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1. Introduction

Let Ap,m denote the class of functions f defined by

f(z) = zp +

∞∑
k=m

ak+pz
k+p (p,m ∈ N = {1, 2, · · · }) (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and Ap,1 ≡ Ap. If

f and g are analytic in U , we say that f is subordinate to g , written f ≺ g or

f(z) ≺ g(z), if there exists a Schwarz function w in U such that f(z) = g(w(z)) (see

[19] and [23]). We denote by S∗p,m(η) and Cp,m(η) the subclasses of Ap,m consisting of

all analytic functions which are, respectively, p -valent starlike of order η(0 ≤ η < p)

in U and p -valent convex of order η(0 ≤ η < p) in U (see, e.g., Miller and Mocanu

[9]).

Let M be the class of analytic functions h with h(0) = 1, and let N be the

subclass of M which is convex and univalent in U and Re{h(z)} > 0 (z ∈ U).

By using the subordination principle between analytic functions, we define each

of the following subclasses of Ap,m :

S∗p,m(η; h) :=

{
f ∈ Ap,m :

1

p− η

(
zf ′(z)

f(z)
− η
)
≺ h(z) (0 ≤ η < p; z ∈ U)

}
and

Cp,m(η; h) :=

{
f ∈ Ap,m :

1

p− η

(
1 +

zf ′′(z)

f ′(z)
− η
)
≺ h(z) (0 ≤ η < p; z ∈ U)

}
.

In particular, we set

S∗p,m
(
η;

(
1 + z

1− z

)α)
=: S∗p,m(η; hα) (0 ≤ η < p; 0 < α ≤ 1; z ∈ U)

and

Cp,m
(
η;

(
1 + z

1− z

)α)
=: Cp,m(η; hα) (0 ≤ η < p; 0 < α ≤ 1; z ∈ U)

It is noted that f ∈ Cp,m(η; h) if and only if zf ′/p ∈ S∗p,m(η; h). We also see

that S∗p,m(η; h1) = S∗p,m(η) and Cp,m(η; h1) = Cp,m(η). The classes S∗1,1(η; h)

and C1,1(η; h) were studied by Ma and Minda [8]. Furthermore, S∗1,1(0; hα) and
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C1,1(0; hα), which are the classes of strongly starlike and strongly convex functions

of order α in U , respectively, have been extensively investigated by Mocanu [10] and

Nunokawa [13].

With a view to introducing an extended fractional differintegral operator, we begin

by recalling the following definitions of fractional calculus (that is, fractional intgral

and fractional derivative of an arbitrary order) considered by Owa [14] (see also [15]

and [23]).

Definition 1.1 The fractional integral of order λ(λ > 0) is defined, for a function

f , analytic in a simply-connected region of the complex plane containing the origin

by

D−λz f(z) =
1

Γ(λ)

∫ z

0

f(ζ)

(z − ζ)1−λ dζ,

where the multiplicity of (z − ζ)λ−1 is removed by requiring log(z − ζ) to be real

when z − ζ > 0.

Definition 1.2. Under the Definition 1.1, the fractional derivative of f of order

λ(λ ≥ 0) is defined by

Dλ
z f(z) =

{
1

Γ(1−λ)
d
dz

∫ z
0

f(ζ)
(z−ζ)λ dζ (0 ≤ λ < 1)

dn

dznD
λ−n
z f(z) (n ≤ λ < n+ 1;n ∈ N0 = N ∪ {0}),

where the multiplicity of (z − ζ)−λ is removed as in Definition 1.1.

We observe that, for a function f , given by (1.1), we have

Dλ
z f(z) =

Γ(p+ 1)

Γ(p+ 1− λ)
zp−λ +

∞∑
k=1

Γ(k + p+ 1)

Γ(k + p+ 1− λ)
ak+pz

k+p−λ, (1.2)

provided that z ∈ Ũ , where Ũ = U if −∞ < λ ≤ p and Ũ = U\{0} if

p < λ < p+ 1, and Dλ
z f(z) is, respectively, the fractional integral of f of order −λ

when −∞ < λ < 0 and the fractional derivative of f of order λ when 0 ≤ λ < p+ 1.

In view of (1.2), Patel and Mishra [17] introduce the extended fractional differin-

tegral operator Ωλ,pz : Ap −→ Ap for a function f of the form (1.1) and for a real

number λ(−∞ < λ < p+ 1) by
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Ωλ,pz f(z) =
Γ(p+ 1− λ)

Γ(p+ 1)
zλDλ

z f(z)

= zp +

∞∑
k=1

Γ(k + p+ 1)Γ(p+ 1− λ)

Γ(p+ 1)Γ(k + p+ 1− λ)
ak+pz

k+p. (1.3)

It is easily seen from (1.3) that

z(Ωλ,pz f(z))′ = (p− λ)Ωλ+1,p
z f(z) + λΩλ,pz f(z) (−∞ < λ < p; z ∈ U). (1.4)

We also note that

Ω0,p
z f(z) = f(z), Ω1,p

z f(z) =
zf ′(z)

p
,

and, in general

Ωn,pz f(z) =
(p− n)znf (n)(z)

p!
(n ∈ N; n < p+ 1).

The fractional differential operator Ωλ,pz with 0 ≤ λ < 1 was investigated by

Srivastava and Aouf [21]. More recently, Srivastava and Mishra [22] obtained several

interesting properties and characteristics for certain subclasses of p -valent analytic

functions involving the differintegral operator Ωλ,pz when −∞ < λ < 1. We further

observe that Ωλ,1z is the operator introduced by Owa and Srivastava [15].

Now, by using the fractional differintegral operator Ωλ,pz , we define the following

subclasses of functions in Ap,m .

Definition 1.3. We note that for suitably chosen parameters λ and h , the

class Sλp,m(η; h) reduces some favorured subclasses of multivalent functions men-

tioned above. For examples, we see easily that S0
p,m(η; h) = S∗p,m(η; h) and

S1
p,m(η; h) = Cp,m(η; h).

Definition 1.4. We say that a function f ∈ Ap,m is in the class Kλp,m(η, γ; δ; h)

if it is satisfies the following argument condition∣∣∣∣∣arg

(
z(Ωλ,pz f(z))′

Ωλ,pz g(z)
− γ

)∣∣∣∣∣ < π

2
δ.

(0 ≤ η, γ < p; 0 < δ ≤ 1; g ∈ Sλp,m(η; h); z ∈ U).
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We also denote by Kλp,m(η, γ; δ; A,B) the subclass Kλp,m(η, γ; δ; h) by taking

h(z) =
1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U).

We note that K0
1,1(η, γ; 1; 1,−1) and K1

1,1(η, γ; 1; 1,−1) are the classes of close-

to-convex functions of order γ and type η and quasi convex functions of order γ

and type η , respectively, studied by Silverman [19] and Noor and Alkhorasani [12].

Furthermore, K0
1,1(0, 0; 1; 1,−1) is the class of strongly close-to-convex functions of

order δ (see [16]).

The purpose of the present paper is to investigate some arguments properties

of multivalent functions belonging to Ap,m which contain the basic inclusion rela-

tionships related to the classes Sλp,m(η; h) and Kλp,m(η, γ; δ; A,B). The integral

preserving properties in connection with the operator Ωλ,pz defined by (1.3) are also

considered. In particular, we obtain the previous results by Bernardi [1], Libera [7],

Noor [11], Noor and Alkhorasani [12] and Sakaguchi [18] as special cases of the results

presented in this paper. Furthermore, we remark in passing that the readers may refer

the literature [2-4] of Cho et al . and the references cited therein for more detailed

information in connection with the results of the thesis.

2. A set of lemmas

Lemma 2.1 [5]. Let h be convex univalent in U with h(0) = 1 and Re

{κh(z) + ν} > 0(κ, ν ∈ C) . If q is analytic in U with q(0) = 1 , then

q(z) +
zq′(z)

κq(z) + ν
≺ h(z) (z ∈ U)

implies

q(z) ≺ h(z) (z ∈ U).

Lemma 2.2 [9]. Let h be convex univalent in U and ω be analytic in U with

Re{ω(z)} ≥ 0. If q is analytic in U and q(0) = h(0) , then

q(z) + ω(z)zq′(z) ≺ h(z) (z ∈ U)

implies
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q(z) ≺ h(z) (z ∈ U).

Lemma 2.3 [13]. Let p(z) be analytic in U with p(0) = 1 , p(s)(0) = 0

(0 ≤ s ≤ n− 1; n ∈ N) and let p(z) 6= 0 (z ∈ U). If there exists a point z0 ∈ U such

that

∣∣∣ arg p(z)
∣∣∣ <

π

2
α (|z| < |z0|) (2.1)

and ∣∣∣ arg p(z0)
∣∣∣ =

π

2
α (2.2)

for some α > 0 , then we have

z0p
′(z0)

p(z0)
= isα, (2.3)

where

s ≥ n

2

(
a+

1

a

)
≥ n when arg p(z0) =

π

2
α (2.4)

s ≤ −n
2

(
a+

1

a

)
≤ −n when arg p(z0) = −π

2
α (2.5)

where

p(z0)
1
α = ±ia and a > 0. (2.6)

Proof. We use the same manner which was used by Nunokawa [13] for the proof

of the lemma. Let us put

q(z) = p1/α. (2.7)

Then we see that

Re{q(z)} > 0 (|z| < |z0|),

Re{q(z0)} = 0, q(0) = 1 and q(s)(0) = 0 (0 ≤ s ≤ n− 1, n ∈ N).

Defining the function φ(z) by

φ(z) =
1− q(z)
1 + q(z)

, (2.8)

we have that φ(0) = 0, φ(s)(0) = 0 (0 ≤ s ≤ n− 1, n ∈ N),

|φ(z)| < 1 (|z| < |z0|) and |φ(z0)| = 1.
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In view of Fukui and Sakaguchi [6], we know that

z0φ
′(z0)

φ(z0)
=
−2z0q

′(z0)

1− {q(z0)}2

=
−2z0q

′(z0)

1 + |q(z0)|2
≥ n. (2.9)

It follows from (2.9) that

−z0q
′(z0) ≥ n

2

(
1 + |q(z0)|2

)
(2.10)

and z0q
′(z0) is a negative real number. Since q(z0) is a non-vanishing pure imaginary

number, we can put q(z0) = ia , where a is a non-vanishing real number. We have,

for a > 0,

Im

(
z0q
′(z0)

q(z0)

)
= Im

(
− iz0q

′(z0)

|q(z0)|

)
≥ n

2

(
1 + a2

a

)
≥ n. (2.11)

and, for a < 0,

Im

(
z0q
′(z0)

q(z0)

)
= Im

(
iz0q

′(z0)

|q(z0)|

)
≤ −n

2

(
1 + a2

a

)
≤ −n. (2.12)

On the other hand, it follows that

z0q
′(z0)

q(z0)
=

1

α

z0p
′(z0)

p(z0)
. (2.13)

This completes the proof of Lemma 2.3.

3. Main Results

Theorem 3.1. Let h ∈M with

Re{h(z)} > (λ− η)/(p− η) (−∞ < λ < p; 0 ≤ η < p).

Then
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Sλ+1
p,m (η; h) ⊂ Sλp,m(η; h).

Proof. Let f ∈ Sλ+1
p,m (η; h) and set

q(z) =
1

p− η

(
z(Ωλ,pz f(z))′

Ωλ,pz f(z)
− η

)
, (3.1)

where q is analytic in U with q(0) = 1 and q(z) 6= 0 for all z ∈ U . Applying (1.4)

and (3.1), we obtain

(p− λ)
Ωλ+1,p
z f(z)

Ωλ,pz f(z)
= (p− η)q(z)− λ+ η. (3.2)

Taking the logarithmic differentiation on both sides of (3.2) and multiplying by z , we

have

1

p− η

(
z(Ωλ+1,p

z f(z))′

Ωλ,pz f(z)
− η

)
= q(z) +

zq′(z)

(p− η)q(z)− λ+ η
(z ∈ U). (3.3)

Applying Lemma 2.1 to (3.3), it follows that q ≺ h , that is, f ∈ Sλp,m(η; h). The

proof of Theorem 3.1 is thus completed.

Taking

h(z) =
1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U)

in Theorem 3.1, we have the following corollary.

Corollary 3.1. Let (p−η)(1−A) > (λ−η)(1−B) (−1 ≤ B < A ≤ 1; −∞ < λ < p;

0 ≤ η < p) . Then

Sλ+1
p,m (η; A,B) ⊂ Sλp,m(η; A,B).

Theorem 3.2. If f ∈ Sλp,m(η; h) with

Re{h(z)} > −(µ+ η)/(p− η) (h ∈M; µ > −p; 0 ≤ η < p),

then Fµ(f) ∈ Sλp,m(η; h) , where Fµ is the integral operator defined by

Fµ(f) := Fµ(f)(z) =
µ+ p

zµ

∫ z

0

tµ−1f(t)dt (µ > −p). (3.4)
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Proof. Let f ∈ Sλp,m(η; h) and set

q(z) =
1

p− η

(
z(Ωλ,pz Fµ(f)(z))′

Ωλ,pz Fµ(f)(z)
− η

)
, (3.5)

where q is analytic in U with p(0) = 1 and q(z) 6= 0 for all z ∈ U . From (2.17), we

have

z(Ωλ,pz Fµ(f)(z))′ = (µ+ p)Ωλ,pz f(z)− µΩλ,pz Fµ(f)(z). (3.6)

Then, by applying (3.6) to (3.5), we get

(µ+ p)
Ωλ,pz f(z)

Ωλ,pz Fµ(f)(z)
= (p− η)q(z) + µ+ η. (3.7)

Making use of the logarithmic differentiation on both sides of (3.7) and multiplying

by z , we have

1

p− η

(
z(Ωλ,pz f(z))′

Ωλ,pz f(z)
− η

)
= q(z) +

zq′(z)

(p− η)q(z) + µ+ η
(z ∈ U).

Hence, by virtue of Lemma 2.1, we conclude that q ≺ h in U , which implies that

Fµ(f) ∈ Sλp,m(η; h).

Letting

h(z) =
1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U)

in Theorem 3.2, we immediately get the following result.

Corollary 3.2. If f ∈ Sλp,m(η; A,B) with (p − η)(1 − A) > −(µ + η)(1 − B)

(−1 ≤ B < A ≤ 1; µ > −p; 0 ≤ η < p) , then Fµ(f) ∈ Sλp,m(η; A,B) , where Fµ is

the integral operator defined by (3.4).

Theorem 3.3. Let f ∈ Ap,m, h ∈ N , −∞ < λ ≤ 0, 0 ≤ γ, η < p and

0 < δ ≤ 1 . If ∣∣∣∣∣arg

(
z(Ωλ+1,p

z )f(z))′

Ωλ+1,p
z g(z)

− γ

)∣∣∣∣∣ < π

2
δ

for some g ∈ Sλ+1
p,m (η; h), then
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∣∣∣∣∣arg

(
z(Ωλ,pz f(z))′

Ωλ,pz g(z)
− γ

)∣∣∣∣∣ < π

2
α,

where α(0 < α ≤ 1) is the solution of the equation :

δ = α+
2

π
tan−1

(
αn cos π2 t1

(p− η) supz∈U |h(z)|+ η − λ+ αn sin π
2 t1

)
(3.8)

when

t1 = sup
z∈U

∣∣ arg{(p− η)h(z) + η − λ}
∣∣. (3.9)

Proof. Let

q(z) =
1

p− γ

(
z(Ωλ,pz f(z))′

Ωλ,pz g(z)
− γ

)
.

Then q is analytic in U with q(0) = 1. By using (1.4), we obtain

((p− γ)q(z) + γ)Ωλ,pz g(z) = (p− λ)Ωλ+1,p
z (a, c)f(z) + λΩλ,pz f(z). (3.10)

Differentiating both sides of (3.10) and multiplying the resulting equation by z , we

find that

(p− γ)zq′(z)Ωλ,pz g(z) + ((p− γ)q(z) + γ)z(Ωλ,pz (a, c)g(z))′

= (p− λ)z(Ωλ+1,p
z f(z))′ + λz(Ωλ,pz f(z))′. (3.11)

Since g ∈ Sλ+1
p,m (η; h), by Theorem 3.1, we know that g ∈ Sλp,m(η; h).

Let

r(z) =
1

p− η

(
z(Ωλ,pz g(z))′

Ωλ,pz g(z)
− η

)
. (3.12)

Then, using (1.4) once again, we have

(p− λ)
Ωλ+1,p
z g(z)

Ωλ,pz g(z)
= (p− η)r(z) + η − λ. (3.13)

From (3.12) and (3.13), we obtain
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1

p− γ

(
z(Ωλ+1,p

z f(z))′

Ωλ+1,p
z g(z)

− γ

)
= q(z) +

zq′(z)

(p− η)r(z) + η − λ
.

Then we obtain

(p− η)r(z) + η − λ = ρei
πφ
2 ,

where

{
(p− η) infz∈U |h(z)|+ η − λ < ρ < (p− η) supz∈U |h(z)|+ η − λ
−t1 < φ < t1,

when

t1 = sup
z∈U
| arg{(p− η)h(z) + η − λ}|.

We also note that q is analytic in U with q(0) = 1, and so Re{q(z)} > 0 in U by

applying the assumption and Lemma 2.2 with ω(z) = 1/((p− η)r(z) + η − λ). Hence

q(z) 6= 0 in U .

If there exists a point z0 ∈ U such that the conditions (2.1) and (2.2) are satisfied,

then(by Lemma 2.3) we obtain (2.3) under the restrictions (2.4), (2.5) and (2.6).

At first, suppose that q(z0)
1
α = ia (a > 0). Then we obtain

arg

(
q(z0) +

z0q
′(z0)

(p− η)r(z0) + η − λ

)
=
π

2
α+ arg

(
1 + iαs(ρei

πφ
2 )−1

)
≥ π

2
α+ tan−1

(
αs sin π

2 (1− φ)

ρ+ αs cos π2 (1− φ)

)
≥ π

2
α+ tan−1

(
αn cos π2 t1

(p− η) supz∈U |h(z)|+ η − λ+ αn sin π
2 t1

)
=
π

2
δ,

where δ and t1 are given by (3.8) and (3.9), respectively. These evidently contradict

the assumption of Theorem 3.3.

Next, suppose that p(z0)
1
α = −ia (a > 0). Applying the same method as the

above, we have
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arg

(
q(z0) +

z0q
′(z0)

(p− η)r(z0) + η − λ

)
≤ −π

2
α− tan−1

(
αn cos π2 t1

(p− η) supz∈U |h(z)|+ η − λ+ αn sin π
2 t1

)
= −π

2
δ,

where δ and t1 are given by (3.8) and (3.9), respectively. These also are contradiction

to the assumption of Theorem 3.1. Therefore we complete the proof of Theorem 3.3.

If we take

h(z) =
1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U)

in Theorem 3.3, then we also note that from the known result given earlier by Silver-

man and Silvia [20], we have∣∣∣∣r(z)− 1−AB
1−B2

∣∣∣∣ < A−B
1−B2

(z ∈ U ; B 6= −1) (3.14)

and

Re {r(z)} > 1−A
2

(z ∈ U ; B = −1), (3.15)

where r(z) is given in (3.12). Therefore we have the following Corollary 3.3.

Corollary 3.3. Let f ∈ Ap,m, h ∈ N , −∞ < λ ≤ 0, 0 ≤ γ, η < p and

0 < δ ≤ 1 . If ∣∣∣∣∣arg

(
z(Ωλ+1,p

z )f(z))′

Ωλ+1,p
z g(z)

− γ

)∣∣∣∣∣ < π

2
δ

for some g ∈ Sλ+1
p,m (η; A,B), then∣∣∣∣∣arg

(
z(Ωλ,pz f(z))′

Ωλ,pz g(z)
− γ

)∣∣∣∣∣ < π

2
α,

where α(0 < α ≤ 1) is the solution of the equation :

δ =

 α+ 2
π tan−1

(
α cos π2 t2

( (p−η)(1+A)
1+B +η−λ)+α sin π

2 t2

)
for B 6= −1,

α for B = −1,

(3.16)

when b is given by (2.3) and

11



t2 =
2

π
sin−1

(
(p− η)(A−B)

(p− η)(1−AB) + (η − λ)(1−B2)

)
. (3.17)

From corollary 3.3, we see easily the following result.

Corollary 3.4. Let f ∈ Ap,m, −∞ < λ ≤ 0, 0 ≤ γ, η < p and 0 < δ ≤ 1 .

Then

Kλ+1
p,m (η, γ; δ; A,B) ⊂ Kλp,m(η, γ; δ; A,B).

Remark 3.1. If we put λ = 0, m = 1, p = 1, A = 1, B = −1 and δ = 1 in

Theorem 3.3, then we see that every quasi-convex function of order γ and type η in

U is close-to-convex function of order γ and type η in U as proven earlier by Noor

[11] and Sakaguchi [18].

Letting γ = 0, B → A(A < 1) and g(z) = zp in Theorem 3.3, we obtain

Corollary 3.5. Let f ∈ Ap,m and −∞ < λ ≤ 0 , 0 < δ ≤ 1 . If∣∣∣∣arg

(
z(Ωλ+1,p

z f(z))′

zp

)∣∣∣∣ < π

2
δ,

then ∣∣∣∣arg

(
z(Ωλ,pz f(z))′

zp

)∣∣∣∣ < π

2
α,

where α (0 < α ≤ 1) is the solution of the equation :

δ = α+
2

π
tan−1 α

p− λ
.

Finally, we prove an argument property asserted by Theorem 3.4 below.

Theorem 3.4. Let f ∈ Ap,m, h ∈ N , µ ≥ 0, 0 ≤ γ, η < p and 0 < δ ≤ 1 . If∣∣∣∣∣arg

(
z(Ωλ,pz f(z))′

Ωλ,pz g(z)
− γ

)∣∣∣∣∣ < π

2
δ

for some g ∈ Sλp,m(η; h) , then

12



∣∣∣∣∣arg

(
z(Ωλ,pz Fµ(f)(z))′

Ωλ,pz Fµ(g)(z)
− γ

)∣∣∣∣∣ < π

2
α,

where Fµ is the integral operator defined by (3.4), and α(0 < α ≤ 1) is the solution

of the equation (3.8) with λ = −µ .

Proof. Let

q(z) =
1

p− γ

(
z(Ωλ,pz Fµ(f)(z))′

Ωλ,pz Fµ(g)(z)
− γ

)
.

Since g ∈ Sλp,m(η; h), we see from Corollary 3.2 that Fµ(g) ∈ Sλp,m(η; h).

Using (3.6), we have

((p− γ)q(z) + γ)Ωλ,pz Fµ(g)(z) = (µ+ p)Ωλ,pz f(z)− µΩλ,pz Fµ(f)(z).

Then, by a simple calculation, we get

(µ+ p)
z(Ωλ,pz f(z))′

Ωλ,pz Fµ(g)(z)
= (p− γ)zq′(z) + ((p− γ)q(z) + γ)((p− η)r(z) + η + µ),

where

r(z) =
1

p− η

(
z(Ωλ,pz Fµ(g)(z))′

Ωλ,pz Fµ(g)(z)
− γ

)
.

Hence we have

1

p− γ

(
z(Ωλ,pz f(z))′

Ωλ,pz g(z)
− γ

)
= q(z) +

zq′(z)

(p− η)r(z) + η + µ
.

The remaining part of the proof in Theorem 3.4 is similar to that of Theorem 3.1 and

so we omit it.

If we take

h(z) =
1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U),

we have the following result.

Corollary 3.6. Let f ∈ Ap,m, h ∈ N , µ ≥ 0, 0 ≤ γ, η < p and 0 < δ ≤ 1 . If

13



∣∣∣∣∣arg

(
z(Ωλ,pz f(z))′

Ωλ,pz g(z)
− γ

)∣∣∣∣∣ < π

2
δ

for some g ∈ Sλp,m(η; A,B) , then∣∣∣∣∣arg

(
z(Ωλ,pz Fµ(f)(z))′

Ωλ,pz Fµ(g)(z)
− γ

)∣∣∣∣∣ < π

2
α,

where Fµ is the integral operator defined by (3.4), and α(0 < α ≤ 1) is the solution

of the equation :

δ =

 α+ 2
π tan−1

(
α cos π2 t2

( (p−η)(1+A)
1+B +η+µ)+α sin π

2 t2

)
for B 6= −1,

α for B = −1,

when t2 is t1 with λ = −µ given by (3.17).

From corollary 3.6, we see easily the following result.

Corollary 3.7. If f ∈ Kλp,m(η, γ; δ; A,B) , then Fµ(f) ∈ Kλp,m(η, γ; δ; A,B) ,

where Fµ is the integral operator defined by (3.4).

Remark 3.2. If we take λ = 0 and λ = 1 with m = 1, p = 1, A = 1, B = −1

and δ = 1 in Corollary 3.7, respectively, then we have the corresponding results

obtained by Noor and Alkhorasani [12]. Furthermore, taking λ = 0, p = 1, γ = 0,

A = 1, B = −1 and δ = 1 in Corollary 3.7, we obtain the classical results given

earlier by Bernardi [1] and Libera [7].
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