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1 Introduction

Andrijevié¢ [4] introduced the notion of b-open sets which is weaker than those of
both preopen sets [10] and semiopen sets [9] and is stronger than that of S-open
sets [1]. El-Atik [7] and Dontchev and Przemski [6] called b-open sets by sp-open
sets and y-open sets, respectively. By using b-open sets, Nasef [12] introduced
the notions of b-locally closed sets and b-LC-continuity and discussed some of
their properties. El-Atik [7] used b-open sets to define b-continuity in topological
spaces. Dontchev and Przemski [6] called b-continuity by sp-continuity and used
this notion to obtain a decomposition of precontinuity [10]. The notion of b-
irresoluteness in topological spaces is introduced by Ha [8]. Recently, Park [14]
introduced the notions of b-0-open sets and strong #-b-continuity and obtained
some characterizations and several properties concerning strongly 6-b-continuous
functions.

The purpose of this thesis is-to introduce and investigate some of the fun-
damental properties of weakly b-irresolute and strongly b-irresolute functions.
The relations with above-mentioned notions directly or indirectly connected with
weak and strong b-irresoluteness areinvestigated. In Section 3, we obtain char-
acterizations and basic properties of weakly b-irresolute functions. In Section 4,
we investigate relationships between weak b-irresoluteness and separation axioms
and between weak b-irresoluteness and b-6-closed graphs, respectively. In Section
5, we obtain characterizations of strongly b-irresolute functions and investigate
relationships between strong b-irresoluteness and separation axioms. In the last
section, we investigate relationships between strong b-irresoluteness and covering

properties.



2 Preliminaries

Throughout this thesis, spaces X and Y always mean topological spaces on which
no separation axioms are assumed unless explicitly stated. Let A be a subset of a
space X. We denote the closure and the interior of a set A by cl(A) and int(A),
respectively. A point x of X is called a 6-cluster [18] point of A if cl(U)N A # 0
for every open set U of X containing x. The set of all #-cluster points of A is
called the #-closure [18] of A and is denoted by clg(A). A subset A is said to be
O-closed [18] if clg(A) = A. The complement of a #-closed set is said to be f-open.

A subset A is said to be a-open [13] (resp. preopen [10], semi-open [9], b-open
[4], semi-preopen [3] or (-open [1]) if A C int(cl(int(A))) (resp. A C int(cl(A)),
A C cl(int(A)), A C cl(int(A))Uint(cl(A)), A C cl(int(cl(A))) ). The complement
of an a-open (resp. preopen, semi-open, b-open, $-open) set is said to be a-closed
(resp. preclosed, semi-closed, b-closed, [3-closed). The intersection of all b-closed
sets of X containing A is called the b-closure [4] of A and is denoted by bel(A).
The semi-closure and preclosure are similarly defined and are denoted by scl(A)
and pcl(A). The unionof all b-open sets of X contained in A is called b-interior
[4] and is denoted by bint(A). A subset A is said to be b-reqular [14] if it is
b-open and b-closed. The family of all b-open (resp. b-closed, b-regular) sets of X
is denoted by BO(X) (resp. BC(X), BR(X)) and the family of all b-open (resp.
b-regular) sets of X containing a point x € X is denoted by BO(X,z) (resp.
BR(X, z)).

The following basic properties of b-closure are useful in the sequel:

Lemma 2.1 (Andrijevic [4]) For a-subset A of aspace X, the following hold:
(a) bel(A) =scl(A) Npcl(A);
(b) bint(A) = sint(A) U pint(A);
(c) bel(X \ A) = X \ bint(A);,
(d) z € bel(A) if and only if ANU # 0 for every U € BO(X, z);
(e) A € BC(X) if and only if A= Dbcl(A).

Theorem 2.2 (Park [14]) Let A be a subset of a space X. Then
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(a) A € BO(X) if and only if bcl(A) € BR(X).
(b) A € BC(X) if and only if bint(A) € BR(X).

A point z of X is called a b-0-cluster point [14] of A if bel(U)N A # (0 for every
U € BO(X, z). The set of all b-6-cluster points of A is called b-6-closure [14] of A
and denoted by bclp(A). A subset A is said to be b-8-closed [14] if A = bclg(A).
The complement of a b-6-closed set is said to be b-0-open [14].

Theorem 2.3 (Park [14]) Let A and A, (a € I) be any subsets of a space X.
Then the following properties hold:

(a) A is b-0-open in X if and only if for each x € A there exists V € BR(X, )
such that x € V C A,

(b) belg(A) is b-0-closed,

(c) if Ay is b-0-open in X for each o € I, then Uyer Ao 18 b-0-open in X.

Theorem 2.4 (Park [14]) For a subset A of a space X, the_following properties
hold:

(a) if A € BO(X), then bel(A) = belg(A),

(b) A € BR(X) if and only if A is b-0-open and b-0-closed.



3 Characterizations of weakly b-irresolute func-

tions

Definition 3.1 A function f: X — Y is said to be

(a) b-continuous [7] if f~1(V) € BO(X) for each open set V of Y;

(b) almost b-continuous if for each x € X and each open set V of Y containing
f(z), there exists U € BO(X, z) such that f(U) C int(cl(V));

(c) strongly 0-b-continuous [14] if for each x € X and each open set V of YV
containing f(z), there exists U € BO(X, z) such that f(bcl(U)) C V.

Definition 3.2 A function f: X — Y is said to be

(a) b-irresolute [8] if f~1(V) € BO(X) for each V € BO(Y);

(b) strongly b-irresolute if for each x € X and each V' € BO(Y, f(z)), there
exists a U € BO(X, x) such that f(bcl(U)) C V;

(c) weakly b-irresolute if for-each x € X and each-V € BO(Y, f(x)), there
exists a U € BO(X, z) such that f(U) C bel(V).

Remark 3.3 From Definitions 3.1 and 3.2, we have the following diagram for a
function f: X — Y&

strongly b-irresolute = b-irresolute = weakly b-irresolute

4 Y 4

strongly #-b-continuous = b-continuous = almost b-continuous

However, none of these implications is reversible as shown by the following exam-
ples. Moreover, strong 6-b-continuity and weak b-irresoluteness are independent

of each other as the following -examples show.

Example 3.4 Let X = {a,b,c}, 7 = {X,0,{a}, {b},{a,b}} and 0 = {X, 0, {a}, {D, c} }.

Then the identity function f : (X,7) — (X, 0) is strongly -b-continuous but it

is not weakly b-irresolute.

Example 3.5 Let X = {a,b,c} and 7 = {X,0,{a},{a,b}}. Then the identity
function f: (X, 7) — (X, 7) is b-irresolute but it is not strongly #-b-continuous.
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Example 3.6 Let X = {a,b,c}, 7 = {X,0,{a}, {b},{a,b}} and 0 = {X, 0, {c}}.
Then the identity function f: (X, 7) — (X, o) is weakly b-irresolute but it is not

b-continuous.

Theorem 3.7 For a function f : X — Y, the following are equivalent:
(a) f is weakly b-irresolute;
(b) f~1(V) C bint(f~(bel(V))) for each V € BO(Y);
(c) bel(f~4(V)) C f~H(bel(V)) for each V € BO(Y).

Proof (a)=(b): Let V € BO(Y) and x € f~}(V). Then by (a), there exists
U € BO(X,z) such that f(U) C bel(V). Therefore, we have U C f~(bcl(V))
and z € U C bint(f~*(bcl(V))). This shows that f~1(V) C bint(f~*(bcl(V))).
(b)=(c): Let V€ BO(Y) and let ¢ f~!'(bcl(V)). Then f(x) ¢ bel(V).
There exists W € BO(Y, f(z)) such that W NV = (). Since V€ BO(Y), we have
bel(W) NV = and hence bint(f~ (bel(W))) N f=L(V) = 0. By (b), we have

r € (W) C bint(f~(bel(W))) € BO(X).

Therefore, we obtain # & bel(f~!(V))« This shows that bel(f~1 (V) C f~(bcl(V)).
(c)=(a): Let x € X and V € BO(Y, f(x)). By Theorem 2.2, we have

bel(V) € BR(Y) and x ¢ fL(bel(Y \ bel(V))).

Since Y \ bel(V) € BO(Y), by (¢) we have x & bel(f~ (Y \ bel(V))). Hence there
exists U € BO(X, x).such that U M+ ~1(Y \ bel(V)) = (). Therefore, we obtain
FU)N (Y \ bel(V)) =1 and hence f(U) C bel(V). This shows that f is weakly
b-irresolute.

Theorem 3.8 For a function f: X — Y, the following are equivalent:
(a) f is weakly b-irresolute;
(b) bel(f~Y(B)) € f~Y(bcly(B)) for each subset B of Y ;
(¢) f(bcl(A)) C belp(f(A)) for each subset A of X;
(d) f7(F) € BC(X) for each b-8-closed set F of Y ;
(e) f~HV) € BO(X) for each b-0-open set V of Y.
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Proof (a)=(b): Let B be any subset of Y and x ¢ f~!(bcly(B)). Then f(zx) ¢
belp(B) and there exists V' € BO(Y, f(x)) such that bel(V)NB = ). By (a), there
exists U € BO(X, z) such that f(U) C bel(V'). Therefore, we have f(U)NB =)
and U N f~1(B) = (. Consequently, we have z ¢ bel(f~1(B)).

(b)=(c): Let A be any subset of X. Then by (b), we have

bel(A) € bel(f71(f(A))) € £ (belg(f(A)))

and hence f(bcl(A)) C belp(f(A)).
(c)=-(d): Let F be any b-6-closed set of Y. Then by (c), we have

F(bel(f7H(F))) C belg(f(f~(F))) C belg(F) = F.

Therefore, we have bel(f~*(F)) C f~'(F) and hence bel(f~'(F)) = f~4F).
This shows that f~1(F) € BC(X).

(d)=-(e): This proof is obvious and-is omitted.

(e)=(a): Let x € X and V € BO(Y, f(«)). By Theorems 2.2 and 2.4, bel(V)
is b--open in Y. Put U = f~!(bcl(V)). Then by (e), we have U/.€ BO(X,x) and
f(U) C bel(V). This shows that f is weakly b-irresolute.

Theorem 3.9 For a function f: X — Y, the following are equivalent:

(a) f is weakly b-irresolute;

(b) for each x'€ X and each V' € BO(Y, f(x)), there exists U € BO(X,x)
such that f(bcl(U)) C bel(V);

(c) f7Y(F) € BR(X) for each F'e BR(Y)).

Proof (a)=(b): Let z-€ X and V € BO(Y, f(x)). .By Theorems 2.2 and
2.4, bel(V) is b-0-open and b-6-closed in ¥. Now, put U = f~'(bcl(V)). Then
by Theorem 3.8, we have U € BR(X). Therefore, we obtain U € BO(X,x),
U =bcl(U) and f(bcl(U)) C bel(V).

(b)=(c): Let F € BR(Y) and z € f~'(F). Then f(z) € F. By (b), there
exists U € BO(X,x) such that f(bcl(U)) C F. Therefore, we have x € U C
bel(U) € f~'(F) and hence f~!(F) € BO(X). Since Y \ F € BR(Y), f~'(Y"\
F)= X\ f~Y(F) € BO(X). Thus f~'(F) € BC(X) and hence f~}(F) € BR(X).
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(c)=(a): Let z € X and V € BO(Y, f(z)). By Theorem 2.2, bel(V) €
BR(Y, f(z)) and f~!(bcl(V)) € BR(X,z). Put U = f~'(bcl(V)). Then U €
BO(X,z) and f(U) C bel(V). This shows that f is weakly b-irresolute.

Similarly to Theorems 3.7 and 3.8, we can obtain the characterizations of

weakly b-irresolute functions as follows.

Theorem 3.10 For a function f: X — Y, the following are equivalent:
(a) f is weakly b-irresolute;
(b) f~Y(V) C binte(f(bclg(V))) for each V € BO(Y);
(c) belg(f7HV)) C f(belg(V)) for each V € BO(Y).

Theorem 3.11 For a function f: X — Y, the following are equivalent:
(a) f is weakly b-irresolute;
(b) bely(f~1(B)) C f~(bcly(B)) for-each subset B of Y;
(c) f(bclg(A)) C belp(f(A)) for each subset A of X ;
(d) f7YF) is b-0-closed in X for each b-0-closed set F of Y;
(e) f~H(V) is b-0-open in X for each b-B-open set V of Y.



4 Properties of weakly b-irresolute functions

Definition 4.1 A space X is said to be strongly b-regular if for each F' € BC(X)
and each x € X \ F, there exist disjoint b-open sets U and V such that x € U
and FF C V.

Lemma 4.2 For a space X the following are equivalent:

(a) X is strongly b-regular;

(b) for each U € BO(X) and each x € U, there exists V € BO(X) such that
xeV Chbe(V)CU;

(c) for each U € BO(X) and each x € U, there exists V € BR(X) such that
reV CcU;

(d) for each subset A of X and each F € BC(X) such that ANF =), there
exist disjoint U,V € BO(X) such that ANU # 0 and F C V;

(e) for each FF € BC(X), F = {bel(V): F-cVand V € BO(X)}.

Proof It follows from Theorem 2.2.

Theorem 4.3 Let Y be a strongly b-regular space. Then the function f : X — Y

s weakly b-irresolute if and onlyif it is b-irresolute.

Proof Suppose that f : X — Y is weakly b-irresolute. Let V' € BO(Y) and
z € f~Y(V). Then f(z) € V' and since Y is b-regular, by Lemma 4.2, there
exists W € BO(Y) such that f(z) € W C bel(W) C V. Since f is weakly
b-irresolute, there exists U € BO(X,z) such that f(U) C becl(W). Therefore,
we have x € U C f~}(V) andshence f~'(V) € BO(X). . This shows that f is
b-irresolute. The converse is obvious.

Theorem 4.4 A function f: X — Y is weakly b-irresolute if the graph function
g: X — X XY, defined by g(x) = (z, f(x)) for each x € X, is weakly b-irresolute.

Proof Let z € X and V € BO(Y, f(z)), Then X x V € BO(X x Y) and
g(x) € X x V. Since g is weakly b-irresolute, there exists U € BO(X,z) such
that g(U) C bel(X x V) € X x bel(V). Therefore, we have f(U) C bel(V).

8



Remark 4.5 The converse of Theorem 4.4 is not necessarily true as the following

example shows.

Example 4.6 Let X = {a,b,c}, 7 = {X,0,{a}, {b},{a,b}}. Define a function
f:(X,7) = (X,7) by f(a) =0, f(b) =a and f(c) = c¢. Then f is b-irresolute

and hence weakly b-irresolute but the graph function g is not weakly b-irresolute.

Definition 4.7 A space X is said to be

(a) b-Ty [15] if for each pair of distinct points x and y in X there exist U €
BO(X) containing z but not y and V' € BO(X) containing y but not x;

(b) b-Ty [14] if for each pair of distinct points x and y in X, there exist
U € BO(X,z) and V € BO(X,y) such that UNV = 0.

In [14], Park obtained the following interesting result which is useful in the

sequel:

Lemma 4.8 A space X is b-T5 if and only if for each pair-of distinct points x and
y in X, there exist U € BO(X,z) and V € BO(X,y) such that bcl(U) Nbcl(V) =
0.

Theorem 4.9 IfY is a b-Ts space and f : X — Y is weakly b-irresolute injec-
tion, then X s b-T5.

Proof Let x, y be any distinet points of X. Then f(x) # f(y). Since Y is
b-T5, by Lemma 4.8 there exist V'€ BO(Y, f(z)) and W € BO(Y, f(y)) such that
bel(V) Nbel(W) = 0. Since f is weakly b-irresolute, there exist G € BO(X, x)
and H € BO(X,y) such-that f(G) C bcl(V) and f(H) < bel(W). Hence we
obtain G N H = (). This shows-that X is b-T5.

Recall that for a function f : X — Y, the subset {(z, f(z)) 1z € X} of X XY
is called the graph of f is denoted by G(f).

Definition 4.10 A function f : X — Y is said to have a b-0-closed graph if for
each (z,y) € (X xY) \ G(f), there exist U € BO(X,z) and V' € BO(Y,y) such
that [bel(U) x bel(V)]NG(f) = 0.



Theorem 4.11 IfY s a b-Ts space and f: X — Y is weakly b-irresolute, then
G(f) is b-0-closed.

Proof Let (z,y) € (X xY)\ G(f). Then y # f(z) and by Lemma 4.8 there
exist V€ BO(Y, f(z)) and W € BO(Y,y) such that bel(V) Nbel(W) = (). Since
f is weakly b-irresolute, by Theorem 3.9 there exists U € BO(X,z) such that
f(bel(U)) C bel(V). Therefore, we obtain f(bcl(U)) N bel(W) = @ and hence
[bel(U) x bel(W)] N G(f) = 0. This shows that G(f) is b-6-closed in X x Y.

Definition 4.12 A space X is said to be b-connected if it cannot be written as

the union of two nonempty disjoint b-open sets.

Theorem 4.13 If a function f : X — Y is a weakly b-irresolute surjection and

X 18 b-connected, then Y 1is b-connected.

Proof Suppose that Y is not b-connected. There exist-nonempty b-open sets
V and W of Y such that VUW =Y and VW = (). Then we have V,
W € BR(Y). Since f'is weakly b-irresolute, by Theorem 3.9, we have f~(V),
f~YW) € BR(X). Moreover, we have f~L{(VUf L) = X, fL(V)Nf~Y{(W) =
0, and f~1(V) and f~Y(W) are monempty. Therefore, X is not b-connected.
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5  Strongly b-irresolute functions

Theorem 5.1 For a function f: X — Y, the following are equivalent:

(a) f is strongly b-irresolute;

(b) for each x € X and each V € BO(Y, f(x)), there exists U € BO(X, )
such that f(bcly(U)) C V;

(c) for each x € X and each V' € BO(Y, f(x)), there exists U € BR(X,x)
such that f(U) C V;

(d) for each x € X and each V- € BO(Y, f(z)), there exists a b-0-open set U
of X such that f(U) C V;

(e) fXV) is b-B-open in X for each V € BO(Y);

(f) f7Y(V) is b-O-closed in X for each V € BC(Y);

(g) f(bclp(A)) C bel(f(A)) for each subset A of X;

(h) belg(f~4(B)) C f~*(bel(B)) for each subset B of Y.

Proof (a)<(b)<(c)<(d): It follows from Theorems 2.1 and 2.4.

(d)=(e): Let V € BO(Y) and z € f~!(V). Then f(x) € V and by (d), there
exists a b-0-open set U of X containing x such that f(U) C V. Therefore, we
have z € U C f~1(V/). Since the union of b-6-open sets is b-0-open [Theorem 2.3,
f7Y(V) is b-G-open in X.

(e)=(f): Obvious.

(f)=(g): Let A be any subset of X. Since bel(f(A)) is b-closed in Y, by (f)
we have f~1(bcl(f(A))) is b-O-closed in X and

belg(A) C belg(f~ (£ (A)N)-C belg(f 7 (bel(f(A)))) =F 7 (bel(f(A))).

Therefore, we obtain f(bclg(A)).Cbel(f(A)).
(g)=-(h): Let B be any subset of Y. By (g), we obtain

F(belg(f71(B))) € bel(f(f71(B))) C bel(B)

and hence belp(f~1(B)) C f~!(bcl(B)).
(h)=-(a): Let x € X and V € BO(Y, f(z)). Since Y\ V € BC(Y), we have
belg(fHY \ V) C f~Hbel(Y \V)) = f74Y \ V). Therefore, f~1(Y \ V) is

11



b-O-closed in X and hence f~*(V) is b-f-open in X and z € f~*(V). Then there
exists U € BO(X, x) such that bel(U) C f~1(V) and thus f(bel(U)) C V. This

shows that f is strongly b-irresolute.

Theorem 5.2 A b-irresolute function f : X — Y 1is strongly b-irresolute if and

only if X is strongly b-reqular.

Proof Necessity. Let f: X — Y beidentity function. Then f is b-irresolute and
strongly b-irresolute by our hypothesis. For any U € BO(X) and any point x € U,
we have f(z) = o € U and there exists G € BO(X, z) such that f(bcl(G)) C U.
Therefore, we have z € G C bel(G) C U. It follows from Lemma 4.2 that X is
strongly b-regular.

Sufficiency. Suppose that f : X — Y is b-irresolute and X is strongly b-
regular. For any x € X and any V € BO(Y, f(z)), f~*(V) is b-open set containing
x. Since X is strongly b-regular, there exists U €-BO(X) such that = € U C
bel(U) € f~Y(V). Therefore, we have f(bcl(U)) C V. This shows that f is

strongly b-irresolute.

Theorem 5.3 Let f : X — Y be a function and.g : X — X x Y ‘be the graph
function of f. If g is strongly b-irresolute, then f is strongly b-irresolute and X

15 strongly b-reqular.

Proof Suppose that g is'strongly b-irresolute. First, we show that f is strongly
b-irresolute. Let x € X and V € BO(Y, f(z)). Then X xV is a b-open set of
X xY containing g(x)."Since g.is strongly b-irresolute, there exists U € BO(X, z)
such that g(bcl(U)) C X x- V. Therefore, we obtain 'f(bel(U)) C V. This shows
that f is strongly b-irresolute. Next, we show that X-is strongly b-regular. Let
U € BO(X) and « € U. Since g(x) € U x Y and U x Y is b-open in X x Y,
there exists G € BO(X, z) such that g(bcl(G)) C U x Y. Therefore, we obtain
x € G C bel(G) C U and hence by Lemma 4.2, X is strongly b-regular.

Remark 5.4 The converse of Theorem 5.3 is not true because, in Example 4.6,

f is strongly b-irresolute and X is strongly b-regular but g is strongly b-irresolute.
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Lemma 5.5 (Nasef [12]) If X, is a-open in X, then BO(X,) = BO(X) N Xo.

Lemma 5.6 (Park [14]) If A C Xy C X and Xy is a-open in X, then bel(A) N
Xo = bely, (A), where belx, (A) denote the b-closure of A in the subspace X.

Theorem 5.7 If f : X — Y is strongly b-irresolute and Xy is an a-open subset

of X, then the restriction f|x,: Xo — Y is strongly b-irresolute.

Proof For any z € X and any V' € BO(Y, f(x)), there exists U € BO(X, z)
such that f(bcl(U)) C V since f is strongly b-irresolute. Put Uy = U N Xy, then
by Lemmas 5.5 and 5.6, Uy € BO(Xj, z) and bclx, (Up) C bel(Up). Therefore, we
obtain

(f1x0) (belx, (Vo)) = f(belx, (Un)) € f(bel(Uy)) C f(bel(U)) C V-

This shows that f|x, is strongly b-irresolute.

In oder to obtain some properties of the compositions of strongly b-irresolute

functions, we need following definitions.

Definition 5.8 A funection f: X — Y is said to be
(a) a-continuous [11] if f~(V) is a-open in X for every open set V of Y;
(b) a-open [11]if f(U) is a=open in Y for every open set U of X;
(c) pre-b-open if f(U) € BO(Y) for each U € BO(X).

Lemma 5.9 (Park [14]) If f: X — Y is an a-continuous a-open function and
V is a b-0-open set of Y, then 1 (Vo). is b-0-open-in'X .

Theorem 5.10 Let f : X — Y and g:Y — Z be functions. Then, the following
properties hold:

(a) If f s strongly b-irresolute and g is b-irresolute, then the composition
go f: X — Z is strongly b-irresolute.

(b) If f is weakly b-irresolute and g is strongly b-irresolute, then gof : X — Z

15 strongly b-irresolute.
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(c) If f is a-continuous a-open and g is strongly b-irresolute, then g o f is
strongly b-irresolute.
(d) If f is a pre-b-open bijection go f : X — Z is strongly b-irresolute, then

g is strongly b-irresolute.

Proof The proofs of (a), (b) and (c) follow from Theorems 3.11 and 5.1 and
Lemma 5.9.

(d): Let W € BO(Z). Since g o f is strongly b-irresolute, (g o f)~1(W) is
b-0-open in X. Since f is pre-b-open and bijective, f~! is b-irresolute and hence
it is weakly b-irresolute. By Theorem 3.11, we have g~ (W) = f((g o f)"1(W))
is b-f-open in Y. Hence, by Theorem 5.1, g is strongly b-irresolute.

Theorem 5.11 If f : X — Y s a strongly b-irresolute injection and Y is b-1T1,
then X s b-Ts.

Proof Let z and y be any distinct points of X. Since f is injective, f(z) # f(y)
and there exist V € BO(Y, f(x)) and W € BO(Y, f(y)) such that f(y) ¢ V and
f(z) ¢ W. Since f is strongly b-irresolute, there exists U € BO(X, x) such that
f(bel(U)) € V. Therefore, we obtain f(y) ¢.f(bcl(U)). Put G = X \ bel(U).
Then G € BO(X,y) and GNU = 0. This shows that X is b-T5.

Lemma 5.12 Let A be a subset of X and B be a subset of Y. Then
(a) (Nasef [12]) If A € BO(X) and B € BO(Y), then A x B € BO(X xY).
(b) (Park [14]) bel(A x B) Cbcl(A) x bel(B).

Theorem 5.13 If f = X — Y is a strongly b-irresolute function.and Y is b-T,
then the subset E = {(x,y) : fl@) =f(y)} is b-0-closed in X x X.

Proof Suppose that (z,y) ¢ E.-Then f(x) = f(y).-Since Y is Hausdorff, there
exist b-open sets V' and W of Y containing f(x) and f(y), respectively, such
that V. N W = (). Since f is strongly b-irresolute, there exist U € BO(X, z) and
G € BO(X, y) such that f(bcl(U)) C V and f(bcl(G)) C W. By Lemma 5.12, we
have (z,y) € UxG € BO(X x X) and bel(UXxG)NE C [bel(U) xbel(G)|NE = 0.
Therefore, E is b-0-closed in X x X.
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6 Covering properties

Definition 6.1 A space X is said to be

(a) b-closed [14] if every cover of X by b-open sets has a finite subcover whose
b-closures cover X;

(b) countably b-closed [14] if every countable cover of X by b-open sets has a
finite subcover whose b-closures cover X;

(¢) b-compact if every cover of X by b-open sets has a finite subcover.

A subset K of a space X is said to be b-closed relative to X [14] (resp. b-
compact relative to X) if for every cover {V, : a € I} of K by b-open sets of
X, there exists a finite subset Iy of A such that K C U{bcl(V,) : « € Iy} (resp.
K Cc UW{V,:ae€ l}).

Theorem 6.2 If f : X — Y is a strongly b-irresolute (resp. weakly b-irresolute)
function and K is b-closed (resp. b-compact) relative to. X, then f(K) is b-

compact (resp. b-closed) relative to Y.

Proof Let {V, : o € I} be a cover of f(K) by b-open sets of Y. For each
point x € K, there exists a(x) € I such that f(z) € V). Since f is strongly
b-irresolute (resp.  weakly b-irresolute), there exists U, € BO(X, z) such that
f(bcl(Uy)) C Vi) (resp. f(Uy) C bel(Vay)). The family {U, : v € K} is
a cover of K by b-open sets of ' X and hence there exists a finite subset K, of
K such that K C Ugeg,bcl(U,) (resp. K |C U,eck,U,). Therefore, we obtain
fK) C UpekyVaw) (resp. fIK) C Uzer,b€l(Vaem))). This shows that f(K) is
b-compact (resp. b-closed) relative torY.

Corollary 6.3 Let f : X — Y be a surjection. Then, the following properties
hold:

(a) If f is strongly b-irresolute and X is b-closed (resp. countably b-closed),
then Y is b-compact (resp. countably b-compact).

(b) If f is weakly b-irresolute and X is b-compact (resp. countably b-compact),
then Y is b-closed (resp. countably b-closed).
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Recall that a space X is said to be submazimal [17] if each dense subset of X
is open in X. It is shown in [17] that a space X is submaximal if and only if every
preopen set of X is open. A space X is said to be extremally disconnected [5]
if the closure of each open set of X is open. Note that extremally disconnected

space is exactly the space where every semiopen set is a-open.

Theorem 6.4 Let X is a submaximal extremally disconnected space. If a func-
tion f: X — Y has a b-0-closed graph, then f~1(K) is 0-closed in X for each
subset K which is b-closed relative to'Y .

Proof Let K be a subset which is b-closed relative to Y and =z ¢ f~!(K).
Then for each y € K we have (z,y) ¢ G(f) and there exist U, € BO(X, z) and
V, € BO(Y,y) such that f(bcl(U,)) Nbel(V,) = 0. The family {V, : y € K} is
a cover of K by b-open sets of Y and there exists a finite subset Ky of K such
that K C Uyeg,bcl(V,). Since X is submaximal extremally disconnected, each
Uy, is open in X and bel(Uy) = cl(U,). Set U = Nyek, Uy, then U is an open set

containing x and

f)nK c |J (@) nbe@y)] < [J [#(be(U,)) N bel(V,)] = 0.

yeKop reKp

Therefore, we have cl(U) N f~YK) = () and hence = ¢ cly(f~'(K)). This shows
that f~1(K) is f-closed in X.
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