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Random Forest based Faults Diagnosis AlgorithmAgmdication on
Induction Motor

Xiao-Di
Department of Mechanical Engineering,

The Graduate School

Abstract

In this thesis, ensemble theory is represented pewaerful and effective
methodology. This theory plays the role as tachevéen the Classification and
Regression Tree (CART) and machine fault diagnts®ry. This combination
shows its highlight on the induction motor fault&aghosis which is name

Random Forest Algorithm.

This is a methodology by which rotating machindaults can be
diagnosed. The proposed method is based on randmsts algorithm (RF), a
novel assemble classifier which builds a large amofidecision trees to improve
on the single tree classifier. Although there aggesal existed techniques for
faults diagnosis, such as artificial neural netwatkpport vector machines etc, the
research on RF is meaningful and necessary bechitsdast executed speed, the
characteristic of tree classifier, and high perfante in machine faults diagnosis.

Evaluation of the RF based method has been denatetby a case study of



induction motors faults diagnosis. Experiment ressuhdicate the validity and
reliability of RF based fault diagnosis methodologurthermore, an optimized
form of RF is also provided in this paper. We empllbe genetic algorithm to
strengthen RF, and valid this optimized RF algomnithenhanced performance by
the same experiment data. It is the evidence thabded diagnosis methodology

can touch more accurate outcome by combining wihibrooptimization method.



|. Introduction

1.1 Background
1.1.1 Significance of faults diagnosis

Along with the application of new technolog@s the modern equipment,
the structure and function of advanced equipmen&s Becoming more
complicated and comprehensive, their automatisityaing higher too. Thus there
are many unavoidable factors which cause variougunaions existed on the
machinery. These malfunctions will result in sesi@ccidents bringing on great
loss in economy and human lives. In additional Jtfaof machinery which is
located in vital department may cause incredibl@nig. Hence it is such an
exigent issue to ensure the equipments worked undemal condition and
accidents will not be happened.

The security and reliability of modern machineare depended on two
aspects. one is to guarantee design and qualitheomachinery in accordance
with the guild line. Besides equipment fixing, rumyn managing, maintenance
and diagnosis should be made appropriately anecityr

It is important that machinery malfunctionsufta) diagnosis can produce
the great benefit, there is many reports statiegativantage of machinery faults
diagnosis all over the world:

(1) On the view of manufacturer, implement adfllfs diagnosis system will
decrease accident occurring rate, therefore the ohiprofit against investment
will arrive at a high stage.

The method which is taken by Perdrul power fptanestimate the benefit
from diagnosis program in USA can be taken as ameace. The capability of
Perdurl ig00x 1dkw, electricity charge is one hundred million doll&topping
production loss is 150 thousand dollar per day.ré@tege 50 important sections
need to be monitored, the all investment is mor@n200 thousand dollar.

- 10 -



Monitoring charge just costs only 15 thousand dod@ery year. According to
reliable calculation, the breakdown will occur ivhés per year. After adopting
diagnosis technology, 50% of the accidents cam$geicted, and half of that 50%
is detected by monitor and diagnosis system, 20%llas pseudo alarm, every
accident need 3 days to repair in average. Findihgnosis system can save the

money B is:
B=0.5x0.5< 14 X 1% (& 0.
=1260000$

Diagnosis cost:
A=(20/1dep /year )+ 1.5
=35000% /year

Then economic profit coefficient C is:

o= A_1260000_
B 35000

Thus it can be seen that the profit of applydragnosis system is 36 times of
the investment for it.

(2) Employing malfunction diagnosis system can @mgl maintenance
period, decrease the breakdown time of equipmemd. iAis also the foundation
of setting down an_appropriate maintenance stratelgeh may promote the
profit greatly.

For example, the capability of a power plantosx1dkw , generating
2400x 10kw per day, production value up to hundreds thoushnidr everyday.
If it is possible to prolong the time of maintenaraycle, such as shorten 10 days
one year, the corresponding benefit can touchanalidollar.

(3) The charge of maintenance for equipments lisige amount of money,
but applying diagnosis system can depress thigeharbottom.

For example, the revenue of USA is 750 billig® dollar in 1980, but almost
30% is put into the equipment servicing. Accordinghe analysis by expertise,

one third of the fee for equipment servicing, 78idn dollars, is wasted because

- 11 -



of improper maintenance method, i.e. lack of caadit monitoring and

malfunction diagnosis. Thus it can be seen thatiriiestment on the diagnosis

system will bring great benefit.

1.1.2 Objective of faults diagnosis
It is important to know what the purpose of diagaaystem as well, which

are:

1 Fault diagnosis system can detect the malfunctie@cigely, and as soon as
possible. It can prevent and avoid the machine dwrotown, enhance the
reliability, security and efficiency of equipmerereby this system reduce
the loss by machine fault under the lowest point.

1 Fault diagnosis system makes use of the capabfligquipment maximally.
A proper designed monitoring and diagnosis progeatend the live cycle of
equipment, so that the cost of product is dowraatestime.

1 By applying condition monitoring, malfunction ansiy, performance
estimation...etc, important information of machine camstruction,
optimization, product processing rationalizatioe gathered to improve the
hole product line.

All in all, machine fault diagnosis not only-enssiriie equipment run in
normal state, but also obtains great benefit bo#conomy and society.

1.1.3 Mission of machinery fault diagnosis
The responsibility of machinery fault diagnosigasmonitor the machine on-

line. And it estimates its running condition. Isaldiagnoses and eliminates the

faults. Finally, it directs the strategy of managem and maintenance of

equipment.

1.1.3.1 Condition monitoring
The task of condition monitoring is to monitor maeh working state,

including adopting multifarious detection, measumnegnitoring, analysis and
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distinguish method. By Combining data from histanyd actuality of machine
system and considering environmental factor, waylgtate of machine system is
evaluated. Then it judges machine condition is raror abnormal by certain
rules, and record and display this condition. It give an alarm, if the condition
is abnormal. So technician response to this probldirbe solved as possible to
prevent the machine broken down occurred. At lasmdition monitoring
provides important information and basic data faultf analysis, performance
estimation, correct and safe operation on equipment

Usually, the condition of equipment can be dividatb three instances
which are normal condition, abnormal condition dadure condition. Normal
condition means there is no fault in the machirstesy, or fault exists but under
the permitted level. Abnormal condition means thdtfof equipment deteriorates
and impacts on other connected components. Therpehce of equipment is
declining, but still can keep working. When equiminis in abnormal condition, it
should be running under monitoring system. Fail@andition means the
performance of equipment is dropping quickly, aad oot satisfy basic need. In
addition, failure condition can be separated tedhphases: Early fault stage that
fault exists and just has the trend to go worsemsb functional fault stage which
the equipment is running on top of the lowest latidn. Ruinous failure stage
which equipment is broken down and waiting forrixiand instantaneous failure
stage caused by some unexpected reasons. Thesevaral alarm sign response
to different condition of machine. Usually it ispresented via different colors of
indicator light. Green means machine is runningeuntbrmal condition, yellow

means there is a warning of the failure, red mémaakdown could be occurred.
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Furthermore, in order to find the causation of thdure out after the event,
information of e failure is recorded, includingstge function of the signal of the
ruinous failure,
1.1.3.2 Fault diagnosis

Fault diagnosis bases on information gathered lglidton monitoring. Then
it will be integrated with characteristic and pasder of the construction and
environmental factors. After combining the log foé certain equipment which
consists of run-time record, failure and mainteeahtstory data, failure which
will happen in future is predicted.

Different fault location and-category may causedégradation of equipment
and the running condition in different ways. Sotheo task of fault diagnosis is
to decide the type and position of the fault viandibon and signal of the
equipment when the fault occurs at one or more timencomponent. Because the
amount of measured signal is huge, it IS necedsacplculate the features from
raw signal data to simplify decision-making worlkdanhance the successful rate
of diagnosis. The variety of raw data caused by omle kind of fault is named
the symptom. To determine what component is brakehwhich category of fault
is are the procedure of fault diagnosis. Therdigy/essential of fault diagnosis is a
kind of status identification problem.

The most difficult thing met in fault diagnosis tisat the relation between
faults and symptoms. It is not simple one standlangone, but more complicated.
One type of fault may be expressed by several symgt Similarly one symptom
could be the phenomena of a number of faults. Sgchotor unbalance causes
increasing of mechanical vibration. Frequency conemb of operation speed can
express change in vibration signal clearly, sositthe main symptom. But
synchronously increasing of frequency componerapgration speed is not only
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for the rotor unbalance. There are many othergauby be result in that symptom.
That is the reason why correct diagnosis is harédach. Therefore fault diagnosis
is a procedure of reduplicate experiment: Firdthse on the diagnosis knowledge
to extract the symptoms, and then put it into désig system. Purpose is to find
out countermeasure, do adjustment and experimenthenequipment. Even
sometimes machine is operated till it is down fgareit. At last turn the machine
on and check its working condition. If it still atmmal means we need more
information to do the diagnosis, so do the wholecpdure again till the
equipment back to normal condition.
1.1.3.3 Directing the maintenance and managementategy of equipments
The management and maintenance strategy of equipneemes through
three phases: from Run-to-Breakdown MaintenanceTitee-based Preventive
Maintenance, untill now Condition-based Maintenantiene-based Preventive
Maintenance can prevent the accident occurred.dBaidvantage of this method
is it often causes the lack of or over maintena@oadition-based Maintenance is
more scientific and reasonable maintenance stratBgy the implement of
Condition-based Maintenance is depended on condim@nitoring and faults
diagnosis system working effectively. It is alsoywis technique is attached
importance to the all over the world. With -devetapiand implement of faults
diagnosis technique, management and maintenanegqugbment will be up to a
higher level. At one time, the live-cycle of equipmh will be prolonged farther,
and the malignant accidents will be minimized, gde®nomy will go faster and
healthier.

1.2 Definition, Contents and Basic Methodologies ofMachine Faults
Diagnosis Technique

1.2.1 Definition of machine faults diagnosis techgue
Machine faults diagnosis technique is on-linalts diagnosis technique, it
means this technique obtains the condition of mrecbin-line. And it finds out the
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causation and location of the fault. Then it fostsahe most possible condition

machine could be in the future. Fault diagnosigregue consists of threes parts:

First is to realize the actuality of purpose equepin Second is to realize the

abnormity or feature of the fault. Third is to pidand forecast the trend of

equipment fault and state. It should be known finadiction is based on signal or
symptom of a certain machinery to do diagnosis; ftamecast employs the
probability and statistics method to speculaterdsailt.

1.2.2 The approach of machine faults diagnosis tesigue

The content of faults diagnosis is composedcofdition monitoring,
analysis and diagnosis and fault prediction, theildel procedures are listed as
fellow:

1. Data acquisition: during the process of machinaimgchange of force, heat,
vibration and energy, diversified signals existsictyonously. And then
according to the need of diagnosis, different dgjage selected by which can
stand for running condition of equipment such abration, pressure,
temperature and so on. The signals mentioned aagnel by various sensors.

2. Data processing: In thisprocedure, the acquireth da processed by
mathematic and statistics methods to calculataufeatwhich can represent
the machine state well. For example, transformimg signal from time-
domain to the frequency-domain to do the analysienie method of signal
processing.

3. Status identification: comparing the features whiethculated features, the
difference found between the two data can be useéetect the character and
category of the fault. According to output of diagis system, the diagnosis
policy will be made.

4. Diagnosis decision-making: after making the polmly diagnosis, system
decides the certain countermeasure and plan, autdatg to the condition
of equipment and change of feature, trend analysisbe done. The figure
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1.1 shows the whole diagnosis system.
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Figure 1.1 Flowchart of diagnosis system

1.3 Methodologies of Machine Faults Diagnosis Teclque
The complexity of the machine faults and relatiopshetween faults and

symptoms tell us that the machine faults diagnasialways considered as an
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exploring procedure. In machine faults domain, easels of diagnosis technique
do not focus on the fault itself but on the diageosiethods. Due to the

complexity of diagnosis, it is impossible to getrreat output just via single

method. The succeed diagnosis must combine vanmikod. So the fact is that
researchers should integrate different techniqgkaswledge and methodology
from diversified field. It is also important chatagdstic that diagnosis technique is
an intersectional science.

1.3.1 Conventionalfaults diagnosis method

One of the conventional methods is to utilize thggics and chemistry
theory and techniques to detect the multifariougspal and chemic phenomena
of equipment to find the fault out directly. Foraemple: By monitoring of chemic
composition, vibration, acoustics, lights, electegmetic and thermal radiation
signal to detect and diagnose the fault immediafélg advantages of this method
are visible, fast, effective, but disadvantagehst tit is just suit for partition of
faults.

Another method is most popular and well-develogedliagnoses base on
the relation between the faults and symptoms. Takie rotational machinery as
an example, the symptom of rotational machine_failthe characteristics of
vibration signal in time and frequency domain. Henengineers put the attention
on the research of fault mechanism and correspgnslymptoms. During the
diagnosis procedures, experts analyze the measigedl, extract the features,
and then find the corresponding symptoms from #agures. The symptoms are
used to do the fault diagnosis. But it should belemsized again that That is the
reason why fault diagnosis is very complicatedrefeee usually fault diagnosis is
a procedure of reduplicate experiment.

1.3.2 Intelligent fault diagnosis method

Intelligent fault diagnosis method is establishaedite conventional methods

and integrates the principle and technique of &i#f Intelligence, which is a
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new approach of fault diagnosis. This techniquevidely employed in many
diagnosis fields and leads the development of @iatjnosis industry.

Artificial Intelligence makes the computer to finithe tasks which need the
human intelligent before, i.e. consequence, congrglbn, programming,
decision-making, abstracting and learningtc. Expert System is one form of Al
which is introduced to diagnosis field sophistictye

Expert System consists of repository, logistic eystand storage space
(including database). Furthermore, a realized ex@ystem should have
knowledge acquisition module, repository managemeatdule, explanation
module, display module and man-machine conversatiodule...etc.

The problems of Expert System are knowledge adgrnisand knowledge
representation. Knowledge acquisition is the boétk of Expert System, the
reasonable representation method can organize tiwviédge effectively,
enhance the capability of Expert System. For thes sd extending the Expert
System, so much work has to be done. Such as: ®Eby2e the mechanism of
machine fault, set the mathematic model for anatyazn theory; To do test and
experiment on the equipment; To summarize the distgn experience of
specialist and transfer this knowledge to the farnch computer understands; To
research the theory and method of machine learrigof work introduced

makes the Expert System more and more excellent.
1.4 Motivation of the Study

As mentioned above, the Expert System are delleloped and widely
applied. The strength of if is significant, but tlneakness is also distinct.
Performance of Expert System has strong conneutitnits repository which is
fully constructed or not. The problem is knowledgeperience) acquisition often
limits the capability of Expert System, because etinmes it is too difficult to
establish an integrated repository.

On this occasion, another diagnosis method lwiscnamed mathematical
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diagnosis method catches the researchers’ eyes.miétihod employs the latest
research output of other kinds of science and eslpecsome effective
mathematical tools, such as machine learning methidee decision tree (DT),
artificial neural network (ANN), support vector nigwes (SVM) etc. The new
techniques and their extended research increasentiébgent, preciseness and
applicability of diagnosis domain. The potentialméchine learning based fault
diagnosis inspirits researchers to find the opputies to improve the
performance of existed algorithm.

While my passion of developing machine learnbaged machinery faults
diagnosis methods are increasing, the Ensemblery lodfers the chance to carry
this object out. The simple definition of Ensembleeory is that an ensemble
consists of a set of individually trained classsi€such as ANN and Decision
Tree) whose predictions are combined when clasgjfgovel instance.

The geaol of the thesis is to introduce and stigate a novel machinery faults
diagnosis methodology based on random forestsitigofl, 2]. | believe that the
research on this algorithm is worthy as developpngew accurate diagnosis
mechanism and also helpful for the continuous varlEEnsemble Theory.
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ll. The Theoretical Background of Thesis

2.1 Artificial Intelligence

Artificial intelligence (Al) is defined as intellence exhibited by an artificial
entity. Such a system is generally assumed to t@ngputer. Although Al has a
strong science fiction connotation, it forms a Wieanch of computer science,
dealing with intelligent behavior, learning and pi@ion in machines. Research
in Al is concerned with producing machines to audtentasks requiring
intelligent behavior. Examples include control, mplang and scheduling, the
ability to answer diagnostic and consumer questitiasdwriting, speech, and
facial recognition. As such, it has become a stiendiscipline, focused on
providing solutions to real life problems. Al syste are now in routine use in

economics, medicine, engineering and the militargtc.

Al divides roughly into two schools of thought: Gemtional Al and
Computational Intelligence (Cl). Conventional Al stly involves methods now
classified as machine learning, characterized by&tism and statistical analysis.
This is also known as symbolic Al, logical /Aleat Al and Good OldFashioned

Artificial Intelligence (GOFAI). Methods include:

1 Expert systems: apply reasoning capabilities t@lres conclusion. An
expert system can process large amounts of knoformation and

provide conclusions based on them.

1 Case based reasoning
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1 Bayesian networks
1 Behavior based Al: a modular method of buildingsftems by hand

Computational Intelligence involves iterative deywhent or learning (e.qg.
parameter tuning e.g. in connectionist systemsarriag is based on empirical
data and is associated with non-symbolic Al, sgrud and soft computing.

Methods mainly include:

1 Neural networks: systems with very strong pattemcognition

capabilities.

1 Fuzzy systems: techniques for reasoning under tawcsr, has been

widely used in modern industrial and consumer pcbdantrol systems.

1 Evolutionary computation: applies biologically imsa concepts such as
populations, mutation.-and survival of the fittestgenerate increasingly
better solutions to the problem. These methods maisibly divide into

evolutionary algorithms (e.g. genetic algorithmsjl &warm intelligence.

With hybrid intelligent systems attempts are madecoémbine these two
groups. Expert inference rules can be generatedughr neural network or

production rules from statistical learning suchre&CT-R.

A promising new approach called intelligence anngaifion tries to achieve
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artificial intelligence in an evolutionary developnt process as a side-effect of

amplifying human intelligence through technology.
2.2 Machine Learning

As a broad subfield of artificial intelligence, Mace learning is concerned
with the development of algorithms and techniquesich allow computers to
"learn”. At a general level, there are two types ledrning: inductive, and
deductive. Inductive machine learning methods ereaimputer programs by
extracting rules and patterns out of massive dets. $1achine learning overlaps
heavily with statistics, since both fields study thnalysis of data, but unlike
statistics, machine learning is concerned with #hgorithmic complexity of
computational implementations. Many inference peois turn out to be NP-hard
or harder, so part of machine learning researdmasdevelopment of tractable

approximate inference algorithms.

Machine learning has a wide spectrum of applicatiomcluding search
engines, medical diagnosis, bioinformatics-and aiefarmatics, detecting credit
card fraud, stock market analysis, classifying DN@quences, speech and
handwriting recognition, object recognition in camgr vision, game playing and

robot locomotion.

2.2.1 Machine learning algorithm types

Machine learning algorithms are organized itagonomy, based on the

desired outcome of the algorithm. Common algoritiipes include:
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1 Supervised learning where the algorithm generatdanation that maps
inputs to desired outputs. One standard formuladfcthe supervised learning task
is the classification problem: the learner is reegito learn (to approximate the

behavior of) a function which maps a ve¢tarx,..x,], into one of several

classes by looking at several input-output examplielke function.

1 Unsupervised learning: which models a set of inplatseled examples are

not available.

1 Semi-supervised learning which combines both  |labetend unlabeled

examples to generate an appropriate function ssitler.

1 Reinforcement learning where the algorithm learnsobcy of how to act
given an observation of the world. Every action fsmmne impact in the
environment, and the environment provides feedithek guides the learning

algorithm.

1 Ttransduction is similar to supervised learningt loes not explicitly
construct a function: instead, tries to predict reuputs based on training inputs,

training outputs, and new inputs.

1 Learning to learn where the algorithm learns its1omductive bias based on

previous experience.

The performance and computational analysis aghime learning algorithms
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IS a branch of statistics known as computatiorainieg theory.

Some of machine learning topics are well knagnthe powerful tools in
many different fields, for example artificial nelir@etworks, decision trees, k-
Nearest Neighbor, Support vector machines and soTbhe machinery faults
diagnosis industry is also one of its applicatigeids. Usually anyone of these
algorithm has a good performance when diagnoséatliebased on it, especially
artificial neural networks, decision trees and Swppvector machines. But
sometimes we meet the problem that it is so haptdmote the capability of this
algorithm itself after it toughs its limitation. Wiout considering its probability, it
needs the long term research and great effort tepe@t on. So one way is to
move the points form improving the algorithm endlgdo thinking  about how
to use the algorithm. Hence, the ensemble theoistsewhich makes the work

above possible.
2.3 Ensemble Theory

Many researchers have  investigated the techniqfi combining the
predictions of multiple classifiers to produce agée classifier [1]. The resulting
classifier is generally more accurate than anyhefihdividual classifiers making
up the ensemble. Both theoretical and empiricadaeh [2, 3] has demonstrated
that a good ensemble is one where the individwdsdiers in the ensemble are
both accurate and make their errors on differemtspaf the input space. Two
popular methods for creating accurate ensembleBagging [1] and Boosting

[4]. These methods rely on re-sampling technigoesbtain different training sets
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for each of the classifiers. Previous work has destrated that Bagging and
Boosting are very effective for decision trees [Blt without the concerning
selecting training parameter problems, neural nétsvand SVM are also fit for
ensemble theory. The rest of this section will désc conventional ensemble

methodology especially these two popular methods.

The basic framework for a classifier ensemble mwshin Fig. 2.1. In this
example, neural networks are the basic classiinanethod, though conceptually
any classification method, such as decision tregs be substituted in place of the
networks. Each network in Fig 2-1ls ensemble, ngtwlothrough network N in
this case, is trained using the training instarfoeshat network. Then, for each

example, the predicted output of each of these ovéwy oin Fig 1, is

combined to produce the output of the ensemtﬂe,in Fig. 2-1. Many

researchers [1, 2, 6] have demonstrated that actet combining scheme is to

simply average the predictions of the network.
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2.3.1 Classifier ensembles

o

0
oo ensemble output

)

[ combine network outputs |
Te e Thos

@ @@ input

Figure 2.1 A classifier ensemble of neural networks

Combining the output of several classifiers is ubkeadnly if there is
disagreement among them. Obviously, combining seviglentical classifiers
produces no gain. Hansen and Salamon [7] provedfttine average error rate for
an example is less than 50% and the componentif@essn the ensemble are
independent in the production of their errors, ékpected error for that example
can be reduced to zero as the number of classémmtbined goes to infinity;
however, such assumptions rarely hold in prackdegh and vedelsby’'s paper
[2] proved that the ensemble error can be divid#d a term measuring the
average generalization error of each individuassiféer and a term measuring the
disagreement among the classifiers. What they flyrshowed was that an ideal

ensemble consists of highly correct classifiers theagree as much as possible.
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As a result, methods for creating ensembles ceateund producing
classifiers that disagree on their predictions. €salty, these methods focus on
altering the training process in the hope thatréseilting classifiers will produce
different predictions. For example, neural netwéekhniques that have been
employed include methods for training with differeapologies, different initial
weights, different parameters, and training onlyaguortion of the training set. At

the fellow parts, two popular ensemble methods Bagand Boosting.

A sample of a single classifier on an imaginary set of data.
(Original) Training Set
Training-set-1: 1,2,3 4 5 6, 7,8

A sample of Bagging on the same data.
(Resampled) Training Set

Training-set-1: 2, 7,8 3,7,6,3,1
Training-set-2: T8 56,4, 2 7,/1
Training-set-3: 3,6.2,.7, 5,6, 2 2
Training-set-4; 4, 5, 1,4,6,4, 3, 8

A sample of Boosting on the same data.
(Resampled) Training Set

Training-set-1: 27,8 3, 7.6, 3,1
Training-=et-2; 1, 4 5 4, 1,5 6,4
Training-set-3: 7.1, 8 1,8 1,4
Training-set-4: 1,1,6,1,1, 3, 1,5

Figure 2.2: Hypothetical runs of bagging and bouasti
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2.3.2 Bagging classifiers

Bagging [1] is a “bootstrap” [8] ensemble methodttbreates individuals for
its ensemble by training each classifier on a ramdedistribution of the training
set. Each classifier’s training set is generated ragdomly drawing, with
replacement, N examples — where N is the sizeefbtiginal training set; many
of the original examples may be repeated in theltiag training set while others
may be left out. Each individual classifier in taesemble is generated with a

different random sampling of the training set.

Fig. 2.2 shows the process of Bagging and Boostsgume there are eight
training examples. Assume example 1 is an “outliarid is hard for the
component learning algorithm to classify correctith Bagging, each training
set is an independent sample of the data thus, sxa@ples are missing and
others occur multiple times. The Boosting trainsejs are also samples of the
original data set, but the “hard” example occurgemna later training sets since

Boosting concentrates on correctly predicting it.

It gives a sample of how bagging might work on agmary set of data.
Since Bagging re-samples the training set withasginent, some instances are
represented multiple times while others are lett & Bagging’'s Training-set-q
might conain examples 3 and 7 twice, but does aotain either example 4 or 5.
As a result, the classifier trained on training-kenight obtain a higher test-set
error than the classifier using all of the data.féct, all four of Bagging’s

component classifiers could result in higher test-srror; however, when
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combined, these four classifiers can produce tsesor lower than that of the
single classifier. the diversity among these cfassi generally compensates for

the increase in error rate of any individual clssi

Breiman [1] showed that Baagging is effective omstable” learning
algorithms where small changes in the training result in large changes in
predictions. Breiman claimed that neural networksd adecision trees are

examples of unstable learning algorithms.

2.3.3 Boosting classifiers

Boosting [9] encompassed a family of methods. Tduei$ of these methods
is to produce a series of classifiers. The trairiagused for each member of the
series is chosen based on the performance of theredassifiers in the series. In
Boosting, examples that are incorrectly predictgdpbevious classifiers in the
series are chosen more often than examples tha& ewrectly predicted. Thus
Boosting attempts to produce new classifiers that laetter able to predict
examples for which the current ensemble’s perfocean poor. But in bagging,
the re-sampling of the training set is not depehdenthe performance of the

earlier classifiers.

Fig. 2.2 shows a hypothetical run of Boosting. Nttt the first training set
would be the same as Bagging; later training setserduate examples that were
misclassified by the earlier member of the ensembiethis figure, example 1 is

a “hard” example that previous classifiers tendrisclassify. With the second
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training set, example 1 occurs multiple times, asedamples 4 and 5 since they
were left out of the first training set and, insthiase, misclassified by the first
learner. For the final training set, example 1 Inees the predominant example
chosen whereas no single example is accentuatédBatging; thus, the overall
test-set error for this classifier might becomeyviigh. Despite this, however,
Boosting will probably obtain a lower error rate evhit combines the output of
these four classifiers since it focuses on colyegitedicting previously
misclassified examples and weights the predictiohshe different classifiers

based on their accuracy for the training set.

Previous work has demonstrated that Bagging andstBap are very
effective for decision trees. Discussions with pvas researchers reveal that
many authors concentrated on decision trees dtleeto fast training speed and
well-established default parameter settings. Othlemethods, neural networks
and SVM, present difficulties for testing both ierms of the significant
processing time required and.in selecting trairpagameters. So as the primary
research on ensemble theory, a novel and powenfsgreble method, Random
Forest Algorithm, is investigated in my thesis. Hwer, there are distinct
advantages to including neural networks and SVMmy future study. First,
previous empirical studies have demonstrated titavidual neural net works and
SVM produce highly accurate classifiers that anmetimes more accurate than
corresponding decision trees. Second, neural nksvbave been extensively
applied across numerous domains. Finally, by shglymeural networks in

addition to decision trees we can examine how Baggnd Boosting are

- 31 -



influenced by the learning algorithm, giving funthmsight into the general

characteristics of these approaches.

There are also a number of interesting conclustdrigagging and Boosting.
The first is that a Bagging ensemble generally pced a classifier that is more
accurate than a standard classifier. For Booshogiever, we note more widely
varying results. For a few data sets Boosting pcedudramatic reductions in

error, but for other data sets it actually increasesrror over a single classifier.

2.4 Random Forest

RF which derive from decision tree classifier is @sembled method, it
grows tree using CART. (acronym adflassification and regression trees)
methodology to maximum size and without pruningerBfiore, basic principles of
CART methodology will be provided here.

Original Features
Bootstrap o Bootstrap
Sample 2 Sample N

Majority Voting Process

Fig. 2.3. Construction of random forest.

Bootstrap
Sample 1
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2.4.1 Classification and regression tree

CART grows classification and regression trees tedijot continuous

dependent

variables (regression) and categoricaédigior variables

(classification) [14]. An example of a classificati tree is shown below. The

target variable is “Species”, the species of W& can see from the tree that if the

value of the predictor variable “Petal length” es$ than or equal to 2.45 the

species is Setosa. If the petal length is grehsar 2.45, then additional splits are

required to classify the species.

Mizclassification = 0002

| Moded |
| [Entire Group] |

= M =180, w =150 -

I | Species = Setosa

|| Mizclaszification = BEB7E |

e Sl . —
Mode 2 ] MHode 3
Fetal length <=2 45 | Petal length > 2 45
N =80, W =50 M =100, %W =100

Species = Wersicalor
Mizclazsification = 50.00% |

Species = Setoza _J

| Hode 4 Maode &
Petal width <= 1.75 Petal width » 1.75
=54, ' =54 M =4E "W =4k
Species = Yersicaolor ' Species =Yirginica

| Mizclassification = 9. 265 | Misclazsification = 2.1 7%

Figure 2.4: _An example of classification tree

2.4.2 The predictive accuracy of CART

Accuracy is the most important feature of a clasaiion tree. All

classification procedures, however, including CAR&n produce errors. The

CART procedure does not make any distributionabimgdions on covariates;

hence, hypothesis testing is not possible. Confiden CART’s performance,

therefore, has to be based primarily on an assedsmwk the extent of

misclassification it generates from data sets Witbwn class distributions and on

knowledge of and experience with the subject matteder study. And this
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method is also suitable for test the accurateabRandom forest algorithm.

The best way to test the predictive accuracy ofree tis to take an
independent test data set with known class digtabs and run it down the tree
and determine the proportion of cases misclassifisdempirical studies, the
possibility of getting such a data set is remote. overcome this difficulty,
Breiman [15] provide three procedures for estintatthe accuracy of tree-
structured classifiers. In this thesis, one of thenapplied and explained here.

Let:

c(X)orc = a tree-structured classifier, where X is a veofccharacteristics

variables that describe an observation;

R [c(X)] = the classifier’s “true” misclassification ratmd

L = the learning sample (the sample data fwdnith to construct a

classification tree)

The three estimation procedures below have twoctisgs: constructing a

classification tree;(X ), and then finding an estimaterdfc(X)].

Re-substitution Estimat&$c(x)]. This estimates the accuracy of the true

misclassification rate [c¢(X)], as follows:
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1 Build a classification tree(Xx), from the learning sample L, and save it.

1 Apply the treeg(X), to the data set from which it is built. Thatés the

observations in the sample run down the tree oadiate.

1 Compute the proportion of cases that are miscladsifThis proportion

is the re-substitution estimatgc(X)], of the true misclassification rate,

R{e(x)]-

The re-substitution estimate tests the accuraayaddssifier by applying it to
observations ' for which the classes are known. Tlegomweakness of this
estimator of the error rate is that it is deriveahi the same data set from which
the tree is built; hence, it underestimates the tnisclassification rate. The error

rate is always low in such cases.
2.4.3 Methodology for building a classification tre

In constructing a classification tree, CART makess of prior probabilities

(priors). A brief review of priors and their vaii@s as used in CART is provided.

Prior probabilities play a crucial role in the tieilding process. Three types
of priors are available in CART: prior data, pri@gual, and priors mixed. They

are either estimated from data or supplied by ttedyat.
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In the following discussion, let
N = number of cases in the sample,

N, =number of class j cases in the sample, and

7. = prior probabilities of class j cases.

1 Prior data assumes that distribution of the classdethe dependent

variable in'the population is the same as the ptmpoof the classes in

. : N;
the sample. Itis esUmatedzq&W‘.

1 Priors equal assumes that each class of the deqptevalgable is equally
likely to occur in the population. For examplethe dependent variable

in the sample has two classes, then pro(claspid(Elass 2) = 0.5

1 Prior mixed is an average of prior equal and pdata for any class at a

node.
2.4.3 Components for building a classification tree

Three components are required in the constructi@atassification tree: (1) a set
of questions upon which to base a split; (2) splitrules and goodness-of-split
criteria for judging how good a split is; and (8)es for assigning a class to each

terminal node. Each of these components is disdusslew.
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2.4.3.1 Type and format of questions

Two question formats are defined in CART: (1)xlsd?, if X is a
continuous variable and d is a constant withinrtirege of X values. For example,
IS income< 200070r isz =b?, if Z is a categorical variable and b is one of th

integer values assumed by Z. For examplexis1?.

The number of possible split points on each vagiablimited to the number
of distinct values each variable assumes in thepkankor assumes N distinct
points in the sample, then the maximum number lif gpints on X is equal to N.
if Z is a categorical variable with m distinct ptsinn a sample, then the number of
possible split points on Z equal®™ -1[15]. Unless otherwise specified, CART

software assumes that each split will be basedhbnaosingle variable.

2.4.3.2 Splitting rules and goodness-of-split critea

This component requires-definition of the impurftynction and impurity

measure.

Letj =1,2,...,k be the number of classes of categbdependent variables;

then define(j|t) as class probability distribution of the dependeatiable at

node t, such thatp(1t)+p(2t)+p(3t)+ .+ p(kt)=1, j = 1,2,..., k. Let(t) be the

impurity measure at node t. then defife) as a function of class
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probabilitiesp(1t), p(2t) .p(3t) ... Mathematically,(t) = ¢ p(1t),p(3t),...p(ilt)]

. The definition of impurity measure is generic aalibws for flexibility of

functional forms.

There are three major splitting rules in CART: @iai criterion, the towing
rule, and the linear combination splits. In additim these main splitting rules,
CART users can define a number of other rules tieirtown analytical needs.
CART uses the Gini criterion as its default spidtirule. The towing rule is

discussed in detail in Breiman’ paper [15] and wdt be covered here.

The Gini impurity measure at node t is defineditpsi-s, where S (the

impurity function) =" p(jlt), forj=1,2,....k [14]

The impurity function attains its maximum if eaclass in the population

occurs with equal probability. Thatggllt) = p(2t) = ...= p(j|t). On the other hand,

the impurity function attains its minimum (= 0)afl cases at a node belong to
only one class. That is , if node t is a pure nedh a zero misclassification rate,

then i(t)=o0.

Let s be a split at node t. then, the goodnes9ldf ‘s” is defined as the

decrease in impurity measured by:
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Ai(st)=i(t)=PR[i(t.)]=PRe[i(t.)]-Re[i(ts)] (1)

Where:
s = a particular split,
P = the proportion of the cases at node t that gotime left child node, ,

P, = the proportion of cases at node t that go inéoright child node,,,

i(t, )= impurity of the left child node, and

i (tz) = impurity of the right.child node.
2.4.3.3 Class Assignment Rule

There are two rules for assigning classes to nde&sh rule is based on one

of two types of misclassification costs.

1. The Plurality Rule: Assign terminal node t to assldor whichp(j|t)is

the highest. If the majority of the cases in a ieahnode belong to a
specific class, then that node is assigned todlags. The rule assumes

equal misclassification costs for each class. #sdoot take into account
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the severity of the cost of making a mistake. Thls is a special case of

rule 2.

2. Assign terminal node t to a class for which the ested
misclassification cost is at a minimum. The appiaraof this rule takes
into account the severity of the costs of miscigsgy cases or
observations in a certain class, and incorporabss$ ariability into a

Gini splitting rule.
When dealing with famine vulnerability, for emple, misclassifying a
vulnerable household as invulnerable has more sewemsequences than
misclassifying a invulnerable household as vulnieraariable costs can be

accounted for by defining a matrix of variable nassification costs that can be

incorporated into the splitting rules.

Let c(i|j)= the cost of classifying a class j case as a tlease:

c(ifj)zo if i=j.c(i]j)=0 if i=] (2)

Now, assume that there are two classes inldeo Let

7. (1) = prior probability of class 1 at node t,
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m (2) = prior probability of class 2 at node t,

r,(t) = the cost of assigning node t to class 1, and

r, (t) = the cost of assigning node t to class2.

Given priors and variable misclassification cosfs,andr,(t)are estimated

as follows:

r(t)
r, (t)

m(1)ye(29

r(2)cd? 2

According to rule 2, if at node t,(t)<r,(t), node t is assigned to classl. If
c¢(2/1)=c(32, then rule 1 applies and a node is assigned tass éor which the

prior probability is the highest.

2.4.3.4 Steps in building a CART like tree

The tree building process begins with departing rbe node into binary
nodes by a very simple question of the fornXis d? Initially, all observations
are located in the root node. CART implement a agerpintensive algorithm that
searches for the best split at all possible sphings for each variable. The
methodology which CART uses for building trees mown as binary recursive
partitioning. Adopting the Gini diversity index assplitting rule, the tree building
process is as follows:
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Sep 1. CART splits the first variable at all of its pdds split points, at all of
the values the variable assumes in the sampleaétt possible split point of a
variable, the sample splits into binary or two dhilodes. Cases with a “yes”
response to the question posed are sent to thendele and those with “no”
responses are sent to the right node.

Sep 2: CART then applies its goodness-of-split criteidaeach split point
and evaluates the reduction in impurity that isexdd using the formula (1).

Sep 3: CART selects the best split of the variable a& Hplit for which the
reduction in impurity is_highest. Three steps abawe repeated for each of the
remaining variables at the root node

Sep 4: CART then ranks all of the best splits on eachalde according to
the reduction in impurity: achieved by each split @elects the variable and its
split point that most reduced the impurity of thetror parent node.

Sep 5: CART then assigns classes to these nodes acgaitihe rule that
minimizes mis-classification costs. CART has athbuilalgorithm that takes into
account user-defined variable misclassificationt<asiring the splitting process.
The default is unit or equal misclassification sost

Because the CART procedure is recursive, stepS are repeatedly applied

to each non-terminal child node at each successage.

Sep 6: Stopping tree building, CART stops the splittimggess when:

1) There is only one observation in each of thédamodes;
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2) All observations within each child node have idhentical distribution of
predictor variables, making splitting impossible.

3) The user set an external limit on the numbdewatls in the maximal tree
in previously.

Stand by there steps a CART algorithm base decisem without pruning
and optimizing will be built.

2.4.4 Random forest algorithm

RF has greatly improved classification accuracylteg from growing an
ensemble of trees and making them vote for the npostnising class. A
convenient method to build the ensembles randortorkegeneration via random
selection procedure from integrated training sée Tonstituent in this method is
that we preparé& random vectors@k, which is independent of the past random
vectors©1, 02, 03, ..., Ok-1 but with the same distribution to build the #ree
among the RF. Corresponding.individual classienoted byC(X, ©k). And then
they vote for the most popular class. Breiman natinese procedures as random
forests. A definition drawn from original paperagailable here [10, 11].

Definition 1 A random forest is a classifier consisting of #demion of tree
structured classifiers G(X, ©y), k = 1, ...} where the £y} is independent
identically distributed random vectors and eack trasts a unit vote for the most
popular class at inpu.

2.4.4.1 Two Randomized procedures in RF Tree buildg

As mentioned below, RF enhances classification racgucompared with
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decision tree classifier significantly. It is theason that RF applies two
randomized procedures when it builds trees. Eashigrbuilt as follows:

Firstly, assuming that the number of cases in thmihg set isSN and the
number of variables in the classifierMs Select the number of input variables
that will be used to determine the decision at denof the tree. This numban
should be much less thaWl. Secondly, choose a training set by choodihg
samples from the training set with replacement. Ameh, for each node of the
tree randomly selean of the M variables on which to base the decision at that
node. Calculate the best split based on these iables in the training set. Finally,
each tree is fully grown and not pruned.

The two distinctive randomized procedures exist@gnour steps below. That
is, RF extracts a fixed quantity from training sahdomly, or names tagging
process [16]. Each base classifier in the ensemsbi@ined on a bootstrap from
the entirety of available data. However, each ekéhbootstrap replicates tends to
leave out roughly one-third of the sample. Thusheaassifier in the ensemble is
trained on roughly two-thirds of the original da@onsequently, each element in
the sample of size trains roughly (2/3) of all classifiers in the ensemble so that
it can be used to validate the remainkig classifiers ig. 2.5 wheren is the
number of training dat&; is the total humber of single tree classifier.sTpart of
data is namedut-of-bag data to get an unbiased estimate of the test set efror
an individual tree. The rest of data is used tédahie single tree classifier.
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Training Sample

4/A/\

Out of Bag .......

Bootstrap 1 | | Bootstrap 2 Bootstrap k
In Bag

} } }

Tree Tree Tree

Fig. 2.5. Schematic of bagging using the decisiea &s the base classifier

The research of Breiman states why these two ramz@aohprocedures make
classification accuracy increase effectively: Imgment will occur for unstable
procedures where a small change in training setesuit in large change between
component classifiers and classifier trained byrentaining set. In RF, whatever
the bagging processing or the randomly selectiomaniables to split the node
both make difference in individual tree and fore3iserefore, these two sources
of randomness are most important features of RF.

2.4.4.2 Convergence of RF

RF adopts an ensemble of decision trees and detesnthe categorical
classes by majority vote algorithm. Thus a serioussideration of over-fitting is
necessary for testing RF performance. Normally \aer-fitting will occur where
learning is performed too long or where trainingamples are rare, the learner
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may be limited in very specific random featuredha training data that have no
causal relation to the target function. But RF awoid the over-fitting completely,

which was proved in Refs [10]. To affirm this pgimte define a margin function
at first.

Given an ensemble of a series of classifiersX¢,1C2(X), ..., Ck(X), and
with the training set drawn at random from therdisttion of the random vectof,
X, define the margin function as

mg(X,Y) =ay (G, (X) =Y) —maxy & (G (X) =) (4)

where I¢) is the indicator function. The margin measuresdktent to which

the average number of votesXatY for the right class exceeds the average vote
for any other class. The larger in the margin, there confidence in the
classification.

According to this function, the generalization engiven by:
PE" =Py, (mg(X,Y)<0)

Theorem 1As the number of trees increases, for almost gaesequences
o1, PE" converges to:

Pev (P (C(X.0) =Y))-max,, R ((C(X ©) =)< 0 (5)

Theorem 1 is proved with the strong law of largenbers and the tree
structure. It indicates that it is unnecessary R¥f to employ common anti-
overfitting methods for instance, cross-validatiearly stopping, etc. RF do not
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overfit when more trees are added, meanwhile iilrés a limiting value of the
generalization error. This is another importanttdiea of RF beside the two
randomized procedure mentioned above.

2.4.4.3 Accuracy of RF Depending on Strength and @elation

In last section, the anti-overfitting charactedstif RF is proved. But we
concern more about its accuracy. According to tiyais built in references, an
upper bound of RB can be derived for the genetabizaerror in terms of two
parameters that are measures of how accurate dhedimal classifiers are and of
the dependence between them. These also leaddmpih-view of how RF works.
Firstly we define a margin function and raw marfginction for RF.

The margin function for a random forest is:

mr (X,Y) =P, (C(X,0) =Y) - max., B, (C(X ©) = j) (6)
The raw margin function is:

rmg(©,X,Y)=1(C(X,0)=Y)-1{C(X ,0)=(X .¥)) 7)

Distinctively, mr(X,Y)is the expectation ofmg(®, X,Y ) with respect t®.
And the strength of the number of individual cléiess{C(X,0)} is:

S=E,,mr (X,Y) (8)

Then we compute the variance of margin function:
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var(nr) = 5(E,sd (0))” < pE, var(©) )
Write
E,var(®)< E,(E,rmg(@ X ¥)) -S?< £ & (10)

Considering function (9), (10) and Chebychev indityygheorem 2 can be
concluded.

Theorem 2An upper bound for the generalization error igiby
PE"<p(1-5%)/8° (11)

Although the bound is likely to be loose, it fulilthe same suggestive
function for random forest as VC-type bounds dodtirer types of classifiers. It
shows that the two ingredients involved in the gelmation error for random
forests are the strength of the individual classifiin the forest, and the
correlation between them in terms of the raw marginctions. There is a
conclusion drawn from this upper bound, that is shaaller this ration is, the
better performance RF provided.

2.4 Genetic Algorithm
RF is strengthened by a standard genetic algori@®#s) [19] in this paper. GA

is a simulation of evolution where the rule of suaV of the fittest is applied to a
population of individuals, or it can be considessda parallel searches procedure
that simulates the evolutionary process by applgegetic operators. Comparing
with other search algorithms, GA has been well-kmovor its superior

performance. And the most powerful feature of G&#s great simplicity. They
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do not need too much code and no differentiabditycontinuity requirements to
be satisfied. The usual GA flowchaFig. 2.9 and steps are shown as follows:

Sep 1: Coding, generate an initial population (usuallpadomly string)

Sep 2: Fitness evaluation, apply some function or forntol#he individuals to
get the fitness of each individual.

Sep 3. Selection, according to the fitness, individuale aelected to be the
parents of next generation.

Sep 4. Crossover, it is used to create two child indialdufrom the parent
which pass the selection successfully via exchantiair chromosomes.

Sep 5: Mutation, it assigns a new value to a randomlysemogene and is
controlled by a mutation probability.

Sep 6: Repeat step 3 to 5 until the evolved result satlsé termination criteria,
or a certain fixed number of generations are acuev

The function of GA is to evaluate the best pararsetd RF. Fitness is the
criterion which indicates the capacity of each wulial. In RF the diagnosis
accuracy rate value is assigned to fitness whighnesents the performance of
certain parameters. After generating the initiapydation, fithess values are
calculated and assigned to individuals which.ineliato key parameters of RF.
The GA proceeds to the next generation throughetgemetic operators: selection,

crossover, and mutation.
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Fig. 2.6. Flowchart of genetic algorithm.

Selection is the most important part of GA. Thi®m@or impacts on the trend
of GA and makes GA's running time shorten. It picisthe excellent parents to
reproduce the individuals within the limitation. @ hormalization probability for
individuals to be selectedllp is described as following equations:

B, (i)
1-(1-8,())™""

N, (i) =

(11)
wherei is an individual,Ng is the number of generatioBs is probability of
selecting best individual from the current popwlati

The selection probability of each individual is:
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P.()=NGi)(1-B.0)"
(12)
wherel(i) is the sorted index of individuals accordinghe fitness.
The selection probability stands for the opportuoit individuals to be chosen
as parents of the next generation. The new indalglare reproduced by the

survivals from selection by crossover and mutagimtedure.
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lll. Application and Optimization of Random
Forest Algorithm on Induction Motor Fault

Diagnosis

3.1 The Significance of Intelligent Diagnosis oft&mg Machine

The rotating machine plays an-important role of eradindustry, and is
equipped in many crucial departments. This sitmatiauses the problem that its
breakdown will result in a huge losing. Therefderylt diagnosis of machines is
gaining importance in industry.-because of its céjplbo increase reliability and
to decrease possible loss of production due to meadireakdown. Efficient and
accurate faults categorized have been critical &zimmery operated in normal
condition. There are several well-known machinenes methods which also
named artificial intelligence, such as artificiatunal network (ANN), support
vector machines (SVM) etc. The new techniques dmair textended research
increase the intelligent, preciseness and applitalwf diagnosis domain. It
exhibits the great potential of combining machiearhing methodology and
machinery faults diagnosis theoretic. While thespas of developing machine
learning based machinery faults diagnosis methodsirereasing, there are a
number of obstacles in the presence of researchbas.is, the correct diagnosis
of a fault is rather complicated. The reasonsiated as follows:

- Different kinds of faults may result in a certaigngptom, or feature

extracted from raw data.

- Because of the background noise, some faults affecutti to be
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distinguished in the machine.

- There are a number of subassemblies with rotatiaghmery and a high

level internal interaction between these subasdemblch as bearings, rotor bar
and rotor etc.

Hence, the machine learning based fault diagnos&thead which is
employed to make hypotheses should powerful enotmhcategory the
malfunctions in a correct way. So that, improvihg tapability of diagnosis is the
main motivate to inspirit researchers syncretiziexjstent technologies and
exploring new theories.

In this thesis, we introduce and investigate a hotating machinery faults
diagnosis methodology based on random forestsidgigo(RF) [10, 11]. It built a
large amount of decision trees out of sub-dataset fa unique original training
set by usingbagging, acronym ofbootstrap aggregating which is a meta-
algorithm to improve classification and regressmadels according to stability
and classification accuracy. Bagging also reduasance and helps to avoid
over-fitting. This procedure extracts cases rangdnoim original training data set
and the bootstrap sets are used for constructafaécision trees in the RF. Each
tree classifier is named component predictor. TRenkakes decision by counting
the votes of component predictors on each classtlzenl selecting the winner
class in terms of number of votes to it.

Since first introduced by Breiman, RF has been eggal in various fields
such as astronomy, micro-array analysis and dragodery and otherwise [12,
13]. RF provides good performance in applicatianshiese fields. RF can be a
competitor for rotating machinery faults diagnodiecause of these distinctive
features as below [10]:

- B3 -



- It is unexcelled in accuracy among current algangh

- It runs efficiently on large data bases.

- It can estimates of what variables are importatihénclassification.

- It has methods for estimating missing data and taiis accuracy when a
large proportion of the data are missing.

- It computes proximities between pairs of cases t@i be used in
clustering, locating outliers, or five interestivigws of the data

- It generates an internal unbiased estimate of hergézation error as the
forest building progresses.

Due to these features and its board application, imestigate the

performance of RF based faults diagnosis methogolog

As the backbone of modern industry, induction mofgay an important role
in manufacture, transportation and so ®he squirrel cage induction motor's
versatility and ruggedness continue to make itvwbekhorse of the industry, but
that doesn't mean it's invincible. Pushing it t@wdhfor too long can cause the
stator, rotor, bearings, and shaft to fail. Numerandustry surveys document

which parts fail and how, but very little data i@dable to explain the reason.

As the industry's approach to maintenance andregpadually evolves from
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reactive and preventive to diagnostic and predictit’'s important to pay more
attention to root cause failure analysis. Neglectm do so often will cause your
motors to repeatedly fail and cost you valuabl®eweses and time. So a general
study on induction motor faults diagnosis was daoked the result is shown in

next section.

In this chapter, we also confirm the possibilit@susing random forests
algorithm (RF) in machine fault diagnosis and ps®an optimized RF method
combined with genetic algorithm (GA) to improve ttlassification accuracy. To
increase the diagnosis accuracy, we acquire thee afathree-direction vibration
signals as the original inputs of system. And a lnainof feature parameters in
time and frequency domains and regression coefficiare calculated to extract
helpful information and remove the background nai$ethe data [15]. Then
random forest diagnosis system detects the ceftailty type bases on these
features. So the experiments have designed toatedtbe validity and reliability
of RF based fault diagnosis meth&kperimental result shows the optimized RF

based method achieves a very high accuracy by congoRF with GA.

3.2 Induction Motor Faults Diagnosis

3.2.1 Failure surveys on induction motor

It's common to use the results of failure surveysliagnose the cause of a
specific motor failure, but it can be a costly raks. Most failure survey data for
electric motors is influenced by the particularustty, the geographic location,

and the combination of the motors in use. Therefspecific numbers may not
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always be relevant.

Not only that, most failure surveys focus on thenponent that actually
failed while neglecting to address the root caudbat failure. For example, such
a survey may tell you that a bearing failed, bat ikn't the root cause; it's simply

the component that failed. The root could be onesederal things, but it's not

specified.
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Figure 3.1 IEEE study on induction motors failures

The data provided by the Institute of Electrical délectronics Engineers
(IEEE) study shown in Fig. 1 above is helpful besmain addition to identifying
failed components, it suggests the most likely eausf failure based on which
component failed. However, that's still not enougls your responsibility to
conduct a thorough analysis to find the definitre®t cause of that particular

component's failure. These percentages in Figurendy vary based on industry
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or location.

The real challenge lies in reducing the large aategf “unknown” failures.
It's these “unknown” failures that make analyzimg tentire motor system so

critical.

3.2.2 Summary of motor stresses

Most motor failures are caused by a combinatiomasfous stresses that act
upon the bearings, stator, rotor, and shaft. |s¢hstresses are kept within the
design capabilities of the system, premature faikhlouldn't occur. However, if
any combination of the stresses exceeds the deajprity, the life of the system

may be drastically reduced and catastrophic faitordd occur.

These stresses are classified as follows:

1 Bearing stresses: Thermal, dynamic and static hgadvibration and

shock, environmental, mechanical, electrical

1 Stator stresses: Thermal, electrical, mechanioal eavironmental

1 Rotor stresses: Thermal, dynamic, mechanical, enmental, magnetic,

residual, and miscellaneous

1 Shaft stresses: Dynamic, mechanical, environmettiatmal, residual,
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electromagnetic

Detailed Summary of Motor Stresses

Motor component | Stress type Actual stress or damage
Bearings Thermal Friction, lubricant, ambient
Dynamic and static loading | Radial, axial, preload, misapplication
Vibration and shock Rotor, driven equipment, system
Environmental Condensation, forelgn materials, excessive ambient,
poor ventilation
Mechanical Loss of clearances, misalignment, shaft and housing fits
Electrical Rotor dissymmetry, electrostatic coupling, static charges,
variable-frequency drives
Stator Thermal Thermal aging, thermal overload, voltage variation, voltage

unbalance, ambient, load cycling, starting and stalling,
paor ventilation

Electri Dieleciric aging, transient voltages,
partial discharge (corona), tracking
Mechanical Winding maovement, damaged motor leads, improper

rotor-fo-stator geometry, defective rotor, flying objects
Environmental Mois ical, abrasion, poor ventilation,
| excessi

Rotor Thermal Therma
otor bars, rotor rub, tra transient torque,

Dynamic
e e/overspeed, eyclical stress

Mechanical asting variations/voids, lnose laminations and/or bars,
|nc rrect shaft-to-core fit, fatigue or part breakage improper
rotor-to-stator geometry, mgtena.l deviations, improper
mnuntmg improper dasfgﬂ or manufacturing practices

Env'rmnmﬁ’taL\_ (‘_‘1— 0 "3" srﬁaljcfelf materials, poor ventilation,
S sive ,ambnent temperature, unusual external forces

Magnetic Rotor pullover, uneven magnetic pull, lamination saturation,
noise, circulationg currents, vibration, noise,
electromagnetic effect

Residual Stress concentrations, uneven cage stress

Miscellaneous Misapplication, effects of poor design, manufacturing
variations, inadeguate maintenance, improper operation,
improper mounting

1, thermal unbalance, excessive rotor losses,
king, incorrect direction of rotation,

Shaft Dynamic Cyclic loads, overload, shock
Mechanical Overhung load and bending, torsional load, axial load
Environmental Corrosion, moisture, erosion, wear
Thermal Temperature gradients, rotor bowing
Residual Manufacturing processes, repair processes
Electromagnetic Excessive radial load, out-of-phase reclosing
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Table 3.1 Detailed summary of motor stresses

3.2.3 Arriving at correct conclusion

When analyzing a motor failure, it's important t make assumptions. The
service center rarely knows much about the motglieion, much less the
power supply and/or maintenance history. The imtdigl dealing with the service
center may not be the person who removed the nfrator service or the operator
who is familiar with the motor or its applicatiomeaning that it's imperative

those individuals compile all of the facts befoomcuding anything.

Incorrect, incomplete, or even misleading inforroatis the norm. But it
doesn't have to be that way. Never assume a pfeee@dence exists just to force
the conclusion to fit the facts. When a conclusisnbuilt around erroneous
information mingled with facts, the root cause ailure is seldom correct. The

result will be additional failures or the assigninenblame to the wrong parties.
3.3 Experiment Platform and Motor Faults Data Desciption

The experiments are designed to simulate six mostetsal categories of
induction motors faults which are broken rotor daowed rotor, bearing outer
race fault, rotor unbalance, adjustable eccenyriaiotor (misalignment) and
phase unbalance, first four motor faults are showiig. 3.2 as an example. The
load of the motors can be changed by adjustingblade pitch angle or the
number of the blades. The platform of these expamis consists of six 0.5kW,

60Hz, 4-pole induction motors, pulleys, belt, steftl fan with changeable blade
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pitch angle.

Three AC current probes and another three accettsse were used to
measure the stator current of three phase powerysapd vibration signals of
horizontal, vertical and axial directions for evating the RF based fault diagnosis
system. Fig. 4.3 shows the platform of the expenime

After measuring the raw data, a preprocessing @adufe extraction are
implemented on the data to obtain the most impofieatures for the RF based
diagnosis methodology [17]. Finally, there are é8t@ires left which are prepared
for the next procedure, induction motor faults diegjs by RF.

Rotor Unbalance Rotor bar broken Stator fault

Faulty bearing Bowed rotor Eccentricity

Figure 3.2 Faults on induction motors
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Figure 3.3 Experiment platform

3.4 Discussion and Analyze

In this section, RF was run on the induction mofaults data. The
experimental results for random forest based me#htedgiven in Table 3.2. And
confusion matrixes for the training data in RF gieen by Tables 3.3 shows the
accuracies of each fault class for testing datd W00 trees and selecting 1

variable every split.

Trees No. va?igltlJtles Test %Zﬁracy Trees No. Split variables Test (ef}/i;: uracy
200 1 88.89 2000 5 73.34
500 1 94.44 5000 5 72.23
1200 1 95.56 10000 5 74.44
2000 1 93.33 200 8 81.22
5000 1 92.23 500 8 83.33

10000 1 92.25 1200 8 82.34
200 5 7111 2000 8 83.33
500 5 75.56 5000 8 78.89
1200 5 72.23 10000 8 77.78

Table 3.2 Faults diagnosis accuracies based on RF
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Class No. 1 2 3 4 5 6 7 8 9 Accuracy (%)

1 10 O 0 0 0 0 0 0 0 100
2 0 10 O 0 0 0 0 0 0 100
3 0 0 10 O 0 0 0 0 0 100
4 0 0 0 10 O 0 0 0 0 100
5 0 0 0 0 7 3 0 0 0 70
6 0 0 0 0 0 10 O 0 0 100

7 0 0 0 0 0 0 10 O 0 100

8 0 0 0 1 0 0 0 9 0 90
9 0 0 0 0 0 0 0 0 10 100

Table 3.3 Accuracy of each fault class for testiata with 1200 trees and selecting

1 variable each split

Classification rate

Split number

Fig. 3.4. Classification rate against random splinber and tree number
Fig. 3.4 shows the classification rate accordintheoexperiment which represe
nts three characteristics of RF very clearly. Ficsimpared with the number of co
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mponent classification trees, the parameter, ransigdinnumber at each node, is
more sensitive to the classification accuracy. lem@rudential searching proced
ure is necessary to find the best split variableslver by an experimental way. Se
cond, if the split variables number is decided,gbm of individual tree classifier
should achieve an appropriate quantity to get eebperformance. Last one, whe
n we increase trees into a high number, for exa®@@® or 10000, there is no ov
er-fitting occurred but a little undulating exists.

Class No. 1 2 3 4 5 6 7 8 9 Accuracy (%)

1 10 O 0 0 0 0 0 0 0 100
2 0 10 O 0 0 0 0 0 0 100
3 0 0 10 O 0 0 0 0 0 100
4 0 0 0 10 O 0 0 0 0 100
5 0 0 0 0 9 1 0 0 0 70
6 0 0 0 0 0 10 O 0 0 100

7 0 0 0 0 0 0 10 O 0 100

8 0 0 0 0 0 1 0 9 0 90
9 0 0 0 0 0 0 0 0 10 100

Table 3.4 Accuracy of each fault class for tesadath 907 trees and selecting 1
variable every split

Table 3.4 indicates that incorrect diagnosis of BRfSed methodology often
occurs at certain fault-category. So we can appigesassistant diagnosis method
which are function in that specific kind of fault improve the diagnosis precision.

In general, the normal RF has achieved the salisfielt diagnosis accuracy. B
ut it should be noticed that two parameters, thalyer of trees and random split n
umber, which greatly affect classification result aet manually. It means accurac
y of normal RF depends on researcher’s experiéiifus.situation exists at almost

all the applications of RF. So that applying tleaetic algorithm to do the param
eter optimization is exigent. The effect of thi®peration is proved by using the s
ame data. According to the pervious research,deraio reduce executed time of
GA program and find the optimized point synchrogubte number of trees and
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random split number are limited in the range frdd@ %o 1500 and from 1to 10 re

spectively.
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Fig. 3.5. Optimization trace within-40th generation

Fig. 3.5shows the trace information of every generatiatneSs adopts the
classification accuracy of the test data set. Tppeu curve is the best fithess
value and the other one is mean fitness value dif ganeration. The risen and
convergent trend of mean fitness value indicates @A well cooperates with
RF based methodology on the motor fault diagnasid, best fithess value lays
out the optimization point which is 907 trees anchddom split created by 9th
generation. The classification accuracy at thiswpachieves the 98.89%, 3.33%
higher than the best value of normal RF. It meaAxé&n enhance the capability

of RF algorithm distinctly.
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We also do the comparisons of some familier diagnmethods. Such as,
ANN(BP nural network), support vector machines @5 classification tree.

Obviously, RF algorithm has great increased thelo#ifpy of tree classification

method, from 77.78% to 95.56. Others can also ba &®m table 3 that normal
RF just 0.69% weaker than BP neural network, susteed is higher. And RF
optimized by GA almost touches the same accuracg\u¥l. The RF, a novel

algorithm, goes near to a well developed methods fifeans all we have done is

significatively and the farther research is impottand necessary.

C4.5 BP-NN SVM RF RFOGA

77.78% 96.25% 99.15% 95.56% 98.89%

Table 3.5 Result and comparisons of ANN,SVM, CRBE,and Optimized RF by
GA

3.5 Conclusion

The purpose of this chapter is to confirm the pmbtes of using random
forests algorithm (RF) in machine fault diagnosmsl gropose a hybrid method
combined with genetic algorithm to improve the sifisation accuracy. The
proposed method is based on RF, a novel ensenddsifetr which builds a large

amount of decision trees to improve the single tlassifier. Although there are
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several existed techniques for faults diagnosis,résearch on RF is meaningful
and necessary because of its fast execution spgbedcharacteristic of tree
classifier, and high performance in machine fadi¢égnosis. Evaluation of the RF
based method has been demonstrated by a caseastudguction motor faults
diagnosis. Experimental results indicate the validind reliability of RF based
fault diagnosis method. In this paper, the RF aptmozed RF based faults
diagnosis method of rotating machinery were ingaséd. The performance of
two methods was proved by the faults diagnosisdgsin induction motor. The
optimized approach attains a high accuracy ratediagnosis, 98.89%. The
comparison result also shows-that the optimizedh&¥ed method is competitive

with other classification method.
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I\VV. Application of RFOGA to Elevator Induction

Motor Fault Diagnosis

4.1 Introduction
As elevators are more widely used as transportati@ans in buildings,

importance of guaranteeing elevators working undermal state is also
becoming more significant. The sudden breakdowgl@fator mechanical system
will be result in very inconvenient consequencesctvimay disturb normal step
of human life and manufacturing processes and caulege loss of time and
productivity.

Induction motor is core component of elevator meata system. Under
long time and under-the-clock running, the deghadatand malfunction of
elevator induction motor are possibly occurred.tiker the faults of motor may
be inherent to the machine.itself or caused byregegperating conditions [20].
And it is difficult to trace the root cause too.€erafore, to apply an intelligent
fault diagnosis system to elevator door is crugezhand [21].

With this purpose, after testing RFOGA onto indoctimotor fault
stimulation platform, in this chapter, RFOGA basaelligent system was applied
to diagnosis of elevator motor faults by using &tion and current signal
separately. Because of the advantage of vibratignak like relative low

interference of background noise, good discrimilitgbio different fault types,
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and high performance of RFOGA, a 100% diagnostaucy is achieved with
vibration signal only. However, due to the exigesquirement of vibration data
acquisition in real-world, it should be consideradhen vibration signal is
unavailable or incomplete, frequently fault diageasccomplished by employing
current signal is more convenient and economicherdfore, RFOGA elevator
motor fault diagnosis using stator current sigmaksvaluated in this paper as well.
The RFOGA intelligent system for elevator motorlfaliagnosis works as
follow: first, raw data is collected from multiptensors and values of features of
the raw data are calculated that extract most qfomant information. The
generated feature sets are then grouped as theabrigput of the system to be
sent into RFOGA for diagnosing motor faults. Thst ref this chapter is arranged
as: explanation of experiment apparatus and daperienental result discussion

and conclusion of this chapter.
4.2 Experiment Apparatus and Data Description

In order to demonstrate the effectiveness of thp@sed system in real-
world operating conditions, an experiment was edrrout using an induction
motor system of elevator as shown in Fig. 4.1.

The test objects are ten 15 kW, 50 Hz and 4-poteigtion motors for
elevators. The basic specifications of them areveha Table 4.1. This motor was
set to operate at full-load conditions. One ofrtieors is normal (healthy), which
Is used as a benchmark for comparing with faultyarso The others are faulty
motors with rotor unbalance, stator eccentriciotor eccentricity, broken rotor
bar, bearing housing looseness, bearing inner llaseness, ball fault, bearing
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outer race fault and inner race fault, as showiign 4.2. The conditions of faulty

induction motors are described in Table 4.2.

Figure 4.1 Experiment apparatus

Table 4.1 Basic specification of the elevator irtciremotor

Type Induction motor

\oltage 340V

Current 34.2A

Rotating speed 1450 rpm

Line frequency 50 Hz

Bearing (DE) #6310

Bearing (NDE) #6308

Weight 1402 N

Power 15 kw
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Number of stator slot 36

Three accelerometers and one AC current probes ugs@ to measure the
vibration signals of horizontal, vertical, axiaketitions and stator current signal
to evaluate the fault diagnosis system. The maxinitequency of sampling
signals was 3 kHz and the number of sampled dasal®a@84. Sampling time is
2.133 seconds and Hanning window was chosen terifig. Each condition was

measured for two times.

Broken rotor bar

Rotor unbalance
TR

Bearing outer face fault  Stator enccentricity

Figure 4.2 fault examples of induction motors

Table 4.2 Description of fault types of the motested
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Fault types Fault parameter
Rotor unbalance In-phase, 60 gmm/kg
Stator eccentricity 30% (+0.23 mm)
Rotor eccentricity Out-of-phase, 80 gmm/kg
Broken rotor bar 1 spot
Bearing housing looseness Between outer race aumslriy
Inner race looseness Between shaft and inner race
Ball fault Diameter 2 mm, depth 1.5 mm
Outer race fault Diameter 2mm depth 2mm
Inner race fault Diameter 2 mm, depth 2 mm

The permitted measuring time for each fault is @6osds containing three
running conditions: speed-up, steady and slow-dowrother real limitation is
that many times of measurement per fault is nearpossible, or else the elevator
will break down severely. In this experiment, edablt was measured for two
times, then steady signals were picked out foryaealConsidering the limit raw
data that is not enough for RFOGA diagnosis syst@mpverlap method was
employed to solve the problem. This method picks each sample using an
overlap rate predetermined from collected steagyadiin sequence. The overlap
rate was set as 0.75 in this experiment.

Using the overlap method, we extended the steadgakiof one time
measurement into 10 times. So finally we acquires@@ples per fault and total
samples are 200. Among them, 100 samples wereediviiok training classifiers,
100 samples for testing performance of RFOGA.

After measuring the raw data, a preprocessing aatlufe extraction are
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implemented on the data to obtain the most impofieatures for the RF based
diagnosis methodology which is same with the formgoeriment [17]. Finally,
21 values of features are acquired from each sexmswisting of the time domain

(10 features), frequency domain (3 features) agtession estimation (8 features).

4.3 Experiment Result and Discussion

In this section, firstly RF was run on the induntimotor faults data without
cooperation with GA for saving experiment time. Base base on former
research on RF, it is shown that RF often proviesatisfied result with vibration
signal and random split number (RFN) 1, which isxtimmed by Breiman as well.
Fig. 5.3 provides the test result which RSN isteet and tree number (TN) varies
from 50 to 2050 with interval 100.
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Figure 4.3 Test result with RSN equal to 1 and Bxying from 50 to 2000

Fig. 4.3 expressly shows that RF can arrive at 180é6 without support of
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GA. Thus it makes using vibration and current siggyachronously meaningless,
for current signal just will decrease the accuragyen it works together with
vibration signal. But in the former section, itngentioned that vibration signal
could be invariable or incomplete sometimes, therab investigation of the
feasibility for applying current signal only is ressary. Fig. 4.4 provides the inter-
relationship between output of RF and parametergnwhurrent signal is

employed alone.

Classification accuracy

Random split number

Figure 4.4 Classification rate against RSN and TN
Fig 4.4 improves the three characteristics of R&iragrirst, compared with
the number of component classification trees, #rapeter, random split number
at each node, is more sensitive to the classifinadiccuracy. Second, if the split
variables number is decided, the sum of individuaé classifier should achieve
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an appropriate quantity to get a better performahast one, when we increase
trees into a high number.

Hence GA is adopted here to find the best comtmnaisf RSN and TN, and
optimization result is given by figure 4.5. Theidéfon of GA' parameters are not
changed contrasting to former experiment. And tladie 4.3ndicates the
accuracies of each fault class for training antingslata while RN equals to 907 trees

and RSN equals to 1.
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Figure 4.5 Optimization trace within 9@eneration.
Figure 4.5 indicates RFOGA based system providés p&cision. It shows
RFOGA does not only enhance the diagnosis accuracparing with RF only,
almost 4%, but also convinces the efficiency oflpg RFOGA with current

signal.
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The optimized diagnosis output is given by tabl&. 4The evolved
combination of RSN and TN which are 976 and 1 retspaly is provided as well

Comparing diagnosis output from table 4.4 with fernone which is
provided by table 3.4, it is found that RFOGA makesng diagnosis on different
type of fault, thus a new characteristic is expased RFOGA is not defective on
certain fault type, in other words RFOGA is competer faults detection task
without considering the fault type is fit for thgssem or not.

Table 4.3 Output of RFOGA on elevator induction anot

Class

No. 1 2 3 4 5 6 7 8 9 10 Accuracy (%)
1 10 0 0 0 0 0 0 0 0 0 100
2 0 10 O 0 0 0 0 0 0 0 100
3 0 0 10 /0 0 0 0 0 0 0 100
4 0 0 0 7 0 0 0 3 0 0 70
5 0 0 0 0 10 0 0 0 0 0 100
6 0 0 0 0 0 10 O 0 0 0 100
7 0 0 0 0 0 0 10 O 0 0 100
8 0 0 0 0 0 0 0 10 O 0 100
9 0 0 0 0 0 0 0 0 10 0 100
10 0 0 0 0 0 0 0 0 0 10 100

4.4 Conclusion

In this chapter, the performance of RFOGA on a-veald application was
investigated. Excellent results were achieved m félt diagnosis of elevator
motor using vibration or current signal. By considg difficulties to measure
vibration signal in real condition, an effectivedacost saving approach has been
proposed based on RF that only require analyzingeou signals. And it has

competitive diagnosis accuracy 94%. Genetic algorican improve the accuracy

- 75 -



rates remarkably. It increases the diagnosis acguit@m 94% to 97% when
apply the current signal.

The comparison with experiment on fault diagno$isa@mal induction mot
or denotes the universal adaptability of RFOGAeystbecause it do not have dis
tinct soft spot on some induction motor fault typ®e this algorithm has widely p

erspective on induction motor fault diagnosis aimas fields.
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V. Conclusion and Future Work

In this thesis, the importance of machinery faudigdosis is stated. Both of
the history and popular methods used nowadays recieided here. The Al
Machine learning and ensemble theory are also skstlito lead the readers to

know how Random Forest Algorithm comes from.

Most import is that the RF and optimized RF basadlt$ diagnosis
methodology of rotating machinery were investigatied the thesis. The
performance of two methodologies was proved byfalodts diagnosis test of an
induction maotor. The optimized approach attainsgh ltorrect rate of diagnosis,
98.89%. And the comparison result also shows thiinized RF based method is
competitive with other classification method. In daghn, the assemble
classification trees method and even faster theresaf them [10, 18], it is proved

by other multi-classes classification applications.

But the weakness of RFOGA is also distinct. Thesoeas that RFOGA is
based on decision tree (DT) classifier, and thal#ipy of DT is not outstanding
among a lot of existed Al methods. Affirmatively Dias been losing the interest
of researchers. But ensemble theory is an excediedt high-speed developing
methodology. It can be cooperated not only with I also many other kind of

advanced and precise Al methods, i.e. ANN, SVM. .etc
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All in all, extended research will focus on two fgarin the near future, my
task is to improve on this hybrid method RFOGA: @Anot only for the
parameter optimization, it can be used to seledt m®mbination of sub-
classification trees from the forest to get the enaecurate result. The second part,
we will decrease the redundancy of the RF andttmgrooptimization algorithm or
more effective voting principle. For long viewsg@ambination of ensemble theory,
various precise Al algorithms and GA, or other omation method, will be

explored.
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