
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/








CONTENTS

Abstract(Korean) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Distance and similarity measures for dual hesitant
fuzzy sets and their applications . . . . . . . . . . . . . . . . . . . . 7

2.1. Distance and similarity measures for DHFSs . . . . . . . . . 7
2.2. Ordered weighted distance measures for DHFSs . . . . . . 23
2.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. Correlation measures for dual hesitant
fuzzy information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1. Correlation measures of dual hesitant fuzzy elements . . 30
3.2. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. Dual hesitant fuzzy Bonferroni means
and their applications in group decision making . . . . 40

4.1. Basic concepts and operations . . . . . . . . . . . . . . . . . . . . . . 40
4.2. Dual hesitant fuzzy Bonferroni means . . . . . . . . . . . . . . . 44
4.3. Weighted dual hesitant fuzzy Bonferroni means . . . . . . . 60
4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

i



본 논문은 쌍대 퍼지 집hesitant 합의 거리측도 상관계수 및 다양한 집성연,

산자에 기초한 집단의사결정의 해결방법을 연구한 것으로 그 주요내용은 다

음과 같이 요약된다.

첫째 쌍대, 퍼지hesitant 집합의 거리측도와 닮음측도를 정의하고, Hamming

거리, 거리 및 에 기초한 다양한 쌍대 거Euclidean Hausdorff metric hesitant

리를 소개하였다 속성의 가중 정보를 더한 쌍대 거리를 이용한 의사. hesitant

결정문제의 해결방안을 제안하고 이 방안을 에너지 정책 채택문제에 적용하,

였다 또한 쌍대 퍼지집합의 순서가중 거리를 제안하고 속성의 가중. hesitant ,

치를 모를 경우 가중치를 결정하는 방법을 이용하여 쌍대 퍼지 정보hesitant

를 갖는 의사결정문제의 해결방안도 제안하였다.

둘째 쌍대, 퍼지 집합의 상관계수를 정의하고 쌍대 퍼지hesitant , hesitant

집합들의 연산을 이용하여 다양한 상관계수 공식을 유도하고 이들의 상호관

계를 조사하였다 그 예로서 이들을 쌍대 퍼지 환경에서의 의학진단. hesitant

에 적용하고 다른 상관계수로 얻어진 결과들은 서로 다르다는 사실을 보였다, .

셋째 쌍대 퍼지 평균을 소개하고 이 평균연산자의 멱, hesitant Bonferroni ,

등성 단조성 교환성 유계성과 같은 성질을 조사하였다 매개변수의 값에 따, , , .

른 여러 연산자들을 유도하고 가중된 쌍대 퍼지 평균를, hesitant Bonferroni

소개하였다 이 연산자를 기초한 쌍대 퍼지환경에서의 다속성 의사결. hesitant

정문제의 해결방안을 제시하였다.

ⅱ



Chapter 1

Introduction

Hesitancy and uncertainty are usually unavoidable problems in decision making.

To express decision makers’ evaluation information more objectively, several tools

have been proposed, such as fuzzy set (FS) [83], interval-valued fuzzy set (IVFS)

[84, 41], intuitionistic fuzzy set (IFS) [1], type-2 fuzzy set (T2FS) [16, 35] fuzzy

multiset (FMS) [35, 34, 71], interval-valued intuitionistic fuzzy set (IVIFS) [2, 3],

hesitant fuzzy set (HFS) [45, 46] and interval-valued hesitant fuzzy set. For

example, in a decision making problem, some decision makers consider as possible

values for the membership degree of x into a set A a few different values 0.4, 0, 5

and 0.6, and for the nonmembership degrees 0.1, 0, 2 and 0.3 replacing just one

or a tuple. Since the membership and the nonmembership can represent the

opposite epistemic degrees, i.e., the membership comes to grips with epistemic

certainty and the nonmembership comes to grips with epistemic uncertainty, we

do not confront an interval of possibilities (IVFS or IVIFS), or some possibility

distributions (T2FS) on the possible values, or multiple occurrences of an element

(FMS), but several different possible values indicate the epistemic degrees whether

certainty or uncertainty. To deal with this cases, Zhu et al. [86] introduced

the concept of dual hesitant fuzzy set (DHFS) considered as a generalization

of fuzzy set (FS). They discussed the relationships among DHFSs and other

generalizations of FSs such as IFSs, T2FSs, FMSs and HFSs.
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Distance and similarity are the most broadly applied indices in many fields

and also important measures in data analysis and classification, pattern recogni-

tion, decision making and so on. Lots of studies have been done on these issues

[8, 10, 30, 47]. As many real world data may be fuzzy, the concepts of distance

and similarity have been extended to fuzzy environments, intuitionistic fuzzy en-

vironments, interval-valued fuzzy environments and hesitant fuzzy environments.

For instance, Li and Cheng [31] generalized the Hamming distance and the Eu-

clidean distance by adding a parameter and gave a similarity formula for IFSs only

based on the membership degrees and nonmembership degrees. Grzegorzewski

[19] defined distance measures for IVFSs and IFSs based on the Hausdorff metric.

Hung and Yang [27, 28] defined similarity measures for IFSs based on Hausdorff

distance and Lp metric, respectively. Xu and Chen [61] gave a comprehensive

overview of distance and similarity measures for IFSs and developed several con-

tinuous distance and similarity measures for IFSs. Among them, the most used

distance measures for IFSs A and B on X = {x1, x2, . . . , xn} are the following:

• the Hamming distance:

dih(A,B) =
∑n
i=1 (|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|);

• the normalized Hamming distance:

dinh(A,B) = 1
n

∑n
i=1 (|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|);

• the Euclidean distance:

die(A,B) = [
∑n
i=1 (|µA(xi)− µB(xi)|2 + |νA(xi)− νB(xi)|2)]

1/2
;

• the normalized Euclidean distance:

dine(A,B) = 1
n

[
∑n
i=1 (|µA(xi)− µB(xi)|2 + |νA(xi)− νB(xi)|2)]

1/2
;

• the Hausdorff distance:

dihd(A,B) = 1
2

(max |µA(xi)− µB(xi)|+ max |νA(xi)− νB(xi)|).

Because of the potential applications of distance and similarity measures, they

have been further extended by Xu and Chen [61] for IVIFSs. Several new methods

of deriving the distance and similarity measures for both IFSs and IVIFSs have
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also been proposed. Wu and Mendel [52] extended Jaccard’s similarity measure

for T2FSs and developed a new similarity measure for interval T2FSs. Xu and

Xia [53] proposed a variety of distance measures for HFSs, based on the corre-

sponding similarity measures can be obtained, and further developed a variety

of ordered weighted distance measures for HFSs. However, the aforementioned

measures cannot be used to deal with the distance and similarity between DHFSs.

Due to the fact that two kinds of hesitancy (i.e., membership hesitancy and non-

membership hesitancy) of decision makers’ evaluation information are common

problems in decision making as previously stated, it is necessary to develop some

measures for DHFSs. To do this, Chapter 2 of this thesis is organized as follows.

In Section 2.1, we present the axioms for distance and similarity measures, give

a variety of distance measures for DHFSs and apply them to multiple attribute

decision making with the known weight information on attributes. Section 2.2

propose a class of ordered weighted distance and similarity measures for DHFSs,

and give several methods to determine the weighting vector associated with these

distance measures. Section 2.3 ends the chapter with the concluding remarks.

Correlation indicates how well two variables move together in a linear fashion,

i.e., correlation reflects a linear relationship between two variables, and then it

is an important measure in data analysis [59], in particular in decision making,

medical diagnosis, pattern recognition and other real-would problems [43]. Lots

of studies [7, 9, 13, 18, 21, 22, 24, 25, 26, 29, 33, 36, 39, 40, 50, 57, 65, 80] on

this issue have been extended to fuzzy environment and its extended environ-

ments. For instance, Hung and Wu [25] used the concept of expected value to

define the correlation coefficient of fuzzy numbers, which lies in [−1, 1]. Hong [22]

considered the fuzzy measures for correlation coefficient of fuzzy numbers under

weakest t-norm-based fuzzy arithmetic operations. Gerstenkorn and Mańko [18]

introduced the correlation and correlation coefficient of intuitionistic fuzzy sets

(IFSs) [1]. Hung [24] and Mitchell [33] derived the correlation coefficient of IFSs

from a statistical viewpoint by interpreting an IFS as an ensemble of fuzzy sets.

Hung and Wu [26] proposed a method to calculate the correlation coefficient of
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IFSs by means of “centroid”. This formula tells us not only the strength of the

relationship between IFSs but also whether the considered IFSs are positively

or negatively related. Szmidt and Kacprzyk [43] proposed a formula for mea-

suring the correlation coefficient of IFSs adopting the concept from statistics,

and showed the importance to take into account all three terms (the member-

ship degree, nonmembership degree and hesitation margin) describing IFSs. In

interval-valued intuitionistic fuzzy environments, Bustince and Burillo [9] intro-

duced the concepts of correlation and correlation coefficient of interval-valued

intuitionistic fuzzy sets (IVIFSs) [2] and gave two decomposition theorems of the

correlation of IVIFSs, one in terms of the correlation of interval-valued fuzzy sets

(IVFSs) [84] and the entropy of IFSs, and the other theorem in terms of the corre-

lation of IFSs. Hong [21] generalized the concepts of correlation and correlation

coefficient of IVIFSs in a general probability space and generalized the results

of Bustince and Burillo [9] with remarkably simple proofs. He also introduced

three more decomposition theorems of the correlation of IVIFSs in terms of the

correlation of IVFSs and the entropy of IFSs. Park et al. [36], Ye [80] and Wei

et al. [50] further studied the methods to calculate the correlation coefficients of

IVIFSs and applied them to multiple attribute group decision making problems.

Because of the potential applications of correlation coefficients, they have been

further extended by Xu and Xia [66] and Chen et al. [13] for hesitant fuzzy sets

(HFSs) [45, 46]. Chen et al. [13] derived some correlation coefficient formulas

for HFSs and applied them to two real world examples by using clustering anal-

ysis under hesitant fuzzy environments. Xu and Xia [66] defined the correlation

measures for hesitant fuzzy information and then discussed their properties. Zhu

et al. [86], recently, introduced the definition of dual hesitant fuzzy set (DHFS),

permitting both the membership and the nonmembership of an element, respec-

tively, to a set having a few different values, which can arise in a group decision

making problem. DHFS can reflect the human’s hesitance more objectively than

other extensions of fuzzy set (IFS, IVFS, IVIFS, HFS, etc.), and thus it is very

necessary to develop some theories about DHFSs. However, little has been done

about this issue, Huang et al. [23] studied the aggregation operators of DHFSs
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and applied them to decision making. In Chapter 3 of this thesis, we discuss the

correlation measures of dual hesitant fuzzy information. To do this, Section 3.1

proposes the correlation measures of dual hesitant fuzzy elements, several impor-

tant conclusions are obtained, and an example is given to illustrate the developed

correlation measures. Finally, Section 3.2 gives the concluding remarks.

Multiple attribute group decision making is the common phenomenon in mod-

ern life, which is to select the optimal alternative(s) from several alternatives or

to get their ranking by aggregating the performances of each alternative under

several attributes, in which the aggregation techniques play an important role.

Considering the relationships among the aggregated arguments, we can classify

the aggregation techniques into two categories, the ones which consider the ag-

gregated arguments dependently and the ones which consider the aggregated ar-

guments independently. For the first category, the well-known ordered weighted

averaging (OWA) operator [72, 73] is the representative, on the basis of which, a

lot of generalizations have been developed, such as the ordered weighted geomet-

ric (OWG) operator [14, 63, 64], the ordered ordered weighted harmonic mean

(OWHM) operator [11], the continuous ordered weighted averaging (C-OWA) op-

erator [76], the continuous ordered weighted geometric (C-OWG) operator [79],

and so on. The second category can reduce to two subcategories: the first subcat-

egory focuses on changing the weight vector of the aggregation operators, such as

the Choquet integral-based aggregation operators [77], in which the correlations

of the aggregated arguments are measured subjectively by the decision makers,

and the representatives of another subcategory are the power averaging (PA) op-

erator [74] and the power geometric (PG) operator [68], both of which allow the

aggregated arguments to support each other in aggregation process, on the ba-

sis of which the weighted vector is determined. The second subcategory focuses

on the aggregated arguments such as the Bonferroni mean (BM) operator [6].

Yager [78] provided an interpretation of BM operator as involving a product of

each argument with the average of the other arguments, a combined averaging

and “anding” operator. Beliakov et al. [5] presented a composed aggregation
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technique called the generalized Bonferroni mean (GBM) operator, which models

the average of the conjunctive expressions and the average of remaining. In fact,

they extended the BM operator by considering the correlations of any three ag-

gregated arguments instead of any two. However, both the BM operator and the

GBM operator ignore some aggregation information and the weight vector of the

aggregated arguments. To overcome this drawback, Xia et al. [56] developed the

generalized weighted Bonferroni mean (GWBM) operator as the weighted version

of the GBM operator. Based on the GBM operator and geometric mean operator,

they also developed the generalized Bonferoni geometric mean (GWBGM) oper-

ator. The fundamental characteristic of the GWBM operator is that it focuses

on the group opinions, while the GWBGM operator gives more importance to

the individual opinions. Because of the usefulness of the aggregation techniques,

which reflect the correlations of arguments, most of them have been extended to

fuzzy, intuitionistic fuzzy or hesitant fuzzy environment [37, 44, 59, 56, 69, 82, 85].

However, how to apply the BM to deal with dual hesitant fuzzy information is

new research direction, which is also the focus of this thesis. In Chapter 4 of this

thesis, we investigate the BM under dual hesitant fuzzy environments. In Section

4.1 briefly reviews some basic concepts and operations related to the BM and

dual hesitant fuzzy element (DHFE), which considered in the basic calculational

unit of DHFS. In Section 4.2, an dual hesitant fuzzy BM (IVHFBM) is developed,

and its variety of special cases are discussed. Section 4.3 introduces the weighted

DHFBM (WDHFBM) and develops a procedure for multiple attribute decision

making. Section 4.5 ends this chapter with some concluding remarks.
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Chapter 2

Distance and similarity measures

for dual hesitant fuzzy sets and

their applications

2.1 Distance and similarity measures for DHFSs

Definition 2.1.1 [1] Let X be a fixed set, an intuitionistic fuzzy set (IFS) A in

X is given as an object having the following form:

A = {〈x, µA(x), νA(x)〉|x ∈ X}, (2.1)

where µA : X → [0, 1] and νA : X → [0, 1] denote, respectively, membership

function and nonmembership function of A with the condition 0 ≤ µA(x) +

νA(x) ≤ 1 for any x ∈ X. Xu and Yager [67] called each pair (µ(x), ν(x)) an

intuitionistic fuzzy number (IFN), and denoted by α = (µα, να).

For each IFS A in X,

πA(x) = 1− µA(x)− νA(x) (2.2)

is called the hesitancy degree or intuitionistic index of x to A. Especially, if

πA(x) = 0 for all x ∈ X, then the IFS reduces to a fuzzy set. Clearly, a prominent

7



characteristic of IFS is that it assigns to each element a membership degree, a non-

membership degree and hesitation degree, and thus, IFS constitutes an extension

of fuzzy set which only assigns to each element a membership degree.

The hesitant fuzzy set [45, 46], as a generalization of fuzzy set, permits the

membership degree of an element to a set presented as several possible values

between 0 and 1, which can better describe the situations where people have

hesitancy in providing their preferences over objects in process of decision making.

Definition 2.1.2 [45, 46] Let X be a fixed set, a hesitant fuzzy set (HFS) is in

terms of function that when applied to X returns a subset of [0, 1], which can be

represented as the following mathematical symbol:

E = {〈x, h(x)〉 : x ∈ X}, (2.3)

where h(x) is a set of some values in [0, 1], denoting the possible membership

degrees of element x ∈ X to the set E. For convenience, Xia and Xu [53] called

h(x) a hesitant fuzzy element (HFE).

Zhu et al. [86] defined dual hesitant fuzzy set in terms of two functions that

return two sets of membership values and nonmembership values, respectively,

for each element in domain as follows.

Definition 2.1.3 [86] LetX be a fixed set, then a dual hesitant fuzzy set (DHFS)

E on X is described as:

E = {〈x, hE(x), gE(x)〉|x ∈ X}, (2.4)

in which hE(x) and gE(x) are two sets of some values in [0, 1], denoting the

possible membership degrees and nonmembership degrees of element x ∈ X to

the set E, respectively, with the conditions:

0 ≤ γ, η ≤ 1, 0 ≤ γ+ + η+ ≤ 1, (2.5)

where γ ∈ h(x), η ∈ g(x), γ+ ∈ h+(x) = max{γ|γ ∈ h(x)}, and η+ ∈ g+(x) =

max{η|η ∈ g(x)} for all x ∈ X. For convenience, the pair {hE(x), gE(x)} is
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called a dual hesitant fuzzy element (DHFE), with the conditions: γ ∈ hE(x),

η ∈ gE(x), γ+ = max{γ|γ ∈ hE(x)}, η+ = max{η|η ∈ gE(x)}, 0 ≤ γ, η ≤ 1, and

γ+ + η+ ≤ 1.

For a given DHFS E = {hE, gE} 6= ∅, if the membership hesitancy part hE

and nonmembership hesitancy part gE have only one value γ and η, respectively,

and γ + η ≤ 1, then the DHFS reduces an intuitionistic fuzzy set. If hE and gE

have only one value γ and η, respectively, and γ + η = 1, or hE owns one value

and gE = ∅, then the DHFS reduces to an fuzzy set (also can be regarded as

hesitant fuzzy set). If hE 6= ∅ and gE = ∅, then the DHFS reduces the hesitant

fuzzy set. Thus the definition of DHFSs encompasses these fuzzy sets above.

It is noted that the numbers of values in membership hesitancy part hE(x)

and in nonmembership hesitancy part gE(x) in a DHFE E = {hE(x), gE(x)},
respectively, may be different, let l(hE(x)) be the number of values in hE(x), and

l(gE(x)) be the number of values in gE(x). We arrange the elements in hE(x) and

gE(x), respectively, in descending order, and let h
σ(j)
E (x) be the jth largest value

in hE(x), and g
σ(k)
E (x) be the kth largest value in gE(x).

Because that distance and similarity measures can be applied to many areas

such as pattern recognition, cluster analysis, approximate reasoning and decision

making, they have attracted a lot of attention. A lot of distance and similarity

measures have been developed for FSs, IFSs, FMs and DFSs as mentioned in

introduction, but there is little research on DHFSs. Thus, it is very necessary

to develop some distance and similarity measures under dual hesitant fuzzy en-

vironment. We first present this issue by proposing the axioms for distance and

similarity measures.

Definition 2.1.4 Let M and N be two DHFSs on X = {x1, x2, . . . , xn}, then

the distance measure between M and N is defined as d(M,N), which satisfies

the following properties:

(D1) 0 ≤ d(M,N) ≤ 1;

(D2) d(M,N) = 0 if and only if M = N ;

(D3) d(M,N) = d(N,M).
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Definition 2.1.5 Let M and N be two DHFSs on X = {x1, x2, . . . , xn}, then

the similarity measure between M and N is defined as s(M,N), which satisfies

the following properties:

(S1) 0 ≤ s(M,N) ≤ 1;

(S2) s(M,N) = 1 if and only if M = N ;

(S3) s(M,N) = s(N,M).

From Definitions 2.1.4 and 2.1.5, it is noted that s(M,N) = 1−d(M,N), and

thus, in this paper, we only discuss the distance measures for DHFSs and the

corresponding similarity measures can be obtained easily.

In most cases of two DHFSs M = {hM , gM} and N = {hN , gN}, we have

l(hM(xi)) 6= l(hN(xi)) and l(gM(xi)) 6= l(gN(xi)), and for convenience, let lh(xi) =

max{l(hM(xi)), l(hN(xi))} and lg(xi) = max{l(gM(xi)), l(gN(xi))} for each xi ∈
X. To operate correctly, we should extend the shorter ones, respectively, un-

til both of them in membership hesitancy part and nonmembership hesitancy

part have the same length, respectively, when we compare them. To extend the

shorter ones, the best way is to add the same values several times in them, re-

spectively. In fact, we can extend the shorter ones by adding any values in them,

respectively. The selection of these values mainly depends on the decision mak-

ers’ risk preferences. Optimists anticipate desirable outcomes and may add the

maximum value in membership hesitancy part and the minimum value in non-

membership hesitancy part, while pessimists expect unfavorable outcomes and

may add the minimum value in membership hesitancy part and the maximum

value in nonmembership hesitancy part. For example, let {hM(xi), gM(xi)} =

{{0.1, 0.2, 0.3}, {0.4, 0.5}}, {hN(xi), gN(xi)} = {{0.5, 0.6}, {0.2, 0.3, 0.4}}, then

we get l(hM(xi)) > l(hN(xi)) and l(gM(xi)) < l(gN(xi)). To operate correctly,

we should extend hN(xi) and gM(xi), respectively, to hN(xi) = {0.5, 0.5, 0.6} and

gM(xi) = {0.4, 0.4, 0.5} until they have the same lengths of hM(xi) and gN(xi), re-

spectively, the optimist may extend hN(xi) and gM(xi) as hN(xi) = {0.5, 0.6, 0.6}
and gM(xi) = {0.4, 0.4, 0.5}, and the pessimist may extend them as hN(xi) =

{0.5, 0.5, 0.6} and gM(xi) = {0.4, 0.5, 0.5}. Although the results may be different
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if we extend the shorter ones, respectively, by adding different values, it is reason-

able because the decision makers’ risk preferences can directly influence the final

decision. In this chapter, we assume that the decision makers are all pessimistic

(other situation can also be studied similarly).

Based on the Hamming distance and the Euclidean distance, we define a dual

hesitant normalized Hamming distance:

ddhnh(M,N) =
1

2n

n∑
i=1

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣


(2.6)

and a dual hesitant normalized Euclidean distance:

ddhne(M,N) =

 1

2n

n∑
i=1

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣2

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣2


1
2

,

(2.7)

where h
σ(j)
M (xi) and h

σ(j)
N (xi) are the jth largest values in hM(xi) and hN(xi),

respectively, and g
σ(k)
M (xi) and g

σ(k)
N (xi) are the kth largest values in gM(xi) and

gN(xi), respectively, which will be used thereafter.

We can further extend (2.6) and (2.7) into a generalized dual hesitant nor-

malized distance:

dgdhn(M,N) =

 1

2n

n∑
i=1

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣λ

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣λ


1
λ

,

(2.8)
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where λ > 0.

In particular, if λ = 1, then the generalized hesitant normalized distance

reduces the dual hesitant normalized Hamming distance; if λ = 2, then the

generalized hesitant normalized distance reduces the dual hesitant normalized

Euclidean distance.

If we apply the Hausdorff metric to the dual hesitant distance measure, then

a generalized dual hesitant normalized Hausdorff distance is given as

dgdhnh(M,N)

=

[
1

2n

n∑
i=1

(
max
j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣λ + max

k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣λ)] 1

λ

,

(2.9)

where λ > 0, j = 1, 2, . . . , lh(xi) and k = 1, 2, . . . , lg(xi).

Now we discuss two special cases of the generalized dual hesitant normalized

Hausdorff distance:

(1) If λ = 1, then (2.9) becomes a dual hesitant normalized Hamming-

Hausdorff distance:

ddhnhh(M,N)

=
1

2n

n∑
i=1

(
max
j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣+ max

k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣) .

(2.10)

(2) If λ = 2, then (2.9) becomes a dual hesitant normalized Euclidean-

Hausdorff distance:

ddhneh(M,N)

=

[
1

2n

n∑
i=1

(
max
j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣2 + max

k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣2)] 1

2

.

(2.11)
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Combining (2.6)-(2.11), we define a hybrid dual hesitant normalized Hamming

distance, a hybrid dual hesitant normalized Euclidean distance, and a generalized

hybrid dual hesitant normalized distance as follows, respectively:

dhdhnh(M,N) =
1

4n

n∑
i=1

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣+ max

j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣

+max
k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣], (2.12)

dhdhne(M,N) =

 1

4n

n∑
i=1

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣2

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣2 + max

j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣2

+ max
k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣2)] 1

2

, (2.13)

dghdhn(M,N) =

 1

4n

n∑
i=1

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣λ

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣λ + max

j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣λ

+ max
k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣λ)] 1

λ

, (2.14)

where λ > 0, j = 1, 2, . . . , lh(xi) and k = 1, 2, . . . , lg(xi).

Usually, the weight of each element xi ∈ X should be taken into account,

and so, we present the following weighted distance measures for DHFSs. Assume

13



that the weight of the element xi ∈ X is wi (i = 1, 2, . . . , n) with wi ∈ [0, 1] and∑n
i=1 wi = 1, then we obtain a generalized dual hesitant weighted distance:

dgdhw(M,N) =

1

2

n∑
i=1

wi

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣λ

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣λ


1
λ

(2.15)

and a generalized dual hesitant weighted Hausdorff distance:

dgdhwh(M,N)

=

[
1

2

n∑
i=1

wi

(
max
j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣λ + max

k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣λ)] 1

λ

,

(2.16)

where λ > 0, j = 1, 2, . . . , lh(xi) and k = 1, 2, . . . , lg(xi).

In the following, let us consider some special cases of the generalized dual hes-

itant weighted distance (2.15) and the generalized dual hesitant weighted Haus-

dorff distance (2.16), respectively, by taking different values of the parameter

λ.

(1) If λ = 1, then we get a dual hesitant weighted Hamming distance:

ddhwh(M,N)

=
1

2

n∑
i=1

wi

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣+ 1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣


(2.17)

and a dual hesitant weighted Hamming-Hausdorff distance:

ddhwhh(M,N)

=
1

2

n∑
i=1

wi

(
max
j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣+ max

k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣) .
(2.18)
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(2) If λ = 2, then we have a dual hesitant weighted Euclidean distance:

ddhwe(M,N) =

1

2

n∑
i=1

wi

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣2

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣2


1
2

(2.19)

and a dual hesitant weighted Euclidean-Hausdorff distance:

ddhweh(M,N)

=

[
1

2

n∑
i=1

wi

(
max
j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣2 + max

k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣2)] 1

2

.

(2.20)

Furthermore, combining the generalized dual hesitant weighted distance (2.15)

and generalized dual hesitant weighted Hausdorff distance (2.16), we develop a

generalized hybrid dual hesitant weighted distance as

dghdhw(M,N) =

1

4

n∑
i=1

wi

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣λ

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣λ + max

j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣λ

+ max
k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣λ )] 1

λ

,

(2.21)

where λ > 0, j = 1, 2, . . . , lh(xi) and k = 1, 2, . . . , lg(xi).

In the special cases where λ = 1, 2, (2.21) reduces a hybrid dual hesitant

weighted Hamming distance and a hybrid dual hesitant weighted Euclidean dis-
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tance as follows, respectively:

dhdhwh(M,N) =
1

4

n∑
i=1

wi

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣+ max

j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣

+max
k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣ ), (2.22)

dhdhwe(M,N) =

1

4

n∑
i=1

wi

 1

lh(xi)

lh(xi)∑
j=1

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣2

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣2 + max

j

∣∣∣hσ(j)
M (xi)− hσ(j)

N (xi)
∣∣∣2

+ max
k

∣∣∣gσ(k)
M (xi)− gσ(k)

N (xi)
∣∣∣2)] 1

2

. (2.23)

In aforementioned mentioned analysis, the distance measures are discrete. If

both the universe of discourse and the weight of element are continuous, and the

weight of x ∈ X = [a, b] is w(x), where w(x) ∈ [0, 1] and
∫ b
a w(x)dx = 1, then we

define a continuous dual hesitant weighted Hamming distance, a continuous dual

hesitant weighted Euclidean distance and a generalized continuous dual hesitant

weighted distance as follows, respectively:

dcdhwh(M,N) =
1

2

∫ b

a
w(x)

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣

+
1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣
 dx, (2.24)

dcdhwe(M,N) =

1

2

∫ b

a
w(x)

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣2

+
1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣2
 dx


1
2

, (2.25)
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dgcdhw(M,N) =

1

2

∫ b

a
w(x)

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣λ

+
1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣λ
 dx


1
λ

, (2.26)

where λ > 0, j = 1, 2, . . . , lh(x) and k = 1, 2, . . . , lg(x).

If w(x) = 1
b−a for any x ∈ [a, b], then the continuous dual hesitant weighted

Hamming distance (2.24) reduces a continuous dual hesitant normalized Ham-

ming distance:

dcdhnh(M,N) =
1

2(b− a)

∫ b

a

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣

+
1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣
 dx (2.27)

and the continuous dual hesitant weighted Euclidean distance (2.25) reduces a

continuous dual hesitant normalized Euclidean distance:

dcdhne(M,N) =

 1

2(b− a)

∫ b

a

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣2

+
1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣2
 dx


1
2

(2.28)

and the generalized continuous dual hesitant weighted distance (2.26) reduces a

generalized continuous dual hesitant normalized distance:

dgcdhn(M,N) =

 1

2(b− a)

∫ b

a

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣λ

+
1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣λ
 dx


1
λ

, (2.29)

where λ > 0, j = 1, 2, . . . , lh(x) and k = 1, 2, . . . , lg(x).
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Similar to (2.16), if we apply the Hausdorff metric to the continuous dual

hesitant weighted distance measure, then a generalized continuous dual hesitant

weighted Hausdorff distance is given as

dgcdhwh(M,N)

=

[
1

2

∫ b

a
w(x)

(
max
j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣λ + max

k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣λ) dx] 1

λ

,

(2.30)

where λ > 0, j = 1, 2, . . . , lh(x) and k = 1, 2, . . . , lg(x).

In special cases where λ = 1, 2, the generalized continuous dual hesitant

weighted Hausdorff distance (2.30) reduces a continuous dual hesitant weighted

Hamming-Hausdorff distance:

dcdhwhh(M,N)

=
1

2

∫ b

a
w(x)

(
max
j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣+ max

k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣) dx

(2.31)

and a continuous dual hesitant weighted Euclidean-Hausdorff distance:

dcdhweh(M,N)

=

[
1

2

∫ b

a
w(x)

(
max
j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣2 + max

k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣2) dx] 1

2

,

(2.32)

respectively.

In particular, if w(x) = 1
(b−a)

for any x ∈ [a, b], then the generalized con-

tinuous dual hesitant weighted Hausdorff distance (2.30) becomes a generalized

continuous dual hesitant normalized Hausdorff distance:

dgcdhnh(M,N)

=

[
1

2(b− a)

∫ b

a

(
max
j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣λ + max

k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣λ) dx] 1

λ

,

(2.33)
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where λ > 0, j = 1, 2, . . . , lh(x) and k = 1, 2, . . . , lg(x), while the continuous dual

hesitant weighted Hamming-Hausdorff distance (2.31) becomes a continuous dual

hesitant normalized Hamming-Hausdorff distance:

dcdhnhh(M,N)

=
1

2(b− a)

∫ b

a

(
max
j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣+ max

k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣) dx

(2.34)

and the continuous dual hesitant weighted Euclidean-Hausdorff distance (2.32)

becomes a continuous dual hesitant normalized Euclidean-Hausdorff distance:

dcdhneh(M,N)

=

[
1

2(b− a)

∫ b

a

(
max
j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣2 + max

k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣2) dx] 1

2

.

(2.35)

Similar to (2.21), combining the generalized continuous dual hesitant weighted

distance (2.26) and generalized continuous dual hesitant weighted Hausdorff dis-

tance (2.30), we develop a generalized hybrid continuous dual hesitant weighted

distance as

dghcdhw(M,N)

=

1

4

∫ b

a
w(x)

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣λ +

1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣λ

+ max
j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣λ + max

k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣λ )dx] 1

λ

,

(2.36)

where λ > 0, j = 1, 2, . . . , lh(x) and k = 1, 2, . . . , lg(x).

Let λ = 1, 2, then from (2.36), we get a hybrid continuous dual hesitant

weighted Hamming distance and a hybrid continuous dual hesitant weighted Eu-

clidean distance as

dhcdhwh(M,N)
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=
1

4

∫ b

a
w(x)

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣+ 1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣

+ max
j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣+ max

k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣ )dx

(2.37)

and

dhcdhwe(M,N)

=

1

4

∫ b

a
w(x)

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣2 +

1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣2

+ max
j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣2 + max

k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣2 )dx] 1

2

,

(2.38)

respectively.

In particular, if w(x) = 1
(b−a)

for any x ∈ [a, b], then the generalized hybrid

continuous dual hesitant weighted distance (2.36) becomes a generalized hybrid

continuous dual hesitant normalized distance:

dghcdhn(M,N) =

 1

4(b− a)

∫ b

a

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣λ

+
1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣λ + max

j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣λ

+ max
k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣λ)dx] 1

λ

, (2.39)

where λ > 0, j = 1, 2, . . . , lh(x) and k = 1, 2, . . . , lg(x), and the hybrid continuous

dual hesitant weighted Hamming distance (2.37) reduces a hybrid continuous dual

hesitant normalized Hamming distance:

dhcdhnh(M,N) =
1

4(b− a)

∫ b

a

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣
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+
1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣+ max

j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣

+max
k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣ )dx (2.40)

and the hybrid continuous dual hesitant weighted Euclidean distance (2.38) be-

comes a hybrid continuous dual hesitant normalized Euclidean distance:

dhcdhne(M,N) =

 1

4(b− a)

∫ b

a

 1

lh(x)

lh(x)∑
j=1

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣2

+
1

lg(x)

lg(x)∑
k=1

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣2 + max

j

∣∣∣hσ(j)
M (x)− hσ(j)

N (x)
∣∣∣2

+ max
k

∣∣∣gσ(k)
M (x)− gσ(k)

N (x)
∣∣∣2)dx] 1

2

, (2.41)

respectively.

From the aforementioned analysis, it can be seen that the generalized dual

hesitant weighted distance (2.15), the generalized dual hesitant weighted Haus-

dorff distance (2.16) and the generalized hybrid dual hesitant weighted distance

(2.21) are three fundamental distance measures, based on which all of the other

developed distance measures can be obtained under some special conditions.

In what follows, we apply the our distance measures for DHFSs to multiple

attribute decision making under dual hesitant fuzzy environment.

Example 2.1.6 Energy is an indispensable factor for the socio-economic devel-

opment of societies. Thus the correct energy policy affects economic develop-

ment and environment, and so, the most appropriate energy policy selection is

very important. Suppose that there are five alternatives (energy projects) Gi

(i = 1, 2, 3, 4, 5) to be invested, and four attributes x1 (technological), x2 (en-

vironmental), x3 (socio-political) and x4 (economic) be considered (for details,

see [14]). The attribute weight vector is w = (0.15, 0.3, 0.2, 0.35)T . Assume

that the characteristics of the alternatives Gi (i = 1, 2, 3, 4, 5) with respect to
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the attribute xj (j = 1, 2, 3, 4) are represented by the DHFSs dij = {{γij|γij ∈
hdij}, {ηij|ηij ∈ gdij}}, where γij indicates the degree that the alternative xi sat-

isfies the attribute yj, ηij indicates the degree that the alternative xi does not

satisfy the attribute yj, such that γij ∈ [0, 1], ηij ∈ [0, 1] and γ+
ij + η+

ij ≤ 1.

All dij = {{γij|γij ∈ hdij}, {ηij|ηij ∈ gdij}} (i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4) are

contained in the dual hesitant fuzzy decision matrix D = (dij)5×4 (see Table 2.1).

Table 2.1: The dual hesitant fuzzy decision matrix D = (dij)5×4

x1 x2 x3 x4

G1 {{0.3}, {0.2, 0.4}} {{0.7}, {0.2}} {{0.5, 0.6}, {0.2, 0.3}} {{0.6, 0.7}, {0.1, 0.2}}
G2 {{0.5, 0.6}, {0.2}} {{0.3, 0.4}, {0.1, 0.2}} {{0.7, 0.8}, {0.1}} {{0.4, 0.5}, {0.2, 0.3}}
G3 {{0.3, 0.4}, {0.4, 0.5}} {{0.7, 0.8}, {0.1, 0.2}} {{0.4}, {0.3, 0.4}} {{0.7, 0.8}, {0.1}}
G4 {{0.2}, {0.6, 0.7}} {{0.8}, {0.1}} {{0.7, 0.8}, {0.2, 0.3}} {{0.8}, {0.1, 0.2}}
G5 {{0.8, 0.9}, {0.1}} {{0.6, 0.7}, {0.2, 0.3}} {{0.2}, {0.5, 0.6}} {{0.5, 0.7}, {0.1, 0.2, 0.3}}

Suppose that the ideal alternative is A∗ = {{1}, {0}} seen as a special DHFS

(i.e, A∗ is complete certainty), then we can calculate the distance between each

alternative and the ideal alternative using our distance measures. If we use the

generalized dual hesitant weighted distance (2.15), the generalized dual hesi-

tant weighted Hausdorff distance (2.16) and the generalized hybrid dual hesitant

weighted distance (2.21) to calculate the deviations between each alternative and

the ideal alternative, then we obtain the rankings of these alternatives, which

are listed in Tables 2.2-2.4, respectively, when some values of the parameter are

given. We find that the rankings are different as the parameter λ (which can

be considered as the decision maker’s risk-bearing attitude) changes, and conse-

quently, the proposed distance measures can provide the decision makers more

choices as the different values of parameter are given according to the decision

maker’s risk-bearing attitudes.
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Table 2.2: Results obtained by the generalized dual hesitant weighted distance

dgdhw

G1 G2 G3 G4 G5 Rankings

λ = 1 0.307500 0.343750 0.298750 0.265000 0.348750 G4 � G1 � G3 � G2 � G5

λ = 2 0.058500 0.079063 0.061188 0.055875 0.081771 G4 � G1 � G3 � G2 � G5

λ = 5 0.003353 0.005992 0.003931 0.006841 0.008499 G1 � G3 � G2 � G4 � G5

λ = 10 0.000219 0.000323 0.000194 0.000934 0.001118 G3 � G1 � G2 � G4 � G5

Table 2.3: Results obtained by the generalized dual hesitant weighted Hausdorff

distance dgdhwh

G1 G2 G3 G4 G5 Rankings

λ = 1 0.342500 0.385000 0.335000 0.287500 0.407500 G4 � G3 � G1 � G2 � G5

λ = 2 0.056370 0.088025 0.058500 0.057288 0.082713 G1 � G4 � G3 � G5 � G2

λ = 5 0.003166 0.008323 0.003353 0.007517 0.003122 G5 � G1 � G3 � G4 � G2

λ = 10 0.000215 0.000537 0.000220 0.001017 0.000079 G5 � G1 � G3 � G2 � G4

Table 2.4: Results obtained by the generalized hybrid dual hesitant weighted

distance dghdhw

G1 G2 G3 G4 G5 Rankings

λ = 1 0.325000 0.364375 0.316875 0.276250 0.378125 G4 � G3 � G1 � G2 � G5

λ = 2 0.057435 0.083544 0.059519 0.056581 0.082242 G4 � G1 � G3 � G5 � G2

λ = 5 0.003259 0.007157 0.003642 0.007179 0.005810 G1 � G3 � G5 � G2 � G4

λ = 10 0.000217 0.000430 0.000207 0.000976 0.000599 G3 � G1 � G2 � G5 � G4

2.2 Ordered weighted distance measures for

DHFSs

Xu and Chen [61] defined some ordered weighted distance measures, and then

Yager generalized Xu and Chen’s distance measures and provided a variety of

ordered weighted averaging norms, based on which he proposed several similarity

measures. Merigó and Gil-Lafuente [32] proposed an ordered weighted averaging

distance operator and applied it in the selection of financial products. In the
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following, we develop several ordered distance measures for DHFSs. Motivated by

the ordered weighted distance [61], we define a generalized dual hesitant ordered

weighted distance:

dgdhow(M,N) =

1

2

n∑
i=1

ωi

 1

lh(xσ̂(i))

lh(xσ̂(i))∑
j=1

∣∣∣hσ(j)
M (xσ̂(i))− hσ(j)

N (xσ̂(i))
∣∣∣λ

+
1

lg(xσ̂(i))

lg(xσ̂(i))∑
k=1

∣∣∣gσ(k)
M (xσ̂(i))− gσ(k)

N (xσ̂(i))
∣∣∣λ



1
λ

, (2.42)

where λ > 0, σ(j) and σ(k) are given in Section 2.1, and σ̂ : (1, 2, . . . , n) →
(1, 2, . . . , n) is a permutation satisfying the condition

1

lh(xσ̂(i+1))

lh(xσ̂(i+1))∑
j=1

∣∣∣hσ(j)
M (xσ̂(i+1))− hσ(j)

N (xσ̂(i+1))
∣∣∣

+
1

lg(xσ̂(i+1))

lg(xσ̂(i+1))∑
k=1

∣∣∣gσ(k)
M (xσ̂(i+1))− gσ(k)

N (xσ̂(i+1))
∣∣∣

≥ 1

lh(xσ̂(i))

lh(xσ̂(i))∑
j=1

∣∣∣hσ(j)
M (xσ̂(i))− hσ(j)

N (xσ̂(i))
∣∣∣

+
1

lg(xσ̂(i))

lg(xσ̂(i))∑
k=1

∣∣∣gσ(k)
M (xσ̂(i))− gσ(k)

N (xσ̂(i))
∣∣∣ , (2.43)

for i = 1, 2, . . . , n− 1.

In special cases where λ = 1, 2, the generalized dual hesitant ordered weighted

distance (2.42) reduces a dual hesitant ordered weighted Hamming distance:

ddhowh(M,N) =
1

2

n∑
i=1

ωi

 1

lh(xσ̂(i))

lh(xσ̂(i))∑
j=1

∣∣∣hσ(j)
M (xσ̂(i))− hσ(j)

N (xσ̂(i))
∣∣∣

+
1

lg(xσ̂(i))

lg(xσ̂(i))∑
k=1

∣∣∣gσ(k)
M (xσ̂(i))− gσ(k)

N (xσ̂(i))
∣∣∣
 (2.44)
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and a dual hesitant ordered weighted Euclidean distance:

ddhowe(M,N) =

1

2

n∑
i=1

ωi

 1

lh(xσ̂(i))

lh(xσ̂(i))∑
j=1

∣∣∣hσ(j)
M (xσ̂(i))− hσ(j)

N (xσ̂(i))
∣∣∣2

+
1

lg(xσ̂(i))

lg(xσ̂(i))∑
k=1

∣∣∣gσ(k)
M (xσ̂(i))− gσ(k)

N (xσ̂(i))
∣∣∣2



1
2

, (2.45)

respectively.

Similar to (2.16), with the Hausdorff metric, we develop a generalized dual

hesitant ordered weighted Hausdorff distance as

dgdhowh(M,N) =

[
1

2

n∑
i=1

ωi

(
max
j

∣∣∣hσ(j)
M (xσ̇(i))− hσ(j)

N (xσ̇(i))
∣∣∣λ

+ max
k

∣∣∣gσ(k)
M (xσ̇(i))− gσ(k)

N (xσ̇(i))
∣∣∣λ)] 1

λ

, (2.46)

where λ > 0, σ(j) and σ(k) are given in Section 2.1, and σ̇ : (1, 2, . . . , n) →
(1, 2, . . . , n) is a permutation satisfying the condition

max
j

∣∣∣hσ(j)
M (xσ̇(i+1))− hσ(j)

N (xσ̇(i+1))
∣∣∣+ max

k

∣∣∣gσ(k)
M (xσ̇(i+1))− gσ(k)

N (xσ̇(i+1))
∣∣∣

≥ max
j

∣∣∣hσ(j)
M (xσ̇(i))− hσ(j)

N (xσ̇(i))
∣∣∣+ max

k

∣∣∣gσ(k)
M (xσ̇(i))− gσ(k)

N (xσ̇(i))
∣∣∣ ,

i = 1, 2, . . . , n− 1.

(2.47)

In the following, we discuss two special cases of the generalized dual hesi-

tant ordered weighted Hausdorff distance (2.46) by taking different values of the

parameter λ:

(1) If λ = 1, then (2.46) becomes a dual hesitant ordered weighted Hamming-

Hausdorff distance:

ddhowhh(M,N)

=
1

2

n∑
i=1

ωi

(
max
j

∣∣∣hσ(j)
M (xσ̇(i))− hσ(j)

N (xσ̇(i))
∣∣∣+ max

k

∣∣∣gσ(k)
M (xσ̇(i))− gσ(k)

N (xσ̇(i))
∣∣∣) .

(2.48)
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(2) If λ = 2, then (2.46) becomes a dual hesitant ordered weighted Euclidean-

Hausdorff distance:

ddhoweh(M,N) =

[
1

2

n∑
i=1

ωi

(
max
j

∣∣∣hσ(j)
M (xσ̇(i))− hσ(j)

N (xσ̇(i))
∣∣∣2

+ max
k

∣∣∣gσ(k)
M (xσ̇(i))− gσ(k)

N (xσ̇(i))
∣∣∣2)] 1

2

. (2.49)

Combining (2.42) and (2.46), similar to (2.21), we develop a generalized hybrid

dual hesitant ordered weighted distance as

dghdhow(M,N) =

1

4

n∑
i=1

ωi

 1

lh(xσ̈(i))

lh(xσ̈(i))∑
j=1

∣∣∣hσ(j)
M (xσ̈(i))− hσ(j)

N (xσ̈(i))
∣∣∣λ

+
1

lg(xi)

lg(xi)∑
k=1

∣∣∣gσ(k)
M (xσ̈(i))− gσ(k)

N (xσ̈(i))
∣∣∣λ + max

j

∣∣∣hσ(j)
M (xσ̈(i))− hσ(j)

N (xσ̈(i))
∣∣∣λ

+ max
k

∣∣∣gσ(k)
M (xσ̈(i))− gσ(k)

N (xσ̈(i))
∣∣∣λ)] 1

λ

, (2.50)

where λ > 0, σ(j) and σ(k) are given in Section 2.1, and σ̈ : (1, 2, . . . , n) →
(1, 2, . . . , n) is a permutation satisfying the condition

1

lh(xσ̂(i+1))

lh(xσ̂(i+1))∑
j=1

∣∣∣hσ(j)
M (xσ̂(i+1))− hσ(j)

N (xσ̂(i+1))
∣∣∣

+
1

lg(xσ̈(i+1))

lg(xσ̈(i+1))∑
k=1

∣∣∣gσ(k)
M (xσ̈(i+1))− gσ(k)

N (xσ̈(i+1))
∣∣∣

+max
j

∣∣∣hσ(j)
M (xσ̈(i+1))− hσ(j)

N (xσ̈(i+1))
∣∣∣+ max

k

∣∣∣gσ(k)
M (xσ̈(i+1))− gσ(k)

N (xσ̈(i+1))
∣∣∣

≥ 1

lh(xσ̈(i))

lh(xσ̈(i))∑
j=1

∣∣∣hσ(j)
M (xσ̈(i))− hσ(j)

N (xσ̈(i))
∣∣∣

+
1

lg(xσ̈(i))

lg(xσ̈(i))∑
k=1

∣∣∣gσ(k)
M (xσ̈(i))− gσ(k)

N (xσ̈(i))
∣∣∣

+ max
j

∣∣∣hσ(j)
M (xσ̈(i))− hσ(j)

N (xσ̈(i))
∣∣∣+ max

k

∣∣∣gσ(k)
M (xσ̈(i))− gσ(k)

N (xσ̈(i))
∣∣∣ ,

i = 1, 2, . . . , n− 1. (2.51)
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Some special cases can be obtained just as discussed in Sections 2.1 and 2.2 as

the parameter and weight vector change. Furthermore, let do denote the ordered

distance measures defined above, then the ordered similarity measures for DHFSs

can be given as so = 1− do.

Finally, we consider, as another important issue, the determination of the

weight vectors associated with the ordered weighted distance measures. Based

on the works of Xu and Chen [61] and Xu and Xia [66], we propose three methods

to determine the weight vectors.

Considering each element {hM(xρ(i)), gM(xρ(i))} inM and {hN(xρ(i)), gN(xρ(i))}
in N , respectively, d({hM(xρ(i)), gM(xρ(i))}, {hN(xρ(i)), gN(xρ(i))}) (i = 1, 2, . . . , n)

as given in Section 2.1, and denoting σ̂, σ̇ and σ̈ as ρ, we have

(1) Let

ωi =
d({hM(xρ(i)), gM(xρ(i))}, {hN(xρ(i)), gN(xρ(i))})∑n

k=1 d({hM(xρ(k)), gM(xρ(k))}, {hN(xρ(k)), gN(xρ(k))})
,

i = 1, 2, . . . , n,

(2.52)

then ωi+1 ≥ ωi ≥ 0, i = 1, 2, . . . , n− 1, and
∑n
i=1 ωi = 1.

(2) Let

ωi =
e−d({hM (xρ(i)),gM (xρ(i))},{hN (xρ(i)),gN (xρ(i))})∑n

k=1 e
−d({hM (xρ(k)),gM (xρ(k))},{hN (xρ(k)),gN (xρ(k))})

, i = 1, 2, . . . , n, (2.53)

then 0 ≤ ωi ≤ ωi+1, i = 1, 2, . . . , n− 1, and
∑n
i=1 ωi = 1.

(3) Let

ḋ({hM , gM}, {hN , gN})

=
1

n

n∑
k=1

d({hM(xρ(k)), gM(xρ(k))}, {hN(xρ(k)), gN(xρ(k))})

(2.54)

and

d̈(d({hM(xρ(k)), gM(xρ(k))}, {hN(xρ(k)), gN(xρ(k))}), ḋ({hM , gM}, {hN , gN}))
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=
∣∣∣ d({hM(xρ(k)), gM(xρ(k))}, {hN(xρ(k)), gN(xρ(k))})

− 1

n

n∑
k=1

d({hM(xρ(k)), gM(xρ(k))}, {hN(xρ(k)), gN(xρ(k))})
∣∣∣,

(2.55)

then we define

ωi =
1− d̈(d(ai, bi), ḋ(c, d))∑n

k=1(1− d̈(d(ak, bk), ḋ(c, d)))
, i = 1, 2, . . . , n, (2.56)

where ai = {hM(xρ(i)), gM(xρ(i))}, bi = {hN(xρ(i)), gN(xρ(i))}, c = {hM , gM},
d = {hN , gN}, ak = {hM(xρ(k)), gM(xρ(k))}, bk = {hN(xρ(k)), gN(xρ(k))}, and so we

obtain ωi ≥ 0, i = 1, 2, . . . , n, and
∑n
i=1 ωi = 1.

From the aforementioned analysis, we know that the weight vector derived

from (2.52) is monotone decreasing sequence, the weight vector derived from

(2.53) is monotone increasing sequence, and the weight vector derived from (2.56)

combine the above two cases, i.e., the closer the value d({hM(xρ(i)), gM(xρ(i))},
{hN(xρ(i)), gN(xρ(i))}) to the mean 1

n

∑n
k=1 d({hM(xρ(k)), gM(xρ(k))}, {hN(xρ(k)),

gN(xρ(k))}), the larger the weight ωi.

Table 2.5: Results obtained by the generalized dual hesitant ordered weighted

distance dgdhow

G1 G2 G3 G4 G5 Rankings

λ = 1 0.36852 0.35096 0.42768 0.49327 0.46518 G2 � G1 � G3 � G5 � G4

λ = 2 0.08509 0.08091 0.10857 0.15837 0.13647 G2 � G1 � G3 � G5 � G4

λ = 5 0.00717 0.00605 0.00854 0.02519 0.01897 G2 � G1 � G3 � G5 � G4

λ = 10 0.00053 0.00032 0.00045 0.00347 0.00268 G2 � G3 � G1 � G5 � G4

In Example 2.1.6, if the attribute weight vector is unknown, then we can use

the ordered weight distance measures for DHFSs to calculate the distance between

each alternative and the ideal alternative. Without loss of generality, suppose that

d = ddhnh in (2.52) and ρ is given as in (2.43), we use the generalized dual hesitant
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ordered weighted distance measure (2.42) to calculate the distance between each

alternative and the ideal alternative. The derived results are shown in Table 2.5

with the different values of the parameter.

2.3 Conclusions

In this chapter, we have investigated the distance measures for DHFSs. Based on

the well-known Hamming distance, the Euclidean distance, the Hausdorff metric

and their generalizations, we have developed a class of dual hesitant distance

measures, and discussed their properties and relations as their parameters change.

We have also given a variety of ordered weighted distance measures for DHFSs

in which the distances are rearranged in decreasing order, and given three ways

to determine the associated weighting vectors. With the relationship between

distance measures and similarity measures, the corresponding similarity measures

for DHFSs have been obtained. It should be pointed out that all of the above

measures are based on the assumption that if the corresponding DHFEs in DHFSs

do not have same length, then the shorter one should be extended by adding

the minimum value in membership hesitancy part and the maximum value in

nonmembership hesitancy part in it until both the DHFEs have the same length.

In fact, we can extend the shorter DHFE be adding any values in membership

hesitancy part and the maximum value in nonmembership hesitancy part in it

until it has the same length of the longer one according to the decision makers’

preference and actual situations.
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Chapter 3

Correlation measures for dual

hesitant fuzzy information

3.1 Correlation measures of dual hesitant fuzzy

elements

IFSs, IVFSs, IVIFSs and HFSs are the extensions of fuzzy sets [83]. However,

these extensions cannot deal with the situation that people have two kinds of

hesitancy in providing their preferences over objects in process of decision making,

which permit the membership degrees and nonmembership degrees of an element,

respectively, to a set presented as several possible values. Zhu et al. [86], recently,

proposed the concept of dual hesitant fuzzy set to deal with such case.

In the following, we first introduce the concept of correlation coefficient for

DHFEs and then propose several correlation coefficient formulas and discuss their

properties.

Definition 3.1.1 Let M and N be two DHFEs, then the correlation coefficient

of M and N is defined as c(M,N), which satisfies the following properties:

(C1) |c(M,N)| ≤ 1;

(C2) c(M,N) = 1 if M = N ;
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(C3) c(M,N) = c(N,M).

On the basis of Definition 3.1.1, we can construct several correlation coeffi-

cients for DHFEs:

(1) c1(M,N) =
∑l

i=1
(h
σ(i)
M h

σ(i)
N +g

σ(i)
M g

σ(i)
N )

[
∑l

i=1
((h

σ(i)
M )2+(g

σ(i)
M )2)

∑l

i=1
((h

σ(i)
N )2+(g

σ(i)
N )2)]1/2

;

(2) c2(M,N) =
∑l

i=1
(h
σ(i)
M h

σ(i)
N +g

σ(i)
M g

σ(i)
N )

max{
∑l

i=1
((h

σ(i)
M )2+(g

σ(i)
M )2),

∑l

i=1
((h

σ(i)
N )2+(g

σ(i)
N )2)}

;

(3) c3(M,N) =
∑l

i=1
((h

σ(i)
M −h̄M )(h

σ(i)
N −h̄N )+(g

σ(i)
M −ḡM )(g

σ(i)
N −ḡN ))

[
∑l

i=1
((h

σ(i)
M −h̄M )2+(g

σ(i)
M −ḡM )2)

∑l

i=1
((h

σ(i)
N −h̄N )2+(g

σ(i)
N −ḡN )2)]1/2

,

where h̄M = 1
l

∑l
i=1 h

σ(i)
M , ḡM = 1

l

∑l
i=1 g

σ(i)
M , h̄N = 1

l

∑l
i=1 h

σ(i)
N and ḡN = 1

l

∑l
i=1 g

σ(i)
N ;

(4) c4(M,N) =
∑l

i=1
((h

σ(i)
M −h̄M )(h

σ(i)
N −h̄N )+(g

σ(i)
M −ḡM )(g

σ(i)
N −ḡN ))

max{
∑l

i=1
((h

σ(i)
M −h̄M )2+(g

σ(i)
M −ḡM )2),

∑l

i=1
((h

σ(i)
N −h̄N )2+(g

σ(i)
N −ḡN )2)}

,

where h̄M = 1
l

∑l
i=1 h

σ(i)
M , ḡM = 1

l

∑l
i=1 g

σ(i)
M , h̄N = 1

l

∑l
i=1 h

σ(i)
N and ḡN = 1

l

∑l
i=1 g

σ(i)
N .

(5) c5(M,N) = 1
l

∑l
i=1

(
∆γmin+∆γmax+∆ηmin+∆ηmax

∆γσ(i)+∆γmax+∆ησ(i)+∆ηmax

)
,

where ∆γσ(i) = |hσ(i)
M −h

σ(i)
N |, ∆γmin = mini{|hσ(i)

M −h
σ(i)
N |}, ∆γmax = maxi{|hσ(i)

M −
h
σ(i)
N |}, ∆ησ(i) = |gσ(i)

M −g
σ(i)
N |, ∆ηmin = mini{|gσ(i)

M −g
σ(i)
N |} and ∆ηmax = maxi{|gσ(i)

M −
g
σ(i)
N |}.

Theorem 3.1.2 Let M and N be two DHFEs, then

(1) c2(M,N) ≤ c1(M,N).

(2) |c4(M,N)| ≤ |c3(M,N)|.

Proof (1) Since

(
l∑

i=1

((h
σ(i)
M )2 + (g

σ(i)
M )2)

l∑
i=1

((h
σ(i)
N )2 + (g

σ(i)
N )2)

) 1
2

≤

(max

{
l∑

i=1

((h
σ(i)
M )2 + (g

σ(i)
M )2),

l∑
i=1

((h
σ(i)
N )2 + (g

σ(i)
N )2)

})2


1
2

= max

{
l∑

i=1

((h
σ(i)
M )2 + (g

σ(i)
M )2),

l∑
i=1

((h
σ(i)
N )2 + (g

σ(i)
N )2)

}
, (3.1)
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then we have

c2(M,N) =

∑l
i=1(h

σ(i)
M h

σ(i)
N + g

σ(i)
M g

σ(i)
N )

max{∑l
i=1((h

σ(i)
M )2 + (g

σ(i)
M )2),

∑l
i=1((h

σ(i)
N )2 + (g

σ(i)
N )2)}

≤
∑l
i=1(h

σ(i)
M h

σ(i)
N + g

σ(i)
M g

σ(i)
N )

[
∑l
i=1((h

σ(i)
M )2 + (g

σ(i)
M )2)

∑l
i=1((h

σ(i)
N )2 + (g

σ(i)
N )2)]1/2

= c1(M,N).

(3.2)

(2) Since

(
l∑

i=1

((h
σ(i)
M − h̄M)2 + (g

σ(i)
M − ḡM)2)

l∑
i=1

((h
σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)

) 1
2

≤
((

max

{
l∑

i=1

((h
σ(i)
M − h̄M)2 + (g

σ(i)
M − ḡM)2),

l∑
i=1

((h
σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)

})2


1
2

= max

{
l∑

i=1

((h
σ(i)
M − h̄M)2 + (g

σ(i)
M − ḡM)2),

l∑
i=1

((h
σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)

}
(3.3)

and if
∑l
i=1((h

σ(i)
M − h̄M)(h

σ(i)
N − h̄N) + (g

σ(i)
M − ḡM)(g

σ(i)
N − ḡN)) ≥ 0, then we have

0 ≤ c4(M,N)

=

∑l
i=1((h

σ(i)
M − h̄M)(h

σ(i)
N − h̄N) + (g

σ(i)
M − ḡM)(g

σ(i)
N − ḡN))

max{∑l
i=1((h

σ(i)
M − h̄M)2 + (g

σ(i)
M − ḡM)2),

∑l
i=1((h

σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)}

≤
∑l
i=1((h

σ(i)
M − h̄M)(h

σ(i)
N − h̄N) + (g

σ(i)
M − ḡM)(g

σ(i)
N − ḡN))

[
∑l
i=1((h

σ(i)
M − h̄M)2 + (g

σ(i)
M − ḡM)2)

∑l
i=1((h

σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)]1/2

= c3(M,N).

(3.4)

If
∑l
i=1((h

σ(i)
M − h̄M)(h

σ(i)
N − h̄N) + (g

σ(i)
M − ḡM)(g

σ(i)
N − ḡN)) ≤ 0, then we have

c3(M,N)
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=

∑l
i=1((h

σ(i)
M − h̄M )(h

σ(i)
N − h̄N ) + (g

σ(i)
M − ḡM )(g

σ(i)
N − ḡN ))

[
∑l
i=1((h

σ(i)
M − h̄M )2 + (g

σ(i)
M − ḡM )2)

∑l
i=1((h

σ(i)
N − h̄N )2 + (g

σ(i)
N − ḡN )2)]1/2

≤
∑l
i=1((h

σ(i)
M − h̄M )(h

σ(i)
N − h̄N ) + (g

σ(i)
M − ḡM )(g

σ(i)
N − ḡN ))

max{
∑l
i=1((h

σ(i)
M − h̄M )2 + (g

σ(i)
M − ḡM )2),

∑l
i=1((h

σ(i)
N − h̄N )2 + (g

σ(i)
N − ḡN )2)}

= c4(M,N) ≤ 0.

(3.5)

Therefore, |c4(M,N)| ≤ |c3(M,N)|.

From Theorem 3.1.2, we know that (1) c2 is always smaller than c1, but both

of them are bigger than 0, and (2) the absolute value of c4 is always smaller

than that of c3, and their values may be smaller or bigger than 0, which not only

provide us the strength of the relationship of DHFEs but also shows that the

DHFEs are positively or negatively correlated.

Theorem 3.1.3 Let M and N be two DHFEs, then

(1) If 0 ≤ h
σ(i)
M = kh

σ(i)
N ≤ 1, 0 ≤ g

σ(i)
M = kg

σ(i)
N ≤ 1, i = 1, 2, . . . , l, then

c1(M,N) = c3(M,N) = 1 and

c5(M,N)

=
1

l

l∑
i=1

mini{hσ(i)
N }+ maxi{hσ(i)

N }+ mini{gσ(i)
N }+ maxi{gσ(i)

N }
h
σ(i)
N + maxi{hσ(i)

N }+ g
σ(i)
N + maxi{gσ(i)

N }

 . (3.6)

(2) Let 0 ≤ h
σ(i)
M = kh

σ(i)
N ≤ 1, 0 ≤ g

σ(i)
M = kg

σ(i)
N ≤ 1, i = 1, 2, . . . , l. If k ≥ 1,

then c2(M,N) = c4(M,N) = 1
k
; if 0 < k ≤ 1, then c2(M,N) = c4(M,N) = k.

(3) If |hσ(i)
M −h

σ(i)
N | = d and |gσ(i)

M −g
σ(i)
N | = e, i = 1, 2, . . . , l, then c5(M,N) = 1.

Proof (1) If 0 ≤ h
σ(i)
M = kh

σ(i)
N ≤ 1, 0 ≤ g

σ(i)
M = kg

σ(i)
N ≤ 1, i = 1, 2, . . . , l, and

k > 0, then

c1(M,N) =

∑l
i=1(h

σ(i)
M h

σ(i)
N + g

σ(i)
M g

σ(i)
N )

[
∑l
i=1((h

σ(i)
M )2 + (g

σ(i)
M )2)

∑l
i=1((h

σ(i)
N )2 + (g

σ(i)
N )2)]

1
2

=

∑l
i=1(k(h

σ(i)
N )2 + k(g

σ(i)
N )2)

k
∑l
i=1((h

σ(i)
N )2 + (g

σ(i)
N )2)

= 1, (3.7)
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c3(M,N)

=

∑l
i=1((h

σ(i)
M − h̄M)(h

σ(i)
N − h̄N) + (g

σ(i)
M − ḡM)(g

σ(i)
N − ḡN))

[
∑l
i=1((h

σ(i)
M − h̄M)2 + (g

σ(i)
M − ḡM)2)

∑l
i=1((h

σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)]

1
2

=

∑l
i=1(k(h

σ(i)
N − h̄N)2 + k(g

σ(i)
N − ḡN)2)

k
∑l
i=1((h

σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)

= 1. (3.8)

and since

∆γσ(i) = |hσ(i)
M − hσ(i)

N | = |1− k|h
σ(i)
N , ∆ησ(i) = |gσ(i)

M − gσ(i)
N | = |1− k|g

σ(i)
N ,

(3.9)

∆γmin = min
i
{|hσ(i)

M − hσ(i)
N |} = |1− k|min

i
{hσ(i)

N },

∆ηmin = min
i
{|gσ(i)

M − gσ(i)
N |} = |1− k|min

i
{gσ(i)

N }, (3.10)

∆γmax = max
i
{|hσ(i)

M − hσ(i)
N |} = |1− k|max

i
{hσ(i)

N },

∆ηmax = max
i
{|gσ(i)

M − gσ(i)
N |} = |1− k|max

i
{gσ(i)

N }, (3.11)

then we have

c5(M,N) =
1

l

l∑
i=1

(
∆γmin + ∆γmax + ∆ηmin + ∆ηmax

∆γσ(i) + ∆γmax + ∆ησ(i) + ∆ηmax

)

=
1

l

l∑
i=1

mini{hσ(i)
N }+ maxi{hσ(i)

N }+ mini{gσ(i)
N }+ maxi{gσ(i)

N }
h
σ(i)
N + maxi{hσ(i)

N }+ g
σ(i)
N + maxi{gσ(i)

N }

 .
(3.12)

(2) Let 0 ≤ h
σ(i)
M = kh

σ(i)
N ≤ 1, 0 ≤ g

σ(i)
M = kg

σ(i)
N ≤ 1, i = 1, 2, . . . , l. If k ≥ 1,

then

c2(M,N) =

∑l
i=1(h

σ(i)
M h

σ(i)
N + g

σ(i)
M g

σ(i)
N )

max{∑l
i=1((h

σ(i)
M )2 + (g

σ(i)
M )2),

∑l
i=1((h

σ(i)
N )2 + (g

σ(i)
N )2)}

=

∑l
i=1 k((h

σ(i)
N )2 + (g

σ(i)
N )2)∑l

i=1(k2(h
σ(i)
N )2 + k2(g

σ(i)
N )2)

=
1

k
, (3.13)

34



and

c4(M,N)

=

∑l
i=1((h

σ(i)
M − h̄M)(h

σ(i)
N − h̄N) + (g

σ(i)
M − ḡM)(g

σ(i)
N − ḡN))

max{∑l
i=1((h

σ(i)
M − h̄M)2 + (g

σ(i)
M − ḡM)2),

∑l
i=1((h

σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)}

=

∑l
i=1(k(h

σ(i)
N − h̄N)2 + k(g

σ(i)
N − ḡN)2)

k2
∑l
i=1((h

σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)

=
1

k
. (3.14)

If 0 ≤ k ≤ 1, then

c2(M,N) =

∑l
i=1(h

σ(i)
M h

σ(i)
N + g

σ(i)
M g

σ(i)
N )

max{∑l
i=1((h

σ(i)
M )2 + (g

σ(i)
M )2),

∑l
i=1((h

σ(i)
N )2 + (g

σ(i)
N )2)}

=

∑l
i=1 k((h

σ(i)
N )2 + (g

σ(i)
N )2)∑l

i=1((h
σ(i)
N )2 + (g

σ(i)
N )2)

= k, (3.15)

and

c4(M,N)

=

∑l
i=1((h

σ(i)
M − h̄M)(h

σ(i)
N − h̄N) + (g

σ(i)
M − ḡM)(g

σ(i)
N − ḡN))

max{∑l
i=1((h

σ(i)
M − h̄M)2 + (g

σ(i)
M − ḡM)2)

∑l
i=1((h

σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)}

=

∑l
i=1(k(h

σ(i)
N − h̄N)2 + k(g

σ(i)
N − ḡN)2)∑l

i=1((h
σ(i)
N − h̄N)2 + (g

σ(i)
N − ḡN)2)

= k. (3.16)

(3) If |hσ(i)
M − hσ(i)

N | = d and |gσ(i)
M − gσ(i)

N | = e, i = 1, 2, . . . , l, then

∆γσ(i) = |hσ(i)
M − hσ(i)

N | = ∆γmin = min
i
{|hσ(i)

M − hσ(i)
N |}

= ∆γmax = max
i
{|hσ(i)

M − hσ(i)
N |} = d, (3.17)

∆ησ(i) = |gσ(i)
M − gσ(i)

N | = ∆ηmin = min
i
{|gσ(i)

M − gσ(i)
N |}

= ∆ηmax = max
i
{|gσ(i)

M − gσ(i)
N |} = e, (3.18)

and thus

c5(M,N) =
1

l

l∑
i=1

(
∆γmin + ∆γmax + ∆ηmin + ∆ηmax

∆γσ(i) + ∆γmax + ∆ησ(i) + ∆ηmax

)
= 1. (3.19)
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Theorem 3.1.3 tells us that (1) if the values h
σ(i)
M and g

σ(i)
M in DHFE M , respec-

tively, are k times the values of h
σ(i)
N and g

σ(i)
N in DHFE N , then the correlation

coefficients c1 and c3 are 1, c2 and c4 are 1
k

(k ≥ 1) or k (0 < k ≤ 1) and (2) if

|hσ(i)
M −hσ(i)

N | = d and |gσ(i)
M −gσ(i)

N | = e, then c5 is 1. This indicates that these five

correlation coefficient formulas reflect different relationships between two DHFEs

M and N , and therefore they may produce different results for the same two

DHFEs, which is reasonable.

In the following, we use an example to illustrate the proposed correlation

coefficient formulas.

Example 3.1.4 [42] To make a proper diagnosis D = {Viral fever, Malaria,

Typhoid, Stomach problem, Chest problem} for a patient with the given values of

the symptoms, S = {Temperature, headache, cough, stomach pain, chest pain},
a medical knowledge base is necessary that involves elements described in terms

of dual hesitant fuzzy sets. The data are given in Table 3.1, and each symptom

is described by a DHFE. The set of patients is P = {Al, Bob, Joe, Ted}. The

symptoms are given in Table 3.2. We need to seek a diagnosis for each patient.

Table 3.1: Symptoms characteristic for the considered diagnoses

Temperature Headache Cough

Viral fever {{0.6, 0.4, 0.3}, {0.4, 0.3, 0.2}} {{0.7, 0.5}, {0.2, 0.1}} {{0.6, 0.5}, {0.3, 0.2}}
Malaria {{0.8, 0.7, 0.6}, {0.2, 0.15, 0.1}} {{0.5, 0.3}, {0.3, 0.2}} {{0.3, 0.1}, {0.7, 0.5}}
Typhoid {{0.6, 0.3, 0.1}, {0.4, 0.2, 0.1}} {{0.8, 0.7}, {0.2, 0.1}} {{0.5, 0.3}, {0.4, 0.2}}

Stomach problem {{0.5, 0.4, 0.2}, {0.4, 0.3, 0.1}} {{0.4, 0.3}, {0.5, 0.4}} {{0.4, 0.3}, {0.4, 0.3}}
Chest problem {{0.3, 0.2, 0.1}, {0.6, 0.5, 0.4}} {{0.5, 0.3}, {0.3, 0.1}} {{0.3, 0.2}, {0.5, 0.4}}

Stomach pain Chest pain

Viral fever {{0.5, 0.4, 0.3}, {0.4, 0.3, 0.2}} {{0.5, 0.4, 0.2, 0.1}, {0.5, 0.3, 0.2, 0.1}}
Malaria {{0.6, 0.3, 0.2}, {0.3, 0.2, 0.1}} {{0.4, 0.3, 0.2, 0.1}, {0.5, 0.4, 0.3, 0.2}}
Typhoid {{0.5, 0.4, 0.2}, {0.4, 0.3, 0.2}} {{0.6, 0.4, 0.3, 0.1}, {0.4, 0.3, 0.2, 0.1}}

Stomach problem {{0.8, 0.7, 0.65}, {0.2, 0.15, 0.1}} {{0.5, 0.4, 0.2, 0.1}, {0.4, 0.3, 0.2, 0.1}}
Chest problem {{0.6, 0.5, 0.3}, {0.4, 0.3, 0.1}} {{0.8, 0.7, 0.6, 0.5}, {0.2, 0.15, 0.1, 0.05}}
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Table 3.2: Symptoms characteristic for the considered patients

Temperature Headache Cough

Al { 0.6, 0.5, 0.2}, {0.4, 0.3, 0.2}} {{0.7, 0.3}, {0.2, 0.1}} {{0.6, 0.4}, {0.3, 0.2}}
Bob {{0.8, 0.6, 0.5}, {0.2, 0.15, 0.1}} {{0.5, 0.4}, {0.3, 0.1}} {{0.3, 0.25}, {0.7, 0.5}}
Joe {{0.6, 0.4, 0.2}, {0.4, 0.2, 0.1}} {{0.3, 0.15}, {0.3, 0.2}} {{0.5, 0.3}, {0.4, 0.3}}
Ted {{0.5, 0.4, 0.2}, {0.4, 0.3, 0.1}} {{0.4, 0.35}, {0.5, 0.1}} {{0.4, 0.3}, {0.5, 0.2}}

Stomach pain Chest pain

Al {{0.5, 0.4, 0.1}, {0.4, 0.3, 0.1}} {{0.5, 0.4, 0.3, 0.1}, {0.5, 0.3, 0.2, 0.1}}
Bob {{0.6, 0.3, 0.1}, {0.3, 0.2, 0.1}} {{0.4, 0.3, 0.2, 0.1}, {0.5, 0.4, 0.3, 0.1}}
Joe {{0.5, 0.4, 0.3}, {0.4, 0.3, 0.1}} {{0.6, 0.4, 0.3, 0.2}, {0.4, 0.3, 0.2, 0.1}}
Ted {{0.8, 0.7, 0.3}, {0.2, 0.15, 0.1}} {{0.5, 0.3, 0.2, 0.1}, {0.4, 0.3, 0.2, 0.1}}

We utilize the correlation coefficient c1 to derive a diagnosis for each patient.

All the results for the considered patients are listed in Table 3.3. From the

arguments in Table 3.3, we can conclude that Al suffers from viral fever, Bob

from malaria, and Joe and Ted from stomach problem.

Table 3.3: Values of c1 for each patient to the considered set of possible diagnoses

Viral fever Malaria Typhoid Stomach problem Chest problem

Al 0.9851 0.9010 0.9752 0.9117 0.8902

Bob 0.9168 0.9901 0.9261 0.9104 0.8421

Joe 0.9491 0.9299 0.9513 0.9733 0.9125

Ted 0.9300 0.9189 0.9399 0.9721 0.9052

Table 3.4: Values of c2 for each patient to the considered set of possible diagnoses

Viral fever Malaria Typhoid Stomach problem Chest problem

Al 0.9279 0.8034 0.8661 0.7836 0.7601

Bob 0.8034 0.9521 0.7394 0.7198 0.6872

Joe 0.8251 0.7296 0.8368 0.7935 0.7298

Ted 0.7891 0.7065 0.8135 0.9129 0.7428

If we utilize the correlation coefficient formulas c2, c3, c4 and c5 to derive a

diagnosis, then the results are listed in Tables 3.4-3.7, respectively. From Tables

3.4-3.7, we know that the results obtained by different correlation coefficient
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formulas are different. This is because these correlation coefficient formulas are

based on different relationships and may produce different results.

Table 3.5: Values of c3 for each patient to the considered set of possible diagnoses

Viral fever Malaria Typhoid Stomach problem Chest problem

Al 0.9545 0.9485 0.9371 0.9235 0.9286

Bob 0.8973 0.9196 0.9281 0.9128 0.8918

Joe 0.9708 0.9458 0.9609 0.9509 0.9711

Ted 0.8243 0.8373 0.9011 0.8917 0.8860

Table 3.6: Values of c4 for each patient to the considered set of possible diagnoses

Viral fever Malaria Typhoid Stomach problem Chest problem

Al 0.6640 0.6532 0.6839 0.5960 0.6266

Bob 0.7058 0.7559 0.6392 0.6086 0.6834

Joe 0.7374 0.6954 0.8253 0.7137 0.6507

Ted 0.5196 0.6092 0.6733 0.5422 0.5577

Table 3.7: Values of c5 for each patient to the considered set of possible diagnoses

Viral fever Malaria Typhoid Stomach problem Chest problem

Al 0.7750 0.8206 0.8192 0.8265 0.8761

Bob 0.8565 0.7950 0.8657 0.7997 0.7838

Joe 0.8311 0.8986 0.8212 0.7970 0.8245

Ted 0.8029 0.8704 0.7569 0.8583 0.7955

3.2 Conclusions

Dual hesitant fuzzy set, as an extension of fuzzy set, can be describe the situation

that people have hesitancy when they make a decision more objectively than other

extensions of fuzzy set (intuitionistic fuzzy set, interval-valued fuzzy set, interval-

valued intuitionistic fuzzy set, hesitant fuzzy set). In this chapter, the correlation

coefficients for DHFEs have been studied. To operate correctly, we have assumed

that the two DHFEs have the same length for membership and nonmembership
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parts and their values are arranged in decreasing order when we compare them.

Their properties have been discussed, and the differences and correlations among

them have been investigated in detail. One example is employed to illustrate

that the results obtained by different correlation coefficient formulas, based on

different linear relationships, are different.
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Chapter 4

Dual hesitant fuzzy Bonferroni

means and their applications in

group decision making

4.1 Basic concepts and operations

4.1.1 Bonferroni means

The Bonferroni mean operator was initially proposed by Bonferroni [6] and was

also investigated intensively by Yager [78]:

Definition 4.1.1 Let p, q ≥ 0 and ai (i = 1, 2, . . . , n) be a collection of nonneg-

ative numbers. If

Bp,q(a1, a2, . . . , an) =

 1

n(n− 1)

n∑
i,j=1
i6=j

api a
q
j


1
p+q

, (4.1)

then Bp,q is called the Bonferroni mean (BM) operator.

Obviously, the BM has the following properties.

40



1) Bp,q(0, 0, . . . , 0) = 0.

2) Bp,q(a, a, . . . , a) = a, if ai = a for all i.

3) Bp,q(a1, a2, . . . , an) ≥ Bp,q(b1, b2, . . . , bn), i.e., Bp,q is monotonic, if ai ≥ bi

for all i.

4) mini{ai} ≤ Bp,q(a1, a2, . . . , an) ≤ maxi{ai}.
Furthermore, if q = 0, then, by (4.1), it follows that

Bp,0(a1, a2, . . . , an) =

 1

n

n∑
i=1

api

 1

n− 1

n∑
j=1
j 6=i

a0
j




1
p

=

(
1

n

n∑
i=1

api

) 1
p

(4.2)

which is a generalized mean operator [17], in particular, the following cases hold.

1) If p = 2 and q = 0, then (4.2) reduces to the square mean

B2,0(a1, a2, . . . , an) =

(
1

n

n∑
i=1

a2
i

) 1
2

. (4.3)

2) If p = 1 and q = 0, then (4.2) reduces to the usual average mean

B1,0(a1, a2, . . . , an) =
1

n

n∑
i=1

ai. (4.4)

3) If p→ +∞ and q = 0, then (4.2) reduces to the max operator

lim
p→+∞

Bp,0(a1, a2, . . . , an) = max
i
{ai}. (4.5)

4) If p→ 0 and q = 0, then (4.2) reduces to the geometric mean

lim
p→0

Bp,0(a1, a2, . . . , an) =

(
n∏
i=1

ai

) 1
n

. (4.6)

4.1.2 Dual hesitant fuzzy elements

Zhu et al. [86] defined the some operations on DHFEs. For a DHFE d = {hd, gd},
the corresponding lower and upper bounds to hd and gd are h−d , h+

d , g−d and g+
d ,

respectively, where h−d = min{γ|γ ∈ hd}, h+
d = max{γ|γ ∈ hd}, g−d = min{η|η ∈

gd} and g+
d = max{η|η ∈ gd} represent this group notations and no confusion will

arise in the rest of the paper.
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Definition 4.1.2 Let d = {hd, gd}, d1 = {hd1 , gd1} and d2 = {hd2 , gd2} be three

DHFEs, then some useful operations on DHFEs is defined as follows [86]:

(1) d1 ⊕ d2 = {hd1 ⊕ hd2 , gd1 ⊗ gd2} = {{γ1 + γ2 − γ1γ2|γ1 ∈ hd1 , γ2 ∈
hd2}, {η1η2|η1 ∈ gd1 , η2 ∈ gd2}};

(2) d1 ⊗ d2 = {hd1 ⊗ hd2 , gd1 ⊕ gd2} = {{γ1γ2|γ1 ∈ hd1 , γ2 ∈ hd2}, {η1 + η2 −
η1η2|η1 ∈ gd1 , η2 ∈ gd2}};

(3) λd = {λh, λg} = {{1− (1− γ)λ|γ ∈ hd}, {ηλ|η ∈ gd}}, λ > 0;

(4) dλ = {hλ, gλ} = {{γλ|γ ∈ hd}, {1− (1− η)λ|η ∈ gd}}, λ > 0;

(5) dc =


{{η|η ∈ gd}, {γ|γ ∈ hd}}, if g 6= ∅, h 6= ∅;
{{1− γ|γ ∈ hd}, {∅}}, if g = ∅, h 6= ∅;
{{∅}, {1− η|η ∈ gd}}, if g 6= ∅, h = ∅.

;

(6) d1 ∪ d2 = {{γ ∈ (hd1 ∪ hd2)|γ ≥ max(h−d1 , h
−
d2

)}, {η ∈ (gd1 ∩ gd2)|η ≤
min(g+

d1
, g+
d2

)}};
(7) d1 ∩ d2 = {{γ ∈ (hd1 ∩ hd2)|γ ≤ min(h+

d1
, h+

d2
)}, {η ∈ (gd1 ∪ gd2)|η ≥

max(g−d1 , g
−
d2

)}}.

We can easily prove the following relationships among the operations (1)-(4):

Theorem 4.1.3 Let d, d1 and d2 be any three DHFEs, then

(1) d1 ⊕ d2 = d2 ⊕ d1;

(2) d1 ⊗ d2 = d2 ⊗ d1;

(3) λ(d1 ⊕ d2) = λd1 ⊕ λd2, λ > 0;

(4) (d1 ⊗ d2)λ = dλ1 ⊗ dλ2 , λ > 0;

(5) (λ1 + λ2)d = λ1d⊕ λ2d, λ1, λ2 > 0;

(6) d(λ1+λ2) = dλ1 ⊗ dλ2 , λ1, λ2 > 0.

Proof Since (1)-(4) can be proven easily, we prove (5) and (6).

(5) By the operations (1) and (3) in Definition 2.1.3, we have

λ1d⊕ λ2d = {{1− (1− γ)λ1|γ ∈ hd}, {ηλ1 |η ∈ gd}} ⊕
{{1− (1− γ)λ2|γ ∈ hd}, {ηλ2|η ∈ gd}}

= {{1− (1− γ)λ1(1− γ)λ2 |γ ∈ hd}, {ηλ1ηλ2|η ∈ gd}}
= {{1− (1− γ)λ1+λ2|γ ∈ hd}, {ηλ1+λ2|η ∈ gd}} = (λ1 + λ2)d.
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(6) By the operations (2) and (4) in Definition 2.1.3, we have

dλ1 ⊗ dλ2 = {{γλ1|γ ∈ hd}, {1− (1− η)λ1|η ∈ gd}} ⊗
{{γλ2 |γ ∈ hd}, {1− (1− η)λ2|η ∈ gd}}

= {{γλ1γλ2|γ ∈ hd}, {1− (1− η)λ1(1− η)λ2|η ∈ gd}}
= {{γλ1+λ2|γ ∈ hd}, {1− (1− η)λ1+λ2 |η ∈ gd}} = d(λ1+λ2).

To compare the DHFEs, based on the comparing methods [53, 67] of HFEs

and IFNs, we give the following comparison laws.

Definition 4.1.4 For a DHFE d = {hd, gd}, s(d) = 1
#hd

∑
γ∈hd γ −

1
#gd

∑
η∈gd η is

called the score function of d, and p(d) = 1
#hd

∑
γ∈hd γ + 1

#gd

∑
η∈gd η is called the

accuracy function of d, where #hd and #gd are the numbers of the elements in

hd and gd, respectively. Let d1 = {hd1 , gd1} and d2 = {hd2 , gd2} be two DHFEs,

then

(1) if s(d1) > s(d2), then d1 is superior to d2, denoted by d1 � d2;

(2) if s(d1) = s(d2), then

(i) if p(d1) = p(d2), then d1 is equivalent to d2, denoted by d1 ∼ d2;

(ii) if p(d1) > p(d2), then d1 is superior than d2, denoted by d1 � d2.

Now, we define the hesitancy degree of the DHFE d = {hd, gd} as follows

π(d) = 1− 1

#hd

∑
γ∈hd

γ +
1

#gd

∑
η∈gd

η, (4.7)

where #hd and #gd are the numbers of the elements in hd and gd, respectively.

Then we get the relation between the hesitancy degree and the accuracy degree

of the DHFE d

π(d) = 1− 1

#hd

∑
γ∈hd

γ +
1

#gd

∑
η∈gd

η = 1− p(d),
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i.e.,

π(d) + p(d) = 1. (4.8)

From (4.8), we know that the higher the accuracy degree p(d), the lower the

hesitancy degree π(d).

4.2 Dual hesitant fuzzy Bonferroni means

In this section, we shall investigate the BM under dual hesitant fuzzy environ-

ments. Based on (4.1), we give the definition of DHFBM as follows.

Definition 4.2.1 Let di = {hdi , gdi} (i = 1, 2, . . . , n) be a collection of DHFEs.

For any p, q > 0, if

DHFBp,q(d1, d2, . . . , dn) =

(
1

n(n− 1)

(
⊕ni,j=1

i 6=j
(dpi ⊗ d

q
j)
)) 1

p+q

(4.9)

then DHFBp,q is called the dual hesitant fuzzy Bonferroni mean (DHFBM).

Based on operations (1)-(4) of DHFEs described in Definition 4.1.2, we can

derive the following result.

Theorem 4.2.2 Let p, q > 0, and di = {hdi , gdi} (i = 1, 2, . . . , n) be a collection

of DHFEs. Then, the aggregated value, by using the DHFBM, is also a DHFE,

and

DHFBp,q(d1, d2, . . . , dn)

=


(

1

n(n− 1)

(
⊕ni,j=1

i 6=j
(hpdi ⊗ h

q
dj

)
)) 1

p+q

,

(
1

n(n− 1)

(
⊗ni,j=1

i6=j
(gpdi ⊕ g

q
dj

)
)) 1

p+q


=



1−

n∏
i,j=1
i6=j

(
1− γpi γ

q
j

) 1
n(n−1)


1
p+q ∣∣∣γi ∈ hdi , γj ∈ hdj

 ,
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1−

1−
n∏

i,j=1
i 6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)


1
p+q ∣∣∣ηi ∈ gdi , ηj ∈ gdj


 .

(4.10)

Proof By operations (2) and (4) described in Definition 4.1.2, we have

dpi = {hpdi , g
p
di
} = {{γpi |γi ∈ hdi}, {1− (1− ηi)p|ηi ∈ gdi}},

dqj = {hqdj , g
q
dj
} = {{γqj |γj ∈ hdj}, {1− (1− ηj)q|ηj ∈ gdj}} (4.11)

and then

dpi ⊗ d
q
j = {hpdi ⊗ h

q
dj
, gpdi ⊕ g

q
dj
}

=
{
{γpi γ

q
j |γi ∈ hdi , γj ∈ hdj}, {1− (1− ηi)p(1− ηj)q|ηi ∈ gdi , ηj ∈ gdj}

}
.

(4.12)

In what follows, we first prove that

⊕ni,j=1
i 6=j

(dpi ⊗ d
q
j) =

{
⊕ni,j=1

i 6=j
(hpdi ⊗ h

q
dj

),⊗ni,j=1
i6=j

(gpdi ⊕ g
q
dj

)
}

=


1−

n∏
i,j=1
i 6=j

(
1− γpi γ

q
j

) ∣∣∣γi ∈ hdi , γj ∈ hdj
 ,


n∏

i,j=1
i 6=j

(1− (1− ηi)p(1− ηj)q)
∣∣∣ηi ∈ gdi , ηj ∈ gdj


 . (4.13)

by using mathematical induction on n as follows.

1) For n = 2, we have

⊕2
i,j=1
i6=j

(dpi ⊗ d
q
j) = (dp1 ⊗ d

q
2)⊕ (dp2 ⊗ d

q
1)

=
{{

1− (1− γp1γ
q
2) (1− γp2γ

q
1)
∣∣∣γ1 ∈ hd1 , γ2 ∈ hd2

}
,{

(1− (1− η1)p(1− η2)q) (1− (1− η2)p(1− η1)q)
∣∣∣η1 ∈ gd1 , η2 ∈ gd2

}}
.

(4.14)
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2) If (4.13) holds for n = k, i.e.,

⊕ki,j=1
i 6=j

(dpi ⊗ d
q
j) =

{
⊕ki,j=1

i 6=j
(hpdi ⊗ h

q
dj

),⊗ki,j=1
i6=j

(gpdi ⊕ g
q
dj

)
}

=


1−

k∏
i,j=1
i6=j

(
1− γpi γ

q
j

) ∣∣∣γi ∈ hdi , γj ∈ hdj
 ,


k∏

i,j=1
i 6=j

(1− (1− ηi)p(1− ηj)q)
∣∣∣ηi ∈ gdi , ηj ∈ gdj


 , (4.15)

then, when n = k + 1, by operations (1)-(3) given in Definition 4.1.2, we have

⊕k+1
i,j=1
i 6=j

(dpi ⊗ d
q
j) =

(
⊕ki,j=1

i6=j
(dpi ⊗ d

q
j)
)
⊕
(
⊕ki=1(dpi ⊗ d

q
k+1)

)
⊕
(
⊕kj=1(dpk+1 ⊗ d

q
j)
)
. (4.16)

Now, we prove that

⊕ki=1(dpi ⊗ d
q
k+1) =

{
⊕ki=1(hpdi ⊗ h

q
dk+1

),⊗ki=1(gpdi ⊕ g
q
dk+1

)
}

=

{{
1−

k∏
i=1

(
1− γpi γ

q
k+1

) ∣∣∣γi ∈ hdi , γk+1 ∈ hdk+1

}
,

{
k∏
i=1

(1− (1− ηi)p(1− ηk+1)q)
∣∣∣ηi ∈ gdi , ηk+1 ∈ gdk+1

}}
(4.17)

by using mathematical induction on k as follows.

1) For k = 2, then by (4.12), we have

dpi ⊗ d
q
2+1 = {hpdi ⊗ h

q
d2+1

, gpdi ⊕ g
q
d2+1
}

=
{
{γpi γ

q
2+1|γi ∈ hdi , γ2+1 ∈ hd2+1},

{1− (1− ηi)p(1− η2+1)q|ηi ∈ gdi , η2+1 ∈ gd2+1}
}
, i = 1, 2 (4.18)

and thus

⊕2
i=1(dpi ⊗ d

q
2+1) =

{
⊕2
i=1(hpdi ⊗ h

q
d2+1

),⊗2
i=1(gpdi ⊕ g

q
d2+1

)
}
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=

{{
1−

2∏
i=1

(1− γpi γ
q
3)|γi ∈ hdi , γ3 ∈ hd3

}
,{

2∏
i=1

(1− (1− ηi)p(1− η3)q)|ηi ∈ gdi , η3 ∈ gd3

}}
. (4.19)

2) If (4.17) holds for k = k0, i.e.,

⊕k0i=1(dpi ⊗ d
q
k0+1) =

{
⊕k0i=1(hpdi ⊗ h

q
dk0+1

),⊗k0i=1(gpdi ⊕ g
q
dk051

)
}

=


1−

k0∏
i=1

(1− γpi γ
q
k0+1)|γi ∈ hdi , γk0+1 ∈ hdk0+1

 ,
k0∏
i=1

(1− (1− ηi)p(1− ηk0+1)q)|ηi ∈ gdi , ηk0+1 ∈ gdk0+1


 , (4.20)

then, when k = k0 + 1, by (4.12) and operations (1) and (2) given in Definition

4.1.2, we have

⊕k0+1
i=1 (dpi ⊗ d

q
k0+2) = ⊕k0i=1(dpi ⊗ d

q
k0+2)⊕ (dpk0+1 ⊗ d

q
k0+2)

=
{
⊕k0+1
i=1 (hpdi ⊗ h

q
dk0+2

)⊕ (hpdk0+1
⊗ hqdk0+2

),

⊗k0i=1(gpdi ⊕ g
q
dk0+1

)⊗ (gpdk0+1
⊕ gqdk0+2

)
}

=


1−

k0+1∏
i=1

(1− γpi γ
q
k0+2)|γi ∈ hdi , γk0+2 ∈ hdk0+2

 ,
k0+1∏
i=1

(1− (1− ηi)p(1− ηk0+2)q)|ηi ∈ gdi , ηk0+2 ∈ gdk0+2


 , (4.21)

i.e., (4.17) holds for k = k0 + 1. Thus (4.17) holds for all k.

Similarly, we can prove that

⊕kj=1(dpk+1 ⊗ d
q
j) =

{
⊕kj=1(hpdk+1

⊗ hqdj),⊗
k
j=1(gpdk+1

⊕ gqdj)
}

=


1−

k∏
j=1

(
1− γpk+1γ

q
j

) ∣∣∣γk+1 ∈ hdk+1
, γj ∈ hdj

 ,


k∏
j=1

(1− (1− ηk+1)p(1− ηj)q)
∣∣∣ηk+1 ∈ gdk+1

, ηj ∈ gdj


 . (4.22)
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Thus, by (4.15), (4.17) and (4.22), we further transform (4.16) as

⊕k+1
i,j=1
i 6=j

(dpi ⊗ d
q
j) =

{
⊕ki,j=1

i 6=j
(hpdi ⊗ h

q
dj

),⊗ki,j=1
i 6=j

(gpdi ⊕ g
q
dj

)
}

⊕
{
⊕ki=1(hpdi ⊗ h

q
dk+1

),⊗ki=1(gpdi ⊕ g
q
dk+1

)
}

⊕
{
⊕kj=1(hpdk+1

⊗ hqdj),⊗
k
j=1(gpdk+1

⊕ gqdj)
}

=


1−

k∏
i,j=1
i6=j

(
1− γpi γ

q
j

) ∣∣∣γi ∈ hdi , γj ∈ hdj
 ,

k∏
i,j=1
i 6=j

(1− (1− ηi)p(1− ηj)q)
∣∣∣ηi ∈ gdi , ηj ∈ gdj




⊕
{{

1−
k∏
i=1

(
1− γpi γ

q
k+1

) ∣∣∣γi ∈ hdi , γk+1 ∈ hdk+1

}
,

{
k∏
i=1

(1− (1− ηi)p(1− ηk+1)q)
∣∣∣ηi ∈ gdi , ηk+1 ∈ gdk+1

}}

⊕


1−

k∏
j=1

(
1− γpk+1γ

q
j

) ∣∣∣γk+1 ∈ hdk+1
, γj ∈ hdj

 ,
k∏
j=1

(1− (1− ηk+1)p(1− ηj)q)
∣∣∣ηk+1 ∈ gdk+1

, ηj ∈ gdj




=


1−

k+1∏
i,j=1
i 6=j

(
1− γpi γ

q
j

) ∣∣∣γi ∈ hdi , γj ∈ hdj
 ,

k+1∏
i,j=1
i6=j

(1− (1− ηi)p(1− ηj)q)
∣∣∣ηi ∈ gdi , ηj ∈ gdj


 , (4.23)

i.e., (4.13) holds for n = k + 1. Thus, (4.13) holds for all n. Then, by (4.13)

and operation (3) described in Definition 4.1.2, we obtain

1

n(n− 1)

(
⊕ni,j=1

i6=j
(dpi ⊗ d

q
j)
)
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=

{
1

n(n− 1)

(
⊕ni,j=1

i6=j
(hpdi ⊗ h

q
dj

)
)
,

1

n(n− 1)

(
⊗ni,j=1

i 6=j
(gpdi ⊕ g

q
dj

)
)}

=



1−

n∏
i,j=1
i 6=j

(
1− γpi γ

q
j

)
1

n(n−1) ∣∣∣γi ∈ hdi , γj ∈ hdj
 ,


n∏

i,j=1
i6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)

∣∣∣ηi ∈ gdi , ηj ∈ gdj

 (4.24)

and then, by (4.24) and operation (4), it yields

DHFBp,q(d1, d2, . . . , dn)

=


(

1

n(n− 1)

(
⊕ni,j=1

i 6=j
(hpdi ⊗ h

q
dj

)
)) 1

p+q

,

(
1

n(n− 1)

(
⊗ni,j=1

i6=j
(gpdi ⊕ g

q
dj

)
)) 1

p+q


=



1−

n∏
i,j=1
i6=j

(
1− γpi γ

q
j

) 1
n(n−1)


1
p+q ∣∣∣γi ∈ hdi , γj ∈ hdj

 ,

1−

1−
n∏

i,j=1
i 6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)


1
p+q ∣∣∣ηi ∈ gdi , ηj ∈ gdj


 ,

(4.25)

i.e., (4.10) holds. In addition, let d = DHFBp,q(d1, d2, . . . , dn) = {hd, gd},
γ+ ∈ h+

d and η+ ∈ g+
d , since

0 ≤

1−
n∏

i,j=1
i 6=j

(
1− (γ+

i )p(γ+
j )q

) 1
n(n−1)


1
p+q

≤ 1,

0 ≤ 1−

1−
n∏

i,j=1
i 6=j

(
1− (1− η+

i )p(1− η+
j )q

) 1
n(n−1)


1
p+q

≤ 1 (4.26)
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and by (2.5), we have

γ+ + η+ =

1−
n∏

i,j=1
i6=j

(
1− (γ+

i )p(γ+
j )q

) 1
n(n−1)


1
p+q

+1−

1−
n∏

i,j=1
i 6=j

(
1− (1− η+

i )p(1− η+
j )q

) 1
n(n−1)


1
p+q

≤ 1 +

1−
n∏

i,j=1
i6=j

(
1− (1− η+

i )p(1− η+
j )q

) 1
n(n−1)


1
p+q

−

1−
n∏

i,j=1
i6=j

(
1− (1− η+

i )p(1− η+
j )q

) 1
n(n−1)


1
p+q

= 1

(4.27)

which completes the proof of Theorem 4.2.2.

Now, let us look at some desirable properties of the DHFBM.

1) Idempotency: If all di’s (i = 1, 2, . . . , n) are equal, i.e., di = d = {hd, gd},
for all i, then

DHFBp,q(d1, d2, . . . , dn) = DHFBp,q(d, d, . . . , d)

=


(

1

n(n− 1)

(
⊕ni,j=1

i 6=j
(hpd ⊗ h

q
d)
)) 1

p+q

,

(
1

n(n− 1)

(
⊗ni,j=1

i 6=j
(gpd ⊕ g

q
d)
)) 1

p+q


=



1−

n∏
i,j=1
i6=j

(1− γpγq)
1

n(n−1)


1
p+q ∣∣∣γ ∈ hd

 ,

1−

1−
n∏

i,j=1
i 6=j

(1− (1− η)p(1− η)q)
1

n(n−1)


1
p+q ∣∣∣η ∈ gd




=
{{(

1−
(
1− γp+q

)) 1
p+q |γ ∈ hd

}
,
{

1−
(
1−

(
1− (1− η)p+q

)) 1
p+q |η ∈ gd

}}
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=
{{(

γp+q
) 1
p+q |γ ∈ hd

}
,
{

1−
(
(1− η)p+q)

) 1
p+q |η ∈ gd

}}
= {{γ|γ ∈ hd} , {η|η ∈ gd}}
= {hd, gd} = d. (4.28)

In particular, if di = {hdi , gdi} (i = 1, 2, . . . , n) is a collection of the smallest

DHFEs, i.e., di = d∗ = {{0}, {1}}, for all i, then

DHFBp,q(d1, d2, . . . , dn) = DHFBp,q(d∗, d∗, . . . , d∗) = {{0}, {1}} (4.29)

which is also the smallest DHFE. If di = {hdi , gdi} (i = 1, 2, . . . , n) is a collection

of the largest DHFEs, i.e., di = d∗ = {{1}, {0}}, for all i, then

DHFBp,q(d1, d2, . . . , dn) = DHFBp,q(d∗, d∗, . . . , d∗) = {{1}, {0}} (4.30)

which is also the largest DHFE.

2) Monotonicity: Let di = {hdi , gdi} (i = 1, 2, . . . , n) and d′i = {hd′i , gd′i}
(i = 1, 2, . . . , n) be two collections of DHFEs. If #hdi = #hd′i , #gdi = #gd′i ,

γi ≤ γ′i and ηi ≥ η′i for all γi ∈ hdi , γ′i ∈ hd′i , ηi ∈ gdi , η
′
i ∈ gd′i , then

DHFBp,q(d1, d2, . . . , dn) ≤ DHFBp,q(d′1, d
′
2, . . . , d

′
n). (4.31)

Proof Since γi ≤ γ′i and ηi ≥ η′i for all γi ∈ hdi , γ′i ∈ hd′i , ηi ∈ gdi , η
′
i ∈ gd′i , then

γpi γ
q
j ≤ (γ′i)

p(γ′i)
q and (1 − ηi)p(1 − ηj)q ≤ (1 − (η′i))

p(1 − (η′j))
q for all γi ∈ hdi ,

γ′i ∈ hd′i , ηi ∈ gdi , η
′
i ∈ gd′i , γj ∈ hdj , γ

′
j ∈ hd′j , ηj ∈ gdj , η

′
j ∈ gd′j . Then we have

n∏
i,j=1
i 6=j

(1− γpi γ
q
j )

1
n(n−1) ≥

n∏
i,j=1
i 6=j

(1− (γ′i)
p(γ′j)

q)
1

n(n−1) , (4.32)

n∏
i,j=1
i 6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1) ≥
n∏

i,j=1
i6=j

(
1− (1− γ′i)p(1− γ′j)q

) 1
n(n−1)

(4.33)

and hence 1−
n∏

i,j=1
i6=j

(1− γpi γ
q
j )

1
n(n−1)


1
p+q
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≤

1−
n∏

i,j=1
i6=j

(1− (γ′i)
p(γ′j)

q)
1

n(n−1)


1
p+q

, (4.34)

1−

1−
n∏

i,j=1
i6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)


1
p+q

≥ 1−

1−
n∏

i,j=1
i6=j

(
1− (1− γ′i)p(1− γ′j)q

) 1
n(n−1)


1
p+q

. (4.35)

Thus we obtain1−
n∏

i,j=1
i 6=j

(1− γpi γ
q
j )

1
n(n−1)


1
p+q

−

1−

1−
n∏

i,j=1
i6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)


1
p+q



≤

1−
n∏

i,j=1
i6=j

(1− (γ′i)
p(γ′j)

q)
1

n(n−1)


1
p+q

−

1−

1−
n∏

i,j=1
i6=j

(
1− (1− γ′i)p(1− γ′j)q

) 1
n(n−1)


1
p+q

 . (4.36)

Let d = {hd, gd} = DHFBp,q(d1, d2, . . . , dn) and d′ = {hd′ , gd′} = DHFBp,q(d′1,

d′2, . . . , d
′
n), and let s(d) and s(d′) be the scores of d and d′, respectively. Then

since #hdi = #hd′i and #gdi = #gd′i , (4.36) is equivalent to s(d) ≤ s(d′). Now,

we discuss the following cases.

Case 1. If s(d) < s(d′), then, by Definition 4.1.4, we obtain

DHFBp,q(d1, d2, . . . , dn) < DHFBp,q(d′1, d
′
2, . . . , d

′
n). (4.37)
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Case 2. If s(d) = s(d′), then, since #hd = (#hd1 × · · · ×#hdn) × n!, #gd =

(#gd1 × · · · ×#gdn)× n!, #hd′ = (#hd′1 × · · · ×#hd′n)× n! and #gd′ = (#gd′1 ×
· · · ×#gd′n)× n!, we have

1

#hd

∑
#hd

1−
n∏

i,j=1
i6=j

(1− γpi γ
q
j )

1
n(n−1)


1
p+q

− 1

#gd

∑
#gd

1−

1−
n∏

i,j=1
i6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)


1
p+q



=
1

#hd′

∑
#hd′

1−
n∏

i,j=1
i 6=j

(1− (γ′i)
p(γ′j)

q)
1

n(n−1)


1
p+q

− 1

#gd′

∑
#gd′

1−

1−
n∏

i,j=1
i 6=j

(
1− (1− γ′i)p(1− γ′j)q

) 1
n(n−1)


1
p+q

 .(4.38)

Since γi ≤ γ′i and ηi ≥ η′i, for all γi ∈ hdi , γ′i ∈ hd′i , ηi ∈ gdi , η
′
i ∈ gd′i , then

1−
n∏

i,j=1
i 6=j

(1− γpi γ
q
j )

1
n(n−1)


1
p+q

=

1−
n∏

i,j=1
i6=j

(1− (γ′i)
p(γ′j)

q)
1

n(n−1)


1
p+q

,

1−

1−
n∏

i,j=1
i 6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)


1
p+q

= 1−

1−
n∏

i,j=1
i 6=j

(
1− (1− γ′i)p(1− γ′j)q

) 1
n(n−1)


1
p+q

(4.39)

and thus

h(d) =
1

#hd

∑
#hd

1−
n∏

i,j=1
i 6=j

(1− γpi γ
q
j )

1
n(n−1)


1
p+q
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+
1

#gd

∑
#gd

1−

1−
n∏

i,j=1
i6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)


1
p+q



=
1

#hd′

∑
#hd′

1−
n∏

i,j=1
i6=j

(1− (γ′i)
p(γ′j)

q)
1

n(n−1)


1
p+q

+
1

#gd′

∑
#gd′

1−

1−
n∏

i,j=1
i 6=j

(
1− (1− γ′i)p(1− γ′j)q

) 1
n(n−1)


1
p+q


= h(d′). (4.40)

Then, by Definition 4.1.4, we get

DHFBp,q(d1, d2, . . . , dn) = DHFBp,q(d′1, d
′
2, . . . , d

′
n) (4.41)

and hence, (4.37) and (4.41) indicate that (4.31) holds.

3) Commutativity: Let di = {hdi , gdi} (i = 1, 2, . . . , n) be a collection of

DHFEs. Then

DHFBp,q(d1, d2, . . . , dn) = DHFBp,q(ḋ1, ḋ2, . . . , ḋn), (4.42)

where (ḋ1, ḋ2, . . . , ḋn) is any permutation of (d1, d2, . . . , dn).

Proof Since (ḋ1, ḋ2, . . . , ḋn) is any permutation of (d1, d2, . . . , dn), then

DHFBp,q(d1, d2, . . . , dn)

=


(

1

n(n− 1)

(
⊕ni,j=1

i 6=j
(hpd ⊗ h

q
d)
)) 1

p+q

,

(
1

n(n− 1)

(
⊗ni,j=1

i 6=j
(gpd ⊕ g

q
d)
)) 1

p+q


=


(

1

n(n− 1)

(
⊕ni,j=1

i 6=j
(hp

ḋ
⊗ hq

ḋ
)
)) 1

p+q

,

(
1

n(n− 1)

(
⊗ni,j=1

i 6=j
(gp
ḋ
⊕ gq

ḋ
)
)) 1

p+q


= DHFBp,q(ḋ1, ḋ2, . . . , ḋn). (4.43)

54



4) Boundedness: Let di = {hdi , gdi} (i = 1, 2, . . . , n) be a collection of

DHFEs, and let

d+ =
{

max
i
{h+

di
},min

i
{g−di}

}
,

d− =
{

min
i
{h−di},max

i
{g+

di
}
}
, (4.44)

where h+
di

= maxγi∈hdi{γi}, h
−
di

= minγi∈hdi{γi}, g
+
di

= maxηi∈gdi{ηi} and g−di =

minηi∈gdi{ηi}. Then

d− ≤ DHFBp,q(d1, d2, . . . , dn) ≤ d+. (4.45)

Proof Since γ−i ≤ γi ≤ γ+
i and η−i ≤ ηi ≤ η+

i , for all γ− ∈ mini{h−di}, γi ∈ hdi ,
γ+ ∈ maxi{h−di}, η

− ∈ mini{g−di}, ηi ∈ gdi and η+ ∈ maxi{g−di}, then

(
γ−
)p+q

≤ γpi γ
q
j ≤

(
γ+
)p+q

,(
1− η+

)p+q
≤ (1− ηi)p(1− ηj)q ≤

(
1− η−

)p+q
(4.46)

and thus

γ− =
(

1−
(

1−
(
γ−
)p+q)) 1

p+q

≤

1−
n∏

i,j=1
i 6=j

(
1− γpi γ

q
j

) 1
n(n−1)


1
p+q

≤
(

1−
(

1−
(
γ+
)p+q)) 1

p+q

= γ+, (4.47)

η− = 1−
(

1−
(

1−
(
1− η−

)p+q)) 1
p+q

≤ 1−

1−
n∏

i,j=1
i 6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)


1
p+q

≤ 1−
(

1−
(

1−
(
1− η+

)p+q)) 1
p+q

= η+. (4.48)
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Let d = DHFBp,q(d1, d2, . . . , dn) = {hd, gd}. Then we have

s(d) =
1

#hd

∑
γ∈hd

γ − 1

#gd

∑
η∈gd

η

≤ 1

# maxi h
+
di

∑
γ+∈maxi h

+
di

γ+ − 1

# mini g
−
di

∑
η−∈mini g

−
di

η− = s(d+),

(4.49)

s(d) =
1

#hd

∑
γ∈hd

γ − 1

#gd

∑
η∈gd

η

≥ 1

# mini h
−
di

∑
γ−∈mini h

−
di

γ+ − 1

# maxi g
+
di

∑
η+∈maxi g

+
di

η+ = s(d−). (4.50)

In what follows, three cases need to be discussed.

Case 1. If s(d) < s(d+) and s(d) > s(d−), then, from Definition 4.1.4, it

follows that

d− < DHFBp,q(d1, d2, . . . , dn) < d+. (4.51)

Case 2. If s(d) = s(d+), then, by (4.47) and (4.48), we have

1

#hd

∑
γ∈hd

γ =
1

# maxi h
+
di

∑
γ+∈maxi h

+
di

γ+,
1

#gd

∑
η∈gd

η =
1

# mini g
−
di

∑
η−∈mini g

−
di

η−

(4.52)

and thus,

h(d) =
1

#hd

∑
γ∈hd

γ +
1

#gd

∑
η∈gd

η

=
1

# maxi h
+
di

∑
γ+∈maxi h

+
di

γ+ +
1

# mini g
−
di

∑
η−∈mini g

−
di

η− = h(d+). (4.53)

Hence, by Definition 4.1.4, we get

DHFBp,q(d1, d2, . . . , dn) = d+. (4.54)

56



Case 3. s(d) = s(d−), then, from (4.47) and (4.48), it can be obtained that
1

#hd

∑
γ∈hd γ = 1

# mini h
−
di

∑
γ−∈maxi h

−
di

γ− and 1
#gd

∑
η∈gd η = 1

# maxi g
+
di

∑
η+∈maxi g

+
di

η+.

Consequently, we have

h(d) =
1

#hd

∑
γ∈hd

γ +
1

#gd

∑
η∈gd

η

=
1

# mini h
−
di

∑
γ−∈mini h

−
di

γ− +
1

# maxi g
+
di

∑
η+∈maxi g

+
di

η+ = h(d−). (4.55)

Hence, by Definition 4.1.4, we get

DHFBp,q(d1, d2, . . . , dn) = d−. (4.56)

Therefore, from all the above-mentioned cases, it is clear that (4.45) holds.

In the following, let us consider some special cases of the DHFBM by taking

different values of the parameters p and q.

Case 1. If q → 0, then, by (4.10), we have

lim
q→0

DHFBp,q(d1, d2, . . . , dn) = lim
q→0

(
1

n(n− 1)

(
⊕ni,j=1

i 6=j
(dpi ⊗ d

q
j)
)) 1

p+q

= lim
q→0


(

1

n(n− 1)

(
⊕ni,j=1

i 6=j
(hpdi ⊗ h

q
dj

)
)) 1

p+q

,

(
1

n(n− 1)

(
⊗ni,j=1

i6=j
(gpdi ⊕ g

q
dj

)
)) 1

p+q


= lim

q→0




1−

n∏
i,j=1
i 6=j

(
1− γpi γ

q
j

) 1
n(n−1)


1
p+q ∣∣∣γi ∈ hdi , γj ∈ hdj

 ,

1−

1−
n∏

i,j=1
i6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)


1
p+q ∣∣∣ηi ∈ gdi , ηj ∈ gdj





=



(

1−
n∏
i=1

(1− γpi )
n−1

n(n−1)

) 1
p ∣∣∣γi ∈ hdi

 ,
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1−
(

1−
n∏
i=1

(1− (1− ηi)p)
n−1

n(n−1)

) 1
p ∣∣∣ηi ∈ gdi




=



(

1−
n∏
i=1

(1− γpi )
1
n

) 1
p ∣∣∣γi ∈ hdi

 ,1−
(

1−
n∏
i=1

(1− (1− ηi)p)
1
n

) 1
p ∣∣∣ηi ∈ gdi




=


(

1

n

(
⊕ni=1h

p
di

)) 1
p

,
(

1

n

(
⊗ni=1g

p
di

)) 1
p


=
(

1

n
(⊕ni=1d

p
i )
) 1
p

= DHFBp,0(d1, d2, . . . , dn) (4.57)

which we call the generalized dual hesitant fuzzy mean.

Case 2. If p = 1 and q → 0, then (4.10) is transformed as

DHFB1,0(d1, d2, . . . , dn) =
1

n
(⊕ni=1di)

=
{

1

n
(⊕ni=1hdi) ,

1

n
(⊗ni=1gdi)

}

=


1−

(
n∏
i=1

(1− γi)
) 1
n ∣∣∣γi ∈ hdi

 ,

(

n∏
i=1

ηi

) 1
n ∣∣∣ηi ∈ gdi


 (4.58)

which we call the dual hesitant fuzzy average.

Case 3. If p = q = 1, then (4.10) reduces to the following:

DHFB1,1(d1, d2, . . . , dn) =

(
1

n(n− 1)

(
⊕ni,j=1

i6=j
(di ⊗ dj)

)) 1
2

=


(

1

n(n− 1)

(
⊕ni,j=1

i 6=j
(hdi ⊗ hdj)

)) 1
2

,

(
1

n(n− 1)

(
⊗ni,j=1

i6=j
(gdi ⊕ gdj)

)) 1
2


=



1−

n∏
i,j=1
i 6=j

(1− γiγj)
1

n(n−1)


1
2 ∣∣∣γi ∈ hdi , γj ∈ hdj

 ,
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1−

1−
n∏

i,j=1
i6=j

(1− (1− ηi)(1− ηj))
1

n(n−1)


1
2 ∣∣∣ηi ∈ gdi , ηj ∈ gdj




(4.59)

which we call the dual hesitant fuzzy interrelated square mean.

Example 4.2.3 Assume that we have three DHFEs: d1 = {{0.2, 0.4}, {0.3}},
d2 = {{0.5}, {0.1, 0.3}}, and d3 = {{0.7, 0.9}, {0.1}}. Here, we use the DHFBM

to fuse these dual hesitant fuzzy data. Without the loss of generality, we let

p = q = 1. Then

d1 ⊗ d2 = d2 ⊗ d1 = {{0.10, 0.20}, {0.37, 0.51}},
d1 ⊗ d3 = d3 ⊗ d1 = {{0.14, 0.18, 0.28, 0.36}, {0.37}},
d2 ⊗ d3 = d3 ⊗ d2 = {{0.35, 0.45}, {0.19, 0.37}}

and thus, by (4.10), we get

DHFB1,1(d1, d2, d3) =
(

1

6

(
⊕3

i,j=1
i6=j

(di ⊗ dj)
)) 1

2

=



1−

3∏
i,j=1
i 6=j

(1− γiγj)
1
6


1
2 ∣∣∣γi ∈ hdi , γj ∈ hdj

 ,

1−

1−
3∏

i,j=1
i 6=j

(1− (1− ηi)(1− ηj))
1
6


1
2 ∣∣∣ηi ∈ gdi , ηj ∈ gdj




= {{0.4524, 0.5095, 0.5285, 0.5870}, {0.1611, 0.2230}}.

If we use the dual hesitant fuzzy average (4.57) to aggregate the DHFEs di

(i = 1, 2, 3), then we have

DHFB1,0(d1, d2, d3) =
1

3

(
⊕3
i=1di

)

=


1−

(
3∏
i=1

(1− γi)
) 1

3 ∣∣∣γi ∈ hdi
 ,


(

3∏
i=1

ηi

) 1
3 ∣∣∣ηi ∈ gdi




= {{0.5068, 0.6580, 0.5519, 0.6893}, {0.1442, 0.2080}}.
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Based on the above-mentioned computational analysis, it can be seen that the

dual hesitant fuzzy average is simpler than the DHFBM from the computational

point of view, but the DHFBM can capture the interrelationship of the given

arguments and thus can take much information into account than the former

one.

4.3 Weighted dual hesitant fuzzy Bonferroni means

In the above-mentioned analysis, only the input data and their interrelationships

are involved in aggregation process, but the importance of each datum is not em-

phasized. However, in many practical situations, the weights of the data should

be taken into account. For example, in multiple attribute decision making, the

considered attribute usually have different importance and thus need to be as-

signed different weights. Now, we define an weighted DHFBM.

Definition 4.3.1 Let di = {hdi , gdi} (i = 1, 2, . . . , n) be a collection of DHFEs,

let w = (w1, w2, . . . , wn)T be the weight vector of h̃i (i = 1, 2, . . . , n), where

wi indicates the importance degree of di (i = 1, 2, . . . , n), satisfying wi > 0

(i = 1, 2, . . . , n) and
∑n
i=1wi = 1. For any p, q > 0, if

DHFBp,q
w (d1, d2, . . . , dn) =

(
1

n(n− 1)

(
⊕ni,j=1

i 6=j
((widi)

p ⊗ (wjdj)
q)
)) 1

p+q

(4.60)

then DHFBp,q
w is called the weighted dual hesitant fuzzy Bonferroni mean (WD-

HFBM).

Similar to Theorem 4.2.2, we have the following theorem.

Theorem 4.3.2 Let di = {hdi , gdi} (i = 1, 2, . . . , n) be a collection of DHFEs,

whose weight vector is w = (w1, w2, . . . , wn)T , which satyisfies wi > 0 (i =

1, 2, . . . , n) and
∑n
i=1wi = 1, and let p, q > 0. Then the aggregated value, by
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using the WDHFBM (4.60), is also a DHFE, and

DHFBp,q
w (d1, d2, . . . , dn)

=


(

1

n(n− 1)

(
⊕ni,j=1

i 6=j
((wihdi)

p ⊗ (wjhdj)
q)
)) 1

p+q

,

(
1

n(n− 1)

(
⊗ni,j=1

i 6=j
((wigdi)

p ⊕ (wjgdj)
q)
)) 1

p+q


=



1−

n∏
i,j=1
i6=j

(
1− (1− (1− γi)wi)p(1− (1− γj)wj)q

) 1
n(n−1)


1
p+q ∣∣∣

γi ∈ hdi , γj ∈ hdj
}
,1−

1−
n∏

i,j=1
i 6=j

(
1− (1− ηwii )p(1− ηwjj )q

) 1
n(n−1)


1
p+q ∣∣∣ηi ∈ gdi , ηj ∈ gdj


 .

(4.61)

In what follows, we apply the WDHFBM to multiple attribute decision making

under dual hesitant fuzzy environment, which involves the following steps.

Step 1. For a multiple attribute decision making problem, letX = {x1, x2, . . .

, xm} be a set of m alternatives, and Y = {y1, y2, . . . , yn} be a set of n attributes,

whose weight vector is w = (w1, w2, . . . , wn)T , satisfying wj > 0, j = 1, 2, . . . , n

and
∑n
j=1wj = 1, where wj denotes the importance degree of the attribute yj.

The performance of the alternative xi with respect to the attribute yj is measured

by a DHFE dij = {{γij|γij ∈ hdij}, {ηij|ηij ∈ gdij}}, where γij indicates the degree

that the alternative xi satisfies the attribute yj, ηij indicates the degree that the

alternative xi does not satisfy the attribute yj, such that γij ∈ [0, 1], ηij ∈ [0, 1],

γ+
ij + η+

ij ≤ 1. All dij = {{γij|γij ∈ hdij}, {ηij|ηij ∈ gdij}} (i = 1, 2, . . . ,m; j =

1, 2, . . . , n) are contained in a dual hesitant fuzzy decision matrix D = (dij)m×n

(see Table 4.1).

If all attribute yj (j = 1, 2, . . . , n) are of the same type, then the performance

values do not need normalization. Whereas there are, generally, benefit attribute
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Table 4.1: The dual hesitant fuzzy decision matrix

y1 y2 · · · yn

x1 d11 d12 · · · din

x2 d21 d22 · · · d2n

...
...

...
...

...

xm dm1 dm2 · · · dmn

(the bigger the performance the better) and cost attribute (the smaller the per-

formance values the better) in multiple attribute decision making, in such cases,

we may transform the performance values of the cost type into the performance

values of the benefit type. Then, D = (dij)m×n can be transformed into the

matrix E = (eij)m×n, where

eij = {heij , geij}

=



{{γij|γij ∈ hdij}, {ηij|ηij ∈ gdij}},
(for benefit attribute yj)
{{ηij|ηij ∈ gdij}, {γij|γij ∈ hdij}}, if hdij 6= ∅, gdij 6= ∅,
{{1− γij|γij ∈ hdij}, {∅}}, if hdij 6= ∅, gdij = ∅,
{{∅}, {1− ηij|ηij ∈ gdij}}, if hdij = ∅, gdij 6= ∅,

(for cost attribute yj)

i = 1, 2, . . . ,m; j = 1, 2, . . . , n, (4.62)

and dcij =


{{ηij|ηij ∈ gdij}, {γij|γij ∈ hdij}}, if hdij 6= ∅, gdij 6= ∅,
{{1− γij|γij ∈ hdij}, {∅}}, if hdij 6= ∅, gdij = ∅,
{{∅}, {1− ηij|ηij ∈ gdij}}, if hdij = ∅, gdij 6= ∅,

is the complement of dij.

Step 2. Utilize the WDHFBM (in general, we can take p = q = 1)

ei = {hei , gei} = DHFBp,q
w (ei1, ei2, . . . , ein) (4.63)

to aggregate all the performance values eij (j = 1, 2, . . . , n) of the ith line and

get the overall performance value ei corresponding to the alternative xi.
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Step 3. Utilize the method in Definition 4.1.4 to rank the overall performance

values ei (i = 1, 2, . . . ,m).

Step 4. Rank all alternatives xi (i = 1, 2, . . . ,m) in accordance with ei (i =

1, 2, . . . ,m) in descending order, and then, select the most desirable alternative

with the largest overall performance value.

In the above-mentioned procedure, we utilized the WDHFBM to aggregate the

performance values of each alternative with respect to a collection of the pregiven

attributes, so as to rank and select the alternatives. The desirable characteristic

of the WDHFBM is that it can not only consider the importance of each attribute

but also reflect the interrelationship of the individual attributes and thus takes

the decision information into account as much as possible.

4.4 Conclusions

The BM is a traditional mean-type aggregation operator and is generally used

to aggregate the crisp numerical values rather than any other types of data. In

this chapter, we have extended the BM to accommodate dual hesitant fuzzy

environments. We have developed some new dual hesitant fuzzy aggregation

operators, including the DHFBM, the WDHFBM, and the various special cases

of the DHFBM. Then, we have applied the WDHFBM to multiple attribute

decision making with dual hesitant fuzzy information. The main advantage of

the WDHFBM in multiple attribute decision making is that it can not only

consider the importance of each attribute but also reflect the interrelationship

of the individual attributes and thus takes the decision information into account

as much as possible. The applications of these operators in many actual fields,

such as pattern recognition, medical diagnosis and clustering analysis, are open

questions for future research.
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