

dependence, but that the one-stage estimation shows a good 

performance (Cheng et al,, 2014; Romeo et al., 2018). In particular, 

Chen et al. (2006) studied a one-stage estimation procedure without 

covariates in multivariate survival data. Recently, Prenen et al. 

(2017a) proposed a new method of Archimedean copula model for 

multivariate survival data with different cluster sizes, as well as 

several estimation procedures including one-stage and two-stage 

estimation methods. 

  In the Archimedean copula survival model, the two-stage procedure 

provides both parametric and non-parametric (i.e., Breslow's (1972) 

method) estimates of marginal baseline hazards. However, for the 

one-stage procedure, Prenen et al.'s (2017a) method provides only 

parametric approaches (e.g. Weibull, piecewise exponential) for 

marginal baseline hazards as the derivation of Breslow's (1972) 

estimator is difficult due to the complexity of the likelihood 

formulation under Archimedean copula survival model with an 

unknown baseline hazard function. The use of piecewise exponential 

for the baseline hazard may give flexible estimation results, but it 

requires choosing a suitable partition (i.e. cut-point) of the follow-up 
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time. Furthermore, the piecewise exponential hazard function is 

discontinuous at chosen locations of the partitions. Under these 

situations, a spline-based method can be a better alternative owing to 

its computational efficiency and flexibility of the model. Overall, the 

one-stage approach is preferred and it especially leads to less biased 

estimates in small sample cases (Prenen et al., 2017a). 

  Therefore, in this thesis, we propose a flexible parametric 

Archimedean copula survival regression modeling approach using a 

one-stage likelihood procedure. To reduce the complexity of the full 

likelihood, the unknown marginal baseline hazards are modeled based 

on a cubic M-spline basis function (Ramsay, 1988). The estimation 

procedure of the proposed method is also derived. The simulation 

results demonstrate that the proposed one-stage estimation method 

gives a consistent estimator and also provides more efficient 

estimation results over existing one- and two-stage methods (Emura 

et al., 2017, 2019, 2020). In addition, we study the sensitivity of the 

proposed method against misspecification of the Archimedes copula 

regression model for correlated survival data with different cluster 

sizes. The usefulness of this new method is illustrated using three 

well-known clinical data sets, i.e. kidney infection data (McGilchrist 

and Aisbett, 1991), chronic granulomatous disease (CGD) recurrence 

data (Fleming and Harrington, 1991) and bladder cancer recurrence 

data (Oddens et al., 2013) from a multicenter clinical trial conducted 

by the European Organization for Research and Treatment of Cancer 

(EORTC). In addition, our results are compared with existing one- 

and two-stage results using the three data sets.

  In this thesis, we also propose a variable selection method in a 



4

copula survival regression model with a parametric marginal 

distribution using a one-stage estimation method based on penalized 

likelihood. Here we also study four penalty functions, i.e. least 

absolute shrinkage and selection operator (LASSO; Tibshiran, 1996), 

adaptive LASSO (ALASSO; Zou, 2006), smoothly clipped absolute 

deviation (SCAD; Fan and Li, 2001) and h-likelihood (HL; Lee and 

Oh, 2014). The new variable selection procedures are derived. Thus 

the performance of the proposed methods is evaluated using 

simulation studies. The usefulness of the proposed method is 

illustrated using two clinical data sets: the kidney infection data and 

the CGD recurrence data.

  This thesis is organized as follows. In Chapter 2, we review copula 

and frailty survival models and provide background knowledge of this 

thesis. In Chapter 3, we propose a one-stage procedure for 

estimating regression and association parameters using the M-spline 

method. The results of simulation studies are presented in Chapter 4. 

In Chapter 5, the proposed one-stage method is illustrated with three 

real-data examples. In Chapter 6, we propose a variable selection 

method using a penalized likelihood for the copula model, and also 

present the simulation results and real data examples. Discussion is 

given in Chapter 7. Finally, technical details including R codes and 

further simulation results are given in the Appendix.
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Ⅱ. COPULA AND FRAILTY MODELS

  We first review the basic quantities (e.g. survival and hazard 

functions) for survival analysis. Let  be survival time. We assume 

that  is an absolute continuous random variable taking on 

non-negative value. Therefore,  has a cumulative distribution 

function , defined as

≤




 ≥.

By the continuity of , the probability density function  of  is 

given by




.

Thus, the survival function  of  is defined as

 


∞

  ≥,

which measures the probability that the event does not occur until 

time . For examples,  means the probability that the patient 

survives beyond time  or the machine does not fail until time .

  The hazard function  of  at time  is defined by
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 lim
→


≤ ≥
 lim
→
⋅≥
≤ 

≥
 


lim
→


≤  






and



 


⋅

 

log


The hazard function shows the instantaneous failure rate at time  if 

the event has not yet occurred at that moment. However, care is 

necessary in that the hazard function is not a probability. The 

cumulative hazard function  is defined as 






 log, 

and

exp.

2.1.  Correlated survival models

  In this section, we review the basic concepts and differences 

between the copula model and the frailty model which are widely 

used in the analysis of correlated survival data.

  Let  be event time (time-to-event) for the th    ⋯  

observation of the th    ⋯  cluster (or subject) and let  be 
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the censoring time corresponding to . Here,  is the cluster size,  

is the number of clusters, and   
  is the total sample size. 

Then the observable random variables are as follows: 

 min  and   ≤,

where  is an event indicator function, indicating whether censoring 

is occurred or not. 

2.1.1. Copula model

  Copula models assume that the joint survival function of the 

individuals within a cluster is given by a copula function with the 

marginal survival function of each individual (Sklar, 1959). There are 

many copula functions describing rich patterns of tail dependence, 

ranging from tail independence to tail dependence, and different kinds 

of asymmetry. Among all types of copulas, frequently used copulas 

include Gaussian copula and T copula from elliptical copula family, and 

Gumbel copula, Clayton copula and Frank copula from Archimedean 

copula family (Nelson, 1999; Cherubini et al., 2004; Skoglund, 2010). 

The forms of these five major copulas and their bivariate copula 

functions are shown in Figure 2.1.1. 
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Figure 2.1.1. The five primary copulas and their bivariate copulas
https://www.assetinsights.net/Glossary/G_Gumbel_Copula.html
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  Below we begin with the definition of a copula survival model.

Definition 2.1. Let    be a marginal survival function for 

the th event time    ⋯ within a cluster. Then the joint 

survival function for -variable event times  ⋯  can be 

expressed as a copula survival function with each marginal function as 

follows:

  ⋯     ⋯   
  ⋯ 

(2.1.1)

where ⋅ is a -variate copula function which is a distribution 

function on   →   , and  is an association parameter that 

explains the dependency among survival data. 

Definition 2.2. The Archimedean copula model considered in this 

thesis is defined as follows (Joe, 1997; Prenen et al., 2017a):

  ⋯   ⋯   (2.1.2)

where the generator   ∞→    is a continuous strictly 

monotonic decreasing function, and , ∞ and 
  is the 

inverse function of . The generator  of the Archimedean copula 

depends on the association parameter . 

  Consider a vector of -dimensional covariates, denoted by 

   ⋯ 
, corresponding to survival time .
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Definition 2.3.   For the Archimedean copula family (Joe, 1997; 

Prenen et al., 2017a), the joint survival function of  ⋯  for 

cluster  given     ⋯  is expressed as 

  ⋯     ∀     ⋯        ∀

   ⋯      (2.1.3)

where    is a marginal survival function for  given 

    ⋯ , and the generator  of the Archimedean copula  can 

be expressed as a Laplace transform of the positive distribution 

function ⋅ with :

 


∞

exp ≥ (2.1.4)

Thus, the joint survival function above for cluster  can be rewritten 

as

  ⋯    ∀ exp





 




 






 
 



exp 
   (2.1.5)

  In this thesis, we assume that the marginal survival function  

is obtained from the proportional hazard (PH) model:

 exp (2.1.6)
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where ⋅ is a baseline hazard function, which can be a parametric 

or non-parametric form and   ⋯ 
 is a × vector of the 

regression parameters corresponding to covariates . For a 

parametric case of , let   be the scale parameter and  be 

the shape parameter. Then, for example, 
  for the Weibull 

distribution and exp for the Gompertz distribution. 

  Below we consider two popular members of the Archimedean copula 

family, i.e., the Clayton and the GH copulas.

∙ Clayton copula model

  For the Clayton copula model, the generator having a gamma 

distribution function ⋅ with mean 1 and variance  is as follows:

 
  for   , (2.1.7)

with 
   . 

  The Clayton copula model has a lower tail dependence and its 

Kendall's tau is given by   . This means a positive 

association among event times when    and independence when 

→. From (2.1.5)–(2.1.7), the joint survival function under the 

Clayton copula model is given by an explicit form:

 ⋯   ∀ 
  



  
  

 

, (2.1.8)

where the marginal survival function is given by



12

  exp  . (2.1.9)

Here, the corresponding marginal cumulative hazard function from 

(2.1.6) is given by

  exp
, (2.1.10)

 

and the baseline cumulative hazard function:






, (2.1.11)

∙ Gumbel Hougaard (GH) copula

  The GH copula's generator with a positive stable distribution 

function ⋅ (Hougaard, 2000; Prenen et al., 2017a; Gumbel, 1960) 

is given by

exp
 for   , (2.1.12)

with 
  log. 

  The GH copula has an upper tail dependence and its Kendall's tau 

is given by   , which means a positive association among event 

times when → and independence when →. Thus, the joint 

survival function under the GH copula model has also an explicit 

form:

 ⋯      ∀exp





 



log  





. (2.1.13)
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2.1.2. Frailty model

  Vaupel et al. (1979) introduction the concept of frailty to describe 

the impact of individual heterogeneity in univariate (independent) 

survival data. Furthermore, Oakes (1989) provided one way to 

account for a dependence among survival times within a cluster (or 

subject). Generally, frailty is a common unobserved random effect 

that affects multiplicative on the hazard function of survival time.

Definition 2.4.  Denote by  the unobserved random effect of the th 

cluster. The frailty model (Duchateau and Janssen, 2008; Ha et al., 

2017) is defined as follows. Given  , the conditional hazard 

function for the survival time is of the form:

  exp
, (2.1.14)

where ⋅ is a specified or unspecified baseline hazard function, and 

the frailty  is assumed to be independently and identically 

distributed.   

  Traditionally it is assumed that  and var for the 

gamma frailty model and   log∼  for the lognormal frailty 

model. Note that ∈∞ means the strength of association among 

survival times within a cluster. The  in (2.1.8) is an association 

parameter of the copula model, whereas the  in (2.1.14) indicates 

the frailty variance. Afterwards, it can be seen that the two results 

are different in (2.1.17). However, when  → , there is no correlation 

between survival times, so that the two models give almost the same 
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results (Duchateau and Janssen, 2008; Ha et al., 2017).

Definition 2.5. The marginal joint survival function of   ⋯  , 

denoted by    ⋯      ∀, can be derived by integrating out 

the frailty from the conditional survival function, ⋯      ∀. 

Under the conditional independence of  ⋯  given  (Nielsen et 

al., 1992), we have

   ⋯      ∀ ⋯    ∀

 exp





 






 



 (2.1.15)

where  is the distribution function of the frailty , and the th 

marginal survival function of the cluster  is as follows:


    

 
(2.1.16)

Here,   exp
 is the cumulative hazard function. Note 

that the generator  of the Archimedean copula is expressed as the 

Laplace transform of distribution function  of frailty. 

  The two joint survival functions (2.1.5) and (2.1.15) are similar 

(Goethals et al., 2008; Prenen et al., 2017a) in that both joint 

survival functions take the same copula form. However, in the 

following marginal survival functions, it can be seen that the copula 
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and frailty models have major differences;

   ≠
  . (2.1.17)

Note also that the association parameter  shows up in 
⋅ of 

(2.1.16), but not in ⋅ of (2.1.9). Under the gamma frailty 

model with mean  and variance , the marginal joint survival function 

(2.1.15) has an explicit form:

  ⋯   ∀ 
  




  

  
 

, (2.1.18)

where 
     

 . Therefore, we can clearly confirm 

the difference in (2.1.17) from the two joint survival functions (2.1.8) 

and (2.1.16).

2.2. The estimation procedures of copula models

  In this section, we study one-stage and two-stage estimation 

methods in copula survival model. Let    

 be the unknown 

parameters depending on the two methods, where   is the 

known or unknown baseline cumulative hazard function inherent in the 

marginal hazard function, and  is the unknown baseline parameter 

dependent on the . 

(ⅰ) One-stage estimation procedure

  First, the one-stage estimation procedure was proposed by Chen et 
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al. (2006) and Prenen et al. (2017a) to find the maximum likelihood 

estimators (MLEs) of  that maximizes the copula-based 

log-likelihood function , as defined in (3.1.3). 

Definition 2.6 Under the copula model, the MLEs of  is defined as

  argmax


, (2.2.1)

where argmax denotes the arguments of the maximum.    

 

and a more detailed procedure for finding the MLEs of (2.2.1) can be 

found in Prenen et al. (2017a). 

  Note that    

 is obtained by solving the following 

estimating equations:

 


 

i.e. 









 

  


 
  



 
  



(ⅱ) Two-stage estimation procedure

  Unlike the one-stage procedure, the two-stage procedure proposed 

by Shih and Louis (1995) and Andersen (2005) is an approach for 

estimating the unknown parameter  by proceeding the following two 
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steps.

  Note that in first step,   are estimated by maximizing the 

classical log-likelihood of  , denoted by  .

In second step, the association parameter  is estimated by plugging 

the first-step estimates  under the marginal hazard in (2.1.14) 

into the following pseudo likelihood:


          , 

which is then maximized for the association parameter . Thus 

two-stage estimator of  is obtained by solving 

 
 

.

  Note that the main difference between the two estimation methods 

above is to estimate  . That is,  is updated when  is 

estimated in the one-stage method of (2.2.1), whereas  is not 

updated at all in the two-stage estimation method because of the use 

of 
 in the second step.

2.3. Comparison of Copula and Frailty Models

  In this thesis, both one-stage and two-stage estimation methods 

are used to estimate the copula model. To estimate the frailty model, 

we can use marginal likelihood (Nielsen et al., 1992) and hierarchical 

likelihood (h-likelihood; Lee and Nelder, 1996; Ha et al., 2017). The 
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estimation method′s are applied to the simulation in Section 2.3.3 and 

the illustration in Section 2.3.4.  

  Let    

 be the unknown parameters dependent on the two 

models. Here   is the known or unknown baseline cumulative 

hazard function in the marginal hazard function, and  is an unknown 

baseline parameter that depends on the parametric function .

  The marginal likelihood method (Nielsen et al., 1992), which is 

obtained by integrating the unobserved frailty with the frailty model 

inference method, has been commonly used. However, if the frailty 

distribution is not a gamma distribution or if the frailty model is 

complex, the marginal likelihood method requires a difficult 

integration. In order to overcome this problem, the h-likelihood 

method (Lee and Nelder, 1996; Ha et al., 2017) that does not require 

integration itself has also been proposed. For detailed explanations of 

these two likelihood approaches to the frailty model, we recommend 

three books, Hougaard (2000), Duchateau, Janssen (2008), and Ha et 

al. (2017).

2.3.1. Comparison of R packages

  For the fit of the copula and frailty models for analyzing correlated 

survival data, this section considers three recently developed R 

packages. For the copula models, we use the Sunclarco R package 

(Prenen et al., 2017b), and for the frailty model, we use the 

frailtyEM R package based on marginal likelihood (Balan and Putter, 

2017) and the frailtyHL R package based on h-likelihood (Ha et al., 

2017, 2018).

  The characteristics of the three R packages used in this thesis are 
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summarized in Table 2.3.1. First, the Sunclarco provides one-stage 

and two-stage procedure methods allowing for parametric or 

non-parametric (NP) distributions for the baseline hazard function in 

the marginal hazard function (2.1.6). For the parametric basis 

distribution, we can use the PE (Piecewise Exponential) which is an 

exponential distribution with constant hazards within each time 

interval and the Weibull distribution. For the non-parametric basis 

distribution, the Cox PH model, where the estimated baseline 

cumulative hazard is assumed to be a discrete step function, can be 

used (Breslow, 1972). For the parameteric estimation methods, we 

use the classical likelihood and for non-parametric methods we use 

partial likelihood (PL) obtained by eliminating .

  Secondly, in the case of frailtyEM, the marginal likelihood function 

and EM method are used. Here, the non-parametric method is used 

for an unknown baseline hazard function, but various parametric 

distributions, such as gamma distribution and positive stable 

distribution are allowed for the frailty distribution. 

  Finally, frailtyHL uses a h-likelihood procedure. For the baseline 

hazard function, a non-parametric method is used as in frailtyEM, and 

a gamma distribution and a log-normal distribution are allowed for 

the frailty distribution.
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Model
R package / R function

(Literature)
Estimation procedure Distributions

Copula model
Sunclarco /

SunclarcoModel()
(Prenen et al., 2017b)

partial likelihood
PE,

Weibull, NP

Frailty model
frailtyEM / emfrail()

(Balan and Putter, 2017)
marginal likelihood

gamma, PS, IG,
CP, PVF

Frailty model
frailtyHL / frailtyHL()
(Ha et al., 2018)

h-likelihood gamma, LN

PE=piecewise exponential ; NP=non-parametric; PS=positive stable; IG=inverse gaussian;
CP=compound Poisson; PVF=power variance function; LN=log-normal.

Table 2.3.1. R packages for fitting copula and frailty models (Kwon and Ha,

2019)

2.3.2. Data description

(1) Kidney infection data

  McGilchrist and Aisbett (1991) presented a bivariate survival data 

set which consists of times to the first and second infections (i.e. 

  for all ) on the same patient among 38 kidney patients using a 

portable dialysis machine. Infections can occur at the location of 

insertion of the catheter. The catheter is later removed if any 

infections occur, and it can also be removed for other reasons, which 

is regarded as censoring. Here, each survival time is the time to 

infection since insertion of the catheter. The survival time from the 

same patient may be correlated due to a common patient effect.

  Table 2.3.2 describes the kidney data and provides their basic 

statistics. Here, in the case of continuous variables, the mean, median 

and range were summarized, and in the case of categorical variables, 

the frequency was used. In particular, the censoring rate for infection 
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time is about 23.7%.

Variables Description Basic statistics

time
time to infection since insertion of the
catheter

Mean: 101.6
Median: 39.5

Range (2.0∼562.0)

disease
disease type (0=GN, 1=AN, 2=PKD,
3=Other)

GN: 18, AN: 24
PKD: 8, Other: 26

age age (in years)
Mean: 43.7
Median: 45.5

Range (10.0∼69.0)

sex sex type (1=male, 2=female) Male: 10, Female: 28

id Subject’ s identification number ( ,  )

status event status (0; No infection, 1; infection; censoring rate; about 23.7%)

Table 2.3.2. Description and basic statistics of variables for kidney infection

data

(2) Recurrent CGD data

  The chronic granulomatous disease (CGD; Fleming and Harrington, 

1991) data set is from a placebo-controlled randomized trial of 

gamma interferon (-IFN) in CGD. The trial is aimed to investigate 

the effectiveness of -IFN in reducing the rate of serious infections 

in the CGD patients. In total, 135 patients from 13 centers (hospitals) 

were observed for about 1 year. This data set shows that there are 

recurrences of different cluster sizes (i.e. recurrences were 1 to 8 

per patient). 

  Table 2.3.3 describes the recurrent CGD data and provides their 

basic statistics as in Table 2.3.2. The censoring rate is about 63%.
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Variables Description Basic statistics

treatment placebo or gamma interferon
placebo: 120
IFN-g: 83

sex sex type (male, female)
male : 168
female: 35

age age (in years) at study entry
Mean: 13.7
Median: 12.0

Range (1.0∼44.0)

height height in cm at study entry
Mean: 138.1
Median: 140.0

Range (76.3∼189.0)

weight weight in kg at study entry
Mean: 39.34
Median: 33.40

Range (10.40∼101.50)

inherit pattern of inheritance
X-linked: 131
autosomal: 72

steroids use of steroids at study entry,1=yes 0.03448

propylac
use of prophylactic antibiotics at study
entry

0.8473

tstart, tstop
start and end of each time interval
(tstart, tstop)

Mean: (69.5, 254.1)
Median: (140.0, 273.0)
Range (76.3∼189.0)

id Subject’ s identification number (135)

center
enrolling center (NIH:41, Scripps Institute:36, Amsterdam:28, Univ. of
Zurich:21, Mott Children's Hosp:20, L.A. Children's Hosp:13, Other:44)

status the event status (0; No infection, 1; infection; censoring; about 63%)

Table 2.3.3. Description and basic statistics of variables for the recurrent CGD

data

(3) Bladder cancer data

  The bladder cancer data set is the multicenter bladder cancer 

clinical trial which was conducted by the EORTC (Oddens et al., 

2013). The survival data set used in this study was the duration of 

the disease-free interval (DFI): the time (days) to the first 

recurrence after surgery (transurethral resection) of 1,066 patients 

having bladder cancer from 46 centers in 13 European countries. The 

Bacillus Calmette-Guerin (BCG) was given after surgery to try for 
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reducing the risk of recurrence. In order to reduce its toxicity, a 

disadvantage of BCG, the two different doses (1/3 dose and full 

dose), and the durations of maintenance BCG therapy (1 year and 3 

years) were assessed. In this thesis, we aim to evaluate the risk 

factors for the time to recurrence. 

Variables Description Basic statistics

timeDFI Time to the first recurrence after surgery (days)
Mean: 1314.39
Median: 93.5

Range (2.0∼4743.0)

statusDFI
Indicator of the recurrence of the bladder cancer
(0: No, 1: Yes)

No: 264
Yes: 202

Trtdose
Amount of yhe dose of BCG (1: 1/3 dose BCG,
2: full-dose BCG)

1/3 dose BCG: 245
full-dose BCG: 221

Trtduration Duration of maintenance (0: 1 year, 1: 3 years)
1 year: 221
3 years: 245

Age Years
Mean: 75.50
Median: 75
Range (70∼85)

Gender 0: Male, 1: Female
Male: 382
Female: 84

TypeBC
Type of the bladder cancer (0: Primary, 1:
Recurrent)

Primary: 260
Recurrent: 206

Tumsize Largest tumor diameter (mm)
Mean: 18.14
Median: 15
Range (2∼98)

Nbtum No. of tumors
Mean: 2.95
Median: 2

Range (1∼10)

Tstage T category of the bladder cancer (0: pTa, 1: pT1)
pTa: 279
pT1: 187

Ggrade
WHO grade of the bladder cancer (1: G1, 2: G2,
3: G3)

G1: 122
G2: 202
G3: 142

patientid subject patients number (1,066)

institution 46 institution in 13 European countries.

status 1=the recurrence of the patients (44.3% )

Table 2.3.4. Description and basic statistics variables for the Bladder cancer data

  Table 2.3.4 provides a description of the variables used in this 
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analysis; the censoring variable indicates whether a recurrence was 

observed or not, with a recurrence being noted in 44.3% of the 

patients, leading to censoring rate 54.7%. 

2.3.3. Simulation study

  Below are the simulation design and estimation results for 

comparing copula model and frailty model for correlated survival data. 

  First, the method of Prenen et al. (2017a) based on the sampling 

algorithm of Marshall and Olkin (1988) was used to generate survival 

time data under the Clayton copula model. The correlation parameter 

of Clayton copula model is set with a small correlation strength    

(i.e. Kendall's tau ≒) and a slightly larger    (ie ≒) 

respectively. The standard exponential distribution was assumed for 

the baseline distribution of the marginal hazard function, and the 

standard normal distribution was used for one single covariate . The 

corresponding regression parameter was fixed as  , the censoring 

time was generated from a uniform distribution with about 20% 

censoring rate, and the sample size was considered as     

for all    ⋯ .

  Next, in the case of the frailty model, survival time data were 

generated under the gamma frailty model using the simulation scheme 

by Ha et al. (2019). The frailty     ⋯  was generated from 

the gamma distribution considering the mean  and the variance 

   and . The rest of the design is the same as the design of 

Clayton copula model presented above, and the number of replications 

of the simulation was 200 times. 



25

  The mean, mean of estimated standard errors(SE), and standard 

deviation (SD) were calculated for each of  and , respectively.

  The one-stage and two-stage copula modeling methods using the 

Sunclarco package were performed as shown in Table 2.3.5. As the 

baseline distribution of the marginal hazard function (2.1.6), the PE 

and Weibull in one-stage and Weibull and NP (Cox) distributions in 

two-stage were applied, respectively. For the fit and comparison of 

the models, the Clayton copula model was first used as a true model 

and two models (Clayton copula model, gamma frailty model) were 

fitted. Similarly, the gamma frailty model was taken as a true model 

and then the two models were fitted. 

  The abbreviations and notations used in the tables of this thesis are 

as follows:

∙ Est: estimator

∙ Mean and SD: mean and standard deviation for estimates

∙ SE: mean of estimated standard error

  The simulation results are shown in Table 2.3.5, and the results are 

shown below.

(ⅰ)   : When the Clayton copula model is assumed as a true 

model,  is estimated well in terms of small bias of  in both Clayton 

copula and the gamma frailty models. However,  is overestimated in 

the two-stage method (Weibull and Cox) of Clayton copula model. 

Assuming that the gamma frailty is a true model, both  and  are 

well estimated for fitting the gamma frailty model, but fitting Clayton 

copula model seems to be relatively slightly underestimated for . 

When the correlation strength is small (i.e.   ), it is observed 

that the estimation results of the two models (i.e. Clayton and gamma 
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frailty models) are overall well estimated. 

(ⅱ)   : When the Clayton copula model is assumed as the true 

model,  and  could be estimated well in terms of small biases of  

and  in fitting Clayton copula model, but for the gamma frailty 

model,  is overestimated and  is underestimated. Assuming that the 

gamma frailty is a true model, fitting the gamma frailty model is well 

estimated, whereas fitting the Clayton copula model tends to estimate 

both the one-stage and two-stage estimation for  erroneously, and 

leads to an underestimated of . 

  Therefore, according to Table 2.3.5 when the correlation strength is 

small as   , it was observed that the estimation results of the two 

models are generally good in estimating parameters even if each 

model is incorrectly fitted. However, when the correlation strength is 

high as   , the estimation results of the two models are relatively 

sensitive to the true model. That is, when   , if both models fit 

the true model, they fit well, but if they are incorrectly specified, 

both models show a large bias for the estimator. From these results, 

it can be seen that when the correlation between the survival data is 

small, the two models give similar results. However, when the 

correlation is large, the two models give different results; this means 

that fitting a proper model for the clustered survival data is important 

in model-based data analysis.
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Fitted model

Baseline
hazard function

Clayton
Gamma frailty

One-stage Two-stage

Weibull PE Weibull Cox frailtyEM frailtyHL

True
model

Est Mean
SE
SD

Mean
SE
SD

Mean
SE
SD

Mean
SE
SD

Mean
SE
SD

Mean
SE
SD

  

Clayton

 1.013
0.070
0.068

1.024
0.067

0.071
1.014

0.070
0.069

1.012
0.069
0.072

1.058
0.084
0.079

1.064
0.076
0.080

 0.102
0.066
0.065

0.102
0.066
0.066

0.188
0.068
0.058

0.109
0.068
0.058

0.075
0.061
0.056

0.087
0.061
0.058

Gamma
frailty

 0.965
0.070
0.073

0.962
0.072
0.075

0.964
0.072
0.075

0.956
0.073
0.077

1.010
0.084
0.084

1.015
0.077
0.084

 0.095
0.065
0.067

0.098
0.067
0.069

0.099
0.066
0.060

0.102
0.058
0.061

0.089
0.067
0.062

0.102
0.066
0.064

  

Clayton

 1.016
0.184
0.197

1.024
0.187
0.200

1.008
0.075
0.073

1.004
0.078
0.078

1.422
0.100
0.097

1.428
0.093
0.097

 1.009
0.054
0.064

1.010
0.067
0.064

1.001
0.186
0.189

0.994
0.179
0.190

0.742
0.153
0.156

0.762
0.147
0.158

Gamma
frailty

 0.631
0.054
0.064

0.599
0.055
0.060

0.620
0.076
0.080

0.636
0.076
0.078

0.999
0.091
0.087

1.004
0.086
0.088

 0.859
0.175
0.218

0.943
0.190
0.214

0.835
0.202
0.196

0.922
0.203
0.195

0.995
0.189
0.183

1.022
0.185
0.187

Table 2.3.5.    : Simulation results on the estimation for correctly or

incorrectly fitted model when the true model is the Clayton copula model or the

gamma frailty model, respectively;  

2.3.4.  Illustration

  In this section, we consider three real data sets for the correlated 

survival data described in Section 2.3.2. The first data set is kidney 

infection data (McGilchrist et al., 1991) with the same cluster size, 

and second one is CGD recurrence data (Fleming et al., 1991) with 

different cluster sizes. The third one is  bladder cancer data (Oddens 

et al. 2013; Park and Ha, 2019) from a multicenter clinical trial. As 
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shown in the simulation in Section 2.3.3, the Clayton copula model 

uses the Sunclarco package, and the gamma frailty model uses two 

packages (frailtyHL, frailtyEM). We fit the two models (Clayton 

copula and gamma frailty models) on three real data sets and 

compare the results. In particular, the estimated regression 

coefficients of the two models and the estimated associated 

parameters are compared in terms of the validity and sensitivity to 

the fitted results of model.

(1) Kidney infection data

  Table 2.3.6 shows the results of fitting the Clayton copula model 

and the gamma frailty model with Age (age) and Sex (1 = male, 2 = 

female) as covariates. Following the results of the Wald test statistic,  

EstimateSE, the Age effect is not significant at the 5% significance 

level in both models (Clayton copula model, gamma frailty model). 

However, the Sex effect is crucial in one-stage estimation and 

gamma frailty model, whereas it is not significant in two-stage 

estimation (Weibull and Cox). The estimated value of the correlation 

coefficient  is about 0.2 for the Clayton copula between the two 

models, and about twice or three times of the gamma frailty model 

(i.e. 0.397 in frailtyEM and 0.561 in frailtyHL). The estimate of the 

correlation parameter  is reflected to the estimates of the regression 

parameters (effects of age and sex) in one-stage estimation and  the 

estimation of gamma frailty model, as shown in the simulation results 

in Table 2.3.5 for both models. As a result, there seems to be a 

large difference in the absolute values of the regression estimates 

between the two models.
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Baseline
hazard
function

Clayton
Gamma frailty

One-stage Two-stage

Weibull PE Weibull Cox frailtyEM frailtyHL

Est SE Est SE Est SE Est SE Est SE Est SE

Age 0.003 0.010 0.002 0.010 0.004 0.009 0.002 0.008 0.005 0.012 0.007 0.013

Sex: F -0.937 0.301 -0.947 0.309 -0.875 0.510 -0.829 0.483 -1.553 0.445 -1.691 0.483

 0.207 0.196 0.205 0.212 0.211 0.473 0.209 0.110 0.397 0.235 0.561 0.280

Table 2.3.6. Estimation results of fitting Clayton copula and gamma frailty models

for kidney data

(2) Recurrent CGD data 

  Table 2.3.7 shows the results of fitting the two models with Age 

(age) and treatment (Treat; 0=false drug, 1 = -IFN) as covariates. 

The estimated correlation parameter  is around 0.1 in both models, 

which is relatively small as compared to the results in Table 2.3.5. In 

the simulation results in Table 2.3.5, the estimated regression 

parameters of both models are similar. In particular, according to the 

results of the Wald test statistic, the treatment (i.e. -IFN) is very 

significant at the 5% significance level in both models.

Baseline
hazard
function

Clayton
Gamma frailty

One-stage Two-stage

Weibull PE Weibull Cox frailtyEM frailtyHL

Est SE Est SE Est SE Est SE Est SE Est SE

Age -0.026 0.013 -0.025 0.013 -0.029 0.004 -0.029 0.011 -0.029 0.011 -0.027 0.014

Treat -1.088 0.261 -1.049 0.258 -1.092 0.049 -1.052 0.138 -1.114 0.168 -1.130 0.270

 0.093 0.107 0.110 0.120 0.069 0.000 0.184 0.147 0.184 0.000 0.090 0.109

Table 2.3.7. Estimation results of fitting Clayton copula and gamma frailty models

for CGD data 
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(3) Multicenter bladder cancer data 

  Table 2.3.8 shows the results of fitting the Clayton copula model 

and the gamma frailty model for bladder cancer data. The estimated 

correlation parameter  is 0.093 in the one-stage PE of the Clayton 

copula model, which is less than 0.114 in frailtyEM and 0.129 in 

frailtyHL under the gamma frailty model. Following penalized variable 

selection by Park and Ha (2019), significant variables in bladder 

cancer data were known as Trtduration, TypeBC, Nbtum, and G1. In 

the Table 2.3.8, according to the results of the Wald test statistic, 

Trtduration, TypeBC, and Nbtum are very significant at the 5% 

significance level for both models. However, the G1 is all significant 

except for one-stage Weibull. In addition, Trtdose is significant in 

one- and two-stage Weibull and two-stage Cox.
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Baseline
hazard
function

Clayton
Gamma frailty

One-stage Two-stage

Weibull PE Weibull Cox frailtyEM frailtyHL

Est SE Est SE Est SE Est SE Est SE Est SE

Trtdose -0.181 0.089 -0.144 0.090 -0.148 0.064 -0.153 0.060 -0.153 0.093 -0.153 0.093

Trtdu

-ration
-0.339 0.090 -0.193 0.091 -0.229 0.083 -0.204 0.079 -0.198 0.094 -0.197 0.094

Age -0.003 0.004 -0.002 0.004 -0.001 0.005 -0.003 0.004 -0.002 0.005 -0.002 0.005

Cender 0.182 0.110 0.167 0.114 0.147 0.152 0.162 0.146 0.180 0.118 0.182 0.118

TypeBC 0.383 0.101 0.375 0.102 0.386 0.080 0.386 0.076 0.391 0.106 0.392 0.106

Tumsize 0.000 0.004 0.002 0.004 -0.001 00004 0.000 0.004 0.003 0.004 0.003 0.004

Nbtum 0.147 0.024 0.129 0.025 0.136 0.032 0.135 0.030 0.137 0.026 0.137 0.026

Tstage 0.206 0.122 0.069 0.125 0.021 0.146 0.038 0.137 0.076 0.128 0.078 0.129

G1 -0.196 0.159 -0.318 0.159 -0.344 0.167 -0.302 0.152 -0.326 0.164 -0.326 0.164

G2 -0.128 0.137 -0.215 0.137 -0.259 0.134 -0.213 0.125 -0.217 0.805 -0.217 0.142

 0.168 0.057 0.093 0.052 0.184 0.053 0.183 0.000 0.114 0.064 0.129 0.069

Table 2.3.8. Estimation results of fitting Clayton copula and gamma frailty models

for bladder cancer data 
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Ⅲ.  ESTIMATION OF COPULA 

SURVIVAL MODELS

  In this chapter, we propose a one-stage procedure for estimating 

the regression and association parameter under copula survival models 

in Section 2.1.1. Specifically, we use the M-spline method for 

estimating the baseline hazards.

3.1.  Copula-based likelihood

  Let  and  be the survival time and censoring time for the 

-th observation of the -th cluster(or subject)    ⋯    ⋯ , 

respectively. Here,  is the number of clusters, and  is the number 

of individuals in cluster  and    
  is the total sample size. 

The observable random variables in the clustered survival data are;

 min  and   ≤, (3.1.1)

where  is the censoring time corresponding to event time . In 

this thesis, we assume the following two usual assumptions in 

survival analysis (Prenen et al., 2017a; Ha et al., 2017). 

Assumption (A1): Given covariates ,  and  are conditionally 

independent, and pairs   are also conditionally independent 

   ⋯     ⋯ .

Assumption (A2): Given covariates ,  are conditionally 
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noninformative of .

  Let  be the observed value of . According to Prenen et al. 

(2017a), the contribution of cluster  to the likelihood function, 

denoted by , is obtained from the derivative of the -dimensional 

joint survival function over all uncensored individuals in the cluster ; 

  

 



 ⋯  ∀,     ⋯  (3.1.2)

where   is the set of uncensored individuals in the cluster , 

and     

  is the size of this set. We denote the marginal 

survival and density functions given  as   and 

     
′ , respectively. Since the generator of Archimedean 

 is the Laplace transform of , from (2.1.5) and (3.1.2) the 

copula-based log-likelihood , for ∀, individuals is as follows:


  






  

 



  

 

log   log ′  log
  

 


 




 (3.1.3)

where   log. Here, under the marginal hazard model (2.1.6) 

exp
 we have that 

 exp
 and  exp


. (3.1.4)
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Definition 3.1. The -th derivative of the Clayton copula 

 
 is given by


   

 

 

. (3.1.5)

In the Clayton copula model with the Weibull marginal hazard model 

(2.1.6), the log-likelihood (3.1.3) has a closed form;

         


log
log


 

 


 log 

   
 

log



, (3.1.6)

Definition 3.2. The -th derivative of the GH copula exp
  

   is given by


 

 

 



 








    






 . (3.1.7)

     

We can show that under the GH copula model, the corresponding 

likelihood also has an explicit form:

 
 




  



logloglog
  

  



log





 



log
 

 



  








    









  



log





 

 . (3.1.8)
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Definition 3.3. Under the Clayton copula model with the Weibull 

marginal hazard model (2.1.6), the log-likelihood (3.1.6) has a closed 

form:

 


log 
  

 


  log   

  

 

log 



 (3.1.9)

where  
 exp

,  exp


 exp
 and 


    

 
 . 

  In the copula survival models, two types of estimation methods, 

one- and two-stage methods, have commonly been used. Let 

   

 be unknown parameters in the copula survival models. 

Here,  is the parameter in the baseline hazard . For example, 

   
 in the Weibull case. The one-stage estimation procedure 

(Prenen et al., 2017a) is performed by maximizing  in (3.1.3). In 

other words, one-stage MLEs  are defined by

argmax


. (3.1.10)

  Here    

 reflects the dependence among the survival data. 

The two-stage estimation procedure (Shih and Louis, 1995; 

Duchateau and Janssen, 2008) consists of two steps. As mentioned in 

Section 2.2, the two-stage estimation procedure estimates   

easily in the first step, but it estimates the association parameter  

without updating   in the second step. The details of one- and 
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two-stage estimation procedures will be described in later sections.

3.2. M-spline modeling for baseline hazards

  When the functional form of marginal baseline hazard  in (2.1.6) 

is unknown,  (or ) has originally infinite dimensional 

parameters. The estimation of the parameters of interest   is in 

the presence of the nuisance ⋅ under the copula model (2.1.5) 

with (2.1.6). However, the estimation of  by direct maximization 

of  in (3.1.3) is difficult because of its dimensional issue. To 

overcome this problem, we consider a M-spline function with finite 

dimensional parameters via a computationally efficient M-spline 

method for  (Ramsay, 1988; Emura et al., 2017). 

Definition 3.4. The cubic M-spline for the marginal baseline hazard 

 is specified as


  



, (3.2.1)

where   ⋯ 
 and 's are unknown positive parameters, and 

′s are called the M-spline basis functions (Ramsay, 1988). Here, 

the number of bases  also represents the number of free variables. 

  The M-spline introduced by Ramsay(1988) can be considered as a 

normalized of B-spline (basis spline: ) with unite integral within 

boundary knots. That is, an M-spline polynomial with order  can be 

expressed as



37

⋅ 


,    ⋯ .

Definition 3.5. The corresponding baseline cumulative hazard function 

and survival functions are, respectively given by


  



, (3.2.2)

and

exp
  



, (3.2.3)

where  is the integration of , called the I-spline (or 

integrated spline) basis functions (Ramsay, 1988). 

  Following the suggestions of Emura et al. (2017, 2019a) and 

Commenges and Jacqmin-Gadda (2016), we use the number  , 

giving a five-parameter spline model with flexible functional forms 

(Appendix A). This number allows flexible shapes, including 

increasing, decreasing, constant, convex, and unimodal hazard 

functions, keeping the over-fitting phenomenon. The characteristics of 

the flexible shape's parameter specifications are shown in the 

following Example 3.6 (Shih and Emura, 2020). 

Example 3.6. For a five-parameter spline model with flexible 

functional forms, let 

    ≤


 ,     ≤


≤.
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Then, for all  ,     ⋯ , the proposed spline model yields the 

following shapes of hazard functions;

(ⅰ) Increasing hazard: 

 ≤ ≤ ≤, 
∈≥   

and 
∈≥,

(ⅱ) Decreasing hazard: 

 ≥ ≥ ≥, 
∈≤   

and 
∈≤,

(ⅲ) Convex hazard: 

 ≥,  ≥ and  ≥,

(ⅳ) Concave hazard: 

 ≤,  ≤ and  ≤,

(ⅴ) Constant hazard: 

    ,

where  and 

.

Definition 3.7.  We define the basis functions 's and 's on the 

support ∈   , where  is the lower limit,  is the upper limit, 

and    is the midpoint. In data analysis, one can choose 

 min and  max. 
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Figure 3.2.1. M-spline (left) and I-spline basis functions (right) with  

  Figure 3.2.1 displays the M- and I-spline basis functions with   

and the knots  ,  , and   (Emura et al., 2017). The 

joint.Cox R package (Emura, 2019b) provides M.spline() and 

I.spline() functions and allows the calculation of  and . In the 

univariate PH regression model for independent survival data, the 

M-spline method provides essentially the same estimation results for 

regression parameters as the semi-parametric Cox's (1972) 

regression method using the partial likelihood (Shih and Emura, 

2020). 

3.3.  One-stage estimation procedure

  Now, we propose a one-stage estimation procedure for semi-parametric 



40

copula model (2.1.5) with unknown marginal baseline hazard using the 

M-spline method proposed by Emura et al. (2017, 2019a). Let 

   

 be unknown parameters in the copula model. Here, 

  ⋯ 
 is a vector of unknown positive parameters in (3.2.1). 

  For the existence of MLEs, we add the following assumption. 

Assumption (A3):  in (3.1.3) is continuous on . 

Note here that     ∈            is the 

parameter space which has finite dimension. 

Theorem 3.8.  Under the two assumptions (A1) and (A2), the 

M-spline-based log-likelihood  of    

 under the 

Clayton copula model can be expressed as




log 




  

 


 log



exp 



  

 

log



, (3.3.1)

where the M-spline based hazards  and  are given in 

(3.2.1) and (3.2.2), respectively. Here   ⋯  is a vector of the 

unknown positive parameters and  ∈ is an unknown true 

parameter. 

  Under (A1)-(A3), the one-stage MLEs  of  are obtained by 

argmax
∈

. (3.3.2)
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Proof. Under (A1), and (A2), the log-likelihood (3.3.1) based on the 

M-spline is constructed by replacing marginal baseline hazard  in 

(3.1.3) and marginal cumulative baseline hazard  in (3.1.4) with 

the M-spline hazard (3.2.1) and I-spline hazard (3.2.2), respectively. 

Under (A3), the MLEs of    

 exists (Cox and Hinkley, 

1974). Thus, we can find the MLEs    

 by solving the 

following three estimating equations simultaneously:
























 

  

These three estimating equations are non-linear with respect to 

   

.                                                       □

     

Property 3.9. 

(ⅰ) The estimated SEs of , denoted by , can be obtained 

directly because the estimated asymptotic variances of   are 

obtained from the inverse of the observed information matrix 


 
 

 (Cox and Hinkley, 1974).

(ⅱ) The one-stage MLEs    

 reflects the dependence 

among the survival times. Here,   are parameters of interest, but 
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 is a vector of nuisance parameters. 

  For the implementation of (3.3.2), we use the optim() R function, 

including the computation of the estimated SEs from the asymptotic 

variance above. Here,  and  in (3.3.1) are easily 

calculated using the joint.Cox R package. These facts indicate that the 

proposed procedure is easily implemented with existing algorithms 

such as, the joint.Cox R packages. We have found through simulation 

studies in Chapter 4 and illustrations in Chapter 5 that our one-stage 

procedure provides a very fast fitting algorithm with the number of 

bases   in (3.2.1). 

  In fact, the proposed one-stage semi-parametric procedure can 

also be viewed as computationally efficient sieve maximum likelihood 

(ML) approach (Grenander, 1981; Geman and Hwang, 1982). In this 

aspect, the proposed procedure may also be constructed by replacing 

an infinite-dimensional parameter space for the unknown baseline 

hazard function  with a finite-dimensional parameter space (i.e. 

 ) through the M-spline function  in (3.2.1) (Ma et al., 

2015; Chen et al., 2017).

3.4. Two-stage estimation procedures

Definition 3.10.  The two-stage estimation procedure consists of the 

following two steps. 

First step. The parameters  , where  ⋅, are easily 

estimated using the classical ordinary censored likelihood, assuming 

that all individuals as independent according to the marginal hazard 

model (2.1.6), where the baseline hazard  can be parametric or 
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non-parametric. 

Second step. The copula association parameter  is estimated by 

maximizing the pseudo log-likelihood, defined by 
,


  , (3.4.1)

where    is given by (3.1.3) and 

        . (3.4.2)

Here  and  are MLEs obtained in the first step, but they are fixed 

in the second step for estimating , so that they are not updated. In 

this regard, in the two-stage estimation, the estimates of the 

regression and baseline parameters   are equal to the estimates 

arising from the marginal hazard model (2.1.6) which leads to an 

independence model with 

 ⋯  ∀⋯. (3.4.3)

Property 3.11. 

(ⅰ) The two-stage estimation of   is based on the marginal 

hazard model (2.1.6) with independent event times, rather than the 

copula model (2.1.5) allowing for dependency among event times.   

(ⅱ) The resulting two-stage estimates  may not effectively 

reflect the dependence among the survival data. The likelihood 

function produces a direct variance estimate that is not valid, 

especially when there is a strong dependency among the data. 
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  In particular, in two-stage semi-parametric estimation (Prenen et 

al., 2017a), the regression parameters and baseline hazards are 

estimated under the PH model of the marginal Cox in the first step, 

giving the same estimates as the generalized estimation equation 

(GEE; Liang and Zeger, 1986).

  Using the robust sandwich estimator of the GEE approach 

introduced by Liang and Zeger (1986), the two-stage method gives a 

variance-covariance matrix of estimated regression parameters that 

account for the dependency due to clustering. Even the two-stage 

method considers within-cluster correlation through robust variance 

estimates by the GEE approach, it cannot explicitly explain the 

strength of these correlations.

3.5. Comparison of one-stage and two-stage procedures

  In this section, we compare the proposed one-stage and the 

two-stage estimation procedures. 

  As mentioned in Section 3.4, the two-stage estimation procedure 

consists of two steps. In the first step,  , where the baseline 

hazard  can be parametric or non-parametric, are easily estimated 

using the classical right-censored likelihood by assuming all 

individuals as independent under the marginal hazard model (2.1.6). In 

the second step, the copula association parameter  is estimated by 

maximizing a pseudo log-likelihood 
 in (3.4.1) which is used to 

estimate the dependence parameter , but when implementing 
, it 

is not updated (i.e. fixed) the estimates of regression parameter and 

baseline hazard from the first step. Thus, the two-stage estimation of 
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  is based on the marginal hazard model (2.1.6) with independent 

event times, not in the copula survival model (2.1.5) allowing for 

dependency among event times, so that this pseudo-likelihood 

approach using 
 may not be effective to the estimation of 

unknown parameters. Since our one-stage procedure estimates 

simultaneously marginal and dependence parameters using  in 

(3.3.1), the proposed one-stage estimates including our SEs properly 

reflect such dependence. 

  To evaluate the performance of our proposed method, the simulation 

study in Chapter IV is conducted, with the illustration in Chapter V. 

As can be seen in these two chapters, we recommend using an 

M-spline-based one-step procedure that avoids the potential loss of 

efficiency of the two-step estimation.
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Ⅳ.  SIMULATION STUDY FOR COPULA 

SURVIVAL MODELS

  In this chapter, the simulation study is conducted to evaluate the 

performance of the proposed one-stage estimation method under the 

copula survival model with unknown marginal baseline hazard. We 

present simulation results for two classes, depending on whether the 

assumed Clayton copula model is correctly specified or misspecified.

4.1.  Correctly specified copula models

  We first consider the case where the assumed Clayton copula model 

is correctly specified. In order to evaluate the performance of the 

proposed one-stage estimation method, the simulation schemes are as 

follows. It was performed on a copula model with an unknown 

marginal baseline hazard using 500 replications of simulation data. 

Event times are simulated from a Clayton copula survival model 

(2.1.8) with association parameter at   ,  and  which give 

corresponding Kendall's tau  ,  and , respectively. 

Here, we consider the marginal PH model with the Gompertz 

distribution as the true baseline hazard:

  exp, (4.1.1)

where we set the shape parameter  ,  and ; its hazard 

exponentially increases with . Data are generated using the sampling 

algorithm of Marshall and Olkin (1988) as follows (Prenen et al., 

2017a; Ha et al., 2019). For    ⋯  and    ⋯ , define
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 log, (4.1.2)

where   for   , ′s follow independent and 

identically    and  ′s follow independent and identically gamma 

distribution with mean  and variance . Then survival times 's are 

generated from 

  loglogexp. (4.1.3)

Here, we set a log-scale parameter   and a regression 

parameter  , and a single covariate  is generated from  . 

We consider the three cases of multivariate cluster sizes: 

Case A. The same cluster size:   ;    ,   for all . 

Case B. The same cluster size:   ;  ,  ,   for all . 

Case C. The different cluster size, based on multicenter bladder 

cancer data in Section 5.3.

  The corresponding censoring times 's are generated from an 

exponential distribution having a parameter empirically determined to 

achieve approximately about 20% censoring rates.

  In this chapter, we first fit simulation model above (i.e. Clayton 

model with Gompertz marginal hazard) using the one-stage Clayton 

copula method based on a cubic M-spline. We investigate the 

behaviors for the estimates of parameters of interest  . For 500 

replications of simulated data, we calculate the mean, standard 
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deviation (SD), the mean of the estimated standard errors (SE), and 

mean squared error (MSE) for each  . We also compute the 

empirical coverage probability (CP) for a nominal 95% confidence 

interval (CI) for  and , respectively. In addition, we compare the 

performance of the proposed method with that of  the five existing 

methods: one-stage Weibull and partial exponential (PE), two-stage 

Weibull, PE, and Cox of Prenen et al. (2017a). Here, the existing five 

methods are implemented with the Sunclarco R package by Prenen et 

al. (2017b); these two-stage procedures use a sandwich variance 

estimator for   that takes the dependence into account among 

survival times. Now we present the simulation results of three cases 

according to the cluster size. 

Case A. The same cluster size:   

  The simulation results for Case A are summarized in Tables 4.1.1 

and 4.1.2.

(i) Table 4.1.1 with a small sample   :

  Overall the proposed method works well in terms of biases of  

and . The estimated SEs of  and  are also very close to the 

corresponding empirical SDs, which are the estimates of the true 

var


 and var


, respectively. As a result, the CPs of the 

95% CI match well with the nominal value of 0.95. On the other hand, 

all the two-stage estimators show some underestimation for , 

leading to substantially lower CPs. The one-stage Weibull method is 

very sensitive against misspecification of the marginal hazard 

distribution, leading that it gives seriously lower performances in 

terms of bias, MSE, and CP for (, ), particularly when  or  
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increases. The results of the one-stage PE method are compared 

with those of the proposed method under a small    (i.e. Kendall's 

tau   ). However, when  is large as    (i.e.  ), the 

one-stage PE gives larger variations for  (i.e. SD and MSE), leading 

to very lower CPs. The trends of very lower performances from the 

two-stage Weibull method are similar to the one-stage Weibull 

method. The two-stage PE method gives fewer biases for , but its 

SE is underestimated as compared to the SD, leading to very lower 

CPs for . Moreover,  is seriously downward biased, giving very 

lower CPs for . As expected from the GEE-based marginal Cox's 

modeling approach (Spiekerman and Lin, 1998), the results of the 

two-stage Cox method are comparable to those of the proposed 

method in terms of the bias of  and CP for , but the two-stage 

Cox method gives larger variations (i.e. SE, SD, and MSE) for , 

especially when  increases. In the two-stage Cox method,  is again 

seriously biased downward, leading to very lower CPs.

(ii) Table 4.1.2 with sample   :

  As the sample size increases from    to   , we 

observe that our estimators for (, ) are consistent and the SE 

estimates perform well as judged by the very good agreement 

between SE and SD. In particular, the proposed method's CPs for (, 

) are in the 93%∼96% range in almost all cases. 

  As shown in the box plots in Figures 4.1.1 and 4.1.2, it is observed 

that the performance of the proposed method performs well. In the 

case of   , the simulation results for   and  are presented 

in Tables D1 and D2 in the Appendix D which are similar to the 

previous results.
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  Est Mean
SE

SD
MSE CP Mean

SE

SD
MSE CP Mean

SE

SD
MSE CP

Baseline
hazard function

One-stage

Weibull PE Proposed

0.5 0.2  0.986
0.139

0.131
0.017 0.968 1.040

0.146

0.148
0.023 0.946 1.032

0.146

0.151
0.024 0.934

 0.532
0.319

0.307
0.095 0.954 0.545

0.320

0.370
0.139 0.923 0.544

0.324

0.358
0.130 0.904

3  0.863
0.135

0.136
0.037 0.792 1.037

0.147

0.152
0.024 0.952 1.038

0.148

0.141
0.021 0.956

 0.587
0.347

0.352
0.131 0.946 0.557

0.328

0.378
0.145 0.925 0.541

0.327

0.327
0.108 0.950

8 0.2  0.973
0.098

0.116
0.014 0.868 1.075

0.114

0.134
0.024 0.886 1.060

0.104

0.123
0.019 0.894

 7.550
1.794

1.801
3.441 0.916 9.885

2.445

3.249
14.087 0.936 8.595

2.032

2.188
5.132 0.958

3  0.803
0.087

0.116
0.052 0.402 1.068

0.112

0.140
0.024 0.794 1.027

0.045

0.085
0.008 0.928

 5.263
1.299

1.288
9.145 0.388 9.967

2.470

3.240
14.348 0.916 8.723

2.056

2.262
5.631 0.954

Baseline
hazard function

Two-stage

Weibull PE Cox

0.5 0.2  0.990
0.139

0.133
0.018 0.962 1.037

0.126

0.152
0.024 0.866 1.023

0.142

0.144
0.021 0.952

 0.454
0.321

0.201
0.042 0.940 0.433

0.153

0.215
0.050 0.642 0.449

0.197

0.212
0.047 0.680

3  0.883
0.126

0.132
0.025 0.660 1.034

0.127

0.157
0.026 0.882 1.025

0.144

0.147
0.022 0.940

 0.473
0.404

0.213
0.031 0.800 0.435

0.157

0.214
0.050 0.666 0.443

0.196

0.214
0.049 0.676

8 0.2  1.000
0.151

0.165
0.027 0.938 1.049

0.140

0.179
0.034 0.862 1.018

0.158

0.168
0.028 0.936

 6.135
1.862

1.796
6.698 0.674 5.285

1.664

1.496
9.604 0.518 5.151

2.030

1.539
10.482 0.610

3  0.883
0.141

0.153
0.037 0.808 1.049

0.141

0.182
0.035 0.860 1.018

0.159

0.169
0.029 0.934

 4.466
1.225

1.256
14.065 0.234 4.862

1.583

1.393
11.783 0.440 4.732

1.950

1.440
12.753 0.524

Table 4.1.1. ( ) = (50, 2): Simulation results on one-stage and two-stage

estimation methods over 500 replications under Clayton copula models with

Gompertz marginal hazard; 20% censoring rate;   
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    and        and   

    and        and   

Figure 4.1.1.   : Simulation result of Copula M-spline over 500

replications; 20% censoring rate; dotted line, true values of  and , respectively
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  Est Mean
SE

SD
MSE CP Mean

SE

SD
MSE CP Mean

SE

SD
MSE CP

Baseline
hazard function

One-stage

Weibull PE Proposed

0.5 0.2  0.967
0.067

0.066
0.005 0.922 1.002

0.070

0.071
0.005 0.942 1.007

0.070

0.069
0.005 0.952

 0.521
0.155

0.153
0.024 0.964 0.521

0.155

0.157
0.025 0.952 0.512

0.153

0.156
0.024 0.946

3  0.838
0.066

0.062
0.030 0.308 0.996

0.070

0.069
0.005 0.946 1.006

0.071

0.069
0.005 0.952

 0.573
0.173

0.174
0.035 0.960 0.513

0.156

0.161
0.026 0.950 0.511

0.155

0.160
0.026 0.950

8 0.2  0.944
0.047

0.054
0.006 0.716 1.002

0.051

0.056
0.003 0.922 1.011

0.047

0.051
0.003 0.932

 7.170
0.845

0.800
1.328 0.800 8.221

0.965

0.994
1.035 0.942 8.147

0.943

0.943
0.909 0.966

3  0.773
0.042

0.053
0.055 0.010 0.974

0.049

0.062
0.005 0.842 1.012

0.050

0.052
0.003 0.938

 4.902
0.605

0.573
9.924 0.010 8.049

0.941

0.961
0.930 0.946 8.136

0.946

0.955
0.929 0.946

Baseline
hazard function

Two-stage

Weibull PE Cox

0.5 0.2  0.970
0.069

0.069
0.006 0.926 1.002

0.071

0.073
0.005 0.934 1.000

0.073

0.073
0.005 0.938

 0.501
0.155

0.131
0.017 0.972 0.488

0.125

0.132
0.018 0.828 0.489

0.132

0.133
0.018 0.834

3  0.883
0.126

0.132
0.025 0.660 1.034

0.127

0.157
0.026 0.882 1.025

0.144

0.147
0.022 0.940

 0.473
0.404

0.213
0.031 0.800 0.435

0.157

0.214
0.050 0.666 0.443

0.196

0.214
0.049 0.676

8 0.2  0.977
0.075

0.078
0.007 0.920 1.008

0.078

0.083
0.007 0.928 1.007

0.080

0.083
0.007 0.942

 6.655
0.968

0.833
2.501 0.690 6.667

1.112

0.917
2.616 0.752 6.493

1.152

0.886
3.053 0.740

3  0.862
0.070

0.070
0.024 0.448 1.004

0.077

0.083
0.007 0.936 1.002

0.080

0.080
0.006 0.944

 4.541
0.612

0.620
12.347 0.004 6.261

1.106

0.939
3.903 0.616 6.319

1.189

0.894
3.623 0.686

Table 4.1.2. ( ) = (200, 2): Simulation results on one-stage and two-stage

estimation methods over 500 replications under Clayton copula models with

Gompertz marginal hazard; 20% censoring rate;   
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    and        and   

Figure 4.1.2.   : Simulation result of Copula M-spline over 500

replications; 20% censoring rate; dotted line, true values of  and , respectively

Case B. The same cluster size:   

(i) Table 4.1.3 with a small sample  :

  As expected, the proposed method works well overall. As the 
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association parameter  and shape parameter  increase in the 

one-stage and two-stage Weibull methods, the estimated marginal 

hazard parameters are sensitive to the specification of Gompertz 

marginal hazard.

∙ The result of the one-stage PE method gives lower performance 

for  as  increases, and the two-stage PE method is severely 

biased downward toward , giving very low CPs. The two-stage Cox 

method, as  and  increase, results in very low CPs for .

(ii) Tables 4.1.4 with sample   :

  As the sample size increases, the estimates for (, ) are 

consistent, and in particular, it is observed that the proposed method 

performs well with a good agreement between SE and SD. When the 

sample size is (200, 4), the CP is in the 95% range in almost all 

cases. 

As shown in the box plot of Figure 4.1.3-4.1.4, it is observed that 

the performance of the proposed method performs better than the 

other methods. When   , the simulation results for   and  

are presented in Tables D3 and D4 of the Appendix D, and are 

similar to the previous results.

Summarizing the same cluster size, as compared to the proposed 

method, the performances of the existing five methods are generally 

lower, especially when  increases. In particular, the existing 

one-stage methods (Weibull and PE) are sensitive to the estimation 

of . However, the conventional two-stage methods (Weibull, PE, and 

Cox) are sensitive to the estimation of both  and . However, the 

proposed method performs well, and it is also more efficient in terms 

of MSE, especially when the intensity of dependence increases.
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  Est Mean
SE

SD
MSE CP Mean

SE

SD
MSE CP Mean

SE

SD
MSE CP

Baseline
hazard function

One-stage
Weibull PE Proposed

0.5 0.2  0.977
0.095

0.098
0.010 0.930 1.023

0.100

0.104
0.011 0.942 1.026

0.100

0.104
0.011 0.938

 0.519
0.179

0.199
0.040 0.916 0.508

0.177

0.194
0.038 0.916 0.503

0.175

0.193
0.037 0.908

3  0.829
0.093

0.095
0.038 0.518 1.018

0.101

0.105
0.011 0.932 1.025

0.101

0.105
0.012 0.934

 0.610
0.214

0.240
0.069 0.938 0.509

0.179

0.195
0.038 0.908 0.504

0.177

0.193
0.037 0.902

8 0.2  0.930
0.074

0.087
0.013 0.799 1.004

0.080

0.097
0.009 0.904 1.031

0.068

0.081
0.007 0.918

 7.227
1.281

1.157
1.934 0.884 8.433

1.480

1.541
2.559 0.952 8.138

1.408

1.432
2.067 0.956

3  0.753
0.059

0.083
0.068 0.090 0.963

0.076

0.111
0.014 0.794 1.027

0.045

0.085
0.008 0.928

 5.050
0.922

0.751
9.264 0.218 8.358

1.474

1.498
2.369 0.952 8.152

1.419

1.451
2.124 0.950

Baseline
hazard function

Two-stage
Weibull PE Cox

0.5 0.2  0.991
0.098

0.105
0.011 0.920 1.031

0.094

0.120
0.015 0.866 1.019

0.104

0.111
0.013 0.920

 0.480
0.175

0.156
0.025 0.920 0.450

0.120

0.170
0.031 0.710 0.465

0.146

0.153
0.025 0.816

3  0.874
0.091

0.096
0.025 0.660 1.023

0.087

0.112
0.013 0.864 1.020

0.105

0.113
0.013 0.924

 0.515
0.199

0.156
0.025 0.960 0.456

0.112

0.152
0.025 0.740 0.463

0.147

0.151
0.024 0.822

8 0.2  0.989
0.122

0.134
0.018 0.920 1.029

0.117

0.150
0.023 0.870 1.020

0.132

0.144
0.021 0.936

 6.317
1.339

1.279
4.467 0.684 6.057

1.327

1.367
5.639 0.598 5.282

1.446

1.203
8.832 0.496

3  0.874
0.115

0.123
0.031 0.736 1.025

0.112

0.146
0.022 0.874 1.022

0.132

0.146
0.022 0.940

 4.424
0.801

0.835
13.485 0.048 5.136

1.512

1.189
9.614 0.354 4.911

1.403

1.091
10.732 0.406

Table 4.1.3. ( ) = (50, 4): Simulation results on one-stage and two-stage

estimation methods over 500 replications under Clayton copula models with

Gompertz marginal hazard; 20% censoring rate;   

Table 4.1.3-(i). ( ) = (50, 4); Simulation results on one-stage and two-stage estimation

methods over 500 replications under Clayton copula models with Gompertz marginal hazard; 20%

censoring rate; ; (Kendal’s tau: )
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    and        and   

    and        and   

Figure 4.1.3.   : Simulation result of copula M-spline over 500

replications; 20% censoring rate; dotted line, true values of  and , respectively
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  Est Mean
SE

SD
MSE CP Mean

SE

SD
MSE CP Mean

SE

SD
MSE CP

Baseline
hazard function

One-stage

Weibull PE Proposed

0.5 0.2  0.960
0.046

0.047
0.004 0.838 1.000

0.049

0.050
0.003 0.950 1.005

0.049

0.050
0.003 0.942

 0.521
0.089

0.088
0.008 0.956 0.503

0.087

0.086
0.007 0.960 0.503

0.087

0.083
0.007 0.954

3  0.810
0.046

0.045
0.038 0.028 0.991

0.049

0.049
0.003 0.950 1.004

0.049

0.049
0.002 0.946

 0.617
0.107

0.108
0.025 0.844 0.506

0.088

0.087
0.008 0.946 0.504

0.087

0.084
0.007 0.962

8 0.2  0.913
0.036

0.042
0.009 0.368 0.971

0.038

0.043
0.003 0.824 1.005

0.030

0.031
0.001 0.944

 7.172
0.633

0.582
1.024 0.704 8.091

0.705

0.705
0.512 0.950 8.019

0.689

0.714
0.509 0.948

3  0.733
0.029

0.039
0.073 0 0.929

0.036

0.050
0.008 0.794 1.007

0.038

0.037
0.001 0.962

 4.976
0.454

0.356
9.269 0 8.008

0.703

0.691
0.477 0.930 8.009

0.695

0.715
0.510 0.948

Baseline
hazard function

Two-stage

Weibull PE Cox

0.5 0.2  0.971
0.050

0.052
0.004 0.902 1.001

0.051

0.056
0.003 0.922 1.003

0.053

0.056
0.003 0.942

 0.511
0.087

0.085
0.007 0.966 0.494

0.081

0.084
0.007 0.928 0.494

0.085

0.084
0.007 0.930

3  0.854
0.046

0.046
0.023 0.132 0.995

0.051

0.056
0.003 0.930 1.003

0.054

0.056
0.003 0.938

 0.563
0.098

0.086
0.011 0.992 0.493

0.081

0.084
0.007 0.928 0.492

0.086

0.085
0.007 0.942

8 0.2  0.967
0.063

0.065
0.005 0.920 1.000

0.065

0.065
0.004 0.944 1.002

0.067

0.066
0.004 0.956

 6.799
0.702

0.615
1.818 0.600 7.026

0.851

0.749
1.507 0.776 6.820

0.874

0.706
1.889 0.734

3  0.855
0.058

0.057
0.024 0.284 0.994

0.065

0.065
0.004 0.942 1.002

0.067

0.066
0.004 0.956

 4.525
0.426

0.410
12.247 0 6.625

0.828

0.717
2.403 0.594 6.528

0.901

0.698
2.654 0.602

Table 4.1.4. ( ) = (200, 4): Simulation results on one-stage and two-stage

estimation methods over 500 replications under Clayton copula models with

Gompertz marginal hazard; 20% censoring rate;   



58

    and        and   

    and        and   

Figure. 4.1.4   : Simulation result of copula M-spline over 500

replications; 20% censoring rate; dotted line, true values of  and , respectively

Case C. The different cluster size

  For the data generation of the different multivariate cluster size, we 

use the multicenter bladder cancer data structure ( patients with 

  centers; 55.7% censoring) with different cluster (center) sizes.  
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For this purpose,  the data are generated from the same simulated 

model above, i.e. the Clayton model with the Gompertz hazard

 exp
,

where  ,   and   ⋯ 
 is equal to the 10 covariates in 

Table 5.3.1 for all 500 replications. Here, we used the proposed 

estimates in Section 5.3 as the true parameters, i.e. the true 

regression parameters are

            
      

          ,

and the true association parameter is   . We also consider    

which gives a larger association. The remaining simulation schemes 

are the same as before.

  For the simplicity of comparison, the simulated data are fitted using 

the four Clayton copula models (one-stage Weibull and proposed 

one-stage M-spline, and two-stage Weibull and Cox). The simulation 

results are summarized in Table 4.1.5, 4.1.6 and Figure 4.1.5. The 

trends of the estimation results are overall similar to those evident in 

the previous tables and figures in this Section. That is, the proposed 

method still performs efficiently, except for giving a low CP of  

under a small   . As expected, the one-stage and two-stage 

Weibull methods lead to lower performances for  , particularly for 

a larger association as in   . We again find that the estimates of  

of the proposed method are similar to those of the two-stage Cox 
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method. However, for   the Cox method gives larger variations 

(i.e. SE, SD and MSE) as well as lower CPs under    as shown in 

the previous tables and figures in this Section.

Baseline
hazard function

One-stage Two-stage

Weibull Proposed Weibull Cox

Param
-eter True Mean SE

SD MSE CP Mean SE
SD MSE CP Mean SE

SD MSE CP Mean SE
SD MSE CP


-0.14

6
-0.136

0.077

0.076
0.006 0.942 -0.149 0.080

0.079 0.006 0.952 -0.138 0.074
0.074 0.006 0.946 -0.150 0.078

0.081 0.007 0.934


-0.20

3
-0.182

0.078

0.076
0.006 0.954 -0.200 0.080

0.081 0.007 0.954 -0.195 0.073
0.074 0.006 0.942 -0.214 0.078

0.082 0.007 0.926


-0.00

2
-0.002

0.004

0.004
0.000 0.952 -0.002 0.004

0.004 0.000 0.952 -0.002 0.004
0.004 0.006 0.924 -0.002 0.004

0.004 0.000 0.932

 0.162 0.162
0.099

0.094
0.009 0.944 0.164 0.102

0.104 0.011 0.944 0.157 0.095
0.094 0.006 0.944 0.167 0.100

0.103 0.011 0.936

 0.382 0.344
0.090

0.085
0.009 0.960 0.390 0.092

0.088 0.008 0.960 0.362 0.087
0.091 0.006 0.912 0.399 0.093

0.094 0.010 0.924

 0.002 0.002
0.003

0.003
0.000 0.938 0.002 0.003

0.003 0.000 0.938 0.002 0.003
0.003 0.006 0.894 0.002 0.003

0.004 0.000 0.906

 0.135 0.126
0.024

0.024
0.001 0.946 0.137 0.024

0.025 0.001 0.946 0.131 0.023
0.025 0.006 0.930 0.139 0.024

0.026 0.001 0.918

 0.056 0.056
0.108

0.104
0.011 0.936 0.057 0.111

0.118 0.014 0.936 0.053 0.106
0.116 0.006 0.912 0.060 0.113

0.118 0.015 0.942


-0.34

4
-0.314

0.140

0.130
0.018 0.936 -0.350 0.143

0.143 0.020 0.936 -0.328 0.137
0.147 0.006 0.922 -0.356 0.147

0.161 0.026 0.914


-0.23

3
-0.207

0.119

0.113
0.013 0.940 -0.233 0.122

0.125 0.016 0.940 -0.215 0.116
0.124 0.006 0.918 -0.231 0.123

0.136 0.018 0.916

 0.083 0.148
0.081

0.099
0.014 0.914 0.080

0.037

0.039
0.001 0.904 0.090

0.019

0.064
0.026 0.884 0.070

0.031

0.028
0.001 0.796

Table 4.1.5. Different cluster size: Simulation results on one-stage and two-stage

estimation methods with different cluster size over 500 replications under Clayton

copula models with Gompertz marginal hazard having the multicenter bladder

cancer data structures;   
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Baseline
hazard function

One-stage Two-stage

Weibull Proposed Weibull Cox

Param
-eter True Mean SE

SD MSE CP Mean SE
SD MSE CP Mean SE

SD MSE CP Mean SE
SD MSE CP

 -0.146 -0.118
0.035

0.040
0.002 0.824 -0.152 0.037

0.037 0.001 0.956 -0.144 0.061
0.060 0.004 0.914 -0.161 0.071

0.066 0.005 0.906

 -0.203 -0.180
0.036

0.041
0.002 0.868 -0.215 0.040

0.039 0.002 0.936 -0.198 0.068
0.065 0.005 0.942 -0.220 0.072

0.072 0.005 0.944

 -0.002 -0.002
0.002

0.003
0.000 0.678 -0.002 0.002

0.002 0.000 0.954 -0.002 0.004
0.004 0.000 0.932 -0.002 0.005

0.004 0.000 0.914

 0.162 0.134
0.044

0.051
0.009 0.854 0.171 0.047

0.046 0.002 0.964 0.156 0.095
0.094 0.009 0.942 0.176 0.102

0.099 0.011 0.924

 0.382 0.317
0.044

0.041
0.009 0.630 0.403 0.055

0.051 0.003 0.938 0.360 0.125
0.119 0.016 0.916 0.416 0.151

0.131 0.024 0.876

 0.002 0.002
0.001

0.002
0.000 0.908 0.002 0.002

0.001 0.000 0.936 0.002 0.007
0.005 0.000 0.826 0.001 0.007

0.006 0.000 0.854

 0.135 0.118
0.012

0.015
0.001 0.630 0.139 0.015

0.015 0.000 0.942 0.129 0.041
0.035 0.002 0.896 0.145 0.042

0.036 0.002 0.870

 0.056 0.036
0.050

0.072
0.006 0.846 0.064 0.051

0.051 0.003 0.956 0.060 0.171
0.153 0.029 0.922 0.063 0.196

0.164 0.038 0.904

 -0.344 -0.299
0.066

0.089
0.010 0.812 -0.358 0.071

0.071 0.005 0.954 -0.339 0.249
0.224 0.062 0.920 -0.371 0.281

0.240 0.079 0.908

 -0.233 -0.209
0.055

0.076
0.006 0.838 -0.241 0.059

0.058 0.003 0.952 -0.231 0.196
0.170 0.038 0.916 -0.254 0.216

0.178 0.047 0.896

 0.083 2.105
0.373

0.505
0.266 0.872 2.017

0.383

0.395
0.156 0.940 1.635

0.632

0.343
0.251 0.354 1.362

0.376

0.323
0.511 0.512

Table 4.1.6. Different cluster size: Simulation results on one-stage and two-stage

estimation methods with different cluster size over 500 replications under Clayton

copula models with Gompertz marginal hazard having the multicenter bladder

cancer data structures;   
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    and        and   

    and        and   

Figure 4.1.5. Comparison of simulation results on one-stage and two-stage estimation methods

with different cluster size over 500 replications; dotted line, true values of   and , respectively
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4.2.  Misspecified copula models

  With a small numerical study, we now investigate the performance 

of the proposed method when the assumed Clayton copula model is 

misspecified. For this, we consider the Gumbel-Hougaard (GH) copula 

as the true copula function. Thus, the event times are simulated from 

a GH copula survival model (2.1.3) with association parameter    

and  which give corresponding Kendall's tau (i.e.   )  and 

, and Weibull distribution as the true marginal hazard function

 explog,

where we set a shape parameter   (i.e. an increasing hazard), a 

log-scale parameter   and a regression parameter  . 

Similarly to (4.1.3), the survival times 's are generated from

  logexp
,

where  log with exp for   , and 

∼ and ∼ positive stable distribution with shape 

parameter (i.e. association parameter) . The sample size is set as 

   and   , and censoring rate is 20%. The remaining 

schemes are the same as that of Section 4.1. 

  The simulated data are fitted using the two Clayton copula methods, 

i.e. the proposed one-stage M-spline method and the two-stage Cox 

method. For the presentation of the degree of association, we here 

report the estimation results of Kendall's tau (i.e.   ), rather 

than  itself, by the two fitted Clayton copula methods. Here, we 



64

investigate the behaviors for the estimates of parameters of interest 

(, ). The simulation results are summarized in Table 4.2.1. Table 

4.2.1 shows that for estimation of , the proposed method can lead to 

a wrong estimate if the assumed Clayton copula model is 

misspecified, whereas the two-stage Cox method seems to give 

consistent and robust estimates. However, in the proposed method  

is less biased with smaller MSEs, whereas in the Cox method it is 

seriously biased downward. Care is necessary for the inference of  

by the proposed method when a copula function, not a marginal 

hazard distribution, is misspecified.

Baseline hazard function Proposed Two-stage Cox

  EST Mean SE SD MSE CP Mean SE SD MSE CP

(50,4) 0.4  0.420 0.066 0.087 0.014 0.664 0.509 0.089 0.094 0.009 0.940

 0.379 0.063 0.081 0.007 0.852 0.299 0.054 0.050 0.013 0.530

0.7  0.295 0.038 0.080 0.048 0.132 0.508 0.093 0.102 0.010 0.912

 0.728 0.041 0.072 0.006 0.536 0.541 0.060 0.056 0.029 0.258

(200,4) 0.4  0.410 0.032 0.040 0.010 0.250 0.499 0.045 0.049 0.002 0.926

 0.375 0.031 0.035 0.002 0.834 0.298 0.027 0.027 0.011 0.048

0.7  0.272 0.019 0.058 0.055 0.002 0.503 0.047 0.049 0.002 0.934

 0.742 0.021 0.054 0.005 0.162 0.560 0.029 0.029 0.021 0

Table 4.2.1. Simulation results on 500 replications of fitting the proposed

one-stage M-spline and two-stage Cox methods under Gumbel-Hougaard

(GH) copula models with Weibull marginal hazard; shape parameter  ;

20% censoring rate;   
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  Ⅴ. ILLUSTRATION FOR COPULA SURVIVAL 

MODELS

  For the illustration of the proposed method in Section 4.1, we 

consider three data sets of correlated survival data. The first data set 

is on the bivariate kidney infection survival times (McGilchrist and 

Aisbett, 1991). The second one is on the CGD (chronic 

granulomatous disease) recurrent infection survival times with 

different cluster sizes. The third one is data from a multicenter 

bladder cancer trial (Oddens et al. 2013; Park and Ha, 2019). We fit 

the Clayton copula survival models with unknown marginal baseline 

hazard using the proposed one-stage procedure using the M-spline 

method.

5.1. Kidney infection data

  The event times from the same patient can be correlated due to a 

shared patient effect. We consider two covariates in the kidney data: 

Age and Sex(1=F(female), 0=M(male)). The fitted results (i.e. the 

estimated regression coefficients and their SEs) of the copula models 

via the proposed method are summarized in Table 5.1.1. 

 The estimates of association parameter θ in the six methods are all 

similar. Note that as mentioned in Section 4.1, the two-stage Cox 

estimates and SEs for regression parameters (i.e. Age and Sex 

effects) are the same as the marginal Cox estimates based on the 

GEE approach (Spiekerman and Lin, 1998). Following the Wald test 

statistic, the Age effect is not significant at the 5% significance level 

for all six methods, but the Sex effect gives different significance. 
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The Sex effect is significant according to the one-stage method, but 

it is not in the two-stage method due to larger SE of Sex effect 

which is also confirmed from the simulation results in Tables 

4.1.1-4.1.2. It is well-known that the Sex effect is significant 

according to the results of many literatures (Hougaard, 2000; Ha et 

al., 2017; McGilchrist and Aisbett, 1991). Care is necessary in 

conducting the inference using the two-stage method in clustered 

survival data.

5.2. Recurrent CGD data

  The event times for a given patient can be correlated as in the 

above kidney infection data. We model the recurrent infection survival 

times, with the two covariates: Treatment  (0=placebo, 1=-IFN) 

and Sex  (0=M(male), 1=F(female)). Notes that  is the main 

covariate in the clinical trial. The fitted results are given in Table 

Baseline
hazard
function

One-stage Two-stage

Weibull PE Proposed Weibull PE Cox

Parameter
Est
(SE)

Est
(SE)

Est
(SE)

Est
(SE)

Est
(SE)

Est
(SE)

Age
0.003
(0.010)

0.001
(0.010)

0.002
(0.010)

0.004
(0.009)

0.002
(0.006)

0.002
(0.008)

Sex
:Female

-0.937
(0.301)

-0.924
(0.310)

-0.890
(0.312)

-0.875
(0.510)

-0.871
(0.576)

-0.829
(0.483)


0.207
(0.196)

0.202
(0.211)

0.213
(0.212)

0.211
(0.473)

0.196
(0.065)

0.209
(0.110)

Table 5.1.1. Kidney infection data: estimation results of Clayton copula models

using the proposed and existing five methods
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5.2.1. Here, the two-stage Cox estimates and SEs for Treatment and 

Sex effects are again the same as the marginal Cox estimates by the 

GEE approach (Spiekerman and Lin, 1998). All six methods give 

similar estimation results for fixed effects. According to the Wald test 

statistic, the Treatment effect at the 5% significance level is 

significant, but the Sex effect is not. The estimates of  are different; 

the one-stage estimates are larger than the two-stage estimates due 

to underestimation of ; this fact is confirmed from the simulation 

results of Tables 4.1.1-4.1.6. The one-stage proposed and PE 

methods give similar estimation results; this is also confirmed from 

the simulation results of Tables 4.1.1-4.1.4.  

Baseline
hazard
function

One-stage Two-stage

Weibull PE Proposed Weibull PE Cox

Parameter
Est
(SE)

Est
(SE)

Est
(SE)

Est
(SE)

Est
(SE)

Est
(SE)

Sex
:Female

-0.189
(0.351)

-0.162
(0.353)

-0.162
(0.352)

-0.272
(0.372)

-0.255
(0.384)

-0.257
(0.372)

Treatment
:   IFN

-0.828
(0.281)

-0.860
(0.283)

-0.883
(0.285)

-1.025
(0.302)

-1.058
(0.384)

-1.080
(0.372)


1.288
(0.586)

1.492
(0.663)

1.458
(0.647)

0.710
(0.385)

0.786
(0.311)

0.770
(0.336)

Table 5.2.1. Recurrent CGD data: estimation results of Clayton copula models

using the proposed and existing five methods

5.3. Multicenter bladder cancer data

  We illustrate the proposed method via data from a multicenter 

bladder cancer clinical trial 30962 conducted by the EORTC (Oddens 

et al., 2013). The data set used in this study was the duration of 
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disease-free interval (DFI): the time (days) to the first recurrence 

after surgery (transurethral resection) in  patients having the 

bladder cancer from   centers in  European countries. Here, the 

number of patients per center  varied from 1 to 63, with mean 23.2 

and median 7. Bacillus Calmette-Guerin (BCG) was given after 

surgery to try for reducing the risk of recurrence. In order to reduce 

its toxicity which is a disadvantage of BCG, two different doses (1/3 

dose, and full dose) and durations of maintenance BCG therapy (1 

year and 3 years) were assessed. Out of the 1,066 patients, 594 

patients (55.7 per cent) without recurrence were censored at the 

date of last follow up. In this paper, we aim to find the significant 

risk factors affecting the time to recurrence among 9 ninepence 

potential prognostic factor. That is, Trtdose, Trtduration, Age, Gender, 

TypeBC, Tumsize, Nbtum, Tstage, and Ggrade (G1, G2, G3) which 

were considered in Table 5.3.1. In previous analysis (Park and Ha, 

2019) of the bladder cancer data using AFT (accelerated failure 

time) random-effect model, the four variables (i.e. Trtduration, 

TypeBC, Nbtum, and G1) were found to be significant variables.

  Table 5.3.1 summarizes the estimation results using the one-stage 

and two-stage methods. We observe that our method gives very 

similar results to the two-stage Cox models for estimated regression 

parameters and . We also find that by the Wald test statistic, the 

same four variables above are significant at the 5% significance level 

for all 6 methods on Table 5.3.1, which confirms the previous results 

by Park and Ha (2019).
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Baseline hazard
function

One-stage Two-stage

Weibull PE Proposed Weibull PE Cox

Parameter
Est
(SE)

Est
(SE)

Est
(SE)

Est
(SE)

Est
(SE)

Est
(SE)

  Trtdose
-0.144

(0.091)

-0.145

(0.090)

-0.146

(0.090)

-0.148

(0.064)

-0.150

(0.037)

-0.153

(0.059)

  Trtduration
-0.225

(0.092)

-0.193

(0.091)

-0.203

(0.091)

-0.229

(0.083)

-0.203

(0.050)

-0.204

(0.079)

  Age
-0.001

(0.005)

-0.002

(0.004)

-0.002

(0.004)

-0.001

(0.005)

-0.003

(0.003)

-0.003

(0.004)

  Gender
0.142

(0.114)

0.167

(0.114)

0.162

(0.114)

0.147

(0.152)

0.161

(0.090)

0.162

(0.146)

  TypeBC
0.389

(0.102)

0.375

(0.102)

0.382

(0.102)

0.386

(0.080)

0.386

(0.048)

0.386

(0.076)

  Timsize
0.001

(0.004)

0.002

(0.004)

0.002

(0.004)

-0.001

(0.004)

0.000

(0.002)

0.000

(0.004)

  Nbtum
0.134

(0.025)

0.129

(0.025)

0.135

(0.025)

0.136

(0.032)

0.134

(0.020)

0.135

(0.030)

  Tstage
0.060

(0.125)

0.069

(0.125)

0.056

(0.124)

0.021

(0.146)

0.042

(0.082)

0.038

(0.137)

  G1
-0.334

(0.160)

-0.319

(0.159)

-0.344

(0.159)

-0.344

(0.167)

-0.301

(0.095)

-0.302

(0.152)

  G2
-0.240

(0.138)

-0.216

(0.137)

-0.233

(0.137)

-0.259

(0.134)

-0.214

(0.077)

-0.213

(0.125)


0.068

(0.035)

0.094

(0.052)

0.083

(0.045)

0.063

(0.033)

0.082

(0.030)

0.086

(0.053)

Table 5.3.1. Bladder cancer data: estimation results of Clayton copula models using

the proposed and existing five methods
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Ⅵ. PENALIZED VARIABLE SELECTION 

IN COPULA SURVIVAL MODELS

  In this chapter, we propose a one-stage method for variable 

selection in the copula survival models based on penalized likelihood. 

For this purpose, we study four penalty functions.

6.1 Construction of penalized likelihood

  For variable selection of the regression parameters under the 

copula survival models, we consider the Clayton copula survival model 

having a parametric marginal hazard. For simplicity, we consider only 

the Weibull marginal hazard having a scale parameter  and a shape 

parameter   in Clayton copula model with (2.1.5) and (2.1.6), even 

if our variable selection method can be easily extended to other 

marginal parametric hazard functions. Here, the Weibull marginal 

hazard function is given by

 exp
, (6.1.1)

where 
   exp with   log is Weibull baseline 

hazard. Then, in (6.1.1) the regression parameters    ⋯ 
 

and the covariates     ⋯ 
 are expressed as × 

vectors. 

  For the existence of MLEs, we add the following assumption as in 

Assumption (A3). 
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Assumption (A4): The penalized log-likelihood    is continuous 

on . 

Here      ∈      is the parameter space 

having a finite dimension. 

Proposition 6.1. For the variable selection of regression coefficients  

in the copula survival models, we propose a one-stage estimation 

method using the following penalized log-likelihood 

     
 



, (6.1.2)

where  is the log-likelihood in (3.1.3) and ⋅ is a penalty 

function having tuning parameter .

  Under (A1), (A2) and (A4), the penalized MLEs    of    

are obtained by maximizing , i.e.,

  arg max
  ∈

. (6.1.3)

Proof. Because the parameter space  is a finite dimension and 

   is continuous on , the penalized MLEs    can be 

easily obtained by maximizing  of (6.1.2) (Green, 1987; Ha et al., 

2014). Thus, we can find the MLEs    by solving the following 

three estimating equations simultaneously:
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















 
 





















(6.1.4)

Here we use the local quadratic approximation (LQA; Fan and Li, 

2001) for the derivative of the penalty function  in (6.1.4).     

                                                                      □

  For the penalty function ⋅, we use the four functions, LASSO, 

ALASSO (adaptive LASSO), SCAD and HL; the forms are shown in 

Table 6.1.1.

Penalty function Description

LASSO

(Tibshiran, 1996)
   

ALASSO

(Zou, 2006)

    ,   

 denotes a known weights vector

SCAD

(Fan and Li, 2001)


′    ≤ 

 
  ,   

 : the positive part of 

HL

(Lee and Oh, 2014)

≡




 log 




       

Table 6.1.1. Description of the four penalty function

  A good penalty function must produce estimates satisfying the three 

oracle properties, which are unbiasedness, sparsity and continuity 

(Fan and Li, 2001). The LASSO function is the most usual penalty 
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function, but does not satisfy the oracle properties. However, Fan and 

Li (2001, 2002) and Zou (2006) have shown that SCAD and ALASSO 

perform well with oracle properties, respectively. 

Figure 6.1.1. The four penalty functions

  The four penalty functions are shown in Figure 6.1.1. In particular, 

the HL function changes its shape for the value of  in the HL 

penalty function in Table 5.1.1, it becomes a ridge penalty when ≈ 

and becomes a LASSO penalty when  . When  , it becomes an 

unbounded form at the origin (Lee and Oh, 2014). The HL (Lee and 

Oh, 2014) also satisfies the oracle property and provides shrinkage 

estimators when  . In this thesis, we use    in the HL of 

Table 6.1.1 from the suggestion by Lee and Oh (2014).

6.2  Penalized variable selection procedure

  For penalized variable selection of , we should estimate 

parameters   . Below, we show how to estimate these 
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parameters using the penalized log-likelihood  in (6.1.2). In this 

thesis, we present an efficient profile likelihood procedure which 

gives a fast convergence. Given association parameter , the penalized 

MLEs   of parameters   in the marginal hazard are obtained 

by solving the following estimating equations:









 
 



,    ⋯  (6.2.1)

and







. (6.2.2)

  Note that (6.2.1) is adjusted estimating equations derived by adding 

the penalty terms, while (6.2.2) is the same as standard estimating 

equation of marginal PH model without penalty. However, with four 

penalty functions considered in Table 6.1.1, ⋅ in the estimating 

equations of  of (6.2.1) becomes non-differentiable at the zero, and 

does not have continuous second-order derivatives. These problems 

lead to difficulties in solving (6.2.1). Therefore, we use the LQA (Fan 

and Li, 2001) for such penalty functions. That is, given an initial 

value  close to the true value of , the penalty function ⋅ can 

be locally approximated by a quadratic function as

  ′ ′ sgn ≈′ for ≈. (6.2.3)

According to Ha et al. (2014), the negative Hessian matrix of   
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using  is given by

 
 
 















 

 

 



 



 

, (6.2.4)

where  diag′ is a × diagonal matrix. The 

estimating equations of (6.2.1) and (6.2.2) are solved using the 

Newton-Raphson method with  as in Ha et al.(2014); for the 

derivation of  see Appendix B.   

  Next, the association parameter  is estimated by maximizing a 

profile likelihood based on  in (2.1.5). That is, since  

  , we use a copula-based profile likelihood of  (denoted by 

)

          . (6.2.5)

Thus, the profile MLE of  is defined by

 arg max


, (6.2.6)

and it is obtained by solving the estimating equation (6.2.7)



 
     

, (6.2.7)
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where  and  are updated in each iteration. The equation 

(6.2.7) is also solved by using the Newton-Raphson method with 


. 

  In order to select tuning parameter , we use a type of Bayesian 

information criterion (BIC) criterion (Ha et al., 2014),

BIC log, (6.2.8)

where    log is the ordinary log-likelihood for the 

marginal hazard model (2.1.6). Here,  
    is the 

effective number of parameters (Lee and Nelder, 1996; Ha et al., 

2014). Here,  
 , where  is model matrix for  

and diag is weight matrix with  exp
. Notice that 

 argmin  BIC

is computed via a simple grid search method.

6.3  Fitting algorithm for the variable selection

  The variable-selection algorithm for the copula models (2.1.5) 

having a Weibull marginal hazard is summarized as follows.

• Step 0: Find the initial values of   .

 (i) The initial estimates    of LASSO: use of no-penalty 

solutions

 (ii) The initial estimates of ALASSO, SCAD and HL: use of LASSO 
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solutions

• Step 1: In the inner loop, we estimate   .

 (i) The estimation of  : It is obtained by solving the (6.2.1) and 

(6.2.2)

 (ii) The estimation of : It is obtained by solving equation (6.2.7)

• Step 2: In the outer loop, we select tuning parameter  that  

minimizes BIC() using a grid search method.

  After convergence, the estimated SEs of  is calculated as follows. 

Because this penalized procedure gives the parameter estimation and 

variable selection simultaneously, the SEs can be directly obtained via 

the Newton-Raphson method. Following Fan and Li(2001) and Ha et 

al. (2014), the SEs for  are obtained from a sandwich formula:

cov 
 

, (6.3.1)

where  is given by

  
  

 
 

 


   . (6.3.2)

6.4 Simulation study for penalized variable selection 

  The simulation study is demonstrated conducted to evaluate the 

performance of the proposed variable selection method in a Clayton 

copula model with Weibull marginal hazard using 200 simulation data. 

Here, we compare the performances of four variable selection 

methods using LASSO, ALASSO, SCAD and HL penalties. 
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  According to Kwon et al. (2020), the simulation scheme is designed 

as follows:

⦁ Event times are simulated from a Clayton copula survival model 

(2.1.8) having association parameter    and Weibull marginal 

function expexp with   which is decreasing 

hazard.  

⦁ As in Prenen et al. (2017a) and Ha et al. (2019), data are 

generated via the sampling algorithm of Marshall and Olkin (1988) as 

described in Chapter Ⅳ. 

⦁ Following the simulation setting by Fan and Li (2002), the 

regression parameters are set to

         
          . (6.4.1)

  The corresponding covariates are   





. 

⦁ For multicollinearity among the covariates,   ⋯ 
 are 

generated from an AR(1) structure having the correlation coefficient 

   (Ha et al., 2014; Park and Ha, 2019). Note that ,  and  

are important covariates. 

⦁ We use three types of sample sizes:   
     with 

       for all , where  is the number of 

clusters and  is the cluster size. 

⦁ The censoring times  are generated from an exponential 

distribution having a parameter that is empirically determined to 

achieve around 20% and 40% censoring rates. 



79

6.5 Simulation result for penalized variable selection

 As the measures for variable selection, we consider the following 

quantities:

∙ C (Here, the best is 5): The average number of regression 

coefficients, of the five true zeros that were correctly found to zero. 

∙ IC (Here, the best is 0): The average number of the four true 

nonzeros incorrectly set to zero.

∙ PT: The probability of choosing the true model.

∙ MSE: The mean squared error; it is defined by (Zhang and Lu, 

2007)

MSE 
T
,

 where  is the population covariance matrix of covariates.

(i) The simulation results are presented in Table 6.3.1. The MSE is 

increased as the censoring rate is increased and it is decreased as 

the sample size is increased. The ALASSO, SCAD, and HL methods 

with oracle properties overall perform better, and are all superior to 

LASSO in terms of 'PT', 'C' and 'MSE'. The SCAD and HL methods 

are also improved as the sample size  or  increases, even if the 

censoring rate is as high as 40%. Particularly, SCAD offers the 

smallest MSE among all the settings, but HL consistently outperforms 

ALASSO and SCAD in terms of 'PT' and 'C'.
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Censoring 20% Censoring 40%

  Method C(5) IC(0) PT MSE C(5) IC(0) PT MSE

  LASSO 1.76 0 0 0.068 1.66 0 0.01 0.084

ALASSO 3.61 0 0.1 0.042 3.41 0 0.12 0.053

SCAD 4.49 0 0.65 0.030 4.53 0 0.68 0.044

HL 4.67 0 0.71 0.041 4.74 0 0.75 0.050

  LASSO 1.70 0 0 0.042 1.81 0 0 0.052

ALASSO 3.92 0 0.16 0.018 4.00 0 0.14 0.021

SCAD 4.55 0 0.73 0.017 4.46 0 0.67 0.023

HL 4.77 0 0.79 0.017 4.76 0 0.78 0.025

  LASSO 1.75 0 0.01 0.027 1.86 0 0 0.032

ALASSO 3.92 0 0.12 0.013 3.95 0 0.15 0.015

SCAD 4.63 0 0.77 0.010 4.59 0 0.77 0.013

HL 4.70 0 0.73 0.012 4.76 0 0.78 0.017

Table 6.3.1. Simulation results using 200 replications under copula survival models

(ⅱ) In Table 6.3.2, we also summarize the frequency which each 

variable was selected among 200 replications. Four all methods 

(LASSO, ALASSO, SCAD, and HL) identify almost correctly the three 

important variables (, , and ) including the intercept . 

However, LASSO selects unimportant variables (, , , , and ) 

much more often than the other three methods (ALASSO, SCAD, and 

HL) in all the settings, as evident in the simulation results of the 

frailty models (Fan and Li, 2002; Ha et al., 2014) and AFT 

random-effect survival models ( Park and Ha, 2019). 
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Censoring 20%

  Method         

  LASSO 200 200 129 135 200 124 129 200 131

ALASSO 200 200 59 51 200 53 51 200 64

SCAD 200 200 23 23 200 22 17 200 18

HL 200 200 10 9 200 9 9 200 16
  LASSO 200 200 133 131 200 120 134 200 143

ALASSO 200 200 43 34 200 38 48 200 53

SCAD 200 200 19 20 200 16 15 200 20

HL 200 200 15 5 200 9 9 200 9
  LASSO 200 200 126 112 200 137 123 200 153

LASSO 200 200 41 46 200 52 44 200 34

SCAD 200 200 11 15 200 13 20 200 15

HL 200 200 12 10 200 14 10 200 14
Censoring 40%

  Method         

  LASSO 200 200 131 140 200 135 132 200 131
ALASSO 200 200 69 51 200 68 62 200 68

SCAD 200 200 19 23 200 17 19 200 16
HL 200 200 10 11 200 10 11 200 11

  LASSO 200 200 128 117 200 132 125 200 136

ALASSO 200 200 38 39 200 37 40 200 47
SCAD 200 200 21 17 200 28 21 200 21
HL 200 200 15 11 200 10 8 200 11

  LASSO 200 200 119 117 200 131 128 200 134
ALASSO 200 200 35 47 200 46 44 200 39
SCAD 200 200 12 16 200 14 19 200 21

HL 200 200 10 14 200 11 11 200 10

Table 6.3.2 Simulation results using 200 replications: frequency of variable

selection under copula survival models

(ⅲ)  In Table 6.3.3, we summarize the mean, SE, SD, MSE and CP 

on ,  and  estimated from 200 simulations, respectively, for 

20% censoring rates in the four variable selection methods. The 

biases of the SCAD and the HL estimates of  are the smallest 

compared to those of LASSO and ALASSO. The proposed SE is 

consistently underestimated as compared to SD in a smaller sample 

  (Hunter and Li, 2005; Ha et al., 2014). However, the SEs in 
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ALASSO, SCAD and HL are improved because such mismatch 

between SE and SD is decreased as  or  increases to   or 

 .  






  Method Mean SE SD MSE CP Mean SE SD MSE CP Mean SE SD MSE CP

True value         

 LASSO 0.713 0.067 0.073 0.015 0.715 0.897 0.075 0.080 0.019 0.715 0.531 0.068 0.080 0.009 0.805

ALASSO 0.783 0.076 0.090 0.008 0.910 0.984 0.006 0.085 0.010 0.885 0.546 0.075 0.093 0.007 0.890

SCAD 0.806 0.088 0.079 0.008 0.925 1.003 0.086 0.091 0.008 0.920 0.603 0.072 0.071 0.005 0.940

HL 0.805 0.082 0.086 0.008 0.935 1.005 0.090 0.104 0.011 0.915 0.596 0.076 0.076 0.006 0.950

 LASSO 0.735 0.052 0.053 0.007 0.715 0.924 0.059 0.060 0.009 0.680 0.546 0.045 0.051 0.006 0.710

ALASSO 0.796 0.051 0.054 0.003 0.950 0.916 0.057 0.060 0.004 0.925 0.589 0.046 0.060 0.003 0.900

SCAD 0.805 0.053 0.052 0.003 0.955 1.010 0.062 0.057 0.004 0.910 0.597 0.047 0.050 0.003 0.840

HL 0.799 0.052 0.057 0.003 0.925 1.002 0.057 0.064 0.003 0.925 0.595 0.047 0.050 0.002 0.920

 LASSO 0.739 0.043 0.045 0.006 0.665 0.935 0.048 0.055 0.007 0.675 0.548 0.040 0.045 0.005 0.695

ALASSO 0.795 0.045 0.050 0.003 0.925 0.995 0.049 0.053 0.003 0.950 0.596 0.041 0.046 0.002 0.925

SCAD 0.802 0.045 0.046 0.002 0.955 1.010 0.050 0.054 0.003 0.925 0.602 0.042 0.044 0.002 0.930

HL 0.800 0.045 0.050 0.002 0.925 0.997 0.049 0.052 0.003 0.940 0.601 0.042 0.046 0.002 0.920

Table 6.3.3. Simulation results for coefficients of  and  among non-zero

coefficients of  under copula survival models with Censoring rate 20%

  For the convenience of identification of the estimation results of 

   in Table 6.3.3, the estimation results of  ,  , and 

  in Figure 6.3.1, 6.3.2 and 6.3.3, were visualized as a box plot, 

respectively. The results of 200 simulations, under the 40% censoring 
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rate, of the four variable selection methods, respectively, presented in 

Table D5 and Figures D1, D2, and D3 of the Appendix D. The results 

are similar to those using 20% censoring rate.

  In summary, we recommend the use of ALASSO, SCAD or HL 

method to conduct variable selection of regression parameters in the 

copula survival models (2.1.7) since the three methods identify well 

both zero and non-zero coefficients. 

  As shown in the box plots in Figures 6.3.1-6.3.3, the biases of the 

estimated regression parameters of ALASSO, SCAD and HL are 

generally smaller than those of LASSO. 
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Figure 6.3.1.   : Simulation result of copula variable selection using 200 replications;

20% censoring rate; dotted line, true values of  and , respectively
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Figure 6.3.2.   : Simulation result of copula variable selection using 200 replications;

20% censoring rate; dotted line, true values of  and , respectively
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Figure 6.3.3.   : Simulation result of copula variable selection using 200 replications;

20% censoring rate; dotted line, true values of  and , respectively
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6.6. Illustration for penalized variable selection 

(1)  Kidney infection data

  We consider five covariates in the kidney infection data (in R 

package frailtyHL):

⦁ : Age (in years);

⦁ : Sex (0=male, 1=female);

⦁ : GN (disease type=0);

⦁ : AN  (disease type=1); 

⦁ : PKD (disease type=2). 

  Here, Age only is standardized because other covariates are all 

binary. It is well known that the Sex covariate in the kidney data is 

of great importance by various survival modeling approaches (Ha et 

al., 2014, 2017). The fitted estimation results (i.e. the estimated 

coefficients and their SEs) of the copula survival model via the 

proposed penalized method are summarized in Table 6.4.1. 

  The tuning parameters values ​​selected by BIC in (5.2.8) were 

   and  for the LASSO, ALASSO, SCAD, and HL, 

respectively. The estimates of the Weibull shape parameter  and 

association parameter  are given by   ,  , 

 ,   and   for the no-penalty, LASSO, 

ALASSO, SCAD and HL, respectively. Four all variable selection 

methods (LASSO, ALASSO, SCAD, and HL) select the intercept term, 

. The covariate Sex and PKD are significant in all five methods. 

  In Table 6.4.1, the LASSO and ALASSO, respectively, choose four 

covariates (  , and ) and three covariates ( , and ). 
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Notice here that the LASSO selects two more covariates ( and ) 

which are not significant under no-penalty. This confirms the 

simulation results in Table 6.2.1 because the LASSO chooses 

unimportant variables more frequently than the other two methods, as 

evident in lower ‘C’ values of the LASSO in Table 6.3.1. These 

findings indicate that the LASSO might not properly identify important 

covariates in the copula survival models, as shown in the frailty 

survival models (Ha et al., 2014). The SCAD and HL select two 

covariates ( and ) which are significant under no-penalty ( ). 

Note that the SCAD and HL give high shrinkage estimators that are 

beneficial in prediction, even though the SCAD shrinks less than the 

HL. It is also known that the LASSO chooses many covariates with 

excessive shrinkage in the non-zero regression coefficients (Ha et 

al., 2017, Lee et al., 2017). 

Variable
No-penalty
(SE)

LASSO
(SE)

ALASSO
(SE)

SCAD
(SE)

HL
(SE)

: Intercept
-2.093
(0.721)

-1.632
(0.352)

-1.916
(0.488)

-1.910
(0.624)

-1.803
(0.456)

 : Age
0.029
(0.165)

0.001
(0.003)

0
(0)

0
(0)

0
(0)

 : Sex
-1.663
(0.367)

-1.429
(0.217)

-1.425
(0.268)

-1.565
(0.345)

-1.431
(0.259)

 : GN
0.051
(0.408)

0
(0)

0
(0)

0
(0)

0
(0)

 : AN
0.538
(0.396)

0.189
(0.131)

0.109
(0.068)

0
(0)

0
(0)

 : PKD
-1.388
(0.601)

-0.718
(0.246)

-0.952
(0.335)

-1.413
(0.513)

-0.962
(0.329)

 1.034 0.877 0.937 0.995 0.923

 0.000 0.143 0.112 0.054 0.122

BIC 691.042 680.744 679.826 681.192 679.895

tuning  0 0.035 0.028 0.218 0.066

Table 6.4.1. Kidney infection data: estimated coefficients and standard errors

using copula survival models
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  In addition, it is interested to select a proper variable selection 

model using the BIC in (6.2.8). Note that the smaller value of BIC 

indicates a better model. Thus, the BIC in Table 6.4.1 chooses the 

ALASSO and HL models among the four variable selection models.

(2)  Recurrent CGD data

  We consider eight covariates in the CGD data (in R package 

frailtyHL):

⦁ : treatment (0=placebo, 1=-IFN); 

⦁ : pattern of inheritance (0=autosomal recessive, 

      1=X-linked); 

⦁ : age (in years);

⦁ : height (in cm); 

⦁ : weight (in kg); 

⦁ : the use of corticosteroids at the time of study entry 

      (0=no, 1=yes);  

⦁ : the use of prophylactic antibiotics at the time of study entry 

(0=no,   1=yes); 

⦁ : sex (0=male, 1=female). 

  Notice that  is the main covariate in this clinical trial. Here, the 

three covariates (age , height , and weight ) are standardized 

because other covariates are all binary. The fitted estimation results 

of the Clayton copula models using the proposed penalized method are 

presented in Table 6.4.2.

  In Table 6.4.2, the selected values of the tuning parameters γ by 
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BIC were, respectively,    and  for LASSO, 

ALASSO, SCAD and HL. The estimates of  and  are given by 

   ,  ,  ,   and 

  for no-penalty, the LASSO, ALASSO, SCAD and HL, 

respectively. All four variable selection methods (i.e. LASSO, 

ALASSO, SCAD and HL) also choose the intercept term (), as 

shown in Table 6.4.2. The LASSO, ALASSO and SCAD select three 

covariates (  and ), three covariates (  and ), and two 

covariates ( ), respectively. Particularly, the LASSO chooses  

which is non-significant under no-penalty, whereas the ALASSO 

selects three covariates (  and ) which are significant under 

no-penalty. However, HL selects only the main covariate () which 

is also confirmed in the variable selection of the frailty survival model 

(Ha et al., 2014). We again confirm that the HL shrinks more than 

the SCAD does. From Table 6.4.2, we also find that selections of 

covariates of the proposed method are similar to those of the Ha et 

al.'s (2014) method, as shown in Table 6.4.1.

  Furthermore, the BIC in Table 6.4.2 selects the HL model as a 

proper model for the CGD data, which confirms good performances of 

the HL in the simulation results of Table 6.3.1.
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Variable
No-penalty
(SE)

LASSO
(SE)

ALASSO
(SE)

SCAD
(SE)

HL
(SE)

: Intercept
-5.922
(0.587)

-4.856
(0.402)

-5.900
(0.485)

-6.065
(0.519)

-5.821
(0.483)

: Gamma-IFN
-0.870
(0.266)

-0.666
(0.189)

-0.520
(0.161)

-0.816
(0.258)

-0.726
(0.222)

: Inheritance
0.542
(0.263)

0
(0)

0
(0)

0
(0)

0
(0)

: Age
-0.795
(0.336)

-0.183
(0.093)

-0.124
(0.076)

0
(0)

0
(0)

: Height
0.173
(0.319)

0
(0)

0
(0)

0
(0)

0
(0)

: Weight
0.339
(0.348)

0
(0)

0
(0)

0
(0)

0
(0)

: Steroids
1.567
(0.590)

0
(0)

0
(0)

0.896
(0.451)

0
(0)

: Prophylac
-0.434
(0.305)

-0.384
(0.166)

0
(0)

0
(0)

0
(0)

: Sex
-0.578
(0.385)

0
(0)

0
(0)

0
(0)

0
(0)

 1.003 0.830 0.937 0.978 0.937

 0.980 1.026 1.344 1.376 1.323

BIC 1099.521 1080.299 1076.776 1079.694 1075.524

tuning  0 0.016 0.019 0.189 0.191

Table 6.4.2. CGD infection data: estimated coefficients and standard errors

using copula survival models
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Ⅶ. DISCUSSION

  It is well known that optimization for a copula-based full likelihood 

involving an unknown baseline hazard function in an 

infinite-dimensional parameter space  is very difficult. In order to 

overcome this problem, we reduced the infinite dimension to a finite 

dimension by approximating the baseline hazard to the M-spline basis 

function with the number   of bases, regardless of sample size or 

censoring rate. In this consideration, we proposed a one-stage 

M-spline copula modeling approach which effectively reflects on the 

dependence  among survival times. 

  In copula models, the two-stage likelihood approach estimates 

separately the marginal parameters and the association parameter, 

which leads to an inefficient inference result. However, the use of 

one-stage likelihood approach gives an efficient inference result by 

jointly estimating both parameters (Marra and Radice, 2020; Cheng et 

al,, 2014; Romeo et al., 2018).

  We have first shown that the proposed one-stage M-spline method 

performs well via simulation study and three real data sets. In 

particular, we have found through simulation study that the proposed 

method gives similar estimation results with the one-stage PE 

method when the strength of association is not high. However, our 

method provides better estimation results when the strength of 

association is high because the one-stage PE method gives larger 

variations (i.e. SD and MSE) for estimated regression parameters, 

leading to lower CPs. The remaining methods (one-stage Weibull, and 

two-stage Weibull, PE and Cox) have shown inferior performances in 

the estimation of  and/or . The implementation of proposed method 

is simple and gives a fast fitting algorithm for clustered copula 
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regression models by using the five basis functions in the cubic 

M-spline.

  As shown in the simulation study, the proposed one-stage spline 

method is robust against misspecification of baseline hazard due to 

the flexibility of the M-spline to the underlying hazard function. 

However, we have also found via simulation study that when the 

assumed Clayton copula model is incorrectly specified as 

Gumbel-Hougaard copula model, the estimated regression parameters 

 by the proposed method are biased. Care is necessary for the 

inference of  by the proposed method when a copula function is 

misspecified.

  For the variable selection procedure in copula models, we also 

proposed a one-stage copula estimation method based on the 

penalized likelihood. We have demonstrated via simulation studies and 

two real data sets that the proposed procedure with SCAD or HL 

penalty works well. In particular, we have found that the HL method 

gives better performance in terms of measures of variable selection. 

The advantage of our variable selection method is that it can be 

easily implemented by a slight modification to the existing likelihood 

estimation procedures (Ha et al., 2019).

  In this thesis, we have proposed one-stage M-spline and variable 

selection methods under Clayton copula models only. For further 

extensive study, it would be necessary to extend the proposed 

method to other parametric copula (e.g. Gumbel-Hougaard) or robust 

copula function (Gribkova and Lopez, 2015). Another extensions to 

clustered competing risks (Emura et al., 2020) or interval censoring 

(Sun and Ding, 2019) would be also an interesting future work. In 

addition, developing a penalized variable selection using a M-spline 

copula modeling approach would be also an interested topic.
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군집된 다변량 생존 자료에 대한 1단계 코플라 모형 접근법

권숙희

부 경 대 학 교 대 학 원 통 계 학 과

요 약

군집된 다변량 생존 시간 자료의 분석을 위해 코플라 모형과 프레일티 모형이 폭 넓게 사

용되어 왔다. 코플라 모형은 주변 분포와 코플라 함수로 구성된다. 코플라 모형은 주변 모

형인 반면에 프레일티 모형은 조건부 모형이다. 특히 대표적 코플라 족인 아르키메데스 코

플라 함수는 이러한 자료 간 연관성을 모형화하는 데 유용하다. 일반적으로 코플라 모형에

서 가능도 기반한 추론은 1단계 및 2단계 추정 방법이 사용되어왔다. 2단계 추정 절차는

코플라의 주변 모수와 의존성 모수를 독립적으로 추정하기 때문에 비효율적인 추정 결과를

제공할 수 있다. 하지만 효율적인 1단계 추정 절차는 미지의 주변 기저 위험 함수를 갖는

가능도의 복잡성으로 인해 주변 분포의 제한된 모수적 가정하에서 주로 개발되어왔다.

본 논문에서는 1단계 가능도 절차에 기반한 융통성있는 M-스플라인 아르키메데스 코플라

모형 접근법을 제안한다. 즉, 가능도의 복잡성을 줄이기 위해 미지의 주변 기저 위험은 M-

스플라인 기저 함수를 기반으로 모형화한다. 제안된 방법의 추정 절차를 유도하고, 이론적

성질을 또한 연구한다. 모의실험에 의하면 제안된 1단계 추정 방법이 기존의 1단계 및 2

단계 방법보다 합리적인 편의 추정 및 보다 효율적인 추론 결과를 제공함을 보여준다. 세

가지 실제 자료의 분석을 통해 제안된 방법을 예증한다. 또한 본 논문에서는 벌점화 가능

도를 기반으로 한 1단계 추정 방법을 사용하여 코플라 생존 모형에서 변수선택 절차를 제

안한다. 제안된 변수선택 방법의 성능은 모의실험 연구를 통해 입증하고 새로운 방법의 유

용성은 두 가지 임상 자료의 분석을 통해 예증한다.
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Appendix A. M-Spline Basis Functions

  This appendix defines the M-spline basis functions used in 

   
 

. For a knot sequence    with an 

equally spaced mesh  , let  , 

  and  . Define M-spline basis functions as



 ≤


,



 ≤ 






 ≤  



,



 ≤





 ≤ 



,



 ≤ 



   

       

 ≤  













 ,



 ≤ 


Define the -spline basis function, 




, which can be 

written as

  ≤
,

  ≤






≤



,

  ≤ 








102

     ≤






 ,

  ≤



   

        ≤ 


















 ,
  ≤


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Appendix B. Derivations

Derivations of the second derivatives in  of (6.2.4) and 

(6.2.7) under the Clayton copula model with Weibull marginal 

hazard

The log-likelihood in (3.3.1) under the copula model with Weibull 

marginal hazard is given by

 


log
 

 


log 

 







,

where  ′,  exp exp and 
    

 
  

with    exp. Given , the first derivatives of   

are as follows:














 





   ⋯









 log





 



log

   ⋯

For the variable selection of , we use the penalized likelihood  in 

(5.1.1) with the copula-based likelihood  in (3.3.1). For this 
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purpose, we need to compute the following estimating equations of  

using :











 ′sgn  ⋯,

where sgn⋅ is the sign function. Note that  . The 

negative Hessian matrix  in (5.2.4) with the second derivatives of 

 with respect to   is given by

 
 


















 













,

where




 



 


 
 

  
 




 
  

 
   

    




 



log 


 
 

  
 log




 
  

 
   

    log

and



 
 



loglog 


log 
 

  
 log




log 
  

 
   

    log

 




Next, for the estimation of association parameter  , we use  since 

  . The first derivative of  is given by
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


 







log 
 



 

  
   

    
 






This leads to the negative second derivative, given by



 


 
  




  

 



 

 






   

  
  

 







  

 








Thus, the estimating equation (5.2.7) of  is easily solved using the 

Newton Raphson method, with the first and second derivatives above.
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Appendix C. R Codes

(C.1) one-stage M-spline copula estimation for kidney, CGD and 

Bladder cancer data

rm(list=ls())

library(survival)

library(joint.Cox)

##### Define log-likelihood function #####

logL= function(para){

beta = para[1:p]

theta=para[p+1]

g1=exp(para[(p+2):(p+k+1)])#g1=exp(h):baseline-hazard parameters in 

M-spline

eta <- exp(X%*%beta)

tmin = min(t_event);tmax = max(t_event)

lam<- M.spline(t_event,tmin,tmax)%*%g1*eta #M-spline for hazard

Lam<- I.spline(t_event,tmin,tmax)%*%g1*eta #I-spline for cumulative hazard

Sur <- exp(-Lam)

Sur_s <- t(Z)%*%(Sur^(-theta))-ni

di <- t(Z)%*%event

sum1 <- 0

for(i in 1:q){

su1 <-0

for(a in 0:(di[i]-1)){

su1<- su1+log(1+a*theta)

ifelse(di[i]<1,su1<-0,su1) }

sum1<-sum1 + su1 }

loglike 

<-sum(event*(log(lam)+theta*Lam))-sum((di+1/theta)*log(1+Sur_s))+

sum1

return(loglike) #log-likelihood 
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}

##### Model fitting for kidney data #####

data(kidney)

t_event = kidney$time; event = kidney$status

sex=as.integer(kidney$sex)-1

X<-model.matrix(~0+kidney$age+sex)

p<-ncol(X) # No. of covariates

q<-length(unique(kidney$id)) # No. of clusters

n<-nrow(X) # n: total sample size

Z=model.matrix(~0+factor(kidney$id))

ni <- t(Z)%*%as.matrix(rep(1,n)) # ni: cluster size

k<-5 # No. of knots

para_est = c(0,0,0.5,rep(0,k)) # initial values of (beta,theta,h)

kid_fit = optim(para_est,logL,method = "BFGS",

control = list(fnscale = -1),hessian = TRUE)

V <- solve(-kid_fit$hessian) # inverse of negative Hessian matrix

Estimate<-kid_fit$par[1:(p+1)]

SE<- sqrt(diag(V))[1:(p+1)]

kidney_result<-rbind(Estimate,SE)

colnames(kidney_result)<-c("Age", "Sex","theta")

print(kidney_result)

##### Model fitting for CGD data #####

data(cgd)

time=cgd$tstop-cgd$tstart

t_event = time; event = cgd$status

treat=as.integer(cgd$treat)-1

sex=as.integer(cgd$sex)-1

X<-model.matrix(~0+ treat +sex)

p<-ncol(X) # No. of covariates

q<-length(unique(cgd$id)) # No. of clusters

n<-nrow(X) # n: total sample size

Z=model.matrix(~0+factor(cgd$id))
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ni <- t(Z)%*%as.matrix(rep(1,n)) # ni: cluster size

k<-5 # No. of knots

para_est = c(0,0,0.5,rep(0,k)) # initial values of (beta,theta,h)

cgd_fit = optim(para_est,logL,method = "BFGS",

control = list(fnscale = -1),hessian = TRUE)

V <- solve(-cgd_fit$hessian) # inverse of negative Hessian matrix

Estimate<-cgd_fit$par[1:(p+1)]

SE<- sqrt(diag(V))[1:(p+1)]

cgd_result<-rbind(Estimate,SE)

colnames(cgd_result)<-c("Treat","Sex","theta")

print(cgd_result)

##### Model fitting for Bladder cancer data #####

eortc<-read.csv(’eortcdata_BCG.csv’,sep="," ,header=T)

data(eortc)

eortc$g1=ifelse(eortc$ggrade==1,1,0)

eortc$g2=ifelse(eortc$ggrade==2,1,0)

time=eortc$timeDFI

t_event = time; event = eortc$statusDFIc

treat=as.integer(cgd$treat)-1

sex=as.integer(cgd$sex)-1

X<-model.matrix(~0+trtdose+trtduration+age+gender+typeB

  +tumsize+nbtum+tstage+g1+g2, data=p<-ncol(X) # No. of covariates

q<-length(unique(eortc$institution)) # No. of clusters

n<-nrow(X) # n: total sample size

Z=model.matrix(~0+factor(eortc$institution))

ni <- t(Z)%*%as.matrix(rep(1,n)) # ni: cluster size

k<-5 # No. of knots

para_est = c(rep(1,10),0.5,rep(0,k)) # initial values of (beta,theta,h)

eortc_fit = optim(para_est,logL,method = "BFGS",

control = list(fnscale = -1),hessian = TRUE)

V <- solve(-eortc_fit$hessian) # inverse of negative Hessian matrix

Estimate<-eortc_fit$par[1:(p+1)]
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SE<- sqrt(diag(V))[1:(p+1)]

eortc_result<-rbind(Estimate,SE)

colnames(eortc_result)<-c("trtdose","trtduration","age","gender","typeBC",

"tumsize","nbtum","tstage","g1","g2", "theta")

print(eortc_result)

(C.2) Penalized variable selection of copula regression model

#Prior to running, set working directory to file location

rm(list=ls())

setwd("G:/Copula")

source("Copula_VS_NR.txt")

#== kidney infection data(5 covariates)==#

library(frailtyHL)

data(kidney)

kidney$age<-(kidney$age-mean(kidney$age))/sd(kidney$age)

kidney$GN<-as.numeric(kidney$disease=="GN")

kidney$AN<-as.numeric(kidney$disease=="AN")

kidney$PKD<-as.numeric(kidney$disease=="PKD")

kidney$sex<-kidney$sex

kidney$id<-kidney$id

attach(kidney)

kidney.formula<- Surv(time,status)~age+sex+GN+AN+PKD +id

beta00<-c(0,0,0,0,0,0) #initial values

phi0=1

theta0=0.01

# NO_PENALTY

kid_res<-copula.vs(kidney.formula,penalty="LASSO",

     tun_range=c(0), beta=beta00,phi=phi0, 

theta=theta0,data="kidney",maxiter=2000)

kid_res

beta0<-kid_res$Est_beta[,1] #initial values using No_penalty

phi0<-kid_res$Est_phi[1] #initial values using No_penalty
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theta0<-kid_res$Est_theta[1] #initial values using No_penalty

# LASSO

kid_res.LASSO<-copula.vs(kidney.formula,penalty="LASSO",

tun_range=seq(0,0.1, 0.001),beta=beta0,phi=phi0,

theta=theta0, data="kidney",maxiter=2000)

kid_res.LASSO

beta0L<-kid_res.LASSO$Est_beta[,1] #initial values using LASSO

phi0L<-kid_res.LASSO$Est_phi[1] #initial values using LASSO

theta0L<-kid_res.LASSO$Est_theta[1] #initial values using LASSO

# ALASSO

kid_res.ALASSO<-copula.vs(kidney.formula,penalty="ALASSO",

tun_range=seq(0,0.1,0.001),beta=beta0L,phi=phi0L,

theta=theta0L, weight0=abs(1/beta0), data="kidney",

maxiter=2000)

kid_res.ALASSO

# SCAD

kid_res.SCAD<-copula.vs(kidney.formula,penalty="SCAD",

tun_range=seq(0,0.3,0.001),beta=beta0L,phi=phi0L,

theta=theta0L, data="kidney",maxiter=2000)

kid_res.SCAD

# HL

kid_res.HL<-copula.vs(kidney.formula,penalty="HL",

tun_range=seq(0.001,0.2,0.001),beta=beta0L,phi=phi0L,

theta=theta0L, data="kidney",maxiter=2000)

kid_res.HL

#=== kidney infection data(8 covariates) ==#

library(survival)

data(kidney)

kidney$age<-(kidney$age-mean(kidney$age))/sd(kidney$age)

kidney$GN<-as.numeric(kidney$disease=="GN")

kidney$AN<-as.numeric(kidney$disease=="AN")

kidney$PKD<-as.numeric(kidney$disease=="PKD")
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kidney$sex<-kidney$sex

kidney$id<-kidney$id

S.GN<-kidney$sex*kidney$GN

S.AN<-kidney$sex*kidney$AN

S.PKD<-kidney$sex*kidney$PKD

data_kid <- kidney

attach(data_kid)

kidney.formula1<- Surv(time,status)~age+sex+GN+AN+PKD 

+S.GN+S.AN+S.PKD+id

beta00<-c(0,0,0,0,0,0,0,0,0)

phi0=1

theta0=0.01

# NO_PENALTY

kid_res1<-copula.vs(kidney.formula1,penalty="LASSO",tun_range=c(0),beta=b

eta00, phi=phi0, theta=theta0,data="data_kid",maxiter=2000)

kid_res1

beta0<-kid_res1$Est_beta[,1] #No_penalty

phi0<-kid_res1$Est_phi[1] #No_penalty

theta0<-kid_res1$Est_theta[1] #No_penalty

theta0<- ifelse(theta0 <= 0.00001 , theta0<-0.001, 

          theta0 <- theta0)

# LASSO

kid_res.LASSO1<-copula.vs(kidney.formula1,penalty="LASSO",

tun_range=seq(0,0.1, 0.001),beta=beta0,phi=phi0,

theta=theta0, data="data_kid",maxiter=2000)

kid_res.LASSO1

beta0L<-kid_res.LASSO1$Est_beta[,1] #LASSO

phi0L<-kid_res.LASSO1$Est_phi[1] #LASSO

theta0L<-kid_res.LASSO1$Est_theta[1] #LASSO

theta0L<- ifelse(theta0L <= 0.00001 , theta0L<-0.001, theta0L <- theta0L)

# ALASSO

kid_res.ALASSO1<-copula.vs(kidney.formula1,penalty="ALASSO",
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tun_range=seq(0,0.1,0.001),beta=beta0L,phi=phi0L,

theta=theta0L, weight0=abs(1/beta0), data="data_kid",

maxiter=2000)

kid_res.ALASSO1

# SCAD

kid_res.SCAD1<-copula.vs(kidney.formula1,penalty="SCAD",

tun_range=seq(0,0.3,0.001),beta=beta0L,phi=phi0L,

theta=theta0L, data="data_kid",maxiter=2000)

kid_res.SCAD1

# HL

kid_res.HL1<-copula.vs(kidney.formula1,penalty="HL",

tun_range=seq(0.001,0.2,0.001),beta=beta0L,phi=phi0L,

theta=theta0L, data="data_kid", maxiter=2000)

kid_res.HL1
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Appendix D. Further Simulation Results

 Est Mean
SE

SD
MSE CP Mean

SE

SD
MSE CP Mean

SE

SD
MSE CP

One-stage Weibull PE Proposed

0.2  0.986
0.118

0.128
0.016 0.924 1.055

0.131

0.137
0.022 0.932 1.053

0.130

0.138
0.022 0.922

 2.042
0.632

0.657
0.433 0.944 2.232

0.703

0.769
0.643 0.946 2.152

0.669

0.730
0.554 0.930

1  0.896
0.113

0.129
0.028 0.778 1.052

0.130

0.137
0.021 0.932 1.050

0.129

0.138
0.021 0.926

 1.947
0.600

0.586
0.345 0.932 2.236

0.698

0.780
0.663 0.936 2.171

0.668

0.723
0.550 0.940

3  0.828
0.111

0.131
0.047 0.594 1.050

0.131

0.138
0.022 0.936 1.047

0.130

0.136
0.021 0.930

 1.937
0.602

0.567
0.325 0.948 2.254

0.712

0.798
0.701 0.934 2.180

0.679

0.727
0.561 0.942

Two-stage Weibull PE Cox

0.2  1.002
0.141

0.151
0.023 0.934 1.056

0.133

0.168
0.031 0.858 1.033

0.152

0.158
0.026 0.924

 1.847
0.600

0.521
0.295 0.900 1.764

0.450

0.532
0.338 0.752 1.790

0.591

0.528
0.322 0.854

1  0.934
0.135

0.142
0.024 0.894 1.053

0.132

0.165
0.030 0.864 1.034

0.151

0.159
0.026 0.932

 1.765
0.561

0.509
0.314 0.868 1.727

0.447

0.531
0.356 0.746 1.757

0.593

0.524
0.333 0.858

3  0.881
0.131

0.137
0.033 0.830 1.052

0.133

0.167
0.030 0.872 1.033

0.153

0.162
0.027 0.928

 1.740
0.572

0.506
0.323 0.876 1.712

0.453

0.527
0.360 0.752 1.752

0.603

0.533
0.345 0.848

Table D1. ( ) = (50, 2): Simulation results on one-stage and two-stage estimation

methods over 500 replications under Clayton copula models with Gompertz marginal hazard;

20% censoring rate;    ;    (Kendal’s tau:    ); PE, piecewise exponential
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 Est Mean
SE

SD
MSE CP Mean

SE

SD
MSE CP Mean

SE

SD
MSE CP

One-stage Weibull PE Proposed

0.2  0.960
0.057

0.060
0.005 0.844 1.005

0.061

0.063
0.004 0.954 1.011

0.061

0.062
0.004 0.942

 1.982
0.307

0.308
0.095 0.940 2.046

0.320

0.337
0.016 0.934 2.035

0.316

0.319
0.103 0.944

1  0.911
0.069

0.069
0.013 0.738 0.997

0.061

0.062
0.004 0.944 1.011

0.061

0.061
0.004 0.950

 1.831
0.285

0.292
0.114 0.878 2.043

0.317

0.322
0.105 0.942 2.041

0.315

0.316
0.101 0.946

3  0.859
0.067

0.067
0.024 0.438 0.996

0.061

0.063
0.004 0.950 1.011

0.061

0.062
0.004 0.950

 1.798
0.287

0.295
0.127 0.870 2.041

0.321

0.320
0.104 0.950 2.039

0.319

0.319
0.103 0.946

Two-stage Weibull PE Cox

0.2  0.976
0.072

0.072
0.006 0.924 1.008

0.075

0.075
0.006 0.948 1.007

0.076

0.075
0.006 0.952

 1.937
0.305

0.299
0.093 0.928 1.926

0.302

0.299
0.095 0.914 1.920

0.319

0.295
0.093 0.936

1  0.911
0.069

0.069
0.013 0.738 1.004

0.074

0.075
0.006 0.958 1.007

0.076

0.075
0.006 0.956

 1.831
0.285

0.292
0.114 0.878 1.907

0.296

0.294
0.095 0.910 1.904

0.316

0.286
0.091 0.930

3  0.859
0.067

0.067
0.024 0.438 1.003

0.075

0.076
0.006 0.954 1.007

0.077

0.076
0.006 0.952

 1.798
0.287

0.295
0.127 0.870 1.898

0.302

0.297
0.098 0.918 1.892

0.319

0.289
0.095 0.932

Table D2. ( ) = (200, 2): Simulation results on one-stage and two-stage estimation

methods over 500 replications under Clayton copula models with Gompertz marginal hazard;

20% censoring rate;    ;    (Kendal’s tau:    ); PE, piecewise exponential
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 Est Mean
SE

SD
MSE CP Mean

SE

SD
MSE CP Mean

SE

SD
MSE CP

One-stage Weibull PE Proposed

0.2  0.967
0.082

0.083
0.008 0.914 1.027

0.101

0.101
0.011 0.952 1.032

0.091

0.091
0.009 0.932

 1.986
0.423

0.406
0.165 0.936 2.082

0.493

0.504
0.261 0.946 2.031

0.433

0.428
0.184 0.952

1  0.865
0.077

0.083
0.025 0.562 1.016

0.092

0.092
0.009 0.952 1.031

0.092

0.091
0.009 0.954

 1.920
0.409

0.379
0.150 0.928 2.066

0.448

0.450
0.207 0.952 2.039

0.436

0.442
0.197 0.942

3  0.785
0.073

0.081
0.053 0.218 1.011

0.092

0.092
0.009 0.952 1.028

0.092

0.090
0.009 0.958

 1.944
0.412

0.374
0.143 0.942 2.070

0.450

0.450
0.207 0.950 2.038

0.439

0.437
0.192 0.946

Two-stage Weibull PE Cox

0.2  0.992
0.109

0.111
0.012 0.948 1.029

0.103

0.131
0.018 0.850

1.023 0.116

0.123
0.016 0.938

 1.897
0.406

0.392
0.164 0.920 1.857

0.350

0.437
0.211 0.794 1.807

0.417

0.388
0.188 0.870

1  0.926
0.104

0.103
0.016 0.876 1.028

0.098

0.122
0.016 0.890 1.022

0.116

0.122
0.015 0.930

 1.793
0.372

0.370
0.179 0.864 1.785

0.317

0.397
0.203 0.758 1.779

0.414

0.385
0.197 0.850

3  0.872
0.100

0.099
0.026 0.746 1.026

0.099

0.124
0.016 0.876 1.022

0.117

0.124
0.016 0.924

 1.762
0.369

0.360
0.186 0.860 1.780

0.320

0.392
0.202 0.768 1.771

0.416

0.385
0.200 0.844

Table D3. ( ) = (50, 4): Simulation results on one-stage and two-stage estimation

methods over 500 replications under Clayton copula models with Gompertz marginal hazard;

20% censoring rate;    ;    (Kendal’s tau:    ); PE, piecewise exponential
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 Est Mean
SE

SD
MSE CP Mean

SE

SD
MSE CP Mean

SE

SD
MSE CP

One-stage Weibull PE Proposed

0.2  0.947
0.040

0.041
0.004 0.702 0.995

0.044

0.042
0.002 0.966 1.007

0.044

0.044
0.002 0.954

 1.976
0.211

0.196
0.039 0.950 2.022

0.219

0.213
0.046 0.956 2.011

0.214

0.214
0.046 0.940

1  0.848
0.038

0.041
0.025 0.050 0.985

0.044

0.044
0.002 0.930 1.008

0.045

0.045
0.002 0.950

 1.914
0.204

0.176
0.038 0.944 2.023

0.219

0.211
0.045 0.954 2.010

0.216

0.214
0.046 0.944

3  0.769
0.036

0.040
0.055 0 0.980

0.044

0.044
0.002 0.916 1.007

0.045

0.045
0.002 0.948

 1.943
0.206

0.171
0.032 0.970 2.024

0.220

0.211
0.045 0.958 2.010

0.217

0.215
0.046 0.942

Two-stag
e

Weibull PE Cox

0.2  0.973
0.056

0.058
0.004 0.900 1.004

0.059

0.063
0.004 0.930 1.006

0.060

0.063
0.004 0.942

 1.934
0.211

0.202
0.045 0.926 1.938

0.212

0.210
0.048 0.912 1.923

0.223

0.209
0.050 0.914

1  0.909
0.053

0.055
0.011 0.584 1.000

0.059

0.063
0.004 0.912 1.006

0.061

0.063
0.004 0.938

 1.822
0.193

0.183
0.065 0.848 1.918

0.209

0.208
0.050 0.900 1.913

0.222

0.208
0.051 0.904

3  0.856
0.051

0.053
0.024 0.194 0.998

0.208

0.063
0.004 0.934 1.006

0.061

0.064
0.004 0.932

 1.793
0.193

0.179
0.075 0.808 1.906

0.208

0.206
0.051 0.896 1.904

0.222

0.204
0.051 0.904

Table D4. ( ) = (200, 4): Simulation results on one-stage and two-stage estimation

methods over 500 replications under Clayton copula models with Gompertz marginal

hazard; 20% censoring rate;    ;    Kendal’s tau:   ); PE, piecewise

exponential
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




  Method Mean SE SD MSE CP Mean SE SD MSE CP Mean SE SD MSE CP

True value         

 LASSO 0.712 0.080 0.092 0.016 0.730 0.900 0.088 0.07 0.020 0.740 0.529 0.075 0.080 0.011 0.810

ALASSO 0.781 0.084 0.104 0.011 0.890 0.982 0.092 0.110 0.012 0.890 0.577 0.093 0.104 0.010 0.895

SCAD 0.811 0.087 0.101 0.010 0.915 1.013 0.102 0.102 0.010 0.945 0.605 0.075 0.085 0.007 0.915

HL 0.791 0.080 0.091 0.008 0.930 0.994 0.095 0.093 0.012 0.895 0.589 0.080 0.080 0.008 0.930

 LASSO 0.736 0.054 0.059 0.008 0.745 0.926 0.060 0.071 0.011 0.715 0.539 0.051 0.059 0.007 0.720

ALASSO 0.792 0.057 0.060 0.004 0.930 0.998 0.063 0.067 0.004 0.950 0.589 0.052 0.056 0.003 0.930

SCAD 0.806 0.058 0.060 0.003 0.955 1.011 0.064 0.072 0.005 0.920 0.594 0.053 0.057 0.003 0.935

HL 0.797 0.057 0.064 0.004 0.925 1.002 0.063 0.069 0.005 0.920 0.593 0.053 0.060 0.004 0.910

 LASSO 0.743 0.048 0.048 0.005 0.745 0.936 0.052 0.059 0.008 0.695 0.549 0.045 0.052 0.005 0.765

ALASSO 0.792 0.049 0.055 0.003 0.930 0.996 0.054 0.056 0.003 0.945 0.592 0.044 0.051 0.003 0.910

SCAD 0.806 0.050 0.050 0.003 0.950 1.010 0.054 0.058 0.003 0.960 0.605 0.046 0.051 0.003 0.940

HL 0.798 0.049 0.051 0.003 0.955 0.999 0.054 0.055 0.003 0.945 0.593 0.046 0.050 0.003 0.945

Table D5. Simulation results for coefficients of  and  among non-zero

coefficients of  under copula survival models with Censoring rate 40%
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Figure D1.   : Simulation result of copula variable selection using 200 replications;

40% censoring rate; dotted line, true values of  and , respectively
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Figure D2.   : Simulation result of copula variable selection using 200 replications;

40% censoring rate; dotted line, true values of   and , respectively
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Figure D3.   : Simulation result of copula variable selection using 200 replications;

40% censoring rate; dotted line, true values of   and , respectively
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