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Abstract 
 

Recently, the issue of machine fault diagnosis and prognosis as a part of 

maintenance system became global due to the potential advantages to be gained 

from reduced maintenance costs, improved productivity and increased machine 

availability. Numerous methods have been developed based on intelligent system 

such as artificial neural network, fuzzy expert system, condition-based reasoning, 

random forest, etc. However, the use of support vector machine (SVM) for 

machine fault diagnosis and prognosis is still rare. SVM has an excellence 

performance in generalization so it can produce high accuracy in classification 

and prediction for machine fault diagnosis and prognosis, respectively. 

In this paper, SVM will be redeveloped to be an intelligent system for 

conducting fault diagnosis and prognosis of machine. SVM has two excellent 

abilities in the framework of machine learning, those are classification and 

regression. Fault diagnosis is performed using classification ability of SVM, while 

the prognosis of machine condition is conducted based on regression using SVM. 

As an intelligent technique, SVM can train the given data and save the result as 

weights, and then use the weights for doing classification and regression. 

Originally, SVM is used for two class classification of linear data; however, using 



 xvii  

kernel mapping SVM can perform training process and doing classification with 

nonlinear data. By optimizing the hyperplane, SVM tries to solve the 

classification and regression problems. 

In the developed system, SVM is combined by technique so-called feature-

based technique to do classification for fault diagnosis purpose. Feature-based 

technique is an effort to represent the raw data as feature such as characteristic 

values (statistical), color, shape and so on. In machine fault diagnosis, features are 

representative of values which indicate the machine condition. Using feature, the 

problem with data transferring and data storage can also be solved. Feature-based 

classification technique consists of data acquisition, preprocessing, feature 

representation, feature calculation, feature selection and classifiers. In this study, 

SVM is adopted, redeveloped and combined with feature-based technique to 

obtain a novel fault diagnosis tool. 

 The proposed method is validated using induction motor data to perform fault 

diagnosis by means of classification strategy in SVM. Several case studies have 

been done to diagnose fault occurrence in induction motor such as bent rotor, 

broken rotor bars, bearing fault, mass unbalance, phase unbalance and eccentricity 

fault. The data used in the experiments are vibration and current data. The results 

show that the proposed method can perform fault diagnosis well, and it can be 

concluded that the proposed method may serve the fault diagnosis technique in the 

future. 

 Prognosis can be defined as the ability to predict accurately and precisely the 

remaining useful lifetime of a failing machine component or subsystem. Therefore, 

a reliable predictor is very important and it is very useful to a wide range of 

industries to forecast the upcoming states of a dynamic system or to predict 

damage propagation trend in rotating machineries. In mechanical system, for 

example, the forecasting information can be used for condition monitoring to 

provide an accurate alarm before fault reaches critical levels so as to prevent 
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machinery performance degradation, malfunction or catastrophic failure. 

Moreover, it can be used for scheduling of repairs and predictive/preventive 

maintenance in manufacturing facilities; and predictive and fault-tolerant control. 

 In this study, SVM based regression is redeveloped to be a predictor of time-

series data. Trending data of machine can be considered as time-series, it contains 

information of machine during its operation. The proposed method is addressed to 

predict the upcoming state of machine based on previous condition. Trending data 

of a low methane compressor is used to validate the proposed method. 

Performance of prediction is measured using RMSE and coefficient correlation (R). 

The result show that SVM based regression has potential and promising to be a 

reliable prognosis tool. 
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I. Introduction 
 

 

1. Background 

 

Since the maintenance has significant impact in industry, it has received a deep 

attention from the expert and practical maintenance. According to study, 

maintenance costs are a major part of the total operating costs of all 

manufacturing and production plants, which can make or break a business. 

Depending on the specific industry, maintenance costs can represent from 15% to 

40% of the costs of goods produced [1]. In fact, these costs are associated with 

maintenance labor and materials and are likely to go even higher in the future with 

the addition of factory automation through the development of new technologies. 

Nowadays, the development of maintenance strategy was supported by 

computer technology both in hardware and software. A recent developed method 

is using artificial intelligent (AI) techniques as tool for maintenance routine. 

Based on the idea how to perform an excellent and easy maintenance program; it 

leads the practical maintenance to create an intelligent maintenance system. 

Intelligent maintenance must consist of parts (hardware and software) which are 

possible the system to do maintenance routine in such a way like human being. 

Application of expert system (ES) as a branch of AI in maintenance is one of 

solutions. The basic idea of ES is simply that expertise, which is the vast body of 

task-specific knowledge, is transferred from a human to a computer. This 

knowledge is then stored in the computer and users call upon the computer for 

specific advice as needed. The computer can make inferences and arrive at a 

specific conclusion. Then, like human consultant, it gives advice and explains, if 

necessary, the logic behind the advice [2].  
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In recent year, it can be said that approximately half of all operating costs in 

most processing and manufacturing operations can be attributed to maintenance. 

This is ample motivation for studying any activity that can potentially lower these 

costs. Machine condition monitoring and fault diagnosis is one of these activities. 

According to Williams et al. [3], adopted from British Standard (BS 

3811:1984), condition monitoring is defined as the continuous or periodic 

measurement and interpretation of data to indicate the condition of an item to 

determine the need for maintenance. Condition monitoring is needed for 

guarantee the survival of machine so that incipient fault can be detected and 

diagnosed as early as possible. The possibility of failure cannot be avoided in the 

machine, but early diagnosis of incipient failure is useful to avoid the machine 

breakdown. When fault occurrence exists in the machines, it will give some 

symptoms like excessive vibration and noise, extremely increased temperature, oil 

debris, etc. Using machine condition monitoring, these symptoms can be early 

detected and efforts to overcome the breakdown of machine can be realized soon. 

Machine condition monitoring and fault diagnosis can also be defined as the 

field of technical activity in which selected physical parameters, associated with 

machinery operation, are observed for the purpose of determining machinery 

integrity [4]. Once the integrity of a machine has been estimated, this information 

can be used for many different purposes. Loading and maintenance activities are 

the two main tasks that link directly to the information provided. The ultimate 

goal in regard to maintenance activities is to schedule only what is needed at a 

time, which results in optimum use of resources. Having said this, it should also 

be noted that condition monitoring and fault diagnosis practices are also applied to 

improve end product quality control and as such can also be considered as process 

monitoring tools. 

There are several benefits and advantages in machine condition monitoring and 

fault diagnosis as follows 
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1. Increased machine availability and reliability. 

2. Improved operating efficiency. 

3. Improved risk management (less downtime). 

4. Reduced maintenance costs (better planning). 

5. Reduced spare parts inventories. 

6. Improved safety. 

7. Improved knowledge of the machine condition (safe short-term 

overloading of machine possible). 

8. Extended operational life of the machine. 

9. Improved customer relations (less planned/unplanned downtime). 

10. Elimination of chronic failures (root cause analysis and redesign). 

11. Reduction of post overhaul failures due to improperly performed 

maintenance or reassembly, etc. 

 

By considering the importance and benefits of machine condition monitoring 

and fault diagnosis, this research proposes an intelligent machine fault diagnosis 

system based on support vector machine (SVM). SVM is a relatively new 

computational learning method based on the statistical learning theory; can serve 

as ES to carry out intelligent machine condition monitoring system. Introduced by 

Vapnik and his co-workers [5-7], SVM becomes famous and popular in machine 

learning community due to the excellence of generalization ability than the 

traditional method such as neural network. Therefore, SVM have been 

successfully applied to a number of applications ranging from face detection, 

verification, and recognition, object detection and recognition, handwritten 

character and digit recognition, text detection and categorization, speech and 

speaker verification, recognition, information and image retrieval, prediction and 

so on. However, research and published papers which discuss the use of SVM in 

machine condition monitoring, fault diagnosis and prognosis are much fewer. 
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Therefore, this research is aimed to give a contribution for developing an 

intelligent method in machine fault diagnosis and prognosis based on SVM. 

 

2. Motivation and Significance of This Research 

 

Machines are critical part in industry. Industrial machines are complex and 

consist of many components that could potentially fail. The issue of reliability and 

robustness of machines has been received a deep attention from researchers and 

practitioners maintenance. There has been an increased interest in machine 

condition monitoring because of the potential benefits to be obtained from 

reduced maintenance costs, improved operating efficiency, increased machine 

reliability an availability. Recently, the most fundamental issue of condition 

monitoring in industries are fault diagnosis and prognosis. One of the most 

effective to investigate in this issue is condition monitoring routine based on 

vibration signal analysis. However, current signal analysis can also be used in 

condition monitoring of electrical machine such as induction motors as well as 

vibration signal. Hence, the motivation of this research is to establish an 

intelligent condition monitoring, fault diagnosis and prognosis system which can 

be effectively applied in machines based on vibration and current signal analysis 

augmented by a kind of intelligent system method namely support vector machine 

(SVM). 

The significance of this research is to develop the existed algorithm in SVM, 

so that it can perform well in machine fault diagnosis and prognosis. In this 

research, the developed system is addressed to be able to achieve good 

performance, high accuracy and robust in machine fault diagnosis routine using 

classification procedure. 

SVM was selected technique to be applied to machine fault diagnosis process. 

The reason is that SVM has excellent ability in generalization process. In addition, 
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classical learning approaches are designed to minimize error on the training 

dataset and it is called the empirical risk minimization (ERM). Those learning 

methods follow the ERM principle and neural networks are the most common 

example of ERM. On the other hand, the SVM are based on the structural risk 

minimization (SRM) principle rooted in the statistical learning theory. It gives 

better generalization abilities and SRM is achieved through a minimization of the 

upper bound of the generalization error [5-7]. 

 

3. Aims and Objectives 

 

This research focuses on the development of existed method of SVM algorithm 

for machine fault diagnosis and prognosis. The aim of this research is to redevelop 

and modify SVM algorithm and to combine SVM algorithm with other cooperate 

method for obtaining the better performance in classification process using SVM. 

The main objectives of this research are as follows: 

1. To redevelop preprocessing method of feature extraction and reduction for 

obtaining better SVM inputs by component analysis using linear and 

nonlinear technique. 

2. To incorporate SVM with feature extraction and reduction using component 

analysis. 

3. To redevelop a new kernel method using wavelet function and apply it to 

SVM based classifier. 

4. To apply the developed system of SVM based-classifier in machine fault 

diagnosis. 

5. To redevelop SVM based on regression for prognosis of machine condition. 
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4. Research Method and Approach 

 

In order to achieve the aims and objectives of the research, the following 

quantitative research method has been adopted: 

1. Theory redevelopment of component analysis that consists of multivariate 

data analysis using linear technique such as principal component analysis 

(PCA) and independent component analysis (ICA). 

2. Redevelop the nonlinear technique of multivariate data analysis using 

kernel function and induce it in PCA and ICA. 

3. Redevelop wavelet theory as kernel function for nonlinear mapping process 

in SVM. 

4. Applying the redeveloped technique to induction motors fault diagnosis. 

5. Study the feasibility of SVM based regression for prognosis of machine 

condition. 

 

5. Contribution of This Research 

 

The main contribution of this research is redeveloping the SVM algorithm for 

machine fault diagnosis and prognosis. Several other significant contributions of 

the redeveloped SVM algorithm technique are as follows: 

1. The ability to obtain the optimal features for fault classification using 

feature extraction and reduction by linear and nonlinear technique of 

component analysis. 

2. Establishing wavelet support vector machine (W-SVM) to gain a good 

performance and novelty in machine condition monitoring and fault 

diagnosis system. 

3. The developed system was successfully applied in real application to 

diagnose and detect faults in induction motors based on vibration and 
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current signals. 

4. Developing SVM based regression for prognosis of machine condition. 

 

6. Organizational Overview of This Dissertation 

 

Based on aforementioned aims and objectives of this research, this dissertation 

is outlined as follows. 

Chapter 1 explains the background and motivation behind this research as 

well as the existed method and algorithm which be adopted through the 

appropriate research method. It also describes the main objectives and 

contributions of this research and outlines an overview of this dissertation.  

Chapter 2 outlines the preliminary literature review and knowledge of fault 

diagnosis techniques, particularly in the time and frequency domain. Moreover, it 

discusses the feature-based fault diagnosis concept, statistical features 

representation, and data preprocessing. 

Chapter 3 reviews the dimensionality reduction, concept of component 

analysis both using linear and nonlinear techniques. In addition, the basic theory 

of support vector machine (SVM) classifier and the frame work of building kernel 

function using wavelet for SVM classifier are deeply reviewed. 

Chapter 4 considers to the real application on induction motor. It presents the 

faults frequently occurred in induction motor, diagnosis methods, the proposed 

diagnostic system and case study of fault diagnosis of induction motor using SVM 

incorporate with component analysis procedure. Moreover, it also presents fault 

diagnosis method using transient current signal analysis. It includes the 

preprocessing of transient current signal, statistical features representation, feature 

extraction and reduction and classification process using wavelet-support vector 

machine (W-SVM) 

Chapter 5 addresses to use support vector regression for prognosis of machine 
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condition. 

Chapter 6 gives several conclusion based on the results obtained in this 

research. This chapter also recommends some directions for further research in the 

future. 
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II. Preliminary Review and Study 

 
 

1. Existing Method for Machine Condition Monitoring and Fault Diagnosis 

 

1.1. Statistical Approach 

A common method of fault diagnosis is to detect whether a specific fault is 

present or not based on the available condition monitoring without intrusive 

inspection of machine. In the early development method of fault diagnosis, a 

statistic test was constructed to summarize the condition monitoring information 

so as to be able to decide whether to accept or reject some hypothesis of machine 

condition [1-3]. Recently, a framework for fault diagnosis called structured 

hypothesis test was proposed for conveniently handling complicated multiple 

faults of different types [4]. 

Other fault detection and diagnosis technique was employed using statistical 

process control (SPC) which was originally developed in quality control theory. 

The principle of SPC is to measure the deviation of the current signal from a 

reference signal representing the normal condition to see whether the current 

signal is within the control limit or not. An example of using SPC for damage 

detection was discussed in [5].  

Cluster analysis, as a multivariate statistical analysis method, is a statistical 

classification approach that groups signals into different fault categories on the 

basis of the similarity of the characteristics or features they possess. It seeks to 

minimize within-group variance and maximize between-group variance. The 

result of cluster analysis is a number of heterogeneous groups with homogeneous 

contents. There are substantial differences between the groups, but the signals 

within a single group are similar. Application of cluster analysis in machinery 
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fault diagnosis was discussed in [6,7]. A natural way of signal grouping is based 

on certain distance measures or similarity measure between two signals. These 

measures are usually derived from certain discriminant functions in statistical 

pattern recognition [8]. Commonly used distance measures are Euclidean distance, 

Mahalanobis distance, Kullback–Leibler distance and Bayesian distance. Papers 

in [9-12] contain some examples of using these distance metrics for fault 

diagnosis. Ding et al. [9] introduced a new distance metric called quotient distance 

for engine fault diagnosis. Pan et al. [13] proposed an extended symmetric Itakura 

distance for signals in time–frequency representations such as the Wigner–Ville 

distributions. Other than distance measures, feature vector correlation coefficient 

is also a similarity measure commonly used for signal classification in machinery 

fault diagnosis [12]. Many clustering algorithms are available for determining the 

signal groups [14]. A commonly used algorithm in machine fault classification is 

the nearest neighbor algorithm that fuses two closest groups into a new group and 

calculates distance between two groups as the distance of the nearest neighbor in 

the two separate groups [15]. The boundary of two adjacent groups is determined 

by the discriminant function used. A piecewise linear discriminant function was 

used and thus piecewise linear boundaries were obtained for bearing condition 

classification in [16]. A technique called support vector machine (SVM) is usually 

employed to optimize a boundary curve in the sense that the distance of the 

closest point to the boundary curve is maximized. SVM applied to machine fault 

diagnosis was considered in [17,18]. 

 

1.2. Artificial Intelligent (AI) Approach 

AI techniques have been increasingly applied to machine diagnosis and have 

shown improved performance over conventional approaches. In practice, however, 

it is not easy to apply AI techniques due to the lack of efficient procedures to 

obtain training data and specific knowledge, which are required to train the 
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models. So far, most of the applications in the literature just used experimental 

data for model training. In the literature, two popular AI techniques for machine 

diagnosis are artificial neural networks (ANNs) and ESs. Other AI techniques 

used include fuzzy logic systems, fuzzy–neural networks (FNNs), neural–fuzzy 

systems and evolutionary algorithms (EAs). A review of recent developments in 

applications of AI techniques for induction machine stator fault diagnostics was 

given by Siddique et al. [19].  

An ANN is a computational model that mimics the human brain structure. It 

consists of simple processing elements connected in a complex layer structure 

which enables the model to approximate a complex non-linear function with 

multi-input and multi-output. A processing element comprises a node and a 

weight. The ANN learns the unknown function by adjusting its weights with 

observations of input and output. This process is usually called training of an 

ANN. There are various neural network models. Feed-forward neural network 

(FFNN) structure is the most widely used neural network structure in machine 

fault diagnosis [20-23]. A special FFNN, multilayer perceptron with the BP 

training algorithm, is the most commonly used neural network model for pattern 

recognition and classification, and hence machine fault diagnostics as well [24,25]. 

The BP neural networks, however, have two main limitations: (1) difficulty of 

determining the network structure and the number of nodes; (2) slow convergence 

of the training process. A cascade correlation neural network (CCNN) does not 

require initial determination of the network structure and the number of nodes. 

CCNN can be used in cases where on-line training is preferable. Spoerre [26] 

applied CCNN to bearing fault classification and showed that CCNN can result in 

utilizing the minimum network structure for fault recognition with satisfied 

accuracy. Other neural network models applied in machine diagnostics are radial 

basis function neural networks, recurrent neural networks [27,28] and counter 

propagation neural networks [29]. The above ANN models usually use supervised 
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learning algorithms which require external input such as the a priori knowledge 

about the target or desired output. For example, a common practice of training a 

neural network model is to use a set of experimental data with known (seeded) 

faults. This training process is supervised learning. In contrast to supervised 

learning, unsupervised learning does not require external input. An unsupervised 

neural network learns itself using new information available. 

Wang and Too [30] applied the unsupervised neural networks, self-organizing 

map (SOM) and learning vector quantization to rotating machine fault detection. 

Tallam et al. [31] proposed some self-commissioning and on-line training 

algorithms for FFNN with particular application to electric machine fault 

diagnostics. Sohn et al. [3] used an auto associative neural network to separate the 

effect of damage on the extracted features from those caused by the environmental 

and vibration variations of the system. Then a sequential probability ratio test was 

performed on the normalized features for damage classification. In contrast to 

neural networks, which learn knowledge by training on observed data with known 

inputs and outputs, ESs utilize domain expert knowledge in a computer program 

with an automated inference engine to perform reasoning for problem solving. 

Three main reasoning methods for ES used in the area of machinery diagnostics 

are rule-based reasoning [32-34], case-based reasoning [35,36] and model-based 

reasoning [37]. Another reasoning method, negative reasoning, was introduced to 

mechanical diagnosis by Hall et al. [38]. Stanek et al. [39] compared case-based 

and model-based reasoning and proposed to combine them for a lower-cost 

solution to machine condition assessment and diagnosis. Unlike other reasoning 

methods, negative reasoning deals with negative information, which by its 

absence or lack of symptoms is indicative of meaningful inferences. ESs and 

neural networks have their own limitations. One main limitation of rule-based ESs 

is combinatorial explosion, which refers to the computation problem caused when 

the number rule increases exponentially as the number of variables increases. 
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Another main limitation is consistency maintenance, which refers to the process 

by which the system decides when some of the variables need to be recomputed in 

response to changes. 

 

2. SVM in Machine Condition Monitoring and Fault Diagnosis: a review 

 

Recently, the issue of machine condition monitoring and fault diagnosis as a 

part of maintenance system became global due to the potential advantages to be 

gained from reduced maintenance costs, improved productivity and increased 

machine availability. This sub chapter presents a survey of machine condition 

monitoring and fault diagnosis using support vector machine (SVM). It attempts 

to summarize and review the recent research and development of SVM in 

machine condition monitoring and fault diagnosis. Numerous methods have been 

developed based on intelligent system such as artificial neural network, fuzzy 

expert system, condition-based reasoning, random forest, etc. However, the use of 

SVM for machine condition monitoring and fault diagnosis is still rare. SVM has 

an excellence performance in generalization, so it can produce high accuracy in 

classification for machine condition monitoring and diagnosis. Until 2006, the use 

of SVM in machine condition monitoring and fault diagnosis is tending to develop 

towards expertise orientation and problem-oriented domain. Therefore, the ability 

to continually change and obtain a new novel idea for machine condition 

monitoring and fault diagnosis using SVM will be a future works. 

 

2.1. Diagnosis of Rolling Element Bearing 

Bearings are the best location for measuring machinery vibration since this is 

where the basic dynamic loads and forces of machine are applied and they are a 

critical component of machinery. Condition monitoring and fault diagnosis of 

bearing can represent the condition of machine itself. This section will review the 
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authors who have contribution in research of fault diagnosis of bearing. 

Jack and Nandi [40] performed fault detection of roller bearing using SVM and 

artificial neural network (ANN). They used vibration data taken from small test 

rig and simulate the bearing condition which has four faults: inner race fault, outer 

race fault, rolling element fault and cage fault. They defined and calculated 

statistical features based on moments and cumulants and selected the optimal 

features using GA. In the classification process, they employed SVM using RBF 

kernel with constant kernel parameter. Yan and Shao [41] employed SVM for 

fault detection of roller bearing using vibration signal and noise. Unfortunately, 

there is no special method stated in their research except SVM classification 

routine. However, they stated that SVM has promising application in fault 

diagnosis. Moreover, Samanta et al. [42, 43] have improved the previous methods 

in fault detection of bearing. They applied GA for feature selection and searching 

proper RBF kernel parameters. Several effect conditions such as sensor location, 

signal preprocessing, number of features were presented to show the performance 

of SVM compared with ANN. Rojas and Nandi [44, 45] have improved their 

previous research on bearing fault diagnosis. They proposed a practical scheme 

for fast detection and classification of rolling element bearing. Sequential minimal 

optimization (SMO) was implemented for solving SVM optimization problem. 

Zhang et al. [46] proposed probabilistic SVM (ProSVM) for fault diagnosis of 

bearing. It was aimed to effectively reduce the number of samples on the 

condition of keeping the classification accuracy. Sugumaran et al. [47] employed 

fault diagnosis of roller bearing using decision tree (DT) and proximal SVM 

(PSVM). DT was aimed to identify the best features from a given set of samples 

for the purpose of classification. They claimed that PSVM has the capability to 

efficiently classify the faults using statistical features. Recently, Hu et al. [48] 

proposed a method that used improved wavelet package transform (IWPT) and 

SVM ensemble for fault diagnosis of rolling element bearing. They also employed 
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feature selection using distance evaluation technique (DET) for feature selection. 

The previous discussion describes the evolutionary by years the technical 

development of using SVM for bearing fault diagnosis. Hopefully, there will be 

present an advanced research to obtain more robust techniques in SVM for 

bearing fault diagnosis. 

 

2.2. Diagnosis of Induction Motors 

Induction motor is a critical component in many industrial processes and it is 

very important part to support the survival of industry in producing of products. It 

is also frequently integrated with any commercially available equipment and the 

process itself. Therefore, it has been urgently required special attention in 

condition monitoring to guarantee the performance of induction motors. Early 

fault diagnosis of induction motor during its operation will give the incipient 

faults condition and the efforts to overcome any faults should be done to avoid the 

more serious condition. 

Pöyhönen et al. [49, 50] proposed method namely coupling pairwise SVM for 

fault classification of induction motors. Power estimate density using Welch’s 

method was calculated from circulating currents in parallel branches of motors. 

SVM was then trained to distinguish a healthy spectrum from faulty spectra. The 

induction motors consist of faults as follows: broken rotor bars, broken end-ring 

in rotor cage, shorted coil and shorted turn in stator winding. Zhitong et al. [51] 

carried out fault detection in induction motors using SVM technique to detect 

broken rotor bars. In their experiment, induction motors were experimented with 

no fault, one broken bar, two broken bars and three broken bars. They used stator 

current to obtain the signal and calculated the frequency spectrum for doing fault 

detection. Fang [52] conducted a faults diagnosis system based on integration of 

rough set theory (RST) and SVM. He used stator current spectrum as inputs. RST 

can perform feature extraction and reduction for removing redundant attributes. 
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The conditions of induction motors were health, broken bar, dynamic eccentricity 

and static eccentricity. The result showed that the proposed method has good 

performance in diagnosis accuracy and needs short time in training. Widodo and 

Yang [53-55] employed fault diagnosis method using SVM combined by feature 

extraction via component analysis (PCA, ICA, KPCA and KICA). The statistical 

features in time domain and frequency domain from current and vibration signal 

were calculated as features representation. The proposed method was aimed to 

detect fault in induction motor such as broken rotor bars, bowed rotor, bearing 

fault, rotor unbalance, eccentricity and phase unbalance. Recently, they conducted 

fault diagnosis of induction motor based on start-up transient current signal. 

Transient current signal has characteristic (similarity) that was difficult to 

distinguish among faults. Therefore, they proposed wavelet SVM (W-SVM) for 

obtain a novel method in classification process. The basic idea of W-SVM was 

constructing a kernel function using wavelet function and then inducing into SVM 

theory [56, 57]. 

 

2.3. Diagnosis of Machine Tools 

Recently, AI technique has been used for fault detection of machine tool. 

Moreover, AI can also predict the remaining life of machine tools. Here, the 

survey of using SVM for condition monitoring and diagnosis of machine tools 

will be presented. 

Ramesh et al. [58] presented a hybrid SVM-Bayesian Network (BN) for 

predicting the thermal error in machine tool according to specific condition. In 

this research, SVM-BN was developed first all to classify the error into groups 

depending on the operating condition and then carry out a mapping of the 

temperature profile with the measured error. This concept lead to a more 

generalized prediction model then the conventional method of directly mapping 

error and temperature irrespective of condition. Such model is especially useful in 
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a production environment wherein the machine tools are subject to a variety of 

operating conditions. The other research was carried out by Sun et al. [59, 60] 

who classified tool wear using SVM based on manufacturing consideration. This 

research was aimed to propose a new performance evaluation function for tool 

condition monitoring (TCM). First, they analyzed two types of manufacturing 

loss due to misclassification (loss caused under prediction and over prediction) 

then both are utilized to compute corresponding weights of the proposed 

performance evaluation function. Then the expected loss of future 

misclassification is introduced to evaluate the recognition performance of TCM. 

Finally, a revised SVM approach is implemented to carry out the multi-

classification of tool states. With this approach, a tool is replaced or continued not 

only based on the tool condition alone, but also the risk in cost incurred due to 

underutilized or overused tool. In recent publication, Cho [61] conducted TCM 

for tool breakage detection using SVM in milling process. SVM was addressed to 

recognize process abnormalities and initiate corrective action during a 

manufacturing process. They applied support vector regression (SVR) for tool 

breakage determination and claimed better than traditional multiple variable 

regression approach (MVR). 

The survey of papers which implement SVM in TCM has been presented. 

However, there are only few paper discuss about TCM during year 1999-2006 

according to survey from some on-line journals. 

 

2.4. Diagnosis of Pumps, Compressors and Turbines 

Detection of pump failure has been carried out by Tax et al. [62] using support 

vector data description (SVDD). The importance of preprocessing data was also 

highlighted in this dissertation such as feature extraction and selection. In 

addition, they evaluated several feature extraction methods in a special type of 

outlier detection problem. The use of support vector data description was aimed 
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to get indication of the complexity of the normal class in data sets and how well it 

is expected to be distinguishable from the abnormal data. Gao et al. [63] applied 

SVM for fault diagnosis of valve in reciprocating pumps. As preprocessing, the 

wavelet packet transform (WPT) was employed to extract feature vectors from 

vibration signal. They simulate 10 conditions of valve which must be classified 

using SVM. SVM was successful applied for fault diagnosis of turbo-pump rotor 

by Yuan et al. [64]. The original data came from vibration signal then the feature 

extraction was performed by applying principal component analysis (PCA) to 

extract the optimal features and reduce the dimension of features. In addition, 

based on same data, Yuan [65] was also carried out fault diagnosis of turbo-pump 

using SVM with parameter optimization. In this research, artificial immunization 

algorithm (AIA) was used to optimize parameters in SVM. 

Yang et al. [66] performed condition classification of small reciprocating 

compressor for refrigerator using SVM. In this dissertation, wavelet transform 

and statistical method were used to extract salient features from row noise and 

vibration signal. Moreover, iteration method was employed to select the proper 

RBF kernel parameters in SVM. In addition, Yang et al. [67] also carried out 

cavitation detection of butterfly valve using SVM. The other research using SVM 

for fault diagnosis of reciprocating compressor was performed by Ren et al. [68]. 

This was aimed to detect valve fault using vibration signal. Vibration signal was 

decomposed using local wave method and data was acquired from valve surface. 

In turbine detection, Li et al. [69] employed SVM for fault diagnosis of steam 

turbine. Ensemble learning based on genetic algorithm (GA), namely direct 

genetic ensemble (DGE) was performed to achieve good performance in 

classification. The proposed system successfully detected rotor unbalance in 

steam turbine. Zhang et al. [70] successfully applied fuzzy support vector 

machine (FSVM) for condition monitoring of flue-gas turbine set based on 

vibration signal. FSVM modified separating hyperplane by adding fuzzy 
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coefficients to every training data sample in order to indicate loss difference of 

misclassifying training data sample of different types. 

 

2.5. Diagnosis of HVAC Machines 

Batur et al. [71] presented fault detection of heat exchanger using SVM 

combined by least squares parameter identification technique to permit on-line 

monitoring. In this system, SVM was addressed to detect abnormal condition of 

heat exchanger such as air in steam line, obstructed tubes, high condensate flow 

and low condensate flow. The other research was conducted by Han et al. [72] for 

hot spot detection in power plant boiler air preheater based on least squares 

support vector machine (LS-SVM). In this system, discriminate model of 3 pairs 

of fire status have been built based on LS-SVM using RBF kernel and polynomial 

kernel. The hyperparameters of classifiers were tuned by leave-one-out cross 

validation. Receiver operating characteristic (ROC) curve showed that LS-SVM 

has good classification and generalization ability. Choi et al. [73] carried out fault 

diagnosis of chillers machine using SVM based on statistical test such as 

generalized likelihood ratio (GLR). The system was subjected to five types of 

faults, including reduction in water flow rates in condenser, evaporator, fouling in 

condenser and evaporator and refrigerant undercharge. 

 

2.6. Other Machines 

The other applications of using SVM for machine condition monitoring and 

fault diagnosis are reported as follows: Rychetsky et al. [74] employed support 

vector machine for engine knock detection. In this research, support vector was 

combined by kernel adatron technique to provide non linearity, a bias and soft 

margin. This kernel adatron algorithm was reported can be convergence fast and 

proper for combination with SVM. SVM classifier was addressed to classify the 

current knocking condition (3 classes): no-knock, borderline knock and hard 
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knocking. Xu et al. [75] employed rough set theory combined with SVM (RST-

SVM) for fault detection of diesel engine. Fault diagnosis of diesel engines is 

difficult problem due to the complex structure of the engine and the presence of 

multi-excite sources. In this dissertation, diagnosis procedure was addressed to 

diagnose fault conditions such as intake clearance is too small, intake valve 

clearance is too large and exhaust valve clearance is too large. Moreover, 

integrating the advantages of RST in effectively deal with the uncertainty 

information and SVM produced greater generalization performance. The 

diagnosis of the diesel demonstrated that the solution can reduce the cost and 

raise the efficiency of diagnosis, and verified the feasibility of engineering 

application. Hu et al. [76] developed method called fusion multi-class SVM for 

fault diagnosis of diesel engine. The main idea of this method is combining the 

information of several sources then constructs it as an input space. Then SVM 

classifier realized classification by finding the optimal hyperplane with a maximal 

margin. The system used vibration signal from three accelerometers which 

attached on first cylinder head, second cylinder head and the center of the piston 

stroke. Four conditions were simulated for diagnosing process those are intake 

valve clearance is too small; intake valve clearance is too large; exhaust valve 

clearance is too large and normal condition. The result showed that the proposed 

method can largely improve the diagnosis accuracy. 

In addition, SVM was also reported in application of fault diagnosis in sheet 

metal stamping operation. The research was conducted by Ge at al. [77], they 

used strain signal of stamping process which are highly nonlinear and non-

stationary and it was typical signal in metal forming process. In this experiment, 

two kinds of operation of metal stamping were tested, the first one was a single 

step blanking and the second one was a multi-step progressive stamping. The 

conditions for simulating the process were no fault, misfeed (work piece is not 

aligned with the dies), slug (the leftover of the position hole is left on the surface 
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of the upcoming work piece), work piece is too thick, work piece is too thin and 

work piece material is missing. 

Samanta [42] carried out gear fault detection using SVM combined with 

genetic algorithm. The time domain vibration signal of a rotating machine with 

normal and defective gears are processed for feature extraction. The extracted 

features from original signal were used as inputs to SVM classifier. In this 

research, GA was performed in feature selection and optimizing RBF kernel 

parameters. 

Aforementioned survey gives the description of application of SVM in 

machine condition monitoring and diagnosis. Actually, it can be said that only 

few papers found in this application rather than other areas such as described in 

previous chapter. 

 

3. Feature-Based Diagnosis Concept 

 

The process of traditional condition monitoring and fault diagnosis can be 

summarized as follows: data acquisition, data preprocessing, data analysis and 

decision making. Here, the data that represents the machine condition called 

condition-based monitoring. Nevertheless, there is problem of such a system in 

data transferring and storage. For instance, when monitoring of large system of 

rotating machinery will be performed, the installation of many sensors is needed 

to assure the diagnosis reliability. Such many sensors result in huge 

dimensionality of data. 

With the globalization and fast growth of the computer and information 

technology, on-line condition monitoring and fault diagnosis has gained much 

attention. Data transfer and storage problem become serious. If direct transferring 

a plenty of raw data will be performed so long time delays due to heavy traffic 

may be experienced which results in the lost of monitoring and diagnosis. 
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Therefore, representing data as features is a best solution for this problem that 

is expected able greatly reduces the requirement of transfer number and save 

storage space. The represented data as feature is similar to compress the data from 

many domains with keeping the information as high as possible. Thus, a relative 

technique has came out such as feature representation, feature extraction and 

feature selection. 

The typical feature-based condition monitoring and diagnosis framework is 

illustrated in Fig. 2.1, which can be summarized as follows: 

q  The data are on-line acquired from object machine as a raw data that need 

preprocessing to condition the data as good as possible for emerging the 

salient condition of machine. These data can be vibration signals, current 

and volt signals, sound signals, flux signals, etc. Corresponding to object, 

the different preprocessing procedure can be used such as filtering (high, 

low and band-pass), wavelet transform, averaging. Smoothing and so on. 

q  The features are calculated from various domains: time, frequency, 

cepstrum or wavelet domain. In this way, the information of raw data is 

kept as good as possible to address the analysis method in the next. 

Furthermore, the transfer and storage problem of data can be solved. 

q  Many calculations of feature parameters in many domains result high 

dimensionality of data features. All of them are not useful for condition 

analysis; sometimes some of them even can increase the difficulty of 

analysis and degrade the accuracy. So reducing the dimension of data 

features is necessary which can remove the irrelative and garbage features. 

q  According to monitoring object, the features which can significantly 

represent machine performance should be selected. 

q  The selected features are then sent to condition monitoring and fault 

diagnosis system to define the machine condition. 
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Fig. 2.1 Feature-based condition monitoring and fault diagnosis system [78]. 

 

 Usually, condition monitoring and fault diagnosis system works based on 

pattern classification. For feature-based diagnosis system, the quality of data 

receives deep attention to guarantee the accuracy of diagnosis process. Therefore, 

the preprocessing of data is important step. A good preprocessing will reduce the 

noise in the data and retains as much information as possible [79]. When the 

number of objects in the training set is too small for the number of feature used, 

most of classification procedures cannot find good classification boundaries. This 

is called curse of dimensionality [80]. By a good preprocessing the number of 

feature per object can be reduced such that the classification problem can be 

solved well.  

Feature-based diagnostic procedure has been employed for fault diagnosis of 

machine. In this case, it needs feature extraction procedure which is addressed to 

obtain the optimal features from original data set. Tax et al. [62] employed 

feature-based procedure from power spectrum, envelope spectrum, autoregressive 

modeling, music spectrum and classical spectrum for failure detection of a small 

submersible pump. They tried to find the best representation of data features such 

that the target class can best be distinguished from the outlier class. The support 

vector data description was proposed to accomplish their work for finding the 

smallest sphere containing all target data. 

The authors who used statistical features based on moments, cumulants and 



 24

other statistical features of the time data series and spectral of vibration data for 

fault detection are reported in [41-44]. Yang et al. [66, 67, 81-84] used statistical 

features of time domain and frequency domain for fault detection in rotating 

machinery and cavitations in butterfly valve. In the case of induction motor, they 

acquired data of vibration and stator current signal. Yuan et al. [64, 65] performed 

fault diagnosis of turbo-pump rotor using data features which is acquired from 

frequency bands of secondary vibration signal. The frequency of secondary signal 

is divided into 9 bands then the frequency amplitudes on each band and their 

average value are calculated as features. Sun et al. [59, 60] employed statistical 

features which came from acoustic emission signal for detection wear in machine 

tool. They also used cutting parameter such as cutting speed, depth of cut and feed 

rate as additional features. Cho et al. [61] carried out tool break detection using 

features from cutting forces and power consumption in end milling machine. The 

other application was reported that Han et al. [72] conducted hot spot detection in 

power plant using features from data temperature which acquired by 

thermocouple and infrared sensors. Moreover, Ramesh et al. [58] conducted a 

prediction of thermal error in machine tools using features from temperature 

sensors. 

In feature-based diagnosis process, after defining the features i.e. statistical 

features from original data acquisition, the huge dimensionality problem of data 

features is possibly emerged. It cannot be avoided because of not all features are 

useful and optimal for classification process. The existence of irrelative features 

tends to degrade the performance of classifier. One of solutions to solve this 

problem is performing feature extraction which can extract the optimal features 

and all at once reduce the dimensionality of features. Basically, feature extraction 

means mapping process of data from higher dimension into low dimension space. 

Many methods have been proposed to perform dimensionality reduction using 

linear and nonlinear techniques. In machine condition monitoring and fault 
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diagnosis research area, feature extraction using component analysis was reported 

as follows: using linear method, principal component analysis (PCA) was 

conducted by Widodo and Yang [53, 54] and Yuan et al. [65], using independent 

component analysis (ICA) [53, 54]. Moreover, nonlinear feature extraction using 

kernel PCA and kernel ICA was also performed by Widodo and Yang [55]. The 

other techniques called rough set theory was conducted for extracting optimal 

features and reduce dimension of features by Xu and Fang [52, 69]. In their 

research, rough set theory (RST) was employed to preprocess the data for 

eliminating redundant information and reducing the sample dimension. 

The other hand, some researches suggested using feature selection after 

defining features set from original data. The techniques which are addressed to 

feature selection were genetic algorithm (GA) and distance evaluation technique 

(DET). In machine fault diagnostics area, researchers who employed GA 

technique were Jack and Nandi [40], Samanta et al. [42, 43], and Li et al. [69]. In 

addition, DET was reported successfully doing feature selection by Yang et al. [81, 

83] and Hu et al. [48]. 

From aforementioned discussion, it can be observed that feature-based 

diagnosis has been widely used in many applications of machine condition 

monitoring and fault diagnosis. Most of results of feature-based technique were 

relatively satisfied according to previous papers. It means that feature-based 

procedure is strongly suggested when recognition and classification process will 

be performed. 

 

4. Statistical Feature Representation 

 

Usually, in the application of pattern classification and recognition, the data 

are represented by features which can be characteristic values, colors and so on. In 

machine condition monitoring and fault diagnosis, the statistical features are 
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selected as patterns which can indicate the machine condition. Furthermore, 

statistical features are simple and useful for exploring and indicating the incipient 

faults when faults occurred in machines. 

This section focuses on feature representation of statistical features for 

machine condition monitoring and fault diagnosis. Transformation of data to 

features plays a very important role which directly affects the performance of 

whole system. In other words, the better the features can reflect the performance 

of task the better the result will be. In order to keep data information at the highest 

level, features are calculated from the time domain, frequency domain and auto-

regression estimation. 

 

4.1. Features in Time Domain 

4.1.1. Cumulants 

The features described here are called statistical features because they are 

based on only the distribution of signal samples with the time series treated as a 

random variable. These features were also known as moments or cumulants. In 

most cases, the probability density function (pdf) can be decomposed into its 

constituent moments. If a change in condition causes a change in the probability 

density function of the signal then the moments may also change. Therefore, 

monitoring this phenomenon can provide diagnostic information. 
The moment coefficients of time waveform data can be calculated using 

following equations 
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where E{ ·} represents the expected value of the function, xi is the ith time 

historical data and N is the number of data points. 

The first four cumulants: mean (c1), standard deviation (c2), skewness (c3) and 

kurtosis (c4), can be calculated from the first four moments using the following 
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relationships 
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In addition, non-dimensional feature parameters in time domain are more popular 

such as shape factor and crest factor. 

absrms xxSF /=                      (2.6) 

rmsp xxCF /=                      (2.7) 

where xrms, xabs and xp are root mean square value, absolute value and peak value, 

respectively.  

Fig. 2.2 describes the bearing signals and its histogram with different condition 

(normal and faults). Moreover, the cumulants are highlighted according to bearing 

condition and its values are summarized in Table 2.1. 

 

Table 2.1 Cumulants for bearing signal with different condition 

Conditions 
Cumulants 

Normal Unbalance Inner-race Misalignment 

Mean 0.0122 0.085 0.0038 0.0507 

STD 0.0188  0.0314  0.0821  0.1833  

Skewness 0.0802  0.0184  0.1234 0.1597 

Kurtosis 3.0332 3.282 7.083 3.4315 
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(b) Unbalane 
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(c) Misalignment 
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(d) Inner race fault 

Fig. 2.2 Histogram of bearing signal with different conditions. 
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From Table 2.1, kurtosis has clear information for describing the condition of 

bearing. Normal bearing has kurtosis 3.0 while the fault condition has kurtosis 

more than 3.0. Therefore, kurtosis can indicate the incipient fault at bearing during 

its operation. 

 

4.1.2. Histogram: Upper and Lower Bound 

Histograms which can be thought as a discrete probability density function 

(pdf) are calculated in the following way. Let d be the number of divisions that 

need to divide range into, let hi with 0 ≤ i ≤ d be the columns of the histogram, 

then 
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The upper bound and lower bound of histogram are defined as 
2/)max( ∆−= iL xh                   (2.10) 

2/)max( ∆+= iU xh                   (2.11) 

where )1/()min()max( −−=∆ nxx ii  

 Effectively, it is normalized by two things: the length of the sequence and the 

column divisions. Since the term above includes a 1/n term and every xi must fall 

into exactly one hi column, the next effect is that hi = 1 (i = 0,…, d-1). The 

column divisions are relative to the bounding box and thus most of hi will not be 

zero. This is a desirable, since it essentially removes the issue of size of a sign, 

and low resolution on small signs with lots of empty columns. The alternative 

would be to have absolute locations which would be nowhere near as closely 

correlated with the information in the sign itself. The examples of histogram of 
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bearing signal with different condition can be seen in Fig. 2.2. 

 

4.1.3. Entropy Estimation and Error 
In information theory, uncertainty can be measured by entropy. The entropy of 

distribution is the amount of a randomness of the distribution. Entropy estimation 

is two stage processes; first, a histogram is estimated and thereafter the entropy is 

calculated. The entropy estimation Es(xi) and standard error Ee(xi) are defined as 

∑−= )ln()()( iiis PxxPxE                 (2.12) 

2
)(ln)()( ∑= iiie xPxPxE                 (2.13) 

Where xi is discrete time signals, P(xi) is the distribution on the whole signal. 

Here, the entropy of vibration and current signals are estimated using unbiased 

estimated approach. 

 

4.2. Features in Frequency Domain 

Through the frequency domain parameter indices, the primary diagnosis is 

available. In other words, the features can indicate the faults. Because these 

calculation indices are simple and fast so they can be used in the on-line condition 

monitoring. When there are some changes on the parameters, it indicates 

occurrence of faults. Finally, the precision diagnosis can deal with the problem. 

For example, the signal of ball bearing are composed of many stochastic 

elements, different faults have different spectrum in the frequency domain. 

However, in some cases the faults cannot be distinguished by power spectrum. 

Above mentioned, frequency parameters indices can show the faults in the 

beginning of the failure. So these indices can be used to perform condition 

monitoring and fault diagnosis. 

The signal power spectrum shows the power distribution with the frequency. 

When the frequency elements and their power changed so the position of the main 
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spectrum changed. On the other hand, when the frequency elements increased the 

power spectrum distribution become discrete whereas the power distribution is 

shown change. The characteristics of the frequency domain can be shown well 

through frequency parameter indices as follows: 
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Mean square frequency (MSF) 
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Root mean square frequency (RMSF) 

MSFRMSF=                    (2.16) 

Variance frequency (VF) 
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Root variance frequency (RVF) 

VFRVF =                     (2.18) 

where s(f) is the signal power spectrum. The FC, MSF and RMSF show the 

change position of main frequencies, VF and RVF describe the convergence of the 

spectrum power. 

From the view of physics, the power spectrum is considered as the mass 

density function of a stick in the ordinate axis. Accordingly, FC is the mass center 

in the abscissa. When larger the density is near the origin, the distance between 
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FC and the origin is closer. RMSF is rotating radial circling the stick. The relation 

of the distance and density is same with aforementioned FC. 

Due to real calculation, the frequency spectrum needs to be discrete 
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4.3. Auto Regression (AR) Coefficient 

Since the different faults display different characteristics in the time series, 

auto-regression model is used to establish a model. The autoregressive 

coefficients are extracted as feature of fault condition. The first eight order 

coefficient of AR models are selected through Burg’s lattice-based method using 

harmonic mean of forward and backward squared prediction errors. The definition 

that will be used here is as follows 
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where ia  is the AR coefficients, yt is the series under investigation, and N is the 

number of the model (N=8). The noise tem or residual εt is almost assumed to be 

Gaussian white noise. 
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5. Data Preprocessing 

 

Data preprocessing describes any kinds of preprocessing on a raw data to 

enhance the reliability and thereby to improve the accuracy for signal analysis 

purpose. Data preprocessing may be performed on the data for understanding the 

nature of the data and extracting more meaningful knowledge from a given set of 

data. After data acquisition process, the problems with data often can be avoided. 

Several data problems can exist such as corrupt and noisy, irrelevant, missing 

attributes and so on. Therefore, data preprocessing is needed to enhance the 

quality of data for specific purposes i.e. pattern recognition and classification. 

Data preprocessing transforms the data into a format that will be more easily 

and effectively to be processed appropriate with desire of user. As general, data 

preprocessing technique can be classified as follows: 

s Transformation such as data filtering, data ordering, data editing, noise 

modeling, etc. 

s Information gathering using data visualization, data elimination, data 

selection, sampling and so on. 

s Generation of new information including adding new features, data fusion, 

data simulation, dimensional analysis, etc. 

In followed section, data preprocessing is applied for obtaining the meaningful 

knowledge from raw data using wavelet transform, averaging, enveloping and 

cepstrum. 

 

5.1. Wavelet Transform 

The wavelet transform decomposes a concerned signal into a linear 

combination of time scale unit. It analyzes original signals and organizes them 

into several signal components according to the translation of the mother wavelet 

or wavelet basis function which changes the scale and show the transition of each 
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frequency component. 

 

5.1.1. Continuous wavelet transform (CWT) 
 The continuous wavelet transform is an integration with respect to the total 

time of the product of the target signal f(t) and the mother wavelet ba,ψ . Using 

mathematical expression, the continuous wavelet transform of the time function 

f(t)ca be written as 

 ∫∞

∞−
= dttfbaCWT ba,)(),( ψ                 (2.23) 

 


 −=
a

bt

a
ba ψψ 1
,                   (2.24) 

where ba, and ba,ψ  are the scale, translation parameters and mother wavelet, 

respectively. 

 The transform result represents the correlation between the signal and the 

transform of the mother wavelet being scaled and translated. If the signal and the 

mother wavelet are similar, the transform result will have a large value. This 

means that lead and delay are translation, while the scale is an expansion and 

compression. As the low scale is a compressing wavelet, it becomes a rapid 

changing signal, that is, it improves the sensitivity in the time domain for high 

frequency signals and improves the sensitivity in frequency domain for low 

frequency signals. This makes it possible to perform a multi-resolution analysis. 

 

5.1.2. Discrete wavelet transform (DWT) 
The orthogonal basis functions used in wavelet analysis are families of 

scaling function, φ(t) and associated wavelet ψ(t). The scaling function can be 

represented by following mathematical expression 

∑ −=
k

j
kkj ktHt )2()(, φφ                     (2.25) 
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where Hk represents coefficient of scaling function, k, j represent translation and 

scale, respectively. 

Similarly, the associated wavelet can be generated using the same coefficient 

as the scaling function  

)2(2)1()( 1, ktht j
k

k

k
kj −−= −∑ φψ               (2.26) 

The scaling function is orthogonal to each other as well as with the wavelet 

function as shown in Eqs. (2.25) and (2.26). This fact is crucial and forms part of 

the framework for multi-resolution analysis. 

0)12()2( =−−∫∞
∞−

dtktk φφ                   (2.27) 

∫∞
∞−

= 0)()( dttt φψ                     (2.28) 

Using an iterative method, the scaling function and associated wavelet can be 

computed if the coefficients are known. Fig. 2.3 shows the Daubechies 2 and 5 

scaling function and wavelet. 

A signal can be decomposed into approximate coefficients aj,k through the 

inner product of the original signal at scale j and the scaling function. 

∫∞
∞−

= dtttfa kjjkj )()( ,, φ                    (2.29) 

)2(2)( 2/
, ktt jj
kj −= −− φφ                   (2.30) 
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Fig. 2.3 Daubechies 2 and 5 scaling function and associated wavelet. 

 
Similarly the detail coefficients dj,k can be obtained through the inner product 

of the signal and the complex conjugate of the wavelet function. 

∫∞
∞−

= dtttfd kjjkj )()( ,, ψ                    (2.31) 

)2(2)( 2/
, ktt jj
kj −= −− φψ                  (2.32) 

The original signal can therefore be decomposed at different scales as follows 
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The coefficient of the next decomposition level (j+1) can be expressed as 

∑ ∫
=
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0
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∑=+
k
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k

kjkj khad ][,),1(           (2.37) 

The decomposition coefficients can therefore be determined through convolution 

and implemented by using a filter. The filter g[k] is a low-pass filter and h[k] is a 

high-pass filter. 

∑
=

−=
N

k

knxkhny
1

][][][                  (2.38) 

 

5.2. Averaging 

Averaging can be divided into two types: one is synchronous averaging and 

the other is spectrum averaging. Synchronous averaging is very useful in reducing 

the random noise component in the measurement or in reducing the effect of the 

other interfering signals such as components from another nearby machine which 

requires a tachometer to synchronize each snapshot of the signal to the running 

speed of machine. Unlike synchronous averaging, spectrum averaging does not 

reduce the noise. Instead, it finds the average magnitude at each frequency where 

a series of individual spectra are added together and the sum is divided by the 

number of spectra. 

 

5.3. Enveloping 

The purpose of enveloping is to enhance small signals. The method first 

separates higher frequency bearing signals from low frequency machine 

vibrations by band pass filtering. The measurement problem at this point, is to 

detect small amplitudes. A defect signal in the time domain is very narrow, 

resulting in an energy component spread over a wide frequency range; 

consequently the harmonic amplitudes of the defect frequency are very nearly 

buried in noise. 
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5.4. Cepstrum 

Cepstrum is the name given to a range of techniques all involving functions 

which can be considered as a “spectrum of a logarithmic spectrum”. The 

application of the power cepstrum to machine fault detection is based on the 

ability to detect the periodicity in the spectrum i.e. family of the uniformly spaced 

harmonics and side bands while being insensitive to the transmission path of the 

signal from an internal source to an external measurement point. The value of the 

main cepstrum peak was shown to be an excellent trend parameters; as it 

represents the average over a large number of individual harmonics, fluctuations 

in latter (for example as a result of load variations) were largely averaged out in 

the cepstrum value which gave a smooth trend curve with time. 
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III. Component Analysis and Support Vector 

Machine 
 

 

1. Introduction 

 

Component analysis is a technique of multivariate statistical analysis that can 

linearly or nonlinearly transforms an original set variables into a substantially 

smaller set variables. It can be viewed as a classical method of multivariate 

statistical analysis for dimensionality reduction. Because of the fact that a small 

set of uncorrelated or independent variables is much easier to understand and use 

in further analysis than a larger set of correlated or dependent variables. This 

technique has been widely applied to virtually every substantive area including 

cluster analysis, visualization of high-dimensionality data, regression, data 

compression and pattern recognition. In this research, component analysis is used 

to extract the sensitive feature from original features. 

Support vector machine (SVM) is a kind of machine learning based on 

statistical learning theory which can be applied to pattern classification. SVM 

becomes famous and popular in machine learning community due to the 

excellence of generalization ability than the traditional method such as neural 

network. Therefore, SVM has been successfully applied to a number of 

applications ranging from face detection, verification, and recognition, object 

detection and recognition, handwritten character and digit recognition, text 

detection and categorization, speech and speaker verification, recognition, 

information and image retrieval, prediction and so on. 
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2. Dimensionality Reduction using Component Analysis 

 

Dimensionality reduction is one of the important preprocessing steps in high-

dimensional data analysis. The goal of dimensionality reduction is to embed high-

dimensional data samples in a low-dimensional space while most of intrinsic 

information contained in the data is preserved. Once dimensionality reduction is 

carried out appropriately, we can utilize the compact representation of the data for 

various succeeding tasks such as visualization, classification, etc. 

Usually, somebody who works in pattern recognition area will face the high 

dimensionality of data, namely curse of dimensionality. It means that the 

processing of the data will be slow and requires a lot of memory and time. The 

other problem with high dimensionality of data is the classification using some 

algorithms will overfit to the data training. Thus, it leads to poor generalization to 

the training samples. Feature extraction is a general term for methods for 

constructing combinations of the variables which get around above problems but 

still describe the data sufficiently accurately. Here, several methods of feature 

extraction technique will be discussed to give the understanding of its process. 

Component analysis is an unsupervised approach to finding the good features 

from the data. In unsupervised learning or clustering there is no explicit teacher, 

and the system forms clusters or natural grouping of the input patterns. In this 

section, component analysis using linear and nonlinear technique will be 

introduced. Component analysis has objective to project the high-dimensional 

data onto a lower dimensional space. Thus, component analysis has capability to 

reduce the dimensionality by combining the features. 
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2.1. Linear Technique 

2.1.1. Principal Component Analysis (PCA) 

Principal component analysis (PCA) has been called one of the most valuable 

results from applied linear algebra. PCA is used abundantly in all forms of 

analysis-from neuroscience to computer graphics-because it is a simple, non-

parametric method of extracting relevant information from confusing data sets. 

With minimal additional effort PCA provides a roadmap for how to reduce a 

complex data set to a lower dimension to reveal the sometimes hidden, simplified 

structure that often underlie it. 

Moreover, PCA is a useful statistical technique that has found in many fields, 

such as face recognition, optical character and speech recognition [1-3]. It is a 

way of identifying patterns in data, and expressing the data in such a way as to 

highlight their similarities and differences. Since finding patterns in data are 

difficult in high dimensional condition, where the luxury of graphical 

representation is not available, PCA is a convenience tool for analyzing data. The 

other main advantage of PCA is that there is no much loss information when the 

data are compressed. Principal components (PC) are uncorrelated and ordered 

such that the kth PC has the kth largest variance among all PC. The kth of PC can 

be interpreted as the direction that maximizes the variation of the projection of the 

data points such that it is orthogonal to the first k-1 PC. 

Given p dimensionality data set xi, the m principal axis T1, T2,…, Tm where 

pm≤≤1 are orthogonal axis onto which the retained variance is maximum in the 

projected space. Generally, T1, T2,…, Tm can be given by the m leading 

eigenvectors of covariance matrix 

∑
=

−−=
N

i
i

T
i xx

N 1

)()(
1 µµS                  (3.1) 

where xi ∈ xi, N is the number of samples, so that 

miTT iii ,...,1         == λS                   (3.2) 
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where λi is the ith largest eigenvalue of S. The m principal components of a given 

observation vector x ∈ xi are given by 

 xTy TT
m

T
m xTxTyy === ],...,[],...,[ 11               (3.3) 

 The m principal components of the x are the uncorrelated in the projected 

space. In multi-class problem, the variations of data are determined on a global 

basis that is the principal axis are derived from a global covariance matrix 

 ∑∑
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xx
N 1 1

)ˆ()ˆ(
1ˆ µµS                 (3.4) 

whereµ̂ is the global mean of all samples, K is the number of class, Nj is the 

number of samples in class j. The principle axis T1, T2,…, Tm are therefore the m 

leading eigenvectors of Ŝ  

 miTT iii ,...,1       ˆˆ == λS                   (3.5) 

where iλ̂ is the ith eigenvalue of Ŝ . 
 An assumption made for dimensionality reduction by PCA is that most 

information of the observation vectors is contained in the subspace spanned by the 

first m principal axis. Therefore, each original data vector can be represented by 

its principal component vector 

 y xTT=                        (3.6) 

where T =[T1, T2,…, Tm]. 

The principal components of PCA are uncorrelated and they have sequentially 

maximum variances. The significant property is that the mean squared 

approximation error in the representation of the original inputs by the first several 

principal components is minimal [4]. 

 

2.1.2. Independent Component Analysis (ICA) 

ICA is a technique that transform multivariate random signal into a signal 
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having components that are mutually independent in complete statistical sense. 

Recently this technique has been demonstrated to be able to extract independent 

components from the mixed signals. Here independence means the information 

carried by one component can not be inferred by the others. Statistically this 

means that joint probability of independent quantities is obtained as the product of 

the probability of each of them. A generic ICA model can be written as 
Asx =                         (3.7) 

where A is an unknown full-rank matrix, called the mixing matrix, and s is the 

independent component (IC) data matrix, and x is the measured variable data 

matrix. The basic problem of ICA is to estimate the independent component 

matrix s or to estimate the mixing matrix A from the measured data matrix x 

without any knowledge of s or A. 

The ICA algorithm normally finds the independent components of a data set by 

minimizing or maximizing some measure of independence. Cardoso [5] gave a 

review of the solution to the ICA problem using various information theoretic 

criteria, such as mutual information, negentropy, and maximum entropy, as well 

as maximum likelihood approach. The fixed-point algorithm used due to its 

suitability for handling raw time domain data and good convergence properties. 

This algorithm will now be described briefly. 
The first step is to pre-whiten the measured data vector x by a linear 

transformation, to produce a vector x~ whose elements are mutually uncorrelated 

and all have unit variance. Singular value decomposition (SVD) of the covariance 

matrix ][ TE xxC =  yields 

TΨΣΨC =                       (3.8) 

where ∑ = diag(σ1, σ2, …, σn) is a diagonal matrix of singular values and Ψ is 

the associated singular vector matrix. Then, the vector x~ can be expressed as 

BsQAsxΨΨΣx === − T/ 21~                   (3.9) 
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where B is an orthogonal matrix as verified by the following relation: 

IBBBssBxx ==⋅=⋅ TTTETE ][ ]~~[               (3.10) 

An advantage of using an SVD-based technique is the possibility of noise 

reduction by discarding singular values smaller than a given threshold. We have 

therefore reduced the problem of finding an arbitrary full-rank matrix A to the 

simpler problem of finding an orthogonal matrix B since B has fewer parameters 

to estimate as a result of the orthogonality constraint. 

The second step is to employ the fixed point algorithm. Define a separating 

matrix W that transform the measured data vector x to a vector y, such that all 

elements yi are both mutually correlated and have unit variance. The fixed-point 

algorithm then determines W by maximizing the absolute value of kurtosis of y. 

The vector y has the properties required for the independent components, thus 

Wxys ==~                      (3.11) 

From Eq. (3.9), we can estimate s as follows 

QxBxBs TT == ~~                     (3.12) 

From Eqs. (3.11) and (3.12) the relation of W and B can be expressed as 

QBW T=                       (3.13) 

To calculate B, each column vector bi is initialized and then updated so that ith 

independent component xbs ~)( T
ii =  may have great non-Gaussianity. Hyvärinen 

and Oja [6] showed that non-Gaussian represents independence using the central 

limit theorem. There are two common measures of non-Gaussianity: kurtosis and 

negentropy. Kurtosis is sensitive to outliers. On the other hand, negentropy is 

based on the information theoretic quantity of (differential) entropy. Entropy is a 

measure of the average uncertainty in a random variable and the differential 

entropy H of random variable y with density f(y) is defined as 

∫−= dyyfyfyH )(log)()(                  (3.14) 
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A Gaussian variable has maximum entropy among all random variables with 

equal variance [6]. In order to obtain a measure of non-Gaussianity that is zero for 

a Gaussian variable, the negentropy J is defined as follows 

)()()( yHyHyJ gauss −=                  (3.15) 

where ygauss is a Gaussian random variable with the same variance as y. 

Negentropy is nonnegative and measures the departure of y from Gaussianity. 

However, estimating negentropy using Eq. (3.15) would require an estimate of the 

probability density function. To estimate negentropy efficiently, simpler 

approximations of negentropy suggested as follows: 

2)}]{()}({[)( υEyGEyJ −≈                    (3.16) 

where y is assumed to be of zero mean and unit variance, v is a Gaussian variable 

of zero mean and unit variance, and G is any non-quadratic function. By choosing 

G wisely, one obtains good approximations of negentropy. A number of functions 

for G are: 

)cosh(log
1

)( 1
1

1 υυ a
a

G =                   (3.17) 

)2/exp()( 2
22 υυ aG −=                   (3.18) 

4
3 )( υυ =G                       (3.19) 

where 1≤ 1a ≤ 2 and 2a ≈ 1. Among these three functions, G1 is a good general-

purpose contrast function and was therefore selected for use in the present study.  

Based on approximate form for the negentropy, Hyvärinen [7] introduced a 

very simple and highly efficient fixed-point algorithm for ICA, calculated over 

sphered zero-mean vectorx~ . This algorithm calculates one column of the matrix 

B and allows the identification of one independent component; the corresponding 

independent component can then be found using Eq. (3.12). The algorithm is 

repeated to calculate each independent component. 

 



 56

2.2. Nonlinear Technique 

2.2.1. Kernel PCA 

 Kernel PCA is one approach of generalizing linear PCA into nonlinear case 

using the kernel method. The idea of kernel PCA is to firstly map the original 

input vectors xi into a high-dimensional feature space )( ixφ and than calculate the 

linear PCA in )( ixφ [8]. By mapping xi into )( ixφ whose dimension is assumed to 

larger than the number of training samples m, kernel PCA solves the eigenvalue 

problem of Eq. (3.2) 

miiii ,...,1       ˆˆ == TTS λ                   (3.20) 

where Ŝ is the sample covariance matrix of )( ixφ , iλ̂ is one of the non-zero 

eigenvalues of Ŝ and Ti is the corresponding eigenvectors. The Ŝ on the feature 

space can be constructed by 

∑
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=
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T
iim 1

)()(
1ˆ xxS φφ                  (3.21) 

From Eq. (3.21), we can obtain the non-zero eigenvalues that are positive. Let us 

define matrix Q as 

)](),...,([ 1 mxxQ φφ=                   (3.22) 

Then Eq. (3.21) can be expressed by 

T

m
QQS

1ˆ =                      (3.23) 

Moreover, we can construct a Gram matrix using Eq. (3.22) which is their 

element can be determined by kernel 

 QQR T=                         (3.24) 

))()(()()( jii
T

iij xxxxR φφφφ ⋅==  = K(xi,xj)              (3.25) 

Denote V = (γ1, γ2, …, γm) and ΛΛΛΛ = diag(λ1, λ2, …, λm) are eigenvectors and 

eigenvalues of R respectively, we can calculate the orthonormal eigenvectors ββββj as 
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lj
m

j ,...,1     
1 == Qγβ
λ

                   (3.26) 

Then we define matrix B as 

2/1
21 ),...,,( −== QVΛB lβββ                   (3.27) 

The whitening matrix P can be derived from Eq. (3.27) and expressed by 

1
2/1

1 −
−

=


= QVΛΛBP m
m

                  (3.28) 

The mapped data in feature space can be whitened by the following 

transformation 

    

)( i
T xPr φ= ),(),...,,(),,([)( 21

11 xxxxxxVΛxQVΛ m
TTT KKKmm −− == φ  

        RVΛ Tm 1−=                      (3.29) 

 

2.2.2. Kernel ICA 

Practically speaking, the kernel ICA is the combination of centering and 

whitening process using kernel PCA as previously explanation and iterative 

section using ICA. The following task is to find the mixing matrix W in the kernel 

PCA-transformed space to recover independent components s~ from r, recall Eq. 

(3.11) 

WrWxs ==~                        (3.30) 

There are many algorithms to perform ICA. In this study, we employ the 

second order of ICA, proposed by Belouchrani et al. [9] which is adopted in 

ICALAB toolbox [10]. In summary, the nonlinear feature extraction using kernel 

ICA in this dissertation performs two phases: whitened process using kernel PCA 

and ICA transformation in the kernel PCA whitened space. 
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3. Support Vector Machine (SVM) 

 

3.1. Overview 

Support vector machine (SVM) is a relatively new computational learning 

method based on the statistical learning theory. Introduced by Vapnik and his co-

workers [11-13], SVM becomes famous and popular in machine learning 

community due to the excellence of generalization ability than the traditional 

method such as neural network. Therefore, SVM have been successfully applied 

to a number of applications ranging from face detection, verification, and 

recognition, object detection and recognition, handwritten character and digit 

recognition, text detection and categorization, speech and speaker verification, 

recognition, information and image retrieval, prediction and so on. 

In machine condition monitoring and fault diagnosis problem, SVM is 

employed for recognizing special patterns from acquired signal, and then these 

patterns are classified according to the fault occurrence in the machine. After 

signal acquisition, a feature representation method can be performed to define the 

features e.g. statistical feature of signal for classification purposes. These features 

can be considered as patterns that should be recognized using SVM. 

 

3.2. Basic Theory: Binary Classification Using SVM 

Given data input xi (i = 1, 2, …, M), M is the number of samples. The samples 

are assumed have two classes namely positive class and negative class. Each of 

classes associate with labels be yi = 1 for positive class and yi = −1 for negative 

class, respectively. In the case of linearly data, it is possible to determine the 

hyperplane f(x) = 0 that separates the given data 

∑
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jj

T bxwbf
1

0)( xwx               (3.31) 
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where w is M−dimensional vector and b is a scalar. The vector w and scalar b are 

used to define the position of separating hyperplane. The decision function is 

made using sign f(x) to create separating hyperpline that classify input data in 

either positive class and negative class. 

A distinctly separating hyperplane should be satisfy the constraints 

 
1  if    1)(

1  if      1)(

−=−=
==

ii

ii

yxf

yxf
                  (3.32) 

or it can be presented in complete equation 

 Mibyfy i
T

iii ,...,2,1for      1)()( =≥+= xwx            (3.33) 

The separating hyperplane that creates the maximum distance between the 

plane and the nearest data, i.e., the maximum margin, is called the optimal 

separating hyperplane. An example of the optimal hyperplane of two data sets is 

presented in Fig. 3.1. 

 

Positive Class

Negative Class

{ }1H : | ( ) 1b⋅ + = +x w x

{ }H : | ( ) 0b⋅ + =x w x
{ }2 : | ( ) 1H b⋅ + = −x w x

Margin

b−
w

 

Fig. 3.1 Classification of two classes using SVM. 
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In Fig. 3.1, the series data points for two different classes of data are shown, 

black squares for negative class and white circles for positive class. The SVM try 

to place a linear boundary between the two different classes, and orientate it in 

such way that the margin represented by the dotted line is maximized. 

Furthermore, SVM attempts to orientate the boundary to ensure that the distance 

between the boundary and the nearest data point in each class is maximal. Then, 

the boundary is placed in the middle of this margin between two points. The 

nearest data points that used to define the margin are called support vectors, 

represented by the grey circles and squares. When the support vectors have been 

selected the rest of the feature set is not required, as the support vectors can 

contain all the information based need to define the classifier. From the geometry 

the geometrical margin is found to be ||w||-2. 

Taking into account the noise with slack variables ξi and the error penalty C, the 

optimal hyperplane separating the data can be obtained as a solution to the 

following optimization problem 
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           (3.35) 

where ξi is measuring the distance between the margin and the examples xi that 

lying on the wrong side of the margin. The calculation can be simplified by 

converting the problem with Kuhn-Tucker condition into the equivalent 

Lagrangian dual problem, which will be 

minimize ∑∑
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The task is minimizing Eq. (3.36) with respect to w and b, while requiring the 

derivatives of L to α to vanish. At optimal point, we have the following saddle 

point equations 
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From Eq. (3.38), we find that w is contained in the subspace spanned by the xi. 

Using substitution Eq. (3.38) into Eq. (3.37), we get the dual quadratic 

optimization problem 
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subject to  αi ≥ 0,  i = 1, …, M.  
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Thus, by solving the dual optimization problem, one obtains the coefficients αi 

which is required to express the w to solve Eq. (3.34). This leads to non-linear 

decision function. 
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SVM can also be used in non-linear classification tasks with application of 

kernel functions. The data to be classified is mapped onto a high-dimensional 

feature space, where the linear classification is possible. Using the non-linear 

vector function ))(...,),(()( 1 xxxΦ lφφ= to map the n-dimensional input vector x 

onto l-dimensional feature space, the linear decision function in dual form is given 

by 
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Working in the high-dimensional feature space enables the expression of 
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complex functions, but it also generates the problem. Computational problem 

occur due to the large vectors and the overfitting also exists due to the high-

dimensionality. The latter problem can be solved by using the kernel function. 

Kernel is a function that returns a dot product of the feature space mappings of the 

original data points, stated as ))()((),( jji
T

jiK xΦxΦxx = . When applying a kernel 

function, the learning in the feature space does not require explicit evaluation of 

Φ and the decision function will be 
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Any function that satisfies Mercer’s theorem [11, 14] can be used as a kernel 

function to compute a dot product in feature space. There are different kernel 

functions used in SVM, such as linear, polynomial and Gaussian RBF. The 

selection of the appropriate kernel function is very important, since the kernel 

defines the feature space in which the training set examples will be classified. The 

definition of legitimate kernel function is given by Mercer’s theorem. The 

function must be continuous and positive definite. In this work, linear, polynomial 

and Gaussian RBF functions were evaluated and formulated in Table 3.1. 

 

Table 3.1 Formulation of kernel functions 

Kernel K(x, xj) 

Linear xT
·
 xj 

Polynomial (γ xT
·xj +r)d  ,  γ  > 0 

Gaussian RBF exp(– ||x – xj||2 /2γ 2) 

 

3.3. SVM Solver 

3.3.1. Quadratic Programming (QP) 

Vapnik [15] described a method which used the projected conjugate gradient 
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algorithm to solve the SVM-QP problem, which has been known as chunking. The 

chunking algorithm uses the fact that the value of the quadratic form is the same if 

you remove the rows and columns of the matrix that corresponds to zero Lagrange 

multipliers. Therefore, chunking seriously reduces the size of the matrix from the 

number of training examples squared to approximately the number of non-zero 

Lagrange multipliers squared. However, chunking still cannot handle large-scale 

training problems, since even this reduced matrix cannot fit into memory. Osuna, 

Freund and Girosi [16] proved a theorem which suggests a whole new set of QP 

algorithms for SVM. The theorem proves that the large QP problem can be broken 

down into a series of smaller QP sub-problems. 

 

3.3.2. Sequential Minimum Optimization (SMO) 

Sequential minimal optimization (SMO) proposed by Platt [17] is a simple 

algorithm that can be used to solve the SVM-QP problem without any additional 

matrix storage and without using the numerical QP optimization steps. This 

method decomposes the overall QP problem into QP sub-problems using the 

Osuna’s theorem to ensure convergence. In this dissertation, SMO is used as a 

solver and detail descriptions can be found in Platt [17]. 

In order to solve the two Lagrange multipliers α1, α2, SMO first computes the 

constraints on these multipliers and then solves for the constrained minimum. For 

convenience, all quantities that refer to the first multiplier will have a subscript 1, 

while all quantities that refer to the second multiplier will have a subscript 2. The 

new values of these multipliers must lie on a line in (α1, α2) space, and in the box 

defined by 0 ≤ α1, α2 ≤ C. 

α1 y1 + α2 y2 = α1 
oldy1 + α2

old y2 = constant                        (3.44) 

Without loss of generality, the algorithm first computes the second Lagrange 
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multipliers α2
new and successively uses it to obtain α1 

new. The box constraint 0 

≤ α1, α2 ≤ C, together with the linear equality constraint Σαi yi = 0, provides a 

more restrictive constraint on the feasible values for α2
new. The boundary of 

feasible region for α2 can be applied as follows 

If y1 ≠ y2; L = max(0, α2
old – α1

old), H = min(C, C + α2
old – α1

old),    (3.45) 

If y1 = y2; L = max(0, α1
old + α2 

old – C), H = min(C, C + α1
old + α2 

old)   (3.46) 

The second derivative of the objective function along the diagonal line can be 

expressed as: 

η = K(x1, x1) + K(x2, x2) – 2K(x1, x2).                          (3.47) 

Under normal circumstances, the objective function will be positive definite, 

there will be a minimum along the direction of the linear equality constraint, and 

η will be greater than zero. In this case, SMO computes the minimum along the 

direction of the constraint: 

( )old old
2 1 2new old

2 2

y E E
α α

η
−

= +                 (3.48) 

where Ei is the prediction error on the ith training example. As a next step, the 

constrained minimum is found by clipping the unconstrained minimum to the 

ends of the line segment: 
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2 2 2
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L H
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α
α α α
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 ≥
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               (3.49) 

Now, let s = y1 y2. The value of α1
new is computed from the new α2

new: 
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new old old new
1 1 2 2( )sα α α α= + −                                  (3.50) 

Solving Eq. (3.39) for the Lagrange multipliers does not determine the 

threshold b of the SVM, so b must be computed separately. The following 

threshold b1, b2 are valid when the new α1, α2 are not at the each bounds, because 

it forces the output of the SVM to be y1, y2 when the input is x1, x2 respectively 

b1 = E1 + y1 (α1
new – α1

old) K(x1, x1) + y2 (α2
new,clipped – α2

old) K(x1, x2) + bold  

(3.51) 

b2 = E2 + y1 (α1
new – α1

old) K(x1, x2) + y2 (α2
new,clipped – α2

old) K(x2, x2) + bold 

(3.52) 

When both b1 and b2 are valid, they are equal. When both new Lagrange 

multipliers are at bound and if L is not equal to H, then the interval between b1 and 

b2 are all thresholds that are consistent with the Karush-Kuhn-Tucker conditions 

which are necessary and sufficient conditions for an optimal point of a positive 

definite QP problem. In this case, SMO chooses the threshold to be halfway 

between b1 and b2 [17]. 

 

3.4. Multi-class Classification 

The discussion above deals with binary classification where the class labels 

can take only two values: 1 and −1. In the real world problem, however, we find 

more than two classes for examples: in fault diagnosis of rotating machineries 

there are several fault classes such as mechanical unbalance, misalignment and 

bearing faults. Therefore, in this section the multi-class classification strategy will 

be discussed. 
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3.4.1. One-Against-All (OAA) 

The earliest used implementation for SVM multi-class classification is one-

against-all methods. It constructs k SVM models where k is the number of classes. 

The ith SVM is trained with all of examples in the ith class with positive labels, 

and all the other examples with negative labels. Thus given l training data (x1, y1), 

…, (xl, yl), where xi ∈ Rn , i = 1, …, l. and yi ∈ {1, …, k} is the class of xi, the ith 

SVM solve the following problem 

minimize: ∑
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where the training data xi is mapped to a higher dimensional space by function φ 

and C is the penalty parameter.  

Minimizing Eq. (3.53) means we would like to maximize 2/||wi||, the margin 

between two groups of data. When data is not separable, there is a penalty term 

∑
=

l

i
iiC

1
,ξ which can reduce the number of training errors. 

 

3.4.2. One-Against-One (OAO) 

Another major method is called one-against-one method. This method 

constructs k(k−1)/2 classifiers where each one is trained on data from two classes. 

For training data from the ith and the jth classes, we solve the following binary 

classification problem. 

minimize: ∑+
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Tijij
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ij C )(||||
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1 2 ww ξ              (3.57) 
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jyb t
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Tij =+−≤+  if   ,1)()( ξφ xw           (3.59) 

 ,...,1    ,0 ljij
t =≥ξ                 (3.60) 

 There are different methods for doing the future testing after all k(k−1)/2 

classifiers are constructed. After some tests, the decision is made using the 

following strategy: if sign ((wij)Tφ(x)+bij) says x is in the ith class, then the vote 

for the ith class is added by one. Otherwise, the jth is increased by one. Then x is 

predicted in the class using the largest vote. The voting approach described above 

is also called as Max Win strategy. 

 

3.4.3. Direct Acyclic Graph (DAG) 

In this method, the training process is similar to OAO strategy by solving k(k−
1)/2 binary SVM. However, in the testing process, it uses a rooted binary directed 

acyclic graph which has k(k−1)/2 internal nodes and k leaves. Each node is binary 

SVM of ith and jth classes. Given a test samples x, starting at the root node, the 

binary decision function is evaluated. Then it moves to either left or right 

depending on the output value. The detail explanation of this method is suggested 

to see reference [18]. 

 

4. Wavelet Support Vector Machine (W-SVM) 

 
The idea of wavelet analysis is to approach a function or signal using a family 

of functions which are produced by translation and dilatation of the mother 

wavelet function ψa,b(x) 



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, ||)(                  (3.61) 

where x, a, b ∈ R, a is the dilatation factor and b is the translation factor. The 

wavelet transform of any function f(x) can be expressed as 
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〉〈= )(),()( ,, xxffW baba ψ , )()( 2 RLxf ∈               (3.62) 

where the notation 〉〈  , refers to inner product in L2(R).  

Eq. (3.62) means that any function f(x) can be decomposed on wavelet basis 

ψa,b(x) if it satisfies the condition [19,20] 
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where H(ω) is Fourier transform of ψa,b(x). 

Following [19], the function f(x) can be reconstructed as follows 
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To approximate Eq. (3.64), then the finite can be written as 

∑
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Using Eq. (3.65), f(x) can eventually be approximated by)(ˆ xf . 

 For a common multidimensional wavelet function, the mother wavelet can be 

given as the product of one-dimensional (1-D) wavelet function [20] 

∏
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N

i
ixx

1

)()( ψψ                    (3.66)  

where N
N Rxx ∈= ),...,( 1x . So, every 1-D wavelet mother ψ(x) must satisfy Eq. 

(3.63). 

Recalling the decision function for SVM in Eq. (3.43), the dot product can be 

replaced using kernel function as it was done by [11], so that )'()',( 〉⋅〈= xxxx KK . 

In SVM theory, any function which satisfies the Mercer’s condition can serve as 

kernel function [11,14]. 

Suppose K is a continuous symmetric function on RN, such that integral 

operator TK: L2(R
N)→L2(R

N), 



 69

∫ ⋅=⋅
dR
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is positive. Let )(2
N

i RL∈φ  be the eigenfunction of Tk associated with the 

eigenvalue 0≥iλ  and be normalized in such a way that 1||||
2
=Liφ , then the kernel 

function )',( xxK can be expanded as 
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and must satisfy the positivity condition of the following integral [14] 
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For building a new kernel using wavelet, it may be helpful to refer to the frame 

theory, introduced by Duffin and Schaeffer [21], which is an extension of the 

normalized orthogonal basis. In the frame theory, one can reconstruct perfectly a 

function f in a Hilbert space H from its inner product 〉〈  ,  with family vectors 

{ ψk} if they satisfy  

222 |||||,||||| fBffA
k

k ≤〉〈≤∑ ψ                (3.70) 

where the constants A and B satisfy the condition ∞<≤< BA0 . 

Any function in Hibert space can be decomposed as follows 

∑ ∑ 〉〈=〉〈=
k k

kkkk fff ψψψψ ,,                (3.71) 

where kk TT ψψ 1)*( −=  is the dual frame of kψ  and T is the frame operator [12, 

31]. 

 In L2(R
N), if f = {ψi} is a frame and {λi} is a positive increasing sequence, a 

function )',( xxK  can be given by  

∑∞
=

=
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iiiK xxxx ψψλ                  (3.72) 

Eq. (3.72) is similar to Eq. (3.68) since both of them satisfy the condition for 
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kernel function. Moreover, a mother wavelet ψa,b(x) is called a frame wavelet if ψ 

∈ L2(R
N), a > 1, b > 0 and the family function 

}{}{ ψψ nbammn TD=                    (3.73) 

where D and T are unitary dilatation operator and unitary translation operator, 

respectively, while a is scale parameter and b is translation parameter.  

A wavelet kernel function can be constructed by any mother wavelet which can 

generate frame wavelet while satisfying the Mercer’s condition in Eq. (3.69). In 

addition to the inner product, there exists a kernel called translation−invariant 

kernel [22, 23] such that 

)'()',( 〉−〈= xxxx KK                    (3.74) 

If the translation−invariant kernel is admissible in SVM kernel function, then 

the necessary and sufficient condition of Mercer’s theorem must be satisfied. The 

other theorem stated that a translation-invariant kernel is an admissible support 

vector (SV) kernel if only if the following Fourier transforms [22] 

xxx dKjKF
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N  )( ))(exp()2()]([ 2/ ∫ ⋅−= − ωπω            (3.75) 

is non-negative. Based on the mother wavelet, the wavelet kernel which satisfies 

the translation− invariant theorem can be given as 
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The construction of wavelet kernel function using Haar, Daubechies, and 

Symmlet can be shown in Fig. 3.2. 
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(c) Symlet kernel 

Fig. 3.2. Wavelet kernel function. 
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IV. SVM Based Fault Diagnosis for Induction 

Motors 
 

 

1. Introduction 

 

Three phase induction motors are the motors most frequently used in industry. 

They are simple, rugged, relatively low-price, and easy to maintain. In this chapter, 

the basic principle of three phase induction motors is reviewed including its 

general structure and construction. Moreover, fault in induction motors that are 

frequently occurred and measurement for fault diagnosis will be reviewed. 

Fault diagnosis of induction motors is also presented which is the main part of 

this chapter. First, the existed method for fault diagnosis of induction motor is 

reviewed and then followed by introducing the proposed method. Finally, case 

study of fault diagnosis of induction motor is presented based on vibration and 

current signals. 

  

2. Structure and Operation 

 

A three-phase induction motor, presented in Fig. 4.1 has two main parts: a 

stationary stator and a revolving rotor. The rotor is separated from the stator by a 

small air gap that ranges from 0.4 mm to 4 mm, depending on the power of motor. 

The stator consists of a steel frame that supports a hollow cylindrical core 

made up of stacked laminations. A number of evenly spaced slots, punched out of 

the internal circumference of the laminations, provide the space for the stator 

winding. 
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The rotor is also composed of punched laminations. These are carefully 

stacked to create a series of rotor slots to provide space for the rotor winding. 

There are two types of rotor windings: conventional 3-phase windings made of 

insulated wire and squirrel-cage windings. The type of winding give rise two main 

classes of motors: squirrel-cage induction motors and wound-rotor induction 

motors. 

 

 
Fig. 4.1 Exploded view of cage motor: Stator (1), Rotor (2) End-caps (3), 

Cooling fan (4), Ball bearings (5), Terminal box (6) [1]. 

 

A squirrel-cage rotor is composed of bare per bars, slightly longer than rotor, 

which are pushed into the slots. The opposite ends are welded to two copper end-

rings, so that all the bars short-circuited together. The entire construction 

resembles a squirrel-cage, from which the name is derived. In small and medium 

size of motors, the bars and end-rings are made of die-cast aluminum, molded to 

form an integral block 

Another type is a wound-rotor has a 3-phase winding, similar to the one of the 

stator. The winding is uniformly distributed in the slot and is usually connected in 

3-wire wye. This motor is, however, less efficient than the squirrel-cage induction 

motor, and it is used only when a squirrel-cage induction motor cannot deliver the 

high enough starting torque. 

When the stator winding of a three-phase induction motor is connected to a 
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three-phase power source, it produces a magnetic field that is a constant in 

magnitude and revolves around the rotor at the synchronous speed. If f is the 

frequency of the current in the stator winding and P is the number of poles, the 

synchronous speed of the revolving field is 

P

f
ns

120=                       (4.1) 

where ns is synchronous speed (r/min), f is frequency of the source (Hz) and P is 

number of poles. This equation shows that the synchronous speed increases with 

frequency and decreases with number of poles. 

 The revolving field induces electromotive force (EMF) in the rotor winding. 

Since the rotor winding forms a closed loop, the induced EMF in each coil gives 

rise to an induced current in that coil. When a current-carrying coil is in a 

magnetic field, it experiences a force that tends to rotate it. The rotor receives its 

power by induction only when there is a relative motion between the rotor speed 

and the revolving field. Since the rotor rotates at a speed lower than the 

synchronous speed of the revolving field, an induction motor is also called an 

asynchronous motor. 

The slip of induction motor s, is defined as the difference between the 

synchronous speed and the rotor speed, expressed as a percent (or per unit) of 

synchronous speed. The per unit slip is given by equation 

 
s

s

n

nn
s

−=                       (4.2) 

where n is rotor speed (r/min), The slip s is practically zero at no-load and is equal 

to 1 (or 100%) when rotor is locked. 

 

3. Fault Occurrence and Measurement for Diagnosis 

 

The faults frequently occurred in induction motors components are rotor, stator 
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and bearing defects. Based on EPRI which has conducted large survey on motors 

fault of 5000 sample motors, 97% among them are three-phase squirrel-cage 

induction motors. The fault occurrence based on the survey is presented in Fig. 

4.2. Most common fault is worn bearing that generate excessive vibration, noise 

and possible misalignment of the rotor shaft. Most of the stator related faults are 

due to degraded insulation in stator windings causing an inter-turn, phase-to-phase 

or phase-to-ground short circuits. Other case is rotor fault which can be divided 

into faults related to motor eccentricity and physical damage of the rotor and they 

are usually slowly although in the end the broken bars may damage the stator 

windings. 

BearingBearingBearingBearing

40%40%40%40%

RotorRotorRotorRotor

10%10%10%10%

OthersOthersOthersOthers

12%12%12%12%
StatorStatorStatorStator

38%38%38%38%

 

Fig. 4.2 EPRI survey on occurrence of motor faults [2]. 

 

It is found out that a variety of measurements can be applied to collect 

information that is useful in the detection of induction motor faults. In this 

dissertation, two of them are elaborated using stator current of the motor and 

vibrations of the motor. Vibration analysis has been used in motor fault detection 

for decades. Each fault in a rotating machine produces vibrations with distinctive 

characteristics that can be measured and compared with reference ones in order to 

perform the fault detection and diagnosis. Motor current monitoring is also called 

motor current signature analysis (MCSA) and it is widely studied, because no 

extra instrumentation is needed, if the faults can be detected based on the current. 

It is also claimed that MCSA give the same information on motor condition as 
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vibration measurements [3]. 

In this dissertation, the faults frequently occurred in induction motors are 

reviewed as follows: 

 

3.1. Bearing Fault 

A bearing consists of two rings inner and outer, between which a set of balls or 

rollers rotate in raceways. Fig. 4.3 shows the part of a deep groove ball bearing. 

Under normal operating conditions of balanced load and good alignment, fatigue 

failure begins with a small fissure, located between the surface of the raceway and 

rolling elements, which gradually propagate to the surface generating detectable 

vibrations and increasing noise levels [4]. Continued stressing causes fragments of 

the material to break loose producing a localized fatigue phenomenon known as 

flaking or spalling [5]. Once started, the affected area expands rapidly 

contaminating the lubrication and causing localized overloading over the entire 

circumference of the raceway. 

Eventually, the failure results in rough running of the bearing. While this is the 

normal mode of failure in rolling element bearings, there are many other 

conditions which reduce time of bearing failure. These external sources include 

contamination, corrosion, improper lubrication, improper installation or brinelling. 
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Fig. 4.3 The structure of a deep groove ball bearing. 

Contamination and corrosion frequently accelerate bearing failure because of 

the harsh environments present in most industrial settings. Dirt and other foreign 

matter that is commonly present often contaminate the bearing lubrication. The 

abrasive nature of these minute particles, whose hardness can vary from relatively 

soft the diamond like, causes pitting and sanding actions that give way to 

measurable wear of the balls and raceways [5]. Bearing corrosion is produced by 

the presence of water, acids, deteriorated lubrication and even perspiration from 

careless handling during installations [4,5]. Once the chemical reaction has 

advanced sufficiently, particles are worn off resulting in the same abrasive action 

produced by bearing contamination. Improper lubrication includes both under and 

over lubrication. In either case, the rolling elements are not allowed to rotate on 

the designed oil film causing increased levels of heating. The excessive heating 

causes the grease to break down which reduces its ability to lubricate the bearing 

elements and accelerates the failure process. When the lubrication conditions 

become inadequate, the increased friction results in metal – metal contact. 

Installation problems are often caused by improperly forcing the bearing onto 

the shaft or in the housing. This produces physical damage in the form of 

brinelling or false brinelling of the raceways which leads to premature failure. 

Misalignment of the bearing, which occurs in the four ways depicted in Fig. 4.4, is 

also a common result of defective bearing installation. The most common of these 

is caused by tilted races [5].  

Brinelling is the formation of indentations in the raceways as a result of 

deformation caused by static overloading. While this form of damage is rare, a 

form of “false brinelling” occurs more often. In this case, the bearing is exposed 

to vibrations while even though lightly loaded bearings are less susceptible, false 

brinelling still happens and has even occurred during the transportation of 

uninstalled bearings [4].   
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Fig. 4.4 (a) Misalignment (Out-of-Line), (b) Shaft deflection, (c) Crooked or tilted 

outer race (d) crooked or tilted inner race 

 

Regardless of the failure mechanism, defective rolling element bearings 

generate mechanical vibrations at the rotational speeds of each component. These 

characteristic frequencies, which are related to the raceways and the balls or 

rollers, can be calculated from the bearing dimensions and the rotational speed of 

the machine. Mechanical vibration analysis techniques are commonly used to 

monitor these frequencies in order to determine the condition of the bearing.  

The characteristic frequencies of bearing are as follow 

BPFO = (N/2) fr {1 - (B/P) cosφ}               (4.3) 

BPFI = (N/2) fr {1 + (B/P) cosφ}               (4.4) 

BSF = (P/2B) fr {1 - (B/P)2 cos2φ}              (4.5) 

FTF = (fr /2) {1 - (B/P) cosφ}                (4.6) 

BPFO is ball pass frequency of the outer race; generated by rollers passing 

over defective outer race. BPFI is ball pass frequency of the inner race; generated 

by rollers passing over defective inner race. BSF is ball spin frequency; generated 

by ball defects. FTF is fundamental train frequency; generated by cage defects or 
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improper movements. Then, N is number of rolling elements, P is pitch diameter 

(mm), B is ball or roller diameter (mm) and fr is rotating speed in revolution per 

second. 

The frequencies in Eqs. (4.3)-(4.6) are valid for ideal bearings; in practice, the 

rolling element slides in addition to its rotation. Using a sliding factor that ranges 

from 0.8-1.0, this phenomena can be taken account. In both literature and practice 

the equations are often replaced by approximate equation [6] which can be used 

when the exact bearing geometry is not known. A characteristic frequency using 

approximate formula for outer race and inner race defects are 

ro Nff 4.0=                       (4.7) 

ri Nff 6.0=                       (4.8) 

Schoen [7] implemented motor current in technique to detect rolling-element 

bearing fault in induction motors. Line current spectral components are predicted 

at frequencies of 

|| vebng mfff ±=                     (4.9) 

where fv is one of the characteristic vibration frequencies, fe is the supply 

frequency, and m = 1, 2, 3, … . Although the magnitudes of this harmonic 

component are small compared to other spectral constituents, they fall at different 

location from those of the supply and machine inherent slot harmonics. This 

phenomenon makes it feasible to distinguish between healthy and faulty 

operations. 

 

3.2. Stator Fault 

Stator winding faults constitute almost 30-40% on induction motor faults 

according the survey. These faults are usually short circuit between a phase 

winding and the ground or between two phases. It is strongly believed that such 

fault initiate as undetected turn-to-turn faults that develop to a major short circuit. 
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Stator winding fault might have a destructive effect of the stator coils. 

Armature of stator insulation can fail due to several reasons as follows: 

1. Short circuit or starting stress. 

2. Stack core lamination, slot wedges and joints. 

3. Electrical discharge. 

4. High stator core or winding temperature. 

5. Loose bracing for end winding. 

6. Contamination due to oil, moisture and dirt. 

7. Leakage in cooling system. 

 

There are several methods proposed to detect the mentioned faults. Cash [8] 

summed up the machine line-to-neutral voltages instantaneously and filtered out 

the undesired saturation, slots and other sound operation harmonic. The RMS 

value of the remaining voltage component was utilized to detect the existence and 

severity of stator inter-turn faults, the standard deviation of the RMS line current 

of an induction motor was used to detect stator inter-turns [9]. 

Penman [10] monitored the axial leakage flux resulting from the stator winding 

to detect and locate stator inter-turns. The voltage induced in a search coil wound 

concentrically around the machine shaft was proportional to this flux component. 

Some spectral constituents of this voltage were observed to detect a turn-to-turn 

fault. These frequencies are given by 

et fs
p

n
kf 




−



±= )1(                  (4.10) 

where k = 1, 3 and n = 1, 2, 3, …, (2p-1), p is the number of pole pairs, s is the 

slip and fe is the supply frequency. The location of the inter-turn fault could be 

specified using four auxiliary winding mounted symmetrically in the four 

quadrants of the motor near the end winding. The flux RMS magnitudes at the 

various locations were measured. The change in readings from the four coils 
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could be used to triangulate the area of the unbalanced flux, and hence, locate the 

shorted turn. 

 According to the modes of stator winding failure, there are five types of modes, 

which are illustrated in Fig. 4.5. 

 

 

Fig. 4.5 A possible failure modes in wye-connected stator winding [11]. 

 

Bonnet [11] reported in detail cause and analysis of stator faults those are 

influenced by various of stresses such as the following: 

 

3.2.1. Thermal Stress 

The stress in induction motor that caused by temperature effects such as 

thermal aging and thermal overloading. The AIEE 510 and IEEE 275 test 

procedures can be used to determine the effect of temperature on the winding 

insulation system. Thermal overloading is influenced by various factors i.e. 

voltage variations, unbalanced phase voltage, cycling, overloading, obstructed 

ventilation and ambient temperature. The relationship between the various classes 

of insulation and operating temperature is presented in Fig. 4.6.  
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Unless the operating temperature is extremely high, the normal effect of the 

thermal aging is to render the insulation system vulnerable to other influencing 

factor or stresses that actually produce the failure. The detail of this information is 

reported in aforementioned reference. 

 

 

Fig. 4.6 Total winding temperature (°C) versus life [11]. 

 

3.2.2. Electrical Stress 

Electrical stress are generally discussed as failures in the windings such as 

phase-to-phase, turn-to-turn, or phase-to-ground shorts. Testing to determine the 

integrity of the insulation is paramount to long motor life. Checking the integrity 

of the insulation can be accomplished by the MCE standard test. Insulation can 

also have tracking occur in which the insulation develops a small hole which 

leakage to ground. If the motor is contaminated with conductive foreign materials, 

this will create a path to ground causing the insulation to burn, which causes 

further deterioration of the insulation. Keeping the insulation dry and contaminant 
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free will help to minimize or prevent tracking from occurring. Another method 

employed to prevent tracking is to use insulation capable of being completely 

immersed in accordance with NEMA MG 1-20.49 and IEEE 429. 

 

3.2.3. Mechanical Stress 

The stator coils can and do move during operation of the motor, especially 

when the motor is started. When the motor is started, the current in the coils is at 

highest which result in a high magnetic force that causes the coils to vibrate at two 

times line frequency. This vibration causes the coils to move, which can result in 

damage to stator, rotor and other motor components. Bearing failures and 

misalignment can cause the rotor to strike the stator, which can result in grounded 

coils, excessive heat generation, or severe damage to both the rotor and stator. 

Some of the common causes of the winding failures, which can fit into the 

miscellaneous mechanical type of failure, are as follows: 

1. Rotor balancing weights coming loose and striking the stator. 

2. Rotor fan blades coming loose and striking the stator. 

3. Loose nuts and bolts striking the stator. 

4. Foreign particles entering the motor through the ventilation system and 

striking the stator. 

5. A defective rotor (usually open rotor bars), causing the stator to overheat 

and fails. 

6. Poor lead lugging of connections from the motor leads to the incoming line 

leads, causing overheating and failures. 

7. Broken lamination teeth striking the stator due to fatigue. 

 

3.2.4. Environmental Stress 

The quickest way to discuss environmental stress is to call it what it is: 

contamination. Contamination is anything in the motor that is not supposed to be 
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there. Any foreign material that enters the motor can cause environmental stress. 

Some examples are moisture, oil, dirt, coal, dust, etc. All of these contaminants 

can have the following effects on the motor: 

1. Reduction in heat dissipation, which will increase operating temperature, 

thereby reducing insulation life. 

2. Premature bearing failure due to high localized stresses. 

3. Breakdown of the insulation system, causing shorts and grounds. 

 

3.3. Rotor Fault 

The reasons for rotor bars and end-ring breakage are several. They can be 

caused by 

1. Thermal stress due to overload and hotspot or excessive looses and 

sparking. 

2. Magnetic stresses caused by electromagnetic forces, unbalanced magnetic 

pull, electromagnetic noise and vibration. 

3. Residual stresses due to manufacturing imperfections. 

4. Dynamic stresses arising from shaft torque, centrifugal forces and cyclic 

stresses. 

5. Environmental stresses caused by for example contamination and abrasion 

of rotor material due to chemical or moisture. 

6. Mechanical stresses due to loose laminations, fatigued parts, bearing 

failures, etc. 

Motor current signature analysis was extensively used to detect broken rotor 

bar and end ring faults in induction motors [12,13]. The sideband components 

used to detect broken rotor bars is given by 

 eb fsf )21( ±=                    (4.11) 

while the lower sideband was fault related and the upper sideband was due to 

consequent speed oscillation. Bellini [14] stated the summation of magnitudes of 
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these two sideband components was a good diagnostics index. It was concluded 

that MCSA was superior to signature analysis of current space vector modulus 

and instantaneous power and torque. The actual sequence of sidebands was given 

by [15] 

 eb fksf )21( ±=                    (4.12) 

where k = 1, 2, 3, … .  

 Considering the speed ripple effects, it was reported that other frequency 

components, which could be observed in the stator current spectrum, are given by 

 eb fss
p

k
f 




±−



= )1(                  (4.13) 

where p is the number of pole pairs, and k = 1, 2, 3, … . 

 The other method for rotor fault detection is reported using current Park’s 

vector approach to diagnose rotor cage faults of three-phase induction motors [16]. 

This technique can be used to distinguish between the effect of this fault and that 

associated with driving time-varying loads. Rotor cage faults can be detected by 

the identification of an elliptic figure in Park’s vector representation. When the 

load has low-frequency oscillating component, the current Park’s vector pattern is 

an ellipse oriented along the first quadrant of the coordinate axes. In the presence 

of rotor cage fault, the pattern of ellipse becomes oriented in the second quadrant 

of the coordinate axes. 

 

3.4. Eccentricity 

Rotor eccentricity, which results in uniform airgap, is divided into two 

catagpries, static and dynamic. In static eccentricity case, the airgap has a fixed 

minimal position, whereas this position rotates with the rotor in case of dynamic 

eccentricity. In practice, both of types occur simultaneously. Due to some designs 

and manufacturing imperfections, up to 10% eccentricity is allowed. Higher order 
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of eccentricity can cause rotor-to-stator rub, resulting in damage of rotor and/or 

stator winding or core. 

Eccentricity faults could be diagnosed by monitoring the airgap flux in 

induction motors. Internal and external search coils were placed in the stator and 

the spectral constituents of their induced voltage were observed for diagnosing 

component at 

reec fff ±=                     (4.14) 

where fe is supply frequency and fr is the rotational frequency. 

Dorrel [17] monitored casing vibration components at a frequency re ff ±2 to 

diagnose eccentricity faults in induction motors. Motor current signature analysis 

(MCSA) was used extensively to diagnose eccentricity faults in three-phase 

induction motors. Specific frequencies related to fault are given by 

edec fv
p

s
nkRf 




±−±= )1(
)(                (4.15) 

Where k is any positive integer, R is the number of rotor bars, p is the number of 

pole pairs, nd is the eccentricity order (nd = 0 for static eccentricity, nd = 1 for 

dynamic eccentricity), s is the motor slip, v is the order of some harmonics present 

in the power supply driving the motor (v = 1, 3, 5, …). 

 In the case of static eccentricity, principal slot harmonic and supply time 

harmonics contribute to these components. If the order of one of this harmonics is 

a multiple of three, it may not theoretically appear in the spectrum of a balanced 

machine. However, it was shown that for a specific combination of the number of 

fundamental pole pairs and number of rotor slots, the machine would give rise to 

only static or only dynamic eccentricity related components [18]. 

Obaid [19] used MCSA to diagnose eccentricity faults in three-phase induction 

motors by observing the components 
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where m is a positive integer. The RMS value of each component was calculated 

after filtering out the fundamental. The RMS values were compared to a preset 

threshold that was determined the observation of sound operation. Under load 

imbalance, and horizontal and vertical misalignment conditions, the machine gave 

rise to such harmonic components with magnitudes dependent on the condition. 

 

3.5. Unbalance Mass 

Mass unbalance is the most common fault associated with rotating shaft. It 

occurs when the geometric center (shaft centerline) and the mass center of a rotor 

do not coincide. There are three types of unbalance (Fig. 4.7): Static unbalance 

coupled unbalance and overhung rotor unbalance. Static unbalance has equal 

phase on each bearing, so vibration along with radial direction in phase. While in 

coupled unbalance, phase changes 180° across bearing, so vibration along with 

radial direction out phase. Overhung rotor unbalance contains both radial and 

horizontal vibration, so both static and dynamic unbalance can be seen together. 

 

 

 

 

 

(a) Static unbalance    (b) Coupled unbalance   (c) Overhung rotor unbalance 

Fig. 4.7 Mass unbalance. 

 

3.6. Bowed Rotor 

A bowed rotor or bent shaft usually causes a preload on the bearings. The 

center of the mass of a bent shaft can be moved far enough away from the 
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geometric center to cause some mass unbalance (Fig. 4.8). A bent shaft is looking 

like a misalignment in the spectrum. A phase measurement for axial vibration 

across the shaft will distinguish between misalignment and bent shaft, as the bent 

shaft will produce a 180 degrees phase shift. Also the vibration style of a bent 

shaft contains axial and radial direction. Among them, 180° phase shift in axial 

vibration, while 0° phase shift in radial vibration. 

 

 

 

 

 

Fig. 4.8 Bowed rotor. 

 

4. Condition Monitoring and Fault Diagnosis of Induction Motors 

 

Induction motor is an essential component in many industrial processes which 

deals with moving and lifting products. Special attention is urgently required in 

condition monitoring of induction motors in order to guarantee its stable and high 

performance. By applying early fault diagnosis of operating induction motors 

which give incipient fault condition, little effort to overcome such fault can avoid 

more serious conditions. 

Condition monitoring and fault diagnosis methods to identify the faults may 

involve different types of techniques. These techniques can be described as 

follows: 

� Electromagnetic field monitoring, search coils, coils wound around motor 

shafts (axial flux related detection) 

� Temperature measurements 

� Infrared recognition 
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� Radio frequency (RF) emissions monitoring 

� Noise and vibration monitoring 

� Chemical analysis 

� Acoustic noise measurements 

� Motor current signature analysis 

� Model, artificial intelligence based techniques 

 

Several methods of condition monitoring and fault diagnosis that related to 

fault can be detected are presented and compared in Table. 4.1. 

 

Table 4.1 Comparison of detection techniques 

Fault detected             

Methods 

In
su

la
tin

g 

S
ta

to
r 

 

w
in

di
ng

 

A
ir

-g
ap

 

ec
ce

nt
ric

ity
 

B
ro

ke
n 

ro
to

r 
ba

rs
 

B
ea

rin
g 

da
m

ag
e 

Vibration No No   Yes  Yes   Yes   

MCSA No Yes   Yes  Yes   Yes   

Axial flux No Yes   Yes  Yes   No   

Lubricating oils debris No No   No  No   Yes   

Cooling gaps Yes Yes   Yes  No   No   

Partial discharge Yes No   No   No   No   

 

5. The Proposed Fault Diagnosis and Case Studies 

 

In this work, vibration and/or current signature for detection and diagnose of 

faults in induction motor may be consider as a kind of pattern recognition 

paradigm. It consists of data acquisition, signal processing, feature extraction and 

selection-including feature reduction- and faults diagnosis. A novel faults 
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diagnosis method for induction motor is proposed in Fig. 4.9, which is based on 

feature extraction (linear and nonlinear), the distance evaluation technique and 

SVM multi-class classification. From Fig. 4.9, the fault diagnosis procedure can 

be summarized as follows: 

Step 1: the data acquisition is carried out and then followed by features 

calculation using statistical features parameter from time domain and frequency 

domain.  

Step 2: feature extraction is performed by linear and non linear technique via 

component analysis to reduce the dimensionality. This step is employed to remove 

the irrelevant features which are redundant and even degrade the performance of 

the classifier.  

Step 3: feature selection is performed using the distance of evaluation 

technique. This method is chosen due to the simplicity and its reliability.  

Step 4: classification process for diagnosing of faults is carried out using SVM 

based on multi-class classification. 

 

 

Fig. 4.9 The proposed method for fault diagnosis of induction motor. 

 In this part, several case studies based on method of feature extraction, signal 

source, and classification using SVM are presented as follows 
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5.1. Case Study 1: Using Linear Feature Extraction 

5.1.1. Experiment and Data Acquisition 

The experiment is conducted using test-rig that consists of motor, pulley, belt, 

shaft, and fan with changeable blade angle that represents the load, as shown in 

Fig. 4.10. Six induction motors of 0.5 kW, 60 Hz, 4-pole were used to create the 

data. One of the motors is normal condition (healthy), which is considered as a 

benchmark for comparing with faulty condition. The conditions of faulty motors 

are described in Fig. 4.11 and Table 4.2. 
 

 

Fig. 4.10 Test rig for experiment. 

 

Three AC current probes and three accelerometers were used to measure the 

stator current of three phase power supply and vibration signals of horizontal, 

vertical and axial directions for evaluating the fault diagnosis system. The 

maximum frequency of the used signals was 5 kHz and the number of sampled 

data was 16,384. 
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 Stator fault 

Eccentricity

Rotor unbalance Rotor bar broken 

Faulty bearing Bowed rotor  

Fig. 4.11 The condition of faulty motor. 

 

Table 4.2 Description of faulty motors 

Fault condition Fault description Others 

Broken rotor bar No. of broken bar: 12 ea Total number of 34 bars 

Bowed rotor 
Maximum bowed shaft deflection: 

0.075 mm 
Air-gap: 0.25 mm 

Faulty bearing A spalling on outer raceway #6203 

Rotor unbalance Unbalance mass (8.4 g)on the rotor  

Eccentricity  Parallel and angular misalignments 
Adjusting the bearing 

pedestal 

Phase unbalance Add resistance on one phase 8.4% 

 

5.1.2. Feature Calculation 

The total 78 features (13 parameters, 6 signals) are calculated from 10 feature 

parameters of time domain. These parameters are mean, rms, shape factor, 

skewness, kurtosis, crest factor, entropy error, entropy estimation, histogram 

lower and upper. And 3 parameters from frequency domain (rms frequency, 
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frequency center and root variance frequency) using vibration acceleration signal 

at the three directions and three–phase current signals. The total of feature 

parameters can be shown in Table 4.3. 

 

Table 4.3 Feature parameters 
Feature parameters 

Signals Position 
Time domain Frequency domain 

Vertical 

Horizontal 

Vibration 

Axial 

Phase A 

Phase B 

Current 

Phase C 

• Mean 

• RMS 

• Shape factor 

• Skewness 

• Kurtosis 

• Crest factor 

• Entropy error 

• Entropy estimation 

• Histogram lower 

• Histogram upper 

• Root mean square frequency 

• Frequency center 

• Root variance frequency 

 

5.1.3. Feature Extraction 

Basically feature extraction is mapping process of data from higher dimension 

into low dimension space. This step is intended to avoid the curse of 

dimensionality phenomenon. ICA and PCA were used to reduce the feature 

dimensionality that contains 95 % variation of eigenvalue. In this work, feature 

extraction produced 24 independents components (ICs) and principal component 

(PCs) based on the eigenvalue. Also, from feature extraction using ICA and PCA, 

we can understand that there is a change from data features becomes components 

which are independent and uncorrelated, respectively. The first three independent 

and principal components are plotted in Figs. 4.12 and 4.13. It can be observed 

that the clusters for eight conditions are well separated. Nevertheless, the 
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performance of ICA is better than PCA does in clustering of each condition. It can 

be seen that feature extraction using ICA can separate well almost all of 

conditions without overlapping except normal and phase unbalance, while PCA 

produced overlapping in phase unbalance, rotor unbalance and rotor broken bar, 

also angular misalignment and parallel alignment. 

 

5.1.4. Feature Selection 

To select the optimal feature of ICs and PCs that can represent well the 

condition of induction motors, a feature selection method based on the distance 

evaluation technique is presented [20,21]. Let that joint feature set of C condition-

patterns α1, α2, …, αc are 

}...,,1;...,,1,{ ),(
i

ki NkCiq ==               (4.17) 

where q(i,k) is the kth feature of αi, and Ni is the number of feature in αi.  

The average distance of all features in αi. can be determined as follows 

∑ ∑
= =

−
−

=
i iN

j

N

k

kiji

ii
i qq

NN
D

1 1

),(),( ||
1

11

2

1
              (4.18) 

The average distance of Di, i =1, 2, …, C is 
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Introducing Eq. (4.18) into Eq. (4.19) yields 
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When the average distance Da inside certain condition-pattern is smaller and the 

average distance Db between different condition patterns is bigger, the average 

represents the optimal features well. The evaluation criteria for optimal features is 

defined as 

b

a
A D

D=δ                       (4.22) 

So, according to the bigger distance evaluation criteria of δA, the optimal 

features can be selected from original feature sets. 

The results of feature selection using distance evaluation technique can be seen 

in Figs. 4.14 and 4.15. From this figures, we can see that there are 24 ICs and PCs 

are resulted from feature extraction process. Usually 5 to 12 parameters are 

sufficient to perform the calculation and provide sufficient accuracy [22]. 

Applying the distance evaluation technique remains 7 ICs and PCs which have 

largest distance evaluation criteria. The best ICs and PCs from feature selection 

are presented in Table 4.4. 

 

Table 4.4 Selected ICs and PCs after feature selection 
Independent components (ICs) Principal components (PCs) 

5, 10, 13, 14, 15, 18, 19 1, 2, 3, 4, 6, 13, 16 

 

 



 99

-2

0

2

-4-3-2-101
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

IC1IC2

IC
3

Angular misalignment
Bow ed rotor
Broken rotor bar
Bearing fault
Rotor unbalance
Normal condition
Parallel alignment
Phase alignment

 

Fig. 4.12 Feature extraction using ICA. 
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Fig. 4.13 Feature extraction using PCA. 
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5.1.5. Training and Classification 

In this study, the RBF kernel and polynomial are used as the basic kernel 

function of SVM. There are two parameters associated with these kernels: C and γ. 

In addition, polynomial kernel also has parameter d related to degree of 

polynomial. The upper bound C for penalty term and kernel parameter γ  play a 

crucial role in performance of SVM. Therefore, improper selection of parameters 

C, γ, and d can cause overfitting or underfitting problem. Nevertheless, there is 

simple guideline to choose the proper kernel parameters using cross-validation 

that suggested by Hsu [23]. 

The goal of this guideline is to identify optimal choice of C and γ so that the 

classifier can accurately classify the data input. In ν-fold cross-validation, we first 

divide the training set into subsets of equal size. Sequentially on subset is tested 

using the classifier trained on the remaining (ν-1) subsets. Thus, each instance of 

the whole of training set is predicted once so the cross validation accuracy is the 

percentage of data that are correctly classified. The cross-validation procedure can 

prevent the overfitting problem. In this dissertation, we use 10-fold cross 

validation to search the proper kernel parameter d, C, and γ. Basically, all the pairs 

of (C, γ) for RBF kernel and (d, C, γ) for polynomial kernel are tried and the one 

with the best cross-validation accuracy is selected. In this work, we performed the 

10-fold cross-validation to choose the proper parameters of C = {20, 21, …, 27} 

and γ = {2-3, 2-2, …, 23}. 

The SVM based multi-class classification is applied to perform the 

classification process using one-against-one and one-against-all methods. The 

tutorial of these methods has clearly explained in Hsu and Lin [24]. The scenarios 

of training and classification process as follows: first, SVM based multi-class 

classification is trained on data input from original features without feature 

extraction and feature classification. Second, we change the data input for SVM 

training using data input after feature extraction by PCA and ICA. Furthermore, 
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the variation of kernel function is performed to show the excellent of 

characteristic of kernel function and its performance in faults classification. In this 

work, we employed polynomial and Gaussian RBF kernel functions. Third, we 

retry the all of training and classification process by introducing kernel parameter 

selection. Finally, the results of the training and faults classification are compared 

to show the best results of the system. 

 

5.1.6. Results and Discussion 

The result of this study can be shown in Tables 4.5, 4.6, and 4.7. In these tables, 

we listed the kernel function, strategy of multi-class classification, classification 

rate for training and testing, number of support vector and training time. The 

classification rate (%) is determined by using ratio of correct classification and on 

the whole of training or testing respectively. 

 

1. Effect of Feature Extraction and Selection 

In Table 4.5, classification process is performed on the original feature set 

without feature extraction and selection. The classification rates of this process 

among 75.0% until 97.5%. The bad performance of this classification is due to the 

existence of irrelevant and useless features. Many irrelevant features make burden 

and tend to decrease the performance of classifier. 

Then, as shown in Tables 4.6 and 4.7, the classification rate with PCA and ICA 

feature extraction ranged from 97.5% to 100%. It is better than the previous 

classification without feature extraction and selection. By using ICA and PCA 

feature extraction, the useful feature is extracted from original feature sets. 

Furthermore, the number of support vectors (SVs) decreased due to feature 

extraction. In this case, classification process using ICA feature extraction needs 

fewer numbers of SVs than PCA feature extraction and original feature. This 

phenomenon can be explained that ICA finds the components not merely 
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uncorrelated but independent. Independent components are more useful for 

classification rather than uncorrelated components. The reason is the negentropy 

in ICA could take into account the higher order information of the original inputs 

better than PCA using sample covariance matrix.  

Moreover, from feature selection part, we can observe the effect of feature 

selection from the distance evaluation criteria of ICs and PCs. Fig. 4.14 show us 

that the variance of distance among the ICs is relatively high; it represents of 

useful ICs features. It means that the bigger variance of distance evaluation 

criteria have significant importance in classification process. From Fig. 4.15 we 

can see that the variance of distance between PCs is relatively low except first 

PCs. However, the others PCs have low variance in distance respectively. So, it 

indicates the performance of PCs is lower than ICs in classification process. 
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Fig. 4.14 Distance evaluation criteria of ICs. 
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Fig. 4.15 Distance evaluation criteria of PCs. 

 

Table 4.5 Fault classification using original feature and SVM 

Classification rate (%) Kernel Multi-class  

strategy Training Testing 

Number of 

SVs 

Training time 

(s) 

One vs. one 89.2 90.0 93 0.48 Polynomial 

(d = 1) One vs. all 77.5 75.0 103 0.86 

One vs. one 91.7 90.0 94 0.52 Polynomial 

(d = 2) One vs. all 81.7 80.0 95 0.56 

One vs. one 93.3 97.5 93 0.56 Polynomial 

(d = 3) One vs. all 80.8 85.0 94 1.00 

One vs. one 94.2 97.5 94 0.48 Polynomial 

(d = 4) One vs. all 80.0 98.5 94 0.98 

One vs. one 92.5 90.0 99 0.32 Gaussian RBF 

(γ = 2.19) One vs. all 77.0 72.5 110 0.47 
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Table 4.6 Fault classification using PCA and SVM 

Classification rate (%) Kernel Multi-class  

strategy Training Testing 

Number of 

SVs 

Training time 

(s) 

One vs. one 100 100 79 0.52 Polynomial 

(d = 1) One vs. all 99.17 97.5 68 2.39 

One vs. one 100 100 77 0.55 Polynomial 

(d = 2) One vs. all 100 100 84 2.17 

One vs. one 100 100 72 0.48 Polynomial 

(d = 3) One vs. all 100 97.5 93 1.69 

One vs. one 100 100 73 0.53 Polynomial 

(d = 4) One vs. all 100 97.5 96 2.37 

One vs. one 100 100 84 0.41 Gaussian RBF 

(γ = 2.19) One vs. all 100 100 80 0.90 

 

 

Table 4.7 Fault classification using ICA and SVM 

Classification rate (%) Kernel Multi-class  

strategy Training Testing 

Number of 

SVs 

Training time 

(s) 

One vs. one 100 100 48 0.31 Polynomial 

(d = 1) One vs. all 99.17 100 45 5.17 

One vs. one 100 100 49 0.34 Polynomial 

(d = 2) One vs. all 100 97.5 45 0.92 

One vs. one 100 100 45 0.32 Polynomial 

(d = 3) One vs. all 100 97.5 47 1.26 

One vs. one 100 100 46 0.34 Polynomial 

(d = 4) One vs. all 100 97.5 52 1.15 

One vs. one 100 100 56 0.23 Gaussian RBF 

(γ = 2.19) One vs. all 100 100 50 0.26 
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2. Effect of Kernel Function 

From this study, the effect of selection of kernel function is also introduced. 

The performance of SVM depends on a great extent on the choice of kernel 

function to transform a data from input space to a higher dimensional feature 

space. The choice of kernel function is data dependent and there are no definite 

rules governing its choice that might yield a satisfactory performance. Tables 4.5, 

4.6 and 4.7 present results of SVM with the kernel function defined in Table 3.1. 

In these tables, d is the degree of polynomial and γ  is width of RBF kernel 

parameter. The parameter C does not emerge in this table because it only needed 

in calculation process as penalty term. 

At the first classification, we do not optimize the kernel parameters. First, the 

polynomial kernel function was used and then the second we used Gaussian RBF 

kernel. RBF kernel is very popular and claimed as the best kernel in classification 

process. In this kernel, there are two parameters which determine the performance 

in training and testing, C and γ. Therefore, the selection of proper kernel 

parameters C and γ is very important to achieve the good performance. In this 

dissertation, we performed training and testing process using without or with 

kernel parameter selection. The effect of kernel parameters selection will be 

explained in the next discussion. 

According to effect of kernel selection, the performance in classification 

training and testing tends to be increased using polynomial and RBF kernel, 

respectively. This phenomenon can be seen in the Tables 4.5, 4.6 and 4.7. The 

kernel parameters which used in polynomial kernel are d = 1, C = 10 and γ = 1. 

Whereas for RBF kernel we used C = 10 and γ = 2.19. In Table 4.5, the 

performance of RBF kernel using one-against-all strategy is lower than the others. 

This condition is caused by using improper RBF kernel parameters C and γ. Also, 

in Table 4.4, we used the original features without feature extraction and selection. 

That is why the performance of RBF kernel in Table 4.4 is lowest. 



 106 

3. Effect of Kernel Parameters Selection 

There are three parameters associated with polynomial kernel (d, C, γ) and two 

parameters for the RBF kernel (C, γ). It is not known beforehand which values of 

d, C and γ are the best for one problem; consequently, some kind of model 

selection or parameter search approach must be employed. This study conducts a 

10-fold cross validation to find the best values of d, C and γ. Pairs of d, C and γ 

are tried and the one with lowest cross-validation error is picked. For RBF kernel 

we searched the range of parameters C = {20, 21, …, 27} and γ = {2-3, 2-2, …, 23}, 

so there are 56 pairs of (C, γ) which must be evaluated. In the case of polynomial 

kernel we evaluated pairs of (d, C, γ) from the range d = {1, 2, 3, 4}, C = {20, 21, 

…, 27} and γ = {2-3, 2-2, …, 23}. The polynomial kernel seems to have more 

hyper-parameters than RBF kernel. The complete results of kernel parameter 

selection are summarized in Table 4.8. 

 

Table 4.8 Selected kernel parameter 

Polynomial kernel (d, C, γ ) RBF kernel (C, γ ) Data 

One vs. one One vs. all One vs. one One vs. all 

Original feature (3, 27, 20) (4, 27, 20) (27, 2−3) (26, 2−3) 

PCA feature extraction (1, 22, 20) (1, 20, 20) (20, 2−1) (20, 2−2) 

ICA feature extraction (1, 25, 20) (1, 21, 20) (21, 20) (21, 20) 

 

After the optimal pairs were found, the whole training data was training again 

to generate the final classifier. This study performs the training process using 

polynomial and RBF kernel to all of data: original features, PCA feature 

extraction and ICA feature extraction. The performance of polynomial and RBF 

kernel after kernel parameter selection is presented in Tables 4.9, 4.10 and 4.11. 

 

 



 107 

Table 4.9 Fault classification using original feature and selected kernel parameter 

Classification rate (%) Kernel Multi-class  

approach Training Testing 

Number of 

SVs 

Training time 

(s) 

One vs. one (3, 27, 20) 99.98 100 47 0.031 Polynomial 

(d, C, γ) One vs. all (4, 27, 20) 98.30 100 60 0.125 

One vs. one (27, 2−3) 100 100 41 0.032 RBF 

(C, γ) One vs. all (26, 2−3) 100 100 43 0.078 

 

Table 4.10 Fault classification using PCA and selected kernel parameter 

Classification rate (%) Kernel Multi-class approach 

Training Testing 

Number of 

SVs 

Training time 

(s) 

One vs. one (1, 22, 20) 100 100 47 0.031 Polynomial 

(d, C, γ) One vs. all (1, 20, 20) 100 100 91 0.063 

One vs. one (20, 2−1) 100 99.97 71 0.016 RBF 

(C, γ) One vs. all (20, 2−2) 100 100 80 0.063 

 

Table 4.11 Fault classification using ICA and selected kernel parameter 

Classification rate (%) Kernel Multi-class approach 

Training Testing 

Number of 

SVs 

Training time 

(s) 

One vs. one (1, 25, 20) 100 100 42 0.031 Polynomial 

(d, C, γ) One vs. all (1, 21, 20) 100 100 79 0.062 

One vs. one (21, 20) 100 100 64 0.015 RBF 

(C, γ) One vs. all (21, 20) 100 100 79 0.063 

 

As shown in Tables 4.9–4.11, the performance of classification process is 

increased due to the kernel parameter selection. It can be compared with Tables 

4.5–4.7 in the case of without kernel parameter selection. In Table 4.9, the 

classification rates of training for polynomial kernel is lower than RBF kernel 

both one-against-one and one-against-all strategies even though the degree of 
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polynomial are 3 and 4 respectively. This condition is supposed due to the bad 

quality of data input without feature extraction so that the curse of dimensionality 

phenomenon decreases the performance of classifier. However, in Tables 4.10 and 

4.11, the classification rate reaches 100% using polynomial kernel due to good 

quality of data input after feature extraction process. 

In Table 4.10, the classification rates of each kernel function are high; even 

almost of classification rates achieve 100%. Generally, the strategy of one-

against-one is better than one-against-all as listed in the table. As shown in Table 

4.10, the feature extraction using PCA is useful to increase the performance of 

classification rather than without feature extraction in Table 4.9, because of PCA 

search the uncorrelated components from the input data space and treat it so that 

more useful in classification. Moreover, using kernel parameter selection will 

increase the performance better. The proper pairs of (d, C, γ) in polynomial kernel 

are (1, 22, 20) and (1, 20, 20) for one-against-one and one-against-all respectively. 

Although the degree of polynomial equal to 1, however, the performance is high 

(100%). In RBF kernel, the proper kernel parameter of pairs (C, γ) are (20, 2−1) 

and (20, 2−2) for one-against-one and one-against-all respectively. The 

classification rates also high (100% and 99.97%). It becomes evidence that kernel 

parameter selection is very important to get good performance. Furthermore, the 

use of proper kernel parameter will overcome the problems of underfitting and 

overfitting so the best classification process is yielded. 

Finally, the faults classification using ICA feature extraction is presented in 

Table 4.11. This table presents the best performance in faults classification rather 

than previous methods. From this table we can see that performance of all kernel 

function are 100% in fault classification. It shows us that the feature extraction 

using ICA is the best method among them, because of ICA seeks not merely 

uncorrelated components but independents. It is more useful for classification 

process. In addition, the application of kernel parameter selection using cross-
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validation makes the performance of classification is excellent. The results of 

kernel parameter selection for polynomial kernel (pairs of (d, C, γ)) are (1, 25, 20) 

and (1, 21, 20) for one-against-one and one-against-all respectively. It uses one 

degree of polynomial kernel and produces the best performance. Then, in the case 

of RBF kernel, the kernel parameter selection pairs of (C, γ) yields (21, 20) both 

for one-against-one and one-against-all respectively. The classification rate is 

more excellent, both 100% rather than PCA feature extraction and original feature. 

 

5.2. Case Study 2: Using Nonlinear Feature Extraction 

In this case study, experiment is conducted using same test rig and data 

acquisition method to collect the data. The features used in this case study are 

generated using same feature calculation method. A nonlinear feature extraction 

method is performed by introducing kernel function in previous linear method of 

feature extraction. 

 

5.2.1. Feature Extraction 

Originally, the data feature parameters have disorder structure, fully 

overlapping and can not be clustered well each condition of faults in induction 

motors. This phenomenon can be shown in Fig. 4.16. 

Fig. 4.16 plots three-first components of original data (78) feature parameters. 

Because of high dimensional data tends to redundancy and can not be separated 

well among the condition of faults, so this data structure should not be directly 

processed into classifier because it will degrade the performance of classifier. 
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Fig. 4.16 Three-first components of original data features. 

 

To avoid this disadvantage, we should extract the useful feature and reduce the 

dimension of original data features. Employing nonlinear feature extraction is 

expected to be able to handle the disorder structure of data features. In this work, 

the use of kernel PCA for feature extraction is introduced. Based on the 

eigenvalue, we select 97% of the total largest eigenvalue of covariance matrix as a 

reference to reduce the dimensionality. Representation of eigenvalue can be seen 

in Fig. 4.17 which presents 20 largest eigenvalues of covariance matrix. Then, we 

select the RBF kernel function in kernel PCA and choose the kernel parameter γ = 

4. After feature extraction using kernel PCA, there are 7 principal components 

which represent the useful feature. The result of feature extraction using kernel 

PCA and kernel ICA is presented in Figs. 4.18 and 4.19. 
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Fig. 4.17 Representation of 20 eigenvalues of covariance matrix. 

 

In Fig. 4.18, we can see that kernel PCA successfully clustered each condition 

of faults in induction motor. However, there are some overlaps in its clustering 

specially for broken rotor bar and phase unbalance. The good performance of 

kernel PCA in clustering is associated that kernel PCA can explore higher order 

information of the original data feature beside of uncorrelated data. 

In the next step, we performed nonlinear feature extraction using whitened data 

feature by kernel PCA and employed ICA algorithm to seek the projection 

direction in kernel PCA whitened space. We called this process as kernel ICA 

feature extraction. In this technique, we expect that feature extraction process can 

be improved due the robustness of kernel ICA. 
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Fig. 4.18 Feature extraction using kernel PCA. 

 

Fig. 4.19 shows us that each condition of faults in induction motor is separated 

well. Moreover, there are no overlaps in clustering process. Visually, it can be 

concluded that feature extraction using kernel ICA is the best in comparing with 

previous technique. In addition, kernel ICA also implicitly takes into account the 

high order information of the original data features. Furthermore, in kernel ICA 

technique, the mutual independent components will give the promising to be a 

useful and the best features. 
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Fig. 4.19 Feature extraction using kernel ICA. 

 

To investigate the performance of nonlinear feature extraction process using 

kernel PCA and kernel ICA, we calculated the average of Euclidean distance 

between points in class of feature space [25,26]. This method can be described as 

follows: first, we select one point as a reference and calculate the average of 

Euclidean distance of each point to the reference point. Then, we change the 

reference point and do same as previous step for all data points. We calculated the 

average of Euclidean distance in kernel PCA and kernel ICA feature space 

respectively then took the lowest which represents the good clustering. The 

calculation of average Euclidean distance can be seen in Fig. 4.20. In this figure 

we can see that the average distance of kernel ICA is lower than kernel PCA so it 

becomes evidence that performance of kernel ICA significantly outperforms 

kernel PCA in terms of clustering. 
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Fig. 4.20 Average of Euclidean distance kernel PCA and kernel ICA. 

 

5.2.2. Training and Classification 

The SVM based multi-class classification is applied to perform the classification 

process using one-against-one and one-against-all methods. The tutorial of these 

methods has clearly explained in [24]. To solve the SVM problem, Vapnik [27] 

describe a method which used the projected conjugate gradient algorithm to solve 

the SVM-QP problem. Sequential minimal optimization (SMO) proposed by Platt 

[28] is a simple algorithm that can be used to solve the SVM-QP problem. This 

method decomposes the overall QP problem into QP sub-problem using the 

Osuna’s theorem to ensure the convergence. In this dissertation, SMO is used as a 

solver. 

In this study, we use 10-fold cross-validation to search the proper kernel 

parameter d, C, and γ. Basically, all the pairs of (C, γ) for RBF kernel and (d, C, γ) 

for polynomial kernel are tried and the one with the best cross-validation accuracy 
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is selected. We perform the 10-fold cross-validation to select the proper 

parameters of C = {20, 21, …, 27} and γ = {2-3, 2-2, …, 23}. 

There are three parameters associated with polynomial kernel (d, C, γ) and two 

parameters for the RBF kernel (C,γ). It is not known beforehand which values of d, 

C and γ are the best for one problem; consequently, some kind of model selection 

or parameter search approach must be employed. This study conducts a 10-fold 

cross validation to find the best values of d, C and γ. Pairs of d, C and γ are tried 

and the one with lowest cross-validation error is picked. For RBF kernel we 

searched the range of parameters C = {20, 21, …, 27} and γ = {2-3, 2-2, …, 23}, so 

there are 56 pairs of (C, γ) which must be evaluated. In the case of polynomial 

kernel we evaluated pairs of (d, C, γ) from the range d={1, 2, 3, 4}, C = {20, 21, 

…, 27} and γ = {2-3, 2-2, …, 23}. The polynomial kernel seems to have more 

hyper-parameters than RBF kernel. The complete results of kernel parameter 

selection are summarized in Table 4.12. 

 

Table 4.12 Selected kernel parameter 

Polynomial kernel (d, C, γ ) RBF kernel (C, γ ) Feature extraction  

method One vs. one One vs. all One vs. one One vs. all 

Kernel PCA  (3, 22, 1) (3, 24, 1) (27, 2-1) (27, 2-2) 

Kernel ICA  (1, 27, 1) (1, 26, 1) (27, 2-2) (26, 2-1) 

 

5.2.3. Results and Discussion 

Table 4.13 presents the result of classification using kernel PCA feature 

extraction and SVM. According to the accuracy, this method is very good because 

all of classification accuracies are 100%. The excellent of this method is also 

shown by the number of SVs which is reduced and smaller than previous method 

except the one-against-one strategy of polynomial kernel. However, according to 

training time, the classification process using kernel PCA feature extraction and 
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SVM is relatively longer than linear feature extraction. In addition, this table 

shows that the strategy of one-against-one is better than one-against-all strategy as 

previous methods.  

The proper kernel parameters are (3, 24, 1) and (3, 22, 1) for polynomial kernel 

of one-against-all and one-against-one strategy respectively. In this case, it means 

that the feature extraction method using kernel PCA needs high degree of 

polynomial (d = 3) for classification process of SVM. And it becomes a reason 

that the training time is longer than PCA and ICA feature extraction with same 

kernel. The proper parameters of RBF kernel are (26, 2-1) and (27, 2-2) for one-

against-all and one-against-one strategy, respectively. Classification process using 

kernel PCA feature extraction and RBF kernel has reduced the number of SVs 

smaller than previous method. 

The result of classification using kernel ICA feature extraction and SVM is 

presented in Table 4.14. The accuracy of this process also high which reached 

100% except one-against-all strategy using polynomial kernel 99.97%. Generally, 

in comparing with feature extraction using kernel PCA the performance of this 

method is better according to the number of SVs and training time. Application of 

kernel parameter selection using cross-validation method produced the proper 

kernel parameters which made its performance is excellent. For polynomial kernel, 

the proper parameters are (1, 26, 1) and (1, 27, 1) for one-against-all and one-

against-one strategy respectively. Although the degree of polynomial kernel equal 

to 1 however it reached good performance. The most excellent of performance is 

shown using RBF kernel which produced high accuracy and smallest number of 

SVs. This excellence is surely influenced by the use of proper kernel parameters 

that are (26, 2-1) and (27, 2-2) for one-against-all and one-against-one strategy 

respectively. 
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Table 4.13 Fault classification using kernel PCA and SVM 

Classification rate 
Kernel  Multi-class strategy 

Training Testing 

Number of 

SVs 

Training 

time (s) 

One vs. all (3, 24, 1) 100 100 67 1.33 Polynomial 

(d, C, γ) One vs. one (3, 22, 1) 100 100 68 0.031 

One vs. all (27, 2-2) 100 100 52 0.438 RBF 

(C, γ) One vs. one (27, 2-1) 100 100 50 0.032 

 

Table 4.14 Fault classification using kernel ICA and SVM 

Classification rate 
Kernel  Multi-class strategy 

Training Testing 

Number of 

SVs 

Training 

time (s) 

One vs. all (1, 26, 1) 100 99.97 67 1.156 Polynomial 

(d, C, γ) One vs. one (1, 27, 1) 100 100 50 0.047 

One vs. all (26, 2-1) 100 100 43 0.218 RBF 

(C, γ) One vs. one (27, 2-2) 100 100 42 0.031 

 

5.3. Case Study 3: Motor Current Signal and W-SVM 

This method is well known as motor current signal analysis (MCSA) which use 

stator current signal of motor induction to conduct fault diagnosis. A brief review 

discussing how to use MCSA was highlighted in [3,29,30]. In present study, the 

start-up transient current signature is selected for detection and diagnosing of 

faults in induction motor. This method is effective because the machine is 

subjected to more stresses during the start-up above those of normal operation. 

These stresses can highlight the machine defects those are early in their 

development and not detected easily during steady state operation. The other 

advantage is that the transient signal has a high slip and high signal-to-noise ratio 

(SNR), which implies that its spectral can be detected more easily. Therefore, it is 

no need to heavily load the motor in order to make an accurate fault diagnosis. 
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5.3.1. Experiment and Data Acquisition 

The experiment was conducted using test rig described in section 6.1.1. 

However, we only used three current probes to acquire the transient current signal. 

The maximum frequency of the used signals was 5 kHz. The data was acquired 

using data acquisition unit of 16 bit resolution; the number of the sampled data 

was 16384 at a sampling rate of 12800 Hz. The high sampling rate is selected 

because the transient signal has short time duration while sufficient samples per 

second are needed. Moreover it is planned to investigate and take the features 

from high frequency range after preprocessing using wavelet transform. One of 

the motors is normal condition (healthy) to be used as a benchmark for comparing 

with faulty condition. The conditions of faulty motors are described in Table 4.2. 

 

5.3.2. Signal Preparation and Feature Calculation 

The signals can be divided into two types; stationary and non-stationary. 

Transient signal which starts and finishes at zero is categorized as non-stationary 

signal. In this study, the start-up signal of induction motor is considered as 

transient signal (Fig. 4.21).  

Working on the statistical features, smoothing process is necessary in order to 

remove or reduce the line frequency to highlight the differences of faults in 

induction motors. After smoothing, the transient start-up signal is expected to be 

similar to sine waveform which has variable amplitude. A moving average filter is 

used to smooth the data by replacing each data point with the average of the 

neighboring data points defined within a window. This window moves across the 

data set as the smoothed response value is calculated for each predictor value [31]. 

Subtracting the smoothed signal from the original signal gives the residual part 

which contains the information related to the normal or faulty conditions in 

induction motor. This residual part of transient current is shown in Fig. 4.22. 



 119 

0 0.5 1 1.5 2 2.5 3
-1

0

1
x 10

4

Time [s]

C
u

rr
en

t 
A

 [
m

A
]

0 0.5 1 1.5 2 2.5 3
-2

0

2
x 10

4

Time [s]

C
u

rr
en

t 
B

 [
m

A
]

0 0.5 1 1.5 2 2.5 3
-1

0

1
x 10

4

Time [s]

C
u

rr
en

t 
C

 [
m

A
]

 

Fig. 4.21 Transient start-up current of phase A, B and C. 
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Fig. 4.22 The residual part of transient current. 
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Next step, discrete wavelet transform (DWT) is performed to extract the 

differences of each condition of induction motor. We performed 5 decomposition 

levels using Daubechies 5 (Db5) to show the salient features of faults in some 

frequency ranges. Wavelet transform can be considered as band pass filter where 

the different levels corresponds to the frequency at which different fault can be 

highlighted. The results of discrete wavelet transform are shown in Fig. 4.23. 

Fig. 4.23 shows the five decomposition levels of each condition of induction 

motor using DWT. Even though the differences between each condition are not 

clear, we can select one of them for feature calculation and left the others for 

reducing the dimensionality. In this dissertation, level 1 (d1) contained in the high 

frequency range is selected as the features source for classification process.  
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Fig. 4.23 Wavelet transform for transient start-up signal of induction motor:  

(a) d1, (b) d2, (c) d3, (d) d4 and (e) d5. 
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After wavelet transform, the features are calculated from time waveform, 

frequency domain and auto regression of d1. In total, 63 features are obtained 

from 21 feature parameters of the 3 phases A, B, and C. A total of 140 data 

calculated from 7 conditions and each one has 20 measurements. The detailed of 

features are listed in Table 4.2. 

 

5.3.3. Feature Extraction 

In this study, non-linear feature extraction using kernel function is proposed to 

obtain good features for classification process. After feature calculation, the mean, 

rms and shape factor are plotted in Fig. 4.24 in order to know the structure of the 

data features. Fig. 4.24 can be a representation of the original features which have 

disorder structure or overlap and are not well clustered. Plotting original feature 

parameters indicates the necessity of preprocessing of the original features to 

make them better and ready for classification. 
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Fig 4.24 Original features. 
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Disorder structure of original features tends to decrease the performance of 

classifier if it is directly processed in classifier. To avoid this disadvantage, 

component analysis using PCA and KPCA are used to extract and reduce the 

feature dimensionality based on eigenvalue of covariance matrix. Fig. 4.25 shows 

the feature reduction in PCA and KPCA based on eigenvalue of covariance matrix. 

The features are changed into principal components and remaining only five for 

classification process. 

The principal components of PCA and KPCA are plotted in Fig. 4.26. It can be 

observed that the clusters for seven conditions are not separated well. There are 

still overlapping among each condition of motor. It indicates that the features 

which are produced by current signature are very difficult to cluster. Therefore, 

more advance and good preprocessing is needed so that the salient differences 

features can be explored and emerged. 
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Fig. 4.25 Eigenvalue of covariance matrix for feature reduction. 
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Fig. 4.26 Principal components and kernel principal components. 

 

5.3.4. Training and Classification 

The SVM based on multi-class classification is applied to perform the 
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classification process using one-against-all methods. The tutorial of this method 

was clearly explained in [24]. To solve the SVM problem, Vapnik described a 

method which used the projected conjugate gradient algorithm to solve the SVM-

QP problem [28]. In the present study, SVM-QP is performed to solve the 

classification problem of SVM. The parameter C (bound of the Lagrange 

multiplier) and λ (condition parameter for QP method) are assigned the values 1 

and 10−7, respectively. Wavelet kernel function using Haar, Daubechies and 

Symlet are performed in the present study. The parameter δ in wavelet kernel 

refers to number of vanishing moment and is set to 4. 

 

5.3.5. Results and Discussion 

The complex boundaries of separation are presented in Figs. 4.27-4.29, from 

which the separation of W−SVM can be shown. In these figures, the circle refers 

to the support vector that states the correct recognition in W−SVM. Each 

condition of induction motor is well recognized using wavelet kernel except Haar 

kernel of PCA. Although W−SVM is well performed in recognition, however, 

each condition cannot be clustered and separated well. This phenomenon appears 

in all wavelet kernel functions. The lack of performance in preprocessing the 

transient current signal is suspected to be a reason why each class cannot be 

clustered well. Furthermore, because of the difficulty of handling the start-up 

transient current signal, so it needs an advanced preprocessing method. In this 

dissertation, the use of moving averaging and DWT (Db5) for preprocessing is not 

sufficient to emerge the salient differences between conditions in induction 

motors. Hence a proper preprocessing for the transient current signal is needed to 

be further investigated. Even though the clustering is not performed well, however, 

the correct classification and recognition show good performance using W−SVM. 

It is evident that W−SVM performs well in faults detection and classification of 

induction motors. 



 127 

The performance of classification process summarized in Table 4.15 uses 

conventional kernel functions such as Gaussian and Polynomial for comparison 

purpose. All the data sets come from component analysis are accurately classified 

using wavelet kernel function, except Haar wavelet which reveals accuracies of 

85% and 95% for PCA and KPCA, in training and testing accuracy, respectively. 

Wavelet kernel using Daubechies and Symlet reach accuracy 100% in training 

and testing, respectively. The number of support vectors are 68, which is 

relatively high due to the less quality of input data. The CPU time of Daubechies 

and Symlet wavelet are 7.1 s, 10.9 s and 9.6 s, 15.8 s for PCA and KPCA, 

respectively. These are higher than the CPU time of Haar wavelet which amounts 

to 5.8 s for both PCA and KPCA. 

 

Table 4.15 Classification results 

W−SVM Conventional SVM  

Haar Daubechies Symlet Gaussian 

(γ = 0.25) 

Polynomial 

(d = 3) 

PCA 85/85 100/100 100/100 75/75 61/61 Accuracy (%) 

(training/test) KPCA 95/95 100/100 100/100 90/90 74/74 

PCA 68 68 68 70 70 Number of 

SV KPCA 68 68 68 70 70 

PCA 5.8 7.1 9.6 0.9 0.9 CPU time (s) 

KPCA 5.8 10.9 15.8 0.9 0.8 

 

Table 4.15 shows the performance of conventional kernel function such as 

Gaussian and Polynomial. The accuracies are lower comparing with wavelet 

kernel function for all component analysis methods using PCA and KPCA. The 

number of support vectors is 70 higher than wavelet kernel function. However, the 

time consumptions are less than wavelet kernel function. 
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Fig. 4.27 Boundaries of separation using Haar wavelet kernel:  

a) PCA, b) KPCA. 

Bow ed rotor

Broken rotor bar

Eccentricity

Bearing fault

Mass unbalance

Normal condition

Phase unbalance

Bow ed rotor

Broken rotor bar

Eccentricity

Bearing fault

Mass unbalance

Normal condition

Phase unbalance



 129 

Support vector 1

S
up

po
rt

 v
ec

to
r 

2

-0.2 -0.1 0 0.1 0.2 0.3

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 
 (a) 

 

Support vector 1

S
up

po
rt

 v
ec

to
r 

2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 
 (b) 

Fig. 4.28 Boundaries of separation using Daubechies wavelet kernel:  

a) PCA, b) KPCA. 
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Fig. 4.29 Boundaries of separation using Symlet wavelet kernel:  

a) PCA, b) KPCA. 
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In this study, as conclusion, a relatively new method of nonlinear kernel based 

on wavelet (W−SVM) has been introduced. The kernel function transforms the 

data into higher dimensional space in order to make it possible to perform the 

separation process. Feature reduction and extraction using component analysis via 

PCA and KPCA are highlighted. The performance of W−SVM is validated by 

applying it to faults detection and classification of induction motor based on start-

up transient current signal. The results show that W−SVM is well performed and 

reached high accuracy in training and testing process based on experimental work. 

However, a proper preprocessing for the transient current signal is needed to 

improve emerging the salient differences between conditions in induction motors. 

Introducing nonlinear kernel using wavelets is believed to improve significantly 

the SVM research fields. 

 

5.4. Case Study 4: Vibration Signal and W-SVM 

5.4.1. Experiment and Data Acquisition 

Data acquisition was conducted on induction motor of 160 kW, 440 volt, 2 

poles as shown in Fig. 4.30. Six accelerometers were used to pickup vibration 

signal at drive-end and non drive-end on vertical, horizontal and axial direction, 

respectively. The maximum frequency of the used signals and the number of 

sampled data were 60 Hz and 16384, respectively. 

 

5.4.2. Feature Calculation 

The condition of induction motor is briefly summarized in Table 4.16. Each 

condition was labeled as class from 1 to 7. Feature representation for training and 

classification was presented in Table 4.3. There are totally 126 features calculated 

from 6 signals, 21 features and 98 data calculated from 7 condition 14 

measurements. 
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Fig. 4.30 Data acquisition of induction motor. 

 

Table 4.16 Condition of induction motor 

Class No. Condition Description Others 

1 Bent rotor  Maximum shaft deflection 1.45mm 

2 Eccentricity  Static eccentricity (30%) Air-gap: 0.25 mm 

3 MCDE  Magnetic center moved (DE) 6 mm 

4 MCNDE  Magnetic center moved (NDE) 6 mm 

5 Normal  No faults - 

6 Unbalance  Unbalance mass on the rotor 10 gr 

7 Weak-end shield Stiffness of the end-cover - 

 

5.4.3. Feature Extraction and Reduction 

Basically feature extraction is mapping process of data from higher dimension 

into low dimension space. This step is intended to avoid the curse dimensionality 

phenomenon. Structure of three first original features, those are mean, RMS and 

shape factor are plotted in Fig. 4.31. This figure shows the performance of 

original features those are containing overlap in some conditions. Then, applying 

component analysis is suggested to make original features well clustered.  
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Component analysis via ICA, PCA and their kernel are then used to extract and 

reduce the feature dimensionality based on eigenvalue of covariance matrix as 

described in Fig. 4.32. After performing component analysis the feature have been 

changed into independent and principal components, respectively. The first three 

independent and principal components from PCA, ICA and their kernel are 

plotted in Fig. 4.33. It can be observed that the clusters for seven conditions are 

separated well. It indicates that component analysis can perform feature extraction 

and all at once do clustering each condition of induction motors. 
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Fig. 4.31 Original features. 

 

According to the eigenvalue of covariance matrix, the features were changed 

into component analysis and reduced only 5 component analysis needed for 

classification process. The other features are discarded due to small of eigenvalue 

of covariance matrix. The selected component analysis is then used by W-SVM 

classifier as input vectors for fault diagnosis using classification routine. 
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Fig. 4.32 Feature reduction using component analysis. 
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(b) Independent components 
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(c) Kernel principle components 
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(d) Kernel independent components 
Fig. 4.33 The first three principal and independent components. 

 

5.4.4. Training and Classification 

The SVM based multi-class classification is applied to perform the 

classification process using one-against-all methods. To solve the SVM problem, 

Vapnik [27] describe a method which used the projected conjugate gradient 

algorithm to solve the SVM-QP problem. In this study, SVM-QP was performed 

to solve the classification problem of SVM. The parameter C (bound of the 

Lagrange multiplier) and (condition parameter for QP method) were 1 and 10-7, 

respectively. 

Wavelet kernel function using Daubechies series was performed in this study. 

The parameter δ in wavelet kernel refers to number of vanishing moment and is 

set 4. In the training process, the data set was also trained using RBF kernel 

function as comparison. The parameter γ for bandwidth RBF kernel was user 

defined equal to 0.5. 
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5.4.5. Result and Discussion 

The complex separation boundaries are presented in Fig. 4.34 from which the 

separation of W-SVM can be shown. In these figures, the circle refers to the 

support vector that states the correct recognition in W-SVM. Each condition of 

induction motor is well recognized using Daubechies wavelet kernel. In the 

classification process using W-SVM, each condition of induction motors can be 

clustered well. The good separation among conditions shows the performance of 

W-SVM doing recognition of component analysis from vibration signal features. 

The performance of classification process is summarized in Table 4.17. All 

data set come from component analysis are accurately classified using Daubechies 

wavelet kernel and SVM and reached accuracy 100% in training and testing, 

respectively. SVM using RBF kernel function with kernel width γ = 0.5 is also 

performed in classification for comparison with Daubechies wavelet kernel. The 

results show that the performance of W-SVM is similar to SVM using RBF kernel 

function, those are 100% in accuracy of training and testing, respectively. In the 

case of number support vectors, SVM with RBF kernel function needs lower than 

W-SVM except kernel PCA. 

 

Table 4.17 Results of classification 

Accuracy (Train/Test), %  Number of SVs Kernel 
IC PC  Kernel IC Kernel PC IC PC  Kernel IC Kernel PC 

Daubechies 100/100 100/100 100/100 100/100 35 39 39 17 

RBF-Gaussian 

(γ = 0.5) 

100/100 100/100 100/100 100/100 22 22 25 33 
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(a) Daubechies kernel with PC data 
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(b) Daubechies kernel with IC data 
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(c) Daubechies kernel with kernel PC data 
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(d) Daubechies kernel with kernel IC data 

Fig. 4.34 Separation boundaries of W-SVM. 
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 Based on previous case studies, there are advantages and disadvantages in 

SVM classification that can be studied as follows [32,33]: 

§ Advantages 

1. SVM can well learn the system based on training process using small set 

number of data. 

2. SVM has good generalization ability so that it can produce accurate 

performance in classification when the system is tested. 

3. SVM has ability that can be independent of the dimensionality of the 

feature space. 

4. In SVM, embedding structural risk minimization (SRM) principle can 

minimize the upper bound on the generalization error. 

 

§ Disadvantages 

1. Basically, SVM is developed for binary classification. Recently, SVM has 

been modified to be able to solve multi-class classification problem using 

special strategy i.e., one-against-one, one-against-all, etc. However, each 

strategy has merit and demerit that is still open to be investigated for 

improvement. 

2. SVM has problem in using kernel function. There are no exact ways to 

select a proper kernel function for special case. 

3. Proper parameter tuning is still a problem in SVM. Kernel parameters 

selection is sometimes take much CPU time. 

 

6. Conclusion 

 

 The excellent and capability of support vector machine (SVM) in fault 

diagnosis of induction motor has been explored in this chapter. Four case studies 

have been presented to validate the proposed method. 
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 In the first case study, we applied the combination of ICA and SVM for 

intelligent fault diagnosis of induction motor. ICA and PCA were successfully 

applied for feature extraction process; however, the clustering feature using ICA 

is better than PCA does. The feature extraction is one important step in fault 

classification process because it can remove the redundancy and avoid the curse 

of dimensionality phenomenon. After feature extraction, we performed feature 

selection process to remove irrelevant and useless feature. The distance evaluation 

technique was employed due to its simple and reliability. SVM based multi-class 

classification is applied to do faults classification process. To show the 

importance of feature extraction and kernel parameters selection, we trained the 

SVMs onto the data input without and with feature extraction, and then followed 

by kernel parameters selection. The results show that using ICA feature extraction 

and combining kernel parameters selection gave the best faults classification. 

According to this result, the combination of ICA and SVM can serve as a 

promising alternative for intelligent faults diagnosis in the future. 

Second case study discussed the application of nonlinear feature extraction and 

SVM for faults diagnosis. In this method, we employed and adopted kernel trick 

for mapping the data features into high dimensional space. Moreover, ICA has 

formulated in the kernel-inducing feature space and a two-phase kernel algorithm 

that is kernel PCA plus ICA is developed. Kernel PCA is used to sphere data 

feature and to make data as linearly separable as possible using an implicit 

nonlinear mapping determined by kernel. ICA is followed to seek the projection 

direction in the kernel PCA whitened space and determined the mutual 

components. The effectiveness of nonlinear feature extraction is verified using 

data feature parameters of induction motor. Feature extraction using linear 

technique is also introduced to compare with nonlinear one. The result shows that 

kernel ICA outperforms kernel PCA in clustering based on the investigation of 

average of Euclidean distance. According to the result, the application of 
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nonlinear feature extraction and SVM can serve as a promising alternative for 

intelligent faults diagnosis in the future. 

In the third and fourth case study, a new method of nonlinear kernel based on 

wavelet (W−SVM) is introduced. The kernel function transforms the data into 

higher dimensional space in order to make it possible to perform the separation 

process. Feature reduction and extraction using component analysis via PCA and 

KPCA are highlighted. The performance of W−SVM is validated by applying it to 

faults detection and classification of induction motor based on start-up transient 

current and vibration signals. The results show that W−SVM is well performed 

and reached high accuracy in training and testing process based on experimental 

work. However, a proper preprocessing for the transient current signal is needed 

to improve emerging the salient differences between conditions in induction 

motors. Introducing nonlinear kernel using wavelets is believed to improve 

significantly the SVM research fields. 
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V. Feasibility of SVM for Machine Prognosis 

System 
 

 

1. Introduction 

 

A real machine prognosis system is very important to predict the degradation 

condition and fault propagation trend in machines before a fault reaches in critical 

level. It also can produce the early alarm and warning before catastrophic 

condition occurred. Machine condition prognosis means the use of available 

(current or previous) observations to predict upcoming states of machine [1]. 

Compared to fault diagnosis, the papers that concern with prognosis are much 

fewer. The most widely used of prognosis system is to predict the remaining 

useful life (RUL) that predicts how much time is left before serious failures occur 

(one or more faults) based on the current and past conditions of machine. The 

other method of prognosis is addressed to predict a chance that machines operate 

without a fault or failure up to some future time until next inspection interval 

based on the current conditions and past operation profile. This is, actually, more 

desirable to be a reference for maintenance engineer to determine whether the 

next inspection interval is proper or not. 

Many temporal patterns can be used for machine condition prognosis, such as 

vibration features and debris properties of lubrication oil. The vibration based 

monitoring; however, is a well-accepted approach due to the ease of measurement 

and analysis. Several studies based on vibration techniques have been reported in 

time-series prediction incorporated with classical approach, such as autoregressive 

(AR) model, autoregressive moving average (ARMAX) model, bilinear model 

and multivariate adaptive regression splines. However, the difficulties are found 
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when these models will be applied in predicting of dynamic response of complex 

system. 

Recently, many researchers tend to apply artificial intelligence (AI) techniques 

due to the ability to be flexible model predictors which can be automatically built 

by training process without the need for identification of model structures and 

parameters. The most widely used of AI techniques for forecasting are neural 

networks (NNs) and fuzzy system. Zhang and Ganesan [2] used self-organizing 

neural networks for multivariable trending of the fault to estimate the residual life 

of a bearing system. Wang and Vachstevanos [3] applied dynamic wavelet neural 

networks to predict the fault propagation and estimate the RUL as the time left 

before the fault reach a given value. Yam et al. [4] applied a recurrent neural 

networks for predicting the machine condition trend. Wang et al. [1] compared the 

result of applying recurrent neural networks and neuro-fuzzy inference system to 

predict the fault damage propagation trend. 

Support vector machine (SVM), introduced originally by Vapnik [5] is one of 

machine learning methods and AI techniques which has been rapidly developed 

and applied for classification and regression problem [6,7]. SVM is quite 

satisfying from a theoretical point of view and can lead to great potential and 

superior performance in practical applications. This is largely due to the structural 

risk minimization (SRM) principle in SVM, which has greater generalization 

ability and is superior to the empirical risk minimization (ERM) principle as 

adopted in neural networks. Furthermore, SVM is adaptive to complex system and 

robust in dealing with nonlinear data. 

Recently, the application of SVM to time-series prediction, called support 

vector regression (SVR), has shown many breakthroughs and plausible 

performance, such as travel-time prediction [8], wind speed prediction [9], 

electricity load forecasting [10], water lake prediction [11], etc. Since there are 

much evidence from previous research results of time-varying application with 
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SVR prediction, it motivates our research in using SVR for machines prognosis 

system modeling. 

In present chapter, SVR is applied to predict time-series of failure trending 

data of machines. The aims of this study are to investigate the feasibility and to 

evaluate the performance and reliability of SVR in failure trending data prediction, 

and also to develop a reliable prognosis system for machines condition prediction. 

 

2. Description of Selected Model 

 

2.1. Support Vector Regression (SVR) 

Recall the linear equation of SVM expressed in Eq. (3.31), it can be express in 

the form 

bf +〉〈= xwx ,)(                     (5.1) 

where 〈 , 〉 denotes the dot product in Rn. 

Flatness in the case of Eq. (5.1) means the one seeks small w. One way to 

ensure this is to minimize the Euclidean norm, i.e. ||w||2. Formally, the problem of 

Eq. (5.1) can be written as convex optimization problem by requiring 
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The tacit assumption in Eq. (5.2) is that such a function f(x) actually exists that 

approximately all pairs (xi,yi) with ε precision, or in other words, that the convex 

optimization is feasible. However, this may not be the case, or we also may want 

to allow some errors. Analogously to the soft margin in Vapnik [12], one can 

introduce slack variables ξi, ξi
* to cope with otherwise infeasible constraints to 

optimization Eq. (5.2). Hence, we present the formulation stated in [5]. 
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The constant C > 0 determines the trade off between the flatness of f(x) and the 

amount up to which deviations larger than ε tolerated. The formulation above 

corresponds to dealing with a so called ε-insensitive loss function |ξ|ε described 

by 

 
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Fig. 5.1 The soft margin loss setting for linear SVR. 

 

Fig. 5.1 depicts situation graphically. Only the points outside the shaded region 

contribute to the cost insofar, as the deviation are penalized in a linear fashion. It 
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turns out that the optimization problem in Eq. (5.3) can be solved more easily in 

its dual formulation. The dual function provides the key for extending support 

vector machine to nonlinear functions. 

The calculation can be simplified by converting into the equivalent Lagrangian 

dual problem, which will be 
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Then, the task is minimizing Eq. (5.3) with respect to primal variables (w, b, ξi, 

ξi
*) have to famish for optitimality. 
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Substituting Eqs. (5.6), (5.7), (5.8) into Eq. (5.5) yields the dual optimization 

problem. 
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In deriving Eq. (5.9), the dual variables ηi, ηi
* have eliminated through condition 

Eq. (5.8), as the variables did not appear in the dual objectives function anymore 

but only were present in the dual feasibility conditions. Eq. (5.6) can be rewritten 

as follows 
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And therefore Eq. (5.1) can be expressed as 
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This is so called support vector expansion, i.e. can be completely described as a 

linear combination of the training patterns xi. The Lagrange multipliers αi and αi
* 

represent solutions to the above quadratic problem, which act as forces pushing 

predictions toward target value yi. Only the nonzero values of the Lagrange 

multipliers in Eq. (5.9) are useful in forecasting the regression line. 

 In Eq. (5.11), the dot product of 〉〈 xx ,i can be replaced with function K(xi,x) 

known as the kernel function. Kernel functions enable the dot product to be 

performed in high-dimensional feature space using low dimensional space data 

input without knowing the transformation. All kernel function must satisfy 

Mercer’s condition [13] that corresponds to the inner product of some feature 

space. The RBF is commonly used as kernel for regression 

 }||exp{),( 2xxxx −−= iiK γ                (5.12) 

 For the variable b, it can be computed by applying the Karush-Kuhn-Tucker 

(KKT) condition that, in this case, imply that the product of the Lagrange 

multipliers and constrains has to equal to 0 
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Since αi, αi
*= 0, and ξi

* = 0 for αi
*∈(0,C) b can be computed as 

 ε−−= ),( iiib xwy   for ),0( Ci ∈α             (5.17) 

 ε+−= ),( iiib xwy   for ),0(* Ci ∈α             (5.18) 

 

2.2. Prediction Method 

Let {x(t)}, t = 1, …, T, be a timer series that was generated by dynamical 

system. For convenience, consider x(t) to be scalar, but note that the treatment of 

multi-scalar time series is straightforward. By assuming that {x(t)} is a projection 

of a dynamics operating in a high-dimensional space. If the dynamics is 

deterministic, the prediction of time series can be performing by reconstructing 

the state space. The way for reconstruction was introduced by Packard et al. [14] 

and mathematically analyzed by Takens [15]. A state vector is defined as 

)))1((),...,(),(( ττ −−−= dtxtxtxtx              (5.19) 

with time-delayτ and embedding dimension d. If the dynamics runs on an attractor 

of dimension D a necessary condition for determining xt is 

 Dd ≥                       (5.20) 

 If the embedding dimension is big enough, such that xt unambiguously 

describes the state of the system at time t then there exists an equation for points 

on the attractor, which is of the form 

 )()( *
tfpt xx =+                    (5.21) 

In this equation, *f is a function that allows to predict future values of the time 

series {x(t)} given past values, with p being the prediction horizon. 

 Regression technique can therefore be used to estimate the prediction function 

on the basis of time-delay coordinates according to Eq. (5.19). 
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3. Methodology 

 

In present study, SVR is applied to forecast the degradation condition trends in 

rotating machinery. Usually, when a fault induces in rotating machine, at same 

time the degradation condition will be occurred. The degradation condition of 

machine can be indicated by the increasing of vibration level in associated 

machine elements. Vibration-based machine fault prognosis is to use available 

vibration symptom to predict upcoming states of the fault propagation and 

degradation condition trend by monitoring one or more parameters. In this section, 

the methodology of machine fault prognosis is described in Fig. 5.2 as follow 

 
Data trending of

machines

Training dataTesting data Validation data

Model

Validated model

Testing model

Prediction

Goodness ?

Prognosis

No

Yes

 
 

Fig. 5.2 Flowchart of prognosis system using SVR. 
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1. Data acquisition: the data to be used is data trending of machine based 

on vibration signal which contains data histories of machine until faults 

occurred. 

2. Data sectioning: the trending data is divided into three parts: training 

data, validation data and testing data. The training and validation data 

are used to build the model for machine fault prognosis system, while 

the testing data is used to test the validated model. After model 

validation, the tested model will be obtained. 

3. Prediction: the tested model is used to predict the future data that is 

never used for training and validation. The goodness of prediction result 

is measured by performance measures e.g., root-means square error 

(RMSE) and correlation coefficient R. 

4. Prognosis system: it is obtained if the prediction is successful and passed 

the user defined criterion of performance measures. 

 

4. Data Benchmarking 

 

In this section, the prediction performance of SVM predictors is evaluated 

using two typical data sets: a sunspot activity record and a Mackey-Glass equation 

data series. These are benchmark data set in time-series prediction research due to 

their specific natures such as nonlinear, non-Gaussian, and non-stationary for the 

former, and chaotic, non-periodic, and non-convergence for the latter. 

The verification performance statistic, such as the root-mean square error 

(RMSE) and correlation coefficient (R) are used to examine the system. RMSE 

provides a general illustration of the overall accuracy of the prediction s they 

show the global goodness of fit, given as 
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where N represents the total number of data points in the test set; y represents the 

observed value and ŷ represents the predicted value. The correlation statistic 

coefficient (R) measure the linear correlation between the actual and predicted 

value, it can be calculated as 
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where R is correlation coefficient and Cov (y, ŷ) is covariance between observed 

and predicted values, which can be calculated as follows 

 ∑
=

−−=
N

i
ii yyyy

N
yyCov

1

)ˆˆ)((
1

)ˆ,(                (5.24) 

wherey is the mean of the observed value andŷ is the mean of predicted value. 

The standard deviation of the observed and predicted values, yσ and ŷσ , 

respectively, can be calculated as 
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4.1. Sunspot Data 

The sunspot data set can be considered as a nonlinear and non-stationary data. 

It has served as a benchmark and been well studied in previous literature [14,15]. 

The available data set used here contains the sunspot activity record for the period 

from years 1700 to 2005. This data, displayed in Fig.5.3, can be downloaded from 

Online Sunspot Data Archive, SIDC, RWC Belgium World Data Center 

(3Hhttp://sidc.oma.be/index.php3). 
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Fig. 5.3 Sunspot activity record from years of 1700 to 2005. 

 

The first 249 sample (year 1700-1948) are used to train and to validate the 

system, while the remaining data pairs are used to test the identified models. For 

this training and validation, 5-fold cross-validation is performed to select the 

proper parameters of RBF kernel function in SVM, those are kernel width (γ) and 

regularization parameter (C). In the selection process, the parameters which give 

minimum cross-validation error are selected and used for time series prediction 

using SVM. Cross-validation process gives proper kernel parameters γ = 2 and C 

= 1, and ε-insensitive loss function is user defined equal to 0.001. The 

performance of validation process is presented in Fig. 5.4. Cross-validation selects 

randomly the points from data set for training and validating the system. After 

training completed, the support vectors, weights and bias are resulted and used to 

validate the system. Validation process can indicate the quality and performance 

of the system being established. Fig. 5.4 shows that the system has good 
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performance according to the performance measure using RMSE and correlation 

coefficient (R). RMSE and R reached 0.0188 and 0.98, respectively, are satisfied. 

It means the process of learning and validating of SVM to establish the prediction 

system is successful and the model is generated. 

Then, the testing process should be performed to test the model using 

independent data set that is never used in training and validating process. The 

support vectors, weights and bias which already saved are employed to test the 

performance the model. 

Fig. 5.5 demonstrate the prediction result of testing data using support vector 

regression (SVR), examining this graph using RMSE and correlation coefficient R, 

the SVR provides a reasonably well prediction performance. 
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Fig. 5.4 Model validation. 
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Fig. 5.5 Prediction of sunspot data using SVR. 

 

4.2. Mackey Glass Data 

Mackey-Glass (MG) differential delay equation [16] was first proposed for 

modeling white blood cell production in human bodies, which defined as 
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               (5.27) 

This time series is chaotic and so there is no clearly defined period. The series 

will not converge and diverge and the trajectory is highly sensitive to initial 

conditions. This is a frequently used of benchmark problem in the neural network 

and fuzzy modeling research communities. The initial condition used is x(0) = 1.2, 

τ = 17, and x(t) = 0 for t < 0, 1,201 data are selected then normalized and plotted 

in Fig. 5.6. 
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Fig. 5.6 Mackey-Glass differential equation. 

 

The first 800 samples are used for training and validation the system, whereas 

the remaining samples for testing the model. RBF kernel function is selected 

when SVM is performed in the training and validation process. 5-fold cross-

validation is also employed to select optimal kernel parameters for RBF kernel 

function and resulted γ = 2 and C = 1. Using ε-insensitive loss function in SVR ε 

= 0.001, and employing the same way and method such as previous benchmarking, 

the validating and prediction of Mackey-Glass data is presented in Figs. 5.7 and 

5.8. From the comparison between the actual and predicted one, it can be seen that 

a properly trained SVR can capture the system dynamic behavior accurately and 

quickly. The performance of system is shown in testing process based on the 

untrained data (401 samples) of future time values. The training data used is about 

66% of total data sets and they can train the system well. 
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Fig. 5.7 Validation model of system using Mackey-Glass data. 
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Fig. 5.8 Prediction of Mackey-Glass data using SVM. 
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 According to the results of benchmarking data, SVM based on regression has 

potential to perform time-series prediction. Even though SVR system has shown 

great potential in nonlinear and stochastic time-series predictions, there is no 

known application in real-time machine health condition prognosis. From this 

reason, machine fault prognosis system can be established based on the excellence 

performance of regression using SVR.  

 

5. Experiment 

 

The proposed method is validated by applying in real system to predict the 

trending data of a low methane compressor (Fig. 5.9). This compressor is driven 

by a motor 440 kW, 6600 volt, 2 poles with operating speed 3565 rpm. The 

related information of system is summarized in Table 5.1. 
 

Male rotor axial

Male rotor horizontal
Motor DE/NDE horizontal

Motor DE/NDE vertical
Motor DE/NDE axial

Male rotor vertical
Suction vertical,
horizontal, axial

Symptom sensing

CMS Off-line monitoring (100mV/g acceleration)

CMS Off-line monitoring (100mV/g acceleration)
(Only horizontal)

 
Fig. 5.9 Low methane compressor: wet screw type. 

 

The system consists of two types of condition monitoring those are off-line and 

on-line system. In off-line system, several vibration sensors are installed in some 
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locations of motor and compressor such as drive-end motor, non drive-end motor, 

male rotor compressor and suction part of compressor. Each location consists of 

three directions of measurement: axial, vertical and horizontal. The circle in Fig. 

5.9 shows the male of rotor compressor that are symptoms sensing location in this 

system. 

 On-line monitoring system consists of acceleration sensor in only horizontal 

direction of four locations: drive-end motor, non drive-end motor, male rotor 

compressor and suction part of compressor. 

 

Table 5.1 Description of system 

Motor Compressor 

320 LUD-MB, Wet Screw  
Voltage 6600 V Type 

(Unload System) 

Power 440 kW Male Rotor (4) 

Pole 2 Pole 
Lobe 

Female Rotor (6) 

Bearing NDE/#6216, DE/#6216 Thrust Brg : 7321 BDB 

Rpm 3565 rpm 
Bearing 

Radial Brg : Sleeve 

  

The data used in this experiment are trending data of peak acceleration, 

envelope acceleration. Trending data were recorded from August 2005 to 

November 2005 which consists of 400 points. This data contains information of 

machine history (vibration amplitude) with respect to time sequence which can be 

regarded as time-series. The proposed method is addressed to predict future 

condition of vibration amplitude based on the previous state. SVM predictor will 

learn the characteristic of previous state and save it as weights, bias and support 

vectors to perform prediction. 
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6. Result and Discussion 

 

Fig. 5.10 shows the trending data of peak acceleration of low methane 

compressor. This data consists of 400 points measurement that represents the 

machine conditions. At the beginning, condition of machine is normal as shown in 

the figure that the peak acceleration is almost constant until point 300. Over point 

300, amplitude of machine drastically increased that means the condition of 

machine is changed and degradation condition is occurred. Moreover, it indicates 

that some faults are occurred in the machine that changes the amplitude 

significantly. 
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Fig. 5.10 Peak acceleration of low methane compressor. 

 

The proposed method is aimed to predict the future state of machine based on 

previous conditions. Data from normal state are used to train the proposed system 

for building the model, and then model will be employed to forecast the future 
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condition of machine. The first 300 data are used for training the system and 

validating the model, while the remains are used for testing the performance of 

system. 

Training process is performed using 5-fold cross-validation to select the kernel 

parameters of RBF kernel function. Cross-validation process gives proper kernel 

parameters γ = 0.25 and C = 1, and ε-insensitive loss function is defined equal to 

0.001. The result of model validation is presented in Fig. 5.11 that gives RMSE 

and R are 0.035 and 0.70, respectively. The validated model cannot catch the 

minimum amplitude due to poor of training. However, the error presented by 

RMSE reaches 0.035 is acceptable to be a model although the correlation is small 

(0.7) because the minimum of amplitude cannot be caught by the model. 
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Fig. 5.11 Model validation using peak acceleration data. 

 

 Fig. 5.12 depicts the performance of testing using future independent data (100 

data points) that is never used in training process. The result seems over 
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prediction that cannot approach actual trending data of peak acceleration. RMSE 

reaches 4.67 is relatively big enough so it may not be a good prediction model. 

Even though the correlation presented by R is 0.7 shows the poor correlation 

between the predicted value and the actual one, however, the trending of predicted 

value is relatively similar to the actual data.  

The reason why this model has poor performance is the training data do not 

contain extreme (or relatively close to extreme) value of amplitude. As intelligent 

system, if the system is experienced or ever taught by relatively close to the 

extreme value so it might be able to catch the actual values. The other reason is 

the trending data of peak acceleration is drastically changed when it represents the 

degradation condition of machine. So the model suffers difficulty to catch the 

actual values.  
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Fig. 5.12 Prediction of peak acceleration data. 
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Fig. 5.13 demonstrates the trending data of envelope acceleration of low 

methane compressor. The proposed method is addressed to predict the future state 

condition of machine based on learning from previous condition. First 300 data 

are used to train the system for building and validating the model. The remains of 

100 data are targeted as actual value that will be predicted by model. The model 

should predict the maximum value of amplitude that represents the machine 

degradation or fault occurrence. 
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Fig. 5.13 Data trending of envelope acceleration. 

 

 SVM is trained by training data using 5-fold cross validation for RBF 

kernel parameters selection. Cross-validation process gives proper kernel 

parameters γ = 4.5 and C = 1, and ε-insensitive loss function is defined equal to 

0.001. The result of model validation is presented in Fig. 5.14 that gives RMSE 

and R are 0.075 and 0.98, respectively. The validated model can catch very well 

the dynamic system represented by training data. Therefore, the model is 
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acceptable and can be considered to be a model as a predictor for system 

forecasting. 
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Fig. 5.14 Model validation using envelope acceleration data. 
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Fig. 5.15 Prediction of envelope acceleration data. 
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 The performance of prediction is depicted in Fig. 5.15 that shows the 

acceptability of the model. RMSE reaches 0.085 is relatively small that means the 

values of predicted data and actual data are very close. Also, the correlation 

measure R is high, 0.99 which represents the predicted values and the actual one 

are high-correlated. 

 In this case, the training process is well performed due to good quality of 

training data that are close-related among others. It means there are no extreme 

differences (drastically change) between amplitudes of envelope acceleration. So 

the prediction using SVM model can perform well. 

 As general, for SVM regression, there are similar advantages and 

disadvantages as mentioned in classification task. Moreover, it can be added as 

follows [11]: 

§ Advantages 

1. In regression training of SVM, it consists of solving a uniquely solvable 

quadratic optimization problem, which is much more attractive because it 

is guaranteed to find a global minimum of the error surface. 

2. The use of dual setting in the constrained optimization avoids having to 

define and compute the parameters of the optimal hyperplane in a data 

space of possibly high dimensionality. 

3. In SVM, the complexity of the machine learning is handled by the 

support algorithm itself. 

4. The computation can be performed efficiently without a large CPU time 

requirement. 

 

§ Disadvantages 

1. Problem of kernel function selection. 

2. Problem of proper kernel parameters. 
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7. Conclusion 

 

Prognosis of machine condition is very important to provide an accurate alarm 

before fault reaches critical levels so as to prevent machinery performance 

degradation, malfunction or catastrophic failure. In this chapter, the feasibility of 

support vector machine (SVM) for prognosis system has been studied. The model 

predictor is built based on the ability of SVM for regression technique. 

Problem benchmarking has been performed using Sunspot data and Mackey-

Glass data that are frequently used for benchmarking in machine learning area. 

These data contains chaotic and complex dynamic behavior, so it is very 

interesting to apply these data for performance evaluation of the proposed system. 

The proposed method is validated by applying it to predict the future state 

condition of a low methane compressor based on given previous state data. Two 

cases have been studied using peak acceleration and envelope acceleration. The 

results show that the proposed method has potential to be a prediction tool for 

prognosis system based on time-series prediction. 
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VI. Conclusions and Future Work 

 

 

1. Conclusions 

 

In this dissertation, a complete study of fault diagnosis and prognosis by means 

of support vector machine (SVM) has been deeply studied. Some basic theories 

including signal analysis in time and frequency domains, which are used for 

feature representation are reviewed to give preliminary understanding in fault 

diagnosis procedure. In other word, we used a technique so-called feature-based 

technique to represent machine conditions. The advantage of this technique is to 

solve data transfer and data storage problem. Data represented as feature provide 

better solutions that greatly reduce the requirements of transfer number and 

storage space, while the information is kept as high as possible.  

Feature-based technique involves relative techniques such as feature 

representation, feature extraction and feature selection. In feature representation, 

features are calculated from time domain, frequency domain and auto-regression 

estimation to keep the information at highest level. Large scale features are 

usually obtained due to multi-sensors used and multi-position of measurement on 

critical elements that requires much calculation time and degrades accuracy of 

system. Therefore, feature extractions using linear and nonlinear technique via 

component analysis are proposed to obtain optimal feature for good fault 

classification. The linear techniques are principal component analysis (PCA) and 

independent component analysis (ICA), while nonlinear techniques are employed 

by introducing kernel function into linear technique. 

Support vector machine which is known as new technique in machine learning 

is highlighted to understand the classification procedure for fault diagnosis system. 
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In this study, SVM is adopted, redeveloped and combined with feature-based 

technique to obtain a novel fault diagnosis tool. Moreover, wavelet support vector 

machine (W-SVM) is introduced to contribute a relatively new technique in 

classification method used to fault diagnosis routine. Finally, the proposed method 

is validated using induction motor data to perform fault diagnosis by means of 

classification strategy in SVM. Several case studies have been done to diagnose 

fault occurrence in induction motor such as bent rotor, broken rotor bars, bearing 

fault, mass unbalance, phase unbalance and eccentricity fault. The data used in the 

experiments are vibration and current data. The results show that the proposed 

method can perform fault diagnosis well and it can be concluded that the proposed 

method may serve the fault diagnosis technique in the future. 

Prognosis can be defined as the ability to predict accurately and precisely the 

remaining useful lifetime of a failing machine component or subsystem. In this 

dissertation, the feasibility of support vector machine (SVM) for prognosis system 

has been studied. The model predictor is built based on the ability of SVM for 

regression technique. Problem benchmarking has been performed using Sunspot 

data and Mackey-Glass data that are frequently used of benchmarking in machine 

learning area. These data contains chaotic and complex dynamic behavior, so it is 

very interesting to apply these data for performance evaluation of the proposed 

system. 

The proposed method is validated by applying it to predict the future state 

condition of a low methane compressor based on given previous state data. Two 

cases have been studied using peak acceleration and envelope acceleration. The 

results show that the proposed method has potential to be a prediction tool for 

prognosis system based on time-series prediction. 
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2. Future Work 

 

It has been stated in this dissertation that the demand of a reliable prognosis 

system is very important due to the potential advantages to be gained from 

reduced maintenance costs, improved productivity and increased machine 

availability. Even though the support vector predictor have demonstrated their 

ability in time-series forecasting schemes, advanced research needs to be done in 

several aspects before they can be applied to general real-time industrial 

application. These aspects are improving their application robustness (i.e., apply 

SMO solver instead of QP) to accommodate different system condition, 

mitigating the requirements for the representative data sets, improving the 

convergence properties, especially for complex operation applications. 

Schematically, the architecture of the forecasting tool is shown in Fig. 6.1. 

 

 

Fig. 6.1 The architecture of the prognosis based forecasting tool. 

Signals are acquired from corresponding sensors, then after being properly 

filtered and sampled; the signals are transferred into computer. Signal processing 

is employed to generate the representative features from the acquired signals by 

applying different signal processing techniques. Then, post-processing is 

addressed to enhance the feature characteristic and derive the monitoring indices 

for forecasting operations. 

 



 175 

 
기계 결함진단 및 예지를 위한 SVM 

 

Achmad Widodo  

 

부경대학교  대학원  기계공학부  

 

국문국문국문국문  요약요약요약요약 

 

설비  정비  관리  시스템 (maintenance management system)의  한  핵

심  분야인  기계  결함  진단 (fault diagnosis) 및  예지 (prognosis) 기

술에  관한  연구는  관리  비용  저감 , 생산성  및  기계  가용도  향상  

등으로부터  얻어질  수  있는  무궁한  경제적  및  기술적인  잠재력

으로  인하여  최근  전세계적으로  중요한  연구  과제가  되고  있다 . 

이와  관련된  연구들로  인공  신경망 , 퍼지  전문가  시스템 , 상태  

기반  추론 , random forest 등과  같은  지능  시스템에  기반을  둔  다

양한  방법들이  개발되고  있다 .  

Support Vector Machine(SVM)은  종래  널리  사용되고  있는  인공  

신경망  기법에  비해  탁월한  일반화 (generalization) 능력을  가지고  

있으므로 , 높은  정확도를  가지고  기계  설비의  결함  진단을  위한  

분류나  잔여  유용  수명의  예측을  할  수  있는  잠재  능력을  가지

고  있다 . 그러나  결함  진단  및  예지를  위한  SVM의  적용에  대한  

연구는  세계적으로  아직  매우  드물다 .  

이  논문에서는  SVM 알고리듬을  기계의  결함  진단  및  예지를  

수행하기  위한  지능  시스템으로서  확장하였다 . SVM은  기계  학습

의  프레임  워크에서  두  가지의  탁월한  능력인  분류와  회귀를  가

진다 . 결함  진단은  SVM의  분류  능력을  사용하여  수행되고 , 기계  

상태의  예지는  SVM을  이용한  회귀에  근거하여  수행된다 . SVM은  
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주어진  데이터를  훈련할  수  있고  결과를  가중치로  저장하며 , 분

류  및  회귀를  수행하기  위하여  가중치를  사용한다 . 원래 , SVM은  

선형  데이터의  두  클래스  분류  문제를  위하여  사용되었지만 , 

kernel 사상 (mapping)의  SVM에의  적용을  통하여  훈련  절차를  비

선형  데이터를  이용한  훈련  절차  및  분류를  수행할  수  있다 . 초  

평면 (hyperplane)을  최적화함으로써 , SVM은  분류  및  회귀  문제의  

해결을  시도한다 . 

이  연구에서  제안된  방법은  결함  진단  목적의  분류를  위해  소

위  특징  기반  기술에  기초하여  특징  추출  방법과  SVM을  조합한

다 . 특징  기반  기술은  센서로부터  취득된  진동 , 전류  등의  다양

한  신호의  원  데이터 (raw data)를  통계치 , 색깔 , 모양  등과  같은  

데이터가  가지는  다양한  특징으로  표현된다 . 기계  결함  진단에

서  특징은  기계  상태를  나타내는  값으로  방대한  종류의  특징들

이  계산되므로  높은  차원의  데이터로  표현될  수  있다 . 이러한  

다량의  데이터는  전송  및  저장의  문제뿐만  아니라  분류  효율을  

떨어트리는  문제가  발생할  수  있고  데이터의  차원을  저감할  필

요가  있고 , 이는  특징  추출  기법을  사용하여  해결할  수  있다 . 특

징  기반  분류  기술은  데이터  취득 , 전처리 (preprocessing), 특징  

표현 , 특징  계산 , 특징  추출  및  선택  그리고  분류기 (classifiers)로  

구성된다 . 

제안된  방법은  SVM에서  분류  전략에  의하여  결함  진단을  수

행하기  위하여  설계 ⋅제작된  유도  전동기  결함  실험  장치로부터  

취득된  데이터를  사용하여  검증하였다 . 결함으로는  굽은  축 (bent 

shaft), 회전자  봉  결함 , 질량  불평형 , 상  불평형 (phase unbalance) 

및  편심  결함이  적용되었다 . 전동기에  부착된  가속도계와  전류  

프로브로부터  취득된  진동  가속도  및  전류  데이터가  사용되었다 . 

얻어진  진단  결과는  이  연구에서  제안된  방법이  결함  진단을  양
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호하게  수행할  수  있고 , 또한  향후  결함  진단  기술로  적용될  수  

있음을  확인하였다 .  

예지는  열화  되고  있는  기계  요소  또는  하위  시스템 (subsystem)

의  잔여  유용  수명 (residual useful life)을  정확하게  예측할  수  있

는  능력으로  정의될  수  있다 . 그러므로  신뢰할  수  있는  예측기

(predictor)의  개발이  매우  중요하며 , 그것은  동적  시스템의  임박

한  상태를  예측하거나  회전  기계에서  손상  전파  경향을  예측하

기  위하여  광범위한  산업에서  유용하게  적용될  수  있다 . 예를  

들어  기계  시스템에서  기계  성능  열화 , 오작동  또는  파멸적인  

고장을  예방하기  위하여  결함이  임계  값에  도달하기  전에  정확

한  경보를  제공하기  위하여  예측된  정보는  상태  감시용으로  사

용될  수  있다 . 더구나  이는  제조  설비에서  수리  계획 , 예지  정비  

및  예방  정비의  계획  수립  그리고  예측  및  고장  허용  제어 (fault-

tolerant control)에  적용될  수  있다 .  

이  연구에서 , SVM 기반  회귀  방법 (SVM-based regression method)

이  시계열  데이터의  예측기로서  사용될  수  있도록  확장되었다 . 

기계에서  취득된  경향  데이터 (trend data)는  시계열로서  간주될  수  

있고 , 또한  운전  동안의  기계  정보를  포함한다 . 제안된  방법은  

이전  상태의  데이터에  기초하여  임박한  기계  상태를  예측하는데  

사용된다 . 제안된  방법을  검증하기  위해 , 국내  석유  화학  플랜트

에서  사용  중인  메탄  압축기에서  취득된  경향  데이터를  이용하

였다 . 예측기의  성능은  RMS 오차  및  상관  계수를  사용하여  평

가되었고 , 그  결과는  제안된  SVM 기반  회귀  방법이  신뢰할  수  

있는  예지  도구로서  이용될  수  있는  잠재력을  가지고  있음을  확

인하였다 . 
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