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Abstract 
 
 

In this thesis, a mobile inverted pendulum system is considered. A control 
system pilots the motors so as to keep the system in equilibrium. The mobile 
inverted pendulum is a system with an inverted pendulum attached to a mobile 
cart with two coaxial wheels, each of which is coupled to a DC motor. The 
dynamic equation of the mobile inverted pendulum is established. To stabilize the 
mobile inverted pendulum, a stabilizing controller via sliding mode control is 
designed based on Ackermann’s formula, which obtains a sliding surface in 
explicit form as well. The control law is designed to make quick converge to the 
state of the closed-loop system during the control process. The overall control 
system is described. The servo controller using two microcontrollers PIC16F877 
is introduced. Moreover, the configuration using Lyapunov function is presented 
to control the speed of a DC motor. A configuration for sensors including tilt 
sensor and two incremental encoders is developed to obtain the system states and 
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realize the above proposed controller. These measurements can then be fed back 
to the controllers to impose the desired closed loop dynamics. The simulation and 
experimental results are shown to prove the effectiveness of the proposed 
modeling and the stabilizing controller. 
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Nomenclature 
 
Variable              Description                                                                          Units 

rx      Position of the cart                                                 [ ]m  

dx      Desired position of the cart                                       [ ]m  

eV     Back electromotive force voltage                           [ ]V  

eK                        Back electromotive force voltage constant               [ sec/ ]V rad⋅  

mK     Torque constant of motor                                [ / ]Nm A  

R     Nominal terminal resistance                                       [ ]Ω  

θ     Rotational angle of motor shaft                            [ ]rad  

ω     Angular velocity of motor shaft                             [ / sec]rad  

,Lw Rwθ θ     Rotational angle of left or right wheel                       [ ]rad  

,fL fRH H      Friction force between the ground and left/right wheel          [ ]N  

, ; ,L L R RH P H P    Reaction forces between left/right wheel and pendulum        [ ]N  

,L RT T     Load torque to left and right wheel                      [ ]N m⋅  

aT     Applied load torque                                            [ ]N m⋅  

mT     Electric motor torque                                                  [ ]N m⋅  

V     Applied voltage for left and right wheel motor                     [ ]V  

RI     Rotor inertia of motor                                             2[ ]kg m⋅  

iL     Rotor inductance of motor                                              [ ]H  

fK     Frictional constant                                        [ sec/ ]N m rad⋅ ⋅  

i     Armature current                                                           [ ]A  

wθ     Angular velocity of wheel                                [ / sec]rad  



 vi

wI     Moment of inertia of the wheel                              2[ ]⋅Kg m  

pI     Moment of inertia of pendulum around z axis              2[ ]⋅Kg m  

wM     Mass of the wheel                                                     [ ]Kg  

pM     Mass of the inverted pendulum                                   [ ]Kg  

r     Wheel radius                                                            [ ]m  

ϕ     Rotation angle around z axis of the pendulum             [ ]rad  

δ     Rotation angle around y axis of the pendulum             [ ]rad  

D     Lateral distance between the wheels                           [ ]m  

L     Distance between the wheel’s center and                        [ ]m  

the pendulum’s center of gravity 

g     Gravitational acceleration                                        2[ / sec ]m  
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1 
 
Introduction 
 
 
1.1 Background and Motivation 

Inverted pendulum systems always exhibit many problems in industrial 
applications, for example, various nonlinear behaviors under different operation 
conditions, external disturbances, and physical constraints on some variables. 
Therefore, the task of real time stabilization and tracking control of a highly 
nonlinear unstable mobile inverted pendulum system has been a challenge for the 
modern control field. 

A mobile inverted pendulum is a system composed of an inverted pendulum 
attached to a mobile cart with two coaxial wheels, each of which is coupled to a 
DC motor. 

There are some studies that have been reported on the mobile inverted 
pendulum as follow: 

Prof. Kazuo Yamafuzi, at University of Electro-Communications, built the 
first two-wheel inverted pendulum robot in 1986. 

A similar and commercially available system, ‘SEGWAY HT’ has been 
invented by Dean Kamen as shown in Fig. 1.1. The ‘SEGWAY HT’ is able to 
balance a human standing on its platform while the user traverses the terrain with 
it. This innovation uses five gyroscopes and a collection of other tilt sensors to 
keep itself upright. Only three gyroscopes are needed for the whole system, and 
the additional sensors are included as a safety precaution. 

In 2002, Felix Grasser et al. [1] at the Industrial Electronics Laboratory of the 
Swiss Federal Institute of Technology have built a scaled down prototype JOE as 



 2

shown in Fig. 1.2. The vehicle is composed of a cart carrying a DC motor coupled 
to a planetary gearbox for each wheel, the digital signal processor (DSP) board 
used to implement the controller, the power amplifiers for the motors, and the 
necessary sensors to measure the system states. 

 

 

Fig. 1.1 SEGWAY HT 

 

 

Fig. 1.2 JOE 

The uniqueness of the system has drawn interest from robot enthusiasts. For 
example, Nbot, a two-wheeled robot built by David P. Anderson, uses an inertial 
sensor and motor encoder to balance the system as shown in Fig. 1.3. 
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Fig. 1.3 Nobt 

 

To guarantee the inverted pendulum in equilibrium, the development of the 
control system is vital. Recently, the control problems of inverted pendulum have 
been intensively studied due to the challenging demand of fast and precise 
performance. The control strategies for the inverted pendulum in the literature can 
be divided into two distinct sections, namely linear control and nonlinear control. 

The linear control methods often linearize the dynamics about a certain 
operation point. The linear controllers are more popular among researchers 
designing the mobile inverted pendulum like JOE. The pole-placement controller 
and the linear quadratic regulators (LQR) are the popular method implemented. 

In 1994, Tarek et al. developed a Fuzzy Logic controller for stabilizing an 
inverted pendulum on a cart. This approach is based on approximate reasoning 
and knowledge based control. In 1991, Williams and Matsuoka [2] used the 
inverted pendulum to demonstrate the ability of Neural Networks controller in 
controlling nonlinear unstable systems. 

Although nonlinear controllers would provide a more robust system, the 
complexity and difficulties of these methods make most researchers utilize the 
linear controller approach [3-17]. 
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Sliding mode control method is a robust control method which generates an 
input to track a desired trajectory for a given system. In the past decade, the 
sliding mode control has been widely used in various practical applications. 

In 1998, Juergen Ackmann and Vadim Utkim [18] designed a sliding mode 
controller based on Ackermann’s Formula. While simulation results prove that the 
mobile inverted pendulum can be balanced by this controller, there is no evidence 
of implementing this controller. 

In this thesis, the control objective is to implement a sliding mode controller to 
stabilize the mobile inverted pendulum. 

 
1.2 Outline and Summary of Contributions 

This thesis consists of six chapters. The content and summary of contributions 
in each chapter are summarized as follows: 

 Chapter 1: Introduction 

Background and motivation, the outline and summary of contributions 
of this research are presented. 

 Chapter 2: Mathematical Modeling 

Mathematical models of the mobile inverted pendulum and the DC 
motor are presented when the movement of the mobile inverted 
pendulum is restricted in a plane. 

 Chapter 3: Controller Design 

A stabilizing controller via sliding mode control using Ackermann’s 
formula is presented to stabilize the mobile inverted pendulum. The 
control law is designed to make quick converge to the state of the 
closed-loop system during the control process. 

 Chapter 4: Hardware Design and Implementation 
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The overall control system is described. A servo controller using two 
microcontrollers PIC16F877 is introduced. Moreover, the configuration 
using Lyapunov function to control the speed of DC motor is presented. 

 Chapter 5: Simulation and Experimental Results 

The simulation and experimental results are shown to prove the 
effectiveness of the proposed modeling and the stabilizing controller. 

 Chapter 6: Conclusions and Future Work 

Summary this thesis results and the future work. 
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2 
 

Mathematical Modeling 
 

The mathematical models for the mobile inverted pendulum and the motor are 
derived in this chapter. 

 

2.1 Modeling of DC Motor 
 

The mobile inverted pendulum is powered by two DC motors. In this section, 
the motor dynamics is derived. This model is then used in the dynamic modeling 
of the mobile inverted pendulum to provide a relationship between the input 
voltage of the motors and the torque needed to the system. 

 

 
Fig. 2.1 Diagram of DC Motor 

 
Fig. 2.1 shows the cut from a mechanical load as well as the cut from a DC 

power supply. The conversion of the electrical energy from the DC power supply 
into the mechanical energy supplied to the load takes place in the DC motor. 

When a voltage V is applied to the terminals of the motor, a current i  will 

flow in the motor armature. The motor produces a torque mT , which is proportional 

to the current. This relationship can be expressed as 
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m mT K i=                                                      (2.1) 

 

A resistor-inductor pair in series with a voltage eV  can be used to model the 

electrical circuit of the motor. This back electromotive force voltage is produced 
because the coils of the motor are moving through a magnetic field. The back 
EMF can be approximated as a linear function of shaft velocity, which can be 
written as 

 

e eV K ω=                                                    (2.2) 
 
At this point, a linear differential equation for the DC motor’s electrical circuit 

can be written by using Kirchoff’s Voltage Law that the sum of all voltages in the 
circuit must be equal to zero. For the DC motor, this can be written as 

 

0i e
diV Ri L V
dt

− − − =                                          (2.3) 

 
In deriving the equation of motion for the motor, the friction on the shaft of 

the motor is approximated as a linear function of the shaft velocity. The 

approximation that the friction coefficient on the shaft of the motor fK is a linear 

function of the shaft velocity is made. In Fig. 2.1, Newton’s law of motion states 
that the sum of all torques produced on the shaft is linearly proportional to the 

acceleration of the shaft by the inertial moment of armature RI . The preceding 

statement can be written as 

R m f a
dI T K T
dt
ω ω= − −                                        (2.4) 
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Substituting equations (2.1) and (2.2) into equations (2.3) and (2.4), and 
rearranging in terms of the time derivatives, two fundamental equations governing 
the motion of the motor can be obtained as 

 

e

i i i

Kdi V R i
dt L L L

ω= − −                                          (2.5) 

fm a

R R R

KK Td i
dt I I I
ω ω= − −                                       (2.6) 

 
Both equations are linear function of current and shaft velocity, and they 

include the first order time derivatives. To simplify DC motor model applied to 
the mobile inverted pendulum, the motor inductance and the motor friction are 
negligible and current derivative can be given as zero. Hence, equations (2.5) and 
(2.6) can be approximated as 

 

                                      eKVi
R R

ω= −                                               (2.7) 

m a

R R

K Td i
dt I I
ω
= −                                             (2.8) 

 
By substituting equation (2.7) into equation (2.8), an approximation for the 

DC motor which is only a function of the shaft velocity, applied voltage and load 
torque can be obtained as 

 

m e m a

R R R

K K K Td V
dt I R I R I
ω ω= − + −                                (2.9) 
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Since the motor inductance is neglected, the current through the windings is 
not considered in the equation of motion of the motor. The current will reach a 
constant state immediately compared to the velocity of the shaft, which takes time 
to speed up from some initial velocity to a final velocity after a change in the 
input voltage. 

From equation (2.9), the equation can be obtained as follows: 
 

m e m
R a

K K KdI T V
dt R R
ω ω+ = − +                             (2.10) 

 
This is a system of the first order differential equations with respect to shaft 

velocity of the motor ω . The input to the motor is the applied voltage. 
From equation (2.4) under the above conditions, the motor torque equation 

can be obtained as follows: 
 

m R a
dT I T
dt
ω

= +                                          (2.11) 

 

2.2 Dynamic Modeling of the Mobile Inverted Pendulum 

 
The mobile inverted pendulum has similar behavior with an inverted 

pendulum on a mobile cart. The mobile inverted pendulum is restricted to a plane 
in order to facilitate the development of a control system. The inverted pendulum 
and wheel dynamics are analyzed separately at the beginning, but this eventually 
leads to two equations of motion which describes the behavior of the mobile 
inverted pendulum. It is assumed that the wheels always stay in contact with the 
ground and that there is no slip at the wheel’s contact point. Therefore, there is no 
movement in the z axis and no rotation about the x axis. The left and right wheels 
are completely analogous. Additionally, cornering forces are negligible. 
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The system was developed by Felix Grasser et al. Fig. 2.2 shows the mobile 
inverted pendulum. In this thesis, its movement is described by the rotational 
angle ϕ  and the corresponding angular velocity ϕ  ; the linear movement of the 

cart is characterized by the position rx  and the velocity rx . 

 

 
Fig. 2.2 Definition of State-space Variables 

 

2.2.1 Wheel Dynamics 

Since the system’s behavior can be influenced by disturbances as well as the 
torque from the motor, the mathematical model has to adapt to such forces. Firstly 
the equations of motion are associated with the left and right wheels. Fig. 2.3 
shows the free body diagram for the mobile inverted pendulum. Since the 
equation for left and right wheels are completely analogous, only the equation for 
the right wheel is given. 

Using the Newton’s law of motion, the relation of the forces on the horizontal 
direction is 

 

w r fR RM x H H= −                                             (2.12) 
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The relation of moments around the center of the wheel is 
 

w Rw R fRI T H rθ = −                                           (2.13) 

 

 

X

Y

a

Left Wheel

Z

LT LH

LP

fLH

X

Y

a

Right Wheel

Z

fRH

RT

RP

RHr

r D

Lwθ Rwθ

 
Fig. 2.3 Free Body Diagram of the Mobile Inverted Pendulum 

 
From equations (2.10) and (2.11), the output torque to the wheels is obtained 

as 
 

m e m
R m Rw

K K KT T V
R R

θ−
= = +                              (2.14) 

sin
2

p
m

M Lg
T

ϕ
>  

 
Therefore, equation (2.13) becomes 
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m e m
w Rw Rw fR

K K KI V H r
R R

θ θ−
= + −                              (2.15) 

 
Arranging equation (2.15) yields 
 

m e m w
fR Rw Rw

K K K IH V
Rr Rr r

θ θ−
= + −                             (2.16) 

 
Equation (2.16) is substituted into equation (2.12) to get the equation for the 

left and right wheels as follows: 
The left wheel dynamics is 
 

m e m w
w r Lw Lw L

K K K IM x V H
Rr Rr r

θ θ−
= + − −                      (2.17) 

 
The right wheel dynamics is 
 

m e m w
w r Rw Rw R

K K K IM x V H
Rr Rr r

θ θ−
= + − −                      (2.18) 

 
Because the linear motion is acting on the center of the wheel, the angular 

rotation can be transformed into linear motion by simple transformation, 
 

r
w r w

xr x
r

θ θ= ⇒ =                                                        

r
w r w

xr x
r

θ θ= ⇒ =                                                        

 
By the linear transformation, the left wheel dynamics (2.17) is obtained as 
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2 2
m e m w

w r r r L
K K K IM x x V x H
Rr Rr r

−
= + − −                             (2.19) 

 
The right wheel dynamics equation (2.18) is obtained as 

 

2 2
m e m w

w r r r R
K K K IM x x V x H
Rr Rr r

−
= + − −                            (2.20) 

 
Adding equations (2.19) and (2.20) together yields 
 

2 2

2 22( ) ( )w m e m
w r r L R

I K K KM x x V H H
r Rr Rr

−
+ = + − +                  (2.21) 

 

2.2.2 Inverted Pendulum Dynamics 

The system’s body can be modeled as an inverted pendulum as shown in Fig. 
2.3. 

The relation of the forces in the horizontal direction of the inverted pendulum 
is expressed as 

 
2( ) cos sinL r p p p rH H M L M L M xϕ ϕ ϕ ϕ+ − + =                   (2.22) 

 
Arranging equation (2.22) yields 
 

2( ) cos sinL r p r p pH H M x M L M Lϕ ϕ ϕ ϕ+ = + −                   (2.23) 

 
The relation of the forces perpendicular to the pendulum can be given as 
 

( ) cos ( )sin sin cosL R L R p p p rH H P P M g M L M xϕ ϕ ϕ ϕ ϕ+ + + − − =    (2.24) 
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The relation of the moments around the center of mass of pendulum can be 
represented as 

 

( ) cos ( ) sin ( )L R L R L R pH H L P P L T T Iϕ ϕ ϕ− + − + − + =               (2.25) 

 
The torque applied on the pendulum from the motor using equation (2.14) 

linear transformation can be expressed into 
 

2 2m e mr
L R

K K KxT T V
R r R

−
+ = +                                             

 
Substituting this into equation (2.25) yields 
 

2 2( ) cos ( ) sin ( )m e m
L R L R r p

K K KH H L P P L x V I
Rr R

ϕ ϕ ϕ−
− + − + − + =             

 
Arranging this yields 
 

2 2( ) cos ( ) sin m e m
L R L R r p

K K KH H L P P L x V I
Rr R

ϕ ϕ ϕ−
− + − + = + +     (2.26) 

 
Multiplying equation (2.24) by L−  can be obtained as follows: 
 

2( ) cos ( ) sin sin cosL R L R p p p rH H L P P L M gL M L M x Lϕ ϕ ϕ ϕ ϕ− + − + + + = −      

(2.27) 
 
Substituting equation (2.26) in equation (2.27) then yields 
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22 2 sin cosm e m
p r p p p r

K K KI x V M gL M L M Lx
Rr R

ϕ ϕ ϕ ϕ− + + + = −       (2.28) 

 

To eliminate ( )L RH H+ from the motor dynamics, substituting equation (2.23) 

into equation (2.21) yields 
 

2 2

2 22( ) cos sinw m e m
w r r p r p p

I K K KM x x V M x M L M L
r Rr Rr

ϕ ϕ ϕ ϕ+ = − + − − +  

(2.29) 
 

Rearranging equations (2.28) and (2.29) gives the nonlinear equations of 
motion of the system as follows: 

 

2 2 2( ) sin cosm e m
p p r p p r

K K KI M L x V M gL M Lx
Rr R

ϕ ϕ ϕ+ − + + = −        (2.30) 

2
2 2

2 2 2(2 ) cos sinm w m e
w p r r p p

K I K KV M M x x M L M L
Rr r Rr

ϕ ϕ ϕ ϕ= + + + + −          

(2.31) 
 
The above two equations can be linearized by assuming ϕ π φ= + , where φ  

represents a small angle from the vertical upward direction. 
To linearize (2.30) and (2.31), the following are assumed: 
 

cos 1,ϕ = −  sinϕ φ= −  and 
2

0d
dt
ϕ⎛ ⎞ =⎜ ⎟

⎝ ⎠
                                      

 
The equations (2.30) and (2.31) are expressed into 
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2 2 2( ) m e m
p p r p p r

K K KI M L x V M gL M Lx
Rr R

φ φ+ − + − =               (2.32) 

2 2

2 2 22m w m e
w p r r p

K I K KV M M x x M L
Rr r Rr

φ⎛ ⎞= + + + −⎜ ⎟
⎝ ⎠

               (2.33) 

 
In order to get the state space representation of the system, equations (2.32) 

and (2.33) are rearranged as follows: 
 

2 2 2 2

2 2
( ) ( ) ( ) ( )

p pm e m
r r

p p p p p p p p

M L M gLK K Kx x V
I M L Rr I M L R I M L I M L

φ φ= + − +
+ + + +

         

(2.34) 

2
2 2 2

2 2
2 2 2(2 ) (2 ) 2

pm m e
r r

w w w
w p w p w p

M LK K Kx V xI I IRr M M Rr M M M M
r r r

φ= − +
+ + + + + +

  

(2.35) 
 

By substituting equation (2.34) into equation (2.33) and substituting equation 
(2.35) into equation (2.32), the state space equation for the system is obtained as 
follows: 

 

22 23 2

42 43 4

0 1 0 0 0
0 0
0 0 0 1 0
0 0

r r

r r

x x
a a bx x

V

a a b
φ φ
φ φ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

                     (2.36) 

 

where 22 23 42 43 2, , , ,a a a a b  and 4b  are defined as a function of the system’s 

parameters, which is given as follows: 
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2

22 2

2 ( )m e p p pK K M Lr I M L
a

Rr α
− −

=  

2 2

23
pM gL

a
α

=  

42 2

2 ( )m e pK K r M L
a

Rr
β
α
−

=  

43
pM gL

a
β

α
=  

2

2

2 ( )
R

m p p pk I M L M Lr
b

rα
+ −

=  

4

2 ( )m pK M L r
b

Rr
β

α
−

=  

2

2(2 )w
w p

IM M
r

β = + +  

2
22 ( )w

p p w
II M L M
r

α β⎡ ⎤= + +⎢ ⎥⎣ ⎦
. 
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3 
 

Controller Design 
 

 

3.1 Sliding Mode Stabilizing Controller 

 

In this section, the controller design method based upon Ackermann’s formula 
is proposed [18]. This controller design method obtains a sliding surface equation 
in explicit form as well. 

The procedure to design the following two controllers is introduced. First, a 
static controller is designed to force sliding modes to have the desired dynamic 
properties after a finite time interval. Then a dynamic controller that exhibits the 
desired dynamic properties during the entire control process is designed. 

Equation (2.36) can be expressed by a differential equation as follows: 

 

x Ax bu= +                                                  (3.1) 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a

A
a a a a
a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

1

2

3

4

b
b

b
b
b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

1

2

3

4

x
x

x
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                              

 

where u is a scalar control. 

The control law u consists of two components as follows: 
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1au u u= +                                                   (3.2) 

 

where au  is static controller referred as the continuous control component and 

dynamic controller 1u  is the discontinuous sliding mode component. First, a state 

feedback law for au  and dynamic controller 1u  are designed to enforce a sliding 

mode in the sliding surface based upon Ackermann’s formula. 

From equations (3.1) and (3.2), the following is obtained 

 

1( )ax Ax b u u= + +                                                   

1ax Ax bu bu= + +                                           (3.3) 

 

i) Static Controller Design 

The static system of equation (3.3) is nominal system and is obtained as 

 

ax Ax bu= +                                               (3.4) 

 

The static controller of equation (3.4) is given by Ackermann’s formula as 
follows: 

 

,T
au k x= −  ( )T Tk h P A=                                     (3.5) 

[ ] 12 30,0,0,1 , , ,Th b Ab A b A b
−

⎡ ⎤= ⎣ ⎦  

1 2 3 4( ) ( )( )( )( )P λ λ λ λ λ λ λ λ λ= − − − −  
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where 1 2 3 4, , ,λ λ λ λ are assigned as the desired eigenvalues and ( )P λ is 

characteristic polynomial of equation (3.4). 

From equations (3.4) and (3.5), the closed loop system is obtained as follows: 

 

( )Tx A bk x= −                                          (3.6) 

 

To stabilize equation (3.6), the real parts of all eigenvalues of ( )TA bk−  can 

be assigned as negative value. 

The design of sliding mode control implies choosing a sliding surface and then 
getting the control law enforcing sliding mode in this sliding surface. 

The equation of sliding surface is chosen as 

 

TS C x=                                              (3.7) 

 

where [ ]1 2 3 4
TTC c c c c= with an explicit from using Ackermann’s formula. 

By controllability of ( , )A b , there exists a state feedback gain vector k  that 

assigns the eigenvalues 1 2 3 4, , ,λ λ λ λ  to TA bk−  such that the left eigenvector TC  

of TA bk−  associated with 4λ  satisfies the following 

 

4( )T T TC A bk C λ− =                                     (3.8) 

 

Equation (3.8) can be rewritten as 
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4( )T T TC A I C bkλ− =                                      (3.9) 

 

The equation (3.4) with sliding surface (3.7) can be transformed into reduced 
order system. 

It is assumed that values 1 2 3, ,λ λ λ are the desired eigenvalues of A while 4λ is 

an arbitrary values do not belong to the spectrum of A  in the system (3.4) with 
sliding surface. That is, 4det( ) 0A Iλ− ≠ . 

By controllability of ( ),A b , there exist 0TC b ≠  and ( ) 1
4A Iλ −−  because 4λ is 

not an eigenvalue of A . 

Now, TC is defined as follows: 

 

1( )T TC h P A=                                         (3.10) 

2 3
1 1 2 3 1 2 3( ) ( )( )( )P p p pλ λ λ λ λ λ λ λ λ λ= − − − ≡ + + +                    

1TC b =                                                         

where 1( )P λ  is characteristic polynomial of system (3.4) with sliding surface (3.7). 

Proof: 

From equation (3.5) and (3.10), the following can be obtained. 

2 3
1 1 2 3( )P A b p b p Ab p A b A b= + + +                                            

            [ ]2 3
1 2 3 1 Tb Ab A b A b p p p⎡ ⎤= ⎣ ⎦                     

[ ] [ ]12 3 2 3
1 1 2 3( ) 0,0,0,1 , , , 1 1TT TC b h P A b b Ab A b A b b Ab A b A b p p p

−
⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ . 
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From equations (3.5), (3.9) and (3.10), the following can be obtained. 

 

4 1 4( ) ( ) ( )( )T T T Tk h P A C A I h P A A Iλ λ= = − = −                    (3.11) 

 

From equation (3.11), ( )P λ in equation (3.5) can be rewritten as 

 

1 4( ) ( )( )P Pλ λ λ λ= −                                               

 

ii) Dynamic Controller 

Using equations (3.2) and (3.5), equation (3.1) can be transformed into 

 

1( )Tx A bk x bu= − +                                      (3.12) 

 

where 1u  is dynamic controller acted as perturbation of system input u . 

A new variable z is defined as 

 

1 0

T

x I
z x Tx

S C

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

                           (3.13) 
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where [ ]1
1 2 3, , Tx x x x= is the first three state variables of x  acted as the state 

variable of reduced system and TS C x=  becomes the last state variable of z , and 

there exists 1T − . 

From 1x T z−= , equation (3.12) can be expressed as 

 

1
1( )Tz T A bk T z Tbu−= − + 1Az Bu= +                      (3.14) 

                                                               

For 4x4 matrix T to be invertible, the last component of TC must be nonzero. 
Since these vectors are nonzero, the condition can always be satisfied by 
reordering the components of the state vector x . 

The transformed system equation (3.14) under the above conditions is 

 

1 1 1
1 1 1x A x a S b u= + +                                   (3.15) 

4 1S S uλ= +                                          (3.16) 

 

where 

1 11

4

( )
0

T A a
A T A bk T

λ
− ⎡ ⎤

= − = ⎢ ⎥
⎣ ⎦

, 
1

1
b

B Tb
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

, [ ]1
1 2 3, , Tb b b b= , 

[ ]1 2 3 4
Tk k k k k=  
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14 1 4 314 1 4 1 14 1 4 2
11 1 1 12 1 2 13 1 3

4 4 4

24 2 4 324 2 4 1 24 2 4 2
1 21 2 1 22 2 2 23 2 3

4 4 4

34 3 4 1 34 3 4
31 3 1 32 3 1

4

( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

a b k ca b k c a b k ca b k a b k a b k
c c c

a b k ca b k c a b k cA a b k a b k a b k
c c c

a b k c a b k ca b k a b k
c

−− −
− − − − − −

−− −
= − − − − − −

− −
− − − − 2 34 3 4 3

33 3 3
4 4

( )( ) a b k ca b k
c c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−

− −⎢ ⎥
⎣ ⎦

 

34 3 414 1 4 24 2 4
1

4 4 4

T
a b ka b k a b ka

c c c
⎡ ⎤−− −

= ⎢ ⎥
⎣ ⎦

 

 

Proof: 

The proof of equation (3.15) is shown in Appendix. 

From equations (3.7), (3.8), (3.10) and (3.12), the derivative of sliding surface 
is obtained as 

 

( ) 1
T T TS C x C A bk x bu⎡ ⎤= = − +⎣ ⎦ ( ) 1

T T TC A bk x C bu= − +

4 1 4 1
TC x u S uλ λ= + = +  

                                                                                               

The spectrum of the matrix 1A  consists of the desired eigenvalues 1 2 3, ,λ λ λ . 

In 0S =  and 0S = , equation (3.15)  results in the following motion equation. 

 

1 1
1x A x=                                               (3.17) 

 

The dynamic controller 1u is designed to enforce a sliding mode in the sliding 

surface 0S =  such that 
0

lim 0
S

SS
→

< . 
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1 ( , ) ( )u M x t sign S= −                                      (3.18) 

where 4( , ) TM x t C xλ> . 

 

Proof: 

From equations (3.16) and (3.18), the followings must be obtained to stabilize 
the dynamic system. 

i) 0S >  and 0S <  

 

4 1 0TS C x uλ= + <  

1 4
Tu C xλ< −  

T
4M( x,t )sign( S ) C xλ− < −  

4( , ) TM x t C xλ>                                        (3.19) 

ii) 0S <  and 0S >  

4 1 0TS C x uλ= + >  

1 4
Tu C xλ> −  

4
TM( x,t )sign( S ) C xλ− > −  

4( , ) TM x t C xλ< −                                       (3.20) 

 

From (3.19) and (3.20), the following condition is obtained to satisfy 

0
lim 0
S

SS
→

< . 
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4( , ) TM x t C xλ>                                        (3.21) 

 

If the control may take only two extreme values 0M+  or 0M−  , then 

equation (3.18) with ( ) 0,M x t M=  forces a sliding mode to converge to the 

sliding surface 0S =  governed by (3.16) as well. Fig. 3.1 shows the block 
diagram of the proposed controller. 

The sliding mode control causes chattering when it is implemented in 
computers for the finite sample frequency. In order to suppress the chattering, a 
saturation function is used instead of a signum function. 

 

b ∫

A

x x
o-M

+

+

1u

TC
S( )sign S

 

Fig. 3.1 Block Diagram of the Controller 
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4 
 

Hardware Design and Implementation 

 
4.1 Overall Control System 
 

The mobile inverted pendulum is built to test out the performance of controller 
in stabilizing an unstable system. 

For the control system, a PIC-based controller was developed [25]. The 
controller is composed of two parts: servo controller and main controller. The 
configuration diagram of the overall control system is shown in Fig. 4.1. In the 
diagram, two PIC16F877 microcontrollers are integrated into one module for two 
motors of the left and the right wheels. The motors are driven via LMD18200 
Dual Full Bridge Drivers. This module implements Lyapunov-based velocity 
control using feedback from an optical encoder attached to the motors. One 
PIC16F877 microcontroller is used as master, and receives the signal from sensors, 
render the control law and send velocity command to the servo controller. The 
servo controller is responsible for reaching and maintaining the speed. The master 
communicates to the motor drivers via I2C. With the modular structure, the 
control system can manage a control law with a sampling time of 10 ms , even 
5 ms  in some critical applications. A configuration for sensors is developed to 
obtain the system states and realize the above controllers, including one tilt sensor 
and two incremental encoders. The tilt sensor measures the angle of inverted 
pendulum. The incremental encoders mounted on the cart are utilized measure the 
speed of the wheels. The position and speed of the cart on a straight line can be 
also determined from the speed of rotation of two wheels. These measurements 
can then be fed back to the controllers to impose the desired closed loop dynamics. 
The implementation of the PIC-based control system including servo controller 
and main controller is shown in Fig. 4.2. 
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Fig. 4.1 Configuration of the Control System 

 

 

Fig. 4.2 PIC-based Control System 
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4.2 Tilt Sensor 

Tilt sensor provides a precise measurement of the pitch angle as shown in Fig. 
4.3 and 4.4. Fig. 4.5 shows relation between output voltage of the sensor and 
pendulum angle. 

 

Fig. 4.3 Dimension of Tilt Sensor 

 

Fig. 4.4 Tilt Sensor 

 

The main specifications are summarized as following: 

 Measuring range: 60o±  



 30

 Resolution: 0.1o<  

 Transverse sensitivity: 0.5%<  

 Response time: 0.5< second 

 Sensitivity: approx 30 mV/degree 

0

1

2

3

4

45 90 135 180

Degree

Volt

 

Fig. 4.5 Tilt Sensor Voltage Output 

 

4.3 Motor Control 

To control the speed of a DC motor, a variable voltage DC power source is 
needed. If the DC motor is powered on by a switch, the motor do not respond 
immediately, that is, it takes a small time to reach full speed. Similarly, if the 
power is switched off sometime before the motor reaches full speed, the motor 
starts to slow down. So, if the power is switched on and off quickly enough, the 
motor runs on some speed between zero and full speed. To control the motor 
speed, the width of the pulses varies Pulse Width Modulation. The current 
supplied for motor can be got by the PIC16F877 through the current sense of 
LMD18200 as shown in Fig. 4.6. 
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Fig. 4.6 Sensed Current Output of LMD18200 

 

To perform indirect closed loop velocity control, an optical incremental 
encoder as shown in Fig. 4.7 is utilized to measure the speed of the wheel. 
Incremental encoders typically consist of a light source, a rotating pattern disc, a 
stationary detector, and processing electronics to convert the analog detector 
signal to a digital output as shown in Fig. 4.8. This type of encoder has two 
channels, which output digital square waves proportional to the number of 
windows on the optical code disc. The output of the encoder is a square wave 
whose frequency is proportional to the angular velocity of the wheels. The typical 
wave form of output is presented in Fig. 4.9. 

 

 

Fig. 4.7 Typical Incremental Encoder 
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Fig. 4.8 Components of an Incremental Encoder 

 

Incremental square waves are counted by a controller to determine wheel 
position, velocity and acceleration. Additionally, by observing the phase sequence 
between the two digital output channels, a controller can determine the direction 
of wheel rotation. 

 

 

Fig. 4.9 Output Wave Form of an Encoder 

 

A signal per rotation is often found on a third channel of incremental encoders 
and is commonly called the index or reference pulse as shown in Fig. 4.10. This 
signal is typically used to mark a particular location in a system’s rotation that 
obtains mechanical location often called a home position. The drawback to an 
incremental encoder is that if the controller’s counter should happen to lose power 
or miscount, the system must be cycled back to a known location such as an index 
location before restarting. An absolute encoder is used instead of an incremental 
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encoder in order to overcome the cost, inconvenience and potential frequency of a 
home cycle restart sequence. In this application, the index pulse is not used. 

 

 

Fig. 4.10 Incremental Encoder: Two Channels and Index Pulse 

 

Motor controller using PIC16F877 performs a closed loop velocity control. 
The angular velocity is calculated as the following equation: 

 

60
Counts

PS
T

= ×                                          (4.1) 

 

where 

S : angular velocity of motor ( )rpm  

Counts : number of pulses counted during the sampling time of T  

P : number of pulses per one revolution of encoder 

T : sampling time, sec  

The motor driver uses pin RC2 for PWM generation and pin RC1 for 
capturing pulse from encoder. Motor controller counts the rising edges for a 
period of time to produce real angular velocity of the wheel. The master is 
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configured to send the desired angular velocity command to the servo controller. 
The controller, in turn, compares the values received from the master to the real 
one. If the real velocity is lower than the desired angular velocity, the velocity 
must be increased and vice versa. The behavior for the motor to speed up and 
down is performed using Lyapunov function. 

Velocity Control Using Lyapunov Function 

First, the following relationship has to be set up: 

 

KVω =                                                  (4.2) 

 

where 

ω : real angular velocity of the motor. 

K : characteristic constant of the motor, and it is achieved by experiment. 

V : average voltage applied to the motor. 

The experiment gives 274K =  for this case. 

 

Kuω =  where u V=                                            (4.3) 

 

Angular velocity error is defined as 

 

rε ω ω= −                                                  (4.4) 

The time derivative of ε  is 
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r

rKu
ε ω ω

ω
= −

= −
                                                 (4.5) 

 

where K is positive value and rω is reference angular velocity of the motor. 

Lyapunov function W is defined as 

 

21 0
2

W ε= >                                                  (4.6) 

 

Using equations (4.4) and (4.5), the derivative of W  is obtained as 

 

( )rW Kuεε ε ω= = −                                         (4.7) 

 

For W  to be negative, the following can be chosen 

 

1rKu Kω ε− = −                                              (4.8) 

1 0Kε ε= − ≤                                                (4.9) 

 

where 1K  is positive value. 

Using equation (4.9), (4.7) is given as 

 

2
1 0W Kεε ε= = − ≤                                        (4.10) 
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From (4.6) and (4.10), ε  goes to zero as t →∞  by Barbalat Lemma. That is, 
the velocity control is asymptotically stable. 

From (4.3) and (4.8), the following is obtained 

 

1 rKV u
K
ε ω− +

= =                                     (4.11) 

 

The duty of the PWM signal can be derived from V , the voltage applied to the 
motor. 

4.4 Microcontroller 

The PIC16F877 is a 40-pin, high performance RISC (Reduced Instruction Set 
Computer) microcontroller in Fig. 4. 11. The main specifications are summarized 
as following: 

 FLASH program memory: 8Kx14bit words 

 Data Memory (RAM):368x8bytes 

 EEPROM Data Memory: 256x8bytes 

 Interrupts: 14 sources 

 Timer 0: 8-bit timer/counter with 8-bit prescaler 

 Timer 1: 16-bit timer/counter with prescaler, can be incremented during 
SLEEP via external crystal/clock 

 Timer 2: 8-bit timer/counter with 8-bit period register, prescaler and 
postscaler 

 Two Capture/Compare/PWM modules 

 Capture is 16-bit, max resolution is 12.5ns 

 Compare is 16-bit, max resolution 200 ns 
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 PWM max. resolution 10 bit 

 10-bit multi-channel Analog-to-Digital converter 

 Synchronous Serious Port (SSP) with SPI Master Mode and I2C 
(Master/Slave) 

 Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) 
with 9-bit address detection 

 Parallel Slave Port (PSP) 8-bit wide with external RD , WR and CS controls 

 Power saving SLEEP mode 

 In-Circuit Serial Programming (ICSP) via two pins 

The master has the function of rendering the control law. The linear and 
angular velocities which are derived from the control law, used to transfer to the 
servo controller via I2C. 

With the functions on PIC16F877 above, the controller and user interface 
were designed, and its schematic diagram are shown in Fig. 4.12. 

 

Fig. 4.11 Pin Diagram of PIC16F877 
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Fig. 4.12 Schematic Diagram 
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5 
 
Simulation and Experimental Results 
 

 

In this chapter, simulations and experiments are done to prove the 
effectiveness of the stabilizing controller. The parameters and initial values for the 
simulation and experiment are given in Table 5.1. 

 

Table 5.1 Numerical Values for the Simulation 

Parameter Description Value Unit 
Mobile inverted pendulum parameters 

r  Radius of the wheel 0.05 m  
pM  Mass of the inverted pendulum 1.13 Kg  

pI  Moment of inertia of pendulum around z 
axis 

0.004 2Kg m⋅  

mK  Torque constant of motor 0.006 /Nm A  
R  Nominal terminal resistance 3 Ω  

wM  Mass of the wheel 0.03 Kg  

wI  Moment of inertia of the wheel 0.001 2Kg m⋅  
L  Distance between the wheel’s center and 

the pendulum’s center of gravity 
0.07 m  

eK  Back electromotive force voltage constant 0.007 sec/V rad  
g  Gravitational acceleration 9.8 2/ secm  

 

Then equation (2.36) becomes 
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0 1 0 0 0
0 0.0097 11.1594 0 0.0815
0 0 0 1 0
0 0.0293 172.1160 0 0.2456

r r

r r

x x
x x

V
φ φ
φ φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

           (5.1) 

 
The controllability matrix of (5.1) is as follows: 
 

2

3

0 0.0815 0.0008 2.7408
0.0815 0.0008 2.7408 0.0532

0 0.2456 0.0024 42.2717
0.2456 0.0024 42.2717 0.4913

Tb
Ab
A b
A b

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥Γ = =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

           (5.2) 

 
It is readily shown that the rank of matrix is 4. 

 

5.1 Control Problem 
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Fig. 5.1 Open Loop Impulse Response 
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Because the mobile inverted pendulum system is inherently unstable, an 
impulse input applied to the open loop system causes the tilt angle and position of 
the system to rise unboundedly. Fig. 5.1 shows the simulation when an impulse 
input is applied to the uncontrolled system. 

 

5.2 Simulation and Experimental Results of Stabilizing Controller 

The experimental mobile inverted pendulum used for this thesis is shown in 
Fig. 5.2. 

 

Fig. 5.2 Experimental Mobile Inverted Pendulum 

The designed parameters of the sliding surface are 1 2 31, 1, 3λ λ λ= − = − = − ; 

and the positive constant of the control law 1u  is 0M 40= . The initial values are 

0.5rx m= and 0.3radϕ = . 

The objective of this controller is to make the state variable of the system 
converge to zero at the shortest time possible. Simulation and experimental results 
are shown as follows. Fig. 5.3 shows that the simulation result of cart position rx  

is bounded around zero after five seconds. Fig. 5.4 presents the simulation result 
of the wheel angular velocity ω  is within 1.5rad / sec± . Fig. 5.5 shows the wheel 
angular velocity in the experiment. Fig. 5.6 presents the relation between motor 
angular velocity and output voltage of wheel motor. Figs. 5.7 and 5.8 show the 
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inverted pendulum angle in simulation and experiment, respectively. The 
pendulum angle in simulation represents a small angle from the vertical upward 
direction, and Fig. 5.7 presents that ϕ  is stable after three seconds. But Fig. 5.8 

shows the experimental pendulum angle 1 2
πϕ ϕ= +  measured from the horizontal 

direction to the vertical direction by sensors. Fig. 5.9 shows the relation between 

1ϕ  and output voltage of tilt sensor. Fig. 5.10 presents the simulation result of the 

pendulum angular velocity ϕ  is within 0.05rad / sec± . Fig. 5.11 shows the 

simulation evolution of the system input 1u . Fig. 5.12 presents PWM output of 

controller with corresponding to control input u . Fig. 5.13 shows the sliding 
surface and convergence to zero within one second. 
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Fig. 5.3 Cart Position rx  
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Fig. 5.4 Wheel Angular Velocity 

 

 

Fig. 5.5 Experimental Wheel Angular Velocity 
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Fig. 5.6 Relation between Motor Angular Velocityω  and Output Voltage 
of Wheel Motor 
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Fig. 5.7 Pendulum Angle ϕ  
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Fig. 5.8 Experimental Pendulum Angle 
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Fig. 5.9 Relation between 1ϕ and Output Voltage of Tilt Sensor 
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Fig. 5.10 Pendulum Angular Velocity ϕ  

 

 

Fig. 5.11 System Input 1u  
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Fig. 5.12 PWM Output of Controller with Corresponding to Control 
Input u  
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Fig. 5.13 Sliding Surface S  
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5.3 Summary 

This section is summarized as follows: 

- The stabilizing controller via sliding mode control can be used to stabilize 
the mobile inverted pendulum from the simulation and experimental results. 
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6 
 
Conclusions and Future Works 
 

 

6.1 Conclusions 

This thesis presents controllers design to stabilize the mobile inverted 
pendulum. The mobile inverted pendulum is a system with an inverted pendulum 
attached to a mobile cart with two coaxial wheels. In this thesis, the conclusions 
are given as the following: 

• The dynamic equation of the mobile inverted pendulum is established. 

• To control the system, the controller via sliding mode control is applied to 

stabilize the mobile inverted pendulum. 

• To implement the controllers for the mobile inverted pendulum, the hardware 

which is the integration of three PIC16F877 microprocessors is developed. 

Tilt sensor and two incremental encoders are utilized to obtain the system 

states and realize the proposed controller. 

• The simulation and experimental results are shown to prove the effectiveness 

of the proposed model and controller. 
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6.2 Future Works 

There are some works that will be considered as future works in the scope of 
this thesis: 

• Consideration in the nonlinear system via backstepping method. 

• Control of this model to track arbitrary reference. 

• Consideration of uneven terrain conditions. 
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Appendix 
 

11 12 13 14 1 1 1 2 1 3 1 4

21 22 23 24 2 1 2 2 2 3 2 4

31 32 33 34 3 1 3 2 3 3 3 4

41 42 43 44 4 1 4 2 4 3 4 4

T

a a a a b k b k b k b k
a a a a b k b k b k b k

A bk
a a a a b k b k b k b k
a a a a b k b k b k b k

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− = −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

11 1 1 12 1 2 13 1 3 14 1 4 11 12 13 14

21 2 1 22 2 2 23 2 3 24 2 4 21 22 23 24

31 3 1 32 3 2 33 3 3 34 3 4 31 32 33 34

41 4 1 42 4 2 43 4 3 44 4 4 41 42 43 44

a b k a b k a b k a b k A A A A
a b k a b k a b k a b k A A A A
a b k a b k a b k a b k A A A A
a b k a b k a b k a b k A A A A

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢− − − −
⎢ ⎥ ⎢− − − −⎣ ⎦ ⎣ ⎦

⎥
⎥

 

( )
11 12 13 14

21 22 23 241

31 32 33 34
31 2

1 2 3 4 41 42 43 44
4 4 4 4

1 0 0 0
1 0 0 0

0 1 0 0
0 1 0 0

0 0 1 0
0 0 1 0

1

T

A A A A
A A A A

A T A bk T
A A A A
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c c c c A A A A

c c c c

−

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − =
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

31 2 14
11 14 12 14 13 14

4 4 4 4

31 2 24
21 24 22 24 23 24

4 4 4 4

3 341 2
31 34 32 34 33 34

4 4 4 4

31 2 4
1 4 2 4 3 4

4 4 4 4

cc c AA A A A A A
c c c c

cc c AA A A A A A
c c c c

c Ac cA A A A A A
c c c c

cc c MM M M M M M
c c c c

⎡ ⎤− − −⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥= ⎢ ⎥

− − −⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 

1 1 11 2 21 3 31 4 41M c A c A c A c A= + + +  

2 1 12 2 22 3 32 4 42M c A c A c A c A= + + +  

3 1 13 2 23 3 33 4 43M c A c A c A c A= + + +  

4 1 14 2 24 3 34 4 44M c A c A c A c A= + + + . 
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