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Control for Mobile Inverted Pendulum
Using Sliding Mode Technique

Ming Tao Kang

Department of Interdisciplinary of Mechatronics Engineering
Graduate School
Pukyong National University

Abstract

In this thesis, a mobile inverted pendulum system is considered. A control
system pilots the motors so as to keep the system in equilibrium. The mobile
inverted pendulum is a system with an inverted pendulum attached to a mobile
cart with two coaxial wheels, each of which is coupled to a DC motor. The
dynamic equation of the mobile inverted pendulum is established. To stabilize the
mobile inverted pendulum, a stabilizing controller via sliding mode control is
designed based on Ackermann’s formula, which obtains a sliding surface in
explicit form as well. The control law is designed to make quick converge to the
state of the closed-loop system during the control process. The overall control
system is described. The servo controller using two microcontrollers PIC16F877
is introduced. Moreover, the configuration using Lyapunov function is presented
to control the speed of a DC motor. A configuration for sensors including tilt
sensor and two incremental encoders is developed to obtain the system states and



realize the above proposed controller. These measurements can then be fed back
to the controllers to impose the desired closed loop dynamics. The simulation and
experimental results are shown to prove the effectiveness of the proposed

modeling and the stabilizing controller.
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Nomenclature

Description Units
Position of the cart [m]
Desired position of the cart [m]
Back electromotive force voltage V]
Back electromotive force voltage constant [V -sec/rad]
Torque constant of motor [Nm/A]
Nominal terminal resistance [Q]
Rotational angle of motor shaft [rad]

Angular velocity of motor shaft [rad /sec]
Rotational angle of left or right wheel [rad]

Friction force between the ground and left/right wheel [N]

Reaction forces between left/right wheel and pendulum [N]

Load torque to left and right wheel
Applied load torque

Electric motor torque

Applied voltage for left and right wheel  motor

Rotor inertia of motor
Rotor inductance of motor
Frictional constant
Armature current

Angular velocity of wheel

[N-m]

[N-m]

[N-m]

V]

[kg-m’]

[H]
[N-m-sec/rad]
[A]

[rad /sec]



-

r g <% 8

Moment of inertia of the wheel
Moment of inertia of pendulum around z axis

Mass of the wheel

Mass of the inverted pendulum

Wheel radius

Rotation angle around z axis of the pendulum
Rotation angle around y axis of the pendulum
Lateral distance between the wheels
Distance between the wheel’s center and

the pendulum’s center of gravity

Gravitational acceleration

Vi

[Kg-m’]
[Kg-m’]
[Ko]
[Kg]

[m]
[rad]
[rad]

[m]

[m]

[m/sec?]



Introduction

1.1 Background and Motivation

Inverted pendulum systems always exhibit many problems in industrial
applications, for example, various nonlinear behaviors under different operation
conditions, external disturbances, and physical constraints on some variables.
Therefore, the task of real time stabilization and tracking control of a highly
nonlinear unstable mobile inverted pendulum system has been a challenge for the
modern control field.

A mobile inverted pendulum is a system composed of an inverted pendulum
attached to a mobile cart with two coaxial wheels, each of which is coupled to a
DC motor.

There are some studies that have been reported on the mobile inverted
pendulum as follow:

Prof. Kazuo Yamafuzi, at University of Electro-Communications, built the
first two-wheel inverted pendulum robot in 1986.

A similar and commercially available system, ‘SEGWAY HT’ has been
invented by Dean Kamen as shown in Fig. 1.1. The “‘SEGWAY HT’ is able to
balance a human standing on its platform while the user traverses the terrain with
it. This innovation uses five gyroscopes and a collection of other tilt sensors to
keep itself upright. Only three gyroscopes are needed for the whole system, and
the additional sensors are included as a safety precaution.

In 2002, Felix Grasser et al. [1] at the Industrial Electronics Laboratory of the
Swiss Federal Institute of Technology have built a scaled down prototype JOE as



shown in Fig. 1.2. The vehicle is composed of a cart carrying a DC motor coupled
to a planetary gearbox for each wheel, the digital signal processor (DSP) board
used to implement the controller, the power amplifiers for the motors, and the
necessary sensors to measure the system states.

Fig. 1.2 JOE

The uniqueness of the system has drawn interest from robot enthusiasts. For
example, Nbot, a two-wheeled robot built by David P. Anderson, uses an inertial
sensor and motor encoder to balance the system as shown in Fig. 1.3.



Fig. 1.3 Nobt

To guarantee the inverted pendulum in equilibrium, the development of the
control system is vital. Recently, the control problems of inverted pendulum have
been intensively studied due to the challenging demand of fast and precise
performance. The control strategies for the inverted pendulum in the literature can
be divided into two distinct sections, namely linear control and nonlinear control.

The linear control methods often linearize the dynamics about a certain
operation point. The linear controllers are more popular among researchers
designing the mobile inverted pendulum like JOE. The pole-placement controller
and the linear quadratic regulators (LQR) are the popular method implemented.

In 1994, Tarek et al. developed a Fuzzy Logic controller for stabilizing an
inverted pendulum on a cart. This approach is based on approximate reasoning
and knowledge based control. In 1991, Williams and Matsuoka [2] used the
inverted pendulum to demonstrate the ability of Neural Networks controller in
controlling nonlinear unstable systems.

Although nonlinear controllers would provide a more robust system, the
complexity and difficulties of these methods make most researchers utilize the
linear controller approach [3-17].



Sliding mode control method is a robust control method which generates an
input to track a desired trajectory for a given system. In the past decade, the
sliding mode control has been widely used in various practical applications.

In 1998, Juergen Ackmann and Vadim Utkim [18] designed a sliding mode
controller based on Ackermann’s Formula. While simulation results prove that the
mobile inverted pendulum can be balanced by this controller, there is no evidence
of implementing this controller.

In this thesis, the control objective is to implement a sliding mode controller to
stabilize the mobile inverted pendulum.

1.2 Outline and Summary of Contributions

This thesis consists of six chapters. The content and summary of contributions
in each chapter are summarized as follows:

» Chapter 1: Introduction

Background and motivation, the outline and summary of contributions
of this research are presented.

» Chapter 2: Mathematical Modeling

Mathematical models of the mobile inverted pendulum and the DC
motor  are presented ‘when the movement of the mobile inverted
pendulum is restricted in a plane.

» Chapter 3: Controller Design

A stabilizing controller via sliding mode control using Ackermann’s
formula is presented to stabilize the mobile inverted pendulum. The
control law is designed to make quick converge to the state of the
closed-loop system during the control process.

» Chapter 4: Hardware Design and Implementation



The overall control system is described. A servo controller using two
microcontrollers PIC16F877 is introduced. Moreover, the configuration
using Lyapunov function to control the speed of DC motor is presented.

Chapter 5: Simulation and Experimental Results

The simulation and experimental results are shown to prove the
effectiveness of the proposed modeling and the stabilizing controller.

Chapter 6: Conclusions and Future Work

Summary this thesis results and the future work.



2
Mathematical Modeling

The mathematical models for the mobile inverted pendulum and the motor are
derived in this chapter.

2.1 Modeling of DC Motor

The mobile inverted pendulum is powered by two DC motors. In this section,
the motor dynamics is derived. This model is then used in the dynamic modeling
of the mobile inverted pendulum to provide a relationship between the input
voltage of the motors and the torque needed to the system.

Fig. 2.1 Diagram of DC Motor

Fig. 2.1 shows the cut from a mechanical load as well as the cut from a DC
power supply. The conversion of the electrical energy from the DC power supply
into the mechanical energy supplied to the load takes place in the DC motor.

When a voltage V is applied to the terminals of the motor, a current i will

flow in the motor armature. The motor produces a torque T, which is proportional

to the current. This relationship can be expressed as



T =K, (2.1)

A resistor-inductor pair in series with a voltage V, can be used to model the

electrical circuit of the motor. This back electromotive force voltage is produced
because the coils of the motor are moving through a magnetic field. The back
EMF can be approximated as a linear function of shaft velocity, which can be
written as

V. =Ko (2.2)

e e

At this point, a linear differential equation for the DC motor’s electrical circuit
can be written by using Kirchoff’s Voltage Law that the sum of all voltages in the
circuit must be equal to zero. For the DC motor, this can be written as

vERi-L By o (2.3)
dt

In deriving the equation of motion for the motor, the friction on the shaft of
the motor is approximated as a linear function of the shaft velocity. The

approximation that the friction coefficient on the shaft of the motor K, is a linear

function of the shaft velocity is-made. In Fig. 2.1, Newton’s law of motion states
that the sum of all torques produced on the shaft is linearly proportional to the

acceleration of the shaft by the inertial moment of armature I,. The preceding

statement can be written as

IRZ—?:Tm—Kfa)—Ta (2.4)



Substituting equations (2.1) and (2.2) into equations (2.3) and (2.4), and
rearranging in terms of the time derivatives, two fundamental equations governing
the motion of the motor can be obtained as

d_Vv_R. K (2.5)
dt L L L

K
do Ky, B¢ T (2.6)
a1, 1,1,

Both equations are linear function of current and shaft velocity, and they
include the first order time derivatives. To simplify DC motor model applied to
the mobile inverted pendulum, the motor inductance and the motor friction are
negligible and current derivative can be given as zero. Hence, equations (2.5) and
(2.6) can be approximated-as

=2 -0 @.7)

t —a (2.8)

do ﬁi o
IR IR
By substituting equation (2.7) into equation (2.8),-an approximation for the
DC motor which is only a function of the shaft velocity, applied voltage and load
torque can be obtained as

K. K K T
da):_ me o Dmy _la (2.9)
dt LR I.R I




Since the motor inductance is neglected, the current through the windings is
not considered in the equation of motion of the motor. The current will reach a
constant state immediately compared to the velocity of the shaft, which takes time
to speed up from some initial velocity to a final velocity after a change in the
input voltage.

From equation (2.9), the equation can be obtained as follows:

RIS L C1 ALY (2.10)
dt R R

This is a system of the first order differential equations with respect to shaft
velocity of the motor @ . The input to the motor is the applied voltage.

From equation (2.4) under the above conditions, the motor torque equation
can be obtained as follows:

Toell T (2.11)

2.2 Dynamic Modeling of the Mobile Inverted Pendulum

The mobile “inverted pendulum has similar behavior with an inverted
pendulum on a mobile cart. The mobile inverted pendulum is restricted to a plane
in order to facilitate the development of a control-system. The inverted pendulum
and wheel dynamics are analyzed separately at the beginning, but this eventually
leads to two equations of motion which describes the behavior of the mobile
inverted pendulum. It is assumed that the wheels always stay in contact with the
ground and that there is no slip at the wheel’s contact point. Therefore, there is no
movement in the z axis and no rotation about the x axis. The left and right wheels
are completely analogous. Additionally, cornering forces are negligible.



The system was developed by Felix Grasser et al. Fig. 2.2 shows the mobile
inverted pendulum. In this thesis, its movement is described by the rotational
angle ¢ and the corresponding angular velocity ¢ ; the linear movement of the

cart is characterized by the position x, and the velocity x, .

Yaw
Center
of / .
Gravit}’\\‘\ Ly Xy
q.

g _x

TR,

Ny
R.D — (’-,‘

Pitch

Fig. 2.2 Definition of State-space Variables

2.2.1 Wheel Dynamics

Since the system’s behavior can be influenced by disturbances as well as the
torque from the motor, the mathematical model has to adapt to such forces. Firstly
the equations of motion are associated with the left and right wheels. Fig. 2.3
shows the free body diagram- for the mobile .inverted pendulum. Since the
equation for left and right wheels-are completely analogous, only the equation for
the right wheel is given.

Using the Newton’s law of motion, the relation of the forces on the horizontal
direction is

MWXrZHfR_HR (212)

10



The relation of moments around the center of the wheel is

|Gy =To —H ol (2.13)

/L(p2
T +T
I
———=X
-
L
L [
Pp+Pp

/Kr Hgr
" ial
T > X Tr X
el Ha Right WhQ«

Left Whe He

Fig. 2.3 Free Body Diagram of the Mobile Inverted Pendulum

From equations (2.10) and (2.11), the output torque to the wheels is obtained
as

KK, K
T, =T, =—neg 4 my 2.14
ST (214)

‘M ,Lgsing
> e — N
Therefore, equation (2.13) becomes

11



KK, - K

|,0s = —0—¢ oSO+ 2V —Hgl (2.15)
Arranging equation (2.15) yields
K K . K |
H = meHh 4_My__w 2.16
fR Rr Rw Rr r Rw ( )

Equation (2.16) is substituted into equation (2.12) to get the equation for the
left and right wheels as follows:
The left wheel dynamics is

v _KmKe ] Km IW )
MWXr = Rr 0LW +EV —T w HL (217)
The right wheel dynamics is
U _KmKe 3 Km Iw )
MWXr = Rr HRW +EV —T Rw HR (218)

Because the linear motion is acting on the center of the wheel, the angular
rotation can be transformed into linear mation by simple transformation,

gr==x=0,="x
-

) ) ) X,
0Wr=xr:>9W:T

By the linear transformation, the left wheel dynamics (2.17) is obtained as

12



M % = ney Koy Lug

2.19
Rr2 r Rr r_2 r ( )
The right wheel dynamics equation (2.18) is obtained as
-K_ K K I
M X =—"-°¢X +—"V--2X —H 2.20
T R,2 T Rr 27 R (2:20)
Adding equations (2.19) and (2.20) together yields
I —2K_K 2K
2(M, +2)X = X +—=V—-(H +H 2.21
( w rZ) r Rr2 r Rr ( L R) ( )

2.2.2 Inverted Pendulum Dynamics

The system’s body can be modeled as an inverted pendulum as shown in Fig.
2.3.

The relation of the forces in the horizontal direction of the inverted pendulum
is expressed as

(H +H,) =M Lpcosp+M Lo sing =M %, (2.22)

Arranging equation (2.22) yields

(HL +H)=M_% +M Lgcosp—M Lp”sing (2.23)
The relation of the forces perpendicular to the pendulum can be given as

(H_+Hg)cosp+ (P +R;)sing—M gsing—M Lyp=M X cosp (2.24)

13



The relation of the moments around the center of mass of pendulum can be
represented as

—(H_ +Hg)Lcosp—(P +P;)Lsing—(T +T;)=1,¢ (2.25)

The torque applied on the pendulum from the motor using equation (2.14)
linear transformation can be expressed into

2K K, % 2K
= L+

T +T, = . R”‘V

Substituting this into equation (2.25) yields

~(H_+Hg)Lcosp~ (P, + PR)Lsinqo—(_ZE:Ke ) 2};

~V)=1,¢

Arranging this yields

—(HL+HR)LCOS(/>—(PL+PR)LSin¢:_ZE:‘KE X +2EmV+|p¢ (2.26)

r

Multiplying equation(2.24) by —L can be obtained as follows:

—(H_+Hg)Lcosp— (P +PF;)Lsing+M gLsing+ Mpngb:—l\/lp)'('rLCOSgo
(2.27)

Substituting equation (2.26) in equation (2.27) then yields

14



. 2K K, 2K
— X

| ==X+ 2BV M gLsing+ M LG =—M LK cosp  (2.28)

To eliminate (H, + H;) from the motor dynamics, substituting equation (2.23)
into equation (2.21) yields
2K K, . 2K
X

oy  + erv -M_ X —M Lgcosp+M Lesing

2(M,, +I—V;’))'<‘r =—
r

(2.29)

Rearranging equations (2.28) and (2.29) gives the nonlinear equations of
motion of the system as follows:

2K _K 2K :
2\ o mNe o m - o
(I,+M L)¢p— S X, + 3 V+M gLsing==M LX cos¢g (2.30)

r

2K 21 2K K, . x o
erV=(2MW+ r2W+Mp)xr+ .~ X +M Lpcosp—M Lo’ sing

(2.31)

The above two equations can be linearized by assuming ¢ =7+ ¢, where ¢

represents a small angle from the vertical upward direction.
To linearize (2.30) and (2.31), the following are assumed:

2
cosp=-1, sinp=-¢ and (c:j—(tpj =0

The equations (2.30) and (2.31) are expressed into

15



2K K, . 2K
X, +
Rr R

e i o
(I, +M,L2)g - VM, glg=M LK (2.32)
2K,

2K K,
Rr 2

Rr

21, ! . .
V:(ZMW+ +ijﬂ+ %, —M,L¢ (2.33)

r.2

In order to get the state space representation of the system, equations (2.32)
and (2.33) are rearranged as follows:

- ML 2K, K . 2K M, gL
TV E AT (Y AT IR VN AR TR Y EIN
(+M L) Rr,+M,L) © RO, +M L) (1, +M, L)
(2.34)
M L .
- 2K, v 2K K, - !, ;

Rr(2MW+2r|2W+Mp) Rr2(2MW+2r|2W+Mp) 2Mw+r—ZW+Mp
(2.35)
By substituting equation (2.34) into equation (2.33) and substituting equation

(2.35) into equation (2.32), the state space equation for the system is obtained as
follows:

X, 0S5 04 0
X 0 a, a, 0] x b
= 282 R EE Y (2.36)
¢ Ry O30 #4W 0
¢. 0 a'42 a43 0 ¢ b4

where a,,,a,;,a,,,8,;,,b, and b, are defined as a function of the system’s

parameters, which is given as follows:

16



2K, K (M Lr—1,—M L?)

Rria

2K K. (r4—-M pL)
2= Rria
_MyoLp
43
a

2k, (I, +M L* =M L)
B Rra
o _ 2K (M,L-1B)
o Rra

21
L=02M, + rW+Mp)

2

b,

a:{lpﬁ+2|\/|p|_2(|v|w+'r—g)}.



3

Controller Design

3.1 Sliding Mode Stabilizing Controller

In this section, the controller design method based upon Ackermann’s formula
is proposed [18]. This controller design method obtains a sliding surface equation
in explicit form as well.

The procedure to design the following two controllers is introduced. First, a
static controller is designed to force sliding modes to have the desired dynamic
properties after a finite time interval. Then a dynamic controller that exhibits the
desired dynamic properties during the entire control process is designed.

Equation (2.36) can be expressed by a differential equation as follows:

X = AX+bu (3.2)
8. 8, B3 8y by X
A — a21 a22 a23 a24 b e b2 X = X2
aSl a32 a33 a34 b3 X3
a, a4, a4z ay b4 Xy

where u is a scalar control.

The control law u consists of two components as follows:

18



u=u,+u, (3.2)

where u, is static controller referred as the continuous control component and
dynamic controller u, is the discontinuous sliding mode component. First, a state
feedback law for u, and dynamic controller u, are designed to enforce a sliding

mode in the sliding surface based upon Ackermann’s formula.

From equations (3.1) and (3.2), the following is obtained

X=Ax+b(u, +u,)

X = Ax+bu, +bu, (3.3

1) Static Controller Design

The static system of equation (3.3) is nominal system and is obtained as
X = Ax+bu, (3.4)

The static controller of equation (3.4) is given by Ackermann’s formula as
follows:

u, =—k"x, k" =h"P(A) (3.5)

h" =[0,0,0,1][ b, Ab, A%, A |

P(A) =(A=4)(A-4) (A~ A)(A-4,)

19



where 4,4,,4;,4, are assigned as the desired eigenvalues and P(A) is

characteristic polynomial of equation (3.4).

From equations (3.4) and (3.5), the closed loop system is obtained as follows:

X=(A—bk" )x (3.6)

To stabilize equation (3.6), the real parts of all eigenvalues of (A—ka) can

be assigned as negative value.

The design of sliding mode control implies choosing a sliding surface and then
getting the control law enforcing sliding mode in this sliding surface.

The equation of sliding surface is chosen as
S=C'x (3.7)
where C' =[¢, ¢, ¢, ¢, ]T with an explicit from using Ackermann’s formula.
By controllability of (A,b), there exists a state feedback gain vector k that

assigns the eigenvalues 4,;4,,4;, 4, to A—bk" such that the left eigenvector C’

of A—bk" associated with- 4, satisfies the following

CT(A-bkT)=CT4, (3.8)

Equation (3.8) can be rewritten as

20



CT(A-4,1)=CTbk" (3.9)

The equation (3.4) with sliding surface (3.7) can be transformed into reduced
order system.

It is assumed that values 4, 4,, A, are the desired eigenvalues of A while 4, is

an arbitrary values do not belong to the spectrum of A in the system (3.4) with
sliding surface. That is, det(A—A4,1)#0.

By controllability of (A,b), there exist C'b=0 and (A-2,1)" because 4, is

not an eigenvalue of A.

Now, C'is defined as follows:

C' =h"P(A) (3.10)
P.(2) = (A~ A)(A=4)NA=2) = p,+ P,A+ PA”+ A7
C'b=1
where P, (1) is characteristic polynomial of system (3.4) with sliding surface (3.7).

Proof:

From equation (3.5) and (3.10), the following can be obtained.

P(A)b = pb+ p,Ab+ p,A’b+ A’b
=[b Ab A’b Ab][p, b, P 1

C'b=h"R(A)b=[0,0,0,1][b, Ab, A%, A [b Ab A% Ab][p, p, p, 1] =1.

21



From equations (3.5), (3.9) and (3.10), the following can be obtained.

K" =h"P(A)=CT (A= 4,1) =" P(A)(A-4,1) (3.11)

From equation (3.11), P(A) in equation (3.5) can be rewritten as

P(4) =R (A)(1-4,)

i) Dynamic Controller

Using equations (3.2) and (3.5), equation (3.1) can be transformed into

X = (A-bk")x+bu, (3.12)

where u, is dynamic controller acted as perturbation of system input u .

A new variable z is defined as

Z=\"|= X=TXx (3.13)

22



where xlz[xi,xz,xa]T is the first three state variables of x acted as the state

variable of reduced system and S =C'x becomes the last state variable of z, and

there exists T .

From x=T 'z, equation (3.12) can be expressed as
2=T(A-bk")T *z+Tbu, = Az + Bu, (3.14)

For 4x4 matrix T to be invertible, the last component of C™ must be nonzero.
Since these vectors are nonzero, the condition can always be satisfied by
reordering the components of the state vector x .

The transformed system equation (3.14) under the above conditions is

X' = Ax‘+aS+b'y (3.15)

S=4S+U, (3.16)

where

N _RLETYTL Al aQ o _ _bl b/ U
A=T(A-bk")T {o /14] B_Tb_[l] b'=[b,b,,b,]

k' =[k, k, ky Kk,]

23



(ail_blkl)_ (a14 _Cb1k4)cl blk ) (a14 Cbk )C (a13 —b1k3) (314 Cblk )C

A =] (ay —b)k,) —@“_CM (a, _bzkz)_w (a,, —b.k,) - (8, —b,k,)cs

4 4 2
(331 —b3k1) —M (asz _b3k1) _m (333 —b3k3) _ (a34 _b3k4)03
L 4 4 2

Ay _b1k4 Ay — b2k4 Ay _b3k4
C, C, C,

Proof:
The proof of equation (3.15) is shown in Appendix.

From equations (3.7), (3.8), (3.10) and (3.12), the derivative of sliding surface
is obtained as

§'=CTx=C"| (A=bK")x+bu, | = CT (A-bk™ )x+CTbu,
=2,C'x+u, =4,S +u,

The spectrum of the matrix A, consists of the desired eigenvalues 4, 4,, 4.

In S=0 and S =0, equation (3.15) results in the following motion equation.
Xt = AX* (3.17)

The dynamic controller u, is designed to enforce a sliding mode in the sliding

surface S =0 such that Ismg SS <0.
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u, =—-M(x,t)sign(S) (3.18)

where M (x,t) > ‘/14CT x‘ :

Proof:

From equations (3.16) and (3.18), the followings must be obtained to stabilize
the dynamic system.

i) S>0and S<0

S=4C'x+u, <0
u, <=4, C'x
~M(x,t)sign(S) <-4, C'x
M (x,t) > 4, CTx (3.19)
i) S<0 and S>0
S=4,C"x+u, >0
u, >-4, C'x
—M(X,t)sign(S)>-4, C'x

M (x,t) <-1,C"x (3.20)

From (3.19) and (3.20), the following condition is obtained to satisfy
limSS <0.

S—0
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M (x,t) >[4,CTX (3.21)

If the control may take only two extreme values +M, or —M, , then
equation (3.18) with M (x,t) =M, forces a sliding mode to converge to the

sliding surface S=0 governed by (3.16) as well. Fig. 3.1 shows the block
diagram of the proposed controller.

The sliding mode control causes chattering when it is implemented in
computers for the finite sample frequency. In order to suppress the chattering, a
saturation function is used instead of a signum function.

U, ax X X
—-M, —»{ b >® > >
‘N
A |a——
sign(S) = = CT =

Fig. 3.1 Block Diagram of the Controller
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A

Hardware Design and Implementation

4.1 Overall Control System

The mobile inverted pendulum is built to test out the performance of controller
in stabilizing an unstable system.

For the control system, a PIC-based controller was developed [25]. The
controller is composed of two parts: servo controller and main controller. The
configuration diagram of the overall control system is shown in Fig. 4.1. In the
diagram, two PIC16F877 microcontrollers are integrated into one module for two
motors of the left and the right wheels. The motors are driven via LMD18200
Dual Full Bridge Drivers. This module implements Lyapunov-based velocity
control using feedback from an-optical .encoder attached to the motors. One
PIC16F877 microcontroller is used as master, and receives the signal from sensors,
render the control law and send velocity command to the servo controller. The
servo controller is responsible for reaching and maintaining the speed. The master
communicates to the motor drivers via 12C. With the modular structure, the
control system can manage a control law with a sampling time of 10ms, even
5ms in some critical applications. A configuration for sensors is developed to
obtain the system states and realize the above controllers, including one tilt sensor
and two incremental encoders. The tilt sensor measures the angle of inverted
pendulum. The incremental encoders mounted on the cart are utilized measure the
speed of the wheels. The position and speed of the cart on a straight line can be
also determined from the speed of rotation of two wheels. These measurements
can then be fed back to the controllers to impose the desired closed loop dynamics.
The implementation of the PIC-based control system including servo controller
and main controller is shown in Fig. 4.2.
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Left l—— Gearbox Left Motor Right

Wheel Encoder
peceeccccccccccccccccccccccedeccccccdecccccccan -
H .
: Y :
.
1 | Battery Servo Controller E Computer
\| 24vDC PIC16F877 ' (Notebook)
1| 7Ah :
; ;
i 12C Comm. 5
5 3
.
E Tilt > Main Controller < § RS232
| Sensor PIC16F877 H Interface
; ;
; ;

Y
Right . Right
Wheel l—— Gearbox Right Motor Encoder

Fig. 4.1 Configuration of the Control System

Fig. 4.2 PIC-based Control System
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4.2 Tilt Sensor

Tilt sensor provides a precise measurement of the pitch angle as shown in Fig.
4.3 and 4.4. Fig. 4.5 shows relation between output voltage of the sensor and
pendulum angle.

Top View

13

E

Back View Front View Side View
TILT .
SENSOR X
Sl }

Fig. 4.3 Dimension of Tilt Sensor

Fig. 4.4 Tilt Sensor

The main specifications are summarized as following:

® Measuring range: +60°
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® Resolution: <0.1°
® Transverse sensitivity: < 0.5%
® Response time: < 0.5second

® Sensitivity: approx 30 mV/degree

4
3
2
1
Degree
.

0 45 90 135 180

Fig. 4.5 Tilt Sensor Voltage Output

4.3 Motor Control

To control the speed of a DC motor, a variable voltage DC power source is
needed. If the DC motor is powered on by a switch, the motor do not respond
immediately, that is, it takes a small time to reach full speed. Similarly, if the
power is switched off sometime before the motor reaches full speed, the motor
starts to slow down. So, if the power is switched on and off quickly enough, the
motor runs on some speed between zero and full speed. To control the motor
speed, the width of the pulses varies Pulse Width Modulation. The current
supplied for motor can be got by the PIC16F877 through the current sense of
LMD18200 as shown in Fig. 4.6.
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Fig. 4.6 Sensed Current Output of LMD18200

To perform indirect closed loop velocity control, an optical incremental
encoder as shown in Fig. 4.7 is utilized to measure the speed of the wheel.
Incremental encoders typically consist of a light source, a rotating pattern disc, a
stationary detector, and processing electronics to convert the analog detector
signal to a digital output as shown in Fig. 4.8. This type of encoder has two
channels, which output digital square waves proportional to the number of
windows on the optical code disc. The output of the encoder is a square wave
whose frequency is proportional to the angular velocity of the wheels. The typical
wave form of output is presented in Fig. 4.9.

Fig. 4.7 Typical Incremental Encoder
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Light Source » ~Phaoto ~Procassing Disc Dise
ra J Sensor Electronics Window Line

‘“Incremental
Disc

Fig. 4.8 Components of an Incremental Encoder

Incremental square waves are counted by a controller to determine wheel
position, velocity and acceleration. Additionally, by observing the phase sequence
between the two digital output channels, a controller can determine the direction
of wheel rotation.

— |—- - 1/ cycle

P
T
SO i N = e I (RGN B i
Output B ] )
A S VENY # 3>  YIENRLAN
//
Output A leads Output B Direction Change Cutput B leads Output A
for Clock-wise rgtation fior Counter Clock-wize rotation

Fig. 4.9 OQutput Wave Form of an Encoder

A signal per rotation is often found on a third channel of incremental encoders
and is commonly called the index or reference pulse as shown in Fig. 4.10. This
signal is typically used to mark a particular location in a system’s rotation that
obtains mechanical location often called a home position. The drawback to an
incremental encoder is that if the controller’s counter should happen to lose power
or miscount, the system must be cycled back to a known location such as an index
location before restarting. An absolute encoder is used instead of an incremental
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encoder in order to overcome the cost, inconvenience and potential frequency of a
home cycle restart sequence. In this application, the index pulse is not used.

oan | || L] L] [ L
T I

Index pulse

Fig. 4.10 Incremental Encoder: Two Channels and Index Pulse

Motor controller using PIC16F877 performs a closed loop velocity control.
The angular velocity is calculated as the following equation:

Counts
5= 4 %60 4.1)

where

S : angular velocity of motor (rpm)

Counts : number of pulses counted during the sampling time of T
P : number of pulses per one revolution of encoder

T : sampling time, sec

The motor driver uses pin RC2 for PWM generation and pin RC1 for
capturing pulse from encoder. Motor controller counts the rising edges for a
period of time to produce real angular velocity of the wheel. The master is

33



configured to send the desired angular velocity command to the servo controller.
The controller, in turn, compares the values received from the master to the real
one. If the real velocity is lower than the desired angular velocity, the velocity
must be increased and vice versa. The behavior for the motor to speed up and
down is performed using Lyapunov function.

Velocity Control Using Lyapunov Function

First, the following relationship has to be set up:
=KV 4.2)
where
o : real angular velocity of the motor.
K : characteristic constant of the motor, and it is achieved by experiment.

V : average voltage applied to the-motor.

The experiment gives K =274 for this case.

@ = Ku where u=V (4.3)

Angular velocity error is defined as

(4.4)

The time derivative of ¢ is
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45)

where K is positive value and w, is reference angular velocity of the motor.

Lyapunov function W is defined as
1,
W= Eg >0 (4.6)

Using equations (4.4) and (4.5), the derivative of W is obtained as

W =gé =g(Ku—a,) (4.7

For W to be negative, the following can be chosen

Ku—a, =—K.& (4.8)

é=-Ke<0 (4.9)

where K is positive value.

Using equation (4.9), (4.7) is given as
W =gé=-Ke’<0 (4.10)
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From (4.6) and (4.10), ¢ goes to zero as t — o« by Barbalat Lemma. That is,
the velocity control is asymptotically stable.

From (4.3) and (4.8), the following is obtained

V:u:w (4.11)

The duty of the PWM signal can be derived from V , the voltage applied to the
motor.

4.4 Microcontroller

The PIC16F877 is a 40-pin, high performance RISC (Reduced Instruction Set
Computer) microcontroller in-Fig. 4. 11. The main specifications are summarized
as following:

® FLASH program memory: 8Kx14bit words

® Data Memory (RAM):368x8bytes

® EEPROM Data Memory: 256x8bytes

® Interrupts: 14 sources

® Timer 0: 8-bit timer/counter with 8-bit prescaler

® Timer 1: 16-bit timer/counter with prescaler, can be incremented during
SLEEP via external crystal/clock

® Timer 2: 8-bit timer/counter with 8-bit period register, prescaler and
postscaler

® Two Capture/Compare/PWM modules
® Capture is 16-bit, max resolution is 12.5ns

® Compare is 16-bit, max resolution 200 ns
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©® PWM max. resolution 10 bit
® 10-bit multi-channel Analog-to-Digital converter
12C

® Synchronous Serious Port (SSP) with SPlI Master Mode and

(Master/Slave)

® Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
with 9-bit address detection

® Parallel Slave Port (PSP) 8-bit wide with external RD , WR and CS controls
® Power saving SLEEP mode
® In-Circuit Serial Programming (ICSP) via two pins

The master has the function of rendering the control law. The linear and
angular velocities which are derived from the control law, used to transfer to the
servo controller via 12C.

With the functions on PIC16F877 above, the controller and user interface
were designed, and its schematic diagram are shown in Fig. 4.12.

PDIP
WCLR AR —[] 1 o ] =—= RET/PCD
RAQAND a—e[] 2 26 [ w—s RESPGC
RATAN] w—a-[] 3 28 '] =—m REE
RAZANZVREN - g [] 4 27 []=—= RB4
RAJANINFEF+ -—u=-[] 5 25 [ w—w= RE2PGM
RAATOCK] a—e[] & 25 ] -=—m= REZ
RAGANAES -] 7 - 24 [ ] =—n- RE1
RENRO/ANS -a—e[] 8 [ 23, [] =t—t~ RBOINT
REWTRANE - 0 « 22 [] ~—— VoD
RE2/CE/ANT. ~a—se] 10 = 2] e—vas
VoD ——e ] 11 E 20 []=—a RO7TPEPT
VEE e [ 12 ) 29 [ =—ae RDEPSPE
OSC1CLKIN —a-[] 13 G 28 ] —= ROSPEPE
OSCACLKOUT w—I[] 14 T 2T [P-=—= ROD4PEP4
RCOMICSOITICK! -—ae[] 15 26 [] w—a= RCTRGDT
RCUT10SICCPZ --—e-] 16 25 [ w—a RCEMHCK
RCHCCP [ 17 24 [] 4—s= RCEED0
RCHSCKSCL -—m-[] 18 22 [ =—= RCAEDISDA
ROWPSPO =] 10 22 [] w—a- RD3PSP2
RO1PSP1 =—e[] 20 21 ] =—= RO2PEP2

Fig. 4.11 Pin Diagram of PIC16F877
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Simulation and Experimental Results

In this chapter, simulations and experiments are done to prove the
effectiveness of the stabilizing controller. The parameters and initial values for the

simulation and experiment are given in Table 5.1.

Table 5.1 Numerical Values for the Simulation

Parameter | Description | Value | Unit
Mobile inverted pendulum parameters
r Radius of the wheel 0.05 m
M, Mass of the inverted pendulum 1.13 Kg
I, Moment of inertia of pendulum around z | 0.004 Kg -m?
axis
K. Torque constant of motor 0.006 Nm/A
R Nominal terminal resistance 3 Q
M, Mass of the wheel 0.03 Kg
l, Moment of inertia of the wheel 0.001 Kg -m?
L Distance -between the wheel’s center -and 0.07 m
the pendulum’s center of gravity
K, Back electromotive force voltage constant 0.007 | Vsec/rad
g Gravitational acceleration 9.8 m/ sec?

Then equation (2.36) becomes
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x| [0 1 0 0 x 0
% | |0 -0.0097 11.1594 O || X, N 0.0815 v
6| |0 0 0 1| ¢ 0
é| [0 —0.0293 172.1160 O 4 | |0.2456
The controllability matrix of (5.1) is as follows:
b T 0 00815 -0.0008 2.7408
. Ab | |0.0815 -0.0008 27408 —0.0532
A | o0 0.2456 —0.0024 42.2717

A’b 0.2456 -0.0024 42.2717 -0.4913

It is readily shown that the rank of matrix is 4.

5.1 Control Problem

—— Cart Position i
-------- Pendulum Tilt Angle
0.6 3
-‘E 05r b
<
2041 i
<
€
= 031 N
e
2
g 02 N
0.1 7
o) ) ‘ ‘
0 0.2 04 0.6 0.8 1

Time[sec]

Fig. 5.1 Open Loop Impulse Response
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Because the mobile inverted pendulum system is inherently unstable, an
impulse input applied to the open loop system causes the tilt angle and position of
the system to rise unboundedly. Fig. 5.1 shows the simulation when an impulse
input is applied to the uncontrolled system.

5.2 Simulation and Experimental Results of Stabilizing Controller

The experimental mobile inverted pendulum used for this thesis is shown in
Fig. 5.2.

Fig. 5.2 Experimental Mobile Inverted Pendulum

The designed parameters of the sliding surface are 4 =-1,4, =-1, 4, =-3;
and the positive constant of the control law u, is M, =40. The initial values are

X, =0.5mand ¢ =0.3rad .

The objective of this controller is to make the state variable of the system
converge to zero at the shortest time possible. Simulation and experimental results
are shown as follows. Fig. 5.3 shows that the simulation result of cart position x,
is bounded around zero after five seconds. Fig. 5.4 presents the simulation result
of the wheel angular velocity o is within +1.5rad / sec. Fig. 5.5 shows the wheel
angular velocity in the experiment. Fig. 5.6 presents the relation between motor
angular velocity and output voltage of wheel motor. Figs. 5.7 and 5.8 show the
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inverted pendulum angle in simulation and experiment, respectively. The
pendulum angle in simulation represents a small angle from the vertical upward
direction, and Fig. 5.7 presents that ¢ is stable after three seconds. But Fig. 5.8

shows the experimental pendulum angle ¢, =%+(p measured from the horizontal

direction to the vertical direction by sensors. Fig. 5.9 shows the relation between
@, and output voltage of tilt sensor. Fig. 5.10 presents the simulation result of the

pendulum angular velocity ¢ is within +0.05rad/sec . Fig. 5.11 shows the
simulation evolution of the system input u,. Fig. 5.12 presents PWM output of

controller with corresponding to control input u. Fig. 5.13 shows the sliding
surface and convergence to zero within one second.

0.5

— Cart Position(m) ‘

Cart Position

0 5 10 15 20 25 30
Time(sec)

05 1 I

Fig. 5.3 Cart Position x,
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5.3 Summary
This section is summarized as follows:

- The stabilizing controller via sliding mode control can be used to stabilize
the mobile inverted pendulum from the simulation and experimental results.
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Conclusions and Future Works

6.1 Conclusions

This thesis presents controllers design to stabilize the mobile inverted
pendulum. The mobile inverted pendulum is a system with an inverted pendulum
attached to a mobile cart with two coaxial wheels. In this thesis, the conclusions
are given as the following:

e The dynamic equation of the mobile inverted pendulum is established.

e To control the system, the controller via sliding mode control is applied to
stabilize the mobile inverted pendulum.

e To implement the controllers for the mobile inverted pendulum, the hardware
which is the integration of three PIC16F877 microprocessors is developed.
Tilt sensor and two incremental encoders are utilized to obtain the system

states and realize the proposed controller.

e The simulation and experimental results are shown to prove the effectiveness

of the proposed model and controller.
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6.2 Future Works

There are some works that will be considered as future works in the scope of
this thesis:

e Consideration in the nonlinear system via backstepping method.
e Control of this model to track arbitrary reference.

e Consideration of uneven terrain conditions.
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where

M, =c A, +C,A, +CA, +C,A,
M, =cA, +C,A, +CA,, +C,A,
M; =cA;+C,A, +C,A,+C,A,
M, =cA,+CA,+CA,+CA,.
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