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1 Introduction

Let C' be a nonempty closed convex subset of a real Hilbert space H. Let
T :C — C be a mapping. We use F(T') to denote the set of fixed points of T';
that is, F(T) = {x € C : Tx = z}. (Throughout this paper, we always assume
that F(T) #0.)

[terative methods are often used to solve the fixed point equation Tz = x.
The most well-known method is perhaps the Picard successive iteration method
when T is a contraction. Picard’s method-generates a sequence {z,} successively
as r, = Tx,_ 1 for n >2 with x; := 2 arbitrary, and.this sequence converges
in norm to the unique fixed point of 7. However, if T is not a contraction (for
instance, if 7" is nonexpansive),then Picard’s successive iteration fails, in general,
to converge. Instead, Mann’s iteration method [6] prevails.

The Mann’s algorithm, an averaged process in nature, generates a sequence

{x,} recursively by
Tprp=opTp + (1 = ap)Tx,, n2>1, (1.1)

where the initial guess z1:= z€-C is arbitrarily chosen and the sequence {a,,}
lies in the interval [0, 1].
Recall that a mapping 7" : C' — C is said to be a strict pseudo-contraction [1]

if there exists a constant 0 < k < 1 such that
Tz — Ty||* < [l —y|* + &l|(I = T)x — (I = T)y|? (1.2)

for all x,y € C'. For such a case, T' is said to be a k-strict pseudo-contraction.

A 0-strict pseudo-contraction 7' is nonexpansive; that is, T' is nonexpansive if
[Tz =Ty < [lz -yl

1



for all z,y € C.

The Mann’s algorithm for nonexpansive mappings has been extensively inves-
tigated; see [1, 3, 4, 11, 12, 13, 14, 15] and the references therein. One of the well
known results is proven by Reich [11] for a nonexpansive mapping 7" : C' — C,
which asserts the weak convergence of the sequence {z,} generated by (1.1) in
a uniformly convex Banach space with a Frechet differentiable norm under the
control condition 7 a,(l — o) = oo. However iterative methods for strict
pseudo-contractions are far less developed though Browder and Petryshyn [1] ini-
tiated their work in 1967. Reeently, Marino and Xu [7] developed and extended
Reich’s result to strict pseudo-contractions in the Hilbert. space setting. More
precisely, they proved the weak convergence of the Mann’s iteration process (1.1)
for a k-strict pseudo-contraction 1" of C'.

It is known that the Mann’s iteration method (1.1) is in general not strongly
convergent [2] for either nonexpansive mappings or strict pseudo-contractions. In
2003, a method' (called hybrid method) to modify the Mann’s iteration method
(1.1) so that strong convergence is guaranteed has been proposed by Nakajo and
Takahashi [10] for a single nonexpansive mapping 7' with F(7T') # () in a Hilbert
space H:

x1 ;= x € C chosen arbitrarily,

Yn = Ty + (1 — o) Ty,

Co=1{z€C g — 20l < llow — 21}, (13)
Qn={z€C:(xr,—z,x—x,) >0}

| i1 = Pounu2, n21,
where Px denotes the metric projection from H onto a nonempty closed convex
subset K of H. They proved that if the sequence {a,} is bounded above from

one, then the sequence {z,} generated by (1.3) converges strongly to Ppr)z.



This result has been extended to the class of k-strict pseudo-contractions by

Marino and Xu [8] as follows.

Theorem MX (see Theorem 4.1 of [8]) Let C be a closed convex subset of a
Hilbert space H. Let T : C — C be a k-strict pseudo-contraction for some
0 <k <1 and assume that the fized point set F(T') of T is nonempty. Let {z,}

be the sequence generated by the following (CQ) algorithm:

.
x1 :=x € C chosen arbitrarily,

Yn = ApTy + (]- - Oén)TIn,
Cn = {Z €C: |lyn~ Z“2 5 ”1771 = Z“2 i (1 F an)(’i — a)||zn — Tmn||2},
Qn={z€ C Axn—z,x— z,,) > 0},

Tny1 = Pohoi, /1 > g
(1.4)

Assume that the control sequence {an,} is chosen so that o, < 1 for all n. Then
{xn} converges strongly to Pgemx.

In this paper,.motivated by definition of (1.2), we say that afamily & = {5, :
C — C} of self-mappings-of C is k-strict pseudo-contraction (in brief, x-SPC)

on C' if there exist a constant %€ [0, 1) such that
180z = Suyll® < lle = ylI* + £ (I = Sw)z — (I = Sa)yl® (1.5)

for all x,y € C and all integers n > 1. In particular, note that taking .S,, := T for
a strict pseudo-contraction 7' : C'— C' in (1.5) reduces to (1.2). We propose the
following modification of the algorithm (1.1) for this family & = {S, : C — C}:

Tpt1 = OpTp + (1 - an)Sn:Erm n =1, (16)

where the initial guess z; := x € C' is arbitrarily chosen and the sequence {a,}

lies in the interval [0, 1].



This paper is constructed as follows. In section 2, we present some prerequi-
sites which are useful in our discussion. In section 3, motivated and inspired by
the research works in [7], [5] and [8], we study the weak and strong convergence
of the above algorithm (1.6) for the family & = {5, : C — C} stated as in
(1.5). Finally, in section 4, some applications for the parallel algorithm (4.1) and
the cyclic algorithm (4.11) relating to our main results are added, which extend
and improve the corresponding ones due to Acedo and Xu [5] for a finite family

{T;}Y., of k;-strict pseudo-contractions.

2 Preliminaries

Let H be a real Hilbert space with the duality product (-,+). When {z,} is a
sequence in H, we denote the strong convergence of {z,} to « € H by z, — «

and the weak convergence by x, — x. We also denote the weak w-limit set of

{xn} by

wo(Tn) = {Z 3 2n, — x},

We now need some facts and-tools.in a real Hilbert space H which are listed

as lemmas below (see [9] for necessary proofs-of Lemmas 2.2 and 2.5).

Lemma 2.1. Let H be a real Hilbert space. There hold the following identities

(which will be used in the various places in the proofs of the results of this paper).

@) [z —yl? = llzI* = lyl* = 2{z —y,y), =y€H.

(ii) For all N\; € [0,1] with Y A\ =1, and x,y € H, the following equality
holds:

Y Nl =D Xl =D 0 Al — 1. (2.1)
=1 =1

i#j
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In particular, for n = 2 we have

[tz + (1 =)y l|* = tll=]* + 1= Ollyl* — t(L =)= —ylI*, t€[0,1]. (2.2)

Lemma 2.2. ([9]) Let H be a real Hilbert space. Given a closed conver subset

C C H and points x,y,z € H. Gien also a real number a € R. The set
[veClly—vI? < e — ol +{zv) +a)
is convez (and closed).

Recall that given a closed convex subset K of a real Hilbert space H, the
nearest point projection Py from H onto K assigns to each x € H its nearest
point denoted Pxx in K from x to K; that is, Pxx is the unique point in K
with the property

l'= Prxl| < [l =yll, v € K.

Lemma 2.3. Let K be a closed convex subset of real Hilbert space H. Given

x € H and z € K."Then z.= Pxx if and only if there holds the relation:
<I_Z7y_z>§07 yEK

Lemma 2.4. ([5]) Let K be a closed convex subset of H. Let {x,} be a bounded

sequence in H. Assume
(i) The weak w-limit set w,(x,) C K.
(ii) For each z € K, lim,_,« ||z, — 2| exists.

Then {x,} is weakly convergent to a point in K.



Lemma 2.5. ([9]) Let K be a closed convex subset of H. Let {x,} be a sequence
in H and x € H. Let q = Pxx. If {z,} is such that w,(x,) C K and satisfies

the condition

[en =l <llg —2ll, n=1, (2.3)

Then x, — q.

3 Convergence theorems

We begin with the followinglemmas which are useful in our further discussion.

Lemma 3.1. Let C' be a nonempty closed convex subset of a Hilbert space H . Let
a family S = {S;, : C'— C} of self-mappings of C be k-strict pseudo-contraction.
Then,

(a) For each n>1, S, satisfies the Lipschitz condition, namely,
[Sn = Spyll < Lnllz — yll,
where L, = 2.
(b) F:=nN,F(S,) is closed.

Proof. Similarly, we can derive (a) by replacing 7" in the proof of Proposition
2.1(i) in [8] with S,,. Also, the continuity of S,, for each n > 1 by (a) immediately
yields the closedness of F'. m

Lemma 3.2. Let C' be a nonempty closed convex subset of a Hilbert space H . Let
a family S = {S, : C — C} be k-SPC on C'. Assume that F := N F(S,) # 0

and the control sequence {,,} is chosen so that k+e < a,, < 1—e¢, where € € (0, 1)



s a small enough constant. Starting from an arbitrarily given x; = x € C,
let {x,} be the sequence generated by the algorithm (1.6). Then there hold the

following properties.
(a) For each p € F, lim,_ ||z, — p|| ezists.
(b) ||zn — Spxnl| — 0 and, furthermore, ||z, — xp1]| — 0 as n — co.
Proof. First to prove (a) let p € F'. By virtue of (1.5), we see
1800 = plI* = [1Snzn — Supll® < llon — pll + £ll20 — Sazal
Then this together with the hypothesis (ii) yields

||$n+1 ra p”2 F ||an(xn s p) T (1 - Oén)(Sn.CUn o p)”2

= O‘onn _p||2 + (1 T O‘n)HSnxn —p|l2 L an(l - O‘n)“xn g Snxn”2

IN

14 =fl* — (1 SR || TR, |

< lzd = pl* — €|/%a — Sazall’, (3.1)
in particular,

[2ns1 — plI* < [l2n — pIf?
and so lim,, . ||z, — p|| exists'and (i) is obtained. Since {z,} is bounded, so is
{Shx,}. Now rewrite (3.1) in the form
1

|20 — SnanQ < 6_2(||$n _pH2 — ||Znt1 —p||2).

Then, as n — oo, we get

|z — Spza|| — 0. (3.2)
From definition of z, 1, it follows that
[Zns1 — Znll = (1 — o) |2 — Span|| — 0. (3.3)

Hence (b) is obtained. O



Lemma 3.3. Let C' be a nonempty closed convex subset of a Hilbert space H. Let
a family S = {S,, : C — C} be k-SPC on C. Assume that F := N2, F(S,) # 0,
and also that the control sequence {c,} is chosen so that 0 < a,, <1 for n > 1.

Let {z,} be the sequence generated by the following modified algorithm:

(
x1 :=x € C chosen arbitrarily,

Yn = Qndyp + (1 - an)snxn7
Co={2€C:|lyn — 2> <llz — 2[I* + (1 — ) (5 — ) [|0 — Snza*},
Qn={z€C:{(x,—z,x—1x,) >0},

‘,L‘n"!‘l = PCann‘/L" n Z 1

There hold the following properties.

(@) ||zn — z|| <lg =zl for alln > 1, where q :== Prpz.

(b) ||zn — zpha|l — O and, furthermore, ||®n — Spxyn|| — 0 as n— co.
Proof. First observe that Oy, is convex by Lemma 2.2. Next we show that F' C C,
for n > 1. Indeed, we have, for all p € F, replacing z,,, in (3.1) with y, we
have

lyn =DI1* =Jlem(zn=p) F&E o) (Siz, — )|
< |z, _pHZ — (I=an)lan—=)|[z, — SnanQ

< lzn — p”2 + (1= an)(k — )|, — SnanQ

and thus p € C,, for all n. This shows F C C,, for each n > 1.
Next we show that
FcQ@, n>1 (3.4)

We prove this by induction. For n = 1, we have FF C C' = );. Assume that

F C Q. Since x4 is the projection of x onto Cy N @y, by Lemma 2.3 we have
(Tpp1 — 2,0 — Tp41) >0, 2 € CpNQy.

8



As F C C,p N Q@ by the induction assumption, the last inequality holds, in
particular, for all z € F'. This together with the definition of @), implies that
F C Q41 Hence (3.4) holds for all n > 1, and z,, is well defined for all n.

Notice that the definition of (), actually implies z,, = FPgp,x. This together
with the fact F' C @),, further implies

[en =zl <[lp—zll, peF
In particular, {x,} is bounded and
|z, — @l < lg — ||,  where ¢ = Prx. (3.5)

Hence (a) is obtained.
The fact x,.14 € @, assertsthat (z,. 1 —@,, €, —x) > 0. This together with

Lemma 2.1 (i) implies

zns1 2l = @1 = 2) - (@n=2)|
= oot 2l — llEa =2 |* — 2(za1a, = T4, 20 — )
< Mz — 2l = lzn — )% (3.6)
This implies that the sequence {||x,, — ||} is inereasing. Since it is also bounded,

we see that lim, . |z, — x| exists. Note that since {z,} is bounded, so is

{Snz,}. Then it turns out from (3.6) that
2011 = znl = 0. (3.7)

To prove the second part of (b), i.e., ||z, — Spz,| — 0, use the fact =, € C,

to get

||yn - In+1||2

< len = zpga |+ (1= ) (5 — ) lon — Spza)*. (3.8)

9



On the other hand, by virtue of vy, = a,x, + (1 — a,)S,x, and (2.2) in Lemma

2.1, we have

lon(Tn — Tpi1) + (1 — an) (Spwy — xn—&-l)HQ

Hyn - $n+1”2
= oz — 2o P+ (1= o)1 Snzn — 2nga |

—an(1 — an)||zn — Sna|)®.

After substituting this equality into (3.8), by simplifying and dividing both sides
by (1 — a,) (note that «,, <1 for all n > 1), we arrive at
1Zn41 — Snzall® < Nonr = 2ol 24 Kllzn < Spzal® (3.9)
Also, since
| B 1~ Snfll” SRS — W B S, ]

= Hxn+1 ¥ anZ R ”xn i Snxn||2 - 2<xn — Tn41y, T — Snxn>

by the parallelogram law, substituting this equality into (3.9) and simplifying, we

have
(1 — &)||zn — Spznts. <MWk, = 2577, T, — Snzn)
< 2llzn = ngall [0 — Snzal
or
(1= K)[len = Spnll < 2[lzn — zppa| — 0
by (3.7), and so lim,, .« ||z, — Spzn| = 0. O

Now we present the weak and strong convergence of the algorithm (1.6) for a

k- SPC family & ={S,: C — C}.

10



Theorem 3.4. Under the same hypotheses with Lemma 3.2, assume, in addition,
that wy(x,) C F and F is convex. Then {x,} converges weakly to a common

fixed point of .

Proof. By (a) of Lemma 3.2, lim,, . ||z, — p|| exists for p € F'. Also, by the
assumption, wy(x,) C F. Note also that F' is a nonempty closed convex subset
of C'. Hence an application of Lemma 2.4 with K := F ensures that {z,}

converges weakly to a point in F'. O]

Theorem 3.5. Under the same hypotheses with Lemma 3.3, assume, in addition,

that wy(x,) C F and F is convez. Then x, — Prx.

Proof. By virtue of the assumption wy,(#z). C F and (3.5), an application of

Lemma 2.5 ensures that x,,— ¢, where ¢ = Ppx. O

4 Applications

Let C' be a nonempty closed convex subset of a Hilbert space H. Unless other

specified throughout this-section, we always assume that

(c1) foreach 1 <i < N, T;: C — C be a k;-strict pseudo-contraction for some

0<k; <1,

(cg) for each n > 1, {AE”)} is a finite sequence of positive numbers such that

Zﬁvzl )\gn) =1 for all n, and \; := inf{)\gn) :n>1}>0for 1<i<N.

Recently, Lopez Acedo and Xu [5] considered the problem of finding a point
x such that
z €M F(Ty),

11



where {T;}Y | are k;-strict pseudo-contractions defined on C under the condition
(co). As F :=nNY,F(T;) # 0, they investigated the weak and strong convergence
problems of the sequence {x,} generated explicitly by the following parallel al-
gorithm:

N
Tn4+1 = Qplp + (1 - an) Z )\En)T’zxna n Z 17 (41)
=1

where the initial guess x; := x € C' is arbitrarily chosen and {«,} C [0, 1].

For each n > 1, let a mapping S, : C' — C' defined by
N
SﬂnZE:g”ﬂx (4.2)
i=1
for all x € C', Then the parallel algorithm (4.1) can be written simply as
o1 3 En (- GBS T > ) (4.3)
and it is not hard to see that
Fy &F = P& F(S,), (4.4)

where Fy :=nNY F(T;):
Put xk := max{s; : 1 < i < N} Obviously, 0 < x < 1 and we therefore

obtain the following properties of the mapping S, .

Lemma 4.1. Let x,y € C' and 1 < i < N. Then the following properties are
satisfied.

) Tz = Tigl® < lle = ylI* + £l = T — (I = T)yl*.

(i) [|Snx — Spyll? < ||z —y||> + &||[(I — Sp)z — (I — S,)yl|*. In other words, the
family S = {5, : C — C} is k-SPC on C'.

12



(iii) If Fy = NY,F(T;) # 0, then Fy = F := N, F(S,). (In this case, note
that F' in Theorem 3.4 and 3.5 is closed convex so that the projection Pg
is well defined.)

Proof. (i) is obvious from the definition of strict pseudo-contraction. To prove

(i), use (2.1) of Lemma 2.1 to derive

(I = S — (I = Syl = HZW) I—Tye—(I-Tyll*

N i=1
= > NI - T — (=T ~ ZA N(Tw = Toy) — (Tyx = Ty)|1*.
i=1 7]

This yields a simple form:
N
> NN =Tz — (LETIP = 1T = Sz~ (I = Saylt + 7. (45)
i=1

where J := Z#] : ||( Twy) — (Tjx — T;y)||> > 0. Use (2.1), (i) and

(4.5) in turn to'get

N
19hz =Sl = || Y N (T — T
=1

N
= S AT - Tyl =

=1
N
< S Nz = ylP + KT = T — (I - Tyll*} - J
=1
N
= lo =yl + &S NN =Tz — (I - Tyl -
=1
= o=yl + &I = Sz — (I = Syl — (1 —&)J
< o=yl + &I = Sz — (I = Syl

Hence (ii) is proven.

13



Finally to prove (iii), by (4.4), it suffices to show that F' C F. Indeed, let
x = Syx for all n > 1. Since Fy # 0, for p € Fi, use (2.1) and (i) to derive

lp— 2| = lp- Sa:||2—HZA (p - Tiw)|”
N
::EZ&WW—EMP—Ej&”anx—an
i=1 i#j
N
< S Alp - 2l + kllz - Tz} = 6
=1

N
= lp=alP+ x> Ao~ Tix|? -
=1
where § := Zf\;] )\gn))\§~n)||ﬂx — T;z|*. Therefore, we have
N
8 < vallp = 2l + 5 D2 Az — Tiz. (4.6)
=8

On the other hand, since Sz =z for all n > 1, it follows from (2.1) that

N
0 = ||Spx=z| = ||Z)\Z(n)(TZx—a:)H2

XY, A5 L. (4.7)

I
Mz

1

Substituting (4.7) into (4.6) and simplifying, we have

N
0 < (1-r)> N|Tia —z|?
=1

IN

N
(1—k) Z)\" | Tz — x|
i=1

< 0.

This implies that, for 1 <i < N, Tjx = 2 and so z € Fy = NY,F(T;), which

proves (iii). O

14



Lemma 4.2. Assume the common fived point set Fy = NX F(T;) is nonempty.

Let 1<i< N, zxzeC and p € Fy. Then,
() (1= ) S A" |z = Tall? < 2[lp — 2|« — Saz.

(ii) Let {z,} C C such that x, — z and ||z, — Spx,|| — 0. Assume, in

addition, ||z, — xp41|| — 0. Then z € Fy.

Proof. Put I := "N A"z — Tyz|? and J = Zf\;])\ ||T$ — Tyx||*. Use
(2.1) to get
|z — Sizl|® HZ)\" x—Tiz)| | =7—J
Observe
lp —/Suzll* = Jip — @) + (= —Saz)||”

= Ml = ol + 5= Saall® — 202 — pw= S.2)

= |9 =||* + I B~ p, x ~ SiE) (4.8)

by parallelogram law. Using (2.1) and (i) of Lemma 4.1 we have

Ip = Spall® = HZW (p=Toz)|f" —ZAE”)HP—MHQ—J

=1

< ZAE” llp — =% + ke — T —

IN

|@—xW+mI—J (4.9)
Substituting (4.8) into (4.9) and simplifying we have

(1-r)I < 2{(x—p,x— Spx)

< 2llp — zlllz — Snl),

15



which proves (i). To show (ii), replacing « with z,, in (i) gives

N
(1= 1) YNl = TiallP < 2llp = w2 = Sl

=1

Since {x,} is bounded and ||z, — S,z,|| — 0, we can easily derive
|z, — Tixn]| — 0, 1<i<N. (4.10)

Then the demiclosedness principle of I — T; implies that z € F(T;) for all
1 <i< N. Hence z € Fy =NY,F(T;) and the proof is complete. O

As direct applications of Theorem 3.4, we have following weak convergence for
the parallel algorithm (4.1) (or see (4.3) for a compact form). for a finite family
{T;}Y, of N rk;sstrict pseudo=contractions; compare with Theorem 3.3 in Lopez

Acedo and Xu [5].

Theorem 4.3. Let C' be a nonempty closed convex subset of a Hilbert space H .
Let {T;}Y and {)\En)} be as in (¢ ) and (eg ), respectively. Let k= max{r; : 1 <
i < N}. Assume that Fg:= NN, F(T;) # 0 and the_control sequence {a,} are
chosen so that k + ¢ < a, < 1.—e; where € €(0,1) is a small enough constant.
Starting from an arbitrarily given xy-=x-€ Clet {x,} be the sequence generated
by the parallel algorithm (4.1) or (4.3). Then {x,} converges weakly to a common
fized point of {T;}N ;.

Proof. By (ii) and (iii) of Lemma 4.1, it suffices to show that wy,(z,) C F'. This
fact is directly derived from (ii) of Lemma 4.2 by reminding of (b) of Lemma 3.2.

Then our conclusion is obtained by Theorem 3.4. O]

As direct applications of Theorem 3.5, we have following strong convergence

for the parallel algorithm (4.1) (or see (4.3) for a compact form) for a finite family
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{T;}Y., of N k;-strict pseudo-contractions due to Lopez Acedo and Xu [5]; see

Theorem 5.1 in [5].

Corollary 4.4. ([5]) Let C be a nonempty closed convex subset of a Hilbert
space H. Let {T;}Y and {/\En)} be as in (c1) and (cg), respectively. Let
k= max{r; : 1 < i < N}. Assume that Fy := NN, F(T;) is a nonempty
bounded subset of C', and also that the control sequence {a,} is chosen so that
0 <a, <1 forn>1. Let {x,} be the sequence generated by the following

modified parallel algorithm:

(
x1 :=x € C chosen arbitrarily,

Yn = Ty + (1 = ay) Ef\il )\Z(»n)Tia:n = pTp + (1= ay)Sntn,
Co = {2z € C.illyn— 2|> & lan = 2| 3@ —a) (£ = )| Bp — Spznl®},
Qn={2€C:{(z,— 2% —x,) >0},

L Tn+1 = PCnﬂan7 n 2zl

Then x, — Ppyx.

Proof. By (ii) and (iii) of Lemma 4.1, § = {S,, : ¢ = C} is k-SPC on C and
F = Fy. Immediately, the fact wz,) C F s required from (ii) of Lemma 4.2
by reminding of (b) of Lemma 3.3. Then our conclusion is achieved by Theorem

3.5. U

Lopez Acedo and Xu [5] also investigated the convergence problems for the

following cyclic algorithm:

x1 :=x € C chosen arbitrarily,
To = 121 + (]. — Oél)Tll'l,

T3 = apTy + (1 — an)Thws,
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Tny1 = anxy + (1 —an)Tvzy,

Tnt2 = a1 Zny1 + (1 — ang) 1o N,

where {a,} be a sequence in [0,1]. The above cyclic algorithm can be written

in a more compact form as
Tpi1 = QnZp + (1 — ) Tig2n, n>1, (4.11)

where Tjy) = Ty moan for.integer & > 1. The mod function takes values in the set
{1,2,--- ,N} as

Ly i 0;

| if N
for k= jN + q for some integers 7 >0 and 0 < g < N.

T

Finally, as direct consequences of our main theorems, we obtain the following
weak and strong'convergence problems for the cyclic algorithm (4.11) for a finite
family {T;}¥, of rj-stri¢t-pseudo-contractions due teLopez Acedo and Xu [5];

see Theorem 4.1 and 5.2;respeetively, in [5].

Corollary 4.5. ([5]) Let C be a nonempty closed convex subset of a Hilbert
space H. Let {T;}Y be as in (c1). Let k := max{r; : 1 < i < N}. Assume
that Fy := NY,F(T;) # 0 and the control sequence {a,} are chosen so that
k+e< a, <1—¢€, where ¢ € (0,1) is a small enough constant. Then the
sequence {x,} generated by the cyclic algorithm (4.11) converges weakly to a

common fized point of {T;}Y ;.

Proof. Replacing all the S, in the process of the proof of Lemma 3.2 with T,

we can immediately prove the following facts:
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(1) lim, o ||z, — p|| exists for p € Fy;
(2) ||lp — Tpan|| — 0 (hence ||z, — 2pq1|| — 0) as n — oo.

By (2), it is not hard to see that, for 1 <i < N

[#n — @il — O (4.12)
and
Ty — Znsall = 0, (4.13)
that is,
|#n =Tizn|| =0, 1 <3-<Ns (4.14)

Finally to show wy,(2,) C Ex, use the demiclosedness property of I —7;. Use
Lemma 2.4 (with K = Fy) to conclude that {,} converges weakly to a point
in Fy. ]

Theorem 4.6.'([5]) Let C" be a nonempty closed convex subset of a Hilbert
space H. Let {T;}Y be asin (c1). Let k := max{r;: 1 <i < N}. Assume that
Fy == NY,F(T;) is a nonemply-bounded subset'of O and also that the control
sequence {ay,} is chosen so that-0-< a, <1 for-all n. Let {z,} be the sequence

generated by the following modified cyclic algorithm.:

.
x1 = x € C chosen arbitrarily,

Yn = QpTyp + (]- - Oén)ir[n]xn)
{ Co={2€C: lyn—2[I° < [lzn — 27 + (1 — ) (5 — aw) |0 — Timzal*},
Qn={z€C:{(x,—z,x—x,) >0},

L $n+1 = Pcannx.

Then x, — Ppyx.
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Proof. First, to claim the following observations (i)-(vi), simply replace S,, in the

proof of Lemma 3.3 with Tj,.
(i) x, is well defined for all n > 1.
(ii) [|zn — 2| < |lg — || for all n, where ¢ = Pp,z.
(ii) f|#n41 = @nll — 0.
vi) llzn = Timzal — 0.

To derive wy,(x,) C Fy, repeat the argument of (4.12)-(4.14) in the proof of

Theorem 4.5. Finally use (ii) and Lemma 2.5 to arrive at the our conclusion. [
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