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딥 클러스터링 및 설명 가능한 능동 학습을 기반으로 한 비지도 및 반지도 학습 방법

Caleb Vununu

부 경 대 학 교   대 학 원   IT 융 합 응 용 공 학 과

요    약

최근 다양한 영역에서 성능 측면의 딥 러닝 연구가 활발히 진행되면서 광범위한 빅데

이터의 사용이 가능해졌다. 점점 더 많은 산업 또는 의료 분야에서 지능형 시스템들은

수천~수만 개의 데이터로부터 학습된 기계 학습 또는 딥 러닝 알고리즘으로 추출된 정

보를 기반으로 한다. 특히 딥 러닝 기반 방법은 정확성과 효율성을 위해 지나치게 많은

양의 데이터를 필요하므로, 지능형 시스템을 구축하는 데 필요한 데이터의 수는 계속

해서 기하 급수적으로 증가할 것이다. 이와 같은 상황과 더불어 데이터 라벨링의 문제

가 제기된다. 대부분의 딥 러닝 응용 프로그램, 특히 의료 분야에서는 지도 학습

(supervised learning)을 기반으로 한다. 지도 학습은 매우 우수한 식별력의 결과에

도달하지만, 수천~수만 개의 레이블이 지정된 데이터들을 보유해야 한다. 그러므로 기

하 급수적으로 증가되는 과업의 학습 시스템에서 데이터 라벨링의 문제점들이 나타나

게 된다. 

지도 학습의 높은 식별 성능을 유지하면서, 데이터 라벨링 과정이 필요없거나 감소

시킬 수 있는 비지도 학습과 반지도 학습에 이르기까지 다양한 학습 방법에 대한 연구

가 필요하다. 본 연구에서는 HEp-2(Human Epithelial type-2)의 인간 상피 유형

세포에 대한 분류 과업에 중점을 두고, 비지도 학습과 반지도 학습에 대한 서로 다른

시나리오를 기반으로 인공지능 학습 모델을 제안한다.

첫 번째 제안 모델은 딥 클러스터링(deep clustering) 기반 지도 학습 모델로, 모

델의 종단(end-to-end) 간 학습을 수행하기 위해 라벨링 데이터가 전혀 필요하지 않
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는 완전 비지도 학습(fully unsupervised learning) 방법이다. 딥 클러스터링은 기존

클러스터링 방법과 딥 러닝 구조를 결합한 것으로, DCAE(Deep Convolutional 

Autoencoder)의 중간에 잠재 공간(latent space)의 특징들을 모든 학습 과정에서 클

러스터링하는 계층을 결합한 것이다. 제안한 딥 클러스터링은 다음과 같은 주요 특징

을 가진다. (1) DCAE가 쉽게 식별할 수 있는 잠재 특징들을 생성할 수 있도록 한다.

(2) DCAE의 복원이 극대화되지 않는 기존 SOTA(state-of-the-art)의 딥 클러스

터링 방법과는 달리, DCAE의 복원이 최대화되는 어텐션(attention) 기반 딥 클러스

터링 아키텍처로 설계된다. (3) 딥 클러스터링의 잠재 특징들에 대한 복원 정확도 영

향을 분석한다.

두 번째 제안 모델은 데이터 라벨링 과정을 완화하면서, 설명이 가능한 능동 학습

(explainable active learning) 기반의 준지도 학습 방법이다. 능동 학습은 사용 가능

한 모든 데이터에 레이블을 지정할 필요없이, 전체 모델의 정확도를 최대화하는데 도

움이 되는 제한된 수의 데이터를 선택하는 것으로 구성된다. 제안한 방법에서는 라벨

링이 필요한 데이터를 선택하기 위하여 사전 선택된 Explainable AI (XAI) 방법에 의

해 생성된 관련성 맵(Relevance Map)이 사용하여, 능동 학습을 재정의한다. 제안한

능동 학습 방법은 다음과 같은 주요 특징을 가진다. 1) 데이터 선택 과정이 기존 능동

학습 방법에서와 같이 모델의 정확도에 의존하지 않기 때문에 성능에 무관하게

(performance-agnostic) 과업을 수행할 수 있다. 2) XAI를 사용함으로써, 모델의

전체 평가에 기여할 수 있는 데이터 선택 과정의 설명 가능성을 보장한다.

제안한 딥 클러스터링 기반의 비지도 학습 방법과 설명 가능한 능동 학습의 반지도

학습 방법은 기존 HEp-2 세포의 공개 데이터 셋에 대하여 광범위하게 테스트되었다.

이들 실험 결과로부터 본 연구의 주요 공헌은 다음과 같다.

제안한 딥 클러스터링 모델의 경우 (1) DCAE의 복원을 강화하기 위해 풀링색인

저장(pooling indices storage), 복사와 연결(copy and concatenation), 어덴션 기

반 네트워크(attention based network) 등의 다양한 학습 기술들을 적용하며, 딥 클

러스터링 SOTA 방법보다 우수한 복원 정확도를 가짐을 확인하였다. (2) 실험으로부

터 DCAE의 복원 성능이 클러스터링 정확도에 대한 영향을 분석하였다. 분석으로부

터, DCAE의 우수한 복원 성능이 학습된 잠재 특징들의 품질 향상됨을 확인하였다. 제
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안한 어텐션 기반 네트워크 모델이 기존의 handcrafted features 보다 우수한 품질을

가지며, HEp-2 세포 분류 과업에서 지도 학습 방법과 유사한 수준인 데이터 셋 중 하

나에서 97.56 %까지 도달함을 확인하였다.

제안한 설명 가능한 능동 학습의 경우 (1) 기존 방법에서 모델의 출력을 사용하는

대신 XAI 기반 관련성 맵 기반의 데이터 선택 방법을 제안함으로써 설명 가능성의 잇

점을 제공한다. 이는 딥 러닝 모델이 제기하는 해석성 문제의 맥락에 매우 중요한 성질

이다. (2) XAI 기반 데이터 선택 방법이 매우 적은 수의 라벨링된 데이터로부터 모델

의 성능을 향상시키는 데 기여한다. 실험으로부터 20%에 불과한 훈련 데이터만으로

부터 제안한 방법이 대규모 HEp-2 세포 데이터 셋에서 92.77 %의 정확도를 가졌으

나, 랜덤 선택 방법 및 기존 선택 방법들은 각각 82 %와 90 %의 정확도를 가짐을 확

인하였다.
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Pukyong National University

Abstract

In the recent years, the progress of deep learning in terms of performance in various areas has 

enabled the extensive use of big data. More and more intelligent systems, either in industrial or 

medical areas, are based on the information extracted by machine learning algorithms from 

thousands of data. As deep learning based methods require an excessively large amount of data 

in order to be efficient, we can expect that the number of data needed in order to build intelligent 

systems will only continue to increase exponentially. This situation poses a challenge in terms 

of data labeling. In fact, most of the deep learning applications, especially in the medical area, 

are based on the supervised learning. Even though the supervised learning paradigm reaches 

tremendous results in terms of discrimination, the necessity of having thousands of labeled 

images represents a serious drawback for this kind of learning system. 

The aim of the present study is to explore different methods, from deep clustering to semi-

supervised learning techniques, that can completely eliminate or substantially diminish the need 

of data labeling process while maintaining a high performance in terms of discrimination. Our 

study focuses on the classification of the different types of the Human Epithelial type-2 (HEp-

2) cells. We propose two models that are based on different scenarios. 

The first model is based on an unsupervised learning paradigm (scheme). We can say that 

the method is fully unsupervised in the sense that there is no need of labeled data in order to 

perform an end-to-end training of the model. On that purpose, we use deep clustering, a 

technique that combines conventional clustering methods with deep learning structures. A 

clustering layer is incorporated in the middle of a deep convolutional autoencoder (DCAE) in 
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order to perform clustering on the latent space’s features at every iteration of the training process. 

This technique allows the DCAE to produce latent features that are easily discriminable. 

Furtherly, unlike in the actual state-of-the-art deep clustering methods, where the reconstruction 

of the DCAE is not maximized, we propose a novel architecture for deep clustering, named 

attention-based deep clustering, where the DACE’s reconstruction accuracy is efficiently 

maximized. Finally, for this first model, we present a systematic analysis of the results in order 

to explore the influence of the reconstruction accuracy on the latent features. 

The second model is based on a semi-supervised learning scheme. We adopt the techniques 

of active learning in order to alleviate the data labeling process. Active learning consists of 

applying some methods in order to select, among the thousands of available data, only those 

that really need to be labeled. It consists of selecting a limited number of informative data that 

can help to maximize the overall model’s accuracy without the exigency of labeling the totality 

of the available data. In this work, we redefine active learning by proposing a data selection 

process based on explainable artificial intelligence (XAI). Relevance maps produced by some 

pre-selected XAI methods are used in order to find the informative data that need to be labeled. 

This proposed active learning scheme is performance-agnostic, since the data selection process 

does not depend on the accuracy of the model like in the conventional active learning methods. 

Secondly, by using XAI, we ensure the explainability of the selection process, which can 

contribute to the overall understating of the model. The two proposed models, the deep 

clustering and the explainable active learning, are extensively tested on the existing HEp-2 cell 

public datasets. 

The key contributions of the present work can be summarized as follows. For the deep 

clustering model, (1) we propose different techniques (pooling indices storage, copy and 

concatenation and attention network) in order to boost the reconstruction of the DCAE. Our 

method outperforms the state-of-the-art deep clustering method in terms of reconstruction 

accuracy. (2) We investigate if the reconstruction quality can affect the clustering accuracy. (3) 

We demonstrate that a better reconstruction of the DCAE increases the quality of the learned 

latent features. Our best model (attention network) outperforms the conventional handcrafted 

features and reaches similar level (97.56% on one of the datasets) with the supervised learning 

methods in terms of discrimination of the HEp-2 cells. 

For the proposed explainable active learning, (1) we propose a new definition of the selection 

method. Instead of using the model’s output, as normally done in the conventional methods, we 

propose the use of the relevance maps. (2) Following the obtained results during the experiments, 

this selection method provides better results and, more importantly, has the advantage of the 
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explainability. This is very important in the context of interpretability issues posed by the deep 

learning models. (3) We demonstrate that, using our proposed active learning method, an XAI-

based selection contributes to boost the performance of the model even with a quite limited 

number of labeled data. With only 20% of the training data, the discrimination results achieve

92.77% of accuracy in one of the large HEp-2 cell dataset, while random and conventional 

selections give, respectively, 82% and 90%.



1

I. INTRODUCTION

1.1 Research motivation

In the past decade, deep learning has proven to be very efficient in different kinds 

of applications. Since at least the beginning of the past decade, many researchers in 

various areas have adopted deep learning in order to tackle many different kinds of 

problems. Problems in computer vision include analysis of medical images also. We 

know that deep learning-based models require thousands of images. 

Since 2014-2015 and the “revolution of depth”, it has been proven that the 

performance of models using deep learning can increase with the availability of the 

data. Which means that, not only you need a quite huge amount of data in order to 

construct a deep learning-based model in the first place but, also, the performance of 

your model can increase if you use more and more data. As we can see in Fig. 1, 

compared to other machine learning techniques, the performance of deep learning-

based methods can really reach tremendous limits in case you use many data. 

Fig. 1. Data importance in deep learning.

In case of the diagnosis of autoimmune diseases, for example, one of the most 

important steps in the computer-aided diagnosis (CAD) systems is the automatic 

classification of the images representing the different human epithelial of type 2 (HEp-
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2) cell types [1]. During the past decade, researchers have proposed numerous different 

methods for the automatic classification of HEp-2 cellular images. As a normal pattern 

recognition problem [2], HEp-2 cell image classification methods comprise mainly two 

distinctive steps: feature extraction and discrimination (referred also as classification). 

Moreover, two different approaches can be separated in the literature: conventional 

machine learning methods based on handcrafted features and the deep learning methods 

based on the automatic feature learning approach. 

Methods based on the conventional machine learning scheme typically present a 

certain feature extraction approach followed by a certain classification model. The 

feature extraction part utilizes some specific information supposed to contain the 

inherent characteristics of the data. Conventional handcrafted features cover different 

areas of computer vision pre-processing techniques. And, finally, the performance of 

these approaches specifically depends on the discrimination potential carried by the 

chosen features. 

The second group of methods concerns the deep learning-based ones. The first 

advantage of the deep learning-based features is to provide an automatic way of feature 

learning that does not depend on the subjective choice of the researcher. Deep learning 

has proven to be effective in many different areas. And, many researchers in the CAD 

literature have adopted the deep learning paradigm over the past decade. Especially in 

the HEp-2 cells classification literature, handcrafted features were completely 

supplanted by the deep learning-based ones. 

The most important point to note about these deep learning-based methods is that 

they all utilize the supervised learning paradigm. The supervised learning approach has 

the exigency of having images labeled manually by the experts in order to train the 

network. This can represent a drawback for these methods, knowing that deep learning 

structures necessitate thousands of images. Labeling manually this huge quantity of 

images can represent a quite challenging and burdensome task. On the other hand, the 

unsupervised learning paradigm presents the advantage of performing the feature 

extraction without the need of any labeled data during the training.

In our previous work [3], we investigated an unsupervised learning scheme for the 

HEp-2 cell classification. However, only the feature extraction part was completely 
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undertaken in an unsupervised learning way. The created features were given to a 

nonlinear classifier that learned with the use of the manually labeled data. Thus, while 

the feature extraction was undertaken in an unsupervised way, discrimination was still 

required to be supervised. The first contribution of the present work is to propose a 

scheme where the feature extraction and the discrimination parts are both performed in 

a strictly unsupervised paradigm.

We adopt the deep convolutional autoencoder (DCAE) as the principal feature 

extractor. The DCAE takes the original images as inputs and learns how to reproduce 

them via an encoding–decoding structure. Unlike in our previous work, where the 

features learned by the DCAE were extracted and then utilized as the inputs of a 

nonlinear classifier, we propose to embed a clustering layer in the DCAE. The 

clustering layer will learn, in every single step of the training process, how to 

automatically discriminate the latent representations produced by the DCAE. 

The principal aim of this work is to present discrimination methods for the HEp-2 

cell images that minimize the need of the labels. For that purpose, we first propose an 

unsupervised learning method that uses deep clustering and, secondly, a semi-

supervised learning method that uses explainable artificial intelligence (XAI). In terms 

of contributions, we present a deep clustering method that focuses on the reconstruction 

quality and we present a quite detailed investigation about the effects of the 

reconstruction quality on the clustering performance. We investigate how the 

autoencoders’ reconstruction process can affect the clustering process. 

In terms of contributions for the second method, we present an active learning

technique that completely abandons the use of the model’s output and we try to 

formulate a new selection process that can be explainable. In fact, we use the relevance

maps (also referred as relevance maps or attribution maps) generated by the XAI 

methods and try to utilize them for the selection process. Detailed experiments are 

conducted on the HEp-2 cell public datasets in order to evaluate the effectiveness of 

the proposed original selection method.
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1.2 Thesis plan

In chapter 2, the literature review part, we discuss in details the conventional and 

state-of-the-art methods for the two subjects. Firstly, in section 2.1, we present a 

general review of different conventional unsupervised learning methods. Then, in 

section 2.2, we introduce the concept of deep clustering. A general review is made 

about deep clustering by analyzing the differences between “conventional clustering” 

and “deep clustering” methods. Note that we also highlight the existing differences 

between deep learning-based clustering and deep clustering.

In section 2.3.1, we introduce and discuss in general the basic concepts of 

explainable artificial intelligence (XAI). In section 2.3.2, we introduce the concept of 

relevance maps and discuss about the different methods than can help to generate them. 

In section 2.3.3, we present succinctly different methods that can help to evaluate these

relevance maps. In section 2.4, we introduce the general concept of active learning and 

also we present a brief review of the conventional active learning methods. 

In section 2.5, our aim was to give a brief overview of the different applications 

of unsupervised learning methods in the area of medical image analysis. Since our 

experiments concentrate on these kinds of images, especially the HEp-2 cell images, 

we want to give a perspective of how unsupervised learning methods are utilized 

nowadays in this area. In section 2.6, we go through the detailed literature review of 

the different methods presented for the classification of the HEp-2 cells. 

In fact, in the HEp-2 cell classification literature, the quasi-majority of the methods 

prefer to tackle this problem by using the supervised learning way. Our goal is to prove 

that unsupervised learning methods in this area, if properly designed, can achieve at 

least the same performance as the actual state-of-the-art supervised learning methods.

The third chapter will present the proposed methods. The first part (section 3.1) 

will present in details each step of the formulation of the proposed deep clustering 

method. We present also different types of networks that can be used with our loss 

functions. In the second part (section 3.2), we present our proposed active learning 

method. 

The fourth chapter presents the experimental results. Here also, we divided the 

chapter into two sections. Section 4.1 presents in details the results of the proposed 
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deep clustering method. We present the results step by step for the different cases 

discussed in chapter 3. We also conduct in the same time an exhaustive comparative 

study with the other methods in the literature. 

In section 4.2, we present the results obtained by applying our proposed active 

learning method. Here also, we present the results by steps, by showing how the 

performance can increase while adopting the proposed selection method. 

Because the proposed active learning method involves explainable artificial 

intelligence, we first show briefly how we selected the relevance maps’ methods. Some 

experiments are conducted before the active learning scheme precisely in order to select 

the best XAI methods that produce relevance maps that are really relevant for our data 

and trained models.
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II. LITERATURE REVIEW

2.1 Unsupervised learning: General view

In machine learning, unsupervised learning regroups all the methods and 

techniques that learn the inner characteristics of the data without any supervision. In 

case of discrimination tasks, the supervision comes from the use of labels. On the 

contrary, the absence of labels obligates the learning method to explore and reveal, by 

itself, all the elements that define the essence of the original data. In this brief review, 

we separate the unsupervised learning methods into two main groups: methods that 

perform cluster analysis and the ones that perform dimensionality reduction.

Cluster analysis (or just clustering) is the unsupervised version of classification, 

which means that clustering is the process of performing discrimination without the 

help of the labels. We can directly see here the main advantage of clustering in deep 

learning. Creating the labels can represent a quite burdensome task. Moreover, the 

labeling process has the risk of introducing biases in the data. Especially in the case 

where the labeling process is accomplished by the humans, there is a serious risk of 

introducing biases related to human behaviors in the data.

Clustering is broadly divided into two categories of algorithms: partitional 

clustering and hierarchical clustering. Partitional clustering consists of partitioning 

(separating) the data into different non-identical groups. One of the most popular 

algorithm in this category is the famous k-means clustering [4]. Different groups of 

data are constructed using some similarities or even dissimilarities measures. 

Hierarchical clustering [5] consists of constructing the clusters in a recursive 

fashion, using the previously established clusters. This recursive technique can be 

accomplished in two different ways. The first one is the bottom-up manner, where 

every single data is first considered as a cluster itself before a recursive merging process 

is conducted in order to merge clusters that are identical. The second way is the top-

down manner, where the totality of the data is first considered as one single cluster 

before a recursive splitting process is conducted in order to divide the first big cluster 

into smaller clusters. 



7

Two big drawbacks can be noted for these conventional clustering methods. The 

first limitation is that, as for their counter-parts in the supervised learning paradigm, 

they all rely on the discriminability of the features. As a normal pattern recognition 

technique, discrimination in the conventional machine learning models, whether it is 

classification or clustering, comes after the most important part of the process: the 

feature extraction. Fig. 2 shows an illustration of the pattern recognition framework. 

As said before, the first limitation of the afore-mentioned clustering methods is that 

their performance depends exclusively on the extracted features. If the features are 

easily discriminable, we can expect high performance but, otherwise, the clustering 

performance will be highly limited.

Fig. 2. Pattern recognition framework.

This situation can be explained by the second drawback of these conventional 

clustering methods. Their learning is static. Which means that the feature space does 

not change during the learning process, only the clusters change. The features are fixed, 

precisely because they were learned before the clustering process.

Deep learning offers the possibility of automatic feature learning process. In 

general, deep learning structures are mostly well suited for classification (i.e. 

supervised learning) tasks. Clustering with deep learning mostly invokes what we call 

dimensionality reduction. Dimensionality reduction consists of reducing the 

dimensions of the original data in a shorter, more precise and less redundant form. 

Besides deep learning, popular dimensionality reduction methods include principal 

component analysis (PCA) [6] or t-distributed stochastic neighbor embedding (t-SNE) 

[7]. With deep learning, reducing the dimensions of the data can be accomplished by 
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some structures that map the original data into some spaces, usually denoted as latent 

spaces, before mapping them back to their original input space.

Structures that perform this type of operation are called autoencoders (AEs) [8-

10]. They comprise two parts: the encoder that compresses the dimensions into a 

smaller one, and the decoder that uses the compressed version of the data and 

transforms it back to the original form. We can say that the encoder maps the data from 

their original input space to the latent space while the decoder maps the features from 

the latent space back to the input space. Stacked autoencoders (SAEs) [8,11] denote the 

structures where many autoencoders are “stacked” on top of each other in order to form 

a sufficiently deep architecture. 

Another variant of autoencoders is the denoising autoencoder (DAE) [12]. Unlike 

with normal AEs, where an identity learning is performed, the DAE takes a noisy 

version of the input and learns how to reconstruct the original clean data. AEs and 

DAEs perform learning using the same loss function, which goal is to minimize the 

differences between the original data and the reconstruction. The only difference is that 

AEs take as input the original data while DAEs take the corrupted version of the input. 

An illustration of the DAEs is depicted in Fig. 3. In Fig. 3, � , �� and � denote, 

respectively, the input data, the corrupted version of the input and the latent features.

Fig. 3. Illustration of the denoising autoencoder.

Another variant of AEs is the sparse autoencoder [13]. It has the same structure 

with AEs with the only difference that the features that it should learn must have the 
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property of sparsity. Sparsity denotes the constraint that most of the units in the hidden 

layer (the latent features) should be inactive, i.e., they should be zero.

Another popular structure of autoencoders is the deep convolutional autoencoder 

(DCAE) [14]. As suggested by Guo et al [15], DCAE is well suited for images because 

it has the capability of avoiding the distortion of the local structure of the original 

images, unlike AEs and its variants. DCAE also uses the encoding-decoding process 

with the advantage of utilizing the two-dimensional structure of the convolutional 

neural network (CNN). An illustration of the DCAE is depicted in Fig. 4, where we can 

clearly distinguish the encoder and the decoder.

Fig. 4. Illustration of the deep convolutional autoencoder (DACE).

Deep learning-based clustering mostly consists of two steps. In the first step, as 

part of the feature extraction process, the input data is reduced in the lower dimensions 

by using one of the structures described above. In the second step, as part of the 

discrimination, one of the clustering methods previously described is utilized in order 

to construct the clusters. Even though this approach utilizes efficiently the automatic 

feature learning mechanism afforded by deep learning, the principal drawback is the 

same with the conventional clustering methods: the learning still remains static. As we 

can clearly understand, the feature extraction is performed separately with the 

clustering. Consequently, there is no direct link between the features that are learned 

and the clustering that is performed later. The process denoted by deep clustering tries 

specifically to solve this problem of disparity between the feature learning and 

clustering processes. The next section introduces the basic concepts of deep clustering. 
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2.2 Deep clustering

Deep clustering regroups the methods that try to perform dimensionality reduction 

and clustering at the same time. This direct connection between the two processes 

allows the adopted deep learning structure to explicitly learn features that can be easily 

clustered. Furtherly, as opposed to the static learning mentioned in the previous section, 

this connection between the two processes triggers a learning that can be qualified as 

dynamic. Dynamic in the sense that the features used for clustering change every time 

according to the feedbacks of the previous iterations. We can separate these kinds of 

approaches into two distinct groups: pseudo-classification methods and deep embedded 

clustering methods.

The particularity of the pseudo-classification methods is that they utilize CNN in 

the same way as used by the supervised learning methods, with the big difference that 

the labels used for updating the CNN’s parameters come from the clustering process. 

Different works that adopt this approach can be found in [15-19]. We named these 

kinds of methods as pseudo-classification because they mimic the concept of 

classification by minimizing the differences between the network’s outputs and the 

“pseudo-labels” generated by the clustering algorithm, similarly as done in the 

classification works.

One of the state-of-the-art works that uses this approach has been proposed by 

Caron et al. [20] where the authors have connected a clustering module in top of the 

output layer of a CNN. Normal cross-entropy loss is used in order to minimize the 

differences between the CNN’s outputs and what they have called “pseudo-labels”. 

These pseudo-labels are precisely the cluster’s assignments computed using the k-

means loss function. In other words, their method alternately computes the cluster 

assignments with k-means by using the output values of the CNN and subsequently 

updates the CNN’s parameters by using the previously computed cluster assignments 

as the labels. We have used this method in our comparative study as part of the pseudo-

classification approach.

The second group of works utilize the different types of autoencoders described in 

the previous section. These methods are called deep embedded clustering because they 

embed a clustering layer in the middle of the autoencoders whose purpose is precisely 
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to cluster the latent features learned during the training. At every iteration, the 

clustering layer performs clustering on the features produced by the autoencoders. This 

type of approach is used in different manners by Yang et al. [17] and Guo et al. [15], 

the first for the clustering of randomly generated data and the latter for the 

discrimination of the images representing the handwritten digits. The authors in [17] 

have embedded a clustering layer in the SAEs, while the authors in [15] have utilized 

the DCAE. Other works using similar idea can be found in the interesting review made 

by Min et al. [19].

Of great interest, Dizaji et al. [21] have utilized a dual DCAE. Two different 

encoders are used in their work: the first, called “clean encoder”, takes the original 

images as inputs and the second, denoted as “noisy encoder”, takes the noisy version 

of the inputs. Both the clean and noisy encoders are connected to a single decoder 

whose purpose is to learn how to reproduce the original inputs. This work represents 

one of the state-of-the-art of the second group of deep clustering methods. We have 

used this work for the comparative study as part of the deep embedded clustering 

methods.

Our proposed deep clustering method belongs to this second group, because we 

have also adopted the DCAE as our deep learning model. One interesting point about 

these afore-mentioned embedded clustering methods is that the reconstruction process 

is not really taken into account. Even though interesting discussions are provided in 

[15] about how to minimize the distortion of the local structures of the original images, 

the reconstruction task is performed only by the DCAE’s loss. The main contribution 

of the present work is to propose different architectures designed specifically in order 

to tackle the problem of the reconstruction performance. 

As mentioned in the introduction, the second method of this work utilizes some 

parts of the field of explainable artificial intelligence. The next section presents the 

concept behind explainable AI.
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2.3 Explainable artificial intelligence

2.3.1 Overview

Despite the fact that the deep learning-based models have achieved tremendous 

performances in various areas, it has been reported that they have not been significantly 

deployed in the clinical area. The reason beyond that is the “black-box” nature of those 

models [22]. The meaning behind of the term “black-box” here is the fact that it is 

generally difficult to clearly explain the decisions made by the deep learning models. 

By comparison, machine learning models like decision trees are easily explainable 

since we can visualize progressively the decisions made by the model by exploring the 

graph representing the tree.

In medical areas, explainability is crucially important because a medical diagnosis 

needs to be transparent and understandable in order to gain the trust of the physicians 

as well as the patients. Explainability here refers to the fact that the users, in this case 

the physicians and the patients, should be able to fully understand the underlying 

mechanisms that make a given artificial intelligence (AI) system to produce a given 

decision (in this case, a medical diagnosis). The black-box nature of deep learning 

models does not permit such explainability. That is the reason why many researchers 

in the past decade have been working on many different ways of making deep learning 

models, and AI systems in general, to be explainable. All of these works are regrouped 

in the area called explainable AI (XAI). A detailed analysis of the terminologies, 

concepts and usage cases of XAI is provided in the work by Arrieta et al. [23]. 

As schematically illustrated in Fig. 5, the question to answer by a given XAI 

method is the reason why the deep learning model gives any specific output. In the 

example shown in Fig. 5, where the input image represents a cat, the deep learning 

model correctly outputs the class “cat”. For instance, the question that will try to answer 

an XAI algorithm is the reasons that motivated the model to produce this particular 

output.
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Fig. 5. Schematic representation of XAI methods.

Various different methods can be used in order to explain the decisions made by

the models. Some of these methods are based on expert knowledge [24], interactions 

with the user using textual justifications [25], or “similar images”-based explanations

[26], where similarly labeled images are provided to the user as a reason for making a 

particular prediction for a given image.

The group of the methods that are of a great interest for us in this study is the group 

called “attribution-based method”. This ensemble of methods tries to produce a map, 

called “attribution or saliency or relevance” map (in this study, the term relevance map

is preferably used), that shows the most important features that were used by the model 

in order to predict a given class. In other words, relevance maps designate the maps 

that show, in case of images, the pixels that contributed the most to the output of the 

model. In case of the example shown in Fig. 5, the XAI algorithm must produce a map 

of the pixels that contributed the most to the output “cat”. To the question “why does 

the model predict it as “cat”? The relevance map gives the following response: 

“because of these particular pixels that are located at these particular positions”.

As reported by Singh et al. [22], a majority of the works in the medical imaging 

literature that are focused on explainability opts for this kind of explanation, i.e., they 

utilize the relevance maps as the principal explanation of the decisions made by the 

deep learning models. In the next sub-section, we discuss about some of the methods 

that can help to produce the relevance maps.
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2.3.2 Relevance maps

The goal of a relevance map is to assign a contribution (relevance) value to all of 

the features that led the network to produce a given output. One way of producing these 

maps is the fact of performing perturbation on the input image. This idea comes from

the hypothesis that every single input feature singularly contributes to the final output 

of the model. Thus, removing a feature in the input should consequently affects the 

output of the model. In this scenario, evaluating the effect of a given feature on the 

output of the model can just consist of removing the feature and analyzing how this 

removal affects or changes the final output of the model. Contributions are assigned 

according to the amount of changes that occurred after the removal of the feature. In 

other words, features are said to have a big contribution if their removal from the input 

vector causes a big change in the output of the model. On the contrary, features are said 

to be “irrelevant” if their removal does not cause much of change in the output. In 

practice, the features will be ranked according to the amount of changes caused by their 

removal.

This kind of method can be implemented by removing, masking or modifying 

certain input features, then by running the forward pass, which consists of giving the 

modified input to the model, and finally measuring the changes that occurred to the 

output. This technique was primarily applied by Zeiler and Fergus [27] to the CNN. 

We can easily understand that this method is computationally expensive. As reported 

in [22], occluding all the input features one-by-one and running the forward pass every 

time after a particular occlusion takes a huge amount of time.

Another way of producing relevance map consists of back-propagating the 

relevance from the output layer to the first layer, which contains the input vector. This 

idea is the most used in the relevance map literature. The works utilizing this idea are 

called “backpropagation-based methods” and many of them can be found in [28-33].

Two backpropagation-based methods have our particular interest. The first one is 

the layer-wise relevance propagation (LRP) proposed by Bach et al. [34]. Using the 

idea explained above (backpropagation), the LRP algorithm first runs a forward pass 

using a given input in order to produce the output. In the second step, this output is used 

as the starting point of a propagation that goes layer after layer until we reach the input 
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layer. At the input layer, we can have the contribution values of every single feature. 

Readers are encouraged to refer to [34] for further detailed explanations of the LRP 

algorithm. 

Examples of the relevance maps produced by this method are shown in Fig. 6. Fig. 

6 (a) shows an example image of a nucleolar with a very low contrast (HEp-2 images 

with this kind of contrast are called “negative intensity” image. Details about this 

situation are developed in section 3.2.2) and Fig. 6 (b) shows the relevance map 

produced by the LRP technique for this particular image. We can remark how the most 

important characteristics of this cellular type are clearly exposed, even though they are 

not very clear in the original image because of the low contrast. In terms of relevance, 

pixels that have strong contributions are shown in red, with the strongest ones being in 

yellow, while the “irrelevant” pixels are shown in black. 

(a) (b)

(c) (d)

Fig. 6. Examples of relevance maps produced by LRP: (a) a nucleolar image with poor contrast, 

(b) its relevance map, (c) a nucleolar image with strong contrast, and (d) its relevance.
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Fig. 6 (c) shows a nucleolar with a strong contrast (positive intensity HEp-2 image). 

In Fig. 6 (d), we see the relevance map produced by the LRP for this image. Again here, 

we can notice that most of the important features of this HEp-2 cell type are highlighted 

by the relevance map. Note that all of these maps were produced using our deep parallel 

residual networks that will be presented in details in section 3.2.2.

Another backpropagation-based method that has our interest is the DeepTaylor 

algorithm proposed by Montavon et al. [35]. As for the first method described above, 

this technique also utilizes the forward pass in order to produce the network’s output 

and then runs a backward pass from the output layer to the input layer in order to 

produce the relevance scores for every single feature. This method has the particularity 

of using the Taylor decomposition (that is the reason why the authors have named their 

method as DeepTaylor) in order to compute the relevance scores. Readers are also 

encouraged to refer to [35] for further explanations of this method.

Examples of this relevance map method are shown in Fig. 7. Fig 7 (a) and Fig. 7 

(c) both describe the same images shown in Fig. 6 (a) and Fig 6 (c). Fig. 7 (b) shows 

the relevance map produced by the DeepTaylor method for the negative intensity 

nucleolar image and Fig. 7 (d) shows the relevance map produced by the same method 

for the positive intensity nucleolar. We can see that, compared to the relevance maps 

produced by the LRP (Fig. 6), the DeepTaylor maps in Fig. 7 display much more 

important features. Beside these differences, we can notice that the most relevant 

features (pixels that tend to be yellow) are mostly located at the same positions for the 

two methods. 
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(a) (b)

(c) (d)

Fig. 7. Examples of relevance maps produced by DeepTaylor: (a) a nucleolar image with poor 

contrast, (b) its relevance map, (c) a nucleolar image with strong contrast, and (d) its relevance.

As previously said, we will use these relevance maps in the formulation of our 

active learning method. But, before going any further, the question that comes in mind 

about these maps is: how can we evaluate them? How can we know for sure that the 

features pointed by the maps are really relevant? The next section will briefly discuss 

about the evaluation of the relevance maps. 

2.3.3 Evaluation of relevance maps

The question of the evaluation of the relevance maps is one of the important topics 

discussed in the XAI literature nowadays. Even though this question remains 

challenging today, a trivial solution can easily come in mind from the definition of 

relevance map given in the previous section. In fact, researchers have defined a 

relevance map as the map that shows the features that contribute the most to the model’s 

output. A trivial solution for evaluating the relevance maps can just be to remove those 
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features that are said to be relevant and then see how this removal changes the behavior 

of the model. Intuitively, this solution postulates that if a feature is important, its 

removal should sufficiently impact the output.

Samek et al. [36] were the first to propose this idea in order to evaluate the

relevance maps. Their idea stipulates that a relevance map can be seen as an ordered 

sequence. In fact, as explained before, methods like LRP and DeepTaylor assign a 

relevance score to every single feature. Those scores can be ordered from the most 

relevant to the least relevant in order to produce an ordered sequence. 

Their idea, called “most relevant first”, consists of masking (by applying some 

perturbations) the features by following the order of their relevance, so that, the most 

relevant features are masked (or removed) in priority. And then, the next step is to give 

the modified data to the network and see how these perturbations impact the output of 

the model. If the impact is significant, we can conclude that the relevance map really 

showed the most important features of the data. If the impact on the output is 

insignificant, we can conclude the contrary. The expected impact here is the 

degradation of the model’s performance. The authors in [36] postulate that if we 

remove the most relevant features of the data and give those modified data to the model, 

we should expect a serious degradation of the accuracy.

As pointed by Hooker et al. [37], this perturbation-based evaluation scheme poses 

certain problems. The most important problem is that machine learning frameworks in 

general are based on the hypothesis that the training data (seen during the fabrication

of the model) and the testing data do share some similar distribution. When we remove 

some parts of the original data, their distribution necessarily changes, an effect denoted 

as “shift in distribution” in [37]. The question is then: how can we be sure that the 

performance degradation comes from the information removal (the fact of removing 

the most relevant features) and not from the shift in distribution effect?

This question is crucial since the evaluation of the relevance map is based on the 

fact that the model’s performance should decrease after we remove the features that 

were designated as relevant. In order to solve this problem, Hooker et al. [37] proposed 

what they have called “ROAR”, for remove and retrain. The idea is simple: after 

removing the most relevant features, we should retrain and re-test the model by using 
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the perturbed dataset. In this case, and only in this case, if the performance decreases,

it will not be because of the shift in distribution but because of the information removal. 

Still in [37], another experiment is called “keep and retrain” (KAR), where we do 

the opposite: we keep the features that were pointed as relevant, and remove the 

irrelevant ones and then retrain and re-test the model. In this case, the model’s 

performance is expected to not decrease because, precisely, only the most relevant 

features were kept in the data and the irrelevant ones were removed. 

As said before, the formulation of our active learning method includes the use of 

the relevance maps. We have used the ROAR and KAR setups in order to select the 

best relevance map methods for our networks. Results of these experiments are 

presented in details in section 3.2.4. Readers that are really interested in this topic can 

find another evaluation technique, called “sanity checks”, proposed by Adebayo et al.

[38]. In the next section, we present succinctly the basic ideas behind active learning.

2.4 Active learning

Active learning aims to alleviate the labeling process by allowing to select only 

the data that should be given to the learning model. The goal is to find which are the 

data that carry the most informative details that can help us to build the classifier. This 

selection can be done by finding the data for which the model is the most uncertain. 

This is referred as uncertainty sampling [39]. The idea is to find an uncertainty measure 

that can help to evaluate the confidence of the model and then use that measure in order 

to select only the data for which the model is the most uncertain. Select in order to 

annotate them. Instead of annotating (labeling by hands) all the available data, we can 

just annotate the ones for which our model is the most uncertain about. 

Different uncertainty measures have been utilized in the literature. Among the 

most used, we have the entropy [40], which can measure the certainty level of a 

classifier by using the probabilities (scores) that are attributed to each class by the 

classifier. For a given instance � , the entropy can be evaluated by the following 

equation:
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�������(�) = � �(��|�) log �(��|�)

�

���

, (1)

where the values �(��|�) represent the classes’ probabilities (or classes’ scores) as 

outputted by the classifier for the data � and � is the number of classes. When the 

entropy is very high for a given data, it means that the classifier evaluates equally the 

different classes for that data. In other words, the classifier is uncertain about which 

class to assign to the input data �. 

Another way to measure the uncertainty of a model is to compute its amount of 

confidence for a given instance. This method is referred as least confidence-based 

sampling [39,41]. For a given data �, the confidence � is given by

� = argmax
�

�(��|�), (2)

where the values �(��|�) represent also the classes’ probabilities. We know that for 

every single instance, the classifier outputs a vector containing the probabilities 

associated to each class, represented here by �(��|�) . The confidence denoted in 

Equation (2) finds the maximum score. Which means that it finds the class for which 

the model assigns the maximum probability value. Which gives us the amount of 

confidence of the model for every single data. The idea is to select the data for which 

the model is the least confident, which means the data for which the values � are the 

lowest. In practice, we can sort the data according to their confidence � from the 

smaller to the larger, and then prioritize the annotation in that manner. Note that entropy 

also can be thought of as the amount of confidence. When the entropy is high, it means 

that the confidence is low and vice versa. 

Another method, called the margin sampling [42], consists of computing the 

difference between the highest score and the second highest score in the vector of 

probabilities. In this case, the confidence � is given by 

� = �����|�� − �����|��, (3)

where �����|��, and �����|�� are the highest and the second highest probabilities, 

respectively. Similar with the previous case, the data with the lower � values are 
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prioritized for the labeling. The difference computed in Equation (3) enquires us about 

the confidence of the model. If its value is high, it means that one of the class has a 

much bigger probability compared to the other and, on the contrary, when its value is 

small, it means that the model evaluates equally the two classes, which means that the 

model is uncertain. 

The least confidence and margin sampling methods work similarly and, unlike the 

entropy, are both less suitable for the multi-class classification. In fact, in Equation (3), 

only two classes are taken into account, while the entropy, depicted in Equation (1),

utilizes all the classes’ probabilities. Other uncertainty sampling methods can be found 

in [43-45]. 

The selection process in conventional active learning is performed through an 

iterative process depicted in Fig. 8. The different steps listed in Fig. 8 are explained in 

the following points:

(1) The first step consists of having an initial set of labeled data. These data are 

usually selected randomly among the all of the unlabeled data. 

(2) Use the initial labeled data in order to train our model.

(3) Use the trained model on the unlabeled set in order to generate the probabilities 

for every single data.

(4) Compute the confidence with the probabilities by using one of the methods 

described above.

(5) Select the data with the lowest confidence and annotate them.

(6) Mix the newly annotated data with the initial labeled set. Get back to step (1).
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Fig. 8. Schematic representation of the conventional active learning method.

This iterative process can continue until we annotate the totality of the data. If the 

goal is to alleviate the labeling process, the iterative labeling can stop when the labeling 

limitation, called “sampling budget”, is reached. 

As we can clearly see in the different active learning steps described above, the 

selection process is based on the model’s output. In fact, in step (4), the confidence is 

measured by using the probabilities outputted by the machine learning model. In this 

work, we propose a new selection method for active learning. Our selection will utilize 

the relevance maps. 

The next section presents briefly some of the works that utilize unsupervised 

learning methods for the medical image analysis.
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2.5 Unsupervised learning in medical images analysis

As discussed previously, the majority of the methods in the literature prefer to 

adopt the supervised learning paradigm for the applications using deep learning in 

medical images analysis. However, since the past two decades, several works tried to 

propose unsupervised learning approaches for the medical images. Most of these works 

utilize the SAEs and some of them prefer to adopt the CAEs, as they are more suited 

for images. It should be noted that, all of these methods propose a feature extraction 

process that is strictly unsupervised. SAEs and CAEs provide end-to-end learning for 

building features in an unsupervised learning way. 

Nonetheless, for the majority of them, the discrimination part is conducted in a 

supervised learning way. Most of the methods propose to use the features learned by 

the SEAs or the CAEs as the inputs of a nonlinear classifier in a second step. Some

works, for the discrimination part, prefer to adopt one of the clustering methods 

described in section 2.1.

Different methods that utilize the SAEs for the classification of the Alzheimer’s 

disease using the images produced by the magnetic resonance imaging (MRI) system 

can be found in [46-48]. Different others methods for classification or segmentation of 

medical images utilizing the SAEs can be found in [49-52].

As described in section 2.1, another popular version of the SAEs is the sparse 

autoencoder. Stacked sparse autoencoders (SSAEs) have also been utilized in the area 

of medical images analysis. As an example, Xu et al. [53] have used the SSAEs for the 

detection of nuclei on breast cancer images. Different other methods that use the SAEs 

for different types of classification tasks can be found in [54-56] and for segmentation, 

in [57,58]. For the different other methods, users are encouraged to refer to [59-66].

We mentioned in the introduction that our target data are the HEp-2 cell images. 

In the next section, we present a quite detailed review of the different methods, from 

the handcrafted features to the deep learning-based ones, that are used in the HEp-2 

cell classification literature.
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2.6 HEp-2 cell classification in literature

As mentioned before, the classification of the different types of the HEp-2 cells is 

one of the most important steps in the diagnosis procedure of autoimmune disease. 

Performing this classification manually represents an arduous task and can cost a lot of 

time during the diagnosis process. Moreover, the manual analysis of the HEp-2 cell 

patterns poses a certain problem in terms of consistency of the diagnosis results, since 

the complexity of the images complicates the task for the pathologists. This is the 

reason why the automatic discrimination of the different types of the HEp-2 cell images 

is more than necessary in order to help pathologists during the diagnosis procedure. 

Which makes the classification of these cells to be one of the important parts of the 

computer-aided diagnosis systems.

Different methods have been presented for this task in the literature. As a pattern 

recognition problem, the classification of the HEp-2 cells is usually tackled with a 

feature extraction part followed by a discrimination process. Feature extraction consists 

of extracting (or selecting) the information that is supposed to help differentiating the 

different cellular types. The second part of the process consists of utilizing the obtained 

features as the inputs of a discriminator (a classifier). Different hand-crafted features 

have been proposed for this purpose and many of them can be seen in the review by 

Foggia et al. [67]. Various descriptors like the discrete cosine transform [68,69], the 

scale-invariant feature transform [69,70], the local binary patterns [71-73] or many 

other different statistical features have been highlighted in the literature [74-79]. A 

multi-class support vector machine (SVM) is mostly used as the discriminator for these 

methods.

The automatic feature learning process afforded by deep learning has largely 

supplanted the use of these hand-crafted features. In addition to the fact that the 

subjective choice of the features was a disadvantage for these methods in terms of 

consistency, their limitations in terms of the discrimination results explain why they 

have fallen out of use and been supplanted by the deep learning-based methods. In fact, 

nowadays, the quasi majority of the works in the literature utilize these methods in 

order to demonstrate their superiority over the conventional handcrafted features. 
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One of the pioneers works to adopt the CNN for the HEp-2 cell classification was 

the method proposed by Foggia et al. [2] at the International Conference on Pattern 

Recognition (ICPR) HEp-2 cells classification contest in 2012. Since then, multiple 

works have proposed the use of CNN models in many different ways [80-85]. Among 

the most noticeable, Li and Shen [86] have presented a customized CNN model, called 

the deep residual inception network (DRI-Net), which associates the residual 

connection from the ResNet [87] and the “Inception modules” utilized in the GoogleNet 

[88]. Also among the most noticeable, Shen et al. [89] have used the ResNet approach 

but with a much deeper residual module with several cross connections between the 

layers. Their model was named the deep-cross residual network (DCR-Net) and they 

have tested a huge data augmentation process in order to boost the classification 

accuracy. 

Interestingly, Majtner et al. [90] have proposed the use of generative adversarial 

networks [91], the deep convolutional generative adversarial networks specifically 

(DCGAN) [92], in order to generate realistic artificial HEp-2 images. The goal was to 

augment the existing datasets with the artificial images generated by the DCGAN. Li 

and Shen [93] have extended the idea presented in [86] by enlarging the convolutional 

kernels’ size and adding more convolution operations with different dilations within 

the DRI modules. The short-cut connection is made outside the DRI module, which 

means that the residual connection is made between the input and the final output of 

the module, while in the previous version [86], different residual connections were 

made between the layers inside the DRI module. 

Transfer learning consists of using an already trained network for a new task. Fine-

tuning the trained network consists of updating its parameters using the new dataset. 

This technique was used for the HEp-2 cells classification by Phan et al. [94], who 

utilized a model, the VGG-16 network [95], that was previously trained on the 

ImageNet dataset. Some others methods utilize a pre-trained network only as a feature 

extractor. The high-level features extracted from the pre-trained CNN model are then 

used in order to train a multi-class SVM. In the HEp-2 cell classification literature, this 

technique (transfer learning without fine-tuning) has been adopted in different ways by 

the works discussed next. Lu et al. [96] have used a pre-trained VGG-16 network as a 
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feature extractor while Nguyen et al. [97] proposed the use of an ensemble of networks. 

Another work using this idea was presented by Cascio et al. [98] with the use of the 

AlexNet [99] as the feature extractor. For all of them, the discrimination was performed 

by an SVM, or by both an SVM and a k-nearest neighbor classifier, as done in [98].

An interesting transfer learning approach, named cross-modal transfer learning, 

was proposed by Lei et al. [100]. Cross-modal transfer learning consists of updating 

the parameters of the pre-trained network (fine-tuning) in two steps: first, by using a 

quite small dataset, then, second, by performing the update on the targeted dataset, 

which is supposed to be much larger and more complex than the first one. With the 

particularity that the two datasets have to be similar, which means that they have to 

share the same feature domain. In fact, most of the pre-trained CNN models were 

trained on the ImageNet dataset, which contains images that are far different with the 

HEp-2 cell images. The idea of cross-modal transfer learning is like performing a pre-

fine-tuning (on the small dataset) before a final fine-tuning (on the targeted dataset) in 

order to smooth the parameters’ updating process during the training. The authors in 

[100] have used ResNet-50 as the network to be fine-tuned. The small dataset utilized 

was the ICPR2012 dataset [2], and the targeted dataset was the ICPR2016 dataset [101], 

also known as the 13A dataset in the literature (in the remaining part of this work, the 

denomination 13A dataset is preferably used). 

The most important point to understand about this review is that the researchers in 

this field, both for the handcrafted features-based and deep learning-based methods, as 

described above, prefer to adopt, quasi unanimously, the supervised learning paradigm 

in order to tackle the HEp-2 cell images classification task. As mentioned before, the

supervised learning-based methodology necessitates the presence of labeled images. 

And, even though the discrimination performance that we can obtain by using this 

methodology remains remarkable, the necessity of constructing labeled datasets that 

contain a considerable number of images represents a serious concern. In fact, deep 

learning-based methods require the presence of thousands of images. And, the process 

of labeling by hands these images can eventually represent a quite onerous task in the 

future, when we will have to create more expanded datasets, which can be a drawback 

for this methodology. 
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On the contrary, our work aims to propose both an unsupervised learning and 

semi-supervised learning approaches for the HEp-2 cell classification task. The next 

chapter presents in details our proposed methods. The first section (section 3.1) presents 

the unsupervised learning method that is based on the deep clustering concept. The 

second section (section 3.2) will present the semi-supervised learning approach that

utilizes the concept of active learning. 
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III. PROPOSED METHODS

3.1 Proposed deep clustering method

3.1.1 Method overview

As said before, in our previous work [3], we have investigated the unsupervised 

learning scheme for the HEp-2 cell classification. But, only the feature extraction part 

was completely done in an unsupervised learning way. The created features were 

furtherly given to a nonlinear classifier that learns with the use of the manually labeled 

data. Which means that, while the feature extraction was done in an unsupervised way, 

the discrimination part had still remained supervised. The first contribution of this 

present work is to propose a scheme where the feature extraction and the discrimination 

parts are all performed in a strictly unsupervised paradigm.

We adopt the deep convolutional autoencoder (DCAE) as the principal feature 

extractor. The DCAE takes the original images as inputs and learns how to reproduce 

them via an encoding-decoding structure. Unlike in our previous work, where the 

features learned by the DCAE were extracted and then utilized as the inputs of a 

nonlinear classifier, we propose to embed a clustering layer in the DCAE. The 

clustering layer will learn, in every single step of the training process, how to 

automatically discriminate the latent representations produced by the DCAE. As 

discussed in section 2.2, this technique is called deep clustering and we have presented 

different works that utilize it. 

Unlike in [15], where the efficiency of the reconstruction process performed in the 

DCAE’s decoder is assured only by the model’s loss function, the principal

contribution of the present work is to utilize some techniques in order to minimize the 

loss of the spatial information of the original input images and, thus, to ensure a certain 

preservation of the local structure of the original pixels, which will probably ensure a 

better reconstruction. In fact, the down-sampling process incorporated in the DCAE 

and performed by its encoder causes the loss of the spatial details inside the network. 

As a contribution, we investigate in this work how the quality of the reconstructed 

images can affect the quality, thus, the discrimination potentiality, of the latent 

representations learned by the DCAE.
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We have investigated the effectiveness of the proposed deep clustering method on 

two benchmark datasets of the HEp-2 cell classification, the 13A dataset and the 

SNPHEp-2 Cell dataset [69]. The obtained results demonstrate that the proposed 

strictly unsupervised learning method outperforms by far the handcrafted features and 

performs at least at the same level with the state-of-the-art supervised deep learning 

methods. The schematic illustration of the proposed method is shown in Fig. 9. 

Fig. 9. Illustration of the proposed method. A clustering layer is embedded in the convolutional 

autoencoder in order to learn how to cluster the latent representations. X is the original cellular 

image and X’ is the reconstruction.

3.1.2 Deep embedded clustering network

Autoencoders refer to unsupervised learning-based structures that are mainly used 

for the purpose of dimensionality reduction. Dimensionality reduction, which can also 

be utilized as a feature extraction, consists of finding a better representation of the data 

in lower dimensions. Deep neural network (DNN)-based autoencoders consist of two 

principal structures: the encoder and the decoder. Given an input signal x, with � ∈ ℛ�, 

the encoder takes it and transforms it into a contracted representation y, with � ∈ ℛ�, 

with � < �, by utilizing the transformation function � in such a way that

� = g(��),  (4)

where � englobes all the different parameters of the encoder, which can be a set of 

weights and biases. After the encoder transforms the input signal x into y using 

Equation (4), the decoder takes the contracted representation y as input and uses the 
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same transformation function � but, in this time, for the purpose of reconstructing the 

original signal x. Here, let z be the output of the decoder. Then, we have

� = g(���), (5)

where �’ englobes all the different parameters of the decoder, which can also be a set 

of weights and biases. Finally, the network, composed of both the encoder and the 

decoder, should learn the parameters � (encoder) and �’ (decoder) in such a way that 

the reconstructed signal z equals to the input vector signal x. Which means that the 

network should learn the parameters that help minimizing the most the existing 

differences between the input x and the final network’s output z.

In case of images or signals that are represented in a two-dimensional (2-D) 

fashion, this described encoding-decoding process can be realized with the use of 

another DNN-based structure, the so-called deep convolutional autoencoder (DCAE). 

Because it takes 2-D signals, the DCAE is likely to be more efficient than the SAEs as 

far as images are concerned. In the DCAE, the encoder performs the down-sampling 

process, while the decoder will perform the opposite operation, the up-sampling (See 

Fig. 9 for the illustration of the encoding-decoding process). The down-sampling can 

be realized with the use of the convolutional and/or pooling layers. On the other hand, 

the up-sampling is done by the backwards convolution (transposed convolution), often 

called “deconvolution”, and/or by the backwards pooling, often denoted as “unpooling” 

operations. The final solution of the DCAE is given by

(�, �’) = argmin
�,��

�(��), (6)

where z denotes the reconstruction (decoder’s output), x represents the original image 

(encoder’s input) and the function �(∙) represents the cost function that measures the 

differences between x and z. In this work, the adopted cost function is the squared 

Euclidean distance described as

�(��) = �‖�� − ��‖�
�

�

���

(7)
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where the value N represents the total number of data. The network will learn the 

parameters � and �’ by minimizing the cost function represented in Equation (6).

Some of the early works that aimed to incorporate the clustering process in the 

DNN can be found in the methods previously cited in section 2.2. For example, the 

authors in [16] and [17] have proposed the idea of connecting a clustering module to 

the output layer of a DNN and to learn the DNN’s parameters and the clusters’ centers 

at the same time. In their works, only the clustering loss is used during the parameters’ 

updating process, as the reconstruction is not a concern. And the fact that they have 

adopted the plain network, the SAEs, which takes one-dimensional data as inputs, poses 

the problem of the preservation of the local structure of the pixels of the original images. 

Guo et al. [15] have proposed to use the DCAE, instead of the SAEs, with the 

clustering layer incorporated in the middle of the network, instead of connecting it to 

the output layer, as done in [16,17]. But, in their work, the reconstruction problem is 

solved only by adding a reconstruction loss to the clustering loss. In our work, as we 

will explain later, in addition of using a reconstruction loss, we also apply some 

techniques that can assure a better reconstruction and investigate how it can affect the 

quality of the latent representations.

Yang et al. [102] have utilized the SAEs and embedded a clustering module (or 

layer) in the middle. They have used a global loss function that incorporates the 

reconstruction and the clustering losses. In their work, the k-means clustering cost is 

used as the clustering loss. In general, the global loss function L for the DCAE can be 

expressed as

� = �� + ��� , (8)

where �� is the reconstruction loss and �� denotes the clustering loss. The parameter �

is used to balance the importance of the clustering loss in the global loss. If � is greater 

than one, the clustering loss will affect more the global loss, otherwise, the 

reconstruction loss will have more incidence during the training. The reconstruction 

loss �� is defined to minimize the differences between the output of the decoder, which 

is the final output of the network, and the original input image. This function is defined, 
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in our case, in Equation (7). And, by using the k-means approach, the clustering loss 

can be defined as

�� = �‖�� − ���‖�
�

�

���

,
(9)

where the constant N denotes the number of data. �� is a k-dimensional vector 

representing the cluster assignment vector of the input �� . Note that all the elements of 

�� are zero except the element corresponding to the cluster index of the input, whose 

value is 1. C is M×k matrix, with M being the dimension of the input �� and k represents 

the number of the clusters. The matrix C contains the clusters’ centroids that must be 

learned. Note that the centroids have the same dimension with the input data. 

Minimizing Equation (9) can be thought of as solving the following problem:

min
�� ∈ ℛ�×��,( �� ∈ ℛ�)

�‖�� − ���‖�
�

�

���

such that ��,� ∈ {0,1}, ��
��� = 1,

(10)

where ��,� represents the elements of the assignment vector �� , with j varying from 1 to 

k, and �� represents a k-dimensional vector containing only the values 1. Note that with 

��
��� = 1, the condition that every element of �� should be zero except one element, 

whose value should be 1, is satisfied. 

In our situation, the input x in Equation (9) and Equation (10) is precisely the latent 

representations (features) learned by the DCAE, as opposed in [20], where the input x

represents the output of the CNN. Which means that, at iteration t of the training process, 

the clusters’ centroids contained in the matrix C and the clusters’ assignments are 

updated according to the latent representations x produced by the DCAE at the same 

iteration.

By minimizing at the same time the reconstruction and the clustering losses, we 

can expect two important effects for our approach. Firstly, we expect that the DCAE 

will learn to produce features that are k-means-friendly, which means that the feature 

space produced by our network is expected to have the property of being easily 

separated by distinctive clusters. Secondly, the computed centroids at each iteration 
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will be forced to follow the distribution of the features, which reinforces the probability 

of producing quite distinctive clusters.

The architecture of the proposed DCAE is shown in Table 1. We can 

distinguishably notice the two parts of the network: the encoder, which reduces 

gradually the spatial size of the input (see in the 6th column) while increasing the 

volume’s depth (see the 3rd column, the number of feature maps); and the decoder, 

which gradually increases the spatial size of the input while decreasing the depth. Note 

that the size of the input image is 112×112.

Table 1. Architecture of the DCAE.

Layer Filter size
#Feature 

Maps
Stride Padding Output

Input - 1 - - 112x112

Conv 1 3x3 32 1 1 112x112

Pool 1 2x2 32 2 0 56x56

Conv 2 3x3 64 1 1 56x56

Pool 2 2x2 64 2 0 28x28

Conv 3 3x3 128 1 1 28x28

Pool 3 2x2 128 2 0 14x14

Conv 4 3x3 256 1 1 14x14

Pool 4 2x2 256 2 0 7x7

Conv 5 7x7 512 1 1 1x1

Conv 6 7x7 256 1 0 7x7

Unpool 4 2x2 256 2 0 14x14

Conv 7 3x3 128 1 1 14x14

Unpool 3 2x2 128 2 0 28x28

Conv 8 3x3 64 1 1 28x28

Unpool 2 2x2 64 2 0 56x56

Conv 9 3x3 32 1 1 56x56

Unpool 1 2x2 32 2 0 112x112

Conv 10 3x3 1 1 1 112x112
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One important drawback of the DCAE structure is the down-sampling process 

performed by the encoder. The input image is systematically down-sampled while we 

progress inside the network until we arrive at the latent representations’ space (or layer), 

after which the decoding, which means the up-sampling, begins. This has as 

consequence that the network loses the spatial information of the image layer after layer. 

By decreasing the size of the image, the local structure of the pixels is also distorted. 

This distortion complicates the reconstruction process. That is the reason why the 

preservation of the local structure of the original pixels can be essential. Using the 

reconstruction loss, as opposed to the fact of using only the clustering loss [16,17], can 

be the solution to this problem, as discussed by Guo et al. [15]. Instead, we consider 

that, if incorporating the reconstruction loss in the global loss of the network, as defined 

in Equation (8), can help in that direction, it is not the only way of assuring a better 

preservation of the spatial structure of the original pixels.

One of the techniques that can also help to minimize the loss of the cues related to 

the spatial structure of the data can be the fact of avoiding the use of big filters. As we 

can see in Table 1, all the convolution operations utilize a 3×3 filter size. Only the last 

convolutional layer from the encoder (Conv 5) utilizes a different filter size (7×7). Note 

that the 7×7 filter is used in order to produce the one-dimensional features’ layer that 

follows. Note also that the stride and padding, except for Conv 5, are used in such a 

way that the output of every convolutional layer has the same spatial extent with its 

input. That is, the convolution operations do not alter or distort the spatiality of the 

input. This property also attenuates in a certain level the loss of the information related 

to the spatiality in the encoder. The down-sampling operation is realized exclusively 

by the pooling layers. We can see, in Table 1, how every output volume of the pooling 

layer is spatially down-sampled by half. The layer in the middle of network can be 

thought of as a one-dimensional vector containing 512 components or elements. This 

layer, as we can see, contains the features of the DCAE that will be passed to the 

clustering layer in order to compute the clusters’ centroids.

Right after the 1x1x512 feature vector, the up-sampling mechanism in the decoder 

starts with the stacking of many convolutional and unpooling layers until we reach the 

original size. Note that we did not use the transposed convolution operations, except 
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for the “Conv 6”, which is the only transposed convolutional layer of the network 

precisely because it must increase the size of the 1x1x512 feature vector. All the 

remaining layers, from “Conv 7” to “Conv 10”, apply normal convolution operations. 

Besides that, every remaining up-sampling process is performed only by the unpooling 

layers, which are the opposite correspondents of the pooling layers. In Table 1, the 

unpooling layers are depicted as “Unpool n”. Here also in the decoder, the convolution 

operations do not alter the spatial dimensions of the inputs. 

The local structure preservation problem has also been faced in the segmentation 

topics, where the original image’s spatial information is more than critical [103,104]. 

We propose here to apply two techniques used in the segmentation’s problems. The 

first one is to use the position storage technique, as proposed by Badrinarayana et al. 

[103]. This technique, as illustrated in Fig. 10, consists of storing the positions of the 

selected activations during the maximum pooling process performed in the encoder. In 

the decoder, the unpooling process will exclusively consist of placing the activations at 

the stored positions and setting all the remaining values to zero.

Fig. 10. Illustration of the pooling indices storage technique. The positions of the strongest 

activations are utilized in order to produce the sparse output.
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In Fig. 11, we show the connections between the layers from the encoder and the 

decoder. The layers shown in red in the encoder are the ones that undergo the maximum 

pooling operation. While applying the maximum pooling, we store the positions of the 

strongest activations in the feature map. Note that the strongest activation here refers 

to the biggest value inside the 2×2 filter of the max pooling, as clearly depicted in Fig.

10. On the other hand, the layers shown in red in the decoder are the outputs of the 

unpooling operations and they are made by using the stored positions from their 

corresponding layer in the encoder. All these layers are filled with the sparse-kind 

outputs depicted in Fig. 10. As we can see in Fig. 11, every output of the unpooling 

layer goes through a convolution layer whose purpose will be, indeed, to densify the 

sparse representations. By using this storage technique, the network does not change 

and the architecture still remains similar with the one depicted in Table 1.

Fig. 11. The connections between the pooling layers from the encoder and the unpooling layers 

from the decoder.
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Another technique in order to assure a better preservation of the local structure is 

the use of the copy and concatenation operations, as proposed by Ronneberger et al.

[104] with the so-called Unet, for the segmentation of the cellular images. This idea 

consists of mixing, by concatenation operations, the features from the encoder and their 

corresponding features in the decoder. All of the connections are made before the 

down-sampling process. Fig. 12 illustrates the copy and concatenate process and 

provides the details of the network. We propose to use the pooling indices storage and 

the copy-and-concatenation techniques in the same time (see Fig. 12 for the final 

structure). The unpooling are done in the same way as described above.

In Fig. 12, we can remark the three main differences with the Unet. First, we did 

not use any transposed convolution. All the feature extraction process is performed by 

the convolutional layers and the nonlinearities from the ReLu. Second, the up-sampling 

operation is exclusively performed by the unpooling layers by using the pooling indices 

storage technique. Third, as expected, the final layer of our network comprises one 

single channel and represents the reconstruction of the original images, and not the 

segmentation mask. As we can see in Fig. 12, after every copy-and-concatenation 

process, we apply a convolution operation, represented by the red triangle in Fig. 12, 

whose purpose is precisely to mix up the information from the encoder and the decoder. 

When the copy-and-concatenation process increases the depth of a volume, the 

following convolution will combine the information and permit to get back to the 

original volume’s depth. The network shown in Fig. 12 has slightly the same structure 

than the one in Table 2, the only difference being the copy-and-concatenation layers. 

In chapter 4, we will discuss how all these techniques can affect the quality of the 

features and, thus, the quality of the learned clusters.

3.1.3 Deep embedded clustering with dual autoencoder

In this section, we present a modified version of the DCAE with an embedded 

clustering layer. We propose to use a dual autoencoder that performs a double feature 

extraction and clustering. Fig. 13 shows the illustration of the deep embedded dual 

autoencoder.
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Fig. 13. Illustration of the proposed dual embedded network.

This idea is slightly inspired by the dual DCAE proposed in [21] and explained in 

section 2.2. In our version, we propose to use two levels of feature extraction with the 

DCAE. The first network will take as input the original cellular image and will learn to 

reconstruct it by using the decoding function depicted in Equation (5). The original 

image contains the intensity and geometric information concerning the cells. Our 

assumption is that the high-level features learned by this network will encapsulate the 

intensity and geometric information about the cellular patterns.

The second network will take the gradient magnitude of the image as the input. In 

every single pixel of the image, the gradients ∇�����⃗ , evaluated using the following equation

∇�����⃗ =  
��

��
�� + 

��

��
�� , (11)

compute the rate and the direction of the changes in the intensity variation. In Equation 

(11), I represents the original image and the unit vectors �� and �� represent the two 

axis of the image, the horizontal and vertical directions along which we compute the 

changes in pixel level. The gradient magnitude is the magnitude of the vector ∇�����⃗ , whose 

estimation, following Equation (11), can be written as
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�(�) = ��
��

��
�

�

+ �
��

��
�

�

(12)

where G(I) matrix represents the gradient magnitude of the image I.

While the encoder of the first network uses the expression denoted in Equation (4) 

in order to compute its output, in the second network, we replace the input x by its 

gradient magnitude. Hence, the output of the encoder from the second DCAE can be 

re-written as

� = �(� ∙ �(�)), (13)

where �, again, englobes all the different parameters of the encoder. Note that the 

reconstruction process of the second DCAE is done in the same manner as the one of 

the first network. Equation (5) is used for computing the output of the decoder, and 

Equations (6) and (7) are used in the same manner in order to find the best parameters 

that minimize the most the differences between the decoder’s output and the original 

cellular image. Which means that the second network takes as inputs the gradients and, 

using them, try to reconstruct the original cell image.

The second assumption made here is that the gradient maps will allow the second 

network to seize and understand the local changes in intensity level of the cellular 

images. And, as previously mentioned, the first network that takes the original images 

will seize the intensity and geometric information of the cellular images. The 

architecture of both networks is also depicted in details in Table 2, which was discussed 

in details in the previous section. It is quite important to note here that the method 

proposed in this section is just an indication of how can efficiently utilize the concept 

of dual autoencoder. Results using this method are not shown in this work since it is 

not our main proposed method. Readers who are interested in this technique are 

encouraged to refer to [3].
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3.1.4 Attention-based deep clustering

We propose another architecture in order to boost the reconstruction consistency 

of the network.  In the previous sections, we discussed how the pooling indices storage 

and the copy-and-concatenation techniques can help to ensure a better reconstruction 

for the decoder. In this part, we continue in that way by proposing a system of three 

reconstructions performed in parallel. This idea comes from the attention networks 

proposed by Wang and Shen [105] where three streams are utilized in order to generate 

the attention map. Attention maps predict, in an image, the locations where human’s 

eyes focus the most. Details about this attention prediction can be found in [105].

Note that in the attention generation methods, the final “attention maps” are 

computed in a supervised learning way, similarly as done in the generation of the 

segmentation mask [103,104]. Cross-entropy is used for the purpose of minimizing the 

differences between the network’s output and the labels denoting the “attention map”. 

In this work, the attention-based network is utilized in an unsupervised way, just like 

for a normal DCAE.

Fig. 14 and Fig. 15 demonstrate the idea of attention-based deep clustering. We 

can clearly distinguish the three different streams in the two figures. The encoder has 

one stream. The idea is to apply an up-sampling process before the down-sampling

goes further in the encoder. We already discussed previously about the disadvantages 

of the down-sampling process. An intuitive understanding of the proposed attention-

based network is the minimization of the down-sampling’s effects by using the 

encoder’s volumes for the decoding (up-sampling) process before they lose their spatial 

dimensions. In other words, this technique consists of launching the reconstruction 

process right before the feature maps are down-sampled.
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Fig. 14. Architecture of the attention-based network.
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Fig. 15. Illustration of the proposed deep attention-based network.
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The architecture of the attention network is similar with the one used for the 

previous cases. This architecture is explained in details in the previous sections. Here, 

we can just emphasize on the fact that the reconstructions from the three different 

streams are mixed together in order to produce the final reconstruction. This mixing 

process is firstly conducted with a concatenation process. The layer named “Fusion” 

in Fig. 14 performs the concatenation of the initial reconstructions accomplished by the 

three streams. The reconstruction maps produced by the three different streams are 

concatenated and passed through a 1x1 convolution (see the layer “Conv-Fusion” in 

Fig. 14) whose purpose is precisely to mix up the information from the three streams. 

The final output will represent the final reconstruction of the network. Fig. 15 also gives 

an illustration about this fusion process. The fusion is illustrated by the green circle 

with the letter “F” in Fig. 15.

Note that in this attention-based network, the pooling storage and copy-and-

concatenation procedures are accomplished only in the first stream, the main stream. 

In the second and third streams, the pooling indices storage is not performed because 

the up-sampling process is accomplished only by the transposed convolution operations. 

And the copy-and-concatenation shortcuts are avoided in the second and third streams. 

Note that they can also be performed but we could not see any effective improvement 

in the reconstruction by adding these two procedures while they add a huge complexity 

in the network. We recall that, with all of these processes, a clustering layer is still 

embedded in the middle of the network (here, in the first stream) in order to cluster the 

features produced by the DCAE. We conduct a systematic analysis in order to see at 

which point these techniques can improve the quality of the reconstruction. At the same 

time, we will try to analyze if the reconstruction quality provided by these techniques 

will, in fine, improve the quality of the learned features, thus, improving the quality of 

the final clustering process.
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3.2 Proposed active learning method

3.2.1 Method overview

In this part, we present the semi-supervised learning approach that we used. The 

semi-supervised learning proposed here is based on active learning. In the previous 

chapter (see section 2.4), we presented in details the idea behind active learning. Since 

this kind of method is based on the supervised approach, we start by presenting the 

networks that we have used in that purpose. We have proposed the dynamic networks 

for the cellular images, since we have used these images as the principal data for the 

experiments. 

Thus, in the first part of this section, we present in details the reason why we have 

used the dynamic networks. We present the justification beyond this choice according 

to the nature of the data that we have. In the first paragraphs of the next section, we 

present the characteristics of the HEp-2 cell datasets. After that, we present the 

networks that were designed specifically in order to tackle the problems faced in the 

HEp-2 cell classification literature.

After this step, we present the first part of the active learning scheme using the 

proposed networks. This first active learning scheme is based on the conventional way 

of selection. In the last section, we introduce our newly developed active learning 

scheme that uses the XAI for the selection process.

3.2.2 Deep parallel residual networks

The first step of our method is to create the parallel networks that we will use for 

the transfer and active learning. HEp-2 cell datasets have the particularity of denoting 

a significant heterogeneity. This is caused by the existence of mainly two different 

levels of fluorescence illumination (also denoted as intensity levels). Images shown in 

Fig. 16 illustrate the disparities caused by the inhomogeneous fluorescence illumination. 

These disparities are the intra-class variations and the inter-class similarities. Intra-class 

variations denote the variations within the same cellular type. Fig. 16 (a) shows a 

randomly selected positive intensity Nucleolar image, while Fig. 16 (b) shows a 

randomly selected negative intensity Nucleolar image. We can remark the strong 
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disparities in terms of intensity between the two images even though they belong to the 

same class (intra-class variations). The same dissimilarities can be noticed between the 

two images depicted in Fig. 16 (c) and Fig. 16 (d), in case of the Nuclear membrane 

cell type.

(a) (b)

(c) (d)

Fig. 16. HEp-2 cellular images from the 13A dataset. (a) A positive intensity Nucleolar cell; (b) 

A negative intensity Nucleolar cell; (c) A positive intensity Nuclear membrane cell; (d) A 

negative intensity Nuclear membrane cell.

Inter-class similarities, on the other hand, denote the similarities that exist between 

the different classes. In fact, the images shown in Fig. 16 (b) and Fig. 16 (d) exhibit 

strong similarities in terms of intensity even though they belong to two different cellular 

types. This heterogeneity-related problem really adds complexity in the HEp-2 cell 

classification task. As a matter of fact, different methods have been proposed in order 

to specifically classify the different fluorescence intensity [106,107]. Furtherly, Nigam 

et al. [108] have proposed to perform an intensity-based classification prior to the cell 

classification itself in order to alleviate the heterogeneity during the cell type 

classification. Our proposed parallel deep residual networks try to tackle this 

heterogeneity-related problem in one step (unlike in [108]) and by performing cell type 

classification (unlike in [106] and [107]).
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We propose to use the different wavelet coefficients from the 2D-DWT 

decomposition as the inputs of different networks in parallel. This idea was fully 

discussed and its effectiveness demonstrated in [109]. We have upgraded the idea by 

alleviating the learning (training) process by reducing the total number of needed 

networks and, consequently, the total number of the parameters to handle. The 2D-

DWT in the first level produces 4 different matrices of coefficients. The approximation 

coefficients, which represent the low-frequency information of the inputs, and the three 

different details coefficients, which represent the high frequency components of the 

input signal. The three details coefficients are the horizontal, vertical and diagonal 

details. Unlike in [109], where four different networks were utilized in parallel for all 

the four coefficients, we sum up all the details coefficients in order to incorporate all 

the high frequency components in one single channel. Thus, as illustrated in Fig. 17, 

two networks are trained in parallel: the first network takes the approximation 

coefficients as the inputs, and the second network takes the sum of all the three details 

coefficients as inputs.

Fig. 17. Illustration of the proposed parallel networks: The approximation (A) and the sum of 

details, represented by D, are given to two networks. A feature fusion is performed in the late 

layers. Note that n here is 3 and represents the three details components.
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The approximation coefficients will bring a certain homogenization in terms of 

the intensity. This will drastically reduce the intra-class variations by forcing both the 

positive and negative intensity images to share a similar level of gray intensity. Images 

shown in Fig. 18 illustrate the intensity-based homogenization produced by the 

approximation coefficients.  Fig. 18 (a) shows a randomly selected positive intensity 

Fine speckled cell image from the SNPHEp-2 dataset. Fig. 18 (b) shows its 

corresponding approximation coefficients (extracted from the first level of the 2D-

DWT decomposition). Fig. 18 (c) shows a randomly selected negative intensity Fine 

speckled cell image and Fig. 18 (d) shows its corresponding approximation coefficients. 

We can clearly remark the homogenization that occurred between the images in terms 

of the intensity of the gray level by comparing their approximation coefficients. This 

homogenization will drastically reduce the intra-class variations of the dataset.

(a) (b)

(c) (d)

Fig. 18. Approximation coefficients of the HEp-2 cellular images from the SNPHEp-2 dataset. 

(a) A positive intensity Fine speckled; (b) Its approximation coefficients; (c) A negative 

intensity Fine speckled; (d) Its approximation coefficients. Note the effective homogenization 

in terms of gray level intensity between the positive (b) and negative (d) images.

Secondly, the details coefficients will bring homogenization in terms of the 

geometrical shape of the cells. In fact, the details coefficients capture the high 
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frequency components of the image, which means that all the gray variations inside the 

image can be highlighted. These small changes in intensity indicate the shape and the 

boundaries of the cells. Images depicted in Fig. 19 illustrate how the high-frequency 

components can help to expose the cellular shape and boundaries from the positive and 

negative intensity images. 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 19. Details coefficients of the HEp-2 cellular images from the SNPHEp-2 dataset. (a) A 

positive intensity Homogeneous; (b)-(e) its horizontal, vertical, diagonal details and their sum, 

respectively. (f) A negative intensity Homogeneous; (g)-(j) its horizontal, vertical, diagonal 

details and their sum, respectively. The original images in (a) and (f) have a size of 112 × 112. 

Their respective detail coefficients in (b)-(e) and (g)-(j) are all downsized by half (56 × 56). All 

the images in this figure were identically resized for the purpose of visualization.

In Fig. 19 (a), we have a positive intensity Homogeneous cell image. Images 

shown in Fig. 19 (b)-(d) represent its different details coefficients, the horizontal, 

vertical and diagonal details, respectively.  The image shown in Fig. 19 (e) is the result 

of summing all the details. We can remark that the sum incorporates all the information 

from the three details coefficients. Similarly, in Fig. 19 (f), we show a negative intensity 

Homogeneous cell image. In Fig. 19 (g)-(i), we have the three details coefficients and 

Fig. 19 (j) represents their sum. Note how the two sums (Fig. 19 (e) and Fig. 19 (j)) 

highlight the Homogeneous cell’s shape, boundaries and internal gray variations. 

Because these three elements differ from a cellular type to another, we can expect two 

main contributions from the sum of details. First, they will bring a certain heterogeneity 
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between the classes by forcing all the negative intensity images to exhibit typical 

characteristics of their cellular type (shape, boundaries and gray variations). This will 

contribute to the reduction of the inter-class similarities.

  Consequently, as the second contribution, they will bring a certain intra-class 

homogenization by forcing the positive and negative intensity images from the same 

class to exhibit similar patterns (shape, boundaries and gray variations), as 

demonstrated by Fig. 19 (e) and Fig. 19 (j). This will contribute to the reduction of the 

intra-class dissimilarities, reduction also achieved by the approximation coefficients, 

as previously discussed. The approximation and the sum of details will be used to feed 

two residual networks in parallel.

Fig. 20 shows the architecture of the residual networks. Network 1 takes the 

approximation coefficients while Network 2 takes the sum of the details, as explained 

above. There are five residual blocks in total. Each network has two residual blocks

and another is used after the feature fusion from the two networks. Every residual block 

has two convolutional layers, two rectified linear unit (ReLU) layers, and two batch 

normalization layers. 
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Fig. 20. Architecture of the residual networks. The residual blocks are shown in green. Here, 

“Conv”, “BN”, “ReLU”, “GAP”, and “FC” denote, respectively, the convolutional layer, the 

batch normalization layer, the rectified linear unit (ReLU) layer, the global average pooling 

layer, and the fully connected layer. “Pooling” denotes the maximum pooling layer and 

“Concatenation” denotes the layer that performs feature concatenation from the two networks.
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Two main observations need to be made about the architecture in Fig. 20. First, 

all the convolutional layers preserve the spatial dimensions of the input volume and 

only the pooling layers perform the spatial down-sampling of the input. Second, the 

feature fusion is performed by the 1×1 convolutional operation that directly follows 

the concatenation. After concatenating the layers from the two networks, we obtain a 

volume of size 14×14×128, which is then passed through the 1×1 convolutional layer 

whose purpose is precisely to mix (fusion) the information from the two networks. The 

output volume of the final residual block has the dimensions of 14×14×128. This 

volume is given to the global average pooling (GAP) layer in order to obtain the final 

one-dimensional feature vector of size 1×1×128.

The feature vector will be given to a softmax classifier that uses the function 

defined as follows:

�(�)� =
���

∑ ����
���

, for � = 1, … , �, (14)

where N is the number of the classes and the values z are the inputs of the softmax 

function. The values �(�)� are the outputs of the function and represent the 

probabilities of every class. The parallel networks learn by back-propagating the error 

[110] and using the cross-entropy error function defined by

� = − � ��log��(�)��

�

���

, (15)

where the values yj denote the actual labels of the N classes for a given data and the 

values �(�)� are the ones computed using Equation (14).

These parallel networks will be first trained with a small dataset, which contains 

only around one thousand training instances. After this initial training process, the 

networks will be utilized as the pre-trained model in order to perform transfer learning 

coupled with active learning on the targeted dataset, which contains more than sixty 

thousand instances. Instead of using networks that were pre-trained on ImageNet, as 

done by most of the works that utilize transfer learning [94,96-98], we propose to use 

our own networks, which are pre-trained purposely by using the HEp-2 images. 
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The advantage is that using a network that has previously seen similar images 

during transfer learning allows to alleviate the parameters’ update. Because the two 

datasets share the similar image domains, we expect them to share many general 

characteristics. The early layers from the networks, which learn low-level and non-

specific features, can be fixed during the fine-tuning. And only the late layers, which 

learn domain-specific features, can be updated (see Fig. 21 for the illustration). This 

will smooth and ease the first step of our active learning scheme consisting of fine-

tuning the pre-trained model on a very small number of selected data. 

Fig. 21. Illustration of fine-tuning. Only the late layers will be trainable during the fine-tuning. 

The different shades of green indicate how the specificity of the features increases layer after 

layer. From left to right, we have the general features to the task-specific features.
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3.2.3 Active learning using the pre-trained parallel residual networks

For clarity, we summarize the different steps of the proposed active learning 

scheme in Table 2. Fig. 22 illustrates these different steps. This process is repeated as 

much as possible and stopped until we reach our limitations in terms of labeling. As we 

can remark, the process can be continued until the totality of the data are labeled. But, 

in our work, we impose to ourselves a limit in terms of the possibility of labeling. In 

fact, the goal of this work is to demonstrate that active learning-based labeling can 

really help to limit the need of labeled data while maintaining a fair performance. In 

our experiments, we explore different hypothesizes concerning the limitations that we 

have in terms of labeling. For example, if we suppose that we can only label 10% of 

the 64,000 available data, we stop the process when we reach 6,400 annotated data and 

evaluate the networks over the testing data. All the details concerning the parameters 

of the networks, the values k and m, and the datasets are discussed in the next section. 
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Table 2. The different steps of selection using the conventional active learning scheme.

Step 

no.
Actions Comments

1
We train our networks using the 

small dataset.

The small dataset used here is the 

SNPHEp-2 dataset which contains 

around 1000 images for training.

2

Using the targeted dataset, we select 

randomly and label k samples. We 

fine-tune the networks by using these 

k samples as the training data. As 

described in Section 3.2.2, the early 

layers remain fixed and we only 

update the late layers.

Note that by choosing the number k, we 

select randomly (as opposed to select by 

using active learning) the data to label. In 

fact, we want this number k to be as small 

as possible, in order to not complicate the 

labeling process. This is made possible 

by the pre-training made in step 1 using 

the small dataset. 

3

We use the fine-tuned networks over 

all the remaining data in order to get 

their probability scores. We compute

the confidence (entropy) using 

Equation (1) for each data. 

Equation (2) and Equation (3) can also be 

used to estimate the confidence.

4

We rank the data according to their 

confidence, from the lowest to the 

highest.

Note that in Fig. 22, we show the data 

with the lowest confidence (highest 

entropy) in the bottom for the illustration 

purpose. 

5

We select the first m data in the 

ranking in step 4 and annotate them. 

These are the data for which the 

networks are the most uncertain 

about.

The number m is chosen according to the 

limitations that we have in terms of 

manual labeling.

6

The newly annotated data in step 5 

are mixed with the k data that were 

previously labeled in step 2 in order 

to create the newly annotated set. 

The newly annotated dataset contains 

now � + � data.

7
We fine-tune again the networks 

using this newly annotated dataset

After this step, we get back to step 3 (use 

the newly fine-tuned networks to 

compute the scores and the confidence).
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Fig. 22. Illustration of the different steps of the proposed active learning scheme. LSHEp-2 

stands for the large-scale HEp-2 dataset.
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3.2.4 Explainable active learning

In this part, we present a novel active learning scheme based on XAI. The core 

idea in this scheme is to use the relevance maps produced by the XAI algorithm as the 

focus of the analysis. As developed in section 2.4, conventional active learning methods 

utilize the direct outputs of the network, which are the probabilities associated with 

each one of the classes, as the reference for measuring or estimating the uncertainty of 

the model. 

Also, as discussed previously, deep learning models are qualified as “black-box” 

in the sense that it is very difficult to interpret the decisions made by the model. By 

using the model’s output, we only transfer the non-interpretability of the model to the 

selection procedure. Because the model’s output is, by itself, non-interpretable, any 

selection process based on the model’s output is also, by definition, non-interpretable. 

The main and principal reason of our choice of utilizing the relevance maps is to make 

the selection process (or decision) as interpretable as possible, which means, we want 

the oracle to understand why a data and not another is selected in order to be annotated.

The second and also very important reason is that this selection process is 

completely task-agnostic. Selection methods that are based on the model’s output are 

task-dependent in the sense that, because we are using the model’s output, the selection 

process also depends on the nature of that output. In practice, a selection method that 

utilizes the output cannot be used, in the same manner, to models that are being utilized

for different tasks. For example, the outputs of classification and regression problems 

are fundamentally different. Thus, it is inconsistent to use in the same manner a 

selection method that is based on the model’s output for both classification and 

regression. The selection should be adapted for each one of them. 

On the contrary, a selection process that uses only the relevance maps does not 

depend on the nature of the model’s outputs. The relevance maps are constructed using 

the inner reactions of the models, which means that the XAI algorithm literally maps 

the regions (or locations) of the networks that are most excited for a given input in order 

to produce a given output. In other words, we aim to transfer the selection problem 

from the “network’s output space”, which necessarily depends on the nature of the task, 

to the “relevance map’s space”, which completely ignores the nature of the task. 
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The third reason that justifies the use of relevance maps is that they tend to not 

really be correlated with the model’s performance. We admit that, at some point, they 

can depend on the discriminability of the data. Furthermore, the most important 

assumption made here in order to motivate the choice of our proposed type of selection 

is that the original data possess some internal characteristics that make them to be 

unique. If we suppose, at the first point, that an effective discrimination is possible on 

some data, then, this proposed type of selection process is also justified. 

Why? Because the relevance maps are precisely the elements that reveal, expose 

and highlight the regions, in the original data, that made the discrimination to be 

possible in the first place. Relevance maps are the best ways to precisely focus only on 

those relevant regions that characterize the data in their category. Thus, any selection 

method that uses relevance maps will be at least as efficient as the selection based on 

the output. With the advantage of being interpretable. The illustration of the proposed 

explainable active learning scheme is portrayed in Fig. 23. We made a succinct 

description of every single step of the proposed explainable active learning in Table 3.
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Fig. 23. Illustration of the different steps of the proposed explainable active learning.
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Table 3. The different steps of the proposed explainable active learning.

Step 

no.
Actions Comments

1 Create the initially labeled data (�� , ��)
The selection is done randomly for 

this initial step.

2

Generate the relevance maps of the data 

using LRP (� = 100) or DeepTaylor 

maps.

Every data �� is then represented by its 

relevance map:

· �� → ℱ���(��): as an image or

· �� → {ℱ���(��)}: as a vector 

containing the N most relevant values

In this experiment, we represented 

the data as the whole map. Note 

that, in case there is a need of 

reducing the complexity of the 

clustering process, the second 

representation can be adopted.

3

• Construct the clusters using the maps 

ℱ���(��) as the inputs

§ Using k-means with 

�� = ∑ ∑ �[ℱ���(��), ��]�
���

�
���

§ Using Agglomerative clustering with 

average linkage where the clusters are 

merged with

ü
�

|��|∙|��|
∑ ∑ �(�, �)�∈���∈��

.

ü Note that � and � are ℱ���(��)

We used agglomerative clustering 

with the average linkage as the 

principal clustering method.

4

Compute the clusters’ centers:

�� = argmin
�∈{�}

� �(�, ��)

|�|

�

The medoids are used as the 

clusters’ centers instead of the 

means.

5
Give the unlabeled set (��) to the 

network
-

6 Step 2 is repeated for the unlabeled set. -



61

7
For every data �� in the unlabeled set, 

compute the confidence.

The confidence is redefined by 

using the distance between a given 

map and the clusters’ centers 

computed in step 4.

8
Rank the data according to their 

computed confidence.
-

9
Select the data (��) with the lowest 

confidence possible
-

10

Annotate the selected data to create the 

pairs (�� , ��)

�� represents the labels assigned 

by the oracle.

11

Mix the initially labeled data (�� , ��)���

from step (1) with the newly annotated 

set (�� , ��)

(�� , ��)���

= (�� , ��)��� ∪ (�� , ��)

The first step of the proposed scheme is to use the initially selected and annotated 

data in order to train the network. Note that we have used the deep parallel residual 

networks presented in section 3.2.2 in order to boost the discrimination potential of this 

initial supervised training procedure.

After training the networks, we use the initial group of data in order to generate 

their relevance maps. We can use the DeepTaylor or LRP maps. In our experiments, 

we mostly used the DeepTaylor maps. Those generated maps will be considered as our 

references (data). After having generated the relevance maps of the data, we construct 

the clusters of those relevance maps. In this step, we apply agglomerative clustering 

using the relevance maps as the input data. We stopped the linkage, of course, when 

we have the number of clusters corresponding to the number of classes that we have in 

our dataset. 

After we have the clusters, we can compute their centers. Instead of just using the 

mean, we used the medoid, which means that we have found the points, in the clusters, 

for which the sum of distances with all the other members of the clusters was the 

minimum. These clusters’ centers will be considered as the representations of the 
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constructed clusters. In other words, our next evaluation of the uncertainty according 

to a given cluster will be made with having the cluster’s center representing the instance 

of the cluster. 

The next step is obviously the fact of using the whole set of the unlabeled data as 

the input of the previously trained network. With the trained network in hands, we can 

generate the relevance maps of the unlabeled set. The most important part of the process 

is to compute the confidence by utilizing these generated relevance maps. In our 

proposed method, the confidence is redefined by utilizing the distance between a given 

map and the clusters’ centers computed previously. This distance is used as the 

equivalent of the network’s outputs in the conventional active learning selection

methods. Thus, we can say that, in our method, the confidence is a function of the 

distance between the relevance maps and their clusters’ centers.

Following this redefinition, the different uncertainty measures in Equation (1), 

Equation (2) and Equation (3), which were defined in section 2.4, are rewritten as 

follows. For a given instance ��, the entropy is given by the following expression:

�������(��) = � �� log ��

�

���

, (16)

where �� = �[����(��), ��]. As explained in Table 3, ����(��) represents the 

relevance map of the data ��. �� represent the clusters’ centers computed in step (4), 

with k being the number of clusters that we have. The expression �[����(��), ��]

denotes the k different distance values that separate the relevance map and the k clusters’ 

centers. Hence, in Equation (16), the distances �� replace the probabilities used in 

Equation (1). 

Following the similar idea, the confidence C from Equation (2) can be rewritten 

as 

�(��) = argmax
�

�� . (17)

Also, using the margin-sampling idea, the confidence in Equation (3) is redefined as

�(��) = ����(��) − ����(��), (18)
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where ����(��) and ����(��) are the highest and second distances, respectively. 

As we can clearly remark in Equations (16) - (18), the probabilities generated by 

the model are completely replaced by the distances between the new map and the 

clusters’ centers. A data is then considered to be uncertain for the model if its relevance

map happens to be at quasi equidistance to all the clusters’ centers.

The next step will consist of ranking the data according to their confidence. The

data with the lowest confidence are selected and given to the oracle in order to be 

annotated. The explainability of this selection process is evident in the sense that the 

data selected will be sufficiently different from the others. A relevance map that is very 

different with the other maps reveals a data that is sufficiently different, which is, in 

fine, a data for which a model will be uncertain. Note that this explainability is not 

manifest in the conventional selection process.

The next step is to mix the newly annotated data with the initial labeled set 

constructed at the beginning of the process. After this step, we will obtain a newly 

labeled set, which will be bigger than the initial set. The next step in the process is to 

use this newly labeled set in order to re-train the model. As for the conventional method, 

this iterative selection process can continue until we label all the available data. In our 

case, we stop the labeling process when we reach the sampling budget. In Fig. 23 and 

Table 3, all the different steps explained here are numerated from step (1) to step (11). 
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter, we discuss about the datasets used for the experiments and present 

the obtained results. Results are divided into two sections. The first presents the datasets 

and results of the deep clustering method. The section presents also the datasets and the 

results for the active learning approach.

4.1 Deep clustering results

4.1.1 Datasets and experimental setups

We first show the results obtained using the SNPHEp-2 dataset. The description 

of this dataset can be found in [69]. The SNPHEp-2 dataset comprises five types of 

cells: the homogenous cells, the coarse speckled cells, the fine speckled cells, the 

nucleolar cells and the centromere cells. This dataset contains two levels of 

fluorescence intensity: positive and negative intensities. Some examples from this

dataset are depicted in Fig. 24 and we can remark that the different fluorescence 

intensities increase the intra-class variations of the dataset. In Fig. 24 (a), we have the 

positive illumination images and Fig. 24 (b) we have the negative (or intermediate) 

illumination images. We can remark how the differences between the images belonging 

to the same cellular type but having different types of fluorescence illumination are 

quite manifest, which demonstrate the intra-class variations.
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(a)

(b)

Fig. 24. Example images from the SNPHEp-2 dataset. (a) The positive fluorescence 

illumination images. (b) The negative fluorescence illumination images. In (a) and (b), from the 

left to the right:  the Homogeneous, the Coarse Speckled, the Fine Speckled, the Nucleolar and 

the Centromere.

The dataset contains 1,884 HEp-2 cell images. The images were all extracted from 

40 different cell specimens. From the 40 specimens, 20 were used for the training sets 

and the remaining 20 were used for the testing sets. In total, there are 905 and 979 cell 

images for the training and testing sets, respectively. Each set (training and testing) 

contains five-fold validation splits of randomly selected images. In each set, the 

different splits are used for cross-validating the different models, each split containing 

450 images approximatively. The dataset can be downloaded at 

http://staff.itee.uq.edu.au/lovell/snphep2/. During the experiments, the images were up-

scaled to 112x112 in order to use them in our network. Note that the original images’ 

size varies between 60x60 and 90x90. 

In order to improve the learning capability of the network, data augmentation was 

applied over the dataset. In every splitting set of the training data, the cells were rotated 

for 360° with the step of 18°, as done in [80,89]. Which means that the original training 

was expanded by a factor of 20, a 360° quadrant containing 20 portions of 18°. We 

found that augmenting the training set really improves the accuracy over the testing set. 

All the results shown subsequently are those obtained after applying data augmentation 

in this form. 
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As explained in the previous section, the global loss, defined in Equation (8), is 

minimized by updating the network’s parameters. In addition to the weights and biases 

usually associated with the DNN, we have the clusters’ centroids, which need also an 

update at every epoch during the training. As usually done with the k-means process, 

we need some initial centroids in order to launch the updating process. Instead of a 

random setting, we use a pre-training of the DCAE in order to generate the first clusters, 

as done in [15-17,102]. The idea is to firstly use the DCAE for generating a preliminary 

distribution of the data, and then, utilize the computed features for finding the initial 

centroids. This pre-training can be seen as setting � to be zero in Equation (8), which 

means that the learning is done by using only the reconstruction loss �� . After 

generating the initial centroids, we perform the learning as proposed here by using the 

global loss with � > 0 . This second training process using the global loss is 

subsequently referred as the “global learning”. 

As explained in the previous section, the parameter � is very important because it 

balances the importance of the clustering loss �� in the global loss. As also previously 

mentioned, the reconstruction loss itself can help to preserve the local structure of the 

data. That is the reason why, as explained in [15], the coefficient � is better to be less 

than 1 in order to permit the �� to have more importance than �� in the global loss. In 

our experiments, by using cross-validation, the best results were obtained with the value 

of � being 0.1. Note that this value of � provides also the best results in [15] while 

dealing with images. 

The parameters are updated by using backpropagation. The gradients of the global 

loss can be derived as

��

�(�,�)
=

���

�(�,�)
+ �

���

�(�,�)
, (19)

where Z represents the set of weights and biases, and c represents the clusters’ centroids. 

Except for �, for which different values (0 and 0.1) were used for the pre-training and 

the global learning, all the other hyperparameters were used similarly for the two steps. 

The learning rate was set to be 0.01 and the size of the mini-batch was 128. The 

momentum was set to be 0.9 and the weights initialization follows the process presented 

by He et al. [111]. The pre-training was done with 200 epochs, while the global learning 
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was trained for 450 epochs. The experiments were done with the use of MATLAB 

R2019b and performed on a computer with a Core i7 3.40 GHz processor and 8 GB of 

RAM. A GPU implementation was used with a NVIDIA GeForce GTX 1080 Ti with 

11,264 MB of memory.

Specific metrics are usually adopted for evaluating the clustering performance. 

These metrics include the normalized mutual information [112], the adjusted Rand 

index [113] and the clustering accuracy (ACC) [112]. Because we aim to compare our 

method with the state-of-the-art HEp-2 cell classification methods that all utilize 

supervised learning, we only use the ACC for showing the results, since it is equivalent 

to the accuracy as it’s measured in supervised learning. Since we have the actual labels 

of the data, we can evaluate the method in the same way as it is done with the 

classification (supervised). A data is considered to be well classified if the cluster to 

which it was assigned by the network corresponds to its actual label. Consequently, 

confusion matrices are used to show the results. The sensitivity (true positive rate) and 

the specificity (false positive rare) of every single cellular type can be derived from the 

confusion matrices. 

The results are shown for three different cases:

· The first case, referred as “case-1”, consists of using the network without the 

proposed techniques for assuring a better reconstruction, which means that we rely 

only on the reconstruction loss in order to assure a better local preservation, as 

proposed in [15,102]. 

· The second case, referred as “case-2”, consists of using the pooling indices and 

the copy-and-concatenation techniques, as shown in the network depicted in Fig.

12. 

· And the final case, referred as “case-3”, consists of using the proposed attention-

based network, which also incorporates the pooling indices and the copy-and-

concatenation techniques at the same time, as illustrated in the network shown in 

Fig. 15.



68

4.1.2 Results for Case-1

For the case-1, we use the network as defined in Table 1, without applying the 

techniques proposed here for assuring a good local preservation of the pixels, thus, a 

better reconstruction. After the pre-training (� = 0), we use the pre-trained DCAE in 

order to perform the global learning (� > 0). Note that the features learned by the 

DCAE, the same goes for the clusters’ centroids, are 512-dimensional vectors, as we 

can see in Table 2. For visualizing these high-dimensional vectors, we have applied 

principal component analysis (PCA) [6]. For all the features’ visualization shown here, 

PC1 and PC2 are, respectively, the first and second axis of the PCA-space. The 

projections of the clusters learned by the case-1’s DCAE are shown in Fig. 25. 

Fig. 25. Visualization of the features learned by the DCAE of case-1. “Ho”, “CS”, “FS”, “Nu”, 

and “Ce” represent the homogeneous, the coarse speckled, the fine speckled, the nucleolar and 

the centromere, respectively. The percentages of the variance explained are respectively of 

99.23 and 0.42 for the first and second principal components.

The first observation from the projections shown in Fig. 25 is that the network has 

clearly learned to distinguish the different cellular types. Two main clusters are visible 

in Fig. 25: the cluster formed by the fine speckled cells and the one formed by the 

remaining cells. The fine speckled cells, as we can see in Fig. 24, are remarkably 
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distinguishable from the others. The fine speckled cluster itself contains relatively two 

subgroups, which represent the two different fluorescence illumination (intensity 

levels). If we can expect from these features that the majority of the fine speckled will 

be well classified (assigned to the cluster that corresponds to their true labels), the 

situation is more complicated for the other clusters that share many similarities. 

The results for the case-1’s network are shown in the confusion matrix depicted 

in Fig. 26. As expected, all the fine speckled cells were assigned to the right cluster, 

the one that corresponds to their true label. The remaining cells all suffer from a lack 

of clear distinguishability between them, which really decreases the accuracy of the 

cluster’s assignment. Note that, as for the projections shown in Fig. 25, every cluster is 

represented by its corresponding color in Fig. 26: the black for the homogeneous, the 

blue for the coarse speckled, the red for the fine speckled, the green for the nucleolar 

and the magenta for the centromere. Major confusions in Fig. 26 concern the coarse 

speckled cells and the centromere, whose assignment accuracy is 74.93 % and 79.5 %, 

respectively. The total accuracy of the case-1’s DCAE is about 84.64 %. 

Fig. 26. Confusion matrix for case-1. “Ho”, “CS”, “FS”, “Nu”, and “Ce” represent the 

homogeneous, the coarse speckled, the fine speckled, the nucleolar and the centromere, 

respectively.
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4.1.3 Results for Case-2

For the case-2, we use the network as depicted in Fig. 15. The features are shown 

in Fig. 27. By comparing the projections shown in Fig. 25 and the ones shown in Fig. 

27, we can notice how the four other clusters have become distinguishable. The fine 

speckled cells are still clustered to their own sub-space, as for the projections in case-

1. This shows that when the reconstruction process from the DCAE tends to preserve 

the local structure of the original images in the best way possible, the features learned 

by the DCAE are also better. The results for the cluster’s assignment of case-2 are 

shown in the confusion matrix in Fig. 28.

Fig. 27. Visualization of the features learned by the DCAE of case-2. “Ho”, “CS”, “FS”, “Nu”, 

and “Ce” represent the homogeneous, the coarse speckled, the fine speckled, the nucleolar and 

the centromere, respectively. The percentages of the variance explained are respectively of 

83.06 and 16.38 for the first and second principal components.
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Fig. 28. Confusion matrix for case-2. “Ho”, “CS”, “FS”, “Nu”, and “Ce” represent the 

homogeneous, the coarse speckled, the fine speckled, the nucleolar and the centromere, 

respectively.

In Fig. 28, we see how most of the confusions between the cells have completely 

disappeared. The remaining wrong assignments concern mostly the nucleolar cells. As 

we can see in the projections shown in Fig. 27, the nucleolar patterns (shown in green) 

tend to share the same clustering subspaces with the coarse speckled and the centromere. 

This is explained by the similarities shared by these three cellular types in terms of the 

shape and intensity, as we can notice in Fig. 24. Specifically, 11.87% of the nucleolar 

cells are clustered as coarse speckled. In Fig. 27, the features from the nucleolar and 

coarse speckled (green and blue) are largely mixed. And also, 5.67% of the coarse 

speckled are misclassified as nucleolar. Besides that, the clustering accuracy increases 

from 84.64% (for case-1) to 93.16%. Which clearly indicates that the more we can 

encourage the network to preserve the local structure of the original images, the more 

the features learned by the network will contain the distinctive characteristics of the 

cellular images.



72

4.1.4 Results for Case-3

The case-3 consists of using the attention-based network as designed in Fig. 15, 

where the pooling indices storage technique is mixed with the copy-and-concatenation 

process and, furtherly, the three different streams all learn how to boost the 

reconstruction accuracy. The copy-and-concatenation operations allows the network’s 

decoder to retrieve the entire spatial information lost during the down-sampling 

operated in the encoder. When mixed with the pooling indices storage, not only the 

local structures (close neighborhood) of the original pixels are well preserved, but also, 

the global spatial information, concerning the whole image, is retrieved during the 

reconstruction. Although the two added streams tend to add complexity for the 

computations, they allow to smooth and improve the reconstruction quality.

The features for this case are shown in Fig. 29. We can notice how, compared with 

the projections in Fig. 27, the clusters continue to be more precise. Some of the 

nucleolar cells continue to be mixed with the centromere but, globally, the confusions 

between the cells are really diminished. The cluster’s assignment results are shown in 

details in the confusion matrix depicted in Fig. 30. As we can remark, most of the 

misclassifications have disappeared. The centromere cells are still mixed with some 

homogeneous (2.23%) and nucleolar (4.08%). The most outstanding improvement 

comes from the nucleolar cells. The totality of the confusion between the nucleolar and 

the coarse speckled is vanished. Only remained some misclassification between the 

nucleolar and the centromere. The total accuracy of the clustering assignment is 97.59% 

for the results shown in Fig. 30.
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Fig. 29. Visualization of the features learned by the DCAE of case-3. “Ho”, “CS”, “FS”, “Nu”, 

and “Ce” represent the homogeneous, the coarse speckled, the fine speckled, the nucleolar and 

the centromere, respectively. The percentages of the variance explained are respectively of 

56.86 and 33.61 for the first and second principal components.

Fig. 30. Confusion matrix for case-3. “Ho”, “CS”, “FS”, “Nu”, and “Ce” represent the 

homogeneous, the coarse speckled, the fine speckled, the nucleolar and the centromere, 

respectively.
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Fig. 31 shows the summary of the results obtained by the three different networks 

in terms of the accuracy. The results in Fig. 31 also demonstrate the effectiveness of 

using data augmentation when the training data is really small. As we can remark, the 

results remain poor with the three networks when we use the original data without any 

augmentation during the training. On the other hand, we can see how the accuracy is 

improved when data augmentation is applied. We show the results for � = 36, which 

means that the rotation is done with a step of 36 degrees, increasing the number of 

training data by a factor of 10, and for � = 18, which increases the training data in a 

factor of 20. All the three network provide the best results with � = 18, as we can see 

in Fig. 31. 

Fig. 31. Clustering accuracy of the three networks.
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(a)

(b)

Fig. 32. The global loss of the networks. (a) Comparison between the three proposed networks. 

(b) Comparison between the proposed case-3 and the dual autoencoder in [21].
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Another comparison between the three networks is provided in Fig. 32 (a), where 

we show the evolution of the global loss, which encapsulates the reconstruction and the 

clustering losses. Among the three cases, the network from case-3 provides the most 

minimal loss, since the copy-and-concatenation mixed with the three streams system 

process alleviates the reconstruction process by allowing the network to preserve at the 

most the local structure of the data. We can remark that the loss is more smoothed 

compared to the two other cases. The local structure preservation permits a faster 

reconstruction compared to the others. Note that the loss is also consequently 

diminished in the case-2. With the results shown in Fig. 32 (a), we can notice the 

improvement that occurs when the reconstruction is made in the best way possible 

(case-2 and case-3).

The results in Fig. 32 (b) is a comparison between the reconstruction of our case-

3 network and the network proposed by Dizaji et al. [21] while using the cellular images. 

Note that our proposed attention-based network outperforms the dual autoencoder in 

terms of the reconstruction.

Another finding concerns the parameter � that controls the balance between the 

reconstruction and the clustering losses. As mentioned before, the best results were 

obtained with the value of 0.1. We found that the accuracy decreases every time the 

coefficient � increases. Which means that, when the clustering loss tends to 

overshadow the reconstruction loss, the features lose their distinctive characteristics, 

which encourages misclassification during the assignment. This fact also, besides the 

results demonstrated above, contributes to the corroboration of the assumption that the 

preservation of the local structure of the images helps to produce better features.

Fig. 33 (a) shows the variations of the clustering accuracy with different values of 

the coefficient � for the 3 different networks. Note that, here, the situation where � =

0, as explained above, corresponds to the pre-training of the DCAE, where only the 

reconstruction loss is used in order to generate the initial features that will be used to 

compute the initial centroids. We can notice that, for all the networks, the accuracy for 

the pre-training (� = 0) is very low. With � > 0, all the networks provide their best 

results with the value of 0.1 and their accuracy starts to decrease with every � > 0.1. 
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(a)

(b)

Fig. 33. Accuracy of the three networks: (a) with different values of coefficient �, and (b) with 

different values of k (number of clusters).
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The most important point is that the accuracy decreases differently for the three 

networks. It decreases rapidly with the network from case-1, a bit slower with the one 

from case-2 and it seems to be stable with the network from case-3. For the case-1, 

there is an important decline of the accuracy when the coefficient � ≥ 0. This network 

does not contain any element in its design that can lessen the loss of the local structure, 

besides, of course, the reconstruction loss. It clearly appears that the clusters lose their 

efficiency when the clustering loss completely overshadows the reconstruction loss. On 

the other hand, the case-2 and case-3 networks are purposely designed in order to 

minimize the loss of the spatial details and preserve the local structure of the original 

images. Both suffer a decrease of the accuracy with � ≥ 0 , but, the reduction is 

minimized.

Again from Fig. 33 (a), we can remark that the accuracy of the network is not 

really dependent to the value of the coefficient � for the case-3’s network. Even though 

there is an evident decrease, the variation is not very noticeable, as for the two other 

cases. This comes from the fact that the two combined techniques used for the case-3

allow the network to continue of assuring a better reconstruction even when the 

clustering loss tends to overshadow the reconstruction loss. Which means that the case-

3’s network can still assure a better reconstruction even without giving the 

reconstruction loss a solid importance in the global loss. With these results, we can 

affirm that the quality of the reconstruction process affects the quality of the produced 

features, and thus, the final clustering’s accuracy. 

In Fig. 33 (b), we show the variation of the accuracy by changing the number of 

clusters. Note that the variation is really small, since the value k is also small. Therefore, 

as we can see in Fig. 33 (b), there is no noticeable change when the number of clusters 

changes.

In Table 4, we show the results of the different methods in the literature. We 

separate the methods in 3 groups: the supervised learning handcrafted features, the 

supervised deep learning methods and the unsupervised deep learning method. The 

supervised learning based on the handcrafted features have achieved, respectively, 

80.90%, 82.50%, and 85.71%. The method in [80], which is one of the first ever to 

apply deep learning for the HEp-2 cell images classification, reaches 86.20%. Note that 
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the datasets available at that period were not diversified enough to perform well with 

deep learning. 

The deep learning-based method in [81] has a quasi-identical structure with the 

one used in [80] but, unlike in [80], they have applied many different techniques for 

data augmentation, allowing them to perform at 88.37% of accuracy. In Table 4, in the 

last three lines of the “supervised deep learning”, we can see the performance of the 

actual state-of-the-art methods. Of course, as discussed before, all of them utilize the 

supervised learning approach.

Table 4. Comparative study for the SNPHEp-2 dataset.

Method Description Accuracy

Supervised learning 
Hand-crafted features

Texture features + SVM [108] 80.90%

DCT features + SIFT + SVM [69] 82.50%

LBP + SVM [71] 85.71%

Supervised Deep 
Learning

Simple CNN [80] 86.20%

Simple CNN [81] 88.37%

CNN with Deep Residual Inception 
Module [86] 95.61%

CNN using Cross-modal transfer learning 
[100] 95.99%

CNN with a Deep-Cross Residual Module 
[89] 96.26%

Unsupervised Deep 
Learning

DCAE with an embedded clustering layer 
(case-1) 84.64%

DCAE with an embedded clustering layer 
(case-2)

93.16%

Pseudo-classification using CNN [20] 94.19%

Dual autoencoder with both noisy and 
clean encoders [21]

95.78%

DCAE with an embedded clustering layer 
(case-3)

97.56%
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We can see in Table 4 that the case-1’s network performs at the same level with 

the hand-crafted features. When we apply the proposed approach (case-2 and case-3), 

the proposed method performs at the same level with the state-of-the-art supervised 

deep learning methods (case-2) and even slightly better (case-3). The two other deep 

clustering methods reach 94.19% for the pseudo-classification using the CNN and k-

means in order to generate the “pseudo-labels” proposed by Caron et al. [20], and 95.78% 

for the dual autoencoder proposed by Dizaji et al. [21]. 

Table 5. Comparative study for the 13A dataset.

Method Description Accuracy

Supervised Learning Hand-
crafted features

Texture features + SVM [108] 71.63%

DCT features + SIFT + SVM [69] 74.91%

LBP + SVM [71] 79.44%

Supervised Deep Learning

Simple CNN [80] 97.24%

Simple CNN [81] 98.26%

CNN Deep Residual Inception Module 
[86] 98.37%

CNN using Cross-modal transfer learning 
[100] 98.42%

CNN with a Deep-Cross Residual Module 
[89] 98.82%

Unsupervised Deep 
Learning

DCAE with an embedded clustering layer 
(case-1) 81.23%

DCAE with an embedded clustering layer 
(case-2)

86.42%

Pseudo-classification using CNN [20] 91.15%

Dual autoencoder with both noisy and 
clean encoders [21]

92.69%

DCAE with an embedded clustering layer 
(case-3)

94.89%
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The 13A dataset was also used in order to test the proposed method. This dataset 

has a far bigger number of data (13,596) compared to the first one and seems to be 

much easier to handle by the deep learning-based methods. Cross-validation was 

performed using the protocol used in [80]. 80 % of the data were used for training and 

validation (using a 64%-16% split) and the remaining 20% were utilized for testing. 

We have applied data augmentation in the same way as described previously. 

Compared to the first dataset, the handcrafted features perform very poorly on this 

one. The reason is that the big amount of images from this dataset provides a very 

strong learning capability to the deep learning methods while it brings more complexity 

to the handcrafted ones. For this dataset, we show the results just as they were reported 

by the authors in their works. We have experimented only the handcrafted features’ 

works because all of them were proposed at the time when this dataset was not available. 

The results are shown in Table 5.

Note that, as we can notice in Table 5, all the state-of-the-art supervised deep 

learning methods perform similarly on this dataset. Our method (case-3) also performs 

at the same level with the supervised learning methods in terms of the accuracy, but, 

with the advantage of being entirely unsupervised. The two other deep clustering 

methods also perform well, reaching a quasi-same level with the supervised learning 

methods. It should also be noted that this dataset contains far more data compared to 

the first one, which slightly adds more complexity for the unsupervised learning 

methods.

Because most of the deep clustering methods in the literature are not proposed for 

the cellular images, we have conducted a comparative study using the popular 

handwritten digits (MNSIT) dataset between our threes cases, the method using the 

CNN in a pseudo-classification, and the dual autoencoder. Using the MNIST, the three 

cases perform at 93.46%, 95.63% and 97.45%, respectively. The pseudo-classification 

method performs at 91.38%, while the dual autoencoder reaches 96.50%. Note that all 

the deep clustering methods perform at a quite pleasant level for the handwritten digits’ 

images.
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4.2 Active learning results

For the active learning part, results are presented in this way: 

· We first show the results using the proposed dynamic learning system. Since this 

method was specifically designed for the HEp-2 cell images, we show the results 

only for these images in the first part. These results are obtained by using the 

conventional active learning-based selection but, with the proposed parallel deep 

networks. The goal of these experiments is to demonstrate the effectiveness of (1) 

the proposed deep parallel residual networks, (2) the cross-modal transfer learning 

and (3) active learning in general for the HEp-2 cell classification. 

· In the second part (section 4.2.6), we present the results using our proposed 

explainable active learning. Since this method utilizes XAI, we start by showing 

how we selected the relevance map method. After this step, we show the results 

obtained by using our proposed selection method on the cellular images. Then a 

comparative study is conducted using both the cellular images and the CIFAR-10 

dataset.

4.2.1 Datasets and initial setups

The deep residual networks were first trained using a relatively small dataset, as 

mentioned before. We have adopted the SNPHEp-2 dataset here for this initial learning 

process. This dataset was presented in details at the beginning of the previous section 

and we have shown some example images from it in Fig. 24.

Instead of using the ICPR2012 for the initial learning as done in [100], the choice 

of using the SNPHEp-2 dataset was justified by the similarities between this dataset 

and our targeted dataset. The targeted dataset is the large-scale HEp-2 (LSHEp-2) 

dataset, introduced by Qi et al. [114]. This dataset contains far more images (63,445) 

than the 13A dataset (13,596 images) presented in the previous section. The reason why 

we adopted the LSHEp-2 dataset is that we aim to test the effectiveness of the proposed 
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active learning scheme on a really big dataset for which labeling can really represent a

burdensome task. 

Furthermore, this dataset is more complex in terms of intra-class variations and 

heterogeneity compared to the others. The description of the LSHEp-2 dataset can be 

found in details in [100] and it can be downloaded at 

http://qixianbiao.github.io/HEp2Cell/. Similar to the 13A dataset, it contains six classes: 

Homogeneous, Speckled, Nucleolar, Centromere, Nuclear membrane, and Golgi. Some 

examples of this dataset are shown in Fig. 34.

(a) (b) (c)

(d) (e) (f)

Fig. 34. Example images from the large-scale HEp-2 dataset. (a) the Homogeneous, (b) the 

Speckled, (c) the Nucleolar, (d) the Centromere, (e) the Nuclear membrane, and (f) the Golgi.

By comparing the images in Fig. 24 and Fig. 34, we can remark that the two 

datasets share many similarities. We can expect that our networks will learn the general 

features shared by these two sets of images, which will allow us to only update the task-

specific layers located at the end of the networks. In fact, two big changes can be 

remarked between the SNPHEp-2 and the LSHEp-2 datasets: firstly, the two speckled 

(fine and coarse) cells from the first were mixed to form only one cell type, the speckled 

cells, in the second. Secondly, the Golgi are absent from the SNPHEp-2. During the 

transfer learning process, we will remove the last layer containing 5 neurons and 

replace it by another containing 6 neurons. In this part, all the experiments were 
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performed using TensorFlow on a computer with a Core i7 3.40 GHz processor, 8 GB 

of RAM, and a NVIDIA GeForce GTX 1080 Ti GPU.

For the initial learning process, the hyperparameters were selected via cross-

validation using the 5 different validation folds of the SNPHEp-2 dataset. The original 

images have different sizes (average around 90×90) and were all up-sized using bicubic 

interpolation to 112×112 in order to fit into our designed architecture. Note that after 

the DWT decomposition, the coefficients at the first level have all the size of 56×56. 

In order to maximize the learning capacity of the networks, data augmentation was 

applied over the SNPHEp-2 dataset. It consists of cell rotation, with a step of 18° in a 

quadrant of 360°, as proposed in [80,89]. This rotation increases the original training 

set by a factor of 20. 

The learning rate is set to be 0.001 and training is terminated when the validation 

loss does not surpass the reached minimum 5 times in a row. For the initial learning 

(with data augmentation), 32 epochs were necessary to terminate the training process 

(see Fig. 35 (a)). The classification results of this initial learning are shown in the 

confusion matrix depicted in Fig. 35 (b). The accuracy over the validation set, as we 

can see in Fig. 35, was about 94 %. We recall here that the purpose of this initial 

learning is just to generate a pre-trained model that will be used later for the transfer 

learning. For further details about the effectiveness of the dynamic learning afforded 

by the wavelet coefficients, readers are invited to check our previous work [109] where 

we have presented a detailed discussion about it. 
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(a)

(b)

Fig. 35. Results of the initial learning process: (a) the progression of the accuracy of training 

and validation; (b) the confusion matrix (total accuracy of 94.31%). “Homo”, “Coarse”, “Fine”, 

Nucl”, and “Centro” stand for Homogeneous, Coarse Speckled, Fine Speckled, Nucleolar and 

Centromere, respectively.



86

After we have our pre-trained model in hands, we can utilize it for the active 

learning over the LSHEp-2 dataset. For all the fine-tuning procedures, we have fixed 

all the layers before the second residual block, which means from the first convolutional 

layer to the second pooling layer. The second residual block is set to be trainable 

because we want the networks to extract features that are specific to our main dataset 

before the feature fusion (layer concatenation). The final layer was changed to have six 

neurons, according the six classes of the LSHEp-2 dataset. The same learning approach 

was used for all the fine-tuning processes: a learning rate of 0.001 was utilized, training 

is stopped when the loss does not decrease five times in a row.

As said before, the LSHEp-2 dataset contains 63,445 images. A 80%-20% splitting 

is performed, which gives 50,758 images for training, and 12,687 for testing. The 

labeling limitations that we impose to ourselves only concern the training set (the 

testing set is just used for validation, not for fine-tuning). We principally tested our 

method with the limitation of being able to annotate only 20% of the training set, which 

gives a total of 10,152 images. The value k is set to be 1,500, which means that 1,500 

images (around 15% of the 10,152) are first selected randomly in order to perform the 

first fine-tuning. And then, the value m is set to be 1000, which means that we select 

the first 1000 data in the ranking performed in step 4 (see Table 2) in every labeling 

iteration. We stop the labeling process after we annotate the totality of the 10,152 

images. Note that the same kind of process is repeated for any level of limitation (the 

number k being 15% of the limitation, and m being 10%).

The results are shown in two categories: the results without cross-modal transfer 

learning and the ones with cross-modal transfer learning. The first category designates 

the case where we do not use the initial learning for building the pre-trained model. We 

just train the networks by using directly the first k images from the main dataset. The 

second category designates the proposed scheme, where initial learning with a small 

dataset is used before fine-tuning with the main dataset. In every category, we show 

two cases for the results: results using random sampling and results using active 

learning-based sampling. In other words, and with the case of 20% of limitation, 

random sampling designates the fact of selecting randomly 20% of the training images 



87

in order to train the networks while active learning-based sampling designates the fact 

of using active learning techniques for the selection of the 20% of images. 

Note that for all the cases where active learning is involved, we do not show the 

loss and accuracy progression since several different learning procedures are conducted 

in every labeling iteration (many fine-tunings). In this case, showing the loss and 

accuracy evolution is meaningless. On the other hand, these evolutions are shown for 

the cases that do not involve active learning, where only one single training procedure 

is performed. For simplicity, the different cases are designated by their short names 

shown in Table 6.

Table 6. The different cases used during the experiments.

Case name Comments

RS (random sampling)
No initial learning, and selection using random 

sampling.

AL (active learning)
No initial learning, and selection using active 

learning. 

IN-RS (random sampling with 

cross-modal transfer learning)

Initial learning involved, and selection using 

random sampling. 

IN-AL (active learning with 

cross-modal transfer learning)

Initial learning involved, and selection using active 

learning.
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4.2.2 Results of the “RS” case

For other limitations (5%, 10%, 30%, 40%, or even 100% of the training set), the 

results are summarized and discussed later. The case of 100% means that we can utilize 

the totality of the training data without any limitation. Note that the datasets (SNPHEp-

2, 13A, LSHEp-2) all exist in a labeled form. The labeling limitations suggested in this 

work are indicative of the potential afforded by active learning and are used here in 

order to demonstrate its effectiveness.

As said before, all of the following results concern the case of 20% of limitation. 

Fig. 36 shows the detailed results of the “RS” case. This case just consists of selecting 

randomly the 20% of images and use them to train the deep networks. Fig. 36 (a) shows 

the accuracy evolution over the training and validation sets (21 epochs). Fig. 36 (b)

shows the loss evolution for the two sets. Fig. 36 (c) shows the visualization of the 

high-level features learned by the deep networks. All the visualizations here are 

obtained using the t-SNE [7]. Finally, Fig. 36 (d) shows the confusion matrix of the 

classification over the validation set. In all the confusion matrices shown here, “Homo”, 

“Speck”, “Nucl”, “Centro”, “NucMe”, and “Golgi” refer to the Homogeneous, 

Speckled, Nucleolar, Centromere, Nuclear membrane and Golgi, respectively.
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(a) (b)

(c)

(d)

Fig. 36. Classification results of the “RS” case: (a) accuracy, (b) loss, (c) features’ visualization, 

and (d) confusion matrix.
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By analyzing the results, we can see that selecting randomly the data does not help 

for the generalization over the validation set. Two main observations can be highlighted 

from these results. First, there is a clear difference between the mean class accuracy 

(MCA) and the average classification accuracy (ACA). The MCA is 66.59% and the 

ACA is 81.13%. The ACA, which computes the overall accuracy by diving the number 

of correctly classified data by the total number of data, appears to take advantage of 

some of the classes that are very well discriminated. In particular, the Nucleolar 

(90.38%) and the Centromere (98.00%) contribute highly to establish the ACA in a 

very pleasant level. 

On the other hand, the MCA, which computes the mean of all the classes’ 

accuracies, is hugely impacted by the poor classification accuracy of the Golgi and 

Nuclear membrane cells. As part of the second main observation, as we can also remark 

in Fig. 36 (c) by analyzing the visualization of the features, there is an extreme 

confusion between the two cells’ clusters (Golgi in magenta and Nuclear membrane in 

cyan). In fact, only 1.6% of the Golgi are well classified, while 81.87% of them are 

misclassified as Nuclear membrane, as we can see in the confusion matrix depicted in 

Fig. 36 (d). Also, only 46.68% of the Nuclear membrane are well classified. The two 

cellular types are certainly the most complicated to discriminate. 

The first reason is that both types are always under-represented among the 

available data in all the existing datasets. There are only 375 Golgi and 814 Nuclear 

membrane instances in the training set, while all the others cell types contain each at 

least 2,100 images. The second reason is the complexity of their shape. Having the 

possibility of using only 20% of the training set, which diminishes again their number 

among the selected data for training, contributes to make the discrimination harder for 

the two cells. This pointed fact represents the principal observation of the present work. 

While having a limited number of labeled data in hands, the classification of these two 

cell types (Golgi and Nuclear membrane) becomes really complex.
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4.2.3 Results of the “AL” case

Fig. 37 shows the results for the second case (“AL”). As for the first one, this case 

consists of not using the initial learning but, on the contrary, selects the 20% of data 

with active learning. The MCA for this case is 90.35% and the ACA is 91.51%. As we 

can notice in the confusion matrix in Fig. 37 (b), most of the cells maintain a quite fair 

classification result. And even more importantly, the huge confusion between the Golgi 

(we have 87.47% of accuracy) and Nuclear membrane (85.50%) has clearly diminished. 

The visualization in Fig. 37 (a) shows a noticeable separation of the two clusters 

compared with Fig. 36 (c). We can notice, in these results, the improvement afforded 

by the active learning-based selection. By selecting, precisely for annotation, the data 

for which the networks are the most confused about, active learning decreases the 

discrimination’s complexity of the most difficult cells. At the same time, it maintains a 

good accuracy for the others cellular types.
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(a)

(b)

Fig. 37. Classification results of the “AL” case: (a) features’ visualization, and (b) confusion 

matrix.
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4.2.4 Results of the “IN-RS” case

From here, we discuss the results obtained when an initial learning is performed 

in order to build the pre-trained model. The first case (“IN-RS”) consists of selecting 

the 20% randomly in order to perform fine-tuning. In Fig. 38 (a)-(d), we have, 

respectively, the accuracy, loss, visualization of the features and confusion matrix for 

the “IN-RS” case.

Here also (concerning the results in Fig. 38), we can notice how the extreme 

confusion remains present even after we apply cross-modal transfer learning. The MCA 

is 72.08%, which is better than the “RS” case. However, the poor accuracy (2.56%) of 

the Golgi really pulls down the MCA, even though the other cells accomplish excellent 

accuracies (55.86% for the Nuclear membrane). The ACA is 87.54% for this case. Note 

that the initial learning process increases the overall accuracy (the ACA goes from 

81.13% to 87.54% between “RS” and “IN-RS”), but not for the two most difficult 

cellular types. 



94

(a) (b)

(c)

(d)

Fig. 38. Classification results of the “IN-RS” case: (a) accuracy, (b) loss, (c) features’ 

visualization, and (d) confusion matrix.
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4.2.5 Results of the “IN-AL” case

The second case, denoted as “IN-AL”, consists of selecting the 20% with active 

learning in order to perform fine-tuning. In Fig. 39 (a) and Fig. 39 (b), we have, 

respectively, the visualization of the features and the confusion matrix for the “IN-AL” 

case. As for the “AL” results discussed previously, we can notice how active learning 

permits to tackle the extreme confusion between the Golgi and the Nuclear membrane. 

This can be noticed in Fig. 39 (a) with the two clusters being completely disjoint, and 

in Fig. 39 (b), where we see that the two cells accomplish reasonable accuracy. For this 

“IN-AL” case, the MCA is 91.76% and the ACA is 92.77%. The most important 

observation here is that active learning strongly minimizes the divergence between the 

two metrics by assuring a quite fair discrimination for all of the cellular types. Note 

that all of these results are obtained by using only 20% of the available training 

instances in the large HEp-2 dataset.
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(a)

(b)

Fig. 39. Classification results of the “IN-AL” case: (a) features’ visualization, and (b) confusion 

matrix.
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In Fig. 40, we show the classification accuracies of the three most difficult cells 

for the four cases (“RS”, “AL”, “IN-RS”, “IN-AL”). We can notice how both cases 

that use active learning, by allowing to prioritize the annotation of the most difficult 

cells, “correct” the classification accuracies of the cases without active learning 

(especially for the Golgi and Nuclear membrane).

Fig. 40. Classification accuracy of the three most difficult cellular patterns (the Golgi, the 

Nuclear membrane and the Speckled).
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Fig. 41. Evolution of the accuracy with other limitations in terms of labeling. The accuracy is 

shown for the 4 different cases discussed above.

In Fig. 41, we show the summary of the results (ACA) for the others limitations. 

We show for the 10%, 20% (discussed in details previously), 40%, 60%, 80% and 

100%. As explained before, the 100% case refers to the fact of using all the available 

training data. There is no active learning process in this case since all the data are 

supposed to be labeled. In this case, and only for this case, random sampling and active 

learning results are the same, as we can notice in Fig. 41. 

For all the other limitations, we can see how active learning can help to achieve 

satisfying results even though we do not have access to the totality of the training data. 

In fact, for all the limitations, active learning-based labeling provides accuracies that 

are superior to 90%. It is only for the case of 10% limitation that active learning without 

cross-modal transfer learning (“AL”) achieves 86.68% (see Fig. 41). However, this 

result can be significantly improved by using cross-modal transfer learning, as 

proposed in this work. In that case (“IN-AL”), the accuracy for the 10% limitation 

reaches 89.23%. In other words, active learning coupled with cross-modal transfer 

learning allows to achieve satisfying discrimination results even with a few number of 

labeled data in hands.
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In order to show the contribution of cross-modal transfer learning, we show in 

parallel the classification accuracy when there is no limitation (100% of training data 

available) for the case where no initial learning is performed and for the case where we 

use the small dataset in order to build the pre-trained model and perform cross-modal 

transfer learning. Fig. 42 shows the comparison. We can remark how using the initial 

learning really improves the overall accuracy of the networks. 

Fig. 42. Accuracy improvement with the initial learning in case of 100% of training data 

available.

In Table 7, we show the results of some different approaches. Note that most of 

the approaches have been proposed for either the ICPR2012 or 13A datasets. In this 

comparative study, we tried to see how these approaches react on the bigger and more 

complex LSHEp-2 dataset. Note also that none of these approaches utilize active 

learning. The comparisons are done with the use of the totality of the training data and 

the aim of the comparative study is more to demonstrate the effectiveness of our deep 

parallel networks and the contribution of the cross-modal transfer learning process. 
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Table 7. Comparative study using the LSHEp-2 dataset.

Methods Accuracy (ACA)

Handcrafted features-based approach [114] 86.61%

LeNet-5-like CNN without transfer learning [80] 88.75%

VGG-16-like network without transfer learning [85] 90.23%

Transfer learning using the pre-trained VGG-19 91.57%

Transfer learning using the pre-trained AlexNet 92.41%

Transfer learning using the pre-trained VGG-16 [94] 92.89%

CNN with a Deep Residual Module [89] 94.15%

Transfer learning using the pre-trained ResNet-50 94.36%

Our proposed deep parallel residual nets without cross-modal 

transfer learning
94.79%

Cross-modal transfer learning using ResNet-50 [100] 95.94%

Our proposed deep parallel residual nets with cross-modal transfer 

learning
96.33%

Similar hyperparameters’ settings were used for the training procedures of the 

models used here for comparison. The learning rate was set to 0.001 and training is 

terminated after the loss plateaus for 10 consecutive epochs. We have used a mini-batch 

of 128. Except in case of our method, for all the methods involving transfer learning, 

the parameters were updated for all the layers, since all of the pre-trained models were 

previously trained on ImageNet. Data augmentation, using the same technique as 

previously explained, was applied for the two methods that do not involve transfer 

learning, since the models are trained from the scratch.

As we can see in Table 7, most of the approaches using the models that were pre-

trained on ImageNet perform less than the ones that use cross-modal transfer learning. 
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The state-of-the-art method in [100] utilize ResNet-50 but with an initial learning 

performed by using the ICPR2012 dataset, while their targeted dataset is the 13A. Our 

proposed method uses the deep parallel networks and the SNPHEp-2 dataset was 

utilized for the initial learning. Another state-of-the-art method is the DRC-Net [89], 

which achieves 94.15% on the LSHEP-2 dataset. We can notice that the accuracies 

shown in Fig. 41 are similar with these state-of-the-art performances. Active learning 

coupled with cross-modal transfer learning allows to achieve pleasant performance 

even with limitations in terms of labeling.

Note that models like VGG-16, VGG-19 and AlexNet require a substantial 

memory because of the enormous number of parameters generated by the fully 

connected layers at the end of the network. The residual networks (our parallel 

networks and the ResNet-50) also require a lot of memory but the computational 

complexity is far less compared to the other networks. This is explained by the global 

averaging pooling layer which efficiently minimizes the computational complexity by 

diminishing the total number of parameters of the networks. Another important point 

to note is that all the methods used in the comparative study in Table 7 necessitate only 

one single training procedure. On the other hand, every case that involves active 

learning in our method necessitates several training procedures because of the iterative 

labeling process. This fact can be considered as the principal limitation of our method, 

as the cascade of training procedures elongate the time needed to build the final model. 

But, as previously discussed, our aim is to demonstrate that we can achieve quite 

pleasant performance with only a limited number of labeled data in hands. 
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4.2.6 Results of the explainable active learning

In this part, we present the results obtained by using the proposed explainable 

active learning, which utilizes an XAI-based selection method. As mentioned before, 

we start by selecting the best relevance map method for our data. One way to evaluate 

a relevance map, as explained in details in section 2.3.3, is to see how the network 

reacts when we remove the most relevant parts of the image. These relevant parts are, 

of course, generated by the relevance map. One way of evaluation is to remove the most 

important parts of the data and retrain the network. If the accuracy decreases, it means 

that the relevance map was right by showing the most important parts of the data for 

the network. In case the accuracy does not decrease notably, it means that the relevance

map has failed to reveal the most relevant parts of the data.

Fig. 43 shows the results of the different experiments conducted for that purpose. 

In Fig. 43 (a) we have the results of the ROAR experiment. As previously explained 

(in section 2.3.3), ROAR consists of removing the relevant features, retrain and re-test 

the network using the modified dataset. Here, as also performed by Hooker et al. [37], 

the removal consists of replacing the relevant pixels by an average value computed 

using all the pixel values of the image. 

In Fig 43 (a), the degradation level denotes the amount, expressed in percentage, 

of the pixels that were modified. The beginning denotes 0% of degradation, a situation 

where none of the pixels were changed, and the end shows 80% of degradation, 

meaning that 80% of the pixels (following their relevance scores) were modified. In 

case of the ROAR setup, the performance of the model is expected to decrease if the 

relevance map really shows the most important features. A bigger drop in the accuracy 

shows a better relevance map method while a lower decrease shows an inefficient 

relevance map. “Random” denotes the fact of removing the pixels randomly. An 

efficient relevance map method is expected to produce much more accuracy’s reduction 

than a random removal. 
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(a)

(b)

Fig. 43. Evaluation of the different relevance maps methods: (a) using the ROAR and (b) using 

the KAR.
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DeepTaylor and LRP methods have provided the best relevance maps for our data. 

The term “LRP-Epsilon” in Fig. 43 refers to a more efficient version of the LRP 

algorithm [36]. As we can notice in Fig. 43 (a), the accuracy of the network degrades 

significantly when we remove the parts (the pixels) that are selected as important by 

these two methods. They perform better than the gradients-based relevance maps and 

a random removal. “Random removal” consists of removing the pixels randomly, 

without any coherence, as opposed to the removal because the pixels were designated 

as relevant by a certain method.

Fig 43 (b) sows the results of the KAR experiments. KAR is the inverse of ROAR: 

we remove the irrelevant pixels and keep the relevant ones. The accuracy is expected 

to not vary too much. Also, as for the ROAR, DeepTaylor maps have produced the 

most consistent relevance maps for our data and networks, as we can notice in Fig. 43 

(b). That is the reason why DeepTaylor maps were preferably selected in order to 

perform the proposed explainable active learning scheme. We recall here again that the 

maps are produced by using our deep parallel residual networks presented before.

Fig. 44 shows the results obtained on the testing set of the LSHEP-2 dataset by 

using only 20% of the training data with our explainable active learning method. The 

network achieves 92.77%. In comparison, using the totality (100% of data) of the 

training data gives 96.33% of accuracy on the test set. Even though the results obtained 

by utilizing the totality of the data are better, the results demonstrate that active learning 

can ensure a quite pleasant performance while alleviating the labeling process.

Fig. 45 shows the comparison between the random selection (RS), the 

conventional selection, denoted as “CAL”, and the proposed selection, denoted as XAL, 

for explainable active learning. We can see that the proposed selection method 

increases the performance of the classifiers. In addition, the proposed selection method 

has the advantage of being explainable. We can justify the reason why certain images 

are selected by using their relevance maps. In that manner, the oracle (human annotator) 

can clearly understand the reasons why the images are being selected for the labeling 

process.
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Fig. 44. Results on the LSHEp-2 dataset: with only 20% of the data (selected using the proposed 

explainable active learning), compared to using 100% of data. 

Fig. 45. Comparison between the random sampling (RS), conventional active learning (CAL) 

and the proposed explainable active learning (XAL).
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In fact, by analyzing the relevance maps of certain images, we can clearly 

understand why they have been marked as “ambiguous”, or “difficult”, or even 

“uncommon” by the XAL selection process. In the following figures, we show and 

discuss about some examples of the data (and their relevance maps) that were selected 

for the annotation by our proposed explainable active learning.

(a)

(b)

Fig. 46. Homogeneous images with their corresponding maps: (a) Homogeneous pattern and 

its relevance maps; (b) another Homogeneous pattern and its relevance maps.

In Fig. 46, we show some examples of cellular images and their corresponding 

relevance maps. In Fig. 46 (a), we have an example of a homogeneous cellular pattern

and its corresponding relevance maps. In Fig. 46 (b), we have another homogeneous 

pattern and its corresponding relevance maps. For all the images depicting the 

relevance maps, the second column shows the DeepTaylor map while the third column 

depicts the LRP map. We can see from the images in Fig. 46 that the relevance maps 

capture some specific characteristics of the homogeneous class. The classifier had 

shown a quite high confidence in the discrimination of these images, showing 

probability values higher than 95% for their corresponding class.
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(a)

(b)

(c)

Fig. 47. Example of some homogeneous images, with their corresponding maps, that were 

selected by the XAL.

In Fig. 47, we show some of the images belonging to the homogeneous class that 

were selected for the annotation. By comparing the relevance maps of the images in 

Fig. 46 with the ones shown in Fig. 47, we can remark how their relevance maps display 

quite different characteristics. Especially the LRP maps. All the images in Fig. 47 were 

designated as ambiguous as their relevance maps are quite atypical. In fact, the 

probabilities outputted by the classifier concerning these images also show a strong 

uncertainty. The probability values corresponding to the homogeneous class were only 
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about 57%, 46% and 44% for the images in Fig. 47 (a), (b) and (c), respectively. This 

situation demonstrates that the ambiguity in the relevance map is correlated with the 

ambiguity in the classifier’s output. 

(a)

(b)

Fig. 48. Speckled images with their corresponding maps: (a) Speckled pattern and its relevance 

maps; (b) another Speckled pattern and its relevance maps.

Fig. 48 (a) shows an example image of a common pattern of the speckled type. 

For this image, the probability for the right class was more than 99%. An interesting 

example is shown in Fig. 48 (b). The classifier was confident at 99% that this image 

belongs to the homogeneous class. We can find many images like the one depicted in 

Fig. 48 (b) in the speckled class. That is the reason why this class is one of the most 

difficult classes (as discussed previously - we can see this fact in Fig. 40).
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(a)

(b)

Fig. 49. Example of some speckled images, with their corresponding maps, that were selected 

by the XAL.

Fig. 49 shows examples of some of the speckled images that were selected for 

annotation. In comparison, we can denote the extreme differences in the relevance maps 

that exist between the two groups of images (Fig. 48 and Fig. 49). Speckled images 

depicted in Fig. 49 (a) and (b) are atypical, that’s why they were selected by the XAL.
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(a)

(b)

(c)

Fig. 50. Nucleolar images with their corresponding maps: (a) Nucleolar pattern and its 

relevance maps; (b) another Nucleolar pattern and its relevance maps.

In Fig. 50 (a) - (c), we can see some examples of the nucleolar class for which the 

classifier was highly confident. We can notice how their respective relevance maps 

share some specific characteristics of the nucleolar category.
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(a)

(b)

(c)

Fig. 51. Example of some nucleolar images, with their corresponding maps, that were selected 

by the XAL.

On the contrary, Fig. 51 shows some images that are ambiguous for the nucleolar 

class. For the images in Fig. 51 (a) and (b), the classifier was relatively confident, giving 

around 70% of probability for both images. Their relevance maps give an explanation 

of why these images were selected for the annotation. We can see how their respective 

relevance maps differ totally with the ones shown in Fig. 50. In Fig. 51 (c), we show 

an example for which the confidence was high but for a wrong class. This image was 

classified with 96% of probability as a speckled image.
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(a)

(b)

Fig. 52. Centromere images with their corresponding maps: (a) Centromere pattern and its 

relevance maps; (b) another Centromere pattern and its relevance maps.
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(a)

(b)

(c)

Fig. 53. Example of some centromere images, with their corresponding maps, that were selected 

by the XAL.

In Fig. 52 (a) and (b), we have examples from the centromere class for which the 

classifier was highly confident (more than 95% of probability for both images). On the 

contrary, the images depicted in Fig. 53 (a) – (c) denote the ambiguous images that 

were selected for the annotation. Here also, we can remark the notable differences 

between the relevance maps between the two groups of images (Fig. 52 and Fig. 53). 

For the three images portrayed Fig. 53, the probability values were around 55% for 

their corresponding class. 
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(a)

(b)

(c)

Fig. 54. Nuclear membrane images with their corresponding maps: (a) Nuclear membrane and 

its relevance maps; (b) another Nuclear membrane pattern and its relevance maps.

Fig. 54 (a) – (c) show the images from the nuclear membrane class for which the 

classifier was highly confident. We can remark how the typical features of this class 

are notably exposed by their relevance maps (especially the DeepTaylor maps in the 

second column). All the images that display these particular features are classified with 

a high confidence (more than 98% for the majority of them) by the classifier.
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(a)

(b)

(c)

Fig. 55. Example of some nuclear membrane images, with their corresponding maps, that were 

selected by the XAL.

In Fig. 55 (a) – (c), we show the nuclear membrane images that were selected for 

the annotation. Notice how these images in Fig. 55 exhibit strongly atypical features 

for this particular class. By comparing the relevance maps shown in both Fig. 54 and 

Fig. 55, we can easily understand why the images in Fig. 55 were selected for the 

annotation. The probabilities outputted by the classifier for these images were all 

around 51%, which denotes a quite strong uncertainty. We can see how our proposed 

XAL method really incorporates the justification of the selection process. 



116

(a)

(b)

Fig. 56. Golgi images with their corresponding maps: (a) Golgi pattern and its relevance maps; 

(b) another Golgi pattern and its relevance maps.

(a)

(b)

Fig. 57. Example of some Golgi images, with their corresponding maps, that were selected by 

the XAL.
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In Fig. 56 (a) – (b), we show some examples from the Golgi class for which the 

classifier was highly confident. Their respective relevance maps demonstrate some 

specific features for this class. For these images, the probability was near 99% for their 

class. On the contrary, in Fig. 57 (a) – (b), we show the images from the same class that 

were selected for the annotation. Note how the relevance maps (especially the 

DeepTaylor maps) of the images shown in Fig. 57 do not share any consistent 

similarities with the ones shown in Fig. 56. For the two ambiguous images in Fig. 57, 

the probability values for their class were only around 56%, which denotes a certain 

uncertainty for these images. From all those images, we demonstrate the “explicability” 

of our selection method.

Fig. 58 shows the comparison between one of the actual state-of-the-art active 

learning methods, the variational adversarial active learning (VAAL) proposed by 

Sinha et al. [115], and our proposed explainable active learning (XAL) by using the 

CIFAR-10 dataset. Since this method was not proposed for the cellular images, we did 

not apply it for the HEp-2 cell dataset. Note that the results shown here for the VAAL 

method were reported as they were shown in their works.

Fig. 58. Comparison using the CIFRA-10 dataset between the random sampling (RS), 

conventional active learning (CAL), the variational adversarial active learning (VAAL) and the 

proposed explainable active learning (XAL).
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Here also, in Fig. 58, we can see that both active learning methods (VAAL and 

XAL) work better than the conventional selection way (CAL). VAAL and XAL work 

similarly in terms of performance. Note that our proposed selection method has the 

advantage of explainability, since the selection method proposed in the VAAL cannot 

be fully understood by human annotators. Their method principally relies on the output

of the variational autoencoder. This network is also a black-box model whose decision 

has no interpretability at all. Hence, the labeling decision made by the VAAL remains 

also non interpretable. On the contrary, for our method, we did not utilize any model’s 

output. All the selection method is based on the relevance maps computed by using the 

XAI methods.
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V. CONCLUSIONS

The present work aimed to propose two methods for the classification of the HEp-

2 cell images. The two methods have the particularity that they are specifically designed 

in order to really alleviate the labeling burden. Since most of the machine learning 

models utilize the supervised learning paradigm, and knowing that this approach 

requires the manual labeling of data, we think that the unsupervised learning approach 

is more than necessary. We then proposed two models that are based on different 

scenarios.

The first model is based on an unsupervised learning scenario where there is no 

need of labeled data in order to perform an end-to-end training of the model. On that 

purpose, we used deep clustering, a technique that combines conventional clustering 

methods with deep learning structures. A clustering layer was embedded in the middle 

of a DCAE in order to perform clustering on the latent space’s features at every iteration 

of the training process. This technique allows the DCAE to produce features that are

easily discriminable. 

As a principal contribution, we proposed different techniques that can ensure a 

better reconstruction process. In the deep clustering literature, the reconstruction is 

performed only by the reconstruction loss of the DCAE. On the contrary, we have 

demonstrated that some techniques can be applied in order to improve the overall 

reconstruction quality of the DCAE. For that purpose, we proposed to use the pooling 

indices storage (by abandoning the use of the transposed convolution for the up-

sampling process), the copy-and-concatenation technique and, more importantly, the 

attention-based network.

We showed in the results that, when the three techniques are all combined, the 

DCAE’s reconstruction accuracy is efficiently maximized. Finally, for this first model, 

we presented a systematic analysis of the results in order to explore the influence of the 

reconstruction accuracy on the latent features. 

Also, as another major contribution, we demonstrated that the reconstruction 

performance of the DCAE affects the quality of the learned latent features. Results were 

shown for different scenarios and the case-3 network, which utilizes all of the three 
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techniques together, has provided the best reconstruction and clustering accuracies. The 

proposed case-3 network achieves 97.59% and 94.89% of discrimination accuracy in 

the SNPHEp-2 and the 13A datasets, respectively. This performance is far better than 

the results obtained by the conventional supervised handcrafted features-based methods. 

More importantly, this performance is similar with the actual deep learning-based state-

of-the-art supervised learning methods in the literature of the HEp-2 cell classification. 

As we can remark, our method is unsupervised.

The second model is based on a semi-supervised learning scheme. We adopt the 

techniques of active learning in order to alleviate the data labeling process. As a 

primary contribution of this work, we have redefined active learning by proposing a 

data selection process that is based on XAI, called explainable active learning. 

Conventional methods utilize the outputs of the deep learning model for the selection 

process. We have proposed a method that completely abandons this output-based 

selection. Our method preferably utilizes the relevance maps in order to evaluate the 

confidence of the model. This selection method is task-agnostic, does not really depend 

on the model’s performance and, most importantly, has the advantage of being 

explainable. The ability of being explainable is very crucial in the context of 

interpretability issues posed by the deep learning models.  

In terms of the results, for this second model, we have first demonstrated that 

active learning, when coupled with a well-performed cross-modal transfer learning, can 

really provide better results for the discrimination of the HEp-2 cell images. We 

conducted detailed experiments in order to demonstrate the effectiveness of active 

learning using our dynamic networks. These networks were designed specifically in 

order to solve the huge complexity issues posed by the public HEp-2 cell image datasets. 

Results have shown their effectiveness both for the cross-modal transfer learning and 

active learning.

Secondly, the results demonstrated that our newly formulated XAI-based selection 

contributes to boost the performance of the model even with a quite limited number of 

labeled data (the method has achieved 92.77% of accuracy on the HEp-2 testing data 

with only 20% of the training data available). In comparison, using 100% of the training 

data achieves 96.33% of accuracy. Relevance maps based on DeepTaylor were utilized 
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and allowed us to select quite informative data for the labeling process. Our newly 

proposed explainable active learning method performs at the same level with the actual 

state-of-the-art active learning method. However, our proposed selection method has 

the advantage of being explainable. And that is the most important contribution. Our 

other contribution papers can be found in [116-124].
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