

Thesis for the Degree of Master of Science

Weak and Strong Forms of b-irresolute Functions

by

Jae Eun Jeong Department of Applied Mathematics The Graduate School Pukyong National University August 2009

Weak and Strong Forms of b-irresolute Functions b-irresolute 함수의 약과 강한 형태들

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in the Department of Applied Mathematics, The Graduate School, Pukyong National University

August 2009

CONTENTS

	Abstract(Korean) i
1.	Introduction 1
2.	Preliminaries 2
3.	Characterization of weakly <i>b</i> -irresolute functions 4
4.	Properties of weakly <i>b</i> -irresolute functions
5.	Strongly <i>b</i> -irresolute functions 11
6.	Covering properties 15
	References

b-irresolute 함수의 약과 강한 형태들

정 재 은

부경대학교 대학원 응용수학과

요약

본 논문에서는 약한 *b*-irresolute 함수와 강한 *b*-irresolute 함수의 기본적인 성질과 다른 함수들 과의 관계, 위상적 성질인 피복성 및 분리공리를 다음 내용을 중심으로 조사한다.

첫째로, 위상공간 X의 부분집합 A에 있어서의 b-open, b-closed, b-regular의 정의와 성질 들과 그에 따른 정리들을 알아본다.

둘째로, 약하고 강한 *b*-irresolute 함수와 *b*-연속 함수들과의 관계를 예제를 이용하여 살펴보고, 약한 *b*-irresolute 함수의 성질들을 알아본다.

셋째로, 강한 b-irresolute 함수의 약한 b-irresolute 함수, b-irresolute 함수, graph function g와의 관계와 $b - T_1$, $b - T_2$ 공간에서의 성질들을 조사한다.

넷째로, 강한 b-irresolute 함수의 강한 b-regular 함수, b-irresolute 함수, α -open 함수, α -연 속 함수 와의 관계를 조사하고, 강한 b-irresolute 성과 피복성과의 관계를 조사한다.

1 Introduction

Andrijević [4] introduced the notion of *b*-open sets which is weaker than those of both preopen sets [10] and semiopen sets [9] and is stronger than that of β -open sets [1]. El-Atik [7] and Dontchev and Przemski [6] called *b*-open sets by *sp*-open sets and γ -open sets, respectively. By using *b*-open sets, Nasef [12] introduced the notions of *b*-locally closed sets and *b*-LC-continuity and discussed some of their properties. El-Atik [7] used *b*-open sets to define *b*-continuity in topological spaces. Dontchev and Przemski [6] called *b*-continuity by *sp*-continuity and used this notion to obtain a decomposition of precontinuity [10]. The notion of *b*irresoluteness in topological spaces is introduced by Ha [8]. Recently, Park [14] introduced the notions of *b*- θ -open sets and strong θ -*b*-continuity and obtained some characterizations and several properties concerning strongly θ -*b*-continuous functions.

The purpose of this thesis is to introduce and investigate some of the fundamental properties of weakly *b*-irresolute and strongly *b*-irresolute functions. The relations with above-mentioned notions directly or indirectly connected with weak and strong *b*-irresoluteness are investigated. In Section 3, we obtain characterizations and basic properties of weakly *b*-irresolute functions. In Section 4, we investigate relationships between weak *b*-irresoluteness and separation axioms and between weak *b*-irresoluteness and *b*- θ -closed graphs, respectively. In Section 5, we obtain characterizations of strongly *b*-irresolute functions and investigate relationships between strong *b*-irresoluteness and separation axioms. In the last section, we investigate relationships between strong *b*-irresoluteness and covering properties.

2 Preliminaries

Throughout this thesis, spaces X and Y always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. We denote the closure and the interior of a set A by cl(A) and int(A), respectively. A point x of X is called a θ -cluster [18] point of A if $cl(U) \cap A \neq \emptyset$ for every open set U of X containing x. The set of all θ -cluster points of A is called the θ -closure [18] of A and is denoted by $cl_{\theta}(A)$. A subset A is said to be θ -closed [18] if $cl_{\theta}(A) = A$. The complement of a θ -closed set is said to be θ -open.

A subset A is said to be α -open [13] (resp. preopen [10], semi-open [9], b-open [4], semi-preopen [3] or β -open [1]) if $A \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ (resp. $A \subset \operatorname{int}(\operatorname{cl}(A))$, $A \subset \operatorname{cl}(\operatorname{int}(A)), A \subset \operatorname{cl}(\operatorname{int}(A)) \cup \operatorname{int}(\operatorname{cl}(A)), A \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$). The complement of an α -open (resp. preopen, semi-open, b-open, β -open) set is said to be α -closed (resp. preclosed, semi-closed, b-closed, β -closed). The intersection of all b-closed sets of X containing A is called the b-closure [4] of A and is denoted by bcl(A). The semi-closure and preclosure are similarly defined and are denoted by scl(A) and pcl(A). The union of all b-open sets of X contained in A is called b-interior [4] and is denoted by bint(A). A subset A is said to be b-regular [14] if it is b-open and b-closed. The family of all b-open (resp. b-closed, b-regular) sets of X is denoted by BO(X) (resp. BC(X), BR(X)) and the family of all b-open (resp. b-regular) sets of X containing a point $x \in X$ is denoted by BO(X, x) (resp. BR(X, x)).

The following basic properties of b-closure are useful in the sequel:

Lemma 2.1 (Andrijevic [4]) For a subset A of a space X, the following hold:

- (a) $bcl(A) = scl(A) \cap pcl(A);$
- (b) $bint(A) = sint(A) \cup pint(A);$
- (c) $bcl(X \setminus A) = X \setminus bint(A);$
- (d) $x \in bcl(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in BO(X, x)$;
- (e) $A \in BC(X)$ if and only if A = bcl(A).

Theorem 2.2 (Park [14]) Let A be a subset of a space X. Then

(a) A ∈ BO(X) if and only if bcl(A) ∈ BR(X).
(b) A ∈ BC(X) if and only if bint(A) ∈ BR(X).

A point x of X is called a *b*- θ -cluster point [14] of A if $bcl(U) \cap A \neq \emptyset$ for every $U \in BO(X, x)$. The set of all *b*- θ -cluster points of A is called *b*- θ -closure [14] of A and denoted by $bcl_{\theta}(A)$. A subset A is said to be *b*- θ -closed [14] if $A = bcl_{\theta}(A)$. The complement of a *b*- θ -closed set is said to be *b*- θ -open [14].

Theorem 2.3 (Park [14]) Let A and A_{α} ($\alpha \in I$) be any subsets of a space X. Then the following properties hold:

(a) A is b- θ -open in X if and only if for each $x \in A$ there exists $V \in BR(X, x)$ such that $x \in V \subset A$,

(b) $bcl_{\theta}(A)$ is b- θ -closed,

(c) if A_{α} is b- θ -open in X for each $\alpha \in I$, then $\bigcup_{\alpha \in I} A_{\alpha}$ is b- θ -open in X.

Theorem 2.4 (Park [14]) For a subset A of a space X, the following properties hold:

(a) if $A \in BO(X)$, then $bcl(A) = bcl_{\theta}(A)$,

(b) $A \in BR(X)$ if and only if A is b- θ -open and b- θ -closed.

3 Characterizations of weakly *b*-irresolute functions

Definition 3.1 A function $f: X \to Y$ is said to be

(a) *b*-continuous [7] if $f^{-1}(V) \in BO(X)$ for each open set V of Y;

(b) almost b-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in BO(X, x)$ such that $f(U) \subset int(cl(V))$;

(c) strongly θ -b-continuous [14] if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in BO(X, x)$ such that $f(bcl(U)) \subset V$.

Definition 3.2 A function $f: X \to Y$ is said to be

(a) *b*-irresolute [8] if $f^{-1}(V) \in BO(X)$ for each $V \in BO(Y)$;

(b) strongly b-irresolute if for each $x \in X$ and each $V \in BO(Y, f(x))$, there exists a $U \in BO(X, x)$ such that $f(bcl(U)) \subset V$;

(c) weakly b-irresolute if for each $x \in X$ and each $V \in BO(Y, f(x))$, there exists a $U \in BO(X, x)$ such that $f(U) \subset bcl(V)$.

Remark 3.3 From Definitions 3.1 and 3.2, we have the following diagram for a function $f: X \to Y$:

strongly *b*-irresolute \Rightarrow *b*-irresolute \Rightarrow weakly *b*-irresolute $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ strongly θ -*b*-continuous \Rightarrow *b*-continuous \Rightarrow almost *b*-continuous

However, none of these implications is reversible as shown by the following examples. Moreover, strong θ -*b*-continuity and weak *b*-irresoluteness are independent of each other as the following examples show.

Example 3.4 Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{X, \emptyset, \{a\}, \{b, c\}\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is strongly θ -b-continuous but it is not weakly b-irresolute.

Example 3.5 Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}$. Then the identity function $f : (X, \tau) \to (X, \tau)$ is b-irresolute but it is not strongly θ -b-continuous.

Example 3.6 Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{X, \emptyset, \{c\}\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is weakly *b*-irresolute but it is not *b*-continuous.

Theorem 3.7 For a function $f : X \to Y$, the following are equivalent:

- (a) f is weakly b-irresolute;
- (b) $f^{-1}(V) \subset \operatorname{bint}(f^{-1}(\operatorname{bcl}(V)))$ for each $V \in \operatorname{BO}(Y)$;
- (c) $\operatorname{bcl}(f^{-1}(V)) \subset f^{-1}(\operatorname{bcl}(V))$ for each $V \in \operatorname{BO}(Y)$.

Proof (a) \Rightarrow (b): Let $V \in BO(Y)$ and $x \in f^{-1}(V)$. Then by (a), there exists $U \in BO(X, x)$ such that $f(U) \subset bcl(V)$. Therefore, we have $U \subset f^{-1}(bcl(V))$ and $x \in U \subset bint(f^{-1}(bcl(V)))$. This shows that $f^{-1}(V) \subset bint(f^{-1}(bcl(V)))$.

(b) \Rightarrow (c): Let $V \in BO(Y)$ and let $x \notin f^{-1}(bcl(V))$. Then $f(x) \notin bcl(V)$. There exists $W \in BO(Y, f(x))$ such that $W \cap V = \emptyset$. Since $V \in BO(Y)$, we have $bcl(W) \cap V = \emptyset$ and hence $bint(f^{-1}(bcl(W))) \cap f^{-1}(V) = \emptyset$. By (b), we have

$$x \in f^{-1}(W) \subset \operatorname{bint}(f^{-1}(\operatorname{bcl}(W))) \in \operatorname{BO}(X).$$

.

Therefore, we obtain $x \notin \operatorname{bcl}(f^{-1}(V))$. This shows that $\operatorname{bcl}(f^{-1}(V)) \subset f^{-1}(\operatorname{bcl}(V))$.

(c) \Rightarrow (a): Let $x \in X$ and $V \in BO(Y, f(x))$. By Theorem 2.2, we have

 $bcl(V) \in BR(Y)$ and $x \notin f^{-1}(bcl(Y \setminus bcl(V))).$

Since $Y \setminus bcl(V) \in BO(Y)$, by (c) we have $x \notin bcl(f^{-1}(Y \setminus bcl(V)))$. Hence there exists $U \in BO(X, x)$ such that $U \cap f^{-1}(Y \setminus bcl(V)) = \emptyset$. Therefore, we obtain $f(U) \cap (Y \setminus bcl(V)) = \emptyset$ and hence $f(U) \subset bcl(V)$. This shows that f is weakly *b*-irresolute.

Theorem 3.8 For a function $f : X \to Y$, the following are equivalent:

- (a) f is weakly b-irresolute;
- (b) $\operatorname{bcl}(f^{-1}(B)) \subset f^{-1}(\operatorname{bcl}_{\theta}(B))$ for each subset B of Y;
- (c) $f(\operatorname{bcl}(A)) \subset \operatorname{bcl}_{\theta}(f(A))$ for each subset A of X;
- (d) $f^{-1}(F) \in BC(X)$ for each b- θ -closed set F of Y;
- (e) $f^{-1}(V) \in BO(X)$ for each b- θ -open set V of Y.
 - 5

Proof (a) \Rightarrow (b): Let *B* be any subset of *Y* and $x \notin f^{-1}(\operatorname{bcl}_{\theta}(B))$. Then $f(x) \notin \operatorname{bcl}_{\theta}(B)$ and there exists $V \in \operatorname{BO}(Y, f(x))$ such that $\operatorname{bcl}(V) \cap B = \emptyset$. By (a), there exists $U \in \operatorname{BO}(X, x)$ such that $f(U) \subset \operatorname{bcl}(V)$. Therefore, we have $f(U) \cap B = \emptyset$ and $U \cap f^{-1}(B) = \emptyset$. Consequently, we have $x \notin \operatorname{bcl}(f^{-1}(B))$.

(b) \Rightarrow (c): Let A be any subset of X. Then by (b), we have

$$\operatorname{bcl}(A) \subset \operatorname{bcl}(f^{-1}(f(A))) \subset f^{-1}(\operatorname{bcl}_{\theta}(f(A)))$$

and hence $f(\operatorname{bcl}(A)) \subset \operatorname{bcl}_{\theta}(f(A))$.

(c) \Rightarrow (d): Let F be any b- θ -closed set of Y. Then by (c), we have

$$f(\operatorname{bcl}(f^{-1}(F))) \subset \operatorname{bcl}_{\theta}(f(f^{-1}(F))) \subset \operatorname{bcl}_{\theta}(F) = F.$$

Therefore, we have $\operatorname{bcl}(f^{-1}(F)) \subset f^{-1}(F)$ and hence $\operatorname{bcl}(f^{-1}(F)) = f^{-1}(F)$. This shows that $f^{-1}(F) \in \operatorname{BC}(X)$.

 $(d) \Rightarrow (e)$: This proof is obvious and is omitted.

(e) \Rightarrow (a): Let $x \in X$ and $V \in BO(Y, f(x))$. By Theorems 2.2 and 2.4, bcl(V) is b- θ -open in Y. Put $U = f^{-1}(bcl(V))$. Then by (e), we have $U \in BO(X, x)$ and $f(U) \subset bcl(V)$. This shows that f is weakly b-irresolute.

Theorem 3.9 For a function $f : X \to Y$, the following are equivalent:

(a) f is weakly b-irresolute;

(b) for each $x \in X$ and each $V \in BO(Y, f(x))$, there exists $U \in BO(X, x)$ such that $f(bcl(U)) \subset bcl(V)$;

(c) $f^{-1}(F) \in BR(X)$ for each $F \in BR(Y)$

Proof (a) \Rightarrow (b): Let $x \in X$ and $V \in BO(Y, f(x))$. By Theorems 2.2 and 2.4, bcl(V) is *b*- θ -open and *b*- θ -closed in Y. Now, put $U = f^{-1}(bcl(V))$. Then by Theorem 3.8, we have $U \in BR(X)$. Therefore, we obtain $U \in BO(X, x)$, U = bcl(U) and $f(bcl(U)) \subset bcl(V)$.

(b)⇒(c): Let $F \in BR(Y)$ and $x \in f^{-1}(F)$. Then $f(x) \in F$. By (b), there exists $U \in BO(X, x)$ such that $f(bcl(U)) \subset F$. Therefore, we have $x \in U \subset bcl(U) \subset f^{-1}(F)$ and hence $f^{-1}(F) \in BO(X)$. Since $Y \setminus F \in BR(Y)$, $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F) \in BO(X)$. Thus $f^{-1}(F) \in BC(X)$ and hence $f^{-1}(F) \in BR(X)$.

(c) \Rightarrow (a): Let $x \in X$ and $V \in BO(Y, f(x))$. By Theorem 2.2, bcl(V) \in BR(Y, f(x)) and $f^{-1}(bcl(V)) \in BR(X, x)$. Put $U = f^{-1}(bcl(V))$. Then $U \in$ BO(X, x) and $f(U) \subset bcl(V)$. This shows that f is weakly b-irresolute.

Similarly to Theorems 3.7 and 3.8, we can obtain the characterizations of weakly *b*-irresolute functions as follows.

Theorem 3.10 For a function $f : X \to Y$, the following are equivalent:

- (a) f is weakly b-irresolute;
- (b) $f^{-1}(V) \subset \operatorname{bint}_{\theta}(f^{-1}(\operatorname{bcl}_{\theta}(V)))$ for each $V \in \operatorname{BO}(Y)$;
- (c) $\operatorname{bcl}_{\theta}(f^{-1}(V)) \subset f^{-1}(\operatorname{bcl}_{\theta}(V))$ for each $V \in \operatorname{BO}(Y)$.

Theorem 3.11 For a function $f : X \to Y$, the following are equivalent:

- (a) f is weakly b-irresolute;
- (b) $\operatorname{bcl}_{\theta}(f^{-1}(B)) \subset f^{-1}(\operatorname{bcl}_{\theta}(B))$ for each subset B of Y;
- (c) $f(\operatorname{bcl}_{\theta}(A)) \subset \operatorname{bcl}_{\theta}(f(A))$ for each subset A of X;
- (d) $f^{-1}(F)$ is b- θ -closed in X for each b- θ -closed set F of Y;
- (e) $f^{-1}(V)$ is b- θ -open in X for each b- θ -open set V of Y.

4 Properties of weakly *b*-irresolute functions

Definition 4.1 A space X is said to be *strongly b-regular* if for each $F \in BC(X)$ and each $x \in X \setminus F$, there exist disjoint *b*-open sets U and V such that $x \in U$ and $F \subset V$.

Lemma 4.2 For a space X the following are equivalent:

(a) X is strongly b-regular;

(b) for each $U \in BO(X)$ and each $x \in U$, there exists $V \in BO(X)$ such that $x \in V \subset bcl(V) \subset U$;

(c) for each $U \in BO(X)$ and each $x \in U$, there exists $V \in BR(X)$ such that $x \in V \subset U$;

(d) for each subset A of X and each $F \in BC(X)$ such that $A \cap F = \emptyset$, there exist disjoint $U, V \in BO(X)$ such that $A \cap U \neq \emptyset$ and $F \subset V$;

(e) for each $F \in BC(X)$, $F = \bigcap \{ bcl(V) : F \subset V and V \in BO(X) \}$.

Proof It follows from Theorem 2.2

Theorem 4.3 Let Y be a strongly b-regular space. Then the function $f : X \to Y$ is weakly b-irresolute if and only if it is b-irresolute.

Proof Suppose that $f : X \to Y$ is weakly b-irresolute. Let $V \in BO(Y)$ and $x \in f^{-1}(V)$. Then $f(x) \in V$ and since Y is b-regular, by Lemma 4.2, there exists $W \in BO(Y)$ such that $f(x) \in W \subset bcl(W) \subset V$. Since f is weakly b-irresolute, there exists $U \in BO(X, x)$ such that $f(U) \subset bcl(W)$. Therefore, we have $x \in U \subset f^{-1}(V)$ and hence $f^{-1}(V) \in BO(X)$. This shows that f is b-irresolute. The converse is obvious.

Theorem 4.4 A function $f : X \to Y$ is weakly b-irresolute if the graph function $g : X \to X \times Y$, defined by g(x) = (x, f(x)) for each $x \in X$, is weakly b-irresolute.

Proof Let $x \in X$ and $V \in BO(Y, f(x))$, Then $X \times V \in BO(X \times Y)$ and $g(x) \in X \times V$. Since g is weakly b-irresolute, there exists $U \in BO(X, x)$ such that $g(U) \subset bcl(X \times V) \subset X \times bcl(V)$. Therefore, we have $f(U) \subset bcl(V)$.

Remark 4.5 The converse of Theorem 4.4 is not necessarily true as the following example shows.

Example 4.6 Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Define a function $f : (X, \tau) \to (X, \tau)$ by f(a) = b, f(b) = a and f(c) = c. Then f is b-irresolute and hence weakly b-irresolute but the graph function g is not weakly b-irresolute.

Definition 4.7 A space X is said to be

(a) $b - T_1$ [15] if for each pair of distinct points x and y in X there exist $U \in BO(X)$ containing x but not y and $V \in BO(X)$ containing y but not x;

(b) $b \cdot T_2$ [14] if for each pair of distinct points x and y in X, there exist $U \in BO(X, x)$ and $V \in BO(X, y)$ such that $U \cap V = \emptyset$.

In [14], Park obtained the following interesting result which is useful in the sequel:

Lemma 4.8 A space X is $b-T_2$ if and only if for each pair of distinct points x and y in X, there exist $U \in BO(X, x)$ and $V \in BO(X, y)$ such that $bcl(U) \cap bcl(V) = \emptyset$.

Theorem 4.9 If Y is a b-T₂ space and $f: X \to Y$ is weakly b-irresolute injection, then X is b-T₂.

Proof Let x, y be any distinct points of X. Then $f(x) \neq f(y)$. Since Y is $b \cdot T_2$, by Lemma 4.8 there exist $V \in BO(Y, f(x))$ and $W \in BO(Y, f(y))$ such that $bcl(V) \cap bcl(W) = \emptyset$. Since f is weakly b-irresolute, there exist $G \in BO(X, x)$ and $H \in BO(X, y)$ such that $f(G) \subset bcl(V)$ and $f(H) \subset bcl(W)$. Hence we obtain $G \cap H = \emptyset$. This shows that X is $b \cdot T_2$.

Recall that for a function $f : X \to Y$, the subset $\{(x, f(x)) : x \in X\}$ of $X \times Y$ is called the graph of f is denoted by G(f).

Definition 4.10 A function $f : X \to Y$ is said to have a *b*-*θ*-closed graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in BO(X, x)$ and $V \in BO(Y, y)$ such that $[bcl(U) \times bcl(V)] \cap G(f) = \emptyset$.

Theorem 4.11 If Y is a b-T₂ space and $f : X \to Y$ is weakly b-irresolute, then G(f) is b- θ -closed.

Proof Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $y \neq f(x)$ and by Lemma 4.8 there exist $V \in BO(Y, f(x))$ and $W \in BO(Y, y)$ such that $bcl(V) \cap bcl(W) = \emptyset$. Since f is weakly *b*-irresolute, by Theorem 3.9 there exists $U \in BO(X, x)$ such that $f(bcl(U)) \subset bcl(V)$. Therefore, we obtain $f(bcl(U)) \cap bcl(W) = \emptyset$ and hence $[bcl(U) \times bcl(W)] \cap G(f) = \emptyset$. This shows that G(f) is *b*- θ -closed in $X \times Y$.

Definition 4.12 A space X is said to be *b*-connected if it cannot be written as the union of two nonempty disjoint *b*-open sets.

Theorem 4.13 If a function $f : X \to Y$ is a weakly b-irresolute surjection and X is b-connected, then Y is b-connected.

Proof Suppose that Y is not b-connected. There exist nonempty b-open sets V and W of Y such that $V \cup W = Y$ and $V \cap W = \emptyset$. Then we have V, $W \in BR(Y)$. Since f is weakly b-irresolute, by Theorem 3.9, we have $f^{-1}(V)$, $f^{-1}(W) \in BR(X)$. Moreover, we have $f^{-1}(V) \cup f^{-1}(W) = X$, $f^{-1}(V) \cap f^{-1}(W) = \emptyset$, and $f^{-1}(V)$ and $f^{-1}(W)$ are nonempty. Therefore, X is not b-connected.

5 Strongly *b*-irresolute functions

Theorem 5.1 For a function $f : X \to Y$, the following are equivalent:

(a) f is strongly b-irresolute;

(b) for each $x \in X$ and each $V \in BO(Y, f(x))$, there exists $U \in BO(X, x)$ such that $f(bcl_{\theta}(U)) \subset V$;

(c) for each $x \in X$ and each $V \in BO(Y, f(x))$, there exists $U \in BR(X, x)$ such that $f(U) \subset V$;

(d) for each $x \in X$ and each $V \in BO(Y, f(x))$, there exists a b- θ -open set U of X such that $f(U) \subset V$;

(e) $f^{-1}(V)$ is b- θ -open in X for each $V \in BO(Y)$;

(f) $f^{-1}(V)$ is b- θ -closed in X for each $V \in BC(Y)$;

(g) $f(\operatorname{bcl}_{\theta}(A)) \subset \operatorname{bcl}(f(A))$ for each subset A of X;

(h) $\operatorname{bcl}_{\theta}(f^{-1}(B)) \subset f^{-1}(\operatorname{bcl}(B))$ for each subset B of Y.

Proof (a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d): It follows from Theorems 2.1 and 2.4.

(d) \Rightarrow (e): Let $V \in BO(Y)$ and $x \in f^{-1}(V)$. Then $f(x) \in V$ and by (d), there exists a *b*- θ -open set U of X containing x such that $f(U) \subset V$. Therefore, we have $x \in U \subset f^{-1}(V)$. Since the union of *b*- θ -open sets is *b*- θ -open [Theorem 2.3], $f^{-1}(V)$ is *b*- θ -open in X.

(e) \Rightarrow (f): Obvious.

(f) \Rightarrow (g): Let A be any subset of X. Since bcl(f(A)) is b-closed in Y, by (f) we have $f^{-1}(\text{bcl}(f(A)))$ is b- θ -closed in X and

$$\operatorname{bcl}_{\theta}(A) \subset \operatorname{bcl}_{\theta}(f^{-1}(f(A))) \subset \operatorname{bcl}_{\theta}(f^{-1}(\operatorname{bcl}(f(A)))) = f^{-1}(\operatorname{bcl}(f(A))).$$

Therefore, we obtain $f(\operatorname{bcl}_{\theta}(A)) \subset \operatorname{bcl}(f(A))$.

 $(g) \Rightarrow (h)$: Let B be any subset of Y. By (g), we obtain

$$f(\operatorname{bcl}_{\theta}(f^{-1}(B))) \subset \operatorname{bcl}(f(f^{-1}(B))) \subset \operatorname{bcl}(B)$$

and hence $\operatorname{bcl}_{\theta}(f^{-1}(B)) \subset f^{-1}(\operatorname{bcl}(B))$.

(h) \Rightarrow (a): Let $x \in X$ and $V \in BO(Y, f(x))$. Since $Y \setminus V \in BC(Y)$, we have $bcl_{\theta}(f^{-1}(Y \setminus V)) \subset f^{-1}(bcl(Y \setminus V)) = f^{-1}(Y \setminus V)$. Therefore, $f^{-1}(Y \setminus V)$ is

b- θ -closed in X and hence $f^{-1}(V)$ is b- θ -open in X and $x \in f^{-1}(V)$. Then there exists $U \in BO(X, x)$ such that $bcl(U) \subset f^{-1}(V)$ and thus $f(bcl(U)) \subset V$. This shows that f is strongly b-irresolute.

Theorem 5.2 A b-irresolute function $f : X \to Y$ is strongly b-irresolute if and only if X is strongly b-regular.

Proof Necessity. Let $f : X \to Y$ be identity function. Then f is b-irresolute and strongly b-irresolute by our hypothesis. For any $U \in BO(X)$ and any point $x \in U$, we have $f(x) = x \in U$ and there exists $G \in BO(X, x)$ such that $f(bcl(G)) \subset U$. Therefore, we have $x \in G \subset bcl(G) \subset U$. It follows from Lemma 4.2 that X is strongly b-regular.

Sufficiency. Suppose that $f : X \to Y$ is b-irresolute and X is strongly bregular. For any $x \in X$ and any $V \in BO(Y, f(x)), f^{-1}(V)$ is b-open set containing x. Since X is strongly b-regular, there exists $U \in BO(X)$ such that $x \in U \subset$ $bcl(U) \subset f^{-1}(V)$. Therefore, we have $f(bcl(U)) \subset V$. This shows that f is strongly b-irresolute.

Theorem 5.3 Let $f : X \to Y$ be a function and $g : X \to X \times Y$ be the graph function of f. If g is strongly b-irresolute, then f is strongly b-irresolute and X is strongly b-regular.

Proof Suppose that g is strongly *b*-irresolute. First, we show that f is strongly *b*-irresolute. Let $x \in X$ and $V \in BO(Y, f(x))$. Then $X \times V$ is a *b*-open set of $X \times Y$ containing g(x). Since g is strongly *b*-irresolute, there exists $U \in BO(X, x)$ such that $g(bcl(U)) \subset X \times V$. Therefore, we obtain $f(bcl(U)) \subset V$. This shows that f is strongly *b*-irresolute. Next, we show that X is strongly *b*-regular. Let $U \in BO(X)$ and $x \in U$. Since $g(x) \in U \times Y$ and $U \times Y$ is *b*-open in $X \times Y$, there exists $G \in BO(X, x)$ such that $g(bcl(G)) \subset U \times Y$. Therefore, we obtain $x \in G \subset bcl(G) \subset U$ and hence by Lemma 4.2, X is strongly *b*-regular.

Remark 5.4 The converse of Theorem 5.3 is not true because, in Example 4.6, f is strongly *b*-irresolute and X is strongly *b*-regular but g is strongly *b*-irresolute.

Lemma 5.5 (Nasef [12]) If X_0 is α -open in X, then $BO(X_0) = BO(X) \cap X_0$.

Lemma 5.6 (Park [14]) If $A \subset X_0 \subset X$ and X_0 is α -open in X, then $bcl(A) \cap X_0 = bcl_{X_0}(A)$, where $bcl_{X_0}(A)$ denote the b-closure of A in the subspace X_0 .

Theorem 5.7 If $f : X \to Y$ is strongly b-irresolute and X_0 is an α -open subset of X, then the restriction $f|_{X_0} : X_0 \to Y$ is strongly b-irresolute.

Proof For any $x \in X_0$ and any $V \in BO(Y, f(x))$, there exists $U \in BO(X, x)$ such that $f(bcl(U)) \subset V$ since f is strongly b-irresolute. Put $U_0 = U \cap X_0$, then by Lemmas 5.5 and 5.6, $U_0 \in BO(X_0, x)$ and $bcl_{X_0}(U_0) \subset bcl(U_0)$. Therefore, we obtain

$$(f|_{X_0})(\mathrm{bcl}_{X_0}(U_0)) = f(\mathrm{bcl}_{X_0}(U_0)) \subset f(\mathrm{bcl}(U_0)) \subset f(\mathrm{bcl}(U)) \subset V.$$

This shows that $f|_{X_0}$ is strongly *b*-irresolute.

In oder to obtain some properties of the compositions of strongly *b*-irresolute functions, we need following definitions.

Definition 5.8 A function $f: X \to Y$ is said to be

- (a) α -continuous [11] if $f^{-1}(V)$ is α -open in X for every open set V of Y;
- (b) α -open [11] if f(U) is α -open in Y for every open set U of X;
- (c) pre-b-open if $f(U) \in BO(Y)$ for each $U \in BO(X)$.

Lemma 5.9 (Park [14]) If $f : X \to Y$ is an α -continuous α -open function and V is a b- θ -open set of Y, then $f^{-1}(V)$ is b- θ -open in X.

Theorem 5.10 Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then, the following properties hold:

(a) If f is strongly b-irresolute and g is b-irresolute, then the composition $g \circ f : X \to Z$ is strongly b-irresolute.

(b) If f is weakly b-irresolute and g is strongly b-irresolute, then $g \circ f : X \to Z$ is strongly b-irresolute.

(c) If f is α -continuous α -open and g is strongly b-irresolute, then $g \circ f$ is strongly b-irresolute.

(d) If f is a pre-b-open bijection $g \circ f : X \to Z$ is strongly b-irresolute, then g is strongly b-irresolute.

Proof The proofs of (a), (b) and (c) follow from Theorems 3.11 and 5.1 and Lemma 5.9.

(d): Let $W \in BO(Z)$. Since $g \circ f$ is strongly *b*-irresolute, $(g \circ f)^{-1}(W)$ is $b \cdot \theta$ -open in X. Since f is pre-*b*-open and bijective, f^{-1} is *b*-irresolute and hence it is weakly *b*-irresolute. By Theorem 3.11, we have $g^{-1}(W) = f((g \circ f)^{-1}(W))$ is $b \cdot \theta$ -open in Y. Hence, by Theorem 5.1, g is strongly *b*-irresolute.

Theorem 5.11 If $f : X \to Y$ is a strongly b-irresolute injection and Y is b-T₁, then X is b-T₂.

Proof Let x and y be any distinct points of X. Since f is injective, $f(x) \neq f(y)$ and there exist $V \in BO(Y, f(x))$ and $W \in BO(Y, f(y))$ such that $f(y) \notin V$ and $f(x) \notin W$. Since f is strongly b-irresolute, there exists $U \in BO(X, x)$ such that $f(bcl(U)) \subset V$. Therefore, we obtain $f(y) \notin f(bcl(U))$. Put $G = X \setminus bcl(U)$. Then $G \in BO(X, y)$ and $G \cap U = \emptyset$. This shows that X is b-T₂.

Lemma 5.12 Let A be a subset of X and B be a subset of Y. Then

- (a) (Nasef [12]) If $A \in BO(X)$ and $B \in BO(Y)$, then $A \times B \in BO(X \times Y)$.
- (b) (Park [14]) $\operatorname{bcl}(A \times B) \subset \operatorname{bcl}(A) \times \operatorname{bcl}(B)$.

Theorem 5.13 If $f : X \to Y$ is a strongly b-irresolute function and Y is b-T₂, then the subset $E = \{(x, y) : f(x) = f(y)\}$ is b- θ -closed in $X \times X$.

Proof Suppose that $(x, y) \notin E$. Then $f(x) \neq f(y)$. Since Y is Hausdorff, there exist b-open sets V and W of Y containing f(x) and f(y), respectively, such that $V \cap W = \emptyset$. Since f is strongly b-irresolute, there exist $U \in BO(X, x)$ and $G \in BO(X, y)$ such that $f(bcl(U)) \subset V$ and $f(bcl(G)) \subset W$. By Lemma 5.12, we have $(x, y) \in U \times G \in BO(X \times X)$ and $bcl(U \times G) \cap E \subset [bcl(U) \times bcl(G)] \cap E = \emptyset$. Therefore, E is b- θ -closed in $X \times X$.

6 Covering properties

Definition 6.1 A space X is said to be

(a) b-closed [14] if every cover of X by b-open sets has a finite subcover whose b-closures cover X;

(b) countably b-closed [14] if every countable cover of X by b-open sets has a finite subcover whose b-closures cover X;

(c) b-compact if every cover of X by b-open sets has a finite subcover.

A subset K of a space X is said to be *b*-closed relative to X [14] (resp. *b*compact relative to X) if for every cover $\{V_{\alpha} : \alpha \in I\}$ of K by *b*-open sets of X, there exists a finite subset I_0 of Λ such that $K \subset \cup \{\operatorname{bcl}(V_{\alpha}) : \alpha \in I_0\}$ (resp. $K \subset \cup \{V_{\alpha} : \alpha \in I_0\}$).

Theorem 6.2 If $f : X \to Y$ is a strongly b-irresolute (resp. weakly b-irresolute) function and K is b-closed (resp. b-compact) relative to X, then f(K) is bcompact (resp. b-closed) relative to Y.

Proof Let $\{V_{\alpha} : \alpha \in I\}$ be a cover of f(K) by b-open sets of Y. For each point $x \in K$, there exists $\alpha(x) \in I$ such that $f(x) \in V_{\alpha(x)}$. Since f is strongly b-irresolute (resp. weakly b-irresolute), there exists $U_x \in BO(X, x)$ such that $f(bcl(U_x)) \subset V_{\alpha(x)}$ (resp. $f(U_x) \subset bcl(V_{\alpha(x)})$). The family $\{U_x : x \in K\}$ is a cover of K by b-open sets of X and hence there exists a finite subset K_0 of K such that $K \subset \bigcup_{x \in K_0} bcl(U_x)$ (resp. $K \subset \bigcup_{x \in K_0} U_x$). Therefore, we obtain $f(K) \subset \bigcup_{x \in K_0} V_{\alpha(x)}$ (resp. $f(K) \subset \bigcup_{x \in K_0} bcl(V_{\alpha(x)})$). This shows that f(K) is b-compact (resp. b-closed) relative to Y.

Corollary 6.3 Let $f : X \to Y$ be a surjection. Then, the following properties hold:

(a) If f is strongly b-irresolute and X is b-closed (resp. countably b-closed), then Y is b-compact (resp. countably b-compact).

(b) If f is weakly b-irresolute and X is b-compact (resp. countably b-compact), then Y is b-closed (resp. countably b-closed).

Recall that a space X is said to be submaximal [17] if each dense subset of X is open in X. It is shown in [17] that a space X is submaximal if and only if every preopen set of X is open. A space X is said to be extremally disconnected [5] if the closure of each open set of X is open. Note that extremally disconnected space is exactly the space where every semiopen set is α -open.

Theorem 6.4 Let X is a submaximal extremally disconnected space. If a function $f : X \to Y$ has a b- θ -closed graph, then $f^{-1}(K)$ is θ -closed in X for each subset K which is b-closed relative to Y.

Proof Let K be a subset which is b-closed relative to Y and $x \notin f^{-1}(K)$. Then for each $y \in K$ we have $(x, y) \notin G(f)$ and there exist $U_y \in BO(X, x)$ and $V_y \in BO(Y, y)$ such that $f(bcl(U_y)) \cap bcl(V_y) = \emptyset$. The family $\{V_y : y \in K\}$ is a cover of K by b-open sets of Y and there exists a finite subset K_0 of K such that $K \subset \bigcup_{y \in K_0} bcl(V_y)$. Since X is submaximal extremally disconnected, each U_y is open in X and $bcl(U_y) = cl(U_y)$. Set $U = \bigcap_{y \in K_0} U_y$, then U is an open set containing x and

$$f(\mathrm{cl}(U)) \cap K \subset \bigcup_{y \in K_0} \left[f(\mathrm{cl}(U)) \cap \mathrm{bcl}(V_y) \right] \subset \bigcup_{x \in K_0} \left[f(\mathrm{bcl}(U_y)) \cap \mathrm{bcl}(V_y) \right] = \emptyset.$$

Therefore, we have $\operatorname{cl}(U) \cap f^{-1}(K) = \emptyset$ and hence $x \notin \operatorname{cl}_{\theta}(f^{-1}(K))$. This shows that $f^{-1}(K)$ is θ -closed in X.

References

- [1] M.E. Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] M.E. Abd El-Monsef, R.A. Mahmoud and E.R. Lashin, β-closure and βinterior, J. Fac. Ain Shams Univ., 10 (1986), 235-245.
- [3] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- [4] D. Andrijević, On b-open sets, Mat. Vesnik, 48 (1996), 59-64.
- [5] N. Bourbaki, General Topology, Part I, Addison Wesley, Reading, Mass., 1996.
- [6] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar., 71 (1996), 109-120.
- [7] A.A. El-Atik, A study of some types of mappings on topological spaces, M. Sc. Thesis, Tanta University, Egypt, 1997.
- [8] Y.J. Ha, Generalized b-closed sets in topological spaces, M. Ed. Thesis, Pukyong National University, Korea, 2003.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [10] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [11] A.S. Mashhour, I.A. Hasanein and S.N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar. 41 (1982), 213-218.
- [12] A.A. Nasef, On b-locally closed sets and related topic, Chaos, Solitons & Fractals, 12 (2001), 1909-1915.

- [13] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [14] J.H. Park, Strongly θ-b-continuous functions, Acta Math. Hungar., 110 (2006), 347-359.
- [15] J.H. Park and K.M. Lim, On Λ_b -sets and some weak separation axioms, The Pacific-Asian J. Math. Sci., (to appear).
- [16] I.L. Reilly and M.K. Vamanamurthy, On α-continuity in topological spaces, Acta Math. Hungar., 45 (1985), 27-32.
- [17] I.L. Reilly and M.K. Vamanamurthy, On some questions concerning preopen sets, Kyungpook Math. J., 30 (1990), 87-93.
- [18] N.V. Veličko, *H*-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.

