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Support Vector Machine for Machine Fault Diagn@sisl Prognosis
Achmad Widodo

Department of Mechanical Engineering, The GradGateool,
Pukyong National University

Abstract

Recently, the issue of machine fault diagnosis prafnosis as a part of
maintenance system became global due to the paltemivantages to be gained
from reduced maintenance costs, improved prodagtamd increased machine
availability. Numerous methods have been developeed on intelligent system
such as artificial neural network, fuzzy expert egst condition-based reasoning,
random forest, etc. However, the use of support vestachine (SVM) for
machine fault diagnosis and prognosis is still.r&8&M has an excellence
performance in generalization so it can producdd ldagcuracy in classification
and prediction for machine fault diagnosis and posis, respectively.

In this paper, SVM will be redeveloped to be an Iligeht system for
conducting fault diagnosis and prognosis of mach®B¥M has two excellent
abilities in the framework of machine learning, sboare classification and
regression. Fault diagnosis is performed usingstfiaation ability of SVM, while
the prognosis of machine condition is conducteagtas regression using SVM.
As an intelligent technique, SVM can train the givkia and save the result as
weights, and then use the weights for doing clasgio and regression.

Originally, SVM is used for two class classificatiohlioear data; however, using

XVi



kernel mapping SVM can perform training process doithg classification with
nonlinear data. By optimizing the hyperplane, SVMedr to solve the
classification and regression problems.

In the developed system, SVM is combined by techmigo-called feature-
based technique to do classification for fault dizgs purpose. Feature-based
technique is an effort to represent the raw datéeatsire such as characteristic
values (statistical), color, shape and so on. Iohime fault diagnosis, features are
representative of values which indicate the machoreition. Using feature, the
problem with data transferring and data storageatsm be solved. Feature-based
classification technique consists of data acqoisjti preprocessing, feature
representation, feature calculation, feature sele@nd classifiers. In this study,
SVM is adopted, redeveloped and combined with fedtased technique to
obtain a novel fault diagnaosis tool.

The proposed method is validated using inductiaomdata to perform fault
diagnosis by means of classification strategy in S\Adveral case studies have
been done to diagnose fault occurrence in induatimtor such as bent rotor,
broken rotor bars, bearing fault, mass unbalantase unbalance and eccentricity
fault. The data used in the experiments are vilamasind current data. The results
show that the proposed method can perform faultndisig well, and it can be
concluded that the proposed method may serve thiediagnosis technique in the
future.

Prognosis can be defined as the ability to prealicurately and precisely the
remaining useful lifetime of a failing machine cooment or subsystem. Therefore,
a reliable predictor is very important and it isrweiseful to a wide range of
industries to forecast the upcoming states of aanya system or to predict
damage propagation trend in rotating machineriasmechanical system, for
example, the forecasting information can be usedctmdition monitoring to
provide an accurate alarm before fault reachescaritevels so as to prevent
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machinery performance degradation, malfunction atastrophic failure.
Moreover, it can be used for scheduling of repansl predictive/preventive
maintenance in manufacturing facilities; and predécand fault-tolerant control.

In this study, SVM based regression is redeveldpduoke a predictor of time-
series data. Trending data of machine can be ceresldas time-series, it contains
information of machine during its operation. Thegwsed method is addressed to
predict the upcoming state of machine based oniqus\condition. Trending data
of a low methane compressor is used to validate gheposed method.
Performance of prediction is measured usthgSEand coefficient correlatiorRy.
The result show that SVM based regression has pattemtd promising to be a
reliable prognosis tool.
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|. Introduction

1. Background

Since the maintenance has significant impact instny, it has received a deep
attention from the expert and practical maintenandecording to study,
maintenance costs are a major part of the totalratipg costs of all
manufacturing and production plants, which can makebreak a business.
Depending on the specific industry, maintenancesccat represent from 15% to
40% of the costs of goods produced [1]. In facksthcosts are associated with
maintenance labor and materials and are likelyote\gen higher in the future with
the addition of factory automation through the depment of new technologies.

Nowadays, the development of maintenance strategy sugported by
computer technology both in hardware and softwaresg&nt developed method
Is using artificial intelligent (Al) techniques &sol for maintenance routine.
Based on the idea how to perform an excellent asy geintenance program; it
leads the practical maintenance to create an iggell maintenance system.
Intelligent maintenance must consist of parts (waré and software) which are
possible the system to do maintenance routine ¢h suway like human being.
Application of expert system (ES) as a branch ofilAmaintenance is one of
solutions. The basic idea of ES is simply that etge, which is the vast body of
task-specific knowledge, is transferred from a huntana computer. This
knowledge is then stored in the computer and usatsupon the computer for
specific advice as needed. The computer can médkeences and arrive at a
specific conclusion. Then, like human consultangives advice and explains, if

necessary, the logic behind the advice [2].



In recent year, it can be said that approximatally bf all operating costs in
most processing and manufacturing operations caatbibuted to maintenance.
This is ample motivation for studying any activihat can potentially lower these
costs. Machine condition monitoring and fault diegjs is one of these activities.

According to Williams et al. [3], adopted from Bsii Standard (BS
3811:1984), condition monitoring is defined as tbentinuous or periodic
measurement and interpretation of data to inditia¢econdition of an item to
determine the need for maintenance. Condition mang is needed for
guarantee the survival of machine so that incipfawdt can be detected and
diagnosed as early as possible. The possibilifiiafre cannot be avoided in the
machine, but early diagnosis of incipient failuseuseful to avoid the machine
breakdown. When fault occurrence exists in the rmashiit will give some
symptoms like excessive vibration and noise, exétgnmcreased temperature, oil
debris, etc. Using machine condition monitoring,sthesymptoms can be early
detected and efforts to overcome the breakdown chimea can be realized soon.

Machine condition monitoring and fault diagnosis @so be defined as the
field of technical activity in which selected phyaiparameters, associated with
machinery operation, are observed for the purpdsdetermining machinery
integrity [4]. Once the integrity of a machine ha&eb estimated, this information
can be used for many different purposes. Loadirthraaintenance activities are
the two main tasks that link directly to the infotina provided. The ultimate
goal in regard to maintenance activities is to dalee only what is needed at a
time, which results in optimum use of resources. Rg\gaid this, it should also
be noted that condition monitoring and fault diagjagractices are also applied to
improve end product quality control and as suchalaa be considered as process
monitoring tools.

There are several benefits and advantages in necbimdition monitoring and
fault diagnosis as follows



Increased machine availability and reliability.
Improved operating efficiency.

Improved risk management (less downtime).
Reduced maintenance costs (better planning).
Reduced spare parts inventories.

Improved safety.

No o kMo Dd e

Improved knowledge of the machine condition (safeortsterm
overloading of machine possible).

8. Extended operational life of the machine.

9. Improved customer relations (less planned/unplamioschtime).

10. Elimination of chronic failures (root cause anasyand redesign).
11.Reduction of post overhaul failures due to imprbpeperformed
maintenance or reassembly, etc.

By considering the importance and benefits of maehiondition monitoring
and fault diagnosis, this research proposes atligetet machine fault diagnosis
system based on support vector machine (SVM). SVM iselatively new
computational learning method based on the stisiiéarning theory; can serve
as ES to carry out intelligent machine conditionmitmring system. Introduced by
Vapnik and his co-workers [5-7], SVM becomes famous popular in machine
learning community due to the excellence of geiwatbn ability than the
traditional method such as neural network. Therefo8/M have been
successfully applied to a number of applicationsgiag from face detection,
verification, and recognition, object detection anecognition, handwritten
character and digit recognition, text detection aadegorization, speech and
speaker verification, recognition, information anthge retrieval, prediction and
so on. However, research and published papers whichisi the use of SVM in

machine condition monitoring, fault diagnosis ambgmosis are much fewer.



Therefore, this research is aimed to give a camioh for developing an
intelligent method in machine fault diagnosis anoigmosis based on SVM.

2. Motivation and Significance of This Research

Machines are critical part in industry. Industriabchines are complex and
consist of many components that could potentially The issue of reliability and
robustness of machines has been received a despiaitfrom researchers and
practitioners maintenance. There has been an swmleanterest in machine
condition monitoring because of the potential bi#sefo be obtained from
reduced maintenance costs, improved operatingiexitiy, increased machine
reliability an availability. Recently, the most filmmental issue of condition
monitoring in industries are fault diagnosis anagmosis. One of the most
effective to investigate in this issue is conditiotonitoring routine based on
vibration signal analysis. However, current signahlgsis can also be used in
condition monitoring of electrical machine suchiaduction motors as well as
vibration signal. Hence, the motivation of this m@eh is to establish an
intelligent condition monitoring, fault diagnosiadaprognosis system which can
be effectively applied in. machines based on vibraind current signal analysis
augmented by a kind of intelligent system methothelsgt support vector machine
(SVM).

The significance of this research is to developdhisted algorithm in SVM,
so that it can perform well in machine fault diageoand prognosis. In this
research, the developed system is addressed toblee ta achieve good
performance, high accuracy and robust in machin# thagnosis routine using
classification procedure.

SVM was selected technique to be applied to maclank diagnosis process.
The reason is that SVM has excellent ability in geliwation process. In addition,



classical learning approaches are designed to nzeirarror on the training
dataset and it is called the empirical risk miniatian (ERM). Those learning
methods follow the ERM principle and neural netwogke the most common
example of ERM. On the other hand, the SVM are basethe structural risk
minimization (SRM) principle rooted in the stattsti learning theory. It gives
better generalization abilities and SRM is achiettedugh a minimization of the
upper bound of the generalization error [5-7].

3. Aimsand Objectives

This research focuses on the development of exmtttiod of SVM algorithm
for machine fault diagnosis and prognaosis. The@ithis research is to redevelop
and modify SVM algorithm and to combine SVM algomittwith other cooperate
method for obtaining the better performance insfaestion process using SVM.
The main objectives of this research are as follows:

1. To redevelop preprocessing method of feature eidra@and reduction for
obtaining. better SVM inputs by component analysi;wgidinear and
nonlinear technique.

2. To incorporate SVM with feature extraction and reductising component
analysis.

3. To redevelop a new kernel method using wavelet fancénd apply it to
SVM based classifier.

4. To apply the developed system of SVM based-classifienachine fault
diagnosis.

5. To redevelop SVM based on regression for progndsisaghine condition.



4. Research Method and Approach

In order to achieve the aims and objectives of rémearch, the following

guantitative research method has been adopted:

1. Theory redevelopment of component analysis thasists1of multivariate

data analysis using linear technique such as p@h@omponent analysis
(PCA) and independent component analysis (ICA).

. Redevelop the nonlinear technique of multivariasgadanalysis using

kernel function and induce it in PCA and ICA.
Redevelop wavelet theory as kernel function forlimear mapping process
in SVM.

4. Applying the redeveloped technique to induction m®fault diagnosis.

5. Study the feasibility of SVM based regression foogmosis of machine

condition.

5. Contribution of This Research

The main contribution of this research is redevielgpghe SVM algorithm for

machine fault diagnosis and prognosis. Severalraigmificant contributions of

the redeveloped SVM algorithm technique are asvi@lo

1.

2.

3.

The ability to obtain the optimal features for taglassification using
feature extraction and reduction by linear and imealr technique of
component analysis.

Establishing wavelet support vector machine (W-SVMl)gain a good
performance and novelty in machine condition mamitp and fault
diagnosis system.

The developed system was successfully applied ih application to
diagnose and detect faults in induction motors dase vibration and



current signals.
4. Developing SVM based regression for prognosis of mmactondition.

6. Organizational Overview of This Dissertation

Based on aforementioned aims and objectives ofrélsisarch, this dissertation
is outlined as follows.

Chapter 1 explains the background and motivation behind tesearch as
well as the existed method and algorithm which beptatb through the
appropriate research method. It also describes rtteen objectives and
contributions of this research and outlines anaeer of this dissertation.

Chapter 2 outlines the preliminary literature review and knadge of fault
diagnosis techniques, particularly in the time &neduency domain. Moreover, it
discusses the feature-based fault diagnosis cancsfatistical features
representation, and data preprocessing.

Chapter 3 reviews the dimensionality reduction, concept of porent
analysis both using linear and nonlinear technigtresddition, the basic theory
of support vector machine (SVM) classifier and ttearfe work of building kernel
function using wavelet for SVM classifier are deegyiewed.

Chapter 4 considers to the real application imaluction motor. It presents the
faults frequently occurred in induction motor, diagis methods, the proposed
diagnostic system and case study of fault diagrafsisduction motor using SVM
incorporate with component analysis procedure. Maggat also presents fault
diagnosis method using transient current signallyarsa It includes the
preprocessing of transient current signal, statitfeatures representation, feature
extraction and reduction and classification proagsiag wavelet-support vector
machine (W-SVM)

Chapter 5 addresses to use support vector regression fonpsigof machine



condition.
Chapter 6 gives several conclusion based on the resultsingatain this
research. This chapter also recommends some dimedbr further research in the

future.
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II. Preliminary Review and Study

1. Existing Method for Machine Condition Monitoring and Fault Diagnosis

1.1. Statistical Approach

A common method of fault diagnosis is to detect Wheta specific fault is
present or not based on the available condition itmang without intrusive
inspection of machine. In the early developmenthmétof fault diagnosis, a
statistic test was constructed to summarize theiitondnonitoring information
So as to be able to decide whether to accept atrepene hypothesis of machine
condition [1-3]. Recently, a framework for fault dgreosis called structured
hypothesis test was proposed for conveniently hagdtomplicated multiple
faults of different types [4].

Other fault detection and diagnosis technique wapl@&ed using statistical
process control (SPC) which was originally developeduality control theory.
The principle of SPC .is to measure the deviatiorthef current signal from a
reference signal representing the normal conditmrsee whether the current
signal is within the control limit or not. An_exampbé using SPC for damage
detection was discussed in [5].

Cluster analysis, as a multivariate statisticallysis method, is a statistical
classification approach that groups signals infedint fault categories on the
basis of the similarity of the characteristics eatlires they possess. It seeks to
minimize within-group variance and maximize betweendg variance. The
result of cluster analysis is a number of hetereges groups with homogeneous
contents. There are substantial differences betvieergroups, but the signals
within a single group are similar. Application of star analysis in machinery



fault diagnosis was discussed in [6,7]. A natural whgignal grouping is based
on certain distance measures or similarity meabeteeen two signals. These
measures are usually derived from certain discaminfunctions in statistical
pattern recognition [8]. Commonly used distance suezs are Euclidean distance,
Mahalanobis distance, Kullback—Leibler distance &agesian distance. Papers
in [9-12] contain some examples of using theseadt# metrics for fault
diagnosis. Ding et al. [9] introduced a new distamegric called quotient distance
for engine fault diagnosis. Pan et al. [13] propbae extended symmetric Itakura
distance for signals in time—frequency represemnatisuch as the Wigner—Ville
distributions. Other than distance measures, feateceor correlation coefficient
Is also a similarity measure commonly used for @igtassification in machinery
fault diagnosis [12]. Many clustering algorithme @vailable for determining the
signal groups [14]. A commonly used algorithm in hiae fault classification is
the nearest neighbor algorithm that fuses two ctagesips into a new group and
calculates distance between two groups as the detnihe nearest neighbor in
the two separate groups [15]. The boundary of twacasiljt groups is determined
by the discriminant function used. A piecewise lindecriminant function was
used and thus piecewise linear boundaries were naotdior bearing condition
classification in [16]. A technique called suppoegttor machine (SVM) is usually
employed to optimize a boundary curve in the sehs¢ the distance of the
closest point to the boundary curve is maximizedMSapplied to machine fault
diagnosis was considered in [17,18].

1.2. Artificial Intelligent (Al) Approach

Al technigues have been increasingly applied tohim&cdiagnosis and have
shown improved performance over conventional apprescin practice, however,
it is not easy to apply Al techniques due to theklaf efficient procedures to
obtain training data and specific knowledge, whick asquired to train the
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models. So far, most of the applications in therditure just used experimental
data for model training. In the literature, two ptgpuAl techniques for machine

diagnosis are artificial neural networks (ANNs) and .ESther Al techniques

used include fuzzy logic systems, fuzzy—neural neéta'dFNNs), neural-fuzzy

systems and evolutionary algorithms (EAs). A reviewesfent developments in
applications of Al techniques for induction machstator fault diagnostics was
given by Siddique et al. [19].

An ANN is a computational model that mimics the humaairbstructure. It
consists of simple processing elements connecteal @omplex layer structure
which enables the model to approximate a complexlinear function with
multi-input and multi-output. A processing elememmprises a node and a
weight. The ANN learns the unknown function by adjustitsyweights with
observations of input and output. This processsigally called training of an
ANN. There are various neural network models. Feeddawneural network
(FFNN) structure is the most widely used neural netwsirkcture in machine
fault diagnosis [20-23]. A special FENN, multilayerrgeptron with the BP
training algorithm, is the most.commonly used neostwork model for pattern
recognition and classification, and hence machait tliagnostics as well [24,25].
The BP neural networks, however, have two main linoitest (1) difficulty of
determining the network structure and the numberoales; (2) slow convergence
of the training process. A cascade correlation nengtwork (CCNN) does not
require initial determination of the network struettand the number of nodes.
CCNN can be used in cases where on-line training efegable. Spoerre [26]
applied CCNN to bearing fault classification and shdweat CCNN can result in
utilizing the minimum network structure for fault cagnition with satisfied
accuracy. Other neural network models applied in mactliagnostics are radial
basis function neural networks, recurrent neuralvagts [27,28] and counter
propagation neural networks [29]. The above ANN m®dsually use supervised
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learning algorithms which require external inputtsas the a priori knowledge
about the target or desired output. For examptmmamon practice of training a
neural network model is to use a set of experimestaigh with known (seeded)
faults. This training process is supervised leaynilm contrast to supervised
learning, unsupervised learning does not requitereal input. An unsupervised
neural network learns itself using new informatioaitable.

Wang and Too [30] applied the unsupervised newdlorks, self-organizing
map (SOM) and learning vector quantization to ratatinachine fault detection.
Tallam et al. [31] proposed some self-commissionemyd on-line training
algorithms for FFNN with particular application to @igc machine fault
diagnostics. Sohn et al. [3] used an auto asseeiatural network to separate the
effect of damage on the extracted features froreetlvaused by the environmental
and vibration variations of the system. Then a seatjal probability ratio test was
performed on the normalized features for damagssifieation. In contrast to
neural networks, which learn knowledge by trainingpbeerved data with known
inputs and outputs, ESs utilize domain expert kndgdein a computer program
with an automated inference engine to perform raagofor problem solving.
Three main reasoning methods for ES used in the @renachinery diagnostics
are rule-based reasoning [32-34], case-based riegs[85,36] and model-based
reasoning [37]. Another reasoning method, negagasaning, was introduced to
mechanical diagnosis by Hall et al. [38]. Stanekle{39] compared case-based
and model-based reasoning and proposed to combem for a lower-cost
solution to machine condition assessment and deagntnlike other reasoning
methods, negative reasoning deals with negativerrrdton, which by its
absence or lack of symptoms is indicative of megfuininferences. ESs and
neural networks have their own limitations. One mmmtation of rule-based ESs
is combinatorial explosion, which refers to the caomagion problem caused when
the number rule increases exponentially as the eurob variables increases.
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Another main limitation is consistency maintenanghich refers to the process
by which the system decides when some of the vagaig#ed to be recomputed in

response to changes.

2. SVM in Machine Condition Monitoring and Fault Diagnosis. a review

Recently, the issue of machine condition monitoramgl fault diagnosis as a
part of maintenance system became global due tpdtential advantages to be
gained from reduced maintenance costs, improvedugtivity and increased
machine availability. This sub chapter presentuuey of machine condition
monitoring and fault diagnosis using support vectachine (SVM). It attempts
to summarize and review the recent research andlaggment of SVM in
machine condition monitoring and fault diagnosis méwous methods have been
developed based on intelligent system such agcatineural network, fuzzy
expert system, condition-based reasoning, randoestfoetc. However, the use of
SVM for machine condition monitoring and fault diagis is still rare. SVM has
an excellence performance in-generalization, smait produce high accuracy in
classification for machine condition monitoring asidgnosis. Until 2006, the use
of SVM in machine condition monitoring and fault gieosis is tending to develop
towards expertise orientation and problem-orient@aha@n. Therefore, the ability
to continually change and obtain a new novel idea rfachine condition

monitoring and fault diagnosis using SVM will be #uite works.

2.1. Diagnosisof Rolling Element Bearing

Bearings are the best location for measuring machimibration since this is
where the basic dynamic loads and forces of madeepplied and they are a
critical component of machinery. Condition monitmyiand fault diagnosis of
bearing can represent the condition of machindf.itShis section will review the
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authors who have contribution in research of faialydosis of bearing.

Jack and Nandi [40] performed fault detection dierdbearing using SVM and
artificial neural network (ANN). They used vibratioatd taken from small test
rig and simulate the bearing condition which hag faults: inner race fault, outer
race fault, rolling element fault and cage faulhey defined and calculated
statistical features based on moments and cumukardsselected the optimal
features using GA. In the classification processy ttmployed SVM using RBF
kernel with constant kernel parameter. Yan and SHa$ ¢mployed SVM for
fault detection of roller bearing using vibratiolgreal and noise. Unfortunately,
there is no special method stated in their reseasatept SVM classification
routine. However, they stated that SVM has promisipglieation in fault
diagnosis. Moreover, Samanta et al. [42, 43] hayaroved the previous methods
in fault detection of bearing. They applied GA feafure selection and searching
proper RBF kernel parameters. Several effect cmmditsuch as sensor location,
signal preprocessing, number of features were predd¢o show the performance
of SVM compared with ANN. Rojas and Nandi [44, 45] hangrlioved their
previous research on bearing fault diagnosis. Tpreyposed a practical scheme
for fast detection and classification of rollingelent bearing. Sequential minimal
optimization (SMO) was implemented for solving SVM iaptation problem.
Zhang et al. [46] proposed probabilistic SVM (ProSVidj fault diagnosis of
bearing. It was aimed to effectively reduce the nembf samples on the
condition of keeping the classification accuracyg@maran et al. [47] employed
fault diagnosis of roller bearing using decisioretr(DT) and proximal SVM
(PSVM). DT was aimed to identify the best featuresnfr given set of samples
for the purpose of classification. They claimedttR&VM has the capability to
efficiently classify the faults using statisticaatures. Recently, Hu et al. [48]
proposed a method that used improved wavelet packagsform (IWPT) and

SVM ensemble for fault diagnosis of rolling elembgearing. They also employed
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feature selection using distance evaluation teatfen{@ET) for feature selection.

The previous discussion describes the evolutiorgryyears the technical
development of using SVM for bearing fault diagnosispefully, there will be
present an advanced research to obtain more rdbakhiques in SVM for
bearing fault diagnosis.

2.2. Diagnosisof Induction Motors

Induction motor is a critical component in manyusttial processes and it is
very important part to support the survival of istiy in producing of products. It
is also frequently integrated with any commercialisailable equipment and the
process itself. Therefore, it has been urgentlyuired special attention in
condition monitoring to guarantee the performan€enduction motors. Early
fault diagnosis of induction motor during its opgera will give the incipient
faults condition and the efforts to overcome anytiashould be done to avoid the
more serious condition.

Poyhonen et al. [49, 50] proposed method namelploay pairwise SVM for
fault classification of induction motors. Power psite density using Welch’s
method was calculated from circulating currents amafiel branches of motors.
SVM was then trained to distinguish a healthy spectitom faulty spectra. The
induction motors consist of faults as follows: broketor bars, broken end-ring
in rotor cage, shorted coil and shorted turn inostavinding. Zhitong et al. [51]
carried out fault detection in induction motorsngsiSVM technique to detect
broken rotor bars. In their experiment, inductiootans were experimented with
no fault, one broken bar, two broken bars and threken bars. They used stator
current to obtain the signal and calculated thguemcy spectrum for doing fault
detection. Fang [52] conducted a faults diagnogs$esn based on integration of
rough set theory (RST) and SVM. He used stator cuggectrum as inputs. RST
can perform feature extraction and reduction fenaeing redundant attributes.
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The conditions of induction motors were health, lerobar, dynamic eccentricity
and static eccentricity. The result showed that gheposed method has good
performance in diagnosis accuracy and needs shwetih training. Widodo and
Yang [53-55] employed fault diagnosis method uss\gV combined by feature
extraction via component analysis (PCA, ICA, KPCA &iGA). The statistical
features in time domain and frequency domain framrent and vibration signal
were calculated as features representation. Theopeopmethod was aimed to
detect fault in induction motor such as broken rdiars, bowed rotor, bearing
fault, rotor unbalance, eccentricity and phase lamtz®. Recently, they conducted
fault diagnosis of induction motor based on startttansient current signal.
Transient current signal has characteristic (snityg that was difficult to
distinguish among faults. Therefore, they proposeselet SVM (W-SVM) for
obtain a novel method in classification processe bhasic idea of W-SVM was
constructing a kernel function using wavelet functemd then inducing into SVM
theory [56, 57].

2.3. Diagnosisof Machine Tools

Recently, Al technique has been used for fault aliete of machine tool.
Moreover, Al can also predict the remaining life mfichine tools. Here, the
survey of using SVM for condition monitoring and gl@sis of machine tools
will be presented.

Ramesh et al. [58] presented a hybrid SVM-Bayesiatwbdl& (BN) for
predicting the thermal error in machine tool acawydio specific condition. In
this research, SVM-BN was developed first all to é¢fgsthe error into groups
depending on the operating condition and then catry a mapping of the
temperature profile with the measured error. Thisicept lead to a more
generalized prediction model then the conventionathod of directly mapping

error and temperature irrespective of conditiorchSmodel is especially useful in

16



a production environment wherein the machine toodssaibject to a variety of
operating conditions. The other research was choig by Sun et al. [59, 60]
who classified tool wear using SVM based on manufagjuronsideration. This
research was aimed to propose a new performanceaéiealtfunction for tool
condition monitoring (TCM). First, they analyzed twypes of manufacturing
loss due to misclassification (loss caused undediption and over prediction)
then both are utilized to compute corresponding ktsigof the proposed
performance evaluation function. Then the expecteds of future
misclassification is introduced to evaluate theogeition performance of TCM.
Finally, a revised SVM approach is implemented torycaout the multi-
classification of tool states. With this approaghool is replaced or continued not
only based on the tool condition alone, but als®ribk in cost incurred due to
underutilized or overused tool. In recent publi@atiCho [61] conducted TCM
for tool breakage detection using SVM in milling pess. SVM was addressed to
recognize process abnormalities and initiate ctwec action during a
manufacturing process. They applied support vegression (SVR) for tool
breakage determination and claimed better thanitivadl multiple variable
regression approach (MVR).

The survey of papers which implement SVM in TCM lmeen presented.
However, there are only few paper discuss about T@QKhd year 1999-2006

according to survey from some on-line journals.

2.4. Diagnosis of Pumps, Compressorsand Turbines

Detection of pump failure has been carried out by &taal. [62] using support
vector data description (SVDD). The importance of prepssing data was also
highlighted in this dissertation such as featurdraetion and selection. In
addition, they evaluated several feature extracti@ihods in a special type of
outlier detection problem. The use of support vedita description was aimed
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to get indication of the complexity of the normédss in data sets and how well it
is expected to be distinguishable from the abnowlath. Gao et al. [63] applied
SVM for fault diagnosis of valve in reciprocatingrpps. As preprocessing, the
wavelet packet transform (WPT) was employed to ekfi@ature vectors from
vibration signal. They simulate 10 conditions ofveawhich must be classified
using SVM. SVM was successful applied for fault diagiamf turbo-pump rotor
by Yuan et al. [64]. The original data came fromration signal then the feature
extraction was performed by applying principal comgat analysis (PCA) to
extract the optimal features and reduce the dimensi features. In addition,
based on same data, Yuan [65] was also carried olatdiagnosis of turbo-pump
using SVM with parameter optimization. In this resbamrtificial immunization
algorithm (AIA) was used to optimize parameters WivVE

Yang et al. [66] performed condition classificatiof small reciprocating
compressor for refrigerator using SVM. In this ditstgon, wavelet transform
and statistical method were used to extract safiestures from row noise and
vibration signal. Moreover, iteration method waspéoged to select the proper
RBF kernel parameters in SVM. In addition, Yang ket[@/] also carried out
cavitation detection of butterfly valve using SVIWhe other research using SVM
for fault diagnosis of reciprocating compressor wagormed by Ren et al. [68].
This was aimed to detect valve fault using vibrasggnal. Vibration signal was
decomposed using local wave method and data wagreddrom valve surface.

In turbine detection, Li et al. [69] employed SV ffault diagnosis of steam
turbine. Ensemble learning based on genetic algari{GA), namely direct
genetic ensemble (DGE) was performed to achieve goedormance in
classification. The proposed system successfulleatied rotor unbalance in
steam turbine. Zhang et al. [70] successfully agblfuzzy support vector
machine (FSVM) for condition monitoring of flue-gdsrbine set based on
vibration signal. FSVM modified separating hypen@daby adding fuzzy
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coefficients to every training data sample in ortteindicate loss difference of
misclassifying training data sample of differerpey.

2.5. Diagnosisof HVAC Machines

Batur et al. [71] presented fault detection of heathanger using SVM
combined by least squares parameter identificati@hnique to permit on-line
monitoring. In this system, SVM was addressed toaletbnormal condition of
heat exchanger such as air in steam line, obsttuatees, high condensate flow
and low condensate flow. The other research was cbedbby Han et al. [72] for
hot spot detection in power plant boiler air prebediased on least squares
support vector machine (LS-SVM). In this systemgdiminate model of 3 pairs
of fire status have been built based on LS-SVM u8iBg kernel and polynomial
kernel. The hyperparameters of classifiers were dumg leave-one-out cross
validation. Receiver operating characteristic (R@Gjve showed that LS-SVM
has good classification and generalization abifitiioi et al. [73] carried out fault
diagnosis of chillers machine using SVM based ortissizal test such as
generalized likelihood ratio (GLR). The system wabjscted to five types of
faults, including reduction in water flow rates imdenser, evaporator, fouling in
condenser and evaporator and refrigerant undereharg

2.6. Other Machines

The other applications of using SVM for machine dbad monitoring and
fault diagnosis are reported as follows: Rychetskgle[74] employed support
vector machine for engine knock detection. In tieisearch, support vector was
combined by kernel adatron technique to provide Inearity, a bias and soft
margin. This kernel adatron algorithm was reportaa lse convergence fast and
proper for combination with SVM. SVM classifier was eslkked to classify the
current knocking condition (3 classes): no-knockyrderline knock and hard
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knocking. Xu et al. [75] employed rough set theooynbined with SVM (RST-
SVM) for fault detection of diesel engine. Fault ghasis of diesel engines is
difficult problem due to the complex structure bétengine and the presence of
multi-excite sources. In this dissertation, diagageocedure was addressed to
diagnose fault conditions such as intake clearaac®o small, intake valve
clearance is too large and exhaust valve clearasc®o large. Moreover,
integrating the advantages of RST in effectivelyaldeith the uncertainty
information and SVM produced greater generalizatiparformance. The
diagnosis of the diesel demonstrated that the isolutan reduce the cost and
raise the efficiency of diagnosis, and verified tleasibility of engineering
application. Hu et al. [76] developed method cafiesion multi-class SVM for
fault diagnosis of diesel engine. The main ideahif method is combining the
information of several sources then constructssitia input space. Then SVM
classifier realized classification by finding thetional hyperplane with a maximal
margin. The system used vibration signal from themeelerometers which
attached on first cylinder head, second cylindexdhand the center of the piston
stroke. Four conditions were simulated for diagngginocess those are intake
valve clearance is too small; intake valve cleagaisctoo large; exhaust valve
clearance is too large and normal condition. Tisalteshowed that the proposed
method can largely improve the diagnosis accuracy.

In addition, SVM was also reported in applicationfauilt diagnosis in sheet
metal stamping operation. The research was condlunfeGe at al. [77], they
used strain signal of stamping process which ard@hhigonlinear and non-
stationary and it was typical signal in metal forghjprocess. In this experiment,
two kinds of operation of metal stamping were testld,first one was a single
step blanking and the second one was a multi-stegr@ssive stamping. The
conditions for simulating the process were no faulisfeed (work piece is not
aligned with the dies), slug (the leftover of thesition hole is left on the surface
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of the upcoming work piece), work piece is too thiskyrk piece is too thin and
work piece material is missing.

Samanta [42] carried out gear fault detection ussA\gV combined with
genetic algorithm. The time domain vibration sigoéla rotating machine with
normal and defective gears are processed for feaxtraction. The extracted
features from original signal were used as inpotsSVM classifier. In this
research, GA was performed in feature selection gstinzing RBF kernel
parameters.

Aforementioned survey gives the description of agpion of SVM in
machine condition monitoring and diagnosis. Actuaitycan be said that only
few papers found in this application rather thareotreas such as described in

previous chapter.

3. Feature-Based Diagnasis Concept

The process of traditional condition monitoring afiadilt diagnosis can be
summarized as follows: data acquisition, data pEgssing, data analysis and
decision making. Here, the data that representsnthehine condition called
condition-based monitoring.. Nevertheless, therprablem of such a system in
data transferring and storage. For instance, whenitorong of large system of
rotating machinery will be performed, the instabbatiof many sensors is needed
to assure the diagnosis reliability., Such many @ensresult in huge
dimensionality of data.

With the globalization and fast growth of the congsutind information
technology, on-line condition monitoring and fadiagnosis has gained much
attention. Data transfer and storage problem bemrieus. If direct transferring
a plenty of raw data will be performed so long tinedagls due to heavy traffic
may be experienced which results in the lost of mooimg and diagnosis.
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Therefore, representing data as features is asbégion for this problem that

is expected able greatly reduces the requiremerttaoisfer number and save

storage space. The represented data as featumaler $0 compress the data from

many domains with keeping the information as higlp@ssible. Thus, a relative

technique has came out such as feature representddéiature extraction and

feature selection.

The typical feature-based condition monitoring ahdgnosis framework is

illustrated in Fig. 2.1, which can be summarizefo#ews:

g

The data are on-line acquired from object machsa eaw data that need
preprocessing to condition the data as good asipedsr emerging the
salient condition of machine. These data can beatrdn signals, current
and volt signals, sound signals, flux signals, €mtresponding to object,
the different preprocessing procedure can be useld as filtering (high,
low and band-pass), wavelet transform, averaging.dimw and so on.
The features are calculated from various domaiimse,t frequency,
cepstrum or wavelet domain. In this way, the infoiorabf raw data is
kept as good as possible to address the analydisochen the next.
Furthermore, the transfer and storage problem taf ¢&n be solved.

Many calculations of feature parameters in many alom result high
dimensionality of data features. All of them are negful for condition
analysis; sometimes some of them even can incridesalifficulty of
analysis and degrade the accuracy. So reducinglithension of data
features is necessary which can remove the irrelain garbage features.
According to monitoring object, the features whichn csignificantly
represent machine performance should be selected.

The selected features are then sent to conditionitortong and fault

diagnosis system to define the machine condition.
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Model Data Data Feature Feature Feature
machines acquisition preprocessing representation extraction selection
Classifiers -
Machine conditions

Fig. 2.1 Feature-based condition monitoring andt fiagnosis system [78].

Usually, condition monitoring and fault diagnosigstem works based on
pattern classification. For feature-based diagnegistem, the quality of data
receives deep attention to guarantee the accurfadiagnosis process. Therefore,
the preprocessing of data is important step. A goegrocessing will reduce the
noise in the data and retains as much informat®mpassible [79]. When the
number of objects in the training set is too sn@llthe number of feature used,
most of classification procedures cannot find goladsification boundaries. This
is called curse of dimensionality [80]. By a gooeprocessing the number of
feature per object can be reduced such that thssifitation problem can be
solved well.

Feature-based diagnostic procedure has been erdpfoydault diagnosis of
machine. In this case, it needs feature extragirmeedure which is addressed to
obtain the optimal features from original data SEax et al. [62] employed
feature-based procedure from power spectrum, en@edppctrum, autoregressive
modeling, music spectrum and classical spectrunfditure detection of a small
submersible pump. They tried to find the best regméation of data features such
that the target class can best be distinguishad tlee outlier class. The support
vector data description was proposed to accomplhisir vork for finding the
smallest sphere containing all target data.

The authors who used statistical features based @mmemts, cumulants and
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other statistical features of the time data seaie$ spectral of vibration data for
fault detection are reported in [41-44]. Yang et[@6, 67, 81-84] used statistical
features of time domain and frequency domain faidtfaetection in rotating
machinery and cavitations in butterfly valve. Ie ttase of induction motor, they
acquired data of vibration and stator current digriaan et al. [64, 65] performed
fault diagnosis of turbo-pump rotor using data dea¢ which is acquired from
frequency bands of secondary vibration signal. fiféguency of secondary signal
is divided into 9 bands then the frequency ampétudn each band and their
average value are calculated as features. Sun E9al60] employed statistical
features which came from acoustic emission sigrmatiéection wear in machine
tool. They also used cutting parameter such asghgutpeed, depth of cut and feed
rate as additional features. Cho et al. [61] cdroat tool break detection using
features from cutting forces and power consumptioand milling machine. The
other application was reported that Han et al. f&tjducted hot spot detection in
power plant using features from data temperature hwhacquired by
thermocouple and infrared sensors. Moreover, Ramésdl. [58] conducted a
prediction of thermal error in-machine tools usifegtures from temperature
sensors.

In feature-based diagnosis process, after definiveg features i.e. statistical
features from original data acquisition, the hugeeshsionality problem of data
features is possibly emerged. It cannot be avomxhuse of not all features are
useful and optimal for classification process. Bxéstence of irrelative features
tends to degrade the performance of classifier. @neolutions to solve this
problem is performing feature extraction which catract the optimal features
and all at once reduce the dimensionality of feetuBasically, feature extraction
means mapping process of data from higher dimenstoriow dimension space.
Many methods have been proposed to perform dimeal#ip reduction using
linear and nonlinear techniques. In machine coowlitmonitoring and fault
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diagnosis research area, feature extraction usingponent analysis was reported
as follows: using linear method, principal componeamalysis (PCA) was
conducted by Widodo and Yang [53, 54] and Yuan €i6al], using independent
component analysis (ICA) [53, 54]. Moreover, nondinéeature extraction using
kernel PCA and kernel ICA was also performed by Widadd Yang [55]. The
other techniques called rough set theory was cdedufor extracting optimal
features and reduce dimension of features by Xu Ramp [52, 69]. In their
research, rough set theory (RST) was employed tprgcess the data for
eliminating redundant information and reducing saenple dimension.

The other hand, some researches suggested usitgrefeselection after
defining features set from original data. The teghes which are addressed to
feature selection were genetic algorithm (GA) andadist evaluation technique
(DET). In machine fault diagnostics area, reseasch@ho employed GA
technique were Jack and Nandi [40], Samanta et2).4&], and Li et al. [69]. In
addition, DET was reported successfully doing feasetection by Yang et al. [81,
83] and Hu et al. [48].

From aforementioned discussion, it can be obseriret feature-based
diagnosis has been ‘widely used in many applicatisihsnachine condition
monitoring and fault diagnosis. Most of resultsfehture-based technique were
relatively satisfied according to previous papdtsmeans that feature-based
procedure is strongly suggested when recognitionclaskification process will
be performed.

4. Satistical Feature Representation

Usually, in the application of pattern classificatiand recognition, the data
are represented by features which can be charditeddues, colors and so on. In
machine condition monitoring and fault diagnosise tstatistical features are
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selected as patterns which can indicate the mactamelition. Furthermore,
statistical features are simple and useful for expy) and indicating the incipient
faults when faults occurred in machines.

This section focuses on feature representation tatisscal features for
machine condition monitoring and fault diagnosisarnsformation of data to
features plays a very important role which direafects the performance of
whole system. In other words, the better the featoaesreflect the performance
of task the better the result will be. In order &2 data information at the highest
level, features are calculated from the time domfreguency domain and auto-
regression estimation.

4.1. Featuresin TimeDomain
4.1.1. Cumulants

The features described here are called statistezilires because they are
based on only the distribution of signal sampledlie time series treated as a
random variable. These features were also knownasemts or cumulants. In
most cases, the probability density function (pcH be decomposed into its
constituent moments. If a change in condition causehange in the probability
density function of the signal then the mements masp change. Therefore,

monitoring this phenomenon can provide diagnosticrmation.
The moment coefficients of time waveform data canch&ulated using

following equations
1 N
m, =E{X”}=WZ>§” (2.1)
i=1

where E{} represents the expected value of the functignis the ith time

historical data andll is the number of data points.

The first four cumulants: meam;j, standard deviatiorcy), skewnessdcs) and

kurtosis €4), can be calculated from the first four momentmgghe following
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relationships

G=m (2.2)
C=m, - mlz (2.3)
C; =m, —3m,m, +2n7 (2.4)
c, =m, —3m —4mm, +12m,m - 6m; (2.5)

In addition, non-dimensional feature parametersgnie domain are more popular
such as shape factor and crest factor.

SF = Xne / Xaps (2.6)

CF =X,/ Xpns (2.7)
wherexms, Xabs andx, are root mean square value, absolute value aridvatae,
respectively.

Fig. 2.2 describes the bearing signals and itegraim with different condition
(normal and faults). Moreover, the cumulants aghlighted according to bearing
condition and its values are summarized in Takle 2.

Table 2.1 Cumulants for bearing signal with diffgreondition

Conditions
Cumulants

Normal Unbalance Inner-race Misalignment
Mean 0.0122 0.085 0.0038 0.0507
STD 0.0188 0.0314 0.0821 0.1833
Skewness 0.0802 0.0184 0.1234 0.1597
Kurtosis 3.0332 3.282 7.083 3.4315
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Fig. 2.2 Histogram of bearing signal with differeminditions.
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From Table 2.1, kurtosis has clear informationdescribing the condition of
bearing. Normal bearing has kurtosis 3.0 while fdngt condition has kurtosis
more than 3.0. Therefore, kurtosis can indicatdrtbgient fault at bearing during
its operation.

4.1.2. Histogram: Upper and Lower Bound

Histograms which can be thought as a discrete piblyadensity function
(pdf) are calculated in the following way. Létbe the number of divisions that
need to divide range into, let with 0 <i < d be the columns of the histogram,
then

n=Y

j=0

Sk

r(x) Hi,0<i<d (2.8)

. 1(max(x ) —min(x)) (i +)(max(x ) =min(x))
(=4 " d B d (2.9)
0, otherwise

The upper bound and lower bound of histogram afieet®as
h, =max(x)—-A/2 (2.10)

h, =max(x)+A/2 (2.11)

where A =max(x)-min(x)/(n=1)

Effectively, it is normalized by two things: thenigth of the sequence and the
column divisions. Since the term above includegnadrm and every must fall
into exactly oneh; column, the next effect is thét = 1 ( = O,..., di1). The
column divisions are relative to the bounding boxl #hus most oh; will not be
zero. This is a desirable, since it essentiallyaess the issue of size of a sign,
and low resolution on small signs with lots of eynpblumns. The alternative
would be to have absolute locations which wouldniogvhere near as closely
correlated with the information in the sign itséfhe examples of histogram of
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bearing signal with different condition can be seeRig. 2.2.

4.1.3. Entropy Estimation and Error
In information theory, uncertainty can be measug@ntropy. The entropy of

distribution is the amount of a randomness of tiseridution. Entropy estimation
is two stage processes; first, a histogram is eséichand thereafter the entropy is

calculated. The entropy estimatiBgx) and standard errd.(x) are defined as
E.(x) == P(x)In(Px) (2.12)
E.(x) = Y P(x)InP(x)’ (2.13)

Wherex; is discrete time signal®(x) is the distribution on the whole signal.
Here, the entropy of vibration and current sigrals estimated using unbiased
estimated approach.

4.2. Featuresin Frequency Domain

Through the frequency domain parameter indices,pili@ary diagnosis is
available. In other words, the features can inéicie faults. Because these
calculation indices are simple and fast so theybmnsed in the on-line condition
monitoring. When there are some changes on themmdeas, it indicates
occurrence of faults. Finally, the precision diagiscan deal with the problem.

For example, the signal of ball bearing are comgost many stochastic
elements, different faults have different spectrimthe frequency domain.
However, in some cases the faults cannot be disshgd by power spectrum.
Above mentioned, frequency parameters indices d@mwsthe faults in the
beginning of the failure. So these indices can beduto perform condition
monitoring and fault diagnosis.

The signal power spectrum shows the power disiobutvith the frequency.
When the frequency elements and their power chasgelde position of the main
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spectrum changed. On the other hand, when thedreyuelements increased the
power spectrum distribution become discrete whetbaspower distribution is
shown change. The characteristics of the frequelmygain can be shown well
through frequency parameter indices as follows:

Frequency center (FC)

f " fs(f )df
FC=2_ " (2.14)

[7s(f)

Mean square frequency (MSF)

f“’fzs(f)df

f“’s(f)

Root mean square frequency (RMSF)

RMSF=+/MSF (2.16)

Variance frequency (VF)

MSF = (2.15)

L‘”(f —FC)?s(f)df

VF = — (2.17)
f S( f)df
Root variance frequency (RVF)
RVF=+VF (2.18)

where s(f) is the signal power spectrum. TiC, MSF and RMSF show the
change position of main frequenci®&4; andRVF describe the convergence of the
spectrum power.

From the view of physics, the power spectrum issaered as the mass
density function of a stick in the ordinate axiscArdingly,FC is the mass center
in the abscissa. When larger the density is nearotigin, the distance between
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FC and the origin is closeRMSFis rotating radial circling the stick. The relatio
of the distance and density is same with aforeroaetlFC.

Due to real calculation, the frequency spectrundade be discrete

N
25X

FC=-12_ (2.19)
2> X2
iZ:ljx
X 2
D%
MSF=—=2 (2.20)
A2y X2
iZzljx
VF = MSF-(FC)? (2.21)
. _ . _Ka
here x =x -2
where % =x K

4.3. Auto Regression (AR) Coefficient

Since the different faults display different chaeaistics in the time series,
auto-regression - model is used to establish a modlbke autoregressive
coefficients are extracted as feature of fault ciowl The first eight order
coefficient of AR models are selected through Bsitgttice-based method using
harmonic mean of forward and backward squared gtiedierrors. The definition
that will be used here is as follows

N
Yo = 2.8 Y +E (2.22)
i=1

where a, is the AR coefficientsy; is the series under investigation, eMds the
number of the modeN=8). The noise tem or residualis almost assumed to be
Gaussian white noise.
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5. Data Preprocessing

Data preprocessing describes any kinds of prepsougsn a raw data to
enhance the reliability and thereby to improve #ceuracy for signal analysis
purpose. Data preprocessing may be performed odataefor understanding the
nature of the data and extracting more meaningfol\kedge from a given set of
data. After data acquisition process, the problemis data often can be avoided.
Several data problems can exist such as corruptnaigy, irrelevant, missing
attributes and so on. Therefore, data preprocessingeeded to enhance the
quality of data for specific purposes i.e. pattexcognition and classification.

Data preprocessing transforms the data into a fotha will be more easily
and effectively to be processed appropriate witkirdeof user. As general, data
preprocessing technique can be classified as fetlow

s Transformation such as data filtering, data ordgrithata editing, noise

modeling, etc.
s Information gathering using data visualization, adalimination, data
selection, sampling and so on.
s Generation of new.information including adding neatures, data fusion,
data simulation, dimensional analysis, etc.
In followed section, data preprocessing is appf@dobtaining the meaningful
knowledge from raw data using wavelet transformgraging, enveloping and
cepstrum.

5.1. Wavelet Transform

The wavelet transform decomposes a concerned sigral a linear
combination of time scale unit. It analyzes origisgnals and organizes them
into several signal components according to thestegion of the mother wavelet
or wavelet basis function which changes the scadeshow the transition of each
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frequency component.

5.1.1. Continuous wavelet transform (CWT)
The continuous wavelet transform is an integratioth respect to the total

time of the product of the target sigrig) and the mother waveley,, . Using

mathematical expression, the continuous waveleistoam of the time function

f(t)ca be written as

CWT(ab) = [ f(t),,dt (2.23)
Yo =%w(%j (2.24)

where a,band ¢,, are the scale, translation parameters and motlzeelet,
respectively.

The transform result represents the correlatiotwden the signal and the
transform of the mother wavelet being scaled aadsiated. If the signal and the
mother wavelet are similar, the transform resull wave a large value. This
means that lead and delay are translation, whiesttale is an expansion and
compression. As the low scale is a compressing gv2 becomes a rapid
changing signal, that is; it improves the sendyivin the time domain for high
frequency signals and improves the sensitivity ieqfiency domain for low
frequency signals. This makes it possible to perfarmulti-resolution analysis.

5.1.2. Discrete wavelet transform (DWT)
The orthogonal basis functions used in wavelet yamalare families of

scaling function,gt) and associated wavelg(t). The scaling function can be

represented by following mathematical expression

@, =Y H p2't-k) (2.25)
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whereHy represents coefficient of scaling functidn represent translation and
scale, respectively.
Similarly, the associated wavelet can be generaséuy the same coefficient

as the scaling function
¥, ) =2 (-D*V2h,, p2't-k) (2.26)
k

The scaling function is orthogonal to each othewa#i as with the wavelet
function as shown in Egs. (2.25) and (2.26). Thid fs crucial and forms part of

the framework for multi-resolution analysis.

Dj|.¢(2k -t) p(2k-1) dt=0 (2.27)

[0 ot de=0 (2.28)

Using an iterative method, the scaling function asdociated wavelet can be
computed if the coefficients are known. Fig. 2.®wh the Daubechies 2 and 5
scaling function and wavelet.

A signal can be decomposed into approximate coeffis a through the
inner product of the original signal at scaknd the scaling function.

a,, = o]f [(©@, (Ddt (2.29)

@, ) =2""p27t-k) (2.30)
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Db2 Wavelet function Db2 Scaling function

Fig. 2.3 Daubechies 2 and 5 scaling function asd@ated wavelet.

Similarly the detail coefficientd;x can be obtained through the inner product

of the signal and the complex conjugate of the \We\fanction.

d = wjfj(t)wm(t) dt (2.31)
Wi (t)=27""p27t=k) (2.32)
The original signal can therefore be decomposeiliffgrent scales as follows
(1) = ]Z A, g+ ikid W) (2.33)
N-1 N-1 N-1
ML EDILTEACED ST ORI I II0 (2.34)
The coefficient of the next decomposition le\jell() can be expressed as
A}k :gaj,k M—,km @i (1) dt (2.35)
A = g &, ,k”i,k(t) P (t) L (2.36)
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Ak = Zaj,k glk] and d(j+1),k = Zaj,k h[k] (2.37)
K K

The decomposition coefficients can therefore berdehed through convolution
and implemented by using a filter. The filglk] is a low-pass filter anti[K] is a
high-pass filter.

yin = 3" k] xin - K] (2.39)
5.2. Averaging

Averaging can be divided into two types: one iscéyonous averaging and
the other is spectrum averaging. Synchronous awegag very useful in reducing
the random noise component in the measurement @ducing the effect of the
other interfering signals such as components frootreer nearby machine which
requires a tachometer to synchronize each snagdhbe signal to the running
speed of machine. Unlike synchronous averagingctgppe averaging does not
reduce the noise. Instead, it finds the averagenihate at each frequency where
a series of individual spectra-are added togethdrthe sum is divided by the
number of spectra.

5.3. Enveoping

The purpose of enveloping is to enhance small &gnEhe method first
separates higher frequency bearing signals from logguency machine
vibrations by band pass filtering. The measurenpeablem at this point, is to
detect small amplitudes. A defect signal in theetisthomain is very narrow,
resulting in an energy component spread over a wi@guency range;
consequently the harmonic amplitudes of the defirjuency are very nearly
buried in noise.
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54. Cepstrum

Cepstrum is the name given to a range of technigllesvolving functions
which can be considered as a “spectrum of a I|dgard spectrum”. The
application of the power cepstrum to machine faldtection is based on the
ability to detect the periodicity in the spectrum. family of the uniformly spaced
harmonics and side bands while being insensitiviaéotransmission path of the
signal from an internal source to an external mesamsant point. The value of the
main cepstrum peak was shown to be an excellemd tyfgarameters; as it
represents the average over a large number ofithdilyharmonics, fluctuations
in latter (for example as a result of load variatipwere largely averaged out in
the cepstrum value which gave a smooth trend ocwitretime.
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I11. Component Analysisand Support Vector
Machine

1. Introduction

Component analysis is a technique of multivariaédistical analysis that can
linearly or nonlinearly transforms an original setriables into a substantially
smaller set variables. It can be viewed as a dabksnethod of multivariate
statistical analysis for dimensionality reducti@®ecause of the fact that a small
set of uncorrelated or independent variables ishhmaasier to understand and use
in further analysis than a larger set of correlabeddependent variables. This
technique has been widely applied to virtually gveubstantive area including
cluster analysis, visualization of high-dimensidgtyaldata, regression, data
compression and pattern recognition. In this retseatomponent analysis is used
to extract the sensitive feature from original iees.

Support vector machine (SVM) is a kind of machimarhing based on
statistical learning theory which can be appliedptditern classification. SVM
becomes famous and popular in machine learning aonityn due to the
excellence of generalization ability than the ttatial method such as neural
network. Therefore, SVM has been successfully adplto a number of
applications ranging from face detection, verificai and recognition, object
detection and recognition, handwritten characted agit recognition, text
detection and categorization, speech and speaksdficaBon, recognition,

information and image retrieval, prediction ancbso

49



2. Dimensionality Reduction using Component Analysis

Dimensionality reduction is one of the importangégmocessing steps in high-
dimensional data analysis. The goal of dimensionadiduction is to embed high-
dimensional data samples in a low-dimensional spalce most of intrinsic
information contained in the data is preserved. édicnensionality reduction is
carried out appropriately, we can utilize the cootpapresentation of the data for
various succeeding tasks such as visualizatiossifieation, etc.

Usually, somebody who works in pattern recognitemea will face the high
dimensionality of data, namely curse of dimensityallt means that the
processing of the data will be slow and requirdstaf memory and time. The
other problem with high dimensionality of data I tclassification using some
algorithms will overfit to the data training. Thus|eads to poor generalization to
the training samples. Feature extraction is a ggéntarm for methods for
constructing combinations of the variables which @qeund above problems but
still describe the data sufficiently accurately.réleseveral methods of feature
extraction technique will be discussed to giveuhderstanding of its process.

Component analysis is . an unsupervised approacimdo§ the good features
from the data. In unsupervised learning or clustgthere is no explicit teacher,
and the system forms clusters or natural groupinthe input patterns. In this
section, component analysis using linear and neatintechnique will be
introduced. Component analysis has objective tgeptathe high-dimensional
data onto a lower dimensional space. Thus, comparalysis has capability to

reduce the dimensionality by combining the features
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2.1. Linear Technique
2.1.1.Principal Component Analysis (PCA)

Principal component analysis (PCA) has been callezl of the most valuable
results from applied linear algebra. PCA is usedndantly in all forms of
analysis-from neuroscience to computer graphicsdise it is a simple, non-
parametric method of extracting relevant informatioom confusing data sets.
With minimal additional effort PCA provides a roadmfor how to reduce a
complex data set to a lower dimension to reveabktraetimes hidden, simplified
structure that often underlie it.

Moreover, PCA is a useful statistical techniqud ties found in many fields,
such as face recognition, optical character an@dpeecognition [1-3]. It is a
way of identifying patterns in data, and expresdimg data in such a way as to
highlight their similarities and differences. Sintieding patterns in data are
difficult in high dimensional condition, where th&xury of graphical
representation is not available, PCA is a convergdnol for analyzing data. The
other main advantage of PCA is that there is nohrlass information when the
data are compressed. Principal components (PClurcerrelated and ordered
such that théth PC has thé&th largest variance among all PC. Tktle of PC can
be interpreted as the direction that maximizesvtraation of the projection of the
data points such that it is orthogonal to the &r&tPC.

Given p dimensionality data set, the m principal axisTi, T,,..., T, where
1<m< pare orthogonal axis onto which the retained vagaiscmaximum in the
projected space. Generallyfl;;, T,,..., T, can be given by then leading
eigenvectors of covariance matrix

=Y (% = (5 - 4) (3.1)

wherex; [ x;, N is the number of samples, so that

ST =AT,  i=1..m (3.2)
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where/; is the ith largest eigenvalue 8f Them principal components of a given
observation vectax [ x; are given by
Y =[Vien Yo =T X Ta X =TT X (3.3)
The m principal components of the are the uncorrelated in the projected

space. In multi-class problem, the variations afadae determined on a global

basis that is the principal axis are derived frogiabal covariance matrix

ZZ (x =)' (% - ) (3.4)

j=1 i=1

S

Z|+-

whereizis the global mean of all sampléds,is the number of clasdy; is the
number of samples in clagsThe principle axidl, T,,..., Ty are therefore then
leading eigenvectors o6

ST =AT i=1..m (3.5)
wherel is theith eigenvalue ofS.

An assumption made for dimensionality reduction BEA is that most
information of the observation vectors Is contaiirethe subspace spanned by the
first m principal axis. Therefore, each original data wedan be represented by
its principal component vector

y=T'x (3.6)
whereT =[T1, Tp,..., Tnl.

The principal components of PCA are uncorrelatedl they have sequentially
maximum variances. The significant property is thhe mean squared
approximation error in the representation of thiginal inputs by the first several

principal components is minimal [4].

2.1.2.Independent Component Analysis (ICA)

ICA is a technique that transform multivariate ramdsignal into a signal
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having components that are mutually independerdomplete statistical sense.
Recently this technique has been demonstrated &bleeto extract independent
components from the mixed signals. Here indepereleneans the information

carried by one component can not be inferred bydtimers. Statistically this

means that joint probability of independent quaegiis obtained as the product of
the probability of each of them. A generic ICA mbdan be written as

X =As (3.7)
whereA is an unknown full-rank matrix, called the miximggatrix, ands is the
independent component (IC) data matrix, andgs the measured variable data
matrix. The basic problem of ICA is to estimate iheependent component
matrix s or to estimate the mixing matriX from the measured data matpx
without any knowledge af or A.

The ICA algorithm normally finds the independeningmnents of a data set by
minimizing or maximizing some measure of indepemgerCardoso [5] gave a
review of the solution to the ICA problem using ieas information theoretic
criteria, such as mutual information, negentropyd anaximum entropy, as well
as maximum likelihood approach. The fixed-pointoaithm used due to its
suitability for handling raw time domain data anaibd convergence properties.

This algorithm will now be described briefly.
The first step is to pre-whiten the measured datator x by a linear

transformation, to produce a vectarwhose elements are mutually uncorrelated
and all have unit variance. Singular value decontipos(SVD) of the covariance
matrix C=E[xx"] yields

C=vzvy’' (3.8)
where}. = diag(oi, o, ..., oy) is a diagonal matrix of singular values atis
the associated singular vector matrix. Then, tfetoreX can be expressed as

X =¥r V2pTx =QAs=Bs (3.9)
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whereB is an orthogonal matrix as verified by the follogirelation:
E[X(XT]=BE[s3']B" =BB" =1 (3.10)
An advantage of using an SVD-based technique isptiesibility of noise
reduction by discarding singular values smallenthagiven threshold. We have
therefore reduced the problem of finding an arbytrill-rank matrix A to the
simpler problem of finding an orthogonal matBxsinceB has fewer parameters
to estimate as a result of the orthogonality ca@nstr
The second step is to employ the fixed point athori Define a separating
matrix W that transform the measured data vesgtd@o a vectory, such that all
elementsy; are both mutually correlated and have unit vagaite fixed-point
algorithm then determiné&/ by maximizing the absolute value of kurtosisyof
The vectoly has the properties required for the independemipoments, thus
s=y=Wx (3.11)
From Eqg. (3.9), we can estimatas follows
$=B'X=B'Qx (3.12)
From Egs. (3.11) and (3.12) the relationfandB can be expressed as
W=B"Q (3.13)
To calculateB, each column vectds; is.initialized and then updated so ththt
independent componert =(b,)" X may have great non-Gaussianity. Hyvérinen
and Oja [6] showed that non-Gaussian represenepartence using the central
limit theorem. There are two common measures of@aussianity: kurtosis and
negentropy. Kurtosis is sensitive to outliers. @e bther hand, negentropy is
based on the information theoretic quantity off@eéntial) entropy. Entropy is a
measure of the average uncertainty in a randomabariand the differential

entropyH of random variablg with densityf(y) is defined as

H(y) =~ [ (y)log f (y)dy (3.14)
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A Gaussian variable has maximum entropy amongaateom variables with
equal variance [6]. In order to obtain a measuneani-Gaussianity that is zero for
a Gaussian variable, the negentrdpy defined as follows

J(y)=H (ygauss) —H(y) (315)

where ygauss IS @ Gaussian random variable with the same vegiaasy.
Negentropy is nonnegative and measures the depaofuy from Gaussianity.
However, estimating negentropy using Eq. (3.15) ldeoequire an estimate of the
probability density function. To estimate negenyrogfficiently, simpler

approximations of negentropy suggested as follows:

J(y) =[E{G(y)} - E{(v)}} * (3.16)
wherey is assumed to be of zero mean and unit varianisea Gaussian variable
of zero mean and unit variance, @ads any non-quadratic function. By choosing

G wisely, one obtains good approximations of neggytr A number of functions

for G are:
G, (v) :ai logcoshg,v) (3.17)
G, (v) = expaw?® 12) (3.18)
G;(v) =v* (3.19)

where ka < 2 and a,= 1. Among these three functionS; is a good general-
purpose contrast function and was therefore saldoteuse in the present study.
Based on approximate form for the negentropy, Hwyedr [7] introduced a
very simple and highly efficient fixed-point algttnm for ICA, calculated over
sphered zero-mean vecior This algorithm calculates one column of the nxatri
B and allows the identification of one independesponent; the corresponding
independent component can then be found using E@2) The algorithm is

repeated to calculate each independent component.
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2.2. Nonlinear Technique
2.2.1.Kernel PCA

Kernel PCA is one approach of generalizing line@ARnto nonlinear case
using the kernel method. The idea of kernel PCAoidirstly map the original
input vectorsx; into a high-dimensional feature spage)and than calculate the
linear PCA iny(x;) [8]. By mappingx; into ¢(x;) whose dimension is assumed to
larger than the number of training sampheskernel PCA solves the eigenvalue
problem of Eq. (3.2)

ST, =AT, i=1..m (3.20)

where Sis the sample covariance matrix @f(i),/ii iIs one of the non-zero

eigenvalues ofSandT; is the corresponding eigenvectors. TBen the feature

space can be constructed by
~ 1 m
S:EZ(U(XI)(”(XJT (3.21)
i=1

From Eq. (3.21), we can obtain the non-zero eigemgathat are positive. Let us

define matrixQ as

Q =[@Xy),....¢AX )] (3.22)
Then Eg. (3.21) can be expressed by
§=1oqT (3.23)
m

Moreover, we can construct a Gram matrix using BR2) which is their
element can be determined by kernel

R=Q'Q (3.24)
Ry = @0x)" @x) = (%) X)) = K(xi,%;) (3.25)
DenoteV = ()4, )5, ..., ) andA = diag@s, A2, ..., Am) are eigenvectors and

eigenvalues oR respectively, we can calculate the orthonormatmigctorf; as
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B, =\/j—Qv P=1.. (3.26)

Then we define matriB as

B=(8,5.0)=QVA~Y? (3.27)
The whitening matriXP can be derived from Eq. (3.27) and expressed by

1 -1/2
P= B(EAJ =/mQVA™ (3.28)

The mapped data in feature space can be whitenedthby following

transformation

r =P ax;) =vVmA VT QT @x) = VmA VT K (X, X), K (X5,X);0.. K (X, X)

=J/mA VR (3.29)

2.2.2.Kernel ICA

Practically speaking, the kernel ICA is the comboma of centering and
whitening process using kernel PCA as previouslplanation and iterative
section using ICA. The following task is to findetmixing matrixW in the kernel
PCA-transformed space to recover independent coemsrs from r, recall Eq.
(3.11)

S=Wx=Wr (3.30)

There are many algorithms to perform ICA. In thiady, we employ the
second order of ICA, proposed by Belouchrani et[@].which is adopted in
ICALAB toolbox [10]. In summary, the nonlinear fea¢ extraction using kernel
ICA in this dissertation performs two phases: wing process using kernel PCA

and ICA transformation in the kernel PCA whitenpdce.
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3. Support Vector Machine (SVM)

3.1. Overview

Support vector machine (SVM) is a relatively newmpuitational learning
method based on the statistical learning theotyodluced by Vapnik and his co-
workers [11-13], SVM becomes famous and popularmachine learning
community due to the excellence of generalizatibilitg than the traditional
method such as neural network. Therefore, SVM Hmeen successfully applied
to a number of applications ranging from face deec verification, and
recognition, object detection and recognition, Ivarilen character and digit
recognition, text detection and categorization,espeand speaker verification,
recognition, information and image retrieval, pedin and so on.

In machine condition’ monitoring and fault diagnogpsoblem, SVM is
employed for recognizing special patterns from a@egusignal, and then these
patterns are classified according to the fault oence in the machine. After
signal acquisition, a feature representation mettadbe performed to define the
features e.g. statistical feature of signal fossification purposes. These features
can be considered as patterns that should be reeugnsing SVM.

3.2. Basic Theory: Binary Classification Using SVM

Given data inpux; (i = 1, 2, ...,M), M is the number of samples. The samples
are assumed have two classes namely positive atassiegative class. Each of
classes associate with labelsype 1 for positive class angl = -1 for negative
class, respectively. In the case of linearly datas possible to determine the
hyperpland(x) = 0 that separates the given data

M
f()=w'x+b=> w,x; +b=0 (3.31)

j=1
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wherew is M—dimensional vector anblis a scalar. The vector and scalab are
used to define the position of separating hypemalarhe decision function is
made using sigri(x) to create separating hyperpline that classifyuingata in
either positive class and negative class.

A distinctly separating hyperplane should be satisé constraints

f(x)=1 if y=1

. (3.32)
f(x)=-1 if yy=-1
or it can be presented in complete equation
yf(x)=y(w'x, +b)=1 for i=12,..,M (3.33)

The separating hyperplane that creates the maximistance between the
plane and the nearest data, i.e., the maximum maigicalled the optimal
separating hyperplane. An example of the optim@ehylane of two data sets is
presented in Fig. 3.1.

[H, :{x] wX)+b=+1
N\
AR Positive Class

\[\(Iargin 5 O
N\ \\ O
= W 385°0
| \O\ O
[ ] ™

\
| \\
Negative Class \\

H. {xIwx)+b=-3'
-b | H:{x|(w|3k)+b=0}|
[wi

Fig. 3.1 Classification of two classes using SVM.
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In Fig. 3.1, the series data points for two différelasses of data are shown,
black squares for negative class and white cifdegpositive class. The SVM try
to place a linear boundary between the two diffectasses, and orientate it in
such way that the margin represented by the dotteel is maximized.
Furthermore, SVM attempts to orientate the boundargnsure that the distance
between the boundary and the nearest data pog#dh class is maximal. Then,
the boundary is placed in the middle of this margetween two points. The
nearest data points that used to define the maamgncalled support vectors,
represented by the grey circles and squares. WHeesupport vectors have been
selected the rest of the feature set is not reduias the support vectors can
contain all the information based need to defireedlassifier. From the geometry
the geometrical margin is found to be|f.

Taking into account the noise with slack variakfeasnd the error penal@, the
optimal hyperplane separating the data can be reditans a solution to the
following optimization problem

o1 M
minimize E||w||2 +C;<ﬁ (3.34)
T = -
subject to{ V(AN SRt s 5N (3.35)
& =0 i =1,.,M

where & is measuring the distance between the margin la@dkxamples; that

lying on the wrong side of the margin. The caldolatcan be simplified by
converting the problem with Kuhn-Tucker conditiomta the equivalent
Lagrangian dual problem, which will be

M M
minimize L(w,b,a) =%||w||2 Saywx, +0)+Y g, (3.36)
i1 i1

The task is minimizing Eq. (3.36) with respectwoand b, while requiring the
derivatives ofL to a to vanish. At optimal point, we have the followisgddle

point equations
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& =0, % =0 (337)
ow ob

Which replace into form

Wziaiyixi’ iaiyi =0 (3.38)
i1 i1

From Eq. (3.38), we find that is contained in the subspace spanned bythe
Using substitution Eq. (3.38) into Eq. (3.37), wet ghe dual quadratic

optimization problem

M M
maximize L(a) =) o, —%Zaiajyi YiXiX, (3.39)
= =0
subjectto a;=0, i=1,..., M.
M
Doy, =0 (3.40)
i=1

Thus, by solving the dual optimization problem, aiains the coefficients;
which is required to express tweto solve Eq. (3.34). This leads to non-linear
decision function.

M
f(x)= sigr{_z ayy; (X X}) + b] (3.41)
e

SVM can also be used in non-linear classificatiasks with application of
kernel functions. The data to be classified is neg@jppnto a high-dimensional
feature space, where the linear classification dssjple. Using the non-linear

vector function g(x) = (¢ (x), ..., ¢ (x))t0 map then-dimensional input vectox

onto |-dimensional feature space, the linear decifiinction in dual form is given
by
M
f (x) = sig Za'i Y, (@7 (x)®(X;)) +b (3.42)
ij=1

Working in the high-dimensional feature space esmhbihe expression of
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complex functions, but it also generates the probl€omputational problem
occur due to the large vectors and the overfitagp exists due to the high-
dimensionality. The latter problem can be solveduking the kernel function.

Kernel is a function that returns a dot producthef feature space mappings of the
original data points, stated l¢x;,x;) = (@7 (x;)®,(x;)) . When applying a kernel

function, the learning in the feature space dodsremuire explicit evaluation of
@ and the decision function will be
M
f(x)= sigr{_zm y K (X;,x j)+b] (3.43)
NE!

Any function that satisfies Mercer’s theorem [1%] £an be used as a kernel
function to compute a dot product in feature spddeere are different kernel
functions used in SVM, such as linear, polynomiat gGaussian RBF. The
selection of the appropriate kernel function isyvenportant, since the kernel
defines the feature space in which the trainingegamples will be classified. The
definition of legitimate kernel function is giveny bMercer's theorem. The
function must be continuous and positive defirlitethis work, linear, polynomial
and Gaussian RBF functions were evaluated and fatediin Table 3.1.

Table 3.1 Formulation of kernel functions

Kernel K(X, Xj)

Linear X' Xj

Polynomial gx'x+n' , ¥y >0
Gaussian RBF expix — x| /2y

3.3. SVM Solver
3.3.1.Quadratic Programming (QP)
Vapnik [15] described a method which used the pteg conjugate gradient
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algorithm to solve the SVM-QP problem, which hasrbknown aghunking The
chunking algorithm uses the fact that the valuthefquadratic form is the same if
you remove the rows and columns of the matrix tleatesponds to zero Lagrange
multipliers. Therefore, chunking seriously reduti®s size of the matrix from the
number of training examples squared to approximétet number of non-zero
Lagrange multipliers squared. However, chunkinty sinnot handle large-scale
training problems, since even this reduced matxnot fit into memory. Osuna,
Freund and Girosi [16] proved a theorem which satgga whole new set of QP
algorithms for SVM. The theorem proves that thgdéa®@P problem can be broken

down into a series of smaller QP sub-problems.

3.3.2.Sequential Minimum Optimization (SMO)

Sequential minimal optimization (SMO) proposed bgtP[17] is a simple
algorithm that can be used to solve the SVM-QP lerabwithout any additional
matrix storage and without using the numerical QRinmzation steps. This
method decomposes the overall QP problem into QiPpsablems using the
Osuna’s theorem to ensure convergence. In thiemigon, SMO is used as a

solver and detail descriptions can be found intiPlat].

In order to solve the two Lagrange multipliers a,, SMO first computes the
constraints on these multipliers and then solveshie constrained minimum. For
convenience, all quantities that refer to the finstitiplier will have a subscript 1,
while all quantities that refer to the second nulikir will have a subscript 2. The
new values of these multipliers must lie on a Iiméa;, a») space, and in the box

defined by &< a1, a> < C.
a1+ Vo= %%+ 2%y, = constant (3.44)

Without loss of generality, the algorithm first cputes the second Lagrange
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multipliers a;"*" and successively uses it to obtain™". The box constraint 0
< a1, a» < C, together with the linear equality constrakd; y; = O, provides a
more restrictive constraint on the feasible valfes ao"*". The boundary of

feasible region fon, can be applied as follows
If y1 # y5; L = max(0,a2° — 2,°%), H = min(C, C + &u>® — ;,®9), (3.45)
If y1 = y5; L = max(0,0.° + 2?4 ~C), H=min(C, C + o:®* + "%  (3.46)

The second derivative of the objective functionngldhe diagonal line can be

expressed as:
1 =K(Xg, X1) + K(X2, X2) = K(X1, X2). (3.47)

Under normal circumstances, the objective functath be positive definite,
there will be a minimum along the direction of fireear equality constraint, and
n will be greater than zero. In this case, SMO compuhe minimum along the
direction of the constraint:

old _ p=old
a;ew - azold + y2 ( Ei E2 ) (348)

n
whereE; is the prediction error on thigh training example. As a next step, the
constrained minimum is found by clipping the undceised minimum to the

ends of the line segment:

H ifa,”"2H;
a;ew,clippedz aznew |f L <a,znew< H, (349)
L ifat™<L

new :

Now, lets=Yy; y». The value of""is computed from the newm,""
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a® =a+s(ad-a)™ (3.50)
Solving Eg. (3.39) for the Lagrange multipliers doaot determine the
thresholdb of the SVM, sob must be computed separately. The following
thresholdb,, b, are valid when the new;, a» are not at the each bounds, because

it forces the output of the SVM to lyg y» when the input ig;, X, respectively
by =E1 +y1 (™" - alold) K(X1, X1) + Y2 (aznew'cnpped— O’ZOId) K(X1, X2) + b
(3.51)
bo = Bz +y1 (1™ = a1”) K(x1, X2) + Y2 (22" ""P= 2,™) K(xz, X) + b™
(3.52)

When bothb; and b, are valid, they are equal. When both new Lagrange
multipliers are at bound andlifis not equal tdd, then the interval betwedmnand
b, are all thresholds that are consistent with theukla-Kuhn-Tucker conditions
which are necessary and sufficient conditions foroatimal point of a positive
definite QP problem. In this case, SMO choosestkineshold to be halfway
betweenb; andb, [17].

3.4. Multi-class Classification

The discussion above deals with binary classifocativhere the class labels
can take only two values: 1 ard. In the real world problem, however, we find
more than two classes for examples: in fault diagnof rotating machineries
there are several fault classes such as mechamdalance, misalignment and
bearing faults. Therefore, in this section the melfiss classification strategy will
be discussed.
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3.4.1.0ne-Against-All (OAA)

The earliest used implementation for SVM multi-slagdassification is one-
against-all methods. It construgtSVM models wherd& is the number of classes.
Theith SVM is trained with all of examples in tli class with positive labels,
and all the other examples with negative labelsisTgivenl training dataxi, y1),
o, X, W), Wwherex O R, i =1, ...,I. andy; 0 {1, ..., k} is the class ok, theith
SVM solve the following problem

minimize: %”w‘ 15 +CiZ|:l:E} (w')" (3.53)
subject to: (W) g(x;) +b' 21=¢], if y=i (3.54)
W) @x;) +b' <-1+&, if y#i (3.55)
20 j=1..) (3.56)

where the training datg is mapped to a higher dimensional space by funatio
andC is the penalty parameter.
Minimizing Eq. (3.53) means we would like to maxami2/Nvi||, the margin

between two groups of data. When data is not sbjgrthere is a penalty term

|
cYé, which can reduce the number of training errors.
i=1

3.4.2.0ne-Against-One (OAQ)

Another major method is called one-against-one otethThis method
constructsk(k—-1)/2 classifiers where each one is trained on ftata two classes.
For training data from th&h and thegth classes, we solve the following binary
classification problem.

S R oo
minimize: §||w' 15 +CZ§' (w)T (3.57)
subject to: (W' )T g(x,) +b" 21-&", if y, =i (3.58)
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W) gx,)+b" <-1+&1, if y, =] (3.59)

>0 j=1..) (3.60)

There are different methods for doing the futuesting after allk(k—1)/2
classifiers are constructed. After some tests, dheision is made using the
following strategy: if sign (") @x)+b") saysx is in theith class, then the vote

for theith class is added by one. Otherwise,jthas increased by one. Tha&ns
predicted in the class using the largest vote. vidiag approach described above

is also called as Max Win strategy.

3.4.3.Direct Acyclic Graph (DAG)

In this method, the training process is similaKAO strategy by solving(k—
1)/2 binary SVM. However, in the testing processises a rooted binary directed
acyclic graph which hagk-1)/2 internal nodes andleaves. Each node is binary
SVM of ith andjth classes. Given a test samptestarting at the root node, the
binary decision function is evaluated. Then it nm®owe either left or right
depending on the output value. The detail explanatif this method is suggested

to see reference [18].

4. Wavelet Support Vector Machine (W-SVM)

The idea of wavelet analysis is to approach a fanair signal using a family
of functions which are produced by translation afldtation of the mother

wavelet functiong, p(x)
Yap () =lal™? w(%bj (3.61)

wherex, a, b 0 R, a is the dilatation factor and is the translation factor. The

wavelet transform of any functid(x) can be expressed as
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Wop (F) =(F(0.00.5(%)), F()DOL(R) (3.62)
where the notatiory ,) refers to inner product ibx(R).

Eq. (3.62) means that any functiéfx) can be decomposed on wavelet basis
Wap(X) if it satisfies the condition [19,20]

H 2
Cw=ij%%de<w (3.63)

whereH(a) is Fourier transform of, p(X).

Following [19], the functiori(X) can be reconstructed as follows
_ 1 da
f0=c- [ [ Was(f) #as) b (3.64)
To approximate Eg. (3.64), then the finite can bitten as
R I
FO0 = Wiery (%) (3.65)
i=1

Using Eg. (3.65){(X) can eventually be approximated fxy) .

For a common multidimensional wavelet functiore thother wavelet can be

given as the product of one-dimensional (1-D) wat/&Inction [20]
N
W(x) = |'1| W(x) (3.66)

where x =(x,....xy) JR". So, every 1-D wavelet mothe#(x) must satisfy Eq.

(3.63).

Recalling the decision function for SVM in Eq. (3)4the dot product can be
replaced using kernel function as it was done [y, [¢0 thaK(x,x') = K((x[x")).
In SVM theory, any function which satisfies the Mers condition can serve as
kernel function [11,14].

SupposeK is a continuous symmetric function d®', such that integral
operatorTk: Lo(RY) - Lo(RY),
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T = [ K0 (0 dx (3.67)
is positive. Let @ OL,(RY) be the eigenfunction offy associated with the
eigenvalue A, 20 and be normalized in such a way fhat| =1, then the kernel

functionK (x,x") can be expanded as

KXX) =34 8K A(X) (3.68)

and must satisfy the positivity condition of théldaing integral [14]
j IL KOGX) () () e 2 0,0 F OL,(RY) (3.69)
For building a new kernel using wavelet, it mayhedpful to refer to the frame
theory, introduced by Duffin and Schaeffer [21],i@¥his an extension of the

normalized orthogonal basis. In the frame theong ocan reconstruct perfectly a

function f in a Hilbert spaced from its inner product{,) with family vectors

{ i} if they satisfy
AlLFIESNCE BT <BIIE IR (3.70)
k

where the constants A'and B satisfy the conditibnA< B <.

Any function in Hibert space can be decomposedkimis
=Y (LB = ) (F 0T (3.71)
k k

where @, =(T*T)"y, is the dual frame ofy, andT is the frame operator [12,
31].
In Ly(RY), if f = {¢} is a frame and A} is a positive increasing sequence, a

function K(x,x') can be given by
K(X) =34 ¢ () ¢ (x) (3.72)
i=1
Eq. (3.72) is similar to Eq. (3.68) since both loémn satisfy the condition for
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kernel function. Moreover, a mother wavelgty(x) is called a frame wavelet i
0 Ly(RY), a>1,b> 0 and the family function

{& i} ={ D Trp 0} (3.73)
whereD and T are unitary dilatation operator and unitary tratish operator,
respectively, whilex is scale parameter aihds translation parameter.

A wavelet kernel function can be constructed by mogher wavelet which can
generate frame wavelet while satisfying the Merceondition in Eq. (3.69). In
addition to the inner product, there exists a keoadled translationinvariant
kernel [22, 23] such that

K(x,x") = K({x=x")) (3.74)

If the translatiorinvariant kernel is admissible in SVM kernel fuctj then
the necessary and sufficient condition of Mercénsorem must be satisfied. The
other theorem stated that a translation-invariaerhél is an admissible support

vector (SV) kernel if only if the following Fourigransforms [22]
FIK)(e) = 2m) ™" L exp(j(wix)) K (x) dx (3.75)

IS non-negative. Based on the mother wavelet, theelet kernel which satisfies

the translation invariant theorem can be given.as

K(x,x)=K(x-x)= - l//[%} (3.76)

The construction of wavelet kernel function usin@alf Daubechies, and

Symmlet can be shown in Fig. 3.2.
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(a) Haar kernel
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(b) Daubechies kernel
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(c) Symlet kernel

Fig. 3.2 Wavelet kernel function.
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V. SVM Based Fault Diagnosisfor Induction
Motors

1. Introduction

Three phase induction motors are the motors meguéntly used in industry.
They are simple, rugged, relatively low-price, @agdy to maintain. In this chapter,
the basic principle of three phase induction motisrgeviewed including its
general structure and construction. Moreover, faulinduction motors that are
frequently occurred and measurement for fault daagnwill be reviewed.

Fault diagnosis of induction motors is also preseénthich is the main part of
this chapter. First, the existed method for fauttgdosis of induction motor is
reviewed and then followed by introducing the pregb method. Finally, case
study of fault diagnosis of induction motor is geted based on vibration and

current signals.
2. Structureand Operation

A three-phase induction motor, presented in Fid. Has two main parts: a
stationary stator and a revolving rotor. The rasoseparated from the stator by a
small air gap that ranges from 0.4 mm to 4 mm, ddjpg on the power of motor.

The stator consists of a steel frame that support®llow cylindrical core
made up of stacked laminations. A number of evephced slots, punched out of
the internal circumference of the laminations, juevthe space for the stator
winding.
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The rotor is also composed of punched laminatiorfisese are carefully
stacked to create a series of rotor slots to pewplace for the rotor winding.
There are two types of rotor windings: conventioBglhase windings made of
insulated wire and squirrel-cage windings. The tgpwinding give rise two main

classes of motors: squirrel-cage induction motard &ound-rotor induction
motors.

Fig. 4.1 Exploded view of cage motor: Stator (19idr (2) End-caps (3),
Cooling fan (4), Ball bearings (5), Terminal box [6&].

A squirrel-cage rotor is composed of bare per bslightly longer than rotor,
which are pushed into the slots. The opposite enelsvelded to two copper end-
rings, so that all the bars short-circuited togethEhe entire construction
resembles a squirrel-cage, from which the nameived. In small and medium
size of motors, the bars and end-rings are madkeeast aluminum, molded to
form an integral block

Another type is a wound-rotor has a 3-phase windngilar to the one of the
stator. The winding is uniformly distributed in tekot and is usually connected in
3-wire wye This motor is, however, less efficient than thaigel-cage induction
motor, and it is used only when a squirrel-cageiatidn motor cannot deliver the
high enough starting torque.

When the stator winding of a three-phase inducti@stor is connected to a
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three-phase power source, it produces a magnetid that is a constant in
magnitude and revolves around the rotor at the lmgmous speed. If is the
frequency of the current in the stator winding &hd the number of poles, the

synchronous speed of the revolving field is

n, =220 (4.1)
wherens is synchronous speed (r/mirf)is frequency of the source (Hz) aRds
number of poles. This equation shows that the symdus speed increases with
frequency and decreases with number of poles.

The revolving field induces electromotive forceME) in the rotor winding.
Since the rotor winding forms a closed loop, théuced EMF in each coil gives
rise to an induced current in that coil. When arent-carrying coil is in a
magnetic field, it experiences a force that terdsotate it. The rotor receives its
power by induction only when there is a relativetioo between the rotor speed
and the revolving field. Since the rotor rotates aatspeed lower than the
synchronous speed of the revolving field, an inguncimotor is also called an
asynchronous motor.

The slip of induction._motors, is defined as-the difference between the
synchronous speed and the rotor speed, expressadpescent (or per unit) of

synchronous speed. The per unit slip is given maggn
—_ nS - n
n

S

S (4.2)

wheren is rotor speed (r/min), The slgis practically zero at no-load and is equal
to 1 (or 100%) when rotor is locked.

3. Fault Occurrence and Measurement for Diagnosis

The faults frequently occurred in induction motoosnponents are rotor, stator
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and bearing defects. Based on EPRI which has coedil&rge survey on motors
fault of 5000 sample motors, 97% among them areetiphase squirrel-cage
induction motors. The fault occurrence based onstiveey is presented in Fig.
4.2. Most common fault is worn bearing that gereegatcessive vibration, noise
and possible misalignment of the rotor shaft. Mafsthe stator related faults are
due to degraded insulation in stator windings gagan inter-turn, phase-to-phase
or phase-to-ground short circuits. Other case tisrfault which can be divided

into faults related to motor eccentricity and plegsidamage of the rotor and they
are usually slowly although in the end the brokamsbmay damage the stator
windings.

Others

Rotor 12%

10%

Stator
38%

Bearing
40%

Fig. 4.2 EPRI survey on accurrence of motor fajdjs

It is found out that a variety of measurements banapplied to collect
information that is useful in the detection of ictan motor faults. In this
dissertation, two of them are elaborated usingostatirrent of the motor and
vibrations of the motor. Vibration analysis hasmesed in motor fault detection
for decades. Each fault in a rotating machine pcedwibrations with distinctive
characteristics that can be measured and compatiedeference ones in order to
perform the fault detection and diagnosis. Motarent monitoring is also called
motor current signature analysis (MCSA) and it islely studied, because no
extra instrumentation is needed, if the faults bardetected based on the current.

It is also claimed that MCSA give the same inforigraton motor condition as
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vibration measurements [3].
In this dissertation, the faults frequently occdri@ induction motors are
reviewed as follows:

3.1. Bearing Fault

A bearing consists of two rings inner and outetween which a set of balls or
rollers rotate in raceways. Fig. 4.3 shows the pad deep groove ball bearing.
Under normal operating conditions of balanced laad good alignment, fatigue
failure begins with a small fissure, located betw#e surface of the raceway and
rolling elements, which gradually propagate to seface generating detectable
vibrations and increasing noise levels [4]. Congithstressing causes fragments of
the material to break loose producing a localiz#thfie phenomenon known as
flaking or spalling [5]. Once started, the affectedea expands rapidly
contaminating the lubrication and causing localize@rloading over the entire
circumference of the raceway.

Eventually, the failure results in rough runningtleé bearing. While this is the
normal mode of failure in rolling element bearingbere are many other
conditions which reduce time of bearing failure.e¥@ external sources include
contamination, corrosion, improper lubrication, noyper installation or brinelling.

Outer Race

79



Fig. 4.3 The structure of a deep groove ball bgarin

Contamination and corrosion frequently acceleraaring failure because of
the harsh environments present in most industetings. Dirt and other foreign
matter that is commonly present often contaminha& ltearing lubrication. The
abrasive nature of these minute particles, whosdnleas can vary from relatively
soft the diamond like, causes pitting and sandiogoas that give way to
measurable wear of the balls and raceways [5].iBgaiorrosion is produced by
the presence of water, acids, deteriorated luboicadnd even perspiration from
careless handling during installations [4,5]. Ortbe chemical reaction has
advanced sufficiently, particles are worn off réisigl in the same abrasive action
produced by bearing contamination. Improper lultiicaincludes both under and
over lubrication. In either case, the rolling elenseare not allowed to rotate on
the designed oil film causing increased levels @dtimg. The excessive heating
causes the grease to break down which reducebiiity @ Iubricate the bearing
elements and accelerates the failure process. Wneerlubrication conditions
become inadequate, the increased friction resultsatal — metal contact.

Installation problems are often caused by imprgpgricing the bearing onto
the shaft or in the housing. This produces physdaiage in the form of
brinelling or false brinelling of the raceways whiteads to premature failure.
Misalignment of the bearing, which occurs in tharfways depicted in Fig. 4.4, is
also a common result of defective bearing installatThe most common of these
Is caused by tilted races [5].

Brinelling is the formation of indentations in thhaceways as a result of
deformation caused by static overloading. Whiles #oirm of damage is rare, a
form of “false brinelling” occurs more often. Inishcase, the bearing is exposed
to vibrations while even though lightly loaded liegs are less susceptible, false
brinelling still happens and has even occurred ndurthe transportation of
uninstalled bearings [4].
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Fig. 4.4 (a) Misalignment (Out-of-Line), (b) Shatflection, (c) Crooked or tilted
outer race (d) crooked or tilted inner race
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Regardless of the failure mechanism, defectiveingllelement bearings
generate mechanical vibrations at the rotationeédp of each component. These
characteristic frequencies, which are related ® rhceways and the balls or
rollers, can be calculated from the bearing din@msiand the rotational speed of
the machine. Mechanical vibration analysis techesgare commonly used to
monitor these frequencies in.order to determinectmlition of the bearing.

The characteristic frequencies of bearing are kswo

BPFO =(N/2) f, {1 - (B/P) cosg} (4.3)
BPFI = (N/2) f, {1 + (B/P) cosg} (4.4)
BSF =(P/2B) f, {1 - (B/P)* co ¢} (4.5)
FTF = (f, /2){1 - (B/P) cosg} (4.6)

BPFO is ball pass frequency of the outer race; genéraierollers passing
over defective outer racBPFI is ball pass frequency of the inner race; gendrate
by rollers passing over defective inner ra88Fis ball spin frequency; generated

by ball defectsFTF is fundamental train frequency; generated by ahjects or
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improper movements. TheN, is number of rolling element®, is pitch diameter
(mm), B is ball or roller diameter (mm) arfdis rotating speed in revolution per
second.

The frequencies in Eqgs. (4.3)-(4.6) are valid fteal bearings; in practice, the
rolling element slides in addition to its rotatidgising a sliding factor that ranges
from 0.8-1.0, this phenomena can be taken accdubbth literature and practice
the equations are often replaced by approximatatexu[6] which can be used
when the exact bearing geometry is not known. Aattaristic frequency using
approximate formula for outer race and inner raefeds are

f, = 04Nf, (4.7)
f, = 06Nf, (4.8)

Schoen [7] implemented motor current in techniqueletect rolling-element
bearing fault in induction motors. Line current sfpal components are predicted
at frequencies of

fong =I o 2, | (4.9)
where f, is one of the characteristic vibration frequenciksis the supply
frequency, andn = 1,:2, 3, ... . Although the magnitudes of this rhanic
component are small compared to other spectralitoasts, they fall at different
location from those of the supply and machine iaherslot harmonics. This
phenomenon makes it feasible to distinguish betwéealthy and faulty

operations.

3.2. Stator Fault

Stator winding faults constitute almost 30-40% awuction motor faults
according the survey. These faults are usually tshiocuit between a phase
winding and the ground or between two phases. dtrisngly believed that such
fault initiate as undetected turn-to-turn faultattdevelop to a major short circuit.
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Stator winding fault might have a destructive effeicthe stator coils.
Armature of stator insulation can fail due to seveeasons as follows:

Short circuit or starting stress.

Stack core lamination, slot wedges and joints.

Electrical discharge.

High stator core or winding temperature.

Loose bracing for end winding.

Contamination due to oil, moisture and dirt.

N g bk wDd ke

Leakage in cooling system.

There are several methods proposed to detect tiianed faults. Cash [8]
summed up the machine line-to-neutral voltagesamaneously and filtered out
the undesired saturation, slots and other soundabpe harmonic. The RMS
value of the remaining voltage component was @tilito detect the existence and
severity of stator inter-turn faults, the standdeviation of the RMS line current
of an induction motor was used to detect stataritirns [9].

Penman [10] monitored the axial leakage flux resglirom the stator winding
to detect and locate stator inter-turns. The veltengluced in a search coil wound
concentrically around the machine shaft was propaat to this flux component.
Some spectral constituents of this voltage wereesl to detect a turn-to-turn
fault. These frequencies are given by

f, = [ki(ﬂpJa— s)} f, (4.10)

wherek =1, 3 andh =1, 2, 3, ..., (B-1), p is the number of pole pairs, s is the
slip andf. is the supply frequency. The location of the iriten fault could be
specified using four auxiliary winding mounted syetncally in the four
quadrants of the motor near the end winding. The RMS magnitudes at the

various locations were measured. The change inimgadrom the four coils
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could be used to triangulate the area of the unbathflux, and hence, locate the

shorted turn.

According to the modes of stator winding failuitgere are five types of modes,
which are illustrated in Fig. 4.5.

TURN TO TURN

colL 10 ColL

/- OPEN CIRCUIT
‘—L PHASE TO PHASE

L2 72 <4—COI1. TO GROUND

Fig. 4.5 A possible fallure modeswyeconnected stator winding [11].

Bonnet [11] reported-in detail cause and analy$istator faults those are
influenced by various of stresses such as theviig:

3.2.1. Thermal Stress

The stress in induction motor that caused by teatpes effects such as
thermal aging and thermal overloading. The AIEE Hfd IEEE 275 test
procedures can be used to determine the effecemperature on the winding
insulation system. Thermal overloading is influehdey various factors i.e.
voltage variations, unbalanced phase voltage, mygcloverloading, obstructed
ventilation and ambient temperature. The relatignbletween the various classes
of insulation and operating temperature is preseimé-ig. 4.6.
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Unless the operating temperature is extremely higé,normal effect of the
thermal aging is to render the insulation systerimenable to other influencing

factor or stresses that actually produce the faillihe detail of this information is
reported in aforementioned reference.
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Fig. 4.6 Total winding temperatur&Q) versus life [11].

3.2.2. Electrical Stress

Electrical stress are generally discussed as &slim the windings such as
phase-to-phase, turn-to-turn, or phase-to-groumitshTesting to determine the
integrity of the insulation is paramount to longtorolife. Checking the integrity
of the insulation can be accomplished by the MCGihaard test. Insulation can
also have tracking occur in which the insulatiorvedleps a small hole which
leakage to ground. If the motor is contaminatedhwianductive foreign materials,
this will create a path to ground causing the iasah to burn, which causes
further deterioration of the insulation. Keeping ihsulation dry and contaminant
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free will help to minimize or prevent tracking frootcurring. Another method
employed to prevent tracking is to use insulatiapable of being completely
immersed in accordance with NEMA MG 1-20.49 andEEE9.

3.2.3. Mechanical Stress
The stator coils can and do move during operatibthe motor, especially
when the motor is started. When the motor is slattee current in the coils is at
highest which result in a high magnetic force ttwises the coils to vibrate at two
times line frequency. This vibration causes thdsctm move, which can result in
damage to stator, rotor-and other motor componeB&aring failures and
misalignment can cause the rotor to strike thestathich can result in grounded
coils, excessive heat generation, or severe datodygth the rotor and stator.
Some of the common causes of the winding failuvdsich can fit into the
miscellaneous mechanical type of failure, are #svic:
1. Rotor balancing weights coming loose and strikimg stator.
2. Rotor fan blades coming loose and striking theostat
3. Loose nuts and bolts striking the stator.
4. Foreign particles entering the motor through thetiletion system and
striking the stator.
5. A defective rotor (usually open rotor bars), cagsihe stator to overheat
and fails.
6. Poor lead lugging of connections from the motod&to the incoming line
leads, causing overheating and failures.

7. Broken lamination teeth striking the stator duéatogue.

3.2.4. Environmental Stress
The quickest way to discuss environmental stressigall it what it is:
contamination. Contamination is anything in the ondhat is not supposed to be
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there. Any foreign material that enters the motm cause environmental stress.
Some examples are moisture, oil, dirt, coal, dest, All of these contaminants
can have the following effects on the motor:
1. Reduction in heat dissipation, which will increag@erating temperature,
thereby reducing insulation life.
Premature bearing failure due to high localizedsses.
Breakdown of the insulation system, causing shamtsgrounds.

3.3. Rotor Fault
The reasons for rotor-bars and end-ring breakagesaveral. They can be
caused by
1. Thermal stress due to overload and hotspot or ekeedooses and
sparking.
2. Magnetic stresses caused by electromagnetic foucdmlanced magnetic
pull, electromagnetic noise and vibration.
3. Residual stresses due to manufacturing imperfextion
4. Dynamic stresses arising from shaft torque, cargaf forces and cyclic
stresses.
5. Environmental stresses caused by for example conédion and abrasion
of rotor material due to chemical or moisture.
6. Mechanical stresses due to loose laminations, uUatigparts, bearing
failures, etc.
Motor current signature analysis was extensivelydu® detect broken rotor
bar and end ring faults in induction motors [12,1Bhe sideband components
used to detect broken rotor bars is given by

f,=@Qx2s)f, (4.11)
while the lower sideband was fault related and upper sideband was due to

consequent speed oscillation. Bellini [14] stateel summation of magnitudes of
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these two sideband components was a good diagsastex. It was concluded
that MCSA was superior to signature analysis ofenir space vector modulus
and instantaneous power and torque. The actuaksequof sidebands was given
by [15]

f, = L+ 2k9) f, (4.12)
wherek=1, 2, 3, ... .

Considering the speed ripple effects, it was regbrthat other frequency
components, which could be observed in the statoent spectrum, are given by

f, = H%] -5+ s} f. (4.13)

wherep is the number of pole pairs, aké 1, 2, 3, ... .

The other method for rotor fault detection is né@d using current Park’s
vector approach to diagnose rotor cage faultsreetphase induction motors [16].
This technique can be used to distinguish betwkereffect of this fault and that
associated with driving time-varying loads. Rotage faults can be detected by
the identification of an elliptic figure in Parkigector representation. When the
load has low-frequency oscillating component, tagent Park’s vector pattern is
an ellipse oriented along the first quadrant of ¢bherdinate axes. In the presence
of rotor cage fault, the pattern of ellipse becormeented in the second quadrant
of the coordinate axes.

3.4. Eccentricity

Rotor eccentricity, which results in uniform airgajg divided into two
catagpries, static and dynamic. In static eccattritase, the airgap has a fixed
minimal position, whereas this position rotateshvitie rotor in case of dynamic
eccentricity. In practice, both of types occur sitameously. Due to some designs
and manufacturing imperfections, up to 10% ecceityris allowed. Higher order
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of eccentricity can cause rotor-to-stator rub, t@sy in damage of rotor and/or
stator winding or core.

Eccentricity faults could be diagnosed by monitgrithe airgap flux in
induction motors. Internal and external searchsca#re placed in the stator and
the spectral constituents of their induced voltagee observed for diagnosing
component at

fo=fo T, (4.14)
wherefe is supply frequency arfdis the rotational frequency.

Dorrel [17] monitored casing vibration componentsaarequencgf, + f, to
diagnose eccentricity faults in induction motorsotbt current signature analysis

(MCSA) was used extensively to diagnose eccenyritiults in three-phase

induction motors. Specific frequencies relatedataltfare given by

£, = [(kRi ny) (1;5) tv} f (4.15)

Wherek is any positive integeR is the number of rotor barg,is the number of
pole pairs,ng is the eccentricity ordem{ = O for static eccentricityng = 1 for
dynamic eccentricity)s is the motor slipy is the order.of some harmonics present

in the power supply driving the motor£€ 1, 3,5, ...).

In the case of static eccentricity, principal sl@rmonic and supply time
harmonics contribute to these components. If tldeoof one of this harmonics is
a multiple of three, it may not theoretically appeathe spectrum of a balanced
machine. However, it was shown that for a specdimbination of the number of
fundamental pole pairs and number of rotor sldts,rhachine would give rise to
only static or only dynamic eccentricity relatedmqmnents [18].

Obaid [19] used MCSA to diagnose eccentricity fmudtthree-phase induction
motors by observing the components
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fo.= [(—r;j(l—s) 11} f, (4.16)

wherem is a positive integer. The RMS value of each congnd was calculated
after filtering out the fundamental. The RMS valwesre compared to a preset
threshold that was determined the observation ahdooperation. Under load
imbalance, and horizontal and vertical misalignnertditions, the machine gave

rise to such harmonic components with magnitudesigdgent on the condition.

3.5. Unbalance Mass

Mass unbalance is the most common fault associaitdrotating shaft. It
occurs when the geometric center (shaft centerane)the mass center of a rotor
do not coincide. There are three types of unbalgdRae 4.7): Static unbalance
coupled unbalance and overhung rotor unbalanceicStabalance has equal
phase on each bearing, so vibration along withatatirection in phase. While in
coupled unbalance, phase changes 180° across dpesorvibration along with
radial direction out phase. Overhung rotor unbaanontains both radial and

horizontal vibration, so both static and dynamibalance can be seen together.

(a) Static unbalance (b) Coupled unbalance O{@rhung rotor unbalance

Fig. 4.7 Mass unbalance.

3.6. Bowed Rotor
A bowed rotor or bent shaft usually causes a pceloa the bearings. The
center of the mass of a bent shaft can be movecraugh away from the
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geometric center to cause some mass unbalance4(B)g A bent shaft is looking
like a misalignment in the spectrum. A phase measent for axial vibration
across the shaft will distinguish between misalignimand bent shaft, as the bent
shaft will produce a 180 degrees phase shift. Ateovibration style of a bent
shaft contains axial and radial direction. Amongnth 180° phase shift in axial

vibration, while 0° phase shift in radial vibration

Fig. 4.8 Bowed rotor.

4. Condition Monitoring and Fault Diagnosis of Induction Motors

Induction motor is an essential component in maastrial processes which
deals with moving and lifting products. Speciakation is urgently required in
condition monitoring of induction motors in orderdguarantee its stable and high
performance. By applying early fault diagnosis gfemting induction motors
which give incipient fault condition, little effotb overcome such fault can avoid
more serious conditions.

Condition monitoring and fault diagnosis methodsdentify the faults may
involve different types of techniques. These teghas can be described as
follows:

Electromagnetic field monitoring, search coils,l€avound around motor
shafts (axial flux related detection)

Temperature measurements

Infrared recognition
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Radio frequency (RF) emissions monitoring

Noise and vibration monitoring

Chemical analysis

Acoustic noise measurements

Motor current signature analysis

Model, artificial intelligence based techniques

Several methods of condition monitoring and faudgdosis that related to

fault can be detected are presented and comparkabie. 4.1.

Table 4.1 Comparison of detection techniques

Fault detected

El'. B E| "4 =2 &
Methods c_‘g‘ :% _§ S., £ % 2l s ¢
2| @ g g8 a gl & S
Vibration No | No Yes Yes Yes
MCSA No | Yes Yes Yes Yes
Axial flux No | Yes Yes Yes No
Lubricating oils debris No|~ No No No Yes
Cooling gaps Yeg Yes Yes No No
Partial discharge YesNo No No No

5. TheProposed Fault Diagnosis and Case Studies

In this work, vibration and/or current signature tietection and diagnose of
faults in induction motor may be consider as a kwofdpattern recognition
paradigm. It consists of data acquisition, signakcpssing, feature extraction and
selection-including feature reduction- and faultmgdosis. A novel faults
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diagnosis method for induction motor is proposedFign 4.9, which is based on
feature extraction (linear and nonlinear), the alise evaluation technique and
SVM multi-class classification. From Fig. 4.9, tfalt diagnosis procedure can
be summarized as follows:

Step 1:the data acquisition is carried out and then Wwdd by features
calculation using statistical features parametemftime domain and frequency
domain.

Step 2:feature extraction is performed by linear and naedr technique via
component analysis to reduce the dimensionalitys $tep is employed to remove
the irrelevant features which are redundant and elsgyrade the performance of
the classifier.

Step 3: feature selection is performed using the distanteevaluation
technique. This method is chosen due to the simybnd its reliability.

Step 4:classification process for diagnosing of faultsasried out using SVM

based on multi-class classification.

— >
» Induction motor | Load

L
VVl Current signal _l 'Vibration signal

) — —» Training
Data preprocessing |
i S
Featur'e o Featu.re . F eatqre Classification by
calculation extraction selection SVM

Fig. 4.9 The proposed method for fault diagnosismadfiction motor.

In this part, several case studies based on methéghture extraction, signal
source, and classification using SVM are preseageidllows
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5.1. Case Study 1: Using Linear Feature Extraction
5.1.1. Experiment and Data Acquisition

The experiment is conducted using test-rig thasmts of motor, pulley, belt,
shaft, and fan with changeable blade angle thaesepts the load, as shown in
Fig. 4.10. Six induction motors of 0.5 kW, 60 Hzpdle were used to create the
data. One of the motors is normal condition (hgaltivhich is considered as a
benchmark for comparing with faulty condition. Teenditions of faulty motors
are described in Fig. 4.11 and Table 4.2.

Fig. 4.10 Test rig for experiment.

Three AC current probes and three accelerometers used to measure the
stator current of three phase power supply andatitom signals of horizontal,
vertical and axial directions for evaluating theulfadiagnosis system. The
maximum frequency of the used signals was 5 kHz thednumber of sampled
data was 16,384.
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Rotor unbalance Rotor bar broken Stator fault

Faulty bearing Bowed rotor Eccentricity

Fig. 4.11 The condition of faulty motor.

Table 4.2 Description of faulty motors

Fault condition Fault description Others

Broken rotor bar  No. of broken bar: 12 ea Total banof 34 bars
Maximum “bowed shaft deflection:

Bowed rotor Air-gap: 0.25 mm
0.075 mm

Faulty bearing A spalling on outer raceway #6203

Rotor unbalance  Unbalance mass (8.4 g)on the rotor
o o Adjusting the bearing
Eccentricity Parallel and angular misalignments
pedestal

Phase unbalance  Add resistance on one phase 8.4%

5.1.2. Feature Calculation

The total 78 features (13 parameters, 6 signaésyaiculated from 10 feature
parameters of time domain. These parameters aren,nress, shape factor,
skewness, kurtosis, crest factor, entropy errotropy estimation, histogram
lower and upper. And 3 parameters from frequencgnain (rms frequency,
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frequency center and root variance frequency) usibgation acceleration signal
at the three directions and three—phase curremtalsig The total of feature

parameters can be shown in Table 4.3.

Table 4.3 Feature parameters

Feature parameters

Signals Position
Time domain Frequency domain
Vibration  Vertical * Mean * Root mean square frequency
Horizontal * RMS « Frequency center
Axial * Shape factor * Root variance frequency
» Skewness
Current Phase A \ i
Phase B « Crest factor
Phase C « Entropy error

» Entropy estimation
 Histogram lower
» Histogram upper

5.1.3. Feature Extraction

Basically feature extractionis mapping procesgaih from higher dimension
into low dimension space. This step Is intended atwid the curse of
dimensionality phenomenon. ICA and PCA were usedeuce the feature
dimensionality that contains 95 % variation of eiga&lue. In this work, feature
extraction produced 24 independents componentg @@s principal component
(PCs) based on the eigenvalue. Also, from featut@etion using ICA and PCA,
we can understand that there is a change fromfdatares becomes components
which are independent and uncorrelated, respeygtiVdle first three independent
and principal components are plotted in Figs. 4afh# 4.13. It can be observed
that the clusters for eight conditions are well ssaped. Nevertheless, the
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performance of ICA is better than PCA does in @tsg of each condition. It can
be seen that feature extraction using ICA can sépawell almost all of

conditions without overlapping except normal anégeh unbalance, while PCA
produced overlapping in phase unbalance, rotor lanba and rotor broken bar,

also angular misalignment and parallel alignment.

5.1.4. Feature Selection

To select the optimal feature of ICs and PCs tlat pepresent well the
condition of induction motors, a feature selectroathod based on the distance
evaluation technique is presented [20,21]. Let jiiat feature set o€ condition-

patternsal, ab, ..., Qe Ale
{q™, i=1..,C; k=1,..,N} (4.17)

whereq™ is thekth feature ofa;, andN; is the number of feature .

The average distance of all featuresrincan be determined as follows

11¢ 1 &
D_ =-___ e (,]) _ ~(ik) 4-18
N ]_§:1 N _1k§:1lq q"“| (4.18)

The average distance bf, i =1, 2, ...,Cis
1< 9
D,==) D 4.1
T 2D (4.19)
Introducing Eq. (4.18) into Eq. (4.19) yields

D =EZC: 1 im(i,k)_p(iq (4.20)
e T N -liE

NI ] - .
where p© =Niz q® is the mean of all features in.
i k=1

The average distance Gfdifferent condition-patterna, a, ..., a: is

1&,
Dﬁngp”-pl (4.21)

i=1
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where =iii 5" 04

'0 C i=1 Ni kzlq .

When the average distanbg inside certain condition-pattern is smaller ang th
average distancB, between different condition patterns is biggeg #verage

represents the optimal features well. The evaloatideria for optimal features is

defined as
D
o, =—2 4.22
Y (4.22)

So, according to the bigger distance evaluatiotertai of d, the optimal
features can be selected from original feature sets

The results of feature selection using distancéuatan technique can be seen
in Figs. 4.14 and 4.15. From this figures, we camthat there are 24 ICs and PCs
are resulted from feature extraction process. Usualto 12 parameters are
sufficient to perform the calculation and provideffigient accuracy [22].
Applying the distance evaluation technique reman€s and PCs which have
largest distance evaluation criteria. The bestd@d PCs from feature selection
are presented in Table 4.4.

Table 4.4 Selected ICs and PCs after feature satect
Independent components- (ICs) Principal compon@&s)

5,10, 13, 14, 15, 18, 19 1,2,3,4,6,13, 16
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Fig. 4.12 Feature extraction using ICA.
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Fig. 4.13 Feature extraction using PCA.

99



5.1.5. Training and Classification

In this study, the RBF kernel and polynomial areduss the basic kernel
function of SVM. There are two parameters assodiati¢h these kernel€ and y.

In addition, polynomial kernel also has parameterelated to degree of
polynomial. The upper boun@ for penalty term and kernel paramejer play a
crucial role in performance of SVM. Therefore, iroper selection of parameters
C, ), andd can cause overfitting or underfitting problem. Medheless, there is
simple guideline to choose the proper kernel patarseusing cross-validation
that suggested by Hsu [23].

The goal of this guideline is to identify optimdiaice of C and y'so that the
classifier can accurately classify the data input-fold cross-validation, we first
divide the training set into subsets of equal s&equentially on subset is tested
using the classifier trained on the remainimgl] subsets. Thus, each instance of
the whole of training set Is predicted once sodiwss validation accuracy is the
percentage of data that are correctly classifié dross-validation procedure can
prevent the overfitting problem. In this dissedati we use 10-fold cross
validation to search the proper kernel parameté€?,and . Basically, all the pairs
of (C, )) for RBF kernel andd;, C, j) for polynomial kernel are tried and the one
with the best cross-validation accuracy is selediethis work, we performed the
10-fold cross-validation to choose the proper patans ofC = {2° 2%, ..., 21}
andy={23 2% ..., 2}

The SVM based multi-class classification is appli¢dl perform the
classification process using one-against-one arelagainst-all methods. The
tutorial of these methods has clearly explaineHsn and Lin [24]. The scenarios
of training and classification process as follovisst, SVM based multi-class
classification is trained on data input from orgirfeatures without feature
extraction and feature classification. Second, Wange the data input for SVM
training using data input after feature extractmpnPCA and ICA. Furthermore,
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the variation of kernel function is performed toogsh the excellent of
characteristic of kernel function and its performam faults classification. In this
work, we employed polynomial and Gaussian RBF Kefuections. Third, we
retry the all of training and classification prosds/ introducing kernel parameter
selection. Finally, the results of the training dadlts classification are compared
to show the best results of the system.

5.1.6. Results and Discussion

The result of this study can be shown in Tables4.&, and 4.7. In these tables,
we listed the kernel function, strategy of mulss classification, classification
rate for training and testing, number of supporttoe and training time. The
classification rate (%) is determined by usingaati correct classification and on
the whole of training or testing respectively.

1. Effect of Feature Extraction and Selection

In Table 4.5, classification process is performedtioe original feature set
without feature extraction and selection. The dfesdion rates of this process
among 75.0% until 97.5%. The bad performance af tldssification is due to the
existence of irrelevant and useless features. Niaalgvant features make burden
and tend to decrease the performance of classifier.

Then, as shown in Tables 4.6 and 4.7, the claasiic rate with PCA and ICA
feature extraction ranged from 97.5% to 100%. Ibe&tter than the previous
classification without feature extraction and setet By using ICA and PCA
feature extraction, the useful feature is extrachesh original feature sets.
Furthermore, the number of support vectors (SVradesed due to feature
extraction. In this case, classification procesagu$CA feature extraction needs
fewer numbers of SVs than PCA feature extractiod arnginal feature. This
phenomenon can be explained that ICA finds the @omapts not merely
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uncorrelated but independent. Independent compsnard more useful for
classification rather than uncorrelated componeni® reason is the negentropy
in ICA could take into account the higher ordeiomfation of the original inputs
better than PCA using sample covariance matrix.

Moreover, from feature selection part, we can olesehe effect of feature
selection from the distance evaluation criterid@$§ and PCs. Fig. 4.14 show us
that the variance of distance among the ICs istively high; it represents of
useful ICs features. It means that the bigger wagaof distance evaluation
criteria have significant importance in classifioat process. From Fig. 4.15 we
can see that the variance of distance between @datively low except first
PCs. However, the others PCs have low variancasiarte respectively. So, it
indicates the performance of PCs is lower thanitGdassification process.
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Fig. 4.14 Distance evaluation criteria of ICs.
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Table 4.5 Fault classification using original featand SVM

Kernel Multi-class  Classification rate (%) Number of Training time
strategy Training  Testing SVs (s)
Polynomial One vs. one 89.2 90.0 93 0.48
(d=1) One vs. all 77.5 75.0 103 0.86
Polynomial One vs. one 91.7 90.0 94 0.52
(d=2) One vs. all 81.7 80.0 95 0.56
Polynomial One vs. one 93.3 97.5 93 0.56
(d=23) One vs. all 80.8 85.0 94 1.00
Polynomial One vs. one 94.2 97.5 94 0.48
(d=4) One vs. all 80.0 98.5 94 0.98
Gaussian RBF One vs. one 92.5 90.0 99 0.32
(y=2.19) One vs. all 77.0 72.5 110 0.47
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Table 4.6 Fault classification using PCA and SVM

Kernel Multi-class  Classification rate (%) Number of Training time
strategy Training  Testing SVs (s)
Polynomial One vs. one 100 100 79 0.52
(d=1) One vs. all 99.17 97.5 68 2.39
Polynomial One vs. one 100 100 77 0.55
(d=2) One vs. all 100 100 84 2.17
Polynomial One vs. one 100 100 72 0.48
(d=23) One vs. all 100 97.5 93 1.69
Polynomial One vs. one 100 100 73 0.53
(d=4) One vs. all 100 97.5 96 2.37
Gaussian RBF One vs. one 100 100 84 0.41
(y=2.19) One vs. all 100 100 80 0.90

Table 4.7 Fault classification using ICA and SVM

Kernel Multi-class = Classification rate (%) Number of Training time
strategy Training  Testing SVs (s)
Polynomial One vs. one 100 100 48 0.31
(d=1) One vs. all 99.17 100 45 5.17
Polynomial One vs. one 100 100 49 0.34
(d=2) One vs. all 100 97.5 45 0.92
Polynomial One vs. one 100 100 45 0.32
(d=3) One vs. all 100 97.5 47 1.26
Polynomial One vs. one 100 100 46 0.34
(d=4) One vs. all 100 97.5 52 1.15
Gaussian RBF One vs. one 100 100 56 0.23
(y=2.19) One vs. all 100 100 50 0.26
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2. Effect of Kernel Function

From this study, the effect of selection of kerfglction is also introduced.
The performance of SVM depends on a great extenthenchoice of kernel
function to transform a data from input space thigher dimensional feature
space. The choice of kernel function is data depenend there are no definite
rules governing its choice that might yield a datitory performance. Tables 4.5,
4.6 and 4.7 present results of SVM with the kefoattion defined in Table 3.1.
In these tablesd is the degree of polynomial and is width of RBF kernel
parameter. The paramet€rdoes not emerge in this table because it onlyetted
in calculation process as penalty term.

At the first classification, we do not optimize tkernel parameters. First, the
polynomial kernel function was used and then tlesé we used Gaussian RBF
kernel. RBF kernel is very popular and claimedreskest kernel in classification
process. In this kernel, there are two parametéishndetermine the performance
in training and testingC and ). Therefore, the selection of proper kernel
parametersC and yis very important to achieve the good performancethia
dissertation,we  performed training and testing process usindiaut or with
kernel parameter selection. The effect of kernalapeters selection will be
explained in the next discussion.

According to effect of kernel selection, the pemfance in classification
training and testing tends to be increased usingnpmial and RBF kernel,
respectively. This phenomenon can be seen in tide3al.5, 4.6 and 4.7. The
kernel parameters which used in polynomial kermelda= 1, C = 10 andy= 1.
Whereas for RBF kernel we uséd = 10 andy = 2.19. In Table 4.5, the
performance of RBF kernel using one-against-aditegy is lower than the others.
This condition is caused by using improper RBF keparameter€ and . Also,
in Table 4.4, we used the original features withfeature extraction and selection.
That is why the performance of RBF kernel in Tahkeis lowest.
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3. Effect of Kernel Parameters Selection

There are three parameters associated with polaidminel ¢, C, )) and two
parameters for the RBF kernel (@, It is not known beforehand which values of
d, C and y are the best for one problem; consequently, somé &f model
selection or parameter search approach must beogathl This study conducts a
10-fold cross validation to find the best valuedp€ and ). Pairs ofd, C and y
are tried and the one with lowest cross-validagawr is picked. For RBF kernel
we searched the range of paramefers{2°, 2, ..., 2} and y= {23 2% ..., 2},
so there are 56 pairs d€,)) which must be evaluated. In the case of polynbmia
kernel we evaluated pairs-af, C, ) from the rangel = {1, 2, 3, 4}, C = {2°, 2!,
..., 2} and y= {23 2% ..., 2}. The polynomial kernel seems to have more
hyper-parameters than RBF kernel. The completeltsesidi kernel parameter
selection are summarized in Table 4.8.

Table 4.8 Selected kernel parameter

Data Polynomial kerneld, C, y) RBF kernel C, y)
Onevs.one Onevs. all Onevs.one  Onevs. all

Original feature 3,22 4,2, 2 % (25, 2%

PCA feature extractior(1, Z, 2 1, 2,2 (2, 2% (2, 279

ICA feature extraction (1,°22°) 1,22 24, 2 24, 2

After the optimal pairs were found, the whole tmaghdata was training again
to generate the final classifier. This study perferthe training process using
polynomial and RBF kernel to all of data: originedatures, PCA feature
extraction and ICA feature extraction. The perfongea of polynomial and RBF
kernel after kernel parameter selection is preseimtdables 4.9, 4.10 and 4.11.
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Table 4.9 Fault classification using original featand selected kernel parameter

Kernel Multi-class Classification rate (%) Number of Training time
approach Training Testing SVs (s)

Polynomial One vs. one (3,'22°) 99.98 100 47 0.031

(d, C, Onevs.all (4,22°) 98.30 100 60 0.125

RBF Onevs.one (22° 100 100 41 0.032

(o) One vs. all (2 279 100 100 43 0.078

Table 4.10 Fault classification using PCA and del@&ernel parameter

Kernel Multi-class approachClassification rate (%) Number of Training time
Training Testing ~ SVs (s)

Polynomial One vs. one (1,22) 100 100 47 0.031

d,C, Onevs.all (1,22 100 100 91 0.063

RBF One vs. one 22 100 99.97 71 0.016

(C, ) One vs. all (2 29 100 100 80 0.063

Table 4.11 Fault classification using ICA and seddernel parameter

Kernel Multi-class approachClassification rate (%) Number of Training time
Training Testing. SVs (s)

Polynomial One vs. one (1,°22°). 100 100 42 0.031

(d,C,p Onevs.all(1,22) 100 100 79 0.062

RBF Onevs.one 22 100 100 64 0.015

(o)) One vs. all (3 %) 100 100 79 0.063

As shown in Tables 4.9-4.11, the performance o$sti@ation process is
increased due to the kernel parameter selectioranitbe compared with Tables
4.5-4.7 in the case of without kernel parameteectiein. In Table 4.9, the
classification rates of training for polynomial ket is lower than RBF kernel
both one-against-one and one-against-all strategies though the degree of
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polynomial are 3 and 4 respectively. This conditisrsupposed due to the bad
quality of data input without feature extractiontbat the curse of dimensionality
phenomenon decreases the performance of classifigrever, in Tables 4.10 and
4.11, the classification rate reaches 100% usirignpmial kernel due to good
quality of data input after feature extraction @ss.

In Table 4.10, the classification rates of eacmé&kfunction are high; even
almost of classification rates achieve 100%. Gdlyershe strategy of one-
against-one is better than one-against-all adlistehe table. As shown in Table
4.10, the feature extraction using PCA is usefuintrease the performance of
classification rather than without feature extrawctin Table 4.9, because of PCA
search the uncorrelated components from the ingiat sbace and treat it so that
more useful in classification. Moreover, using lerparameter selection will
increase the performance better. The proper péid, €, )) in polynomial kernel
are (1, 2, 2°) and (1, 2, 2) for one-against-one and one-against-all respelgtiv
Although the degree of polynomial equal to 1, hogrethe performance is high
(100%). In RBF kernel, the proper kernel paramefepairs C, ) are (2, 279
and (2, 27 for one-against-one and one-against-all respelgtiv The
classification rates also high (100% and 99.97%)etomes evidence that kernel
parameter selection is very important to get goedgpmance. Furthermore, the
use of proper kernel parameter will overcome th&bl@ms of underfitting and
overfitting so the best classification processiéded.

Finally, the faults classification using ICA featuextraction is presented in
Table 4.11. This table presents the best performantaults classification rather
than previous methods. From this table we can lssteperformance of all kernel
function are 100% in fault classification. It shows that the feature extraction
using ICA is the best method among them, becauskCAfseeks not merely
uncorrelated components but independents. It isenuseful for classification
process. In addition, the application of kernelapaeter selection using cross-
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validation makes the performance of classificatisnexcellent. The results of
kernel parameter selection for polynomial kerneli@of @, C, ))) are (1, 2, 2°)
and (1, 2, 2°) for one-against-one and one-against-all respelgtiit uses one
degree of polynomial kernel and produces the bedbpnance. Then, in the case
of RBF kernel, the kernel parameter selection pair(C, ) yields (2, 2°) both
for one-against-one and one-against-all respegtivEhe classification rate is
more excellent, both 100% rather than PCA featuteetion and original feature.

5.2. Case Study 2: Using Nonlinear Feature Extraction

In this case study, experiment is conducted usimestest rig and data
acquisition method to collect the data. The feawsed in this case study are
generated using same feature calculation methodoinear feature extraction
method is performed by introducing kernel functiomprevious linear method of
feature extraction.

5.2.1. Feature Extraction

Originally, the data feature parameters have deordtructure, fully
overlapping and can not be clustered well eachitondof faults in induction
motors. This phenomenon can be shown in Fig. 4.16.

Fig. 4.16 plots three-first components of origidata (78) feature parameters.
Because of high dimensional data tends to redurydand can not be separated
well among the condition of faults, so this datacure should not be directly

processed into classifier because it will degrdaeperformance of classifier.
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Fig. 4.16 Three-first components of original dagatfires.

To avoid this disadvantage, we should extract seful feature and reduce the
dimension of original data features. Employing moesr feature extraction is
expected to be able to handle the disorder strecitidata features. In this work,
the use of kernel PCA for feature extraction isrddticed. Based on the
eigenvalue, we select 97% of the total largestraigkie of covariance matrix as a
reference to reduce the dimensionality. Representalf eigenvalue can be seen
in Fig. 4.17 which presents 20 largest eigenvabievariance matrix. Then, we
select the RBF kernel function in kernel PCA andade the kernel parametes
4. After feature extraction using kernel PCA, thare 7 principal components
which represent the useful feature. The resulteature extraction using kernel
PCA and kernel ICA is presented in Figs. 4.18 aid 4
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Fig. 4.17 Representation of 20 eigenvalues of dgamae matrix.

In Fig. 4.18, we can see that kernel PCA succdgsflustered each condition
of faults in induction motor. However, there arengooverlaps in its clustering
specially for broken rotor bar and phase unbalaite good performance of
kernel PCA in clustering is associated that-ke€RA can explore higher order
information of the original data feature besidein€orrelated data.

In the next step, we performed nonlinear featuteaekon using whitened data
feature by kernel PCA and employed ICA algorithm steek the projection
direction in kernel PCA whitened space. We called process as kernel ICA
feature extraction. In this technique, we expeat fhature extraction process can
be improved due the robustness of kernel ICA.
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Fig. 4.18 Feature extraction using kernel PCA.

Fig. 4.19 shows us that each condition of faultsxduction motor is separated
well. Moreover, there are no overlaps in clustenqmmgcess. Visually, it can be
concluded that feature extraction using kernel iSAhe best in comparing with
previous technique. In addition, kernel ICA alsolititly takes into account the
high order information of the original data feasur&urthermore, in kernel ICA
technique, the mutual independent components ik ghe promising to be a

useful and the best features.
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Fig. 4.19 Feature extraction using kernel ICA.

To investigate the performance of nonlinear feakxt@action process using
kernel PCA and kernel ICA, we calculated the averaf) Euclidean distance
between points in class of feature space [25,26F method can be described as
follows: first, we select one point as a refereacel calculate the average of
Euclidean distance of each point to the referenm@tp Then, we change the
reference point and do same as previous steplfdat points. We calculated the
average of Euclidean distance in kernel PCA andeetCA feature space
respectively then took the lowest which represehts good clustering. The
calculation of average Euclidean distance can ba seFig. 4.20. In this figure
we can see that the average distance of kernelis@@éwer than kernel PCA so it
becomes evidence that performance of kernel ICAiiftgntly outperforms
kernel PCA in terms of clustering.
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5.2.2. Training and Classification

The SVM based multi-class classification is appti@gerform the classification
process using one-against-one and one-againstedtiaus. The tutorial of these
methods has clearly explained in [24]. To solve 8\&V problem, Vapnik [27]
describe a method which used the projected corgugradient algorithm to solve
the SVM-QP problem. Sequential minimal optimizat{®@MO) proposed by Platt
[28] is a simple algorithm that can be used to edhe SVM-QP problem. This
method decomposes the overall QP problem into QRpsoblem using the
Osuna’s theorem to ensure the convergence. Irdisertation, SMO is used as a
solver.

In this study, we use 10-fold cross-validation &argh the proper kernel

parameted, C,andy. Basically, all the pairs of, }) for RBF kernel andd, C, ))
for polynomial kernel are tried and the one with tiest cross-validation accuracy
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is selected. We perform the 10-fold cross-validatito select the proper
parameters of = {2°, 2!, ..., 2} and y= {273, 22, ..., 2.

There are three parameters associated with polald®inel ¢, C, J) and two
parameters for the RBF kernel It is not known beforehand which valuesdof
C andyare the best for one problem; consequently, santed model selection
or parameter search approach must be employed.siinly conducts a 10-fold
cross validation to find the best valuesdpfC and y Pairs ofd, C and yare tried
and the one with lowest cross-validation error isk@d. For RBF kernel we
searched the range of parame@rs {2°, 2, ..., 2} and y= {23 22, ..., 2}, so
there are 56 pairs ofZ( ) which must be evaluated. In the case of polynbmia
kernel we evaluated pairs af, (C, J) from the rangel={1, 2, 3, 4}, C = {2° 2!,

.., 2% and y=423 22 ..., 2. The polynomial kernel seems to have more
hyper-parameters than RBF kernel. The completeltsesdi kernel parameter

selection are summarized in Table 4.12.

Table 4.12 Selected kernel parameter

Feature extraction Polynomial kerneld, C, y) RBF kernel C, y)

method One vs. one Onevs. all Onevs. one One vs. all
Kernel PCA (3,2 1) (3,2,1) 2, 2% 2', 2%
Kernel ICA 1,2 1) 1,2,1) 2, 29 (25, 21

5.2.3. Results and Discussion

Table 4.13 presents the result of classificatiomgikernel PCA feature
extraction and SVM. According to the accuracy, thisthod is very good because
all of classification accuracies are 100%. The Bewe of this method is also
shown by the number of SVs which is reduced andlesméan previous method
except the one-against-one strategy of polynonmeahdd. However, according to
training time, the classification process usingnke¢mPCA feature extraction and
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SVM is relatively longer than linear feature extrac. In addition, this table
shows that the strategy of one-against-one istid@® one-against-all strategy as
previous methods.

The proper kernel parameters are (3,13 and (3, 2 1) for polynomial kernel
of one-against-all and one-against-one strategyeely. In this case, it means
that the feature extraction method using kernel P@%ds high degree of
polynomial @ = 3) for classification process of SVM. And it beoes a reason
that the training time is longer than PCA and IG#atlire extraction with same
kernel. The proper parameters of RBF kernel afeq® and (2, 2?) for one-
against-all and one-against-one strategy, respdgtiClassification process using
kernel PCA feature extraction and RBF kernel hakiced the number of SVs
smaller than previous method.

The result of classification using kernel ICA featiextraction and SVM is
presented in Table 4.14. The accuracy of this m®@dso high which reached
100% except one-against-all strategy using polyabkernel 99.97%. Generally,
in comparing with feature extraction using kern€APthe performance of this
method is better according to the number of SVsteaiding time. Application of
kernel parameter selection using cross-validatieethod produced the proper
kernel parameters which made its performance islextd. For polynomial kernel,
the proper parameters are (£, 2) and (1, 2 1) for one-against-all and one-
against-one strategy respectively. Although therele@f polynomial kernel equal
to 1 however it reached good performance. The mostllent of performance is
shown using RBF kernel which produced high accumy smallest number of
SVs. This excellence is surely influenced by the aoEproper kernel parameters
that are (2 2% and (2, 2% for one-against-all and one-against-one strategy
respectively.
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Table 4.13 Fault classification using kernel PCA &YM
Classification rate Number  of Training

Kernel Multi-class strategy . _ _
Training Testing SVs time (s)
Polynomial One vs. all (3,2 1) 100 100 67 1.33
(d,C p One vs. one (3,21) 100 100 68 0.031
RBF One vs. all (2 2% 100 100 52 0.438
(C, ) One vs. one (221 100 100 50 0.032

Table 4.14 Fault classification using kernel ICAIE&SVM

Classification rate  Number  of Training

Kernel Multi-class strategy g . _ _
Training Testing SVs time (s)
Polynomial Onevs. all (1,2 1) 100 99.97 67 1.156
(d,C p One vs. one (1,21) 100 100 50 0.047
RBF One vs. all (2 2% 100 100 43 0.218
C,» One vs. one (227 100 100 42 0.031

5.3. Case Study 3: Motor Current Signal and W-SVM

This method is well known as motor current sigmalgsis (MCSA) which use
stator current signal of motor induction to condiaetlt diagnosis. A brief review
discussing how to use MCSA was highlighted in [33B® In present study, the
start-up transient current signature is selectedditection and diagnosing of
faults in induction motor. This method is effectiecause the machine is
subjected to more stresses during the start-upeabmse of normal operation.
These stresses can highlight the machine defeasettare early in their
development and not detected easily during stedalye ©peration. The other
advantage is that the transient signal has a higlasd high signal-to-noise ratio
(SNR), which implies that its spectral can be detg#enore easily. Therefore, it is
no need to heavily load the motor in order to makeccurate fault diagnosis.
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5.3.1. Experiment and Data Acquisition

The experiment was conducted using test rig desdrim section 6.1.1.
However, we only used three current probes to aedhe transient current signal.
The maximum frequency of the used signals was 5. KHe data was acquired
using data acquisition unit of 16 bit resolutione thumber of the sampled data
was 16384 at a sampling rate of 12800 Hz. The kmyhpling rate is selected
because the transient signal has short time duaratidle sufficient samples per
second are needed. Moreover it is planned to ilgast and take the features
from high frequency range after preprocessing usiagelet transform. One of
the motors is normal condition (healthy) to be uas@& benchmark for comparing

with faulty condition. The conditions of faulty nuos are described in Table 4.2.

5.3.2. Signal Preparation and Feature Calculation

The signals can be divided into two types; statipnand non-stationary.
Transient signal which starts and finishes at zermategorized as non-stationary
signal. In this study, the start-up signal of indloie motor is considered as
transient signal (Fig. 4.21).

Working on the statistical features, smoothing pescis necessary in order to
remove or reduce the line frequency to highlighe thfferences of faults in
induction motors. After smoothing, the transiemristip signal is expected to be
similar to sine waveform which has variable ampléuA moving average filter is
used to smooth the data by replacing each data moth the average of the
neighboring data points defined within a windowisTwindow moves across the
data set as the smoothed response value is calddtateach predictor value [31].
Subtracting the smoothed signal from the originghal gives the residual part
which contains the information related to the ndrrom faulty conditions in
induction motor. This residual part of transientreat is shown in Fig. 4.22.
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Next step, discrete wavelet transform (DWT) is perfed to extract the

differences of each condition of induction motore \performed 5 decompaosition

levels using Daubechies 5 (Db5) to show the salieatures of faults in some

frequency ranges. Wavelet transform can be coreildas band pass filter where

the different levels corresponds to the frequertcwlach different fault can be

highlighted. The results of discrete wavelet transfare shown in Fig. 4.23.

Fig. 4.23 shows the five decomposition levels afheaondition of induction

motor using DWT. Even though the differences betweach condition are not

clear, we can select one of them for feature catmr and left the others for

reducing the dimensionality. In this dissertati@vel 1 (d1) contained in the high

frequency range is selected as the features sturctassification process.
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Fig. 4.23 Wavelet transform for transient startsignal of induction motor:
(a) d1, (b) d2, (c) d3, (d) d4 and (e) d5.
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After wavelet transform, the features are calcalateom time waveform,
frequency domain and auto regression of d1. Inl,t@é& features are obtained
from 21 feature parameters of the 3 phases A, B, @nA total of 140 data
calculated from 7 conditions and each one has 28surements. The detailed of
features are listed in Table 4.2.

5.3.3. Feature Extraction

In this study, non-linear feature extraction uskegnel function is proposed to
obtain good features for classification processeifieature calculation, the mean,
rms and shape factor are plotted in Fig. 4.24 deoto know the structure of the
data features. Fig. 4.24 can be a representatitimeadriginal features which have
disorder structure or overlap and are not well teltesl. Plotting original feature
parameters indicates the necessity of preprocegsirthe original features to
make them better and ready for classification.
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Fig 4.24 Original features.
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Disorder structure of original features tends tardase the performance of
classifier if it is directly processed in classifieTo avoid this disadvantage,
component analysis using PCA and KPCA are usedxtiaat and reduce the
feature dimensionality based on eigenvalue of camae matrix. Fig. 4.25 shows
the feature reduction in PCA and KPCA based onmeigieie of covariance matrix.
The features are changed into principal componantsremaining only five for
classification process.

The principal components of PCA and KPCA are ptbtteFig. 4.26. It can be
observed that the clusters for seven conditionshateseparated well. There are
still overlapping among each condition of motor.inticates that the features
which are produced by current signature are veffycdit to cluster. Therefore,
more advance and good preprocessing is neededasdhth salient differences
features can be explored and emerged.
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Fig. 4.25 Eigenvalue of covariance matrix for featteduction.
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Fig. 4.26 Principal components and kernel princqguathponents.

5.3.4. Training and Classification
The SVM based on multi-class classification is &uplto perform the
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classification process using one-against-all methddhe tutorial of this method
was clearly explained in [24]. To solve the SVM lgem, Vapnik described a
method which used the projected conjugate gradikgarithm to solve the SVM-
QP problem [28]. In the present study, SVM-QP isfgened to solve the
classification problem of SVM. The paramet€r (bound of the Lagrange
multiplier) andA (condition parameter for QP method) are assighedvalues 1
and 10’, respectively. Wavelet kernel function using HaBgubechies and
Symlet are performed in the present study. Therpatar J in wavelet kernel
refers to number of vanishing moment and is sét to

5.3.5. Results and Discussion

The complex boundaries of separation are presentédys. 4.27-4.29, from
which the separation of W6VM can be shown. In these figures, the circlersefe
to the support vector that states the correct m@tog in W-SVM. Each
condition of induction motor is well recognized ngiwavelet kernel except Haar
kernel of PCA. Although WSVM is well performed in recognition, however,
each condition cannot be clustered and separatédT™Mes phenomenon appears
in all wavelet kernel functions. The lack of perf@nce in preprocessing the
transient current signal is suspected to be a mreagoy each class cannot be
clustered well. Furthermore, because of the diffycof handling the start-up
transient current signal, so it needs an advancedr@cessing method. In this
dissertation, the use of moving averaging and D\WWE5| for preprocessing is not
sufficient to emerge the salient differences betweenditions in induction
motors. Hence a proper preprocessing for the gahsuurrent signal is needed to
be further investigated. Even though the clusteisngpot performed well, however,
the correct classification and recognition showdyperformance using WSVM.
It is evident that WSVM performs well in faults detection and classifion of
induction motors.
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The performance of classification process summadrire Table 4.15 uses
conventional kernel functions such as GaussianRolgnomial for comparison
purpose. All the data sets come from componentyaisahre accurately classified
using wavelet kernel function, except Haar wavelatch reveals accuracies of
85% and 95% for PCA and KPCA, in training and testccuracy, respectively.
Wavelet kernel using Daubechies and Symlet reachiracy 100% in training
and testing, respectively. The number of supporttore are 68, which is
relatively high due to the less quality of inputalarhe CPU time of Daubechies
and Symlet wavelet are 7.1 s, 10.9 s and 9.6 § &5or PCA and KPCA,
respectively. These are higher than the CPU timdazfr wavelet which amounts
to 5.8 s for both PCA and KPCA.

Table 4.15 Classification results

W-SVM Conventional SVM
Haar Daubechies Symlet Gaussian Polynomial
(y=0.25) (d=3)

Accuracy (%) PCA 85/85 .. 100/100 100/100  75/75 61/61

(training/test) KPCA . 95/95 100/100 100/100 90/90 74/74

Number  of PCA 68 68 68 70 70

SV KPCA 68 68 68 70 70

CPUtime (s) PCA 5.8 7.1 9.6 0.9 0.9
KPCA 5.8 10.9 15.8 0.9 0.8

Table 4.15 shows the performance of conventionahéiefunction such as
Gaussian and Polynomial. The accuracies are lowerparing with wavelet
kernel function for all component analysis methodsng PCA and KPCA. The
number of support vectors is 70 higher than wavaetel function. However, the
time consumptions are less than wavelet kerneltiomc
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Fig. 4.27 Boundaries of separation using Haar we\edrnel:
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Fig. 4.28 Boundaries of separation using Daubechizeglet kernel:
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In this study, as conclusion, a relatively new rodtlof nonlinear kernel based
on wavelet (WWSVM) has been introduced. The kernel function ti@mss the
data into higher dimensional space in order to makmssible to perform the
separation process. Feature reduction and extragiimg component analysis via
PCA and KPCA are highlighted. The performance ofSVM is validated by
applying it to faults detection and classificatmininduction motor based on start-
up transient current signal. The results show ¥WatVM is well performed and
reached high accuracy in training and testing ged@sed on experimental work.
However, a proper preprocessing for the transiemteat signal is needed to
improve emerging the salient differences betweerditimns in induction motors.
Introducing nonlinear kernel using wavelets is é@add to improve significantly
the SVM research fields.

5.4. Case Study 4: Vibration Signal and W-SVM
5.4.1. Experiment and Data Acquisition

Data acquisition was conducted on induction motod@0 kW, 440 volt, 2
poles as shown in Fig. 4.30. Six accelerometerse wesed to pickup vibration
signal at drive-end and non drive-end on vertibakizontal and axial direction,
respectively. The maximum frequency of the usecthag) and the number of
sampled data were 60 Hz and 16384, respectively.

5.4.2. Feature Calculation

The condition of induction motor is briefly sumnmed in Table 4.16. Each
condition was labeled as class from 1 to 7. Feaepessentation for training and
classification was presented in Table 4.3. Theeet@tally 126 features calculated
from 6 signals, 21 features and 98 data calculdtedh 7 condition 14
measurements.
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Fig. 4.30 Data acquisition of induction motor.

Table 4.16 Condition of induction motor

Class No. Condition Description Others

1 Bent rotor Maximum shaft deflection 1.45mm

2 Eccentricity Static eccentricity (30%0) Air-gap25 mm
3 MCDE Magnetic center moved (DE) 6 mm

4 MCNDE Magnetic center moved (NDB)mm

5 Normal No faults ’

6 Unbalance Unbalance mass on the rotor 10 gr

7 Weak-end shieldStiffness of the end-cover -

5.4.3. Feature Extraction and Reduction

Basically feature extraction is mapping procesdaif from higher dimension
into low dimension space. This step is intendedvinid the curse dimensionality
phenomenon. Structure of three first original feesy those are mean, RMS and
shape factor are plotted in Fig. 4.31. This figeteows the performance of
original features those are containing overlapame conditions. Then, applying

component analysis is suggested to make origiadilifes well clustered.
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Component analysis via ICA, PCA and their kerneltaen used to extract and
reduce the feature dimensionality based on eigeevaf covariance matrix as
described in Fig. 4.32. After performing componamnalysis the feature have been
changed into independent and principal componeespectively. The first three
independent and principal components from PCA, l&#&d their kernel are
plotted in Fig. 4.33. It can be observed that thusters for seven conditions are
separated well. It indicates that component anslyan perform feature extraction

and all at once do clustering each condition otictadbn motors.
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0.2

Sk e 4

<
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Weak-end shield

X5

Fig. 4.31 Original features.

According to the eigenvalue of covariance matrhe features were changed
into component analysis and reduced only 5 compoaealysis needed for
classification process. The other features areadigr] due to small of eigenvalue
of covariance matrix. The selected component aisalgsthen used by W-SVM

classifier as input vectors for fault diagnosisngstlassification routine.
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5.4.4. Training and Classification

The SVM based multi-class classification is applied perform the
classification process using one-against-all methdd solve the SVM problem,
Vapnik [27] describe ‘a method which used the ptepcconjugate gradient
algorithm to solve the SVM-QP prablem. In this stu8VM-QP was performed
to solve the classification problem of SVM. The graeterC (bound of the
Lagrange multiplier) and (condition parameter fd? @ethod) were 1 and 10
respectively.

Wavelet kernel function using Daubechies series peaformed in this study.
The parameted in wavelet kernel refers to number of vanishingnmeat and is
set 4. In the training process, the data set wss @hined using RBF kernel
function as comparison. The paramejefor bandwidth RBF kernel was user
defined equal to 0.5.

136



5.4.5. Result and Discussion

The complex separation boundaries are presentBdyirt.34 from which the
separation of W-SVM can be shown. In these figutks, circle refers to the
support vector that states the correct recognitiokV-SVM. Each condition of
induction motor is well recognized using Daubechvesvelet kernel. In the
classification process using W-SVM, each conditodrinduction motors can be
clustered well. The good separation among condit&hlmows the performance of
W-SVM doing recognition of component analysis freiloration signal features.

The performance of classification process is sunmedrin Table 4.17. All
data set come from component analysis are accui@sadsified using Daubechies
wavelet kernel and SVM and reached accuracy 100%aining and testing,
respectively. SVYM using RBF kernel function withrikel width y= 0.5 is also
performed in classification for comparison with Dachies wavelet kernel. The
results show that the performance of W-SVM is samib SVM using RBF kernel
function, those are 100% in accuracy of training &sting, respectively. In the
case of number support vectors, SVM with RBF kefaettion needs lower than
W-SVM except kernel PCA.

Table 4.17 Results of classification

Kernel Accuracy (Train/Test), % Number of SVs

IC PC Kernel IC  Kernel PC IC PC Kernel IC Kernel PC
Daubechies ~ 100/100 100/100 100/100 100/100 35 39 39 17
RBF-Gaussian 100/100 100/100 100/100 100/100 22 22 25 33
(y=0.5)
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Based on previous case studies, there are adesntagd disadvantages in
SVM classification that can be studied as follod2,B3]:

§ Advantages

1. SVM can well learn the system based on traininggse using small set
number of data.

2. SVM has good generalization ability so that it gaoduce accurate
performance in classification when the systemssetk

3. SVM has ability that can be independent of the disn@nality of the
feature space.

4. In SVM, embedding structural risk minimization (SRMrinciple can

minimize the upper bound on the generalizationrerro

Disadvantages

1. Basically, SVM is developed for binary classificati Recently, SVM has
been modified to be able to solve multi-class dfasgion problem using
special strategy i.e., one-against-one, one-agalhsttc. However, each
strategy has merit and demerit that is still openbé investigated for
improvement.

2. SVM has problem in using kernel function. There aceexact ways to
select a proper kernel function for special case.

3. Proper parameter tuning is still a problem in SViKernel parameters
selection is sometimes take much CPU time.

6. Conclusion

The excellent and capability of support vector hae (SVM) in fault
diagnosis of induction motor has been explorechias thapter. Four case studies
have been presented to validate the proposed method
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In the first case study, we applied the combimatad ICA and SVM for
intelligent fault diagnosis of induction motor. IC&nd PCA were successfully
applied for feature extraction process; howeveg, dlustering feature using ICA
is better than PCA does. The feature extractioons important step in fault
classification process because it can remove ttiendancy and avoid the curse
of dimensionality phenomenon. After feature eximct we performed feature
selection process to remove irrelevant and uséadsre. The distance evaluation
technique was employed due to its simple and nétyabSVM based multi-class
classification is applied to do faults classificati process. To show the
importance of feature extraction and kernel parameselection, we trained the
SVMs onto the data input without and with featuxéraction, and then followed
by kernel parameters selection. The results shatvusing ICA feature extraction
and combining kernel parameters selection gavebtst faults classification.
According to this result, the combination of ICAdarfsVM can serve as a
promising alternative for intelligent faults diagm® in the future.

Second case study discussed the application ofneamlfeature extraction and
SVM for faults diagnosis. In this method, we em@dyand adopted kernel trick
for mapping the data features into high dimensi@pEce. Moreover, ICA has
formulated in the kernel-inducing feature space ando-phase kernel algorithm
that is kernel PCA plus ICA is developed. KernelAP{S used to sphere data
feature and to make data as linearly separableoasilpe using an implicit
nonlinear mapping determined by kernel. ICA isdaled to seek the projection
direction in the kernel PCA whitened space and rdeteed the mutual
components. The effectiveness of nonlinear feaéxteaction is verified using
data feature parameters of induction motor. Featxwaction using linear
technique is also introduced to compare with n@amone. The result shows that
kernel ICA outperforms kernel PCA in clustering &&wn the investigation of

average of Euclidean distance. According to theulteghe application of

141



nonlinear feature extraction and SVM can serve gsomising alternative for
intelligent faults diagnosis in the future.

In the third and fourth case study, a new methodarfiinear kernel based on
wavelet (W-SVM) is introduced. The kernel function transforthe data into
higher dimensional space in order to make it pdsdib perform the separation
process. Feature reduction and extraction usingpooent analysis via PCA and
KPCA are highlighted. The performance of8VM is validated by applying it to
faults detection and classification of inductiontorobased on start-up transient
current and vibration signals. The results show WaSVM is well performed
and reached high accuracy in training and testioggss based on experimental
work. However, a proper preprocessing for the imriscurrent signal is needed
to improve emerging the salient differences betweenditions in induction
motors. Introducing nonlinear kernel using waveleisbelieved to improve
significantly the SVM research fields.
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V. Feasbility of SYM for Machine Prognosis
System

1. Introduction

A real machine prognosis system is very importanpredict the degradation
condition and fault propagation trend in machinefoke a fault reaches in critical
level. It also can produce the early alarm and wgrrbefore catastrophic
condition occurred. Machine condition prognosis nsedhe use of available
(current or previous) observations to predict upicgmstates of machine [1].
Compared to fault diagnosis, the papers that conedth prognosis are much
fewer. The most widely used of prognosis systentoigpredict the remaining
useful life (RUL) that predicts how much time it leefore serious failures occur
(one or more faults) based on the current and pastitions of machine. The
other method of prognosis is addressed to preditiaace that machines operate
without a fault or failure up to some future timatilinext inspection interval
based on the current conditions and past operatioiile. This is, actually, more
desirable to be a reference for maintenance engiwedetermine whether the
next inspection interval is proper or not.

Many temporal patterns can be used for machineitongrognosis, such as
vibration features and debris properties of luldraca oil. The vibration based
monitoring; however, is a well-accepted approach tuthe ease of measurement
and analysis. Several studies based on vibratidmtques have been reported in
time-series prediction incorporated with classaggbroach, such as autoregressive
(AR) model, autoregressive moving average (ARMAXydel, bilinear model
and multivariate adaptive regression splines. Hawethe difficulties are found
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when these models will be applied in predictinglghamic response of complex
system.

Recently, many researchers tend to apply artifici@lligence (Al) techniques
due to the ability to be flexible model predictavkich can be automatically built
by training process without the need for identifiea of model structures and
parameters. The most widely used of Al techniquesférecasting are neural
networks (NNs) and fuzzy system. Zhang and Ganf&aunsed self-organizing
neural networks for multivariable trending of tlailt to estimate the residual life
of a bearing system. Wang and Vachstevanos [3jepdlynamic wavelet neural
networks to predict the fault propagation and eatérthe RUL as the time left
before the fault reach a given value. Yam et al.gdplied a recurrent neural
networks for predicting the machine condition trevthng et al. [1] compared the
result of applying recurrent neural networks andraduzzy inference system to
predict the fault damage propagation trend.

Support vector machine (SVM), introduced origindlly Vapnik [5] is one of
machine learning methods and Al techniques which been rapidly developed
and applied for classification- and regression mobl[6,7]. SVM is quite
satisfying from a theoretical point of view and daad to great potential and
superior performance in practical applications.sTikilargely due to the structural
risk minimization (SRM) principle in SVM, which hagreater generalization
ability and is superior to the empirical risk minpation (ERM) principle as
adopted in neural networks. Furthermore, SVM ig#da to complex system and
robust in dealing with nonlinear data.

Recently, the application of SVM to time-series dicéon, called support
vector regression (SVR), has shown many breaktimougnd plausible
performance, such as travel-time prediction [8]ndvispeed prediction [9],
electricity load forecasting [10], water lake pitdin [11], etc. Since there are

much evidence from previous research results oé-trarying application with

147



SVR prediction, it motivates our research in usB¥R for machines prognosis
system modeling.

In present chapter, SVR is applied to predict tseges of failure trending
data of machines. The aims of this study are teshgate the feasibility and to
evaluate the performance and reliability of SVRaiure trending data prediction,

and also to develop a reliable prognosis systemméchines condition prediction.
2. Description of Selected Model

2.1. Support Vector Regression (SVR)

Recall the linear equation of SVM expressed inBdB1), it can be express in

the form
f(x) =<(w,x)+b (5.1)
where( , ) denotes the dot product RY.

Flatness in the case of Eq. (5.1) means the onkes sarallw. One way to
ensure this is to minimize the Euclidean norm, |\gf. Formally, the problem of
Eqg. (5.1) can be written as convex optimizatiorbpeo by requiring

minimize %”w IF

5.2

subject to {?ijxileg_—yli i -2

The tacit assumption in Eq. (5.2) is that suchrecion f(x) actually exists that
approximately all pairsx(y;) with £ precision, or in other words, that the convex
optimization is feasible. However, this may notthe case, or we also may want
to allow some errors. Analogously to the soft marmgi Vapnik [12], one can
introduce slack variableg, & to cope with otherwise infeasible constraints to

optimization Eq. (5.2). Hence, we present the fdation stated in [5].
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minimize %”W 1§ +Czll(fi +&)

yi —(W,X;)—bse+{ (5.3)
subject to (w,x, Y +b-y, <&+ &
&,& =0

The constanC > 0 determines the trade off between the flatméd$x) and the
amount up to which deviations larger thartolerated. The formulation above
corresponds to dealing with a so callethsensitive loss functiohé], described
by

1] e onne 54

| £|—€ otherwise

>

Fig. 5.1 The soft margin loss setting for linearBV

Fig. 5.1 depicts situation graphically. Only therps outside the shaded region
contribute to the cost insofar, as the deviatian @analized in a linear fashion. It
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turns out that the optimization problem in Eq. §5c8n be solved more easily in
its dual formulation. The dual function provides tkey for extending support
vector machine to nonlinear functions.

The calculation can be simplified by convertingitite equivalentagrangian
dual problem, which will be
b, )= SIWIF +CY(§ +&) =T, +& -y, + wx) +1)

ZI = = | (5.5)

_Zl:ai*(g"'fi* -Yi +<W’Xi>_b)_zl:(,7i£i +,7i*£i*)

Then, the task is minimizing Eq. (5.3) with resptxprimal variablesw, b, &,
&) have to famish for optitimality.
oL

F :W—Z:zl(ai* —a)x =0 (5.6)
oL .

%:Z:zl(ai =a;)=0 5.7
oL 5 .

20 =C-a® -n® =0 (5.8)

Substituting Eqgs. (5.6), (5.7), (5.8) into Eq. {5yelds the dual optimization

problem.

minimize {%ZI: (a —cri*)(a'j —a})(xi,xp—ei (a,+a;) +Z|:yi(ai -a))
o i i (5.9)
Z(ai _ai*) =0

a,,a; 0[0,C]

subject to

In deriving Eq. (5.9), the dual variablgs 7 have eliminated through condition
Eq. (5.8), as the variables did not appear in tha dbjectives function anymore
but only were present in the dual feasibility cdimhis. Eqg. (5.6) can be rewritten

as follows
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|
w=>(a, -a;)x (5.10)
i=1
And therefore Eq. (5.1) can be expressed as
|
f00 = (a, —a) )X, x) +b (5.11)
i=1

This is so called support vector expansion, i.@. loa completely described as a
linear combination of the training pattems The Lagrange multipliers; and a;’
represent solutions to the above quadratic probienich act as forces pushing
predictions toward target valug. Only the nonzero values of the Lagrange
multipliers in Eq. (5.9) are useful in forecastihg regression line.

In Eq. (5.11), the dot product aofx;, x)can be replaced with functidf(x;,x)

known as the kernel function. Kernel functions deathe dot product to be
performed in high-dimensional feature space usowg dimensional space data
input without knowing the transformation. All kefn&nction must satisfy

Mercer’s condition [13] that corresponds to theenmproduct of some feature
space. The RBF is commonly used as kernel for ssge

K (%, X) = expf-y | x¢=x [} (5.12)
For the variabldy, it can be computed by applying the Karush-Kuhikiu

(KKT) condition that, in this case, imply that thigroduct of the Lagrange
multipliers and constrains has to equal to 0

a(e+é -y, +{w,x,y+b)=0 (5.13)

a; (e+& -y, +(w,x;)+b) =0 (5.14)
and

(C-a,)é& =0 (5.15)

(C-a)& =0 (5.16)
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Sincea;, a = 0, and& = 0 for a; 0(0,C) b can be computed as

b=y, —-(w,,Xx)-¢& for a,0(0,C) (5.17)

b=y, -(w,x)+¢e for a 0(0C) (5.18)

2.2. Prediction Method

Let {x(t)}, t =1, ..., T, be a timer series that was generated by dynamical
system. For convenience, consiaé) to be scalar, but note that the treatment of
multi-scalar time series is straightforward. Bywasgg that ()} is a projection
of a dynamics operating in a high-dimensional spd€ethe dynamics is
deterministic, the prediction of time series canpeeforming by reconstructing
the state space. The way for reconstruction wasdated by Packard et al. [14]
and mathematically analyzed by Takens [15]. A statdor is defined as

X, = (X(t),x(t = 7),....x(t = (d =D71)) (5.19)
with time-delayr and embedding dimensiah If the dynamics runs on an attractor
of dimensiorD a necessary condition for determiniqgs

d=D (5.20)

If the embedding dimension is big enough; sucht thaunambiguously
describes the state of the system at time t there thxists an equation for points

on the attractor, which is of the form
x(t+p)=f(x,) (5.21)
In this equation, f"is a function that allows to predict future valwéshe time

series (1)} given past values, witp being the prediction horizon.

Regression technique can therefore be used tomastithe prediction function
on the basis of time-delay coordinates accordingqo(5.19).
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3. Methodology

In present study, SVR is applied to forecast thgragation condition trends in
rotating machinery. Usually, when a fault inducesratating machine, at same
time the degradation condition will be occurred.eTdhegradation condition of
machine can be indicated by the increasing of timalevel in associated
machine elements. Vibration-based machine faulgmoeis is to use available
vibration symptom to predict upcoming states of flelt propagation and
degradation condition trend by monitoring one orengarameters. In this section,
the methodology of machine fault prognosis is dbecrin Fig. 5.2 as follow

Data trending of
machines

Testing data | | Training data | | Validation data

v

Model <

v

Validated model

v

Testing model

v

Prediction

A 4

Goodness ?

Yes

Prognosis

Fig. 5.2 Flowchart of prognosis system using SVR.
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1. Data acquisition the data to be used is data trending of machased
on vibration signal which contains data historiésnachine until faults
occurred.

2. Data sectioning the trending data is divided into three partaining
data, validation data and testing data. The trgir@ind validation data
are used to build the model for machine fault posis system, while
the testing data is used to test the validated mo#iter model
validation, the tested model will be obtained.

3.  Prediction the tested model is used to predict the futura diaat is
never used for training and validation. The goodrasprediction result
is measured by performance measures e.g., rootsmeaquare error
(RMSB and correlation coefficierR.

4.  Prognosis systenitis obtained if the prediction is successfull grassed

the user defined criterion of performance measures.
4. Data Benchmarking

In this section, the prediction performance of S\pkédictors is evaluated
using two typical data sets: a sunspot activitpré@and a Mackey-Glass equation
data series. These are benchmark data set in gmessgrediction research due to
their specific natures such as nonlinear, non-Gansand non-stationary for the
former, and chaotic, non-periodic, and non-convecgdor the latter.

The verification performance statistic, such as tbet-mean square error
(RMSE and correlation coefficientR] are used to examine the systeéRMSE
provides a general illustration of the overall aecy of the prediction s they

show the global goodness of fit, given as

N — )2
RMSE:,/MT”") (5.22)
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whereN represents the total number of data points indbesety represents the
observed value and represents the predicted value. The correlatiatisst
coefficient R) measure the linear correlation between the aaudl predicted

value, it can be calculated as

R = Couy, y) (5.23)

0,0y
whereR is correlation coefficient an@ov (y, y) is covariance between observed
and predicted values, which can be calculated lasv®

Couy. ) =D (% = )5 =) (5.24)

whereyis the mean of the observed value @igithe mean of predicted value.
The standard ‘deviation of the observed and pretliatelues,o, ando; ,

respectively, can be calculated as

1 N 1/2

1 N 5 1/2
gy :(EZ( i _y) J (526)

4.1. Sunspot Data

The sunspot data set can be considered as a nraméind non-stationary data.
It has served as a benchmark and been well studipevious literature [14,15].
The available data set used here contains the gsuasjvity record for the period
from years 1700 to 2005. This data, displayed (038, can be downloaded from
Online Sunspot Data Archive, SIDC, RWC Belgium VdorData Center
(http://sidc.oma.be/index.php3
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Fig. 5.3 Sunspot activity record from years of 17®2@005.

The first 249 sample (year 1700-1948) are useddin and to validate the
system, while the remaining data pairs are useddbthe identified models. For
this training and validation, 5-fold cross-validatiis performed to select the
proper parameters of RBF kernel function.in SVMsthare kernel width) and
regularization parametecC}. In the selection process, the parameters whixoh g
minimum cross-validation error are selected andl Use time series prediction
using SVM. Cross-validation process gives propendleparameterg= 2 andC
= 1, and &insensitive loss function is user defined equal @®01. The
performance of validation process is presentedgn3-4. Cross-validation selects
randomly the points from data set for training aradidating the system. After
training completed, the support vectors, weights laias are resulted and used to
validate the system. Validation process can indi¢hé quality and performance
of the system being established. Fig. 5.4 show$ tha system has good
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performance according to the performance measung &VISEand correlation
coefficient R). RMSEandR reached 0.0188 and 0.98, respectively, are sadisfi
It means the process of learning and validatin§\éM to establish the prediction
system is successful and the model is generated.

Then, the testing process should be performed $b tiee model using
independent data set that is never used in traiamd) validating process. The
support vectors, weights and bias which alreadydare employed to test the
performance the model.

Fig. 5.5 demonstrate the prediction result of tgstlata using support vector
regression (SVR), examining this graph usRigSEand correlation coefficierR,
the SVR provides a reasonably well prediction pennce.

Actual

0.9} RMSE - SR ... Predittioh

R =0.98
0.8+ i

0.7+ B

0.61 ; ,
0.51 - B i

0.4t : ) .

Sunspot number (Normalized)

0.3F : |
0211 i% ’ r ]

0.1- : ’ 1

Years

Fig. 5.4 Model validation.

157



T
Actual
Prediction | 7

o9 Py
RMSE = 0.0533

o8k R =008

0.7 1
0.6 1
0.5+ i
0.4+ 1

0.3F B

Sunspot number (Normalized)

0.2+ ) X -

o1 3 u £ 3 i

0 10 20 30 40 50 60

Fig. 5.5 Prediction of sunspot data using SVR.

4.2. Mackey Glass Data
Mackey-Glass (MG) differential delay equation [1M6hs first proposed for
modeling white blood cell production in human bagiehich defined as
dx(t) _ 02x(t =1)
dt 1+ x°(t-7)

~01x(H) (5.27)

This time series is chaotic and so there is norlgleefined period. The series
will not converge and diverge and the trajectoryhighly sensitive to initial
conditions. This is a frequently used of benchn@adblem in the neural network
and fuzzy modeling research communities. The incgadition used ix(0) = 1.2,
r= 17, andx(t) = 0 fort < 0, 1,201 data are selected then normalized &oiteg
in Fig. 5.6.
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Fig. 5.6 Mackey-Glass differential equation.

The first 800 samples are used for training anddatibn the system, whereas
the remaining samples for testing the model. RBmddefunction is selected
when SVM is performed in the training and validatiprocess. 5-fold cross-
validation is also employed to select optimal kénp@rameters for RBF kernel
function and resultegr= 2 andC = 1. Using&insensitive loss function in SVR
= 0.001, and employing the same way and method asignevious benchmarking,
the validating and prediction of Mackey-Glass dataresented in Figs. 5.7 and
5.8. From the comparison between the actual ardigtegl one, it can be seen that
a properly trained SVR can capture the system dicaehavior accurately and
quickly. The performance of system is shown initgsiprocess based on the
untrained data (401 samples) of future time valliée. training data used is about
66% of total data sets and they can train the sysiell.
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Fig. 5.7 Validation model of system using Mackeys$3 data.
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Fig. 5.8 Prediction of Mackey-Glass data using SVM.
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According to the results of benchmarking data, SW&déed on regression has
potential to perform time-series prediction. Evhough SVR system has shown
great potential in nonlinear and stochastic tinmesepredictions, there is no
known application in real-time machine health cdodi prognosis. From this
reason, machine fault prognosis system can belissteth based on the excellence

performance of regression using SVR.

5. Experiment

The proposed method-is validated by applying il sgatem to predict the
trending data of a low methane compressor (Fig. 3B8is compressor is driven
by a motor 440 kW, 6600 volt, 2 poles with opergtspeed 3565 rpm. The
related information of system is summarized in €hll.

| CMS Off-line \V//g acceleration) [ = .

b i ————
2 B Motor DEINDE horizoni

; on vertical, l " “ o

a e DER

CMS Off-line monitoring (100mV/g acceleration)
(Only horizontal)

Fig. 5.9 Low methane compressor: wet screw type.

The system consists of two types of condition namg those are off-line and
on-line system. In off-line system, several vilwatsensors are installed in some
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locations of motor and compressor such as drivereotbr, non drive-end motor,
male rotor compressor and suction part of compregsach location consists of
three directions of measurement: axial, vertical harizontal. The circle in Fig.
5.9 shows the male of rotor compressor that argoyms sensing location in this
system.

On-line monitoring system consists of acceleragensor in only horizontal
direction of four locations: drive-end motor, nonvd-end motor, male rotor

compressor and suction part of compressor.

Table 5.1 Description of system

Motor Compressor

320 LUD-MB, Wet Screw
Voltage 6600 V Type

(Unload System)
Power 440 kW Male Rotor (4)

Lobe
Pole 2 Pole Female Rotor (6)
Bearing NDE/#6216, DE/#6216 Bear Thrust Brg : 7321 BDB
earin

Rpm 3565 rpm 2 Radial Brg : Sleeve

The data used in this experiment are trending @htpeak acceleration,
envelope acceleration. Trending data were recorfitech August 2005 to
November 2005 which consists of 400 points. This d@ntains information of
machine history (vibration amplitude) with respertime sequence which can be
regarded as time-series. The proposed method isessltl to predict future
condition of vibration amplitude based on the poesi state. SVM predictor will
learn the characteristic of previous state and #aaes weights, bias and support
vectors to perform prediction.
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6. Result and Discussion

Fig. 5.10 shows the trending data of peak acceberadf low methane
compressor. This data consists of 400 points measemt that represents the
machine conditions. At the beginning, conditiom@dchine is normal as shown in
the figure that the peak acceleration is almosstant until point 300. Over point
300, amplitude of machine drastically increased tm&ans the condition of
machine is changed and degradation condition igroed. Moreover, it indicates
that some faults are occurred in the machine thenges the amplitude

significantly.
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Fig. 5.10 Peak acceleration of low methane compress

The proposed method is aimed to predict the fusteige of machine based on
previous conditions. Data from normal state arelusdrain the proposed system

for building the model, and then model will be eoydd to forecast the future
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condition of machine. The first 300 data are usedtfaining the system and
validating the model, while the remains are usedtdsting the performance of
system.

Training process is performed using 5-fold crosedasion to select the kernel
parameters of RBF kernel function. Cross-validapoocess gives proper kernel
parameterg/= 0.25 andC = 1, andg&-insensitive loss function is defined equal to
0.001. The result of model validation is presentedrig. 5.11 that giveRMSE
and R are 0.035 and 0.70, respectively. The validatedlehcannot catch the
minimum amplitude due to poor of training. Howevdre error presented by
RMSEreaches 0.035 is acceptable to be a model althtinegborrelation is small
(0.7) because the minimum of amplitude cannot lbgleby the model.

0.5

0.45
0.4 1 WA

0.35¢

0.3- B

0.25¢ i

Acceleration (g)

0.2+ B

0.151 4

Actual RMSE = 0.035
0.051 | e Predicted | R =0.70 i

0 50 100 150
Data number

Fig. 5.11 Model validation using peak acceleratiaia.

Fig. 5.12 depicts the performance of testing usirnigre independent data (100
data points) that is never used in training praocédse result seems over
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prediction that cannot approach actual trending d&tpeak acceleratioRMSE
reaches 4.67 is relatively big enough so it maybe@a good prediction model.
Even though the correlation presented Rys 0.7 shows the poor correlation
between the predicted value and the actual oneewenyvthe trending of predicted
value is relatively similar to the actual data.

The reason why this model has poor performancedastraining data do not
contain extreme (or relatively close to extremdugaf amplitude. As intelligent
system, if the system is experienced or ever tabghtelatively close to the
extreme value so it might be able to catch theahatalues. The other reason is
the trending data of peak acceleration is dragyicilanged when it represents the
degradation condition of machine. So the modelessfiifficulty to catch the
actual values.
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Fig. 5.12 Prediction of peak acceleration data.
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Fig. 5.13 demonstrates the trending data of eneelapceleration of low
methane compressor. The proposed method is addrespeedict the future state
condition of machine based on learning from presicondition. First 300 data
are used to train the system for building and \adiidy the model. The remains of
100 data are targeted as actual value that wipredicted by model. The model
should predict the maximum value of amplitude thgpresents the machine

degradation or fault occurrence.
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Fig. 5.13 Data trending of envelope acceleration.

SVM s trained by training data using 5-fold crosslidation for RBF
kernel parameters selection. Cross-validation @m®cgives proper kernel
parametery’= 4.5 andC = 1, and&insensitive loss function is defined equal to
0.001. The result of model validation is presentedrig. 5.14 that giveRMSE
andR are 0.075 and 0.98, respectively. The validatedehoan catch very well
the dynamic system represented by training dateerefbre, the model is
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acceptable and can be considered to be a model m®dictor for system

forecasting.
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Fig. 5.14 Model validation using envelope acceleratiata.
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Fig. 5.15 Prediction of envelope acceleration data.
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The performance of prediction is depicted in Figl5 that shows the
acceptability of the modeRMSEreaches 0.085 is relatively small that means the
values of predicted data and actual data are versec Also, the correlation
measurer is high, 0.99 which represents the predicted skl the actual one
are high-correlated.

In this case, the training process is well perfedndue to good quality of
training data that are close-related among otHerseans there are no extreme
differences (drastically change) between amplituafesnvelope acceleration. So
the prediction using SVM model can perform well.

As general, for SVM regression, there are similadvantages and
disadvantages as mentioned in classification t&kkeover, it can be added as
follows [11]:

§ Advantages

1. In regression training of SVM, it consists of salyia uniquely solvable
guadratic optimization problem, which is much matactive because it
is guaranteed to find a global minimum of the esanface.

2. The use of dual setting in the constrained optitreraavoids having to
define and compute the parameters of the optimpetpfane in a data
space of possibly high dimensionality.

3. In SVM, the complexity of the machine learning iankled by the
support algorithm itself.

4. The computation can be performed efficiently withauarge CPU time

requirement.
§ Disadvantages

1. Problem of kernel function selection.

2. Problem of proper kernel parameters.
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7. Conclusion

Prognosis of machine condition is very importanptovide an accurate alarm
before fault reaches critical levels so as to pmeveachinery performance
degradation, malfunction or catastrophic failurettis chapter, the feasibility of
support vector machine (SVM) for prognosis systas lheen studied. The model
predictor is built based on the ability of SVM f&gression technique.

Problem benchmarking has been performed using Stmsta and Mackey-
Glass data that are frequently used for benchmgrkinmachine learning area.
These data contains chaotic and complex dynamiaweh so it is very
interesting to apply these data for performancéuesi@n of the proposed system.

The proposed method is validated by applying iptedict the future state
condition of a low methane compressor based omgirevious state data. Two
cases have been studied using peak acceleratioeraraiope acceleration. The
results show that the proposed method has poteotibk a prediction tool for
prognosis system based on time-series prediction.
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VI. Conclusions and Future Work

1. Conclusions

In this dissertation, a complete study of fauligiesis and prognosis by means
of support vector machine (SVM) has been deeplgistlh Some basic theories
including signal analysis in time and frequency dorms, which are used for
feature representation are reviewed to give prebmyi understanding in fault
diagnosis procedure. In other word, we used a tqabknso-called feature-based
technique to represent machine conditions. Therddga of this technique is to
solve data transfer and data storage problem. 2at@sented as feature provide
better solutions that greatly reduce the requirdmeri transfer number and
storage space, while the information is kept ak hgpossible.

Feature-based technique involves relative techsigqeeich as feature
representation, feature extraction and featurecBete In feature representation,
features are calculated from time domain, frequedmyain and auto-regression
estimation to keep the infarmation at highest levedrge scale features are
usually obtained due to multi-sensors used andispagition of measurement on
critical elements that requires much calculationetiand degrades accuracy of
system. Therefore, feature extractions using liresad nonlinear technique via
component analysis are proposed to obtain optineatufe for good fault
classification. The linear techniques are principainponent analysis (PCA) and
independent component analysis (ICA), while nordmechniques are employed
by introducing kernel function into linear technequ

Support vector machine which is known as new tephain machine learning
is highlighted to understand the classificationceure for fault diagnosis system.
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In this study, SVM is adopted, redeveloped and doetb with feature-based
technique to obtain a novel fault diagnosis toobr&bver, wavelet support vector
machine (W-SVM) is introduced to contribute a rekly new technique in
classification method used to fault diagnosis reeitFinally, the proposed method
is validated using induction motor data to perfdault diagnosis by means of
classification strategy in SVM. Several case studiave been done to diagnose
fault occurrence in induction motor such as betdrydoroken rotor bars, bearing
fault, mass unbalance, phase unbalance and eactigniault. The data used in the
experiments are vibration and current data. Theltseshow that the proposed
method can perform fault diagnosis well and it barconcluded that the proposed
method may serve the fault diagnosis techniquberfuture.

Prognosis can be defined as the ability to prealicurately and precisely the
remaining useful lifetime of a failing machine coomgnt or subsystem. In this
dissertation, the feasibility of support vector imae (SVM) for prognosis system
has been studied. The model predictor is built dase the ability of SVM for
regression technique. Problem benchmarking has pedarmed using Sunspot
data and Mackey-Glass data that are frequently akednchmarking in machine
learning area. These data contains chaotic and leandgnamic behavior, so it is
very interesting to apply these data for perforneaaealuation of the proposed
system.

The proposed method is validated by applying iptedict the future state
condition of a low methane compressor based omgorevious state data. Two
cases have been studied using peak acceleratioeraaiope acceleration. The
results show that the proposed method has potdotibk a prediction tool for

prognosis system based on time-series prediction.

173



2. FutureWork

It has been stated in this dissertation that threashel of a reliable prognosis
system is very important due to the potential athges to be gained from
reduced maintenance costs, improved productivityl amcreased machine
availability. Even though the support vector préalichave demonstrated their
ability in time-series forecasting schemes, advdrresearch needs to be done in
several aspects before they can be applied to genmenl-time industrial
application. These aspects are improving theiriegpbn robustness (i.e., apply
SMO solver instead of QP) to accommodate differegstem condition,
mitigating the requirements for the representatdaga sets, improving the
convergence properties, especially for complex afgmr applications.
Schematically, the architecture of the forecastowj is shown in Fig. 6.1.

Dynamic system »| Post-processing Predictor

¢ A A

Data acquisition Signal processing [ Database } ———-

Fig. 6.1 The architecture of the prognosis baseecasting tool.

Signals are acquired from corresponding sensoes) Hiter being properly
filtered and sampled; the signals are transfeménl gomputer. Signal processing
is employed to generate the representative feafuwes the acquired signals by
applying different signal processing techniques.erfh post-processing is
addressed to enhance the feature characteristidenmd the monitoring indices

for forecasting operations.
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