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1 Introduction

The first part of this paper gives some basic results on the regularity of solutions of
abstract semilinear second order initial value problem

{di};’é” = Aw(t) + F(t,w) + f(t), 0<t<T, L)

w(0) =0,  Fw(0) =1p

in a Banach space X. Here, the nonlinear part is given by

F(t,w) = /0 k(t — s)g(s,w(s))ds

where k belongs to L?(0,T) and g : [0,T] x X — X is a nonlinear mapping
such that w +— ¢(t,w) satisfies Lipschitz continuous. In (1.1) A is the infinitesimal
generator of a strongly continuous cosine family C(t), t € R.

Let E be a subspace of all z € X which C(t)z is a once continuously differentiable
function of ¢.

In [1], when f: R — X is continuously differentiable, o € D(A),yo € E, and
k € Wh2(0,T), the existence of a solution w € L*(0,T; D(A)) N W20, T; E) of
(1.1) for each 7' > 0 is given. Moreover, they have been established a variation of
constant formula for solutions of the second order nonlinear system (1.1).

The work presented in this paper, based on the regularity for solution of (1.1),
investigates necessary and sufficient conditions for the approximate controllability
for (1.1) with the strict range condition on B even though the system (1.1) contains
unbounded principal eperators and the convolution nonlinear term, which is more
flexible necessary assumption than one in [2].

We will make use of some of the basic-ideas from cosine family referred to [3, 4]
and the regular properties for solutions in [1, 5] for a discussion of the control results.
In [6, 7] a one-dimensional nonlinear hyperbolic equation of convolution type which
is nonlinear in the partial differential equation part and linear in the hereditary part
is treated.

As a second part in this paper, we consider the approximate controllability for
the nonlinear second order control system

dt?

Lol — Aw(t) + F(t,w) + Bu(t), 0<t<T, (1.2)
w(0) = zo, Fw(0) = yo |

in a Banach space X where the controller B is bounded linear operator from some
Banach space U to X. In [2, 8, 9] the approximate controllability for (1.2) was
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studied under the particular range conditions of the controller B depending on the
time 7.

In Section 4 we establish to the approximate controllability for the second order
nonlinear system (1.2) under a condition for the range of the controller B without
the inequality condition independent to the time 7', and see that the necessary
assumption is more flexible than one in [2, 9]. Finally, we give a simple example to
which our main result can be applied.

2 Preliminaries

In this section, we give some definitions, notations, hypotheses and Lemmas. Let X
be a Banach space with norm denoted by || - ||.

Definition 2.1. [1] A one parameter family C(t),t-€ R, of bounded linear opera-
tors in X s called a strongly continuous cosine family if

c(1) C(s+1t)+C(s—1t)=2C(s)C(t), foralls, teR,
c(2) C(0)=1,
c(8) C(t)xr s continuous in t on R for each fized x € X.
If C(t), t € Ris a strongly continuous cosine family in X | then S(¢), ¢t € R is
the one parameter family of operators in X defined by
t
S(t = / C(s)ads, 7€ X, tER. (2.1)
0
The infinitesimal generator of a strongly continuous cosine family C(t), ¢ € R is
the operator A : X — X defined by

d2
Ar = — :
z= s C(0)x

We endow with the domain D(A) = {z € X : C(t)z is a twice continuously differ-
entiable function of ¢} with norm

d
lzllpeay = [lz] + supill o C(t)]] : t € R} + || Az]].
We shall also make use of the set

E ={x € X :C(t)z is a once continuously differentiable function of ¢}

Collection @ pknu



with norm

d
[l2lle = Il + sup{]| - C(t)a]| : t € R}.

It is not difficult to show that D(A) and E with given norms are Banach spaces.
The following Lemma is from Proposition 2.1 and Proposition 2.2 of [1].

Lemma 2.1. Let C(t)(t € R) be a strongly continuous cosine family in X. The
following are true :

c(4)
¢(5)
¢(6)
c(7)

c(8)

c(9)

c(10)

c(11)
c(12)
¢(13)
e(14)

C(t) = C(—t) for allt € R,
C(s),S8(s),C(t) and S(t) commute for all s,t € R,
S(t)z is continuous in t on R for each fized v € X,

there exist constants K->'1 and w > 0 such that

|C()]| < Ke™ for all t € R,

t1
/ elslds
to

d d?
dtO( W — AS() A = ﬁS(t)x

[|S(t1) — St < K for all t1,ty € R,

if v € E, then S(t)x € D(A) and

if v € D(A), then C(t)x € D(A) and

d2

dtQC( Yo = AC(t)xr = C(t) Az,

ifre X andr,s € R, then
/ S(r)xdr € D(A) and A(/ S(m)xdr) = C(s)x — C(r)x,

C(s+1t)+C(s—1t)=2C(s)C(t) for all s,t € R,

S(s+t) =S(s)C(t) + S(t)C(s) for all s,t € R,
C(s+1t)=Ct)C(s) — S(t)S(s) for all s,t € R,
C(s+1t)—C(t—s)=2AS(t)S(s) for all s,t € R.

Collection @ pknu



The following results are crucial in discussing regular problem for the linear
case(for proof one can see [1])

Proposition 2.1. Let f : R — X is continuously differentiable, xo € D(A), yo € E.
Then

t
w(t) = C(H)o + SE)yo +/ S(t— $)f(s)ds, t€R
0
1s a solution of the following equation

d*w(t)
dt?

belonging to L*(0,T; D(A)) NW'2(0,T; E). Moreover, we have that there exists a
positive constant Cy such that for any T > 0,

= Aw(t) + f(t), t € R, w(0) =z, w(0) = yo. (2.2)

lJwl|z2(0,7;0(a)y < C1(1 + ||@ol|peay + [|yol |2 + 1 [lwr20,7:x))- (2.3)

If f is continuously differentiable and (zg,y9) € D(A) x E, it is easily shown
that w is continuously differentiable and satisfies

W(t) = AS(t)z0 + C()yo + / \ Ot = s)f(s)ds, teR.

Let us remark that if w'is a solution of (2.2) in an interval [0,¢; + t5] with
t1,to > 0. Then when ¢ € [0,t, + ], from ¢(11-15), we have

w(t) = Ct =t)wltr) £ St — t1)w(t) + /t S(t—s)f(s)ds

= Ot — t){C(t)z0 + S )yo+ /0 St — ) f(r)dr}
St — 1) {AS(t)20 + Clt1)yo + /0 " Ot - 1) f(P)dr)
+ /: S(t — ) f(s)ds

— O(t)wo + S(t)yo + /0 St — 5)f(s)ds,

here, we used the relation

S(t)AS(s) = AS(1)S(s) = %cu +s)— %C(t — ) = Ot + ) — CHIC(s)
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for all s,t € R. This mean the mapping ¢ — w(t; + t) is a solution of (2.2) in
0,1 + to] with initial data (w(ty),w(t1)) € D(A) x E.

From now on, we introduce the regularity of solutions of abstract semilinear
second order initial value problem (1.1) in a Banach space X. Let g : [0, T]xD(A) —
X be a nonlinear mapping such that ¢ — ¢(¢,w) is measurable and

|g(t,w1) = g(t, wa)||peay < L||wy — wsl]|
g9(t,0) =0

for a positive constant L.
For w € L*(0,T; D(A)), we set
t
F(t,w) = / k(t — s)g(s,w(s))ds
0

where k belongs to L?(0, 7). We will seek a mild solution of (1.1), that is, a solution
of the integral equation

t
w(t) = Clthao + S@an+ | SERNEG.0) F0)ds. @2)
0
Remark 2.1. If g: [0,T] x X — X is a nonlinear mapping satisfying
lg(t,w1) = g(t, wo)|| < Lifwy — wol|

for a positive constant L, then our results can be obtained immediately.

Lemma 2.2. Let w e L?(0,7;D(A)), T > 0. Then F(;yw) € L*(0,T; X) and

[1F(, )10, < LIl gag0, 2y VT[]l 0.7 b))
Moreover if wy, wy € L*(0,T; D(A)), then

IIE (- wi) — F(wo)| 20y < LIkl 2200y VT w1 — wa | 220 m:0(4) -

Proof. From (gl), (g2) and using the Holder inequality, it is easily seen that
T t
PGB < [ 1] K= S)g(s.wlo)ds|Par
0 0 . .
< Ikl ooy / / 12w (s)|Pdsdt

< L2[|k] 2200 THwl 220 7.0 a))-

The proof of the second paragraph is similar. m
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Now, as in Theorem 3.1 of [1], we give a norm estimation of the solution of (1.1)
and establish the global existence of solutions with the aid of norm estimations.

Proposition 2.2. Suppose that the assumptions (g1), and (g2) are satisfied. If f :
R — X is continuously differentiable, vy € D(A),yo € E, and k € WH(0,T), T >
0, then the solution w of (1.1) exists and is unique in L*(0,T; D(A))NWY2(0,T; E),
and there exists a constant C3 depending on T such that

[w|[z20.7:00ay) < C3(1 + ||zl peay + |[wolle + |1 fllwr20.1:x))- (2.5)

3 Approximate controllability

In this section, we consider the approximate controllability for the nonlinear second
order control system

dt?

o) = Aw(t) + F(t,w) + Bu(t), 0<t<T, (3.1)
w(0) =z, Fw(0) = Yo |

in a Banach space X where the controller B'is a bounded linear operator from some
Banach space U to X. Assume that

Assumption (G) The nonlinear mapping ¢ : [0,7] x X — X is such that ¢t —
g(t,w) is measurable and

gt wi) — g(t;w)|| < Lijwy = wol|,  [k()] < M. (3.2)

for a positive constant L.
For (3.1), a integral equation can be written as

{w(t) =C(t)xo + S(t)yo + f(f S{t—s){F(s,w) + Bu(s)}ds, (3.3)

w(0) = xg, w(0) = yo.
For every u € L*(0,T;U), it is natural that the solution w of (3.3) is continuous on
[0, 7.
Given a strongly continuous cosine family C(¢) (¢ € R), we define linear bounded
operators C' and S mapping L?(0,7T : X) into X by

Cp = /0 ' C(T — t)p(t)dt, Sp= /0 : S(T — t)p(t)dt,

for p(-) € L*(0,T : X) and S(t) is the associated sine family of C(t).
We define the reachable sets for the system (3.1) as follows:
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Definition 3.1. Let w(t; F,u) is a solution of the (3.1) associated with nonlinear
term F and control w at the time t.

Ry (F) = {(w(T; F,u), w(T; F,u)) :u € L*(0,T;U)} C X? = X x X,
R7(0) = {(w(T;0,u), w(T;0,u)):u € L*0,T;U)} C X2
The nonempty subset Ry(F) in X? consisting of all terminal states of (3.1) is called

the reachable sets at the time T of the system (3.1). The set Rr(0) is one of the
linear case where F' = 0.

Definition 3.2. The system (3.1) is said to be approzimate controllable on the
interval [0,T) if
Ry(F) = X?

where Ry(F) is the closure of Rp(F) in X2,
that is, for any € > 0,7 € D(A) and § € E there exists a control u € L*(0,T;U)
such that

|z = C(T)xg — S(T)yy — SF(-,w) — SBu|| <'e,
|5 — AS(T)zo <C(T)yo — CE(-, w) — CBul| < e.

We introduce the following hypothesis:

Assumption (B) For any € > 0 and p € L*(0,T; X) there exists a u € L*(0,T;U)
such that

|ICp — CBuj| <e,
|| Bullizosx) < aillpllrzoex), 0Lt <T.

where ¢, is a constant independent of p.

We remark that from ¢(11-14) of Lemma 2.1, the operator S also satisfies the con-
dition (B), that is, for any € > 0 and p € L*(0,T; X) there exists a u € L*(0,T;U)
such that

1Sp — SBu|| <,
{ |Bullr2004:x) < aillpllzz04x), 0<t<T.
For the sake of simplicity we assume that sine family S(¢) is bounded as in ¢(7):
ISl < K(t) ¢=0.
Here, we may consider the following inequality:

K(t) <w 'K(e*' —1).
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Lemma 3.1. Let u; and uy be in L*(0,T;U). Then under the Assumption (G), we
have

w(t; F,ur) — w(t; Fyus)|| < K(T)eX DM VT||Buy — Bus||r200:x).
for0 <t <T.
Proof. For 0 <t < T, we have
lw(t; Fyur) = w(t; Frup)|| < K(T)VH[Bui(s) — Bus(s)||20:x)

t
+K(T)MLt/ Jw(s; Fyur) — w(s; F,us)||ds,
0

where L is a constant in Assumption (G). Therefore, by using Gronwall’s inequality
this lemma follows. [

For the approximate controllability for linear equation, we know the following
necessary Lemma before proving the main theorem.

Lemma 3.2. Under Assumption (B) we have Ry(0) = X2
Proof. Let z € D(A),y € E. Putting

m=1—C(T)xg— S(T)yo € D(A), ma=9y— AS(T)zg —C(T)yo € E,

then there exists some p € C*([0,T] : X) such that

= / SEL p(e)dt,  my = / C(T = typ(t)dt,

for instance, take p(t) = {C(t —=T)+ S(t —T)}ns/T. By hypothesis (B) there exists
a function v € L?(0,T;U) such that

|2 — C(T)axo — S(T)yo — SBul| < e,
|y — AS(T)xo — C(T)yo — CBul| < e.

The denseness of the domain D(A) in X implies the approximate controllability of
the corresponding linear system. O

Theorem 3.1. Under Assumptions (G), (B), the system (3.1) is approximately
controllable on [0,T], T > 0.
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Proof. We will show that D(A) x E C Ry(F), i.e., for given € > 0 and (&7, &) €
D(A) x E there exists u € L*(0,T;U) such that

|ér — w(T; FLu)|| <e, (3.4)
lér — @(T; Fyu)|| < e.

As (é7,€r) € D(A) x E there exists a p € L2(0,T; X) such that
S*p =& — C(T)xo — S(T)wo, ép = éT — AS(T)zo — C(T)yo.

Let u; € L*(0,T;U) be arbitrary fixed. Since by the Assumption (B) there exists
uy € L*(0,T;U) such that

15 = P (- w(-: F.un))) = SBugl| < 2

IO — F (g Fu)))— CBus || < 2

it follows

ller — C(Two = S(T)gh— SE( awl-; Four)) — SBus|) < Z (3.6)

x A A €
167 — AS(T)wo =G (T)yo — CF (-, w5 F 1)) = CBus|| < .
We can also choose vy € L*(0,T; U) by the Assumption (B) such that

ISPC (i Fou) = F(w( Fan)) = $Bul < S, (37)

A A €
ICE (w5 Fug)) = (- w5 Fow))) = CBuf| < o
and by the Assumption (B),

||BU2||L2(0,t;X) S@l|F(,w( Fow)) = F(-w( -5 F U2))||L2(0,t;X)

for 0 <t < T. From now, we will only prove (3.4), while the proof of (3.5) is similar.

Collection @ pknu



10

In view of Lemma 3.1 and the Assumption (B)

|| Bua|[2(0.6:x) < ql{/ot |F (7, w(r; Fous)) — F(r,w(r; Fou)|Pdr )
<an( [ [ lhe(rs Fu) — i B s}
0 0

< @MLK (T)eXMMET /T / t / 1B - Buy|[32(0,4,x)dsdr}>
0 0

< qlMLK(T>€K(T)MLT2ﬁ(/t /T 1dsdr)? || Buy — Bual|r2(0:x)
0 0

- qlMLK(T)eK”)MLTQ\/T(g)%||Bu2 — Bua||1200.,x)-

Put us = uy — v5. We determine w3 such that

N N €
||S(F(-,w(-;F,u3)) _F('vw(';F7u2))) _SBU?)H - gv
||BU3||L2(0,t;X) = q1||F(-,w(-;F,u3)) — F('7w('§F7U2))|'L2(0,t;X)

for 0 <t < T. Hence, we have

||BUsHL2 0,4;X)

< ql{/ | F(7yw(75 Fous)) — F(r,w(T; F, u2))‘|2d7-}%
< Q1ML{/ / lw(s; Fyag) — wiss F,up)||Pdsdr}2
0 Jo
< k@O [ B Bualg,xdsir)?
0 Jo
< M LE(T)e MMV T / | / 1Bl s}
< (@MLK (T)e" DMET/T {/ / _||BU2 BU1||%2(0,5;X)deT}%

< (qlMLK<T> (T)MLTQﬁ)2(/ gdeT) ||BU2 - BulHLQ(O,t;X)
0 Jo

t4

< (qlMLK(T)@K(T)MLTQ\/T)Q(2 4)%HBU2 — Bual|r2(0,4:x)-
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By proceeding this process, and from that

|B(tn = uns1)|L20,6:x) = |[BUnllz2(0,6:x)
< (@ MLEVTR Oy P 1B — Bl
_ (qlMLK(T)\\/ﬁTeK(T)MLT%)n_l Jﬁ“ Bus — Bu||r2(0.:x)
it follows that
f: || Bty i1 — Bun||L2(O,T;X)
n=1
< §<Q1MLK<T)g6K(T)MLT2t)n\/IHHBUQ — Busllpiox) < .

Therefore, there exists u* € L*(0,T; X) such that

lim Bu, =u* in  L*(0,T;X). (3.8)

n—oo

From (3.6), (3.7) it follows that

&7 — C(T)zg — S(T)yo — SF(-hw(- Fouz)) — SBusl|
= ||&p = C(T)zo — S(T)yo — SF(-,w(- F,u,)) — SBuy 4 SBu,

= SIF(w(s Fyug)) = F( w(s Fun) ]

1 1

By choosing choose v,, € L*(0,T;U) by the assumption (B) such that

< (

€

ISF(Cw( 5 Frun)) = F(w(-5 Frun)) = SBu| < o,

putting wu, 1 = u, — v,, we have

l&r — S(T)g — SF(, 2( g, f,1n)) — SPup 1]
1 1

SRREEEE

< ( n=12 -

Therefore, for € > 0 there exists integer N such that

1$Bun+1 — SBuy|| < g
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and
|er — C(T)azo — S(T)yo — SF(-,w(-; Fyuy)) — SBuyl|
< ||ér = C(T)xo — S(T)yo — SF (-, w(-s Fyun)) — SBuy |
+ HSBUN+1 — S’BUNH

1
<(§+~--+2N+1)5+2§5

And by the similar method, we also obtain that
1&r — AS(T)zo — C(T)yo — CF(-,w(-; Fyuy)) — CBuyl| < e.

Thus, the system (3.1) is approximately controllable on [0, 7] as N tends to infinity.

Example. Let X = L*([0,7];R). We consider the following partial differential
equation

dQﬁ—t(;»’v) = Aw(t, diF A (E00) R ) 0 < b, TUW\x <,

w(t,0) =w(t,m)=0, teR (3.9)
w(05z) = zo(@)y Lw(0,z)=wo(@), O<z<T

Let e,(z) = \/gsin nx. Then {e, : n = 1,---} is an orthonormal base for X. Let

A: X — X be defined by
Aw(z) = w"(x),

where D(A) = {w € X : w, are absolutely continuous, w0 € X, w(0) = w(w) = 0}.
Then

Z (w,en)en, w e D(A),

and A is the infinitesimal generator of a strongly continuous cosine family C(t),
t € R, in X given by

o]
E cosnt(w,e,)e,, w e X.

n=1

Let g1(t,z,w,p), p € R™, be assumed that there is a continuous p(t,7) : R x R —
R* and a real constant 1 <~ such that
(f1) ¢1(t,2,0,0) =0,
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(f2) |gl(t,a7,w,p) - gl(tax7w>Q>| < p(tv |1U|)|p - Q|a
(fg) ’gl(twrawlap) - gl(thaw%p)‘ < p(t7 |w1| + ‘w2’)’w1 — Wal.

Let
g(t,w)xr = g1(t, x,w, Dw).
Then noting that

gt wi) — g(t, wo)[f 5 < 2/ |g1(t, 2, w1, Dwy) — gy (ta, we, DWaq)du
Q

+2 / ’gl(t7 u, W, Q) - gl(t7 Uu, wa, Q)|2du)
Q
it follows from (f1), (f2) and (f3) that

gt wi) — gt w2)l[52 < L{|willpeay: Nyl peay) [lwr — wa|peay

where L(||wi||p(ay, ||w2||pea)) is a constant depending on ||w:||pay and ||wa||pa).
We set

F(t,w) = /0 k(t — s)g(s,w(s))ds

where k belongs to L*(0,T).
Let U = X, 0 < a < T and define the intercept controller operator B, on

L*(0,T; X) by
0 <t
A Y ¥ i
u@®), a<t<T

for u € L?(0,T; X), For a given p-€ L*(0,T; X) let us choose a control function u
satisfying

u@:{ 0, 0<t<ay
1) + 720 = gt da))plrE(t — ), a < < T.
Then u € L2(0,T; X) and Sp = SB,u
From the following:
| Baul|200,mx) = |ul|12(a,7:%)

w (0
<Pl ) + Ke M |lp(——( = a))llrxam:x)

T -«
< (14 Ky [ —=)lIpllezorx)

it follows that the controller B,, satisfies Assumption (B). Therefore, from Theo-
rem 3.1, we have that the nonlinear system given by (3.9) approximate controllable
on [0, 7] O
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