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1. Introduction

Let A, ., denote the class of functions f defined by

F2) =22+ arp?? (pomeN={1,2,---}) (1.1)
k=m

which are analytic in the open unit disk U= {z € C: |z|] < 1} and A,; = A4,. If
f and g are analytic in U, we say that f is subordinate to g, written f < g or
f(2) < g(2), if there exists a Schwarz function w in U such that f(z) = g(w(z)) (see
[19] and [23]). We denote by S; ,,(n) and Cp, (1) the subclasses of A, ,, consisting of
all analytic functions which are, respectively, p-valent starlike of order n(0 < n < p)
in U and p-valent convex of order (0 < n < p) in U (see, e.g., Miller and Mocanu
9)).

Let M be the class of analytic-functions-h with h(0) = 1, and let N be the
subclass of M which is convex and univalent in U and Re{h(z)} > 0 (z € U).

By using the subordination principle between analytic functions, we define each

of the following subclasses of A, ,:

Syl = {1 € Ao L (L)) 0 << )

and

Comls 1) {7 € Az~ (14 FE <0) <15 0 < y< s e ).

In particular, we set

. 14 2\° "
Sp,m<n; (1_Z> )=:3p,m(77; ho) (0<n<p; 0<a<l; zel)

and

1 [e3
Co,m (n; (1tz> >=:Cp,m(77; ha) (0<n<p; 0<a<l; zel)

It is noted that f € Cpm(n; h) if and only if 2f'/p € S;,,(n; h). We also see
that S;’m(n; hi) = S;’m(n) and Cpm(n; h1) = Cpm(n). The classes Sil(n; h)
and Cy1(n; h) were studied by Ma and Minda [8]. Furthermore, Sf;(0; ho) and
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C1,1(0; he), which are the classes of strongly starlike and strongly convex functions
of order « in U, respectively, have been extensively investigated by Mocanu [10] and
Nunokawa [13].

With a view to introducing an extended fractional differintegral operator, we begin
by recalling the following definitions of fractional calculus (that is, fractional intgral
and fractional derivative of an arbitrary order) considered by Owa [14] (see also [15]
and [23]).

Definition 1.1 The fractional integral of order A(A > 0) is defined, for a function
f, analytic in a simply-connected region of the complex plane containing the origin
by

ey L[ IQ
DA =155 J, T o

where the multiplicity of (z —¢)*~! is removed by requiring log(z — ¢) to be real
when z — (¢ > 0.

Definition 1.2. Under the Definition 1.1, the fractional derivative of f of order
A(A > 0) is defined by

1 __d i FC)
D2 f(2) = Wﬂfowdé“ O<A<1)
ddani‘_”f(Z) (m<A<n+1;ne Ny =Nu{0}),

A

where the multiplicity of (z =¢)~" is removed as in Definition 1.1.

We observe'that, fora function- f, given by (1.1), we have

D2(:) = ot U 4 3 e e )
provided that z € U, where U = U if —oo < A < p and U = U\{0} if
p<A<p+1,and D)}f(z) is, respectively, the fractional integral of f of order —\
when —oo < A < 0 and the fractional derivative of f of order A when 0 < A <p+1.

In view of (1.2), Patel and Mishra [17] introduce the extended fractional differin-
tegral operator Q3P : A, —s A, for a function f of the form (1.1) and for a real
number A(—oco < A <p+1) by
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I‘(p+ 1-2X)

k+p+1 F'p+1-X) k
— P E P 1
=22+ DTk - )\)ak+pz . (1.3)

It is easily seen from (1.3) that

2QPF(2) = (0= NP f(2) + AP f(2) (—oo <A <p; z€U).  (14)
We also note that

AP f() = f(2), QPf() = 2L ;fz),

and, in general

(p—n)z" ()
p!
The fractional differential operator Q2?7 with 0 < A\ < 1 was investigated by

O Fflic) = (neN;n<p+1).

Srivastava and Aouf [21]. More recently, Srivastava and Mishra [22] obtained several
interesting properties and characteristics for certain subclasses of p-valent analytic
functions involving the differintegral operator 2?7 when —oo < A < 1. We further

observe that Q2! is the operator introduced by Owa and Srivastava [15].

Now, by using the fractional differintegral operator Q27 we define the following

subclasses of functions in Ay, -

Definition 1.3.  We-note that for suitably chosen parameters A\ and h, the
class S;,m(n; h) reduces some favorured subclasses of multivalent functions men-
tioned above. For examples, we see easily that S, (n; h) = S;,.(n; h) and
Sp.m (M5 1) = Cpm (5 h).

Definition 1.4. We say that a function f € A, ,, is in the class ICI);’m(n, v; 0; h)

if it is satisfies the following argument condition

2(QMPF(2))
e (<Q £ 7)

. . A . .
0<ny<p; 0<6<1; 9g€S8,,,(n; h); z€ ).

T
—0.
< 2
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We also denote by K}, (n,v; §; A, B) the subclass IC;"m(n,'y; 0; h) by taking

p,m

1+ Az

h =
(2) 1+ Bz
We note that K9 ;(n,v; 1; 1,-1) and K ;(n,7; 1; 1, —1) are the classes of close-

(-1<B<A<I1; zel).

to-convex functions of order « and type n and quasi convex functions of order -y
and type 7, respectively, studied by Silverman [19] and Noor and Alkhorasani [12].
Furthermore, IC?,l(O, 0; 1; 1,—1) is the class of strongly close-to-convex functions of
order ¢ (see [16]).

The purpose of the present paper is to investigate some arguments properties
of multivalent functions belonging to A, ., which contain the basic inclusion rela-
tionships related to the classes S;)m(n; h) and ’C,’>7m(7777§ d; A,B). The integral
preserving properties in connection with the operator Q27 defined by (1.3) are also
considered. In particular, we obtain the previous results by Bernardi [1], Libera [7],
Noor [11], Noor and Alkhorasani [12] and Sakaguchi [18] as.special cases of the results
presented in this paper. Furthermore, we remark in passing that the readers may refer
the literature [2-4] of Cho et al. and the references cited therein for more detailed

information in 'connection with the results of the thesis.

2. A set of lemmas

Lemma 2.1 [5]. Let h be convexr unwalent in U with h(0) = 1 and Re
{kh(z) + v} > 0(k,v € C). If q is analytic in U with q(0) = 1, then

q(z) + /;(qz/)(i)u <h(z) (z€0)

implies

q(z) < h(z) (z€l).

Lemma 2.2 [9]. Let h be conver univalent in U and w be analytic in U with
Re{w(z)} > 0. If q is analytic in U and q(0) = h(0), then

q(2) + w(2)2¢'(2) < h(z) (2 €T)

implies
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q(z) < h(z) (z€N).

Lemma 2.3 [13]. Let p(z) be analytic in U with p(0) = 1, p®)(0) = 0
(0<s<n-—1; neN) and let p(z) # 0 (z € U). If there exists a point zy € U such
that

arg p(z)| < Za (2] < Jzo) (2.1)
and
’arg p(zo)‘ = —« (2.2)

for some a > 0, then we have

= 150, 2.3
(20 (2:3)
where :
s>2(a+>)>n when arg p(zo).= T (2.4)
2 a 2
n 1 s
s<——la+ - | <—n when arg p(z) =——« (2.5)
2 a 2
where
p(20)* = +ia and a > 0. (2.6)

Proof. 'We use the same manner which was used by Nunokawa [13] for the proof

of the lemma. Let us put
q(z) =p/* (2.7)
Then we see that
Re{q(2)} > 0 (|z] <z0l),

Re{q(z0)} =0, q(0) =1 and ¢ (0) =0 (0<s<n—1, neN).

Defining the function ¢(z) by

_ 1—yq(z)
we have that ¢(0) =0, ¢®)(0) =0 (0<s<n—1, ne€N),

|p(2)| <1 (|2] < |20]) and |¢(z0)] = 1.
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In view of Fukui and Sakaguchi [6], we know that

209'(20) _ —220¢'(20)
#(20) 1—{q(20)}?
~ —220q(20)
= T g %)
It follows from (2.9) that
—20q (20) > 5 (1+a(=0)]?) (2.10)

and zoq'(zo) is a negative real number. Since ¢(zp) is a non-vanishing pure imaginary
number, we can put ¢(z9) = ia, where a is a non-vanishing real number. We have,

for a > 0,

w5 ) == it)

n 1+ a?
o — >n. 2.11
_2( a )_n ( )

and, for a <0,

(&) - 206 )

n (1+ a?
< - < —n. 2.12
5= 2( a >_ 4 ( )

On the other hand, it follows that

209 (20) 1200 (20)
q(z0) o p(20)
This completes the proof of Lemma 2.3.

(2.13)

3. Main Results

Theorem 3.1. Let h € M with

Re{h(2)} > (A=n)/(p—n) (w00 <A <p; 0<n<p).

Then
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Syttns ) C Sy on(m; h).

Proof. Let f €S>t (n; h) and set
p,m

2(QXP ()
o) = ! ((m ﬂ))_07 3.1)

S p—n \ QPf(2)

where ¢ is analytic in U with ¢(0) = 1 and ¢(z) # 0 for all z € U. Applying (1.4)
and (3.1), we obtain

@ f(2)
AN ——~=(p— zZ)— A+ 3.2
(=X BT (p —na(z) U (32)
Taking the logarithmic differentiation on both sides of (3.2) and multiplying by z, we
have
1 (= f (=) 2q'(2)
= = =q(z) + z € U). 3.3
p—n( AT R A e A L

Applying Lemma 2.1 to (3.3), it follows that ¢ < h, that is, f € Sg"m(n; h). The
proof of Theorem 3.1 is thus completed.

Taking . W
+ Az

M2) e a

in Theorem 3.1y we have the following corollary.

(-1€£B<A<1; z€0)

Corollary 3.1.% Let (p=n)(1—A) > (A-n)(1-B) (<1< B<A<1; —c0o < A < p;
0<n<p). Then
A1/, . A .
Sp+ (777 AvB) Csp,m<n7 A7B)

s

Theorem 3.2. If f €S8, (n; h) with

Re{h(2)} > —(u+n)/(p—n) (he M; p>—p; 0<n<p),

then F,(f) € S;‘m(n; h), where F), is the integral operator defined by

A

muw=mwxa=”+péﬁwvww (> ). (3.4)
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Proof. Let f € S{})m(n; h) and set

L (A (DG
q(z) = P ( BT ()(2) 77) ) (3-5)
where ¢ is analytic in U with p(0) =1 and ¢(z) # 0 for all z € U. From (2.17), we
have

2AQLPEL(f)(2)) = (p+ )P f(2) — nQIPFL(f)(2)- (3.6)

Then, by applying (3.6) to (3.5), we get

QP f(2)
QPF,(f)(2)
Making use of the logarithmic differentiation on both sides of (3.7) and multiplying

(1 +p) = -mq(z) +p+n. (3.7)

by z, we have

LY 45 [C0) s Rl 2q'(2) )
pn(&ﬁ@ﬂ@ n>_Q(%F@—mﬂ@+u+n< U

Hence, by virtue of Lemma 2.1, we conclude that ¢ < h in U, which implies that
Fu(f) € Sy m(n; h).

Letting

1+ Az
h(@= 1+ Bz

in Theorem 3.2, we immediately get the following result.

(-1<B<A<1; z€U)

Corollary 3.2. If f € S),.(n;-A,B) with-(p—n)(1 — A) > —(u+n)(1 - B)
(-1<B<A<I1; p>—-p; 0<n<p), then F,(f) € S;‘,m(n; A, B), where F, is
the integral operator defined by (3.4).

Theorem 3.3. Let f € Ay, h € N, —0c0 < A <0, 0<~, n<p and
0<6<1.If

Wt Pg(2)

= A+1,p 2))
g ( (19)f(2)) 7)

for some g € Syl (n; h), then
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< —q,

‘mg (ZGEmf@D’_7>

027Pg(2)

T
2

where a(0 < a <1) is the solution of the equation :

§=a+ —tan! ( 01 c06 511 ) (3.8)
N T (p—n)sup,cy |h(2)| + 1 — XA+ ansin 51, '
when
ty = sup |arg{(p — mh(z) +n — A}|. (3.9)
ze
Proof. Let
1 2( P f(2))
e OGN
PV Q2%g(z)
Then ¢ is analytic in U with ¢(0) = 1. By using (1.4), we obtain
(0 = Ma(z) + M2 Pg(z) = (0 = NQUFP(ay0) f(2) + X7 f(2), (3.10)

Differentiating both sides of (3.10) and multiplying the resulting equation by z, we
find that

(p—7)2q ()P g(2)+ ((p = 7)a(2) +7)2(Q2 (a, c)g(2))’

= EIN2ULTPf(2)) + AAQ2 (@) (3.11)
Since g € S;"j,'%l(n; h), by Theorem 3.1, we know that g€ Sﬁm(n; h).
Let
1 2(QPg(2))
r(z) = ( Apg( ) (3.12)
p—n Q2%g(z)
Then, using (1.4) once again, we have
Q21Pg(2)
—AN=Z——=={p—-nr(z)+n— A\ 3.13
0N g = o) o (3.13)
From (3.12) and (3.13), we obtain
9
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L (20100 f(2) ) _ B zq'(2)
it ( Q2 Pg(2) 7) =alz) + (

Then we obtain

where

(p—n)inf ey [h(z)|+n =X < p < (p—n)sup.cy |h(z)|+1n—A
*tl < ¢ < t17

when

1 = suplarg{(p ~m)h(z) £ 1=},
FAS

We also note that ¢ is analyticin U with ¢(0) =1, and so Re{q(z)} > 0 in U by
applying the assumption and Lemma 2.2 with w(z) =1/((p — n)r(z).+n—A). Hence
q(z) #0 in U

If there exists a point zg € U such that the conditions (2.1) and (2.2) are satisfied,
then(by Lemma 2.3) we obtain (2.3) under the restrictions (2.4), (2.5) and (2.6).

At first, suppose that ¢(zo)= = ia (a > 0). Then we obtain

Zoql(zo) >
p—mr(zo) +n7—A

= Tt arg <1 + ias(pei%d))_l)

2
assin § (1 = ¢)
p+ascos T (1 — gZ)))

St

v

Ea + tan™!
2

ST +tan—? < an cos 5ty >
—a + tan i
— 2 (p —n)sup, ey |R(2)] + 1 — XA+ ansin Tt

™
=75
2 9y

where § and ¢, are given by (3.8) and (3.9), respectively. These evidently contradict
the assumption of Theorem 3.3.

Next, suppose that p(zo)é = —ia (a > 0). Applying the same method as the

above, we have

10
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204’ (20) )

arg | q(zo) +

(460 + Garteg

T 1 an cos 5t1
< ——a —tan
-2 ((p—n)supzeuh(Z)I+?7—A+0msin§t1>
_ T
= -39

where ¢ and ¢; are given by (3.8) and (3.9), respectively. These also are contradiction

to the assumption of Theorem 3.1. Therefore we complete the proof of Theorem 3.3.

If we take
1+ Az

hiz) = 1+ Bz

in Theorem 3.3, then we also note that from the known result given earlier by Silver-

(-1<B<A<1; z€U)

man and Silvia [20], we have

r(ef 11__‘;3 f__BBQ (+EU; B£=1) (3.14)
and
Re{r(2)} > I_TA (zeU; B=-1); (3.15)

where 7(z) is given in (3.12). Therefore we have the following Corollary 3.3.

Corollary 3.3. Let f € Apm, h € N, =00 < A <0, 0<~, n<p and

0<o<1.1f
2(QTLP) f(2))
P ELY Y
Q:"""g(2)
for some g € Syl (n; A, B), then
Q)\,p /
g (220G N[ 7,
szpg(z) 2
where a(0 < a <1) is the solution of the equation :
a+ 2tan~?! — acos 5 ta . ) for B # —1,
5= T ((“7 B2 +n—A)+asin 5t 7 (3.16)
o for B = —1,

when b is given by (2.3) and

11
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(p—n)(A—B) ) (317)

From corollary 3.3, we see easily the following result.

Corollary 3.4. Let f € Appm, —00<A<0,0< vy, n<pand 0<s<1.
Then

A+1 .S A .S
]Cp:‘r (77777 57 AvB) C]Cp,m(nvlyv 57 A»B)

m

Remark 3.1. If weput A=0, m=1,p=1, A=1, B=—-1and § =1 in
Theorem 3.3, then we see that every quasi-convex function of order v and type 1 in
U is close-to-convex function of order = and type n in U as proven earlier by Noor

[11] and Sakaguchi [18].

Letting v =0, B — A(A < 1) and g(z) = z? in Theorem 3.3, we obtain

Corollary 3.5. Let f €Ay and —0c0o <A <0, 0<o0<1.If

JEEEE ) R

2P

then

2P 2

ard <5@M)‘ '

where a (0 < a < 1) is the solution of the equation :

2
=t b L
T p—A

Finally, we prove an argument property asserted by Theorem 3.4 below.

Theorem 3.4. Let fe€ Ay, heN, p>0,0<vy, n<pand 0<6<1.If

2(QXP f(2))
- ( (2271 (2) _7>

2Pg(2)

™
=0
<2

for some g € S;‘,m(ﬂ% h), then

12
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T
< —q,

2(QXP z))
‘arg ( (RPE,(f)(2)) _7> :

Q2P F,(g)(2)

where F,, is the integral operator defined by (3.4), and o(0 < o < 1) is the solution
of the equation (3.8) with A = —p.

Proof. Let

o) = ! <Z(Qi’pFu(f)(Z))’_7>.

-1 U E(9)()

Since g € S;‘,m(ﬂ% h), we see from Corollary 3.2 that F},(g) € S;‘ym(n; h).
Using (3.6), we have

(0= a(2) +NQIFFu(9)(2) = (u+p)Q2F f(2) — Q2P FL(f) (2).

Then, by a simple calculation, we get

2P £(2))

P EA0)(2) = (p—W7d (&) + (= 7)a(2) +V)((p =m)r(z) +n+ p),

(n+p)

where

Hence we have

! <z(ﬂi”’f(z))’ _,y) o (pﬁmzqw

p— 227 g(2) r(2)+n+p
The remaining part of the proof in Theorem-3.4 is similar to that of Theorem 3.1 and

SO we omit it.

If we take

1+ Az
14+ Bz

h(z) (-1<B<A<L1; zeU),

we have the following result.

Corollary 3.6. Let f€ Ay, heN, p>0, 0<vy, n<pand 0<d<1.If

13
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s
=0
<2

2P f(2))
arg ( Q;"pg(z) ’Y)

for some g € S;‘m(n; A, B), then

71—
< 5@7

(ARG
g( OMF,(g)(2) ”)

where F,, is the integral operator defined by (3.4), and (0 < o < 1) is the solution

of the equation :

a+ 2tan™! ( acosla ) for B # —1,

(%_an-u)-i-asin Tto
o for B = -1,

6:

when tg is t1 with A\ = —p given by (3.17).

From corollary 3.6, we see easily the following result.

Corollary 3.7. If f € K),.(n,v; & A,B), then F,(f) € K;ﬁm(n,v; 0; A, B),

pb,m

where F, is the integral operator.defined by(3.4).

Remark 3.2. If wetake A=0and A=1 with m=1, p=1, A=1, B=-1
and § = 1 in Corollary 3.7, respectively, then we have the corresponding results
obtained by Noor and Alkhorasani [12]. Furthermore, taking A =0, p = 1,7 = 0,
A=1, B= -1 and § =1 in Corollary 3.7, we obtain the classical results given
earlier by Bernardi [1] and Libera [7].
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