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 코사인 족을 포함한 준선형 이계방정식에 대한 제어문제

조 성 호

부경대학교 대학원 응용수학과

요    약

본 논문에서는 코사인 족과 그에 관계된 사인 족을 포함한 이계 비선형 제어 

시스템에 대한 근사적인 제어성을 얻기 위한 논문이다.

 

 우선적으로 다음의 Banach 공간 X 상에서 주어진 추상적 준 선형 이계 초기치 

문제:

             






          

   

  

에서 주작용소 에의해 구성되는 코사인족과 사인족에 대한 기본적인 성질들을 

이용하여  해의 존재성과 정칙성에 대한 결과를 유도하였다.

두 번째로 제어항을 포함한 준성형 시스템:

             













          

   

  

에서 제어기 에 대한 근사적인 제어성에 대해 생각한다. 주어진 제어변수공간

으로부터 도달 가능한 집합을 조사하여 주어진 공간을 근사적으로 제어 가능하

도록 새로운 기법을 사용하여 응용가능한 제어기의 충분조건을 유도하였다.
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1 Introduction

The first part of this paper gives some basic results on the regularity of solutions of
abstract semilinear second order initial value problem{

d2w(t)
dt2

= Aw(t) + F (t, w) + f(t), 0 < t ≤ T,

w(0) = x0,
d
dt
w(0) = y0

(1.1)

in a Banach space X. Here, the nonlinear part is given by

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds

where k belongs to L2(0, T ) and g : [0, T ] × X −→ X is a nonlinear mapping
such that w 7→ g(t, w) satisfies Lipschitz continuous. In (1.1) A is the infinitesimal
generator of a strongly continuous cosine family C(t), t ∈ R.

Let E be a subspace of all x ∈ X which C(t)x is a once continuously differentiable
function of t.

In [1], when f : R → X is continuously differentiable, x0 ∈ D(A), y0 ∈ E, and
k ∈ W 1,2(0, T ), the existence of a solution w ∈ L2(0, T ;D(A)) ∩ W 1,2(0, T ;E) of
(1.1) for each T > 0 is given. Moreover, they have been established a variation of
constant formula for solutions of the second order nonlinear system (1.1).

The work presented in this paper, based on the regularity for solution of (1.1),
investigates necessary and sufficient conditions for the approximate controllability
for (1.1) with the strict range condition on B even though the system (1.1) contains
unbounded principal operators and the convolution nonlinear term, which is more
flexible necessary assumption than one in [2].

We will make use of some of the basic ideas from cosine family referred to [3, 4]
and the regular properties for solutions in [1, 5] for a discussion of the control results.
In [6, 7] a one-dimensional nonlinear hyperbolic equation of convolution type which
is nonlinear in the partial differential equation part and linear in the hereditary part
is treated.

As a second part in this paper, we consider the approximate controllability for
the nonlinear second order control system{

d2w(t)
dt2

= Aw(t) + F (t, w) +Bu(t), 0 < t ≤ T,

w(0) = x0,
d
dt
w(0) = y0

(1.2)

in a Banach space X where the controller B is bounded linear operator from some
Banach space U to X. In [2, 8, 9] the approximate controllability for (1.2) was
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studied under the particular range conditions of the controller B depending on the
time T .

In Section 4 we establish to the approximate controllability for the second order
nonlinear system (1.2) under a condition for the range of the controller B without
the inequality condition independent to the time T , and see that the necessary
assumption is more flexible than one in [2, 9]. Finally, we give a simple example to
which our main result can be applied.

2 Preliminaries

In this section, we give some definitions, notations, hypotheses and Lemmas. Let X
be a Banach space with norm denoted by || · ||.

Definition 2.1. [1] A one parameter family C(t), t ∈ R, of bounded linear opera-
tors in X is called a strongly continuous cosine family if

c(1) C(s+ t) + C(s− t) = 2C(s)C(t), for all s, t ∈ R,

c(2) C(0) = I,

c(3) C(t)x is continuous in t on R for each fixed x ∈ X.

If C(t), t ∈ R is a strongly continuous cosine family in X , then S(t), t ∈ R is
the one parameter family of operators in X defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ X, t ∈ R. (2.1)

The infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R is
the operator A : X → X defined by

Ax =
d2

dt2
C(0)x.

We endow with the domain D(A) = {x ∈ X : C(t)x is a twice continuously differ-
entiable function of t} with norm

||x||D(A) = ||x||+ sup{|| d
dt
C(t)x|| : t ∈ R}+ ||Ax||.

We shall also make use of the set

E = {x ∈ X : C(t)x is a once continuously differentiable function of t}
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with norm

||x||E = ||x||+ sup{|| d
dt
C(t)x|| : t ∈ R}.

It is not difficult to show that D(A) and E with given norms are Banach spaces.
The following Lemma is from Proposition 2.1 and Proposition 2.2 of [1].

Lemma 2.1. Let C(t)(t ∈ R) be a strongly continuous cosine family in X. The
following are true :

c(4) C(t) = C(−t) for all t ∈ R,

c(5) C(s), S(s), C(t) and S(t) commute for all s, t ∈ R,

c(6) S(t)x is continuous in t on R for each fixed x ∈ X,

c(7) there exist constants K ≥ 1 and ω ≥ 0 such that

||C(t)|| ≤ Keω|t| for all t ∈ R,

||S(t1)− S(t2)|| ≤ K
∣∣∣∫ t1

t2

eω|s|ds
∣∣∣ for all t1, t2 ∈ R,

c(8) if x ∈ E, then S(t)x ∈ D(A) and

d

dt
C(t)x = AS(t)x = S(t)Ax =

d2

dt2
S(t)x,

c(9) if x ∈ D(A), then C(t)x ∈ D(A) and

d2

dt2
C(t)x = AC(t)x = C(t)Ax,

c(10) if x ∈ X and r, s ∈ R, then∫ s

r

S(τ)xdτ ∈ D(A) and A(

∫ s

r

S(τ)xdτ) = C(s)x− C(r)x,

c(11) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R,

c(12) S(s+ t) = S(s)C(t) + S(t)C(s) for all s, t ∈ R,

c(13) C(s+ t) = C(t)C(s)− S(t)S(s) for all s, t ∈ R,

c(14) C(s+ t)− C(t− s) = 2AS(t)S(s) for all s, t ∈ R.
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The following results are crucial in discussing regular problem for the linear
case(for proof one can see [1])

Proposition 2.1. Let f : R→ X is continuously differentiable, x0 ∈ D(A), y0 ∈ E.
Then

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R

is a solution of the following equation

d2w(t)

dt2
= Aw(t) + f(t), t ∈ R, w(0) = x0, ẇ(0) = y0. (2.2)

belonging to L2(0, T ;D(A)) ∩W 1,2(0, T ;E). Moreover, we have that there exists a
positive constant C1 such that for any T > 0,

||w||L2(0,T ;D(A)) ≤ C1(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)). (2.3)

If f is continuously differentiable and (x0, y0) ∈ D(A) × E, it is easily shown
that w is continuously differentiable and satisfies

ẇ(t) = AS(t)x0 + C(t)y0 +

∫ t

0

C(t− s)f(s)ds, t ∈ R.

Let us remark that if w is a solution of (2.2) in an interval [0, t1 + t2] with
t1, t2 > 0. Then when t ∈ [0, t1 + t2], from c(11-15), we have

w(t) = C(t− t1)w(t1) + S(t− t1)ẇ(t1) +

∫ t

t1

S(t− s)f(s)ds

= C(t− t1){C(t1)x0 + S(t1)y0 +

∫ t1

0

S(t1 − τ)f(τ)dτ}

+ S(t− t1){AS(t1)x0 + C(t1)y0 +

∫ t1

0

C(t1 − τ)f(τ)dτ}

+

∫ t

t1

S(t− s)f(s)ds

= C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds,

here, we used the relation

S(t)AS(s) = AS(t)S(s) =
1

2
C(t+ s)− 1

2
C(t− s) = C(t+ s)− C(t)C(s)
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for all s, t ∈ R. This mean the mapping t 7→ w(t1 + t) is a solution of (2.2) in
[0, t1 + t2] with initial data (w(t1), ẇ(t1)) ∈ D(A)× E.

From now on, we introduce the regularity of solutions of abstract semilinear
second order initial value problem (1.1) in a Banach space X. Let g : [0, T ]×D(A)→
X be a nonlinear mapping such that t 7→ g(t, w) is measurable and{

||g(t, w1)− g(t, w2)||D(A) ≤ L||w1 − w2||
g(t, 0) = 0

for a positive constant L.

For w ∈ L2(0, T ;D(A)), we set

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds

where k belongs to L2(0, T ). We will seek a mild solution of (1.1), that is, a solution
of the integral equation

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s){F (s, w) + f(s)}ds. (2.4)

Remark 2.1. If g : [0, T ]×X → X is a nonlinear mapping satisfying

||g(t, w1)− g(t, w2)|| ≤ L||w1 − w2||

for a positive constant L, then our results can be obtained immediately.

Lemma 2.2. Let w ∈ L2(0, T ;D(A)), T > 0. Then F (·, w) ∈ L2(0, T ;X) and

||F (·, w)||L2(0,T ;X) ≤ L||k||L2(0,T )

√
T ||w||L2(0,T ;D(A)).

Moreover if w1, w2 ∈ L2(0, T ;D(A)), then

||F (·, w1)− F (·, w2)||L2(0,T ;X) ≤ L||k||L2(0,T )

√
T ||w1 − w2||L2(0,T ;D(A)).

Proof. From (g1), (g2) and using the Hölder inequality, it is easily seen that

||F (·, w)||2L2(0,T ;X) ≤
∫ T

0

||
∫ t

0

k(t− s)g(s, w(s))ds||2dt

≤ ||k||2L2(0,T )

∫ T

0

∫ t

0

L2||w(s)||2dsdt

≤ L2||k||2L2(0,T )T ||w||2L2(0,T ;D(A)).

The proof of the second paragraph is similar.
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Now, as in Theorem 3.1 of [1], we give a norm estimation of the solution of (1.1)
and establish the global existence of solutions with the aid of norm estimations.

Proposition 2.2. Suppose that the assumptions (g1), and (g2) are satisfied. If f :
R −→ X is continuously differentiable, x0 ∈ D(A), y0 ∈ E, and k ∈ W 1,2(0, T ), T >
0, then the solution w of (1.1) exists and is unique in L2(0, T ;D(A))∩W 1,2(0, T ;E),
and there exists a constant C3 depending on T such that

||w||L2(0,T ;D(A)) ≤ C3(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)). (2.5)

3 Approximate controllability

In this section, we consider the approximate controllability for the nonlinear second
order control system{

d2w(t)
dt2

= Aw(t) + F (t, w) +Bu(t), 0 < t ≤ T,

w(0) = x0,
d
dt
w(0) = y0

(3.1)

in a Banach space X where the controller B is a bounded linear operator from some
Banach space U to X. Assume that

Assumption (G) The nonlinear mapping g : [0, T ] × X −→ X is such that t 7→
g(t, w) is measurable and

||g(t, w1)− g(t, w2)|| ≤ L||w1 − w2||, |k(t)| ≤M. (3.2)

for a positive constant L.
For (3.1), a integral equation can be written as{

w(t) = C(t)x0 + S(t)y0 +
∫ t

0
S(t− s){F (s, w) +Bu(s)}ds,

w(0) = x0, ẇ(0) = y0.
(3.3)

For every u ∈ L2(0, T ;U), it is natural that the solution w of (3.3) is continuous on
[0, T ].

Given a strongly continuous cosine family C(t) (t ∈ R), we define linear bounded
operators Ĉ and Ŝ mapping L2(0, T : X) into X by

Ĉp =

∫ T

0

C(T − t)p(t)dt, Ŝp =

∫ T

0

S(T − t)p(t)dt,

for p(·) ∈ L2(0, T : X) and S(t) is the associated sine family of C(t).
We define the reachable sets for the system (3.1) as follows:
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Definition 3.1. Let w(t;F, u) is a solution of the (3.1) associated with nonlinear
term F and control u at the time t.

RT (F ) = {(w(T ;F, u), ẇ(T ;F, u)) : u ∈ L2(0, T ;U)} ⊂ X2 = X ×X,
RT (0) = {(w(T ; 0, u), ẇ(T ; 0, u)) : u ∈ L2(0, T ;U)} ⊂ X2.

The nonempty subset RT (F ) in X2 consisting of all terminal states of (3.1) is called
the reachable sets at the time T of the system (3.1). The set RT (0) is one of the
linear case where F ≡ 0.

Definition 3.2. The system (3.1) is said to be approximate controllable on the
interval [0, T ] if

RT (F ) = X2

where RT (F ) is the closure of RT (F ) in X2,
that is, for any ε > 0, x̄ ∈ D(A) and ȳ ∈ E there exists a control u ∈ L2(0, T ;U)
such that

||x̄− C(T )x0 − S(T )y0 − ŜF (·, w)− ŜBu|| < ε,

||ȳ − AS(T )x0 − C(T )y0 − ĈF (·, w)− ĈBu|| < ε.

We introduce the following hypothesis:

Assumption (B) For any ε > 0 and p ∈ L2(0, T ;X) there exists a u ∈ L2(0, T ;U)
such that {

||Ĉp− ĈBu|| < ε,

||Bu||L2(0,t;X) ≤ q1||p||L2(0,t;X), 0 ≤ t ≤ T.

where q1 is a constant independent of p.

We remark that from c(11-14) of Lemma 2.1, the operator Ŝ also satisfies the con-
dition (B), that is, for any ε > 0 and p ∈ L2(0, T ;X) there exists a u ∈ L2(0, T ;U)
such that {

||Ŝp− ŜBu|| < ε,

||Bu||L2(0,t;X) ≤ q1||p||L2(0,t;X), 0 ≤ t ≤ T.

For the sake of simplicity we assume that sine family S(t) is bounded as in c(7):

||S(t)|| ≤ K(t) t ≥ 0.

Here, we may consider the following inequality:

K(t) ≤ ω−1K(eωt − 1).
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Lemma 3.1. Let u1 and u2 be in L2(0, T ;U). Then under the Assumption (G), we
have

||w(t;F, u1)− w(t;F, u2)|| ≤ K(T )eK(T )MLT 2√
T ||Bu1 −Bu2||L2(0,t;X).

for 0 ≤ t ≤ T .

Proof. For 0 ≤ t ≤ T , we have

||w(t;F, u1)− w(t;F,u2)|| ≤ K(T )
√
t||Bu1(s)−Bu2(s)||L2(0,t;X)

+K(T )MLt

∫ t

0

||w(s;F, u1)− w(s;F, u2)||ds,

where L is a constant in Assumption (G). Therefore, by using Gronwall’s inequality
this lemma follows.

For the approximate controllability for linear equation, we know the following
necessary Lemma before proving the main theorem.

Lemma 3.2. Under Assumption (B) we have RT (0) = X2.

Proof. Let x̄ ∈ D(A), ȳ ∈ E. Putting

η1 = x̄− C(T )x0 − S(T )y0 ∈ D(A), η2 = ȳ − AS(T )x0 − C(T )y0 ∈ E,

then there exists some p ∈ C1([0, T ] : X) such that

η1 =

∫ T

0

S(T − t)p(t)dt, η2 =

∫ T

0

C(T − t)p(t)dt,

for instance, take p(t) = {C(t−T ) +S(t−T )}η2/T . By hypothesis (B) there exists
a function u ∈ L2(0, T ;U) such that{

||x̄− C(T )x0 − S(T )y0 − ŜBu|| < ε,

||ȳ − AS(T )x0 − C(T )y0 − ĈBu|| < ε.

The denseness of the domain D(A) in X implies the approximate controllability of
the corresponding linear system.

Theorem 3.1. Under Assumptions (G), (B), the system (3.1) is approximately
controllable on [0, T ], T > 0.
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Proof. We will show that D(A) × E ⊂ RT (F ), i.e., for given ε > 0 and (ξT , ξ̃T ) ∈
D(A)× E there exists u ∈ L2(0, T ;U) such that

||ξT − w(T ;F, u)|| < ε, (3.4)

||ξ̃T − ẇ(T ;F, u)|| < ε. (3.5)

As (ξT , ξ̃T ) ∈ D(A)× E there exists a p ∈ L2(0, T ;X) such that

Ŝp = ξT − C(T )x0 − S(T )y0, Ĉp = ξ̃T − AS(T )x0 − C(T )y0.

Let u1 ∈ L2(0, T ;U) be arbitrary fixed. Since by the Assumption (B) there exists
u2 ∈ L2(0, T ;U) such that

||Ŝ(p− F ( · , w( · ;F, u1)))− ŜBu2|| <
ε

4
,

||Ĉ(p− F ( · , w( · ;F, u1)))− ĈBu2|| <
ε

4
,

it follows

||ξT − C(T )x0 − S(T )y0 − ŜF ( · , w( · ;F, u1))− ŜBu2|| <
ε

4
, (3.6)

||ξ̃T − AS(T )x0 − C(T )y0 − ĈF ( · , w( · ;F, u1))− ĈBu2|| <
ε

4
.

We can also choose v2 ∈ L2(0, T ;U) by the Assumption (B) such that

||Ŝ(F ( · , w( · ;F, u2))− F ( · , w( · ;F, u1)))− ŜBv2|| <
ε

8
, (3.7)

||Ĉ(F ( · , w( · ;F, u2))− F ( · , w( · ;F, u1)))− ĈBv2|| <
ε

8

and by the Assumption (B),

‖Bv2||L2(0,t;X) ≤ q1||F ( · , w( · ;F, u1))− F ( · , w( · ;F, u2))||L2(0,t;X)

for 0 ≤ t ≤ T . From now, we will only prove (3.4), while the proof of (3.5) is similar.
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In view of Lemma 3.1 and the Assumption (B)

||Bv2||L2(0,t;X) ≤ q1{
∫ t

0

||F (τ, w(τ ;F, u2))− F (τ, w(τ ;F, u1))||2dτ}
1
2

≤ q1ML{
∫ t

0

∫ τ

0

||w(τ ;F, u2)− w(τ ;F, u1)||2dsdτ}
1
2

≤ q1MLK(T )eK(T )MLT 2√
T{
∫ t

0

∫ τ

0

||Bu2 −Bu1||2L2(0,s;X)dsdτ}
1
2

≤ q1MLK(T )eK(T )MLT 2√
T (

∫ t

0

∫ τ

0

1 dsdτ)
1
2 ||Bu2 −Bu1||L2(0,t;X)

= q1MLK(T )eK(T )MLT 2√
T (
t2

2
)
1
2 ||Bu2 −Bu1||L2(0,t;X).

Put u3 = u2 − v2. We determine v3 such that

||Ŝ(F ( · , w( · ;F, u3))− F ( · , w( · ;F, u2)))− ŜBv3|| <
ε

8
,

||Bv3||L2(0,t;X) ≤ q1||F ( · , w( · ;F, u3))− F ( · , w( · ;F, u2))||L2(0,t;X)

for 0 ≤ t ≤ T . Hence, we have

||Bv3||L2(0,t;X)

≤ q1{
∫ t

0

||F (τ, w(τ ;F, u3))− F (τ, w(τ ;F, u2))||2dτ}
1
2

≤ q1ML{
∫ t

0

∫ τ

0

||w(s;F, u3)− w(s;F, u2)||2dsdτ}
1
2

≤ q1MLK(T )eK(T )MLT 2√
T{
∫ t

0

∫ τ

0

||Bu3 −Bu2||2L2(0,s:X)dsdτ}
1
2

≤ q1MLK(T )eK(T )MLT 2√
T{
∫ t

0

∫ τ

0

||Bv2||2L2(0,s;X)dsdτ}
1
2

≤ (q1MLK(T )eK(T )MLT 2√
T )2{

∫ t

0

∫ τ

0

s2

2
||Bu2 −Bu1||2L2(0,s;X)dsdτ}

1
2

≤ (q1MLK(T )eK(T )MLT 2√
T )2(

∫ t

0

∫ τ

0

s2

2
dsdτ)

1
2 ||Bu2 −Bu1||L2(0,t;X)

≤ (q1MLK(T )eK(T )MLT 2√
T )2(

t4

2 · 4
)
1
2 ||Bu2 −Bu1||L2(0,t;X).
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By proceeding this process, and from that

||B(un − un+1)||L2(0,t;X) = ||Bvn||L2(0,t;X)

≤ (q1MLK(T )
√
TeK(T )MLT 2

)n−1(
t2n−2

2 · 4 · · · (2n− 2)
)
1
2 ||Bu2 −Bu1||L2(0,t;X)

= (
q1MLK(T )

√
TeK(T )MLT 2

t√
2

)n−1 1√
(n− 1)!

||Bu2 −Bu1||L2(0,t;X),

it follows that

∞∑
n=1

||Bun+1 −Bun||L2(0,T ;X)

≤
∞∑
n=0

(
q1MLK(T )

√
TeK(T )MLT 2

t√
2

)n
1√
n!
||Bu2 −Bu1||L2(0,T ;X) <∞.

Therefore, there exists u∗ ∈ L2(0, T ;X) such that

lim
n→∞

Bun = u∗ in L2(0, T ;X). (3.8)

From (3.6), (3.7) it follows that

||ξT − C(T )x0 − S(T )y0 − ŜF ( · , w( ·F, u2))− ŜBu3||
= ||ξT − C(T )x0 − S(T )y0 − ŜF ( · , w( ·F, u1))− ŜBu2 + ŜBv2

− Ŝ[F (·, w(·;F, u2))− F (·, w(·;F, u1))]||

< (
1

22
+

1

23
)ε.

By choosing choose vn ∈ L2(0, T ;U) by the assumption (B) such that

||Ŝ(F ( ·w( · ;F, un))− F ( ·w( · ;F, un−1))− ŜBvn|| <
ε

2n+1
,

putting un+1 = un − vn, we have

||ξT − S(T )g − ŜF (·, z(·; g, f, un))− ŜΦun+1||

< (
1

22
+ · · ·+ 1

2n+1
)ε, n = 1 2, · · ·.

Therefore, for ε > 0 there exists integer N such that

||ŜBuN+1 − ŜBuN || <
ε

2
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and

||ξT − C(T )x0 − S(T )y0 − ŜF (·, w(·;F, uN))− ŜBuN ||
≤ ||ξT − C(T )x0 − S(T )y0 − ŜF (·, w(·;F, uN))− ŜBuN+1||
+ ||ŜBuN+1 − ŜBuN ||

< (
1

22
+ · · ·+ 1

2N+1
)ε+

ε

2
≤ ε.

And by the similar method, we also obtain that

||ξ̃T − AS(T )x0 − C(T )y0 − ĈF (·, w(·;F, uN))− ĈBuN || ≤ ε.

Thus, the system (3.1) is approximately controllable on [0, T ] as N tends to infinity.

Example. Let X = L2([0, π];R). We consider the following partial differential
equation 

d2w(t,x)
dt2

= Aw(t, x) + F (t, w) +Bu(t), 0 < t, 0 < x < π,

w(t, 0) = w(t, π) = 0, t ∈ R
w(0, x) = x0(x), d

dt
w(0, x) = y0(x), 0 < x < π

(3.9)

Let en(x) =
√

2
π

sinnx. Then {en : n = 1, · · · } is an orthonormal base for X. Let

A : X → X be defined by
Aw(x) = w′′(x),

where D(A) = {w ∈ X : w, ẇ are absolutely continuous, ẅ ∈ X, w(0) = w(π) = 0}.
Then

Aw =
∞∑
n=1

−n2(w, en)en, w ∈ D(A),

and A is the infinitesimal generator of a strongly continuous cosine family C(t),
t ∈ R, in X given by

C(t)w =
∞∑
n=1

cosnt(w, en)en, w ∈ X.

Let g1(t, x, w, p), p ∈ Rm, be assumed that there is a continuous ρ(t, r) : R×R→
R+ and a real constant 1 ≤ γ such that

(f1) g1(t, x, 0, 0) = 0,
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(f2) |g1(t, x, w, p)− g1(t, x, w, q)| ≤ ρ(t, |w|)|p− q|,
(f3) |g1(t, x, w1, p)− g1(t, x, w2, p)| ≤ ρ(t, |w1|+ |w2|)|w1 − w2|.

Let
g(t, w)x = g1(t, x, w,Dw).

Then noting that

||g(t, w1)− g(t, w2)||20,2 ≤ 2

∫
Ω

|g1(t, x, w1, Dw1)− g1(tx, w2, DW2q)|2du

+ 2

∫
Ω

|g1(t, u, w1, q)− g1(t, u, w2, q)|2du,

it follows from (f1), (f2) and (f3) that

||g(t, w1)− g(t, w2)||20,2 ≤ L(||w1||D(A), ||y||D(A))||w1 − w2||D(A)

where L(||w1||D(A), ||w2||D(A)) is a constant depending on ||w1||D(A) and ||w2||D(A).
We set

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds

where k belongs to L2(0, T ).
Let U = X, 0 < α < T and define the intercept controller operator Bα on

L2(0, T ;X) by

Bαu(t) =

{
0, 0 ≤ t < α,

u(t), α ≤ t ≤ T

for u ∈ L2(0, T ;X). For a given p ∈ L2(0, T ;X) let us choose a control function u
satisfying

u(t) =

{
0, 0 ≤ t < α,

p(t) + α
T−αC(t− α

T−α(t− α))p( α
T−α(t− α)), α ≤ t ≤ T.

Then u ∈ L2(0, T ;X) and Ŝp = ŜBαu
From the following:

||Bαu||L2(0,T ;X) = ||u||L2(α,T ;X)

≤ ||p||L2(α,T ;X) +KeωT ||p( α

T − α
(· − α))||L2(α,T ;X)

≤ (1 +KeωT
√
T − α
α

)||p||L2(0,T ;X)

it follows that the controller Bα satisfies Assumption (B). Therefore, from Theo-
rem 3.1, we have that the nonlinear system given by (3.9) approximate controllable
on [0, T ]
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