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Random Forest based Faults Diagnosis Algorithm and Application on 
Induction Motor 

 
Xiao-Di 

 
Department of Mechanical Engineering, 

 
The Graduate School 

 

Abstract  
 

In this thesis, ensemble theory is represented as a powerful and effective 

methodology. This theory plays the role as tache between the Classification and 

Regression Tree (CART) and machine fault diagnosis theory. This combination 

shows its highlight on the induction motor faults diagnosis which is name 

Random Forest Algorithm. 

 This is a methodology by which rotating machinery faults can be 

diagnosed. The proposed method is based on random forests algorithm (RF), a 

novel assemble classifier which builds a large amount of decision trees to improve 

on the single tree classifier. Although there are several existed techniques for 

faults diagnosis, such as artificial neural network, support vector machines etc, the 

research on RF is meaningful and necessary because of its fast executed speed, the 

characteristic of tree classifier, and high performance in machine faults diagnosis. 

Evaluation of the RF based method has been demonstrated by a case study of 
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induction motors faults diagnosis. Experiment results indicate the validity and 

reliability of RF based fault diagnosis methodology. Furthermore, an optimized 

form of RF is also provided in this paper. We employ the genetic algorithm to 

strengthen RF, and valid this optimized RF algorithm’s enhanced performance by 

the same experiment data. It is the evidence that RF based diagnosis methodology 

can touch more accurate outcome by combining with other optimization method. 
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I. Introduction 
1.1 Background 

1.1.1 Significance of faults diagnosis  

    Along with the application of new technologies on the modern equipment, 

the structure and function of advanced equipments are becoming more 

complicated and comprehensive, their automaticity is going higher too. Thus there 

are many unavoidable factors which cause various malfunctions existed on the 

machinery. These malfunctions will result in serious accidents bringing on great 

loss in economy and human lives. In additional, faults of machinery which is 

located in vital department may cause incredible losing. Hence it is such an 

exigent issue to ensure the equipments worked under normal condition and 

accidents will not be happened.  

    The security and reliability of modern machinery are depended on two 

aspects. one is to guarantee design and quality of the machinery in accordance 

with the guild line. Besides equipment fixing, running, managing, maintenance 

and diagnosis should be made appropriately and correctly.  

    It is important that machinery malfunctions (faults) diagnosis can produce 

the great benefit, there is many reports stating the advantage of machinery faults 

diagnosis all over the world: 

    (1) On the view of manufacturer, implement of faults diagnosis system will 

decrease accident occurring rate, therefore the rate of profit against investment 

will arrive at a high stage. 

    The method which is taken by Perdrul power plant to estimate the benefit 

from diagnosis program in USA can be taken as an evidence. The capability of 

Perdurl is 4100 10 kW× , electricity charge is one hundred million dollar. Stopping 

production loss is 150 thousand dollar per day. There are 50 important sections 

need to be monitored, the all investment is more than200 thousand dollar. 
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Monitoring charge just costs only 15 thousand dollar every year. According to 

reliable calculation, the breakdown will occur 14 times per year. After adopting 

diagnosis technology, 50% of the accidents can be inspected, and half of that 50% 

is detected by monitor and diagnosis system, 20% of all is pseudo alarm, every 

accident need 3 days to repair in average. Finally, diagnosis system can save the 

money B is: 

0.5 0.5 14 3 15 (1 0.2)

1260000$

B = × × × × × −
=

 

    Diagnosis cost: 

(20 /10 / ) 1.5

35000$ /

A dep year

year

= +
=

 

    Then economic profit coefficient C is: 

1260000
36

35000

A
C

B
= = =  

    Thus it can be seen that the profit of applying diagnosis system is 36 times of 

the investment for it.  

(2) Employing malfunction diagnosis system can prolong maintenance 

period, decrease the breakdown time of equipment. And it is also the foundation 

of setting down an appropriate maintenance strategy which may promote the 

profit greatly. 

    For example, the capability of a power plant is 4100 10 kW× , generating 
42400 10kW×  per day, production value up to hundreds thousand dollar everyday. 

If it is possible to prolong the time of maintenance cycle, such as shorten 10 days 

one year, the corresponding benefit can touch millions dollar.  

    (3) The charge of maintenance for equipments is a huge amount of money, 

but applying diagnosis system can depress this charge to bottom. 

    For example, the revenue of USA is 750 billion US dollar in 1980, but almost 

30% is put into the equipment servicing. According to the analysis by expertise, 

one third of the fee for equipment servicing, 75 billion dollars, is wasted because 
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of improper maintenance method, i.e. lack of condition monitoring and 

malfunction diagnosis. Thus it can be seen that the investment on the diagnosis 

system will bring great benefit. 

1.1.2 Objective of faults diagnosis  

It is important to know what the purpose of diagnosis system as well, which 

are: 

l  Fault diagnosis system can detect the malfunction precisely, and as soon as 

possible. It can prevent and avoid the machine broken down, enhance the 

reliability, security and efficiency of equipment, thereby this system reduce 

the loss by machine fault under the lowest point.  

l  Fault diagnosis system makes use of the capability of equipment maximally. 

A proper designed monitoring and diagnosis program extend the live cycle of 

equipment, so that the cost of product is down at same time. 

l  By applying condition monitoring, malfunction analysis, performance 

estimation…etc, important information of machine reconstruction, 

optimization, product processing rationalization are gathered to improve the 

hole product line. 

All in all, machine fault diagnosis not only ensures the equipment run in 

normal state, but also obtains great benefit both in economy and society.  

1.1.3 Mission of machinery fault diagnosis  

    The responsibility of machinery fault diagnosis is to monitor the machine on-

line. And it estimates its running condition. It also diagnoses and eliminates the 

faults. Finally, it directs the strategy of management and maintenance of 

equipment. 

 

1.1.3.1 Condition monitoring  

The task of condition monitoring is to monitor machine working state, 

including adopting multifarious detection, measure, monitoring, analysis and 
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distinguish method. By Combining data from history and actuality of machine 

system and considering environmental factor, working state of machine system is 

evaluated. Then it judges machine condition is normal or abnormal by certain 

rules, and record and display this condition. It will give an alarm, if the condition 

is abnormal. So technician response to this problem will be solved as possible to 

prevent the machine broken down occurred. At last, condition monitoring 

provides important information and basic data for fault analysis, performance 

estimation, correct and safe operation on equipment.   

Usually, the condition of equipment can be divided into three instances 

which are normal condition, abnormal condition and failure condition. Normal 

condition means there is no fault in the machine system, or fault exists but under 

the permitted level. Abnormal condition means the fault of equipment deteriorates 

and impacts on other connected components. The performance of equipment is 

declining, but still can keep working. When equipment is in abnormal condition, it 

should be running under monitoring system. Failure condition means the 

performance of equipment is dropping quickly, and can not satisfy basic need. In 

addition, failure condition can be separated to three phases: Early fault stage that 

fault exists and just has the trend to go worse. Normal functional fault stage which 

the equipment is running on top of the lowest limitation. Ruinous failure stage 

which equipment is broken down and waiting for fixing and instantaneous failure 

stage caused by some unexpected reasons. There are several alarm sign response 

to different condition of machine. Usually it is represented via different colors of 

indicator light. Green means machine is running under normal condition, yellow 

means there is a warning of the failure, red means breakdown could be occurred. 
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Furthermore, in order to find the causation of the failure out after the event, 

information of e failure is recorded, including storage function of the signal of the 

ruinous failure,  

1.1.3.2 Fault diagnosis  

Fault diagnosis bases on information gathered by condition monitoring. Then 

it will be integrated with characteristic and parameter of the construction and 

environmental factors. After combining the log file of certain equipment which 

consists of run-time record, failure and maintenance history data, failure which 

will happen in future is predicted. 

Different fault location and category may cause the degradation of equipment 

and the running condition in different ways. So another task of fault diagnosis is 

to decide the type and position of the fault via condition and signal of the 

equipment when the fault occurs at one or more then one component. Because the 

amount of measured signal is huge, it is necessary to calculate the features from 

raw signal data to simplify decision-making work and enhance the successful rate 

of diagnosis. The variety of raw data caused by only one kind of fault is named 

the symptom. To determine what component is broken and which category of fault 

is are the procedure of fault diagnosis. Thereby, the essential of fault diagnosis is a 

kind of status identification problem. 

The most difficult thing met in fault diagnosis is that the relation between 

faults and symptoms. It is not simple one standing for one, but more complicated. 

One type of fault may be expressed by several symptoms. Similarly one symptom 

could be the phenomena of a number of faults. Such as, rotor unbalance causes 

increasing of mechanical vibration. Frequency component of operation speed can 

express change in vibration signal clearly, so it is the main symptom. But 

synchronously increasing of frequency component of operation speed is not only 
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for the rotor unbalance. There are many other faults may be result in that symptom. 

That is the reason why correct diagnosis is hard to reach. Therefore fault diagnosis 

is a procedure of reduplicate experiment: Firstly, base on the diagnosis knowledge 

to extract the symptoms, and then put it into diagnosis system. Purpose is to find 

out countermeasure, do adjustment and experiment on the equipment. Even 

sometimes machine is operated till it is down to repair it. At last turn the machine 

on and check its working condition. If it still abnormal means we need more 

information to do the diagnosis, so do the whole procedure again till the 

equipment back to normal condition. 

1.1.3.3 Directing the maintenance and management strategy of equipments 

The management and maintenance strategy of equipments comes through 

three phases: from Run-to-Breakdown Maintenance, to Time-based Preventive 

Maintenance, untill now Condition-based Maintenance. Time-based Preventive 

Maintenance can prevent the accident occurred. But disadvantage of this method 

is it often causes the lack of or over maintenance. Condition-based Maintenance is 

more scientific and reasonable maintenance strategy. But the implement of 

Condition-based Maintenance is depended on condition monitoring and faults 

diagnosis system working effectively. It is also why this technique is attached 

importance to the all over the world. With developing and implement of faults 

diagnosis technique, management and maintenance of equipment will be up to a 

higher level. At one time, the live-cycle of equipment will be prolonged farther, 

and the malignant accidents will be minimized, the economy will go faster and 

healthier.  

1.2 Definition, Contents and Basic Methodologies of Machine Faults 

Diagnosis Technique 

1.2.1 Definition of machine faults diagnosis technique 

    Machine faults diagnosis technique is on-line faults diagnosis technique, it 

means this technique obtains the condition of machine on-line. And it finds out the 
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causation and location of the fault. Then it forecasts the most possible condition 

machine could be in the future. Fault diagnosis technique consists of threes parts: 

First is to realize the actuality of purpose equipment. Second is to realize the 

abnormity or feature of the fault. Third is to predict and forecast the trend of 

equipment fault and state. It should be known that prediction is based on signal or 

symptom of a certain machinery to do diagnosis; but forecast employs the 

probability and statistics method to speculate the result.  

1.2.2 The approach of machine faults diagnosis technique  

    The content of faults diagnosis is composed of condition monitoring, 

analysis and diagnosis and fault prediction, the detailed procedures are listed as 

fellow: 

1. Data acquisition: during the process of machine running change of force, heat, 

vibration and energy, diversified signals exists synchronously. And then 

according to the need of diagnosis, different signals are selected by which can 

stand for running condition of equipment such as vibration, pressure, 

temperature and so on. The signals mentioned are obtained by various sensors. 

2. Data processing: In this procedure, the acquired data is processed by 

mathematic and statistics methods to calculate features which can represent 

the machine state well. For example, transforming the signal from time-

domain to the frequency-domain to do the analysis is one method of signal 

processing. 

3. Status identification: comparing the features which calculated features, the 

difference found between the two data can be used to detect the character and 

category of the fault. According to output of diagnosis system, the diagnosis 

policy will be made. 

4. Diagnosis decision-making: after making the policy of diagnosis, system 

decides the certain countermeasure and plan, and according to the condition 

of equipment and change of feature, trend analysis will be done. The figure 
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1.1 shows the whole diagnosis system. 

 

Figure 1.1 Flowchart of diagnosis system 

     

1.3 Methodologies of Machine Faults Diagnosis Technique 

    The complexity of the machine faults and relationship between faults and 

symptoms tell us that the machine faults diagnosis is always considered as an 
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exploring procedure. In machine faults domain, emphases of diagnosis technique 

do not focus on the fault itself but on the diagnosis methods. Due to the 

complexity of diagnosis, it is impossible to get correct output just via single 

method. The succeed diagnosis must combine various method. So the fact is that 

researchers should integrate different techniques, knowledge and methodology 

from diversified field. It is also important characteristic that diagnosis technique is 

an intersectional science. 

1.3.1 Conventional ffffaults diagnosis method 

One of the conventional methods is to utilize the physics and chemistry 

theory and techniques to detect the multifarious physical and chemic phenomena 

of equipment to find the fault out directly. For example: By monitoring of chemic 

composition, vibration, acoustics, lights, electromagnetic and thermal radiation 

signal to detect and diagnose the fault immediately. The advantages of this method 

are visible, fast, effective, but disadvantage is that it is just suit for partition of 

faults.  

Another method is most popular and well-developed. It diagnoses base on 

the relation between the faults and symptoms. Taking the rotational machinery as 

an example, the symptom of rotational machine fault is the characteristics of 

vibration signal in time and frequency domain. Hence, engineers put the attention 

on the research of fault mechanism and corresponding symptoms. During the 

diagnosis procedures, experts analyze the measured signal, extract the features, 

and then find the corresponding symptoms from the features. The symptoms are 

used to do the fault diagnosis. But it should be emphasized again that That is the 

reason why fault diagnosis is very complicated, therefore usually fault diagnosis is 

a procedure of reduplicate experiment. 

1.3.2 Intelligent fault diagnosis method 

Intelligent fault diagnosis method is established on the conventional methods 

and integrates the principle and technique of Artificial Intelligence, which is a 
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new approach of fault diagnosis. This technique is widely employed in many 

diagnosis fields and leads the development of fault diagnosis industry. 

Artificial Intelligence makes the computer to finish the tasks which need the 

human intelligent before, i.e. consequence, comprehension, programming, 

decision-making, abstracting and learning…etc. Expert System is one form of AI 

which is introduced to diagnosis field sophisticatedly. 

Expert System consists of repository, logistic system and storage space 

(including database). Furthermore, a realized expert System should have 

knowledge acquisition module, repository management module, explanation 

module, display module and man-machine conversation module…etc. 

The problems of Expert System are knowledge acquisition and knowledge 

representation. Knowledge acquisition is the bottleneck of Expert System, the 

reasonable representation method can organize the knowledge effectively, 

enhance the capability of Expert System. For the sake of extending the Expert 

System, so much work has to be done. Such as: To Analyze the mechanism of 

machine fault, set the mathematic model for analyzing in theory; To do test and 

experiment on the equipment; To summarize the diagnostic experience of 

specialist and transfer this knowledge to the form which computer understands; To 

research the theory and method of machine learning. All of work introduced 

makes the Expert System more and more excellent.     

1.4 Motivation of the Study   

    As mentioned above, the Expert System are well developed and widely 

applied. The strength of if is significant, but the weakness is also distinct. 

Performance of Expert System has strong connection with its repository which is 

fully constructed or not. The problem is knowledge (experience) acquisition often 

limits the capability of Expert System, because sometimes it is too difficult to 

establish an integrated repository.  

    On this occasion, another diagnosis method which is named mathematical 
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diagnosis method catches the researchers’ eyes. This method employs the latest 

research output of other kinds of science and especially some effective 

mathematical tools, such as machine learning methods, like decision tree (DT), 

artificial neural network (ANN), support vector machines (SVM) etc. The new 

techniques and their extended research increase the intelligent, preciseness and 

applicability of diagnosis domain. The potential of machine learning based fault 

diagnosis inspirits researchers to find the opportunities to improve the 

performance of existed algorithm. 

    While my passion of developing machine learning based machinery faults 

diagnosis methods are increasing, the Ensemble Theory offers the chance to carry 

this object out. The simple definition of Ensemble Theory is that an ensemble 

consists of a set of individually trained classifiers (such as ANN and Decision 

Tree) whose predictions are combined when classifying novel instance. 

    The geol of the thesis is to introduce and investigate a novel machinery faults 

diagnosis methodology based on random forests algorithm [1, 2]. I believe that the 

research on this algorithm is worthy as developing a new accurate diagnosis 

mechanism and also helpful for the continuous work on Ensemble Theory.  
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II. The Theoretical Background of Thesis 

 
2.1 Artificial Intelligence 

    Artificial intelligence (AI) is defined as intelligence exhibited by an artificial 

entity. Such a system is generally assumed to be a computer. Although AI has a 

strong science fiction connotation, it forms a vital branch of computer science, 

dealing with intelligent behavior, learning and adaptation in machines. Research 

in AI is concerned with producing machines to automate tasks requiring 

intelligent behavior. Examples include control, planning and scheduling, the 

ability to answer diagnostic and consumer questions, handwriting, speech, and 

facial recognition. As such, it has become a scientific discipline, focused on 

providing solutions to real life problems. AI systems are now in routine use in 

economics, medicine, engineering and the military … etc. 

AI divides roughly into two schools of thought: Conventional AI and 

Computational Intelligence (CI). Conventional AI mostly involves methods now 

classified as machine learning, characterized by formalism and statistical analysis. 

This is also known as symbolic AI, logical AI, neat AI and Good Old Fashioned 

Artificial Intelligence (GOFAI). Methods include: 

l  Expert systems: apply reasoning capabilities to reach a conclusion. An 

expert system can process large amounts of known information and 

provide conclusions based on them. 

l  Case based reasoning 
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l  Bayesian networks 

l  Behavior based AI: a modular method of building AI systems by hand 

Computational Intelligence involves iterative development or learning (e.g. 

parameter tuning e.g. in connectionist systems). Learning is based on empirical 

data and is associated with non-symbolic AI, scruffy AI and soft computing. 

Methods mainly include: 

l  Neural networks: systems with very strong pattern recognition 

capabilities. 

l  Fuzzy systems: techniques for reasoning under uncertainty, has been 

widely used in modern industrial and consumer product control systems. 

l  Evolutionary computation: applies biologically inspired concepts such as 

populations, mutation and survival of the fittest to generate increasingly 

better solutions to the problem. These methods most notably divide into 

evolutionary algorithms (e.g. genetic algorithms) and swarm intelligence. 

With hybrid intelligent systems attempts are made to combine these two 

groups. Expert inference rules can be generated through neural network or 

production rules from statistical learning such as in ACT-R. 

A promising new approach called intelligence amplification tries to achieve 
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artificial intelligence in an evolutionary development process as a side-effect of 

amplifying human intelligence through technology. 

2.2 Machine Learning 

As a broad subfield of artificial intelligence, Machine learning is concerned 

with the development of algorithms and techniques, which allow computers to 

"learn". At a general level, there are two types of learning: inductive, and 

deductive. Inductive machine learning methods create computer programs by 

extracting rules and patterns out of massive data sets. Machine learning overlaps 

heavily with statistics, since both fields study the analysis of data, but unlike 

statistics, machine learning is concerned with the algorithmic complexity of 

computational implementations. Many inference problems turn out to be NP-hard 

or harder, so part of machine learning research is the development of tractable 

approximate inference algorithms. 

Machine learning has a wide spectrum of applications including search 

engines, medical diagnosis, bioinformatics and chemoinformatics, detecting credit 

card fraud, stock market analysis, classifying DNA sequences, speech and 

handwriting recognition, object recognition in computer vision, game playing and 

robot locomotion. 

2.2.1 Machine learning algorithm types 

    Machine learning algorithms are organized into taxonomy, based on the 

desired outcome of the algorithm. Common algorithm types include: 
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l  Supervised learning where the algorithm generates a function that maps 

inputs to desired outputs. One standard formulation of the supervised learning task 

is the classification problem: the learner is required to learn (to approximate the 

behavior of) a function which maps a vector[ ]1 2, ... nX X X , into one of several 

classes by looking at several input-output examples of the function. 

l  Unsupervised learning: which models a set of inputs: labeled examples are 

not available. 

l  Semi-supervised learning which combines both labeled and unlabeled 

examples to generate an appropriate function or classifier. 

l  Reinforcement learning where the algorithm learns a policy of how to act 

given an observation of the world. Every action has some impact in the 

environment, and the environment provides feedback that guides the learning 

algorithm. 

l  Ttransduction is similar to supervised learning, but does not explicitly 

construct a function: instead, tries to predict new outputs based on training inputs, 

training outputs, and new inputs. 

l  Learning to learn where the algorithm learns its own inductive bias based on 

previous experience. 

    The performance and computational analysis of machine learning algorithms 
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is a branch of statistics known as computational learning theory. 

    Some of machine learning topics are well known as the powerful tools in 

many different fields, for example artificial neural networks, decision trees, k-

Nearest Neighbor, Support vector machines and so on. The machinery faults 

diagnosis industry is also one of its application fields. Usually anyone of these 

algorithm has a good performance when diagnose the fault based on it, especially 

artificial neural networks, decision trees and Support vector machines. But 

sometimes we meet the problem that it is so hard to promote the capability of this 

algorithm itself after it toughs its limitation. Without considering its probability, it 

needs the long term research and great effort to be spent on. So one way is to 

move the points form improving the algorithm endlessly to thinking   about how 

to use the algorithm. Hence, the ensemble theory exists which makes the work 

above possible.  

2.3 Ensemble Theory  

    Many researchers have investigated the technique of combining the 

predictions of multiple classifiers to produce a single classifier [1]. The resulting 

classifier is generally more accurate than any of the individual classifiers making 

up the ensemble. Both theoretical and empirical research [2, 3] has demonstrated 

that a good ensemble is one where the individual classifiers in the ensemble are 

both accurate and make their errors on different parts of the input space. Two 

popular methods for creating accurate ensembles are Bagging [1] and Boosting 

[4]. These methods rely on re-sampling techniques to obtain different training sets 
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for each of the classifiers. Previous work has demonstrated that Bagging and 

Boosting are very effective for decision trees [5]. But without the concerning 

selecting training parameter problems, neural networks and SVM are also fit for 

ensemble theory. The rest of this section will discuss conventional ensemble 

methodology especially these two popular methods. 

The basic framework for a classifier ensemble is shown in Fig. 2.1. In this 

example, neural networks are the basic classification method, though conceptually 

any classification method, such as decision trees, can be substituted in place of the 

networks. Each network in Fig 2-1ls ensemble, network 1 through network N in 

this case, is trained using the training instances for that network. Then, for each 

example, the predicted output of each of these networks, io in Fig  1, is 

combined to produce the output of the ensemble, 
^

o  in Fig. 2-1. Many 

researchers [1, 2, 6] have demonstrated that an effective combining scheme is to 

simply average the predictions of the network.  
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2.3.1 Classifier ensembles 

 

Figure 2.1 A classifier ensemble of neural networks 

Combining the output of several classifiers is useful only if there is 

disagreement among them. Obviously, combining several identical classifiers 

produces no gain. Hansen and Salamon [7] proved that if the average error rate for 

an example is less than 50% and the component classifiers in the ensemble are 

independent in the production of their errors, the expected error for that example 

can be reduced to zero as the number of classifiers combined goes to infinity; 

however, such assumptions rarely hold in practice. Krogh and vedelsby’s paper 

[2] proved that the ensemble error can be divided into a term measuring the 

average generalization error of each individual classifier and a term measuring the 

disagreement among the classifiers. What they formally showed was that an ideal 

ensemble consists of highly correct classifiers that disagree as much as possible.  
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As a result, methods for creating ensembles center around producing 

classifiers that disagree on their predictions. Generally, these methods focus on 

altering the training process in the hope that the resulting classifiers will produce 

different predictions. For example, neural network techniques that have been 

employed include methods for training with different topologies, different initial 

weights, different parameters, and training only on a portion of the training set. At 

the fellow parts, two popular ensemble methods Bagging and Boosting. 

 

Figure 2.2: Hypothetical runs of bagging and boosting 
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2.3.2 Bagging classifiers  

Bagging [1] is a “bootstrap” [8] ensemble method that creates individuals for 

its ensemble by training each classifier on a random redistribution of the training 

set. Each classifier’s training set is generated by randomly drawing, with 

replacement, N examples – where N is the size of the original training set; many 

of the original examples may be repeated in the resulting training set while others 

may be left out. Each individual classifier in the ensemble is generated with a 

different random sampling of the training set.  

Fig. 2.2 shows the process of Bagging and Boosting. Assume there are eight 

training examples. Assume example 1 is an “outlier” and is hard for the 

component learning algorithm to classify correctly. With Bagging, each training 

set is an independent sample of the data thus, some examples are missing and 

others occur multiple times. The Boosting training sets are also samples of the 

original data set, but the “hard” example occurs more in later training sets since 

Boosting concentrates on correctly predicting it.  

It gives a sample of how bagging might work on a imaginary set of data. 

Since Bagging re-samples the training set with replacement, some instances are 

represented multiple times while others are left out. So Bagging’s Training-set-q 

might conain examples 3 and 7 twice, but does not contain either example 4 or 5. 

As a result, the classifier trained on training-set-1 might obtain a higher test-set 

error than the classifier using all of the data. In fact, all four of Bagging’s 

component classifiers could result in higher test-set error; however, when 
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combined, these four classifiers can produce test-set error lower than that of the 

single classifier. the diversity among these classifiers generally compensates for 

the increase in error rate of any individual classifier. 

Breiman [1] showed that Baagging is effective on “unstable” learning 

algorithms where small changes in the training set result in large changes in 

predictions. Breiman claimed that neural networks and decision trees are 

examples of unstable learning algorithms.  

2.3.3 Boosting classifiers 

Boosting [9] encompassed a family of methods. The focus of these methods 

is to produce a series of classifiers. The training set used for each member of the 

series is chosen based on the performance of the earlier classifiers in the series. In 

Boosting, examples that are incorrectly predicted by previous classifiers in the 

series are chosen more often than examples that were correctly predicted. Thus 

Boosting attempts to produce new classifiers that are better able to predict 

examples for which the current ensemble’s performance is poor. But in bagging, 

the re-sampling of the training set is not dependent on the performance of the 

earlier classifiers. 

Fig. 2.2 shows a hypothetical run of Boosting. Note that the first training set 

would be the same as Bagging; later training sets accentuate examples that were 

misclassified by the earlier member of the ensembles. In this figure, example 1 is 

a “hard” example that previous classifiers tend to misclassify. With the second 
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training set, example 1 occurs multiple times, as do examples 4 and 5 since they 

were left out of the first training set and, in this case, misclassified by the first 

learner. For the final training set, example 1 becomes the predominant example 

chosen whereas no single example is accentuated with Bagging; thus, the overall 

test-set error for this classifier might become very high. Despite this, however, 

Boosting will probably obtain a lower error rate when it combines the output of 

these four classifiers since it focuses on correctly predicting previously 

misclassified examples and weights the predictions of the different classifiers 

based on their accuracy for the training set.  

Previous work has demonstrated that Bagging and Boosting are very 

effective for decision trees. Discussions with previous researchers reveal that 

many authors concentrated on decision trees due to their fast training speed and 

well-established default parameter settings. Other AI methods, neural networks 

and SVM, present difficulties for testing both in terms of the significant 

processing time required and in selecting training parameters. So as the primary 

research on ensemble theory, a novel and powerful ensemble method, Random 

Forest Algorithm, is investigated in my thesis. However, there are distinct 

advantages to including neural networks and SVM in my future study. First, 

previous empirical studies have demonstrated that individual neural net works and 

SVM produce highly accurate classifiers that are sometimes more accurate than 

corresponding decision trees. Second, neural networks have been extensively 

applied across numerous domains. Finally, by studying neural networks in 

addition to decision trees we can examine how Bagging and Boosting are 
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influenced by the learning algorithm, giving further insight into the general 

characteristics of these approaches. 

There are also a number of interesting conclusions of Bagging and Boosting. 

The first is that a Bagging ensemble generally produces a classifier that is more 

accurate than a standard classifier. For Boosting, however, we note more widely 

varying results. For a few data sets Boosting produced dramatic reductions in 

error, but for other data sets it actually increases in error over a single classifier.  

2.4 Random Forest  

RF which derive from decision tree classifier is an assembled method, it 

grows tree using CART (acronym of classification and regression trees) 

methodology to maximum size and without pruning. Therefore, basic principles of 

CART methodology will be provided here. 

Tree 1

Bootstrap
Sample 1

Bootstrap
Sample 2

Bootstrap
Sample N

…….

Tree 1 Tree 1…….

Majority Voting Process

Decision

Original Features

Tree 1

Bootstrap
Sample 1

Bootstrap
Sample 2

Bootstrap
Sample N

…….

Tree 1 Tree 1…….

Majority Voting Process

Decision

Original Features

 

Fig. 2.3. Construction of random forest. 
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2.4.1 Classification and regression tree 

CART grows classification and regression trees to predict continuous 

dependent variables (regression) and categorical predictor variables 

(classification) [14]. An example of a classification tree is shown below. The 

target variable is “Species”, the species of Iris. We can see from the tree that if the 

value of the predictor variable “Petal length” is less than or equal to 2.45 the 

species is Setosa. If the petal length is greater than 2.45, then additional splits are 

required to classify the species. 

 

Figure 2.4:  An example of classification tree 

2.4.2 The predictive accuracy of CART  

Accuracy is the most important feature of a classification tree. All 

classification procedures, however, including CART, can produce errors. The 

CART procedure does not make any distributional assumptions on covariates; 

hence, hypothesis testing is not possible. Confidence in CART’s performance, 

therefore, has to be based primarily on an assessment of the extent of 

misclassification it generates from data sets with known class distributions and on 

knowledge of and experience with the subject matter under study. And this 
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method is also suitable for test the accurate rate of Random forest algorithm.  

The best way to test the predictive accuracy of a tree is to take an 

independent test data set with known class distributions and run it down the tree 

and determine the proportion of cases misclassified. In empirical studies, the 

possibility of getting such a data set is remote. To overcome this difficulty, 

Breiman [15] provide three procedures for estimating the accuracy of tree-

structured classifiers. In this thesis, one of them is applied and explained here. 

Let: 

( )c X orc  = a tree-structured classifier, where X is a vector of characteristics 

variables that describe an observation; 

( )*R c X    = the classifier’s “true” misclassification rate; and  

L        = the learning sample (the sample data from which to construct a 

classification tree) 

The three estimation procedures below have two objectives: constructing a 

classification tree,( )c X , and then finding an estimate of ( )*R c X   . 

Re-substitution Estimates ( )R c X   . This estimates the accuracy of the true 

misclassification rate, ( )*R c X   , as follows: 
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l  Build a classification tree,( )c X , from the learning sample L, and save it. 

l  Apply the tree, ( )c X , to the data set from which it is built. That is let the 

observations in the sample run down the tree one at a time. 

l  Compute the proportion of cases that are misclassified. This proportion 

is the re-substitution estimate, ( )R c X   , of the true misclassification rate, 

( )*R c X   . 

The re-substitution estimate tests the accuracy of a classifier by applying it to 

observations for which the classes are known. The major weakness of this 

estimator of the error rate is that it is derived from the same data set from which 

the tree is built; hence, it underestimates the true misclassification rate. The error 

rate is always low in such cases.  

2.4.3 Methodology for building a classification tree 

In constructing a classification tree, CART makes use of prior probabilities 

(priors). A brief review of priors and their variations as used in CART is provided. 

Prior probabilities play a crucial role in the tree-building process. Three types 

of priors are available in CART: prior data, priors equal, and priors mixed. They 

are either estimated from data or supplied by the analyst. 
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In the following discussion, let 

N  = number of cases in the sample, 

jN  = number of class j cases in the sample, and 

jπ  = prior probabilities of class j cases. 

l  Prior data assumes that distribution of the classes of the dependent 

variable in the population is the same as the proportion of the classes in 

the sample. It is estimated as j
j

N

N
π = . 

l  Priors equal assumes that each class of the dependent variable is equally 

likely to occur in the population. For example, if the dependent variable 

in the sample has two classes, then pro(class 1) = pro(class 2) = 0.5 

l  Prior mixed is an average of prior equal and prior data for any class at a 

node.  

2.4.3 Components for building a classification tree  

Three components are required in the construction of a classification tree: (1) a set 

of questions upon which to base a split; (2) splitting rules and goodness-of-split 

criteria for judging how good a split is; and (3) rules for assigning a class to each 

terminal node. Each of these components is discussed below. 
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2.4.3.1 Type and format of questions 

Two question formats are defined in CART: (1) Is ?X d≤ , if X is a 

continuous variable and d is a constant within the range of X values. For example, 

is 2000?income ≤ or is ?Z b= , if Z is a categorical variable and b is one of the 

integer values assumed by Z. For example, is1?sex = . 

The number of possible split points on each variable is limited to the number 

of distinct values each variable assumes in the sample. For assumes N distinct 

points in the sample, then the maximum number of split points on X is equal to N. 

if Z is a categorical variable with m distinct points in a sample, then the number of 

possible split points on Z equals 12 1m− − [15]. Unless otherwise specified, CART 

software assumes that each split will be based on only a single variable. 

2.4.3.2 Splitting rules and goodness-of-split criteria 

This component requires definition of the impurity function and impurity 

measure. 

Let j = 1,2,…,k be the number of classes of categorical dependent variables; 

then define ( )p j t as class probability distribution of the dependent variable at 

node t, such that ( ) ( ) ( ) ( )1 2 3 ... 1p t p t p t p k t+ + + + = , j = 1,2,…, k. Let( )i t be the 

impurity measure at node t. then define( )i t as a function of class 
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probabilities ( ) ( ) ( )1 , 2 , 3 ,...p t p t p t . Mathematically,( ) ( ) ( ) ( )1 , 2 ,...,i t p t p t p j tφ  =    

. The definition of impurity measure is generic and allows for flexibility of 

functional forms. 

There are three major splitting rules in CART: the Gini criterion, the towing 

rule, and the linear combination splits. In addition to these main splitting rules, 

CART users can define a number of other rules for their own analytical needs. 

CART uses the Gini criterion as its default splitting rule. The towing rule is 

discussed in detail in Breiman’ paper [15] and will not be covered here. 

The Gini impurity measure at node t is defined as( ) 1i t S= − , where S (the 

impurity function) ( )p j t=∑ , for j = 1,2,…,k [14] 

The impurity function attains its maximum if each class in the population 

occurs with equal probability. That is( ) ( ) ( )1 2 ...p t p t p j t= = = . On the other hand, 

the impurity function attains its minimum (= 0) if all cases at a node belong to 

only one class. That is , if node t is a pure node with a zero misclassification rate, 

then ( ) 0i t = . 

Let s be a split at node t. then, the goodness of split “s” is defined as the 

decrease in impurity measured by: 
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( ) ( ) ( ) ( ) ( ), L L R L R Ri s t i t P i t P i t P i t∆ = − − −                        (1) 

 

Where: 

s   = a particular split, 

LP  = the proportion of the cases at node t that go into the left child node,Lt , 

RP  = the proportion of cases at node t that go into the right child node,Rt , 

( )Li t = impurity of the left child node, and 

( )Ri t = impurity of the right child node. 

2.4.3.3 Class Assignment Rule 

There are two rules for assigning classes to nodes. Each rule is based on one 

of two types of misclassification costs. 

1. The Plurality Rule: Assign terminal node t to a class for which ( )p j t is 

the highest. If the majority of the cases in a terminal node belong to a 

specific class, then that node is assigned to that class. The rule assumes 

equal misclassification costs for each class. It does not take into account 
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the severity of the cost of making a mistake. This rule is a special case of 

rule 2. 

2. Assign terminal node t to a class for which the expected 

misclassification cost is at a minimum. The application of this rule takes 

into account the severity of the costs of misclassifying cases or 

observations in a certain class, and incorporates cost variability into a 

Gini splitting rule. 

    When dealing with famine vulnerability, for example, misclassifying a 

vulnerable household as invulnerable has more severe consequences than 

misclassifying a invulnerable household as vulnerable. Variable costs can be 

accounted for by defining a matrix of variable misclassification costs that can be 

incorporated into the splitting rules. 

    Let ( )c i j = the cost of classifying a class j case as a class I case: 

( ) 0c i j ≥  if ( ), 0i j c i j≠ =  if i j=                 (2) 

    Now, assume that there are two classes in a problem. Let 

( )1tπ = prior probability of class 1 at node t, 
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( )2tπ = prior probability of class 2 at node t, 

( )1r t = the cost of assigning node t to class 1, and  

( )2r t = the cost of assigning node t to class2. 

Given priors and variable misclassification costs,( )1r t and ( )2r t are estimated 

as follows: 

( ) ( ) ( )
( ) ( ) ( )

1

2

1 2 1

2 1 2

r t c

r t c

π

π

=

=

�

�
                  (3) 

    According to rule 2, if at node t, ( )1r t < ( )2r t , node t is assigned to class1. If 

( ) ( )2 1 1 2c c= , then rule 1 applies and a node is assigned to a class for which the 

prior probability is the highest. 

 

2.4.3.4 Steps in building a CART like tree 

The tree building process begins with departing the root node into binary 

nodes by a very simple question of the form is X ≤ d? Initially, all observations 

are located in the root node. CART implement a computer-intensive algorithm that 

searches for the best split at all possible split points for each variable. The 

methodology which CART uses for building trees is known as binary recursive 

partitioning. Adopting the Gini diversity index as a splitting rule, the tree building 

process is as follows: 
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Step 1: CART splits the first variable at all of its possible split points, at all of 

the values the variable assumes in the sample. At each possible split point of a 

variable, the sample splits into binary or two child nodes. Cases with a “yes” 

response to the question posed are sent to the left node and those with “no” 

responses are sent to the right node. 

Step 2: CART then applies its goodness-of-split criteria to each split point 

and evaluates the reduction in impurity that is achieved using the formula (1).                                     

Step 3: CART selects the best split of the variable as that split for which the 

reduction in impurity is highest. Three steps above are repeated for each of the 

remaining variables at the root node 

Step 4: CART then ranks all of the best splits on each variable according to 

the reduction in impurity achieved by each split and selects the variable and its 

split point that most reduced the impurity of the root or parent node. 

Step 5: CART then assigns classes to these nodes according to the rule that 

minimizes mis-classification costs. CART has a built-in algorithm that takes into 

account user-defined variable misclassification costs during the splitting process. 

The default is unit or equal misclassification costs 

Because the CART procedure is recursive, steps 1 - 5 are repeatedly applied 

to each non-terminal child node at each successive stage. 

Step 6: Stopping tree building, CART stops the splitting process when:  

1) There is only one observation in each of the child nodes; 
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2) All observations within each child node have the identical distribution of 

predictor variables, making splitting impossible. 

3) The user set an external limit on the number of levels in the maximal tree 

in previously. 

Stand by there steps a CART algorithm base decision tree without pruning 

and optimizing will be built. 

2.4.4 Random forest algorithm  

RF has greatly improved classification accuracy resulting from growing an 

ensemble of trees and making them vote for the most promising class. A 

convenient method to build the ensembles random vectors generation via random 

selection procedure from integrated training set. The constituent in this method is 

that we prepare k random vectors, Θk, which is independent of the past random 

vectors Θ1, Θ2, Θ3, …, Θk-1 but with the same distribution to build the trees 

among the RF. Corresponding individual classifier is noted by C(X, Θk). And then 

they vote for the most popular class. Breiman names these procedures as random 

forests. A definition drawn from original paper is available here [10, 11]. 

Definition 1 A random forest is a classifier consisting of a collection of tree 

structured classifiers {C(X, Θk), k = 1, …} where the {Θk} is independent 

identically distributed random vectors and each tree casts a unit vote for the most 

popular class at input X. 

2.4.4.1 Two Randomized procedures in RF Tree building  

As mentioned below, RF enhances classification accuracy compared with 
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decision tree classifier significantly. It is the reason that RF applies two 

randomized procedures when it builds trees. Each tree is built as follows: 

Firstly, assuming that the number of cases in the training set is N and the 

number of variables in the classifier is M. Select the number of input variables 

that will be used to determine the decision at a node of the tree. This number, m 

should be much less than M. Secondly, choose a training set by choosing N 

samples from the training set with replacement. And then, for each node of the 

tree randomly select m of the M variables on which to base the decision at that 

node. Calculate the best split based on these m variables in the training set. Finally, 

each tree is fully grown and not pruned. 

The two distinctive randomized procedures exist among four steps below. That 

is, RF extracts a fixed quantity from training set randomly, or names it bagging 

process [16]. Each base classifier in the ensemble is trained on a bootstrap from 

the entirety of available data. However, each of these bootstrap replicates tends to 

leave out roughly one-third of the sample. Thus, each classifier in the ensemble is 

trained on roughly two-thirds of the original data. Consequently, each element in 

the sample of size n trains roughly (2/3)k of all classifiers in the ensemble so that 

it can be used to validate the remaining k/3 classifiers (Fig. 2.5) where n is the 

number of training data, k is the total number of single tree classifier. This part of 

data is named out-of-bag data to get an unbiased estimate of the test set error of 

an individual tree. The rest of data is used to build the single tree classifier.  
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Fig. 2.5. Schematic of bagging using the decision tree as the base classifier 

The research of Breiman states why these two randomized procedures make 

classification accuracy increase effectively: Improvement will occur for unstable 

procedures where a small change in training set can result in large change between 

component classifiers and classifier trained by entire training set. In RF, whatever 

the bagging processing or the randomly selection of variables to split the node 

both make difference in individual tree and forests. Therefore, these two sources 

of randomness are most important features of RF. 

 

2.4.4.2 Convergence of RF 

RF adopts an ensemble of decision trees and determines the categorical 

classes by majority vote algorithm. Thus a serious consideration of over-fitting is 

necessary for testing RF performance. Normally an over-fitting will occur where 

learning is performed too long or where training examples are rare, the learner 
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may be limited in very specific random features of the training data that have no 

causal relation to the target function. But RF can avoid the over-fitting completely, 

which was proved in Refs [10]. To affirm this point, we define a margin function 

at first. 

Given an ensemble of a series of classifiers C1(X), C2(X), …, Ck(X), and 

with the training set drawn at random from the distribution of the random vector Y, 

X, define the margin function as 

( ) ( )( ) ( )( ), I max Ik k j Y k kmg Y av C Y av C j≠= = − =X X X               (4)                                         

where I(·) is the indicator function. The margin measures the extent to which 

the average number of votes at X, Y for the right class exceeds the average vote 

for any other class. The larger in the margin, the more confidence in the 

classification. 

According to this function, the generalization error is given by: 

( )( ), , 0X YPE P mg Y∗ = <X                                                    

Theorem 1 As the number of trees increases, for almost surely all sequences 

Θ1, ∗PE      converges to: 

( )( )( ) ( )( )( ), , max , 0Y j YP P C Y P C jΘ ≠ ΘΘ = − Θ = <X X X        (5)                       

Theorem 1 is proved with the strong law of large numbers and the tree 

structure. It indicates that it is unnecessary for RF to employ common anti-

overfitting methods for instance, cross-validation, early stopping, etc. RF do not 
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overfit when more trees are added, meanwhile it result in a limiting value of the 

generalization error. This is another important feature of RF beside the two 

randomized procedure mentioned above. 

2.4.4.3 Accuracy of RF Depending on Strength and Correlation 

In last section, the anti-overfitting characteristic of RF is proved. But we 

concern more about its accuracy. According to the analysis built in references, an 

upper bound of RB can be derived for the generalization error in terms of two 

parameters that are measures of how accurate the individual classifiers are and of 

the dependence between them. These also lead an in-depth view of how RF works. 

Firstly we define a margin function and raw margin function for RF. 

The margin function for a random forest is:  

( ) ( )( ) ( )( ), , max ,j Ymr X Y P C Y P C jΘ ≠ Θ= Θ = − Θ =X X          (6)                                

The raw margin function is:  

( ) ( )( ) ( ) ( )( )ˆ, , , , ,rmg Y I C Y I C j YΘ = Θ = − Θ =X X X X          (7)                              

Distinctively, ( )YXmr , is the expectation of ( )YXrmg ,,Θ with respect to Θ. 

And the strength of the number of individual classifiers ( ){ }Θ,XC  is: 

( ), ,X YS E mr Y= X                                           (8) 

Then we compute the variance of margin function: 
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( ) ( )( ) ( )2
var varmr E sd Eρ ρΘ Θ= Θ ≤ Θ                        (9)        

Write 

( ) ( )( )2 2 2
,E var E E , , 1Y rmg Y S SΘ ΘΘ ≤ Θ − ≤ −X X                  (10)         

Considering function (9), (10) and Chebychev inequality, theorem 2 can be 

concluded. 

Theorem 2 An upper bound for the generalization error is given by 

( )2 21 /PE S Sρ∗ ≤ −                                          (11)                                         

Although the bound is likely to be loose, it fulfills the same suggestive 

function for random forest as VC-type bounds do for other types of classifiers. It 

shows that the two ingredients involved in the generalization error for random 

forests are the strength of the individual classifiers in the forest, and the 

correlation between them in terms of the raw margin functions. There is a 

conclusion drawn from this upper bound, that is the smaller this ration is, the 

better performance RF provided. 

2.4 Genetic Algorithm 
RF is strengthened by a standard genetic algorithm (GAs) [19] in this paper. GA 

is a simulation of evolution where the rule of survival of the fittest is applied to a 

population of individuals, or it can be considered as a parallel searches procedure 

that simulates the evolutionary process by applying genetic operators. Comparing 

with other search algorithms, GA has been well-known for its superior 

performance. And the most powerful feature of GAs is its great simplicity. They 
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do not need too much code and no differentiability or continuity requirements to 

be satisfied. The usual GA flowchart (Fig. 2.2) and steps are shown as follows: 

Step 1: Coding, generate an initial population (usually a randomly string) 

Step 2: Fitness evaluation, apply some function or formula to the individuals to 

get the fitness of each individual. 

Step 3: Selection, according to the fitness, individuals are selected to be the 

parents of next generation. 

Step 4: Crossover, it is used to create two child individuals from the parent 

which pass the selection successfully via exchanging their chromosomes. 

Step 5: Mutation, it assigns a new value to a randomly chosen gene and is 

controlled by a mutation probability. 

Step 6: Repeat step 3 to 5 until the evolved result satisfy the termination criteria, 

or a certain fixed number of generations are achieved. 

The function of GA is to evaluate the best parameters of RF. Fitness is the 

criterion which indicates the capacity of each individual. In RF the diagnosis 

accuracy rate value is assigned to fitness which represents the performance of 

certain parameters. After generating the initial population, fitness values are 

calculated and assigned to individuals which include two key parameters of RF. 

The GA proceeds to the next generation through three genetic operators: selection, 

crossover, and mutation. 
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Fig. 2.6. Flowchart of genetic algorithm. 

   

Selection is the most important part of GA. This operator impacts on the trend 

of GA and makes GA’s running time shorten. It picks up the excellent parents to 

reproduce the individuals within the limitation. The normalization probability for 

individuals to be selected, Np is described as following equations: 

( ) ( )

( )
( )

1 1 ( ) g

s
p N i

s

B i
N i

B i
=

− −
                                                     

(11) 

where i is an individual, Ng is the number of generation. Bs is probability of 

selecting best individual from the current population.  

The selection probability of each individual is: 
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( ) ( ) 1 ( )

I i

s sP i N i B i= −                                                        

(12) 

where I(i) is the sorted index of individuals according to the fitness. 

The selection probability stands for the opportunity of individuals to be chosen 

as parents of the next generation. The new individuals are reproduced by the 

survivals from selection by crossover and mutation procedure.  
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III. Application and Optimization of Random 

Forest Algorithm on Induction Motor Fault 

Diagnosis 

 
3.1 The Significance of Intelligent Diagnosis of Rotating Machine 

The rotating machine plays an important role of modern industry, and is 

equipped in many crucial departments. This situation causes the problem that its 

breakdown will result in a huge losing. Therefore, fault diagnosis of machines is 

gaining importance in industry because of its capability to increase reliability and 

to decrease possible loss of production due to machine breakdown. Efficient and 

accurate faults categorized have been critical to machinery operated in normal 

condition. There are several well-known machine learning methods which also 

named artificial intelligence, such as artificial neural network (ANN), support 

vector machines (SVM) etc. The new techniques and their extended research 

increase the intelligent, preciseness and applicability of diagnosis domain. It 

exhibits the great potential of combining machine learning methodology and 

machinery faults diagnosis theoretic. While the passion of developing machine 

learning based machinery faults diagnosis methods are increasing, there are a 

number of obstacles in the presence of researchers. That is, the correct diagnosis 

of a fault is rather complicated. The reasons are listed as follows: 

·Different kinds of faults may result in a certain symptom, or feature 

extracted from raw data.  

·Because of the background noise, some faults are difficult to be 
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distinguished in the machine. 

·There are a number of subassemblies with rotating machinery and a high 

level internal interaction between these subassemblies such as bearings, rotor bar 

and rotor etc. 

Hence, the machine learning based fault diagnosis method which is 

employed to make hypotheses should powerful enough to category the 

malfunctions in a correct way. So that, improving the capability of diagnosis is the 

main motivate to inspirit researchers syncretizing existent technologies and 

exploring new theories. 

In this thesis, we introduce and investigate a novel rotating machinery faults 

diagnosis methodology based on random forests algorithm (RF) [10, 11]. It built a 

large amount of decision trees out of sub-dataset from a unique original training 

set by using bagging, acronym of bootstrap aggregating which is a meta-

algorithm to improve classification and regression models according to stability 

and classification accuracy. Bagging also reduces variance and helps to avoid 

over-fitting. This procedure extracts cases randomly from original training data set 

and the bootstrap sets are used for construct each of decision trees in the RF. Each 

tree classifier is named component predictor. The RF makes decision by counting 

the votes of component predictors on each class and then selecting the winner 

class in terms of number of votes to it.  

Since first introduced by Breiman, RF has been employed in various fields 

such as astronomy, micro-array analysis and drug discovery and otherwise [12, 

13]. RF provides good performance in applications in these fields. RF can be a 

competitor for rotating machinery faults diagnosis, because of these distinctive 

features as below [10]: 
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·It is unexcelled in accuracy among current algorithms 

·It runs efficiently on large data bases. 

·It can estimates of what variables are important in the classification. 

·It has methods for estimating missing data and maintains accuracy when a 

large proportion of the data are missing. 

·It computes proximities between pairs of cases that can be used in 

clustering, locating outliers, or five interesting views of the data 

·It generates an internal unbiased estimate of he generalization error as the 

forest building progresses. 

Due to these features and its board application, we investigate the 

performance of RF based faults diagnosis methodology. 

As the backbone of modern industry, induction motors play an important role 

in manufacture, transportation and so on. The squirrel cage induction motor's 

versatility and ruggedness continue to make it the workhorse of the industry, but 

that doesn't mean it's invincible. Pushing it too hard for too long can cause the 

stator, rotor, bearings, and shaft to fail. Numerous industry surveys document 

which parts fail and how, but very little data is available to explain the reason. 

As the industry's approach to maintenance and repair gradually evolves from 
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reactive and preventive to diagnostic and predictive, it's important to pay more 

attention to root cause failure analysis. Neglecting to do so often will cause your 

motors to repeatedly fail and cost you valuable resources and time. So a general 

study on induction motor faults diagnosis was done. And the result is shown in 

next section.  

In this chapter, we also confirm the possibilities of using random forests 

algorithm (RF) in machine fault diagnosis and propose an optimized RF method 

combined with genetic algorithm (GA) to improve the classification accuracy. To 

increase the diagnosis accuracy, we acquire the data of three-direction vibration 

signals as the original inputs of system. And a number of feature parameters in 

time and frequency domains and regression coefficients are calculated to extract 

helpful information and remove the background noise of the data [15]. Then 

random forest diagnosis system detects the certain faulty type bases on these 

features. So the experiments have designed to indicate the validity and reliability 

of RF based fault diagnosis method. Experimental result shows the optimized RF 

based method achieves a very high accuracy by combining RF with GA. 

3.2 Induction Motor Faults Diagnosis 

3.2.1 Failure surveys on induction motor 

It's common to use the results of failure surveys to diagnose the cause of a 

specific motor failure, but it can be a costly mistake. Most failure survey data for 

electric motors is influenced by the particular industry, the geographic location, 

and the combination of the motors in use. Therefore, specific numbers may not 
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always be relevant. 

Not only that, most failure surveys focus on the component that actually 

failed while neglecting to address the root cause of that failure. For example, such 

a survey may tell you that a bearing failed, but that isn't the root cause; it's simply 

the component that failed. The root could be one of several things, but it's not 

specified. 

 

Figure 3.1 IEEE study on induction motors failures 

The data provided by the Institute of Electrical and Electronics Engineers 

(IEEE) study shown in Fig. 1 above is helpful because in addition to identifying 

failed components, it suggests the most likely causes of failure based on which 

component failed. However, that's still not enough. It's your responsibility to 

conduct a thorough analysis to find the definitive root cause of that particular 

component's failure. These percentages in Figure 4.3 may vary based on industry 
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or location. 

The real challenge lies in reducing the large category of “unknown” failures. 

It's these “unknown” failures that make analyzing the entire motor system so 

critical. 

3.2.2 Summary of motor stresses 

Most motor failures are caused by a combination of various stresses that act 

upon the bearings, stator, rotor, and shaft. If these stresses are kept within the 

design capabilities of the system, premature failure shouldn't occur. However, if 

any combination of the stresses exceeds the design capacity, the life of the system 

may be drastically reduced and catastrophic failure could occur. 

These stresses are classified as follows: 

l  Bearing stresses: Thermal, dynamic and static loading, vibration and 

shock, environmental, mechanical, electrical 

l  Stator stresses: Thermal, electrical, mechanical, and environmental 

l  Rotor stresses: Thermal, dynamic, mechanical, environmental, magnetic, 

residual, and miscellaneous 

l  Shaft stresses: Dynamic, mechanical, environmental, thermal, residual,   
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electromagnetic
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Table 3.1 Detailed summary of motor stresses 

3.2.3 Arriving at correct conclusion 

When analyzing a motor failure, it's important to not make assumptions. The 

service center rarely knows much about the motor application, much less the 

power supply and/or maintenance history. The individual dealing with the service 

center may not be the person who removed the motor from service or the operator 

who is familiar with the motor or its application, meaning that it's imperative 

those individuals compile all of the facts before concluding anything. 

Incorrect, incomplete, or even misleading information is the norm. But it 

doesn't have to be that way. Never assume a piece of evidence exists just to force 

the conclusion to fit the facts. When a conclusion is built around erroneous 

information mingled with facts, the root cause of failure is seldom correct. The 

result will be additional failures or the assignment of blame to the wrong parties. 

3.3 Experiment Platform and Motor Faults Data Description 

The experiments are designed to simulate six most universal categories of 

induction motors faults which are broken rotor bar, bowed rotor, bearing outer 

race fault, rotor unbalance, adjustable eccentricity motor (misalignment) and 

phase unbalance, first four motor faults are shown in Fig. 3.2 as an example. The 

load of the motors can be changed by adjusting the blade pitch angle or the 

number of the blades. The platform of these experiments consists of six 0.5kW, 

60Hz, 4-pole induction motors, pulleys, belt, shaft and fan with changeable blade 



- 60 - 

pitch angle.  

Three AC current probes and another three accelerometers were used to 

measure the stator current of three phase power supply and vibration signals of 

horizontal, vertical and axial directions for evaluating the RF based fault diagnosis 

system. Fig. 4.3 shows the platform of the experiment. 

After measuring the raw data, a preprocessing and feature extraction are 

implemented on the data to obtain the most important features for the RF based 

diagnosis methodology [17]. Finally, there are 63 features left which are prepared 

for the next procedure, induction motor faults diagnosis by RF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Faults on induction motors 

 

Rotor Unbalance Rotor bar broken Stator fault 

Faulty bearing Bowed rotor Eccentricity 
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Figure 3.3 Experiment platform 

 

3.4 Discussion and Analyze  

In this section, RF was run on the induction motor faults data. The 

experimental results for random forest based method are given in Table 3.2. And 

confusion matrixes for the training data in RF are given by Tables 3.3 shows the 

accuracies of each fault class for testing data with 1200 trees and selecting 1 

variable every split. 

Trees No. 
Split 

variables 
Test accuracy 

(%) 
Trees No. Split variables 

Test accuracy 
(%) 

200 1 88.89 2000 5 73.34 
500 1 94.44 5000 5 72.23 
1200 1 95.56 10000 5 74.44 
2000 1 93.33 200 8 81.22 
5000 1 92.23 500 8 83.33 
10000 1 92.25 1200 8 82.34 
200 5 71.11 2000 8 83.33 
500 5 75.56 5000 8 78.89 
1200 5 72.23 10000 8 77.78 

Table 3.2 Faults diagnosis accuracies based on RF 
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Class No. 1 2 3 4 5 6 7 8 9 Accuracy (%) 
1 10 0 0 0 0 0 0 0 0 100 
2 0 10 0 0 0 0 0 0 0 100 
3 0 0 10 0 0 0 0 0 0 100 
4 0 0 0 10 0 0 0 0 0 100 
5 0 0 0 0 7 3 0 0 0 70 
6 0 0 0 0 0 10 0 0 0 100 
7 0 0 0 0 0 0 10 0 0 100 
8 0 0 0 1 0 0 0 9 0 90 
9 0 0 0 0 0 0 0 0 10 100 

Table 3.3 Accuracy of each fault class for testing data with 1200 trees and selecting 

1 variable each split 

 

 
Fig. 3.4. Classification rate against random split number and tree number 

Fig. 3.4 shows the classification rate according to the experiment which represe

nts three characteristics of RF very clearly. First, compared with the number of co
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mponent classification trees, the parameter, random split number at each node, is 

more sensitive to the classification accuracy. Hence a prudential searching proced

ure is necessary to find the best split variables number by an experimental way. Se

cond, if the split variables number is decided, the sum of individual tree classifier 

should achieve an appropriate quantity to get a better performance. Last one, whe

n we increase trees into a high number, for example 5000 or 10000, there is no ov

er-fitting occurred but a little undulating exists.  

Class No. 1 2 3 4 5 6 7 8 9 Accuracy (%) 
1 10 0 0 0 0 0 0 0 0 100 
2 0 10 0 0 0 0 0 0 0 100 
3 0 0 10 0 0 0 0 0 0 100 
4 0 0 0 10 0 0 0 0 0 100 
5 0 0 0 0 9 1 0 0 0 70 
6 0 0 0 0 0 10 0 0 0 100 
7 0 0 0 0 0 0 10 0 0 100 
8 0 0 0 0 0 1 0 9 0 90 
9 0 0 0 0 0 0 0 0 10 100 

Table 3.4 Accuracy of each fault class for test data with 907 trees and selecting 1 

variable every split 

Table 3.4 indicates that incorrect diagnosis of RF based methodology often 

occurs at certain fault category. So we can apply some assistant diagnosis method 

which are function in that specific kind of fault to improve the diagnosis precision.  

In general, the normal RF has achieved the satisfied fault diagnosis accuracy. B

ut it should be noticed that two parameters, the number of trees and random split n

umber, which greatly affect classification result are set manually. It means accurac

y of normal RF depends on researcher’s experience. This situation exists at almost

 all the applications of RF. So that applying the genetic algorithm to do the param

eter optimization is exigent. The effect of this cooperation is proved by using the s

ame data. According to the pervious research, in order to reduce executed time of 

GA program and find the optimized point synchronously, the number of trees and 
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random split number are limited in the range from 500 to 1500 and from 1to 10 re

spectively. 
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Fig. 3.5. Optimization trace within 40th generation. 

Fig. 3.5 shows the trace information of every generation. Fitness adopts the 

classification accuracy of the test data set. The upper curve is the best fitness 

value and the other one is mean fitness value of each generation. The risen and 

convergent trend of mean fitness value indicates that GA well cooperates with 

RF based methodology on the motor fault diagnosis, and best fitness value lays 

out the optimization point which is 907 trees and 1 random split created by 9th 

generation. The classification accuracy at this point achieves the 98.89%, 3.33% 

higher than the best value of normal RF. It means GA can enhance the capability 

of RF algorithm distinctly. 
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We also do the comparisons of  some familier diagnosis methods. Such as, 

ANN(BP nural network), support vector machines and C4.5 classification tree. 

Obviously, RF algorithm has great increased the capability of tree classification  

method, from 77.78% to 95.56. Others can also be seen from table 3 that normal 

RF just 0.69% weaker than BP neural network, but its speed is higher.  And RF 

optimized by GA almost touches the same accuracy of SVM. The RF, a novel 

algorithm, goes near to a well developed method. This means all we have done is 

significatively and the farther research is important and necessary. 

 

C4.5 BP-NN SVM RF RFOGA 

77.78% 96.25% 99.15% 95.56% 98.89% 

Table 3.5 Result and comparisons of ANN,SVM, C4.5, RF and Optimized RF by 

GA 

3.5 Conclusion 

The purpose of this chapter is to confirm the possibilities of using random 

forests algorithm (RF) in machine fault diagnosis and propose a hybrid method 

combined with genetic algorithm to improve the classification accuracy. The 

proposed method is based on RF, a novel ensemble classifier which builds a large 

amount of decision trees to improve the single tree classifier. Although there are 
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several existed techniques for faults diagnosis, the research on RF is meaningful 

and necessary because of its fast execution speed, the characteristic of tree 

classifier, and high performance in machine faults diagnosis. Evaluation of the RF 

based method has been demonstrated by a case study on induction motor faults 

diagnosis. Experimental results indicate the validity and reliability of RF based 

fault diagnosis method. In this paper, the RF and optimized RF based faults 

diagnosis method of rotating machinery were investigated. The performance of 

two methods was proved by the faults diagnosis test of an induction motor. The 

optimized approach attains a high accuracy rate of diagnosis, 98.89%. The 

comparison result also shows that the optimized RF based method is competitive 

with other classification method.  
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IV. Application of RFOGA to Elevator Induction 

Motor Fault Diagnosis 

 
4.1 Introduction  

As elevators are more widely used as transportation means in buildings, 

importance of guaranteeing elevators working under normal state is also 

becoming more significant. The sudden breakdown of elevator mechanical system 

will be result in very inconvenient consequences which may disturb normal step 

of human life and manufacturing processes and cause a huge loss of time and 

productivity.   

Induction motor is core component of elevator mechanical system. Under 

long time and under-the-clock running, the degradation and malfunction of 

elevator induction motor are possibly occurred. Further, the faults of motor may 

be inherent to the machine itself or caused by severe operating conditions [20]. 

And it is difficult to trace the root cause too. Therefore, to apply an intelligent 

fault diagnosis system to elevator door is crucial demand [21].  

With this purpose, after testing RFOGA onto induction motor fault 

stimulation platform, in this chapter, RFOGA based intelligent system was applied 

to diagnosis of elevator motor faults by using vibration and current signal 

separately. Because of the advantage of vibration signal, like relative low 

interference of background noise, good discriminability to different fault types, 
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and high performance of RFOGA, a 100% diagnostic accuracy is achieved with 

vibration signal only. However, due to the exigent requirement of vibration data 

acquisition in real-world, it should be considered when vibration signal is 

unavailable or incomplete, frequently fault diagnosis accomplished by employing 

current signal is more convenient and economical. Therefore, RFOGA elevator 

motor fault diagnosis using stator current signals is evaluated in this paper as well. 

The RFOGA intelligent system for elevator motor fault diagnosis works as 

follow: first, raw data is collected from multiple sensors and values of features of 

the raw data are calculated that extract most of important information. The 

generated feature sets are then grouped as the original input of the system to be 

sent into RFOGA for diagnosing motor faults. The rest of this chapter is arranged 

as: explanation of experiment apparatus and data, experimental result discussion 

and conclusion of this chapter. 

4.2 Experiment Apparatus and Data Description  

In order to demonstrate the effectiveness of the proposed system in real-

world operating conditions, an experiment was carried out using an induction 

motor system of elevator as shown in Fig. 4.1. 

The test objects are ten 15 kW, 50 Hz and 4-pole induction motors for 

elevators. The basic specifications of them are shown in Table 4.1. This motor was 

set to operate at full-load conditions. One of the motors is normal (healthy), which 

is used as a benchmark for comparing with faulty motors. The others are faulty 

motors with rotor unbalance, stator eccentricity, rotor eccentricity, broken rotor 

bar, bearing housing looseness, bearing inner race looseness, ball fault, bearing 
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outer race fault and inner race fault, as shown in Fig. 4.2. The conditions of faulty 

induction motors are described in Table 4.2. 

 

Figure 4.1 Experiment apparatus 

 

Table 4.1 Basic specification of the elevator induction motor 

Type Induction motor 

Voltage 340 V 

Current  34.2 A 

Rotating speed 1450 rpm 

Line frequency  50 Hz 

Bearing (DE) #6310 

Bearing (NDE) #6308 

Weight 1402 N 

Power  15 kW 
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Number of stator slot 36 

 

Three accelerometers and one AC current probes were used to measure the 

vibration signals of horizontal, vertical, axial directions and stator current signal 

to evaluate the fault diagnosis system. The maximum frequency of sampling 

signals was 3 kHz and the number of sampled data was 16384. Sampling time is 

2.133 seconds and Hanning window was chosen for filtering. Each condition was 

measured for two times. 

 

 

Figure 4.2 fault examples of induction motors 

 

 

 

 

Table 4.2 Description of fault types of the motor tested 
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Fault types Fault parameter 

Rotor unbalance In-phase, 60 gmm/kg 

Stator eccentricity 30% (+0.23 mm) 

Rotor eccentricity Out-of-phase, 80 gmm/kg 

Broken rotor bar  1 spot 

Bearing housing looseness  Between outer race and housing 

Inner race looseness Between shaft and inner race 

Ball fault  Diameter 2 mm, depth 1.5 mm 

Outer race fault Diameter 2mm depth 2mm 

Inner race fault  Diameter 2 mm, depth 2 mm 

 

The permitted measuring time for each fault is 15 seconds containing three 

running conditions: speed-up, steady and slow-down. Another real limitation is 

that many times of measurement per fault is nearly impossible, or else the elevator 

will break down severely. In this experiment, each fault was measured for two 

times, then steady signals were picked out for analyze. Considering the limit raw 

data that is not enough for RFOGA diagnosis system, an overlap method was 

employed to solve the problem. This method picks out each sample using an 

overlap rate predetermined from collected steady signal in sequence. The overlap 

rate was set as 0.75 in this experiment. 

Using the overlap method, we extended the steady signal of one time 

measurement into 10 times. So finally we acquire 20 samples per fault and total 

samples are 200. Among them, 100 samples were divided for training classifiers, 

100 samples for testing performance of RFOGA. 

After measuring the raw data, a preprocessing and feature extraction are 
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implemented on the data to obtain the most important features for the RF based 

diagnosis methodology which is same with the former experiment [17]. Finally, 

21 values of features are acquired from each sensor consisting of the time domain 

(10 features), frequency domain (3 features) and regression estimation (8 features). 

4.3 Experiment Result and Discussion  

In this section, firstly RF was run on the induction motor faults data without 

cooperation with GA for saving experiment time. Because base on former 

research on RF, it is shown that RF often provide the satisfied result with vibration 

signal and random split number (RFN) 1, which is mentioned by Breiman as well. 

Fig. 5.3 provides the test result which RSN is set to 1 and tree number (TN) varies 

from 50 to 2050 with interval 100.  
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Figure 4.3 Test result with RSN equal to 1 and TN varying from 50 to 2000 

Fig. 4.3 expressly shows that RF can arrive at 100% even without support of 
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GA. Thus it makes using vibration and current signal synchronously meaningless, 

for current signal just will decrease the accuracy when it works together with 

vibration signal. But in the former section, it is mentioned that vibration signal 

could be invariable or incomplete sometimes, thereby an investigation of the 

feasibility for applying current signal only is necessary. Fig. 4.4 provides the inter-

relationship between output of RF and parameters when current signal is 

employed alone. 

 

Figure 4.4 Classification rate against RSN and TN 

Fig 4.4 improves the three characteristics of RF again. First, compared with 

the number of component classification trees, the parameter, random split number 

at each node, is more sensitive to the classification accuracy. Second, if the split 

variables number is decided, the sum of individual tree classifier should achieve 
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an appropriate quantity to get a better performance. Last one, when we increase 

trees into a high number.  

Hence GA is adopted here to find the best combination of RSN and TN, and 

optimization result is given by figure 4.5. The definition of GA’ parameters are not 

changed contrasting to former experiment. And then table 4.3 indicates the 

accuracies of each fault class for training and testing data while RN equals to 907 trees 

and RSN equals to 1.  
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Figure 4.5 Optimization trace within 20th generation. 

Figure 4.5 indicates RFOGA based system provides 98% precision. It shows 

RFOGA does not only enhance the diagnosis accuracy comparing with RF only, 

almost 4%, but also convinces the efficiency of applying RFOGA with current 

signal.  
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The optimized diagnosis output is given by table 4.3. The evolved 

combination of RSN and TN which are 976 and 1 respectively is provided as well 

Comparing diagnosis output from table 4.4 with former one which is 

provided by table 3.4, it is found that RFOGA makes wrong diagnosis on different 

type of fault, thus a new characteristic is exposed that RFOGA is not defective on 

certain fault type, in other words RFOGA is competent for faults detection task 

without considering the fault type is fit for the system or not.  

Table 4.3 Output of RFOGA on elevator induction motor  

Class 
No. 1 2 3 4 5 6 7 8 9 10 Accuracy (%) 

1 10 0 0 0 0 0 0 0 0 0 100 
2 0 10 0 0 0 0 0 0 0 0 100 
3 0 0 10 0 0 0 0 0 0 0 100 
4 0 0 0 7 0 0 0 3 0 0 70 
5 0 0 0 0 10 0 0 0 0 0 100 
6 0 0 0 0 0 10 0 0 0 0 100 
7 0 0 0 0 0 0 10 0 0 0 100 
8 0 0 0 0 0 0 0 10 0 0 100 
9 0 0 0 0 0 0 0 0 10 0 100 
10 0 0 0 0 0 0 0 0 0 10 100 

 

4.4 Conclusion  

In this chapter, the performance of RFOGA on a real-world application was 

investigated. Excellent results were achieved in the fault diagnosis of elevator 

motor using vibration or current signal. By considering difficulties to measure 

vibration signal in real condition, an effective and cost saving approach has been 

proposed based on RF that only require analyzing current signals. And it has 

competitive diagnosis accuracy 94%. Genetic algorithm can improve the accuracy 
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rates remarkably. It increases the diagnosis accuracy from 94% to 97% when 

apply the current signal.  

The comparison with experiment on fault diagnosis of normal induction mot

or denotes the universal adaptability of RFOGA system, because it do not have dis

tinct soft spot on some induction motor fault types. So this algorithm has widely p

erspective on induction motor fault diagnosis of various fields.   
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V. Conclusion and Future Work 

 
In this thesis, the importance of machinery fault diagnosis is stated. Both of 

the history and popular methods used nowadays are included here. The AI 

Machine learning and ensemble theory are also discussed to lead the readers to 

know how Random Forest Algorithm comes from.  

Most import is that the RF and optimized RF based faults diagnosis 

methodology of rotating machinery were investigated in the thesis. The 

performance of two methodologies was proved by the faults diagnosis test of an 

induction motor. The optimized approach attains a high correct rate of diagnosis, 

98.89%. And the comparison result also shows that optimized RF based method is 

competitive with other classification method. In addition, the assemble 

classification trees method and even faster then some of them [10, 18], it is proved 

by other multi-classes classification applications.  

But the weakness of RFOGA is also distinct. The reason is that RFOGA is 

based on decision tree (DT) classifier, and the capability of DT is not outstanding 

among a lot of existed AI methods. Affirmatively DT has been losing the interest 

of researchers. But ensemble theory is an excellent and high-speed developing 

methodology. It can be cooperated not only with DT but also many other kind of 

advanced and precise AI methods, i.e. ANN, SVM .etc. 
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All in all, extended research will focus on two parts. In the near future, my 

task is to improve on this hybrid method RFOGA: GA is not only for the 

parameter optimization, it can be used to select best combination of sub-

classification trees from the forest to get the more accurate result. The second part, 

we will decrease the redundancy of the RF and try other optimization algorithm or 

more effective voting principle. For long views, a combination of ensemble theory, 

various precise AI algorithms and GA, or other optimization method, will be 

explored.   
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