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 함수의 약과 강한 형태들-irresolute

정 재 은

부경대학교 대학원 응용수학과

요약

본 논문에서는 약한  함수와 강한-irresolute  함수의 기본적인 성질과 다른 함수들-irresolute

과의 관계 위상적 성질인 피복성 및 분리공리를 다음 내용을 중심으로 조사한다, .

첫째로 위상공간,  의 부분집합  에 있어서의 -open, -closed,  의 정의와 성질-regular

들과 그에 따른 정리들을 알아본다.

둘째로 약하고 강한,  함수와-irresolute  연속 함수들과의 관계를 예제를 이용하여 살펴보고- ,

약한  함수의 성질들을 알아본다-irresolute .

셋째로 강한,  함수의 약한-irresolute  함수-irresolute ,  함수-irresolute , graph function 

와의 관계와 -, - 공간에서의 성질들을 조사한다.

넷째로 강한,  함수의 강한-irresolute  함수-regular ,  함수-irresolute ,  함수-open ,  연-

속 함수 와의 관계를 조사하고 강한,  성과 피복성과의 관계를 조사한다-irresolute .



1 Introduction

Andrijević [4] introduced the notion of b-open sets which is weaker than those of

both preopen sets [10] and semiopen sets [9] and is stronger than that of β-open

sets [1]. El-Atik [7] and Dontchev and Przemski [6] called b-open sets by sp-open

sets and γ-open sets, respectively. By using b-open sets, Nasef [12] introduced

the notions of b-locally closed sets and b-LC-continuity and discussed some of

their properties. El-Atik [7] used b-open sets to define b-continuity in topological

spaces. Dontchev and Przemski [6] called b-continuity by sp-continuity and used

this notion to obtain a decomposition of precontinuity [10]. The notion of b-

irresoluteness in topological spaces is introduced by Ha [8]. Recently, Park [14]

introduced the notions of b-θ-open sets and strong θ-b-continuity and obtained

some characterizations and several properties concerning strongly θ-b-continuous

functions.

The purpose of this thesis is to introduce and investigate some of the fun-

damental properties of weakly b-irresolute and strongly b-irresolute functions.

The relations with above-mentioned notions directly or indirectly connected with

weak and strong b-irresoluteness are investigated. In Section 3, we obtain char-

acterizations and basic properties of weakly b-irresolute functions. In Section 4,

we investigate relationships between weak b-irresoluteness and separation axioms

and between weak b-irresoluteness and b-θ-closed graphs, respectively. In Section

5, we obtain characterizations of strongly b-irresolute functions and investigate

relationships between strong b-irresoluteness and separation axioms. In the last

section, we investigate relationships between strong b-irresoluteness and covering

properties.
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2 Preliminaries

Throughout this thesis, spaces X and Y always mean topological spaces on which

no separation axioms are assumed unless explicitly stated. Let A be a subset of a

space X. We denote the closure and the interior of a set A by cl(A) and int(A),

respectively. A point x of X is called a θ-cluster [18] point of A if cl(U) ∩ A 6= ∅
for every open set U of X containing x. The set of all θ-cluster points of A is

called the θ-closure [18] of A and is denoted by clθ(A). A subset A is said to be

θ-closed [18] if clθ(A) = A. The complement of a θ-closed set is said to be θ-open.

A subset A is said to be α-open [13] (resp. preopen [10], semi-open [9], b-open

[4], semi-preopen [3] or β-open [1]) if A ⊂ int(cl(int(A))) (resp. A ⊂ int(cl(A)),

A ⊂ cl(int(A)), A ⊂ cl(int(A))∪int(cl(A)), A ⊂ cl(int(cl(A))) ). The complement

of an α-open (resp. preopen, semi-open, b-open, β-open) set is said to be α-closed

(resp. preclosed, semi-closed, b-closed, β-closed). The intersection of all b-closed

sets of X containing A is called the b-closure [4] of A and is denoted by bcl(A).

The semi-closure and preclosure are similarly defined and are denoted by scl(A)

and pcl(A). The union of all b-open sets of X contained in A is called b-interior

[4] and is denoted by bint(A). A subset A is said to be b-regular [14] if it is

b-open and b-closed. The family of all b-open (resp. b-closed, b-regular) sets of X

is denoted by BO(X) (resp. BC(X), BR(X)) and the family of all b-open (resp.

b-regular) sets of X containing a point x ∈ X is denoted by BO(X, x) (resp.

BR(X, x)).

The following basic properties of b-closure are useful in the sequel:

Lemma 2.1 (Andrijevic [4]) For a subset A of a space X, the following hold:

(a) bcl(A) = scl(A) ∩ pcl(A);

(b) bint(A) = sint(A) ∪ pint(A);

(c) bcl(X \ A) = X \ bint(A);

(d) x ∈ bcl(A) if and only if A ∩ U 6= ∅ for every U ∈ BO(X, x);

(e) A ∈ BC(X) if and only if A = bcl(A).

Theorem 2.2 (Park [14]) Let A be a subset of a space X. Then
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(a) A ∈ BO(X) if and only if bcl(A) ∈ BR(X).

(b) A ∈ BC(X) if and only if bint(A) ∈ BR(X).

A point x of X is called a b-θ-cluster point [14] of A if bcl(U)∩A 6= ∅ for every

U ∈ BO(X, x). The set of all b-θ-cluster points of A is called b-θ-closure [14] of A

and denoted by bclθ(A). A subset A is said to be b-θ-closed [14] if A = bclθ(A).

The complement of a b-θ-closed set is said to be b-θ-open [14].

Theorem 2.3 (Park [14]) Let A and Aα (α ∈ I) be any subsets of a space X.

Then the following properties hold:

(a) A is b-θ-open in X if and only if for each x ∈ A there exists V ∈ BR(X, x)

such that x ∈ V ⊂ A,

(b) bclθ(A) is b-θ-closed,

(c) if Aα is b-θ-open in X for each α ∈ I, then
⋃

α∈I Aα is b-θ-open in X.

Theorem 2.4 (Park [14]) For a subset A of a space X, the following properties

hold:

(a) if A ∈ BO(X), then bcl(A) = bclθ(A),

(b) A ∈ BR(X) if and only if A is b-θ-open and b-θ-closed.
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3 Characterizations of weakly b-irresolute func-

tions

Definition 3.1 A function f : X → Y is said to be

(a) b-continuous [7] if f−1(V ) ∈ BO(X) for each open set V of Y ;

(b) almost b-continuous if for each x ∈ X and each open set V of Y containing

f(x), there exists U ∈ BO(X, x) such that f(U) ⊂ int(cl(V ));

(c) strongly θ-b-continuous [14] if for each x ∈ X and each open set V of Y

containing f(x), there exists U ∈ BO(X, x) such that f(bcl(U)) ⊂ V .

Definition 3.2 A function f : X → Y is said to be

(a) b-irresolute [8] if f−1(V ) ∈ BO(X) for each V ∈ BO(Y );

(b) strongly b-irresolute if for each x ∈ X and each V ∈ BO(Y, f(x)), there

exists a U ∈ BO(X, x) such that f(bcl(U)) ⊂ V ;

(c) weakly b-irresolute if for each x ∈ X and each V ∈ BO(Y, f(x)), there

exists a U ∈ BO(X, x) such that f(U) ⊂ bcl(V ).

Remark 3.3 From Definitions 3.1 and 3.2, we have the following diagram for a

function f : X → Y :

strongly b-irresolute ⇒ b-irresolute ⇒ weakly b-irresolute

⇓ ⇓ ⇓
strongly θ-b-continuous ⇒ b-continuous ⇒ almost b-continuous

However, none of these implications is reversible as shown by the following exam-

ples. Moreover, strong θ-b-continuity and weak b-irresoluteness are independent

of each other as the following examples show.

Example 3.4 Let X = {a, b, c}, τ = {X, ∅, {a}, {b}, {a, b}} and σ = {X, ∅, {a}, {b, c}}.
Then the identity function f : (X, τ) → (X, σ) is strongly θ-b-continuous but it

is not weakly b-irresolute.

Example 3.5 Let X = {a, b, c} and τ = {X, ∅, {a}, {a, b}}. Then the identity

function f : (X, τ) → (X, τ) is b-irresolute but it is not strongly θ-b-continuous.
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Example 3.6 Let X = {a, b, c}, τ = {X, ∅, {a}, {b}, {a, b}} and σ = {X, ∅, {c}}.
Then the identity function f : (X, τ) → (X, σ) is weakly b-irresolute but it is not

b-continuous.

Theorem 3.7 For a function f : X → Y , the following are equivalent:

(a) f is weakly b-irresolute;

(b) f−1(V ) ⊂ bint(f−1(bcl(V ))) for each V ∈ BO(Y );

(c) bcl(f−1(V )) ⊂ f−1(bcl(V )) for each V ∈ BO(Y ).

Proof (a)⇒(b): Let V ∈ BO(Y ) and x ∈ f−1(V ). Then by (a), there exists

U ∈ BO(X, x) such that f(U) ⊂ bcl(V ). Therefore, we have U ⊂ f−1(bcl(V ))

and x ∈ U ⊂ bint(f−1(bcl(V ))). This shows that f−1(V ) ⊂ bint(f−1(bcl(V ))).

(b)⇒(c): Let V ∈ BO(Y ) and let x /∈ f−1(bcl(V )). Then f(x) /∈ bcl(V ).

There exists W ∈ BO(Y, f(x)) such that W ∩ V = ∅. Since V ∈ BO(Y ), we have

bcl(W ) ∩ V = ∅ and hence bint(f−1(bcl(W ))) ∩ f−1(V ) = ∅. By (b), we have

x ∈ f−1(W ) ⊂ bint(f−1(bcl(W ))) ∈ BO(X).

Therefore, we obtain x /∈ bcl(f−1(V )). This shows that bcl(f−1(V )) ⊂ f−1(bcl(V )).

(c)⇒(a): Let x ∈ X and V ∈ BO(Y, f(x)). By Theorem 2.2, we have

bcl(V ) ∈ BR(Y ) and x /∈ f−1(bcl(Y \ bcl(V ))).

Since Y \bcl(V ) ∈ BO(Y ), by (c) we have x /∈ bcl(f−1(Y \bcl(V ))). Hence there

exists U ∈ BO(X, x) such that U ∩ f−1(Y \ bcl(V )) = ∅. Therefore, we obtain

f(U) ∩ (Y \ bcl(V )) = ∅ and hence f(U) ⊂ bcl(V ). This shows that f is weakly

b-irresolute.

Theorem 3.8 For a function f : X → Y , the following are equivalent:

(a) f is weakly b-irresolute;

(b) bcl(f−1(B)) ⊂ f−1(bclθ(B)) for each subset B of Y ;

(c) f(bcl(A)) ⊂ bclθ(f(A)) for each subset A of X;

(d) f−1(F ) ∈ BC(X) for each b-θ-closed set F of Y ;

(e) f−1(V ) ∈ BO(X) for each b-θ-open set V of Y .
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Proof (a)⇒(b): Let B be any subset of Y and x /∈ f−1(bclθ(B)). Then f(x) /∈
bclθ(B) and there exists V ∈ BO(Y, f(x)) such that bcl(V )∩B = ∅. By (a), there

exists U ∈ BO(X, x) such that f(U) ⊂ bcl(V ). Therefore, we have f(U)∩B = ∅
and U ∩ f−1(B) = ∅. Consequently, we have x /∈ bcl(f−1(B)).

(b)⇒(c): Let A be any subset of X. Then by (b), we have

bcl(A) ⊂ bcl(f−1(f(A))) ⊂ f−1(bclθ(f(A)))

and hence f(bcl(A)) ⊂ bclθ(f(A)).

(c)⇒(d): Let F be any b-θ-closed set of Y . Then by (c), we have

f(bcl(f−1(F ))) ⊂ bclθ(f(f−1(F ))) ⊂ bclθ(F ) = F.

Therefore, we have bcl(f−1(F )) ⊂ f−1(F ) and hence bcl(f−1(F )) = f−1(F ).

This shows that f−1(F ) ∈ BC(X).

(d)⇒(e): This proof is obvious and is omitted.

(e)⇒(a): Let x ∈ X and V ∈ BO(Y, f(x)). By Theorems 2.2 and 2.4, bcl(V )

is b-θ-open in Y . Put U = f−1(bcl(V )). Then by (e), we have U ∈ BO(X, x) and

f(U) ⊂ bcl(V ). This shows that f is weakly b-irresolute.

Theorem 3.9 For a function f : X → Y , the following are equivalent:

(a) f is weakly b-irresolute;

(b) for each x ∈ X and each V ∈ BO(Y, f(x)), there exists U ∈ BO(X, x)

such that f(bcl(U)) ⊂ bcl(V );

(c) f−1(F ) ∈ BR(X) for each F ∈ BR(Y ).

Proof (a)⇒(b): Let x ∈ X and V ∈ BO(Y, f(x)). By Theorems 2.2 and

2.4, bcl(V ) is b-θ-open and b-θ-closed in Y . Now, put U = f−1(bcl(V )). Then

by Theorem 3.8, we have U ∈ BR(X). Therefore, we obtain U ∈ BO(X, x),

U = bcl(U) and f(bcl(U)) ⊂ bcl(V ).

(b)⇒(c): Let F ∈ BR(Y ) and x ∈ f−1(F ). Then f(x) ∈ F . By (b), there

exists U ∈ BO(X, x) such that f(bcl(U)) ⊂ F . Therefore, we have x ∈ U ⊂
bcl(U) ⊂ f−1(F ) and hence f−1(F ) ∈ BO(X). Since Y \ F ∈ BR(Y ), f−1(Y \
F ) = X \f−1(F ) ∈ BO(X). Thus f−1(F ) ∈ BC(X) and hence f−1(F ) ∈ BR(X).
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(c)⇒(a): Let x ∈ X and V ∈ BO(Y, f(x)). By Theorem 2.2, bcl(V ) ∈
BR(Y, f(x)) and f−1(bcl(V )) ∈ BR(X, x). Put U = f−1(bcl(V )). Then U ∈
BO(X, x) and f(U) ⊂ bcl(V ). This shows that f is weakly b-irresolute.

Similarly to Theorems 3.7 and 3.8, we can obtain the characterizations of

weakly b-irresolute functions as follows.

Theorem 3.10 For a function f : X → Y , the following are equivalent:

(a) f is weakly b-irresolute;

(b) f−1(V ) ⊂ bintθ(f
−1(bclθ(V ))) for each V ∈ BO(Y );

(c) bclθ(f
−1(V )) ⊂ f−1(bclθ(V )) for each V ∈ BO(Y ).

Theorem 3.11 For a function f : X → Y , the following are equivalent:

(a) f is weakly b-irresolute;

(b) bclθ(f
−1(B)) ⊂ f−1(bclθ(B)) for each subset B of Y ;

(c) f(bclθ(A)) ⊂ bclθ(f(A)) for each subset A of X;

(d) f−1(F ) is b-θ-closed in X for each b-θ-closed set F of Y ;

(e) f−1(V ) is b-θ-open in X for each b-θ-open set V of Y .
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4 Properties of weakly b-irresolute functions

Definition 4.1 A space X is said to be strongly b-regular if for each F ∈ BC(X)

and each x ∈ X \ F , there exist disjoint b-open sets U and V such that x ∈ U

and F ⊂ V .

Lemma 4.2 For a space X the following are equivalent:

(a) X is strongly b-regular;

(b) for each U ∈ BO(X) and each x ∈ U , there exists V ∈ BO(X) such that

x ∈ V ⊂ bcl(V ) ⊂ U ;

(c) for each U ∈ BO(X) and each x ∈ U , there exists V ∈ BR(X) such that

x ∈ V ⊂ U ;

(d) for each subset A of X and each F ∈ BC(X) such that A ∩ F = ∅, there

exist disjoint U, V ∈ BO(X) such that A ∩ U 6= ∅ and F ⊂ V ;

(e) for each F ∈ BC(X), F =
⋂{bcl(V ) : F ⊂ V and V ∈ BO(X)}.

Proof It follows from Theorem 2.2.

Theorem 4.3 Let Y be a strongly b-regular space. Then the function f : X → Y

is weakly b-irresolute if and only if it is b-irresolute.

Proof Suppose that f : X → Y is weakly b-irresolute. Let V ∈ BO(Y ) and

x ∈ f−1(V ). Then f(x) ∈ V and since Y is b-regular, by Lemma 4.2, there

exists W ∈ BO(Y ) such that f(x) ∈ W ⊂ bcl(W ) ⊂ V . Since f is weakly

b-irresolute, there exists U ∈ BO(X, x) such that f(U) ⊂ bcl(W ). Therefore,

we have x ∈ U ⊂ f−1(V ) and hence f−1(V ) ∈ BO(X). This shows that f is

b-irresolute. The converse is obvious.

Theorem 4.4 A function f : X → Y is weakly b-irresolute if the graph function

g : X → X×Y , defined by g(x) = (x, f(x)) for each x ∈ X, is weakly b-irresolute.

Proof Let x ∈ X and V ∈ BO(Y, f(x)), Then X × V ∈ BO(X × Y ) and

g(x) ∈ X × V . Since g is weakly b-irresolute, there exists U ∈ BO(X, x) such

that g(U) ⊂ bcl(X × V ) ⊂ X × bcl(V ). Therefore, we have f(U) ⊂ bcl(V ).
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Remark 4.5 The converse of Theorem 4.4 is not necessarily true as the following

example shows.

Example 4.6 Let X = {a, b, c}, τ = {X, ∅, {a}, {b}, {a, b}}. Define a function

f : (X, τ) → (X, τ) by f(a) = b, f(b) = a and f(c) = c. Then f is b-irresolute

and hence weakly b-irresolute but the graph function g is not weakly b-irresolute.

Definition 4.7 A space X is said to be

(a) b-T1 [15] if for each pair of distinct points x and y in X there exist U ∈
BO(X) containing x but not y and V ∈ BO(X) containing y but not x;

(b) b-T2 [14] if for each pair of distinct points x and y in X, there exist

U ∈ BO(X, x) and V ∈ BO(X, y) such that U ∩ V = ∅.

In [14], Park obtained the following interesting result which is useful in the

sequel:

Lemma 4.8 A space X is b-T2 if and only if for each pair of distinct points x and

y in X, there exist U ∈ BO(X, x) and V ∈ BO(X, y) such that bcl(U)∩bcl(V ) =

∅.

Theorem 4.9 If Y is a b-T2 space and f : X → Y is weakly b-irresolute injec-

tion, then X is b-T2.

Proof Let x, y be any distinct points of X. Then f(x) 6= f(y). Since Y is

b-T2, by Lemma 4.8 there exist V ∈ BO(Y, f(x)) and W ∈ BO(Y, f(y)) such that

bcl(V ) ∩ bcl(W ) = ∅. Since f is weakly b-irresolute, there exist G ∈ BO(X, x)

and H ∈ BO(X, y) such that f(G) ⊂ bcl(V ) and f(H) ⊂ bcl(W ). Hence we

obtain G ∩H = ∅. This shows that X is b-T2.

Recall that for a function f : X → Y , the subset {(x, f(x)) : x ∈ X} of X×Y

is called the graph of f is denoted by G(f).

Definition 4.10 A function f : X → Y is said to have a b-θ-closed graph if for

each (x, y) ∈ (X × Y ) \G(f), there exist U ∈ BO(X, x) and V ∈ BO(Y, y) such

that [bcl(U)× bcl(V )] ∩G(f) = ∅.
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Theorem 4.11 If Y is a b-T2 space and f : X → Y is weakly b-irresolute, then

G(f) is b-θ-closed.

Proof Let (x, y) ∈ (X × Y ) \ G(f). Then y 6= f(x) and by Lemma 4.8 there

exist V ∈ BO(Y, f(x)) and W ∈ BO(Y, y) such that bcl(V ) ∩ bcl(W ) = ∅. Since

f is weakly b-irresolute, by Theorem 3.9 there exists U ∈ BO(X, x) such that

f(bcl(U)) ⊂ bcl(V ). Therefore, we obtain f(bcl(U)) ∩ bcl(W ) = ∅ and hence

[bcl(U)× bcl(W )] ∩G(f) = ∅. This shows that G(f) is b-θ-closed in X × Y .

Definition 4.12 A space X is said to be b-connected if it cannot be written as

the union of two nonempty disjoint b-open sets.

Theorem 4.13 If a function f : X → Y is a weakly b-irresolute surjection and

X is b-connected, then Y is b-connected.

Proof Suppose that Y is not b-connected. There exist nonempty b-open sets

V and W of Y such that V ∪ W = Y and V ∩ W = ∅. Then we have V ,

W ∈ BR(Y ). Since f is weakly b-irresolute, by Theorem 3.9, we have f−1(V ),

f−1(W ) ∈ BR(X). Moreover, we have f−1(V )∪f−1(W ) = X, f−1(V )∩f−1(W ) =

∅, and f−1(V ) and f−1(W ) are nonempty. Therefore, X is not b-connected.
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5 Strongly b-irresolute functions

Theorem 5.1 For a function f : X → Y , the following are equivalent:

(a) f is strongly b-irresolute;

(b) for each x ∈ X and each V ∈ BO(Y, f(x)), there exists U ∈ BO(X, x)

such that f(bclθ(U)) ⊂ V ;

(c) for each x ∈ X and each V ∈ BO(Y, f(x)), there exists U ∈ BR(X, x)

such that f(U) ⊂ V ;

(d) for each x ∈ X and each V ∈ BO(Y, f(x)), there exists a b-θ-open set U

of X such that f(U) ⊂ V ;

(e) f−1(V ) is b-θ-open in X for each V ∈ BO(Y );

(f) f−1(V ) is b-θ-closed in X for each V ∈ BC(Y );

(g) f(bclθ(A)) ⊂ bcl(f(A)) for each subset A of X;

(h) bclθ(f
−1(B)) ⊂ f−1(bcl(B)) for each subset B of Y .

Proof (a)⇔(b)⇔(c)⇔(d): It follows from Theorems 2.1 and 2.4.

(d)⇒(e): Let V ∈ BO(Y ) and x ∈ f−1(V ). Then f(x) ∈ V and by (d), there

exists a b-θ-open set U of X containing x such that f(U) ⊂ V . Therefore, we

have x ∈ U ⊂ f−1(V ). Since the union of b-θ-open sets is b-θ-open [Theorem 2.3],

f−1(V ) is b-θ-open in X.

(e)⇒(f): Obvious.

(f)⇒(g): Let A be any subset of X. Since bcl(f(A)) is b-closed in Y , by (f)

we have f−1(bcl(f(A))) is b-θ-closed in X and

bclθ(A) ⊂ bclθ(f
−1(f(A))) ⊂ bclθ(f

−1(bcl(f(A)))) = f−1(bcl(f(A))).

Therefore, we obtain f(bclθ(A)) ⊂ bcl(f(A)).

(g)⇒(h): Let B be any subset of Y . By (g), we obtain

f(bclθ(f
−1(B))) ⊂ bcl(f(f−1(B))) ⊂ bcl(B)

and hence bclθ(f
−1(B)) ⊂ f−1(bcl(B)).

(h)⇒(a): Let x ∈ X and V ∈ BO(Y, f(x)). Since Y \ V ∈ BC(Y ), we have

bclθ(f
−1(Y \ V )) ⊂ f−1(bcl(Y \ V )) = f−1(Y \ V ). Therefore, f−1(Y \ V ) is

11



b-θ-closed in X and hence f−1(V ) is b-θ-open in X and x ∈ f−1(V ). Then there

exists U ∈ BO(X, x) such that bcl(U) ⊂ f−1(V ) and thus f(bcl(U)) ⊂ V . This

shows that f is strongly b-irresolute.

Theorem 5.2 A b-irresolute function f : X → Y is strongly b-irresolute if and

only if X is strongly b-regular.

Proof Necessity. Let f : X → Y be identity function. Then f is b-irresolute and

strongly b-irresolute by our hypothesis. For any U ∈ BO(X) and any point x ∈ U ,

we have f(x) = x ∈ U and there exists G ∈ BO(X, x) such that f(bcl(G)) ⊂ U .

Therefore, we have x ∈ G ⊂ bcl(G) ⊂ U . It follows from Lemma 4.2 that X is

strongly b-regular.

Sufficiency. Suppose that f : X → Y is b-irresolute and X is strongly b-

regular. For any x ∈ X and any V ∈ BO(Y, f(x)), f−1(V ) is b-open set containing

x. Since X is strongly b-regular, there exists U ∈ BO(X) such that x ∈ U ⊂
bcl(U) ⊂ f−1(V ). Therefore, we have f(bcl(U)) ⊂ V . This shows that f is

strongly b-irresolute.

Theorem 5.3 Let f : X → Y be a function and g : X → X × Y be the graph

function of f . If g is strongly b-irresolute, then f is strongly b-irresolute and X

is strongly b-regular.

Proof Suppose that g is strongly b-irresolute. First, we show that f is strongly

b-irresolute. Let x ∈ X and V ∈ BO(Y, f(x)). Then X × V is a b-open set of

X×Y containing g(x). Since g is strongly b-irresolute, there exists U ∈ BO(X, x)

such that g(bcl(U)) ⊂ X × V . Therefore, we obtain f(bcl(U)) ⊂ V . This shows

that f is strongly b-irresolute. Next, we show that X is strongly b-regular. Let

U ∈ BO(X) and x ∈ U . Since g(x) ∈ U × Y and U × Y is b-open in X × Y ,

there exists G ∈ BO(X, x) such that g(bcl(G)) ⊂ U × Y . Therefore, we obtain

x ∈ G ⊂ bcl(G) ⊂ U and hence by Lemma 4.2, X is strongly b-regular.

Remark 5.4 The converse of Theorem 5.3 is not true because, in Example 4.6,

f is strongly b-irresolute and X is strongly b-regular but g is strongly b-irresolute.
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Lemma 5.5 (Nasef [12]) If X0 is α-open in X, then BO(X0) = BO(X) ∩X0.

Lemma 5.6 (Park [14]) If A ⊂ X0 ⊂ X and X0 is α-open in X, then bcl(A) ∩
X0 = bclX0(A), where bclX0(A) denote the b-closure of A in the subspace X0.

Theorem 5.7 If f : X → Y is strongly b-irresolute and X0 is an α-open subset

of X, then the restriction f |X0 : X0 → Y is strongly b-irresolute.

Proof For any x ∈ X0 and any V ∈ BO(Y, f(x)), there exists U ∈ BO(X, x)

such that f(bcl(U)) ⊂ V since f is strongly b-irresolute. Put U0 = U ∩X0, then

by Lemmas 5.5 and 5.6, U0 ∈ BO(X0, x) and bclX0(U0) ⊂ bcl(U0). Therefore, we

obtain

(f |X0)(bclX0(U0)) = f(bclX0(U0)) ⊂ f(bcl(U0)) ⊂ f(bcl(U)) ⊂ V.

This shows that f |X0 is strongly b-irresolute.

In oder to obtain some properties of the compositions of strongly b-irresolute

functions, we need following definitions.

Definition 5.8 A function f : X → Y is said to be

(a) α-continuous [11] if f−1(V ) is α-open in X for every open set V of Y ;

(b) α-open [11] if f(U) is α-open in Y for every open set U of X;

(c) pre-b-open if f(U) ∈ BO(Y ) for each U ∈ BO(X).

Lemma 5.9 (Park [14]) If f : X → Y is an α-continuous α-open function and

V is a b-θ-open set of Y , then f−1(V ) is b-θ-open in X.

Theorem 5.10 Let f : X → Y and g : Y → Z be functions. Then, the following

properties hold:

(a) If f is strongly b-irresolute and g is b-irresolute, then the composition

g ◦ f : X → Z is strongly b-irresolute.

(b) If f is weakly b-irresolute and g is strongly b-irresolute, then g◦f : X → Z

is strongly b-irresolute.
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(c) If f is α-continuous α-open and g is strongly b-irresolute, then g ◦ f is

strongly b-irresolute.

(d) If f is a pre-b-open bijection g ◦ f : X → Z is strongly b-irresolute, then

g is strongly b-irresolute.

Proof The proofs of (a), (b) and (c) follow from Theorems 3.11 and 5.1 and

Lemma 5.9.

(d): Let W ∈ BO(Z). Since g ◦ f is strongly b-irresolute, (g ◦ f)−1(W ) is

b-θ-open in X. Since f is pre-b-open and bijective, f−1 is b-irresolute and hence

it is weakly b-irresolute. By Theorem 3.11, we have g−1(W ) = f((g ◦ f)−1(W ))

is b-θ-open in Y . Hence, by Theorem 5.1, g is strongly b-irresolute.

Theorem 5.11 If f : X → Y is a strongly b-irresolute injection and Y is b-T1,

then X is b-T2.

Proof Let x and y be any distinct points of X. Since f is injective, f(x) 6= f(y)

and there exist V ∈ BO(Y, f(x)) and W ∈ BO(Y, f(y)) such that f(y) /∈ V and

f(x) /∈ W . Since f is strongly b-irresolute, there exists U ∈ BO(X, x) such that

f(bcl(U)) ⊂ V . Therefore, we obtain f(y) /∈ f(bcl(U)). Put G = X \ bcl(U).

Then G ∈ BO(X, y) and G ∩ U = ∅. This shows that X is b-T2.

Lemma 5.12 Let A be a subset of X and B be a subset of Y . Then

(a) (Nasef [12]) If A ∈ BO(X) and B ∈ BO(Y ), then A×B ∈ BO(X × Y ).

(b) (Park [14]) bcl(A×B) ⊂ bcl(A)× bcl(B).

Theorem 5.13 If f : X → Y is a strongly b-irresolute function and Y is b-T2,

then the subset E = {(x, y) : f(x) = f(y)} is b-θ-closed in X ×X.

Proof Suppose that (x, y) /∈ E. Then f(x) 6= f(y). Since Y is Hausdorff, there

exist b-open sets V and W of Y containing f(x) and f(y), respectively, such

that V ∩W = ∅. Since f is strongly b-irresolute, there exist U ∈ BO(X, x) and

G ∈ BO(X, y) such that f(bcl(U)) ⊂ V and f(bcl(G)) ⊂ W . By Lemma 5.12, we

have (x, y) ∈ U×G ∈ BO(X×X) and bcl(U×G)∩E ⊂ [bcl(U)×bcl(G)]∩E = ∅.
Therefore, E is b-θ-closed in X ×X.
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6 Covering properties

Definition 6.1 A space X is said to be

(a) b-closed [14] if every cover of X by b-open sets has a finite subcover whose

b-closures cover X;

(b) countably b-closed [14] if every countable cover of X by b-open sets has a

finite subcover whose b-closures cover X;

(c) b-compact if every cover of X by b-open sets has a finite subcover.

A subset K of a space X is said to be b-closed relative to X [14] (resp. b-

compact relative to X) if for every cover {Vα : α ∈ I} of K by b-open sets of

X, there exists a finite subset I0 of Λ such that K ⊂ ∪{bcl(Vα) : α ∈ I0} (resp.

K ⊂ ∪{Vα : α ∈ I0}).

Theorem 6.2 If f : X → Y is a strongly b-irresolute (resp. weakly b-irresolute)

function and K is b-closed (resp. b-compact) relative to X, then f(K) is b-

compact (resp. b-closed) relative to Y .

Proof Let {Vα : α ∈ I} be a cover of f(K) by b-open sets of Y . For each

point x ∈ K, there exists α(x) ∈ I such that f(x) ∈ Vα(x). Since f is strongly

b-irresolute (resp. weakly b-irresolute), there exists Ux ∈ BO(X, x) such that

f(bcl(Ux)) ⊂ Vα(x) (resp. f(Ux) ⊂ bcl(Vα(x))). The family {Ux : x ∈ K} is

a cover of K by b-open sets of X and hence there exists a finite subset K0 of

K such that K ⊂ ∪x∈K0bcl(Ux) (resp. K ⊂ ∪x∈K0Ux). Therefore, we obtain

f(K) ⊂ ∪x∈K0Vα(x) (resp. f(K) ⊂ ∪x∈K0bcl(Vα(x))). This shows that f(K) is

b-compact (resp. b-closed) relative to Y .

Corollary 6.3 Let f : X → Y be a surjection. Then, the following properties

hold:

(a) If f is strongly b-irresolute and X is b-closed (resp. countably b-closed),

then Y is b-compact (resp. countably b-compact).

(b) If f is weakly b-irresolute and X is b-compact (resp. countably b-compact),

then Y is b-closed (resp. countably b-closed).
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Recall that a space X is said to be submaximal [17] if each dense subset of X

is open in X. It is shown in [17] that a space X is submaximal if and only if every

preopen set of X is open. A space X is said to be extremally disconnected [5]

if the closure of each open set of X is open. Note that extremally disconnected

space is exactly the space where every semiopen set is α-open.

Theorem 6.4 Let X is a submaximal extremally disconnected space. If a func-

tion f : X → Y has a b-θ-closed graph, then f−1(K) is θ-closed in X for each

subset K which is b-closed relative to Y .

Proof Let K be a subset which is b-closed relative to Y and x /∈ f−1(K).

Then for each y ∈ K we have (x, y) /∈ G(f) and there exist Uy ∈ BO(X, x) and

Vy ∈ BO(Y, y) such that f(bcl(Uy)) ∩ bcl(Vy) = ∅. The family {Vy : y ∈ K} is

a cover of K by b-open sets of Y and there exists a finite subset K0 of K such

that K ⊂ ∪y∈K0bcl(Vy). Since X is submaximal extremally disconnected, each

Uy is open in X and bcl(Uy) = cl(Uy). Set U = ∩y∈K0Uy, then U is an open set

containing x and

f(cl(U)) ∩K ⊂
⋃

y∈K0

[f(cl(U)) ∩ bcl(Vy)] ⊂
⋃

x∈K0

[f(bcl(Uy)) ∩ bcl(Vy)] = ∅.

Therefore, we have cl(U) ∩ f−1(K) = ∅ and hence x /∈ clθ(f
−1(K)). This shows

that f−1(K) is θ-closed in X.
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