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Chapter 1

Introduction

Hesitancy and uncertainty are usually unavoidable problems in decision making.
To express decision makers’ evaluation information more objectively, several tools
have been proposed, such as fuzzy set (FS) [83], interval-valued fuzzy set (IVFS)
(84, 41], intuitionistic fuzzy set (IFS) [1], type-2 fuzzy set (T2EFS) [16, 35] fuzzy
multiset (FMS) [35, 34, 71|, interval-valued intuitionistic fuzzy set (IVIFS) [2, 3],
hesitant fuzzy set (HES) [45, 46} and interval-valued hesitant fuzzy set. For
example, in a decision making problem, some decision makers consider as possible
values for the membership degree of = into a set A a few different values 0.4, 0,5
and 0.6, and for the nonmembership degrees 0.1, 0,2 and 0.3 replacing just one
or a tuple. Since the membership and the nonmembership can represent the
opposite epistemic degrees, i.e., the membership comes to grips with epistemic
certainty and the nonmembership comes to grips with epistemic uncertainty, we
do not confront an interval of possibilities (IVF'S or IVIFS); or some possibility
distributions (T2FS) on the possiblevalues, or multiple occurrences of an element
(FMS), but several different possible values indicate the epistemic degrees whether
certainty or uncertainty. To deal with this cases, Zhu et al. [86] introduced
the concept of dual hesitant fuzzy set (DHFS) considered as a generalization
of fuzzy set (FS). They discussed the relationships among DHFSs and other
generalizations of FSs such as IFSs, T2FSs, FMSs and HFSs.



Distance and similarity are the most broadly applied indices in many fields
and also important measures in data analysis and classification, pattern recogni-
tion, decision making and so on. Lots of studies have been done on these issues
8, 10, 30, 47]. As many real world data may be fuzzy, the concepts of distance
and similarity have been extended to fuzzy environments, intuitionistic fuzzy en-
vironments, interval-valued fuzzy environments and hesitant fuzzy environments.
For instance, Li and Cheng [31] generalized the Hamming distance and the Eu-
clidean distance by adding a parameter and gave a similarity formula for IF'Ss only
based on the membership degrees and nonmembership degrees. Grzegorzewski
[19] defined distance measures for IVFSs and IFSs based on the Hausdorff metric.
Hung and Yang [27, 28] defined similarity measures for IF'Ss based on Hausdorff
distance and L, metric, respectively. Xu and Chen [61] gave a comprehensive
overview of distance and similarity measures for IF'Ss and developed several con-
tinuous distance and similarity measures for IFSs. Among them, the most used

distance measures for IFSs A and B on X = {xy, 29, ... %, } are the following:

e the Hamming distance:
din(A, B) = 238, ([pal@:) — pelza)| + [val@) = ve(zi)]);

e the normalized Hamming distance:
dinn(A, B) = 153501 (|nal®@i) — ps(e:)] 4 val@s) — va(@:)));

e the Fuclidean distance:

dic(A, B) = [Y0 1 (Ina(es) — mnla)? -+ ealzs) — ve (@)Y
e the normalized Euclidean distance:

dine(A, B) = L[S0, (|finlz:) e n () 25 [pales) = vp(a:)|?)";
e the Hausdorf distance:

dina(A, B) = 5 (max |pa(z;) — pp(a;)| +max |va(z;) — va(w;)]).

Because of the potential applications of distance and similarity measures, they
have been further extended by Xu and Chen [61] for IVIFSs. Several new methods
of deriving the distance and similarity measures for both IFSs and IVIFSs have
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also been proposed. Wu and Mendel [52] extended Jaccard’s similarity measure
for T2FSs and developed a new similarity measure for interval T2FSs. Xu and
Xia [53] proposed a variety of distance measures for HFSs, based on the corre-
sponding similarity measures can be obtained, and further developed a variety
of ordered weighted distance measures for HFSs. However, the aforementioned
measures cannot be used to deal with the distance and similarity between DHF'Ss.
Due to the fact that two kinds of hesitancy (i.e., membership hesitancy and non-
membership hesitancy) of decision makers’ evaluation information are common
problems in decision making as previously stated, it is necessary to develop some
measures for DHFSs. To do this, Chapter 2 of this thesis is organized as follows.
In Section 2.1, we present the axioms for distance and similarity measures, give
a variety of distance measures for DHFSs and apply them to multiple attribute
decision making with the known weight information on attributes. Section 2.2
propose a class of ordered weighted distance and similarity measures for DHFSs,
and give several methods to determine the weighting vector associated with these

distance measures. Section 2.3 ends the chapter with the concluding remarks.

Correlation indicates how well two-variables.move together in a linear fashion,
i.e., correlation reflects a linear relationship between two variables, and then it
is an important measure in data analysis [59], in particular in decision making,
medical diagnosis, pattern recognition and other real-would problems [43]. Lots
of studies [7, 9, 13, 18, 21, 22,724, 25, 26, 29, 33, 36, 39, 40, 50, 57, 65, 80] on
this issue have been extended to fuzzy environment and its extended environ-
ments. For instance, Hung and Wu [25] used the concept. of expected value to
define the correlation coefficient of fuzzy numbers, which lies'in [—1, 1]. Hong [22]
considered the fuzzy measures for correlation coefficient-of fuzzy numbers under
weakest ¢t-norm-based fuzzy arithmetic operations. Gerstenkorn and Mariko [18]
introduced the correlation and correlation coefficient of intuitionistic fuzzy sets
(IFSs) [1]. Hung [24] and Mitchell [33] derived the correlation coefficient of IFSs
from a statistical viewpoint by interpreting an IFS as an ensemble of fuzzy sets.

Hung and Wu [26] proposed a method to calculate the correlation coefficient of



IFSs by means of “centroid”. This formula tells us not only the strength of the
relationship between IFSs but also whether the considered IFSs are positively
or negatively related. Szmidt and Kacprzyk [43] proposed a formula for mea-
suring the correlation coefficient of IFSs adopting the concept from statistics,
and showed the importance to take into account all three terms (the member-
ship degree, nonmembership degree and hesitation margin) describing IFSs. In
interval-valued intuitionistic fuzzy environments, Bustince and Burillo [9] intro-
duced the concepts of correlation and correlation coefficient of interval-valued
intuitionistic fuzzy sets (IVIFSs) [2] and gave two decomposition theorems of the
correlation of IVIFSs, one in terms of the correlation of interval-valued fuzzy sets
(IVFSs) [84] and the entropy of IFSs, and the other theorem in terms of the corre-
lation of IFSs. Hong [21] generalized the concepts of correlation and correlation
coefficient of IVIFSs in a general probability space and generalized the results
of Bustince and Burillo [9] with remarkably simple proofs. He also introduced
three more decomposition theorems of the correlation of IVIFSs in terms of the
correlation of IVFSs and the entropy of IFSs. Park et al. [36}, Ye [80] and Wei
et al. [50] further studied the methods to calculate the correlation coefficients of
IVIFSs and applied them to multiple attribute group decision making problems.
Because of the potential applications of correlation coefficients, they have been
further extended by Xu and Xia [66] and Chen et al. [13] for hesitant fuzzy sets
(HFSs) [45, 46]. Chen et al. [13] derived some correlation coefficient formulas
for HFSs and applied them to two real world examples by using clustering anal-
ysis under hesitant fuzzy environments. Xu and Xia [66] defined the correlation
measures for hesitant fuzzy information and then discussed their properties. Zhu
et al. [86], recently, introduced the-definition of dual hesitant fuzzy set (DHFS),
permitting both the membership and-the nonmembership of an element, respec-
tively, to a set having a few different values, which can arise in a group decision
making problem. DHF'S can reflect the human’s hesitance more objectively than
other extensions of fuzzy set (IFS, IVFS, IVIFS, HFS, etc.), and thus it is very
necessary to develop some theories about DHFSs. However, little has been done
about this issue, Huang et al. [23] studied the aggregation operators of DHFSs



and applied them to decision making. In Chapter 3 of this thesis, we discuss the
correlation measures of dual hesitant fuzzy information. To do this, Section 3.1
proposes the correlation measures of dual hesitant fuzzy elements, several impor-
tant conclusions are obtained, and an example is given to illustrate the developed

correlation measures. Finally, Section 3.2 gives the concluding remarks.

Multiple attribute group decision making is the common phenomenon in mod-
ern life, which is to select the optimal alternative(s) from several alternatives or
to get their ranking by aggregating the performances of each alternative under
several attributes, in which the aggregation techniques play an important role.
Considering the relationships among the aggregated arguments, we can classify
the aggregation techniques into two categories, the ones which consider the ag-
gregated arguments dependently and the ones which consider the aggregated ar-
guments independently. For the first category, the well-known ordered weighted
averaging (OWA) operator [72, 73} -is the representative, on the basis of which, a
lot of generalizations have been developed, such as the ordered weighted geomet-
ric (OWG) operator [14, 63, 64], the ordered ordered weighted-harmonic mean
(OWHM) operator [11], the continuous ordered weighted averaging (C-OWA) op-
erator [76], the continuous ordered weighted geometric (C-OWG) operator [79],
and so on. The second category can reduce to two subcategories: the first subcat-
egory focuses on changing the weight vector of the aggregation operators, such as
the Choquet integral-based aggregation operators [77], in which the correlations
of the aggregated arguments are measured subjectively by the decision makers,
and the representatives of anoether subcategory are the power averaging (PA) op-
erator [74] and the power geometric(PG) operator [68], both -of which allow the
aggregated arguments to support each other in aggregation process, on the ba-
sis of which the weighted vector is determined. The second subcategory focuses
on the aggregated arguments such as the Bonferroni mean (BM) operator [6].
Yager [78] provided an interpretation of BM operator as involving a product of
each argument with the average of the other arguments, a combined averaging

and “anding” operator. Beliakov et al. [5] presented a composed aggregation



technique called the generalized Bonferroni mean (GBM) operator, which models
the average of the conjunctive expressions and the average of remaining. In fact,
they extended the BM operator by considering the correlations of any three ag-
gregated arguments instead of any two. However, both the BM operator and the
GBM operator ignore some aggregation information and the weight vector of the
aggregated arguments. To overcome this drawback, Xia et al. [56] developed the
generalized weighted Bonferroni mean (GWBM) operator as the weighted version
of the GBM operator. Based on the GBM operator and geometric mean operator,
they also developed the generalized Bonferoni geometric mean (GWBGM) oper-
ator. The fundamental characteristic of the GWBM operator is that it focuses
on the group opinions, while the GWBGM operator gives more importance to
the individual opinions. Because of the usefulness of the aggregation techniques,
which reflect the correlations of arguments, most of them have been extended to
fuzzy, intuitionistic fuzzy or hesitant fuzzy environment [37, 44, 59, 56, 69, 82, 85].
However, how to apply the BM to deal with dual hesitant fuzzy information is
new research direction, which is also the focus of this thesis. In.Chapter 4 of this
thesis, we investigate the BM under dual hesitant fuzzy environments. In Section
4.1 briefly reviews some basic concepts and operations related to the BM and
dual hesitant fuzzy element (DHFE), which considered in the basie calculational
unit of DHFS. In Section 4.2, an dual hesitant fuzzy BM (IVHFBM) is developed,
and its variety of special cases are discussed. Section 4.3 introduces the weighted
DHFBM (WDHFBM) and develops a procedure for multiple attribute decision

making. Section 4.5 ends this chapter-with some concluding remarks.



Chapter 2

Distance and similarity measures
for dual hesitant fuzzy sets and

their applications

2.1 Distance and similarity measures for DHF'Ss

Definition 2.1.1 [1] Let X be a fixed set, an intuitionistic fuzzy set (IFS) A in

X is given as an object having the following form:

A = {{z,pa(7), va(e))le € X7}, (2.1)

where pg : X — [0,1] and vy @ X = [0, 1] denote, respectively, membership
function and nonmembership function of A with the condition 0 < pa(x) +
va(x) <1 for any v € X. Xu and Yager [67] called each pair (u(z),v(x)) an
intuitionistic fuzzy number (IFN), and-denoted by & = (ptq, Vo)

For each IFS A in X,

ma@) = 1 — pa(@) = vale) (2.2)

is called the hesitancy degree or intuitionistic index of x to A. Especially, if

ma(z) =0 for all z € X, then the IFS reduces to a fuzzy set. Clearly, a prominent

7



characteristic of IF'S is that it assigns to each element a membership degree, a non-
membership degree and hesitation degree, and thus, IF'S constitutes an extension
of fuzzy set which only assigns to each element a membership degree.

The hesitant fuzzy set [45, 46], as a generalization of fuzzy set, permits the
membership degree of an element to a set presented as several possible values
between 0 and 1, which can better describe the situations where people have

hesitancy in providing their preferences over objects in process of decision making.

Definition 2.1.2 [45, 46] Let X be a fixed set, a hesitant fuzzy set (HFS) is in
terms of function that when applied to X returns a subset of [0, 1], which can be

represented as the following mathematical symbol:
E = {(z,h(z)) :z € X}, (2.3)

where h(x) is a set of some values in [0, 1], denoting the possible membership
degrees of element 2 € X to the set E. For convenience; Xia and Xu [53] called
h(x) a hesitant fuzzy element (HFE).

Zhu et al. [86] defined dual hesitant fuzzy set in terms of two functions that
return two sets of membership values and nonmembership values, respectively,

for each element in domain as follows.

Definition 2.1.3 [86] Let X be a fixed set, then a dual hesitant fuzzy set (DHF'S)
E on X is described as:

E = {{&:hs(2), gu(a)) | € X}, (2.4)

in which hg(z) and gg(x) are two-sets of some values in [0, 1], denoting the
possible membership degrees and nonmembership degrees of element x € X to

the set F, respectively, with the conditions:
0<7, 7<1,0<y" +97 <1, (2.5)

where v € h(z), n € g(x), v* € h*(z) = max{y|y € h(z)}, and n" € g*(z) =
max{n|n € g(x)} for all x € X. For convenience, the pair {hg(z),gr(z)} is

8



called a dual hesitant fuzzy element (DHFE), with the conditions: v € hg(z),
n € gp(x), v" = max{y|y € hp(2)}, n* = max{n|n € gr(z)}, 0 < v,n <1, and
v +nt <L

For a given DHFS E = {hg,gr} # 0, if the membership hesitancy part hg
and nonmembership hesitancy part gz have only one value v and 7, respectively,
and v+ n < 1, then the DHFS reduces an intuitionistic fuzzy set. If hg and gg
have only one value 7 and 7, respectively, and v+ 7 = 1, or hg owns one value
and gg = 0, then the DHFS reduces to an fuzzy set (also can be regarded as
hesitant fuzzy set). If hg # () and gg = 0, then the DHFS reduces the hesitant

fuzzy set. Thus the definition of DHFSs encompasses these fuzzy sets above.

It is noted that the numbers of values in membership hesitancy part hg(z)
and in nonmembership hesitancy part gg(x) in a DHFE E = {hg(x), gp(z)},
respectively, may be different, let [(hg(x)) be the number of values in hg(z), and
l(gr(x)) be the number of values ingg(x). We arrangethe elements in hg(z) and
ge(x), respectively, in descending order, and let h%(j )(a:) be the jth largest value

in hg(z), and gg(k)(:c) be the kth largest value in gg(z).

Because that distance and similarity measures.can be applied to many areas
such as pattern recognition, cluster analysis, approximate reasoning and decision
making, they have attracted al/lot of attention. A lot of distance and similarity
measures have been developed for FSs, IFSs, FMs and DFSs as mentioned in
introduction, but there is little research on DHFSs. Thus, it is very necessary
to develop some distance and similarity measures under dual hesitant fuzzy en-
vironment. We first present-this issue by proposing the axioms for distance and

similarity measures.

Definition 2.1.4 Let M and N be two DHFSs on X = {x1,2s,...,2,}, then
the distance measure between M and N is defined as d(M, N), which satisfies
the following properties:

(D1) 0 <d(M,N) <1,

(D2) d(M,N) =0 if and only if M = N;

(D3) d(M,N) = d(N, M).



Definition 2.1.5 Let M and N be two DHFSs on X = {x1,2s,...,2,}, then
the similarity measure between M and N is defined as s(M, N), which satisfies
the following properties:

(S1) 0 < s(M,N) < 1;

(S2) s(M,N) =1 if and only if M = N;

(S3) s(M,N) = s(N, M).

From Definitions 2.1.4 and 2.1.5, it is noted that s(M, N) =1—d(M, N), and
thus, in this paper, we only discuss the distance measures for DHFSs and the

corresponding similarity measures can be obtained easily.

In most cases of two DHEFSs M = {hy,gm} and N = {hy,gn}, we have
l(ha(z;)) # U(hn(z;)) and [(ga(2;)) # [(gn(2;)), and for convenience, let Iy, =
max{l(ha(x;)), l(hn(x;))} and I,y = max{l(gam(z;)), l(gn(x;))} for each z; €
X. To operate correctly, we should extend the shorter ones, respectively, un-
til both of them in membership hesitancy part and nonmembership hesitancy
part have the same length, respectively, when we compare them. To extend the
shorter ones, the best way is to add.the same values several times in them, re-
spectively. In fact, we can extend the shorter ones by adding any values in them,
respectively. The selection of these values mainly depends on the decision mak-
ers’ risk preferences. Optimists anticipate desirable outcomes and may add the
maximum value in membership hesitancy part and the minimum value in non-
membership hesitancy part, while pessimists expect unfavorable outcomes and
may add the minimum value in membership hesitancy part and the maximum
value in nonmembership “hesitancy-part. For example, let {hy(x;), gm(x;)} =
{{0.1,0.2,0.3},{0.4,0.5}}, {hn(z))sgn(z;)} = {{0:5,0.6},{0.2,0.3,0.4}}, then
we get l(ha(x;)) > U(hn(z;)) and [(ga(2;)) < l(gn(x;)). To operate correctly,
we should extend hy(z;) and gas(z;), respectively, to hy(z;) = {0.5,0.5,0.6} and
gum(x;) = {0.4,0.4,0.5} until they have the same lengths of hys(z;) and gn(z;), re-
spectively, the optimist may extend hy(z;) and gas(z;) as hy(z;) = {0.5,0.6,0.6}
and gy (z;) = {0.4,0.4,0.5}, and the pessimist may extend them as hy(x;) =
{0.5,0.5,0.6} and gps(z;) = {0.4,0.5,0.5}. Although the results may be different

10



if we extend the shorter ones, respectively, by adding different values, it is reason-
able because the decision makers’ risk preferences can directly influence the final
decision. In this chapter, we assume that the decision makers are all pessimistic

(other situation can also be studied similarly).

Based on the Hamming distance and the Fuclidean distance, we define a dual
hesitant normalized Hamming distance:
aen)

17’L
dapnn (M, N) = —
dhnh( Qn;{

e () — ) (w:)

lh (wi) j=1

1 g(li) ol ol
3 | @) — g ()

9(®i) k=1
(2.6)
and a dual hesitant normalized Euclidean distance:
A m VAL G2
dapme(M, N)~ =t 3 > (had () = h” (x:)
2nz T \Un@) j=1
I o
1 g(ftz) i ok 9
=Y |on @y o @[]
9(®i) k=1
(2.7)

where h}f\}j) (x;) and h‘;\,(j) (x;) are the jth largest values in hj/(z;) and hy(z;),
respectively, and gi}k) (@;) and g;(k) (x;) are the kth largest values in gy (z;) and

gn(x;), respectively, which will be used thereafter.

We can further extend (2.6) and (2.7) into a gemeralized dual hesitant nor-

malized distance:

n UNEN)
1 L (i A
dyana (M, N) = | o~ 3 z SR (@) — W (22)
nis h(z:) 7=1

_l_

L o )]
] Do lgn (xi) — g5 (@) )

9(®i) k=1
(2.8)



where \ > 0.

In particular, if A = 1, then the generalized hesitant normalized distance
reduces the dual hesitant normalized Hamming distance; if A = 2, then the
generalized hesitant normalized distance reduces the dual hesitant normalized

Euclidean distance.

If we apply the Hausdorff metric to the dual hesitant distance measure, then

a generalized dual hesitant normalized Hausdorff distance is given as
dgdhnh(M7 N)

1
1 n (i ol(i A olk o(k A BN
= [271} : (mjax‘hj\}i)(xi) — b9 (z;) +m,§1x‘g]v} (@) — 6% () )] 7
i=1

(2.9)

where A > 0, j = 1727---7lh(zi) and k= 1727---7lg(xi)-

Now we discuss two special cases of the generalized dual hesitant normalized
Hausdorff distance:
(1) If A = 1, then (2.9) becomes a dual-hesitant normalized Hamming-

HausdorfI distance:

dannnn(M, N)

1 & oy o(j
= o0 2 (s W51 ) e

o(k o(k
e o710 (2) — 9] )

(2.10)

(2) If A = 2, then (2:9) becomes a dual hesitant normalized Euclidean-

Hausdorff distance:
ddhneh (M7 N)

1 " o(g o(g
- [2 Z <mjax ’hl\}])(xz) — hN(])(lfi)

ni3

2 ok o(k
+max g7} (2,) — g5 (2:)

2>F.

(2.11)
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Combining (2.6)-(2.11), we define a hybrid dual hesitant normalized Hamming
distance, a hybrid dual hesitant normalized Fuclidean distance, and a generalized
hybrid dual hesitant normalized distance as follows, respectively:

lh(a:-)
1 1 L o(i
dhahnn (M, N) ZZ [ Z hM(])(Ii) - hzv(])(ﬁi)

i=1 | “h(xi) j=1
EEU. o(k) ()
. S g (@) — g7 (@) +maX]h (2;) — B3 ()
9\ZTi) k=1

o(k o(k
max ‘QM( M(2:) = g3 ()

], (2.12)

n lnzy)
1 i . . 2
dhamne(M,N) = | — > > hi}])(-’ﬂz‘)—h%ﬁ(%)
dn = lh(wz 7=1
1 49 ™ oK) 2 80 o(i) (|2
+ o (@) — g (x)| + max () — Ry (2:)
g(@i) k=1 J
>
o(k k 2
/x| £ o 5z )] , (213
\ ‘@ Inay) : ! A
dgharn(M, N) = | = 3" SN Y )
4n =1 lh (zi) j=1
1 o(k) Y o)/ |
+l( ) Yl (@dE o= ks +maxh (z:) — Ry (24)

> =

o(k o(k
+ max g1 (@) — g3 ()

A)] , (2.14)

Ly
Usually, the weight of each element x; € X should be taken into account

and so, we present the following weighted distance measures for DHFSs. Assume

where A >0, 7=1,2,...,lpu,)and kb =1,2,..
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that the weight of the element x; € X is w; (i = 1,2,...,n) with w; € [0, 1] and

>, w; =1, then we obtain a generalized dual hesitant weighted distance:
n th(ay)

1 1 i o(i o(i A

5 2 ( > | (@) = h (x2)
i=1

dgdhw(Ma N) = lh( )
Ti) j=1

z X
1 9(z;) o(k . N
o 2 fon (@) - g7 (@)
9(zi) k=1

(2.15)
and a generalized dual hesitant weighted Hausdorff distance:

dgdhwh(Ma N)

[ sz (max‘h ]) (x;) — h}’v(j)(xi) ’

>|=

o(k o(k
+ max |71 (2;) — g5 (x:)

,\)]
(2.16)
where A >0, 7 =1,2,..., lyay and b =1,2,.. . 5.

In the following, let us consider some special cases of the generalized dual hes-
itant weighted distance (2.15) and the generalized dual hesitant weighted Haus-
dorff distance (2.16), respectively, by taking different values of the parameter

A.
(1) If A =1, then we get a dual hesitant weighted Hamming distance:

danwn(M, N)
1. lh(aci) )y (i) 1 lg(ﬂcz) o (k) o (k)
_§sz‘ M(Uﬁi)_th(xi)"‘ﬁl ZQM (z:) —gn ()
i=1 (z5) j=1 9(%:) =1

(2.17)
and a dual hesitant weighted Hamming-Hausdorff distance:

ddhwhh(M N)
= 5 2w (o[ ) = 15

o(k o(k
+ mx g7 () = g3 a)]).

(2.18)
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(2) If A = 2, then we have a dual hesitant weighted Euclidean distance:

lh(.r)
1 i ol (i 2
ddhwe M N |: sz (lh( : Z h]\}ﬁ(wl) - hN(j)(«Tl)
Ti) j=1

1) L w2\ |
T D |gn (@) — g (@)

9(®i) k=1
(2.19)

and a dual hesitant weighted Euclidean-Hausdorff distance:

danwen(M, N)

lli (max\h (i) — B9 ()

i

(2.20)

+ max |7} (2;) — g5 (2:)

Furthermore, combining the generalized dual hesitant weighted distance (2.15)
and generalized dual hesitant weighted Hausdorff distance (2.16), we develop a
generalized hybrid dual hesitant weighted distance as

U (ay) .
gnara (M, ) = [ >, (zh 3 [ ) = W )|
(%) =1
) o o o0) o) (1 [*
s Lla” @) = of (@) + masclni af) - B (@)
9\T3) k=1

o(k k
+ max g5 (@) < gR " (@)

i

where A >0, 7 =1,2,...,lp@,) and k =1,2,... Iy,

(2.21)

In the special cases where A = 1,2, (2.21) reduces a hybrid dual hesitant
weighted Hamming distance and a hybrid dual hesitant weighted Euclidean dis-

15



tance as follows, respectively:

=1

n Un(ay)
1 1 D i
dhanwn(M, N) = 1 > w; ( > hM(])(%‘) — h]\r(j)(fﬁ

dhdhwe (M N)

o(k ok
+ max g1 ()~ g5 ()

2)1 % : (2.23)

In aforementioned mentioned analysis, the distance measures are discrete. If
both the universe of discourse and the weight of element are continuous, and the
weight of z € X = [a,b] is w(x), where w(z) € [0,4] and [ w(x)dz = 1, then we
define a continuous dual hesitant weighted Hamming distance, a continuous dual
hesitant weighted Euclidean distance and a generalized continuous dual hesitant
weighted distance as follows, respectively:

lh()

Z ’hU(J J)( )‘

dcdhthN /UJSU (

Inw)
1 ly(a) (%) o(h)
+ =0 Jof? (=P (@) | de, (2.24)
g(x) =1

ease (M, N) = [1 abw<x>( L ) - 160

2 Ih) i
192 (K)o |2 :

o D@ @) fde) o (225)
9\Z) k=1



lh(z)

\hM — h3? ()

1
dyean(M, N) = [ /w:z; (
In(z) 5=

b S - >\)dz] (22

lg(w) k=1

>l

Where)\>0,j:1,2,...,lh(m) andkzl,Z,...,lg(x).

If w(z) = ;L for any z € [a,b], then the continuous dual hesitant weighted
Hamming distance (2.24) reduces a continuous dual hesitant normalized Ham-

ming distance:

LY B S o)
deannn(M, N) = 2([?—0/)/(1 > () = W3 ()

Ih(a) j=1
L2 o (k)
+ =@ = ai @) | do (2.27)
9\Z) k=1

and the continuous dual hesitant weighted Euclidean distance (2.25) reduces a

continuous dual hesitant normalized Euclidean distance:

l
1 G 1 . O b}, L 12
dcdhnew,zv):[ / ( >[5 () — b ()|

20— a) Jo \ by 15

1 lg(a) . l %
B SOD I e >\)d4 (2.28)

lg(w) k=1

and the generalized continuous dual hesitant weighted distance (2.26) reduces a

generalized continuous dual hesitant normalized distance:

1 b1 NP
i (M, N) = / W9 (z) — B9
gcdh ( ) ) [2(b—a) " (lh(:p — ’ N (ZE)‘
1

! >

1 9@ " " A
+ ; (k)(l’) — gN(k)(x)‘ ) dx] , (2.29)

9(x) k=1

Where/\>0,j:1,2,...,lh(x) andk:1,2,...,lg(x).
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Similar to (2.16), if we apply the Hausdorff metric to the continuous dual
hesitant weighted distance measure, then a generalized continuous dual hesitant

weighted Hausdorff distance is given as
dgcdhwh(M7 N)
1 b o o(g A o o A
— [2/a w(z) (max’h () (x) — hN(J)(:c)‘ +ml§1x’gM(k)(x) —gN(k)(x)‘ )da:} ,

(2.30)

>l

where A >0, 7 =1,2,... [ and k =1,2,..., [y

In special cases where A\ = 1,2, the generalized continuous dual hesitant
weighted Hausdorff distance (2.30) reduces a continuous dual hesitant weighted

Hamming-Hausdorff distance:

dcdhwhh M N)

IAICS!

and a continuous dual hesitant weighted Euclidean-Hausdorff distance:

n52 @) = @)+ x50 - 7 (@)])
(2.31)

dcdhweh(Ma N)

1

1 b o(j o(g 3 4 X ? 2
= 5. vt (s i - 160 | Pt o) — o)) o]

2
(2.32)
respectively.
In particular, if w(z) = ﬁ for-any .« € [a,b], then the generalized con-

tinuous dual hesitant weighted Hausdorff distance (2.30) becomes a generalized

continuous dual hesitant normalized Hausdorff distance:

dgcdhnh(Ma N)

[ [

>

o(j a(j A o(k o(k A
70 () — 150 @)[ + max| g5 2) - o7 ) )d] ,

(2.33)
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where A >0, j = 1,2,... [ and k = 1,2,..., 1), while the continuous dual
hesitant weighted Hamming-Hausdorff distance (2.31) becomes a continuous dual

hesitant normalized Hamming-Hausdorff distance:
deannhn(M, N)

I o(7) o(7) o(k) o(h)
— 2(()—@)/a (mjax‘hM (x) — hy (J:)‘ + m]?X‘gM (x) — gy (m)‘) dx
(2.34)

and the continuous dual hesitant weighted Euclidean-Hausdorff distance (2.32)

becomes a continuous dual hesitant normalized Euclidean-Hausdorff distance:

dcdhneh(M7 N)

[ [ (s

1
o(j o(j 2 o o 2 2
150 = 160 @)+ o 0) = 50 ) ]
(2.35)

Similar to (2.21), combining the generalized continuous dual hesitant weighted
distance (2.26) and generalized continuous dual hesitant weighted Hausdorff dis-
tance (2.30), we develop a generalized hybrid' continuous dual hesitant weighted

distance as

dghcdhw (Ma N)

Ih() : lg(z) A
/ w(z ( hﬁ])(x) K (J) ‘ Z ’gff(k U(k)(x)‘

i1 g(ﬂf) k=1

=

A

oy o(g A o o A
) gl ana o 0) - KO Y|

+ max
J
(2.36)

where A >0, 7 =1,2,... [ and k =1,2,..., ;).
Let A\ = 1,2, then from (2.36), we get a hybrid continuous dual hesitant
weighted Hamming distance and a hybrid continuous dual hesitant weighted Eu-

clidean distance as

Ahedhwn (M, N)
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lh(a) ly(a)

ARG (m > [1 ) = 150w + = 3 i o) )|

x)k1

e 1510 ) — 30 () + mp o589 ) — 659 o) )daz
(2.37)
and
dhcdhwe(M7 N)
!
1 b 1 h(z) ly(e) o(k 9
— |5 [ v (lh()z D) — 159 ()| + Z!gM - g3 (@)]
a z) j—1
1
oy o(g 2 e o 2 2
+ mjax A}])(x) — hN(J)(x)’ + max (k)(x) — gN(k)(x)’ )dx] ,
(2.38)
respectively.

In particular, if w(z) = ﬁ for any = € [a,b], then the generalized hybrid
continuous dual hesitant weighted distance (2:36) becomes a generalized hybrid

continuous dual hesitant normalized distance:

1 /b L () G) ;|
— AR /o (1
oo A (zh(x);ﬂ 5 @) = g ()|
g()
Z‘g k) k:)( )‘ +mjax

dghcdhn(M7 N) =

o(g o(j A
i@ A @)

>=

A
+mgx\gzé’“<x>—gfé“<x>1 )iz, 2:39)

where A >0, j =1,2,...,lpu) and k = 1,2,...,1y,), and the hybrid continuous
dual hesitant weighted Hamming distance (2.37) reduces a hybrid continuous dual

hesitant normalized Hamming distance:

Cl 1 b 1 lh(r) o (]) o (])
cdhn M, N) = / xTr) — T
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o(k o(k o(j oy
o 20 |95 (@) — g% ()| + max 157 (2) — B3 ()|
9(z) k=1 !
+max ‘gﬁk) (x) — gfv(k)(x)‘ >da: (2.40)

and the hybrid continuous dual hesitant weighted Euclidean distance (2.38) be-

comes a hybrid continuous dual hesitant normalized Euclidean distance:

@ I
4(b1—a) /ab ( ! Z hﬁj)(l’) _h%j)(x)’

lh(u’v) j=1

dhcdhne(M7 N) =

1 o(k o(k 2 o(j o(g 2
o 931" (2) = o8 @)|” + max|nT7 (2) = h3 ()]
9g\r) k=1
1
g g 2 2
+ max g7 (@) — g5 () M | (2.41)

respectively.

From the aforementioned analysis, it can be seen that the generalized dual
hesitant weighted distance (2.15), the generalized dual hesitant weighted Haus-
dorff distance (2.16) and the generalized hybrid dual hesitant weighted distance
(2.21) are three fundamental distance measures, based on which all of the other

developed distance measures can be obtained under some special conditions.

In what follows; we apply the our distance measures for DHESs to multiple

attribute decision making under dual hesitant fuzzy environment.

Example 2.1.6 Energy is an-indispensable factor for the socio-economic devel-
opment of societies. Thus the-corréct energy policy affects economic develop-
ment and environment, and so, the most appropriate energy policy selection is
very important. Suppose that there are five alternatives (energy projects) G
(1 = 1,2,3,4,5) to be invested, and four attributes x; (technological), x5 (en-
vironmental), x3 (socio-political) and x4 (economic) be considered (for details,
see [14]). The attribute weight vector is w = (0.15,0.3,0.2,0.35)7. Assume
that the characteristics of the alternatives G; (i = 1,2,3,4,5) with respect to
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the attribute x; (j = 1,2,3,4) are represented by the DHFSs d;; = {{vi|7i; €
ha,, Y. {nij|mi; € ga,; }}, where v;; indicates the degree that the alternative x; sat-
isfies the attribute y;, n;; indicates the degree that the alternative z; does not
satisfy the attribute y;, such that ~; € [0,1], n; € [0,1] and 7 + 7 < 1.
All dij = {{’Yij‘%j = hdij}a{mj‘nij € gdij}} (Z = 1,2,3,4,5; j = 172a374) are
contained in the dual hesitant fuzzy decision matrix D = (d;;)5x4 (see Table 2.1).

Table 2.1: The dual hesitant fuzzy decision matrix D = (d;;)5x4

1 xT9o xr3 T4
Gy {{0.3},{0.2,0.4}} {{0.7},{0.2}} {{0.5,0.6}, {0.2,0.3}} {{0.6,0.7},{0.1,0.2}}
G2 {{0.5,0.6}, {0.2}} {{0.3,0.4},{0.1,0.2}} {{0.7,0.8},{0.1}} {{0.4,0.5},{0.2,0.3}}
Gs | {{0.3,0.4},{0.4,0.5}} {{0.7,0.8},{0.1,0.2}} {{0.4},{0.3,0.4}} {{0.7,0.8}, {0.1}}
Gy {{0.2},{0.6,0.7}} {{0.8},{0.1}} {{0.7,0.8},{0.2,0.3}} {{0.8},{0.1,0.2}}
Gs {{0.8,0.9},{0.1}} {{0.6,0.7},{0.2,0.3}} {{0.2},{0.5,0.6}} {{0.5,0.7},{0.1,0.2,0.3}}

Suppose that the ideal alternative is A* = {{1},{0}} seen as a special DHFS
(i.e, A* is complete certainty), then we can calculate the distance between each
alternative and the ideal alternative using our distance measures. If we use the
generalized dual hesitant weighted distance (2.15), the generalized dual hesi-
tant weighted Hausdorff distance (2.16) and the generalized hybrid dual hesitant
weighted distance (2.21) to calculate the deviations between each alternative and
the ideal alternative, then we obtain the rankings of these alternatives, which
are listed in Tables 2.2-2.4, respectively, when some values of the parameter are
given. We find that the rankings are different as the parameter A (which can
be considered as the decision maker’s risk-bearing-attitude) changes, and conse-
quently, the proposed distance meastures can provide the decision makers more
choices as the different values of parameter are given according to the decision

maker’s risk-bearing attitudes.
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Table 2.2: Results obtained by the generalized dual hesitant weighted distance

dgdhw
G1 Gy Gs Gy Gs Rankings
A=1 0.307500  0.343750  0.298750  0.265000 0.348750 G4 = G1 = G3 = G2 = G5
=2 0.058500 0.079063 0.061188  0.055875 0.081771 G4 > G1 > Gz > G2 > G5
=5 0.003353  0.005992  0.003931 0.006841 0.008499 G1 > G3 > G2 > G4 > Gs
A =10 | 0.000219 0.000323 0.000194 0.000934 0.001118 G3 = G1 = G2 = G4 = G5

Table 2.3: Results obtained by the generalized dual hesitant weighted Hausdorff

distance dganwn

G1 G2 Gs Gy Gs Rankings
A=1 0.342500  0.385000 0.335000 0.287500 0.407500 G4 > G3 > G1 > G2 > G5
A=2 0.056370 0.088025 0.058500 0.057288 0.082713 G > G4 > G3 > G5 > G2
A=5 0.003166  0.008323 0.003353  0.007517 0.003122 G5 > G1 > Gz > G4 > G2
A =10 | 0.000215 0.000537 0.000220 0.001017 0.000079 G5 > G1 > G3 > G2 > G4

Table 2.4: Results obtained

distance dgpap

by the generalized hybrid dual-hesitant

weighted

G1 G2 G3 Gy Gs Rankings
A=1 0.3250000 0.364375 0.316875 0.276250 0.378125 G4 = G3 = G1 = G2 = G5
A=2 0.057435 0.083544 0.059519 0.056581 0.082242 G4 > G1 > G3 > G5 = Go
A=5 0.003259  0.007157 0.003642 0.007179  0.005810 G1 = G3 = G5 = G2 = G4
A =10 | 0.000217 0.000430 0.000207 0.000976 0.000599 G3 > G1 > G2 > G5 = Gy

2.2 Ordered weighted distance measures for

DHFSs

Xu and Chen [61] defined some ordered weighted distance measures, and then

Yager generalized Xu and Chen’s distance measures and provided a variety of

ordered weighted averaging norms, based on which he proposed several similarity

measures. Merigé and Gil-Lafuente [32] proposed an ordered weighted averaging

distance operator and applied it in the selection of financial products. In the
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following, we develop several ordered distance measures for DHFSs. Motivated by
the ordered weighted distance [61], we define a generalized dual hesitant ordered

weighted distance:

lh(zA )
1 n 1 &(1) ol ol A
dganow(M, N) = |53 wi | 5 03 (2a00) = W3 (w5)
=1 h(xau)) 7=1
l (Zs5)) BN
1 iy o(k o(k A
+ 957 @aw) — 93 @s)| || (242)

g(l’a(i)) k=1
where A > 0, o(j) and o(k) are given in Section 2.1, and ¢ : (1,2,...,n) —
(1,2,...,n) is a permutation satisfying the condition

Ih(eg(ipry)
! @ Y e
l > | (@earn) — BN (T5610)
h(zsirn)  j=1

1 eCay)

N i

g m&(i+1)) k=1

o(k o(k
91\} )(x&(iJrl)) E gN( )(ZU&(z'H))’

}L<‘Lo
1 ( )

2 ’h ma(i)) hN (1’0 z))

lh(fa(i)) j=1

1 g(afa@))

, (2.43)

i ‘QM W6y — gN( )( Ts(;))

lg(x&(i)) k=1
fori=1,2,...,n— 1.

In special cases where A = 1,2, the generalized dual hesitant ordered weighted

distance (2.42) reduces a dual hesitant ordered weighted Hamming distance:

Iz s )
1. 5 (i) >
ddhOWh<M7 N) = 5 z:l % lh : 221 ’h (] T (3) hN])(xa(z)>’
i= CHOV

1 9(%,( ))

(2.44)

o(k
+ > |5 @sy) — o8 (wae)

lg(z&(i)) k=1
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and a dual hesitant ordered weighted Fuclidean distance:

1 sy

I > ’h (Z51) hzv(])(%(z'))’
hzsiy) =1

2

1.
ddhowe(Ma N) = 52(*)1

1 lg(l‘;;(i)) 9 2
o(k o(k
‘QM( )(%(z‘)) - gN( )(%(i))

+ . (2.45)

lg(x&(i)) k=1

respectively.

Similar to (2.16), with the Hausdorff metric, we develop a generalized dual

hesitant ordered weighted Hausdorff distance as

o(g A
dgdnown(M, N) [ sz <max ‘h (o)) — hN(j)(ac(,(i))
A\ T3
o(k o(k
+ max ‘91\/} )(%(i)) = QN( )(%5(1'))’ )} ’ (2.46)
where A > 0, o(j) and o(k) are given in Section 2.1, and.¢ : (1,2,...,n) —

(1,2,...,n) is a permutation satisfying the condition

o(j o(j o(k o(k
max ‘hM(J)(%(iH)) ™ h]\f(j)(wd(iﬂ))’ + max ’gM( M@ (i41)) Ty (@ i41))

o (k)

o(j o(j o(k
2 max ‘hz\}j)(%(i)) — W3 (s )| + max ’91\4( (o) — 9% (@)

i=1,2| nn— 1.

(2.47)

In the following, we discuss two special cases of the generalized dual hesi-
tant ordered weighted Hausdorff distance (2.46) by taking different values of the
parameter A:

(1) If A =1, then (2.46) becomes a-dual hesitant ordered weighted Hamming-
Hausdorff distance:

ddhowhh(M N)

- sz <max ’hM To()) — h?v(j)(xd(i))

ok ok
4—nfxﬁh})@%uﬂ g (@ Mﬂ))'

(2.48)
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(2) If A = 2, then (2.46) becomes a dual hesitant ordered weighted Euclidean-
Hausdorft distance:

ol o 2
ddhoweh M N [ sz (mjax ’hj\/.(lj)(xd(i)) _ hN(]) (xd(i))

1
ok k 2\ ]2
+ mkax‘g]\} )(%(z‘)) g (@ &(i))’ ﬂ : (2.49)

Combining (2.42) and (2.46), similar to (2.21), we develop a generalized hybrid
dual hesitant ordered weighted distance as

lh(zs )
1 & (7)

o(g o A
dghanow(M, N) sz l > | (@aw) = b (ws)
h(zsi)  j=1
L) o o(k) A
+l7 Z (‘Tﬂ(l)) gN ( a(z)) + max ’hM ma () ) hN (xo z))
9(zi) k=1
1
k P [
+ maX ‘gM Ia(l)) = gN( )< 0(2))’ )] 5 (25())

where A > 0, o(j) and a(k) are given in Section 2.1, and § = (1,2,...,n) —
(1,2,...,n) is a permutation satisfying the condition

lh(zariiqy)
1 6(i+1) o F
— X B3 @)= W (@ain))|
h(l’&(i+1)) 7j=1
1 leshin)

o(k o(k
+57 Z ‘QM( )(x&(i—l—l)) - QN( )(37&(i+1))‘
Q(I&(iﬂ)) k=1

o(j o(j o(k o(k
+max ‘hz\}])(l’&(m)) = hjv(j)(xif'(iﬂ))‘ + max ‘QM( (zoign) < 90" (@5611))

h(x )

1 "“ .

=7 ‘hM xUZ) I (j)( &(i))
h(zsa)) =1

] ) ) o (k)

+ > \gM (Ts50)) — gn (@ &(z’))]

g(mb‘(i)) k=1
o(g ok
+mjax’h1v§])(l’&(i)) — 13 (@s0) +maXﬂgM (@s)) — 95" (@s0)|
i=1,2,...,n—1. (2.51)
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Some special cases can be obtained just as discussed in Sections 2.1 and 2.2 as
the parameter and weight vector change. Furthermore, let d, denote the ordered
distance measures defined above, then the ordered similarity measures for DHFSs

can be given as s, =1 — d,.

Finally, we consider, as another important issue, the determination of the
weight vectors associated with the ordered weighted distance measures. Based
on the works of Xu and Chen [61] and Xu and Xia [66], we propose three methods
to determine the weight vectors.

Considering each element {hns (), 9ar (o)) } in M and {hn(2,@)), g8 (Tp)) }
in N, respectively, d({ha(z,0)), g (@p)) 3, {hn (@pi)), gn (@p@))}) (1 =1,2,...,n)
as given in Section 2.1, and denoting 6, ¢ and & as p, we have

(1) Let

d({har (), 9ar (@) b5 Ahv (T (i) 9N (i) })

Wi = n )

D ok—1 d({hM<5’3'p(k))> QM(xp(k))}7 {hN<xp(k))» QN(xp(k))})

i =172, ...n,
(2.52)

then w; 11 > w; 2> 0, st 2, . .., g 15 ands> S — .
(2) Let
e~ d{har(@p(i))s90 (€ p@) )} ABN (@ (i) ) 9N (@ (i) )

w; = P =128 In, (2.53)

sn e~ har (@ k) )90 @pie)) AN (€ (1)) 9N (Zp i) }) 7
then 0 < w; < w;yq, Bl 2%, ., n —, aNd T < 1.
(3) Let

d({h]\/[, gM}> {th gN})

= 711 ki d({ha (o), g (@oi) s LN (o)) 9N (Tp)) })

(2.54)

and

d(d({har(xp), g1 (@ o) s AP (@o))s I8 (o) 1) d({Rar, gar . {v, gx }))
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= | d({hons (o)), 931 (09) } L (000), I (00 })

S A har ) 91 o)} L () (i) D).

n,=

(2.55)

then we define

1—ﬂa%@)ﬂc@)
Zk 1( (d(akabk‘) d(C, d)))’
where a; = {hy(@p)); 9 (xp0))} b0 = {hn(@00), 9n(To@) ), ¢ = {hars gu},

d={hn,gn}, ar = {ha(Tomy), 9 (o) }s b = {n (o)) 9N (Zp()) }, and so we
obtain w; > 0,7=1,2,...,n,and >;" ;w; = 1.

i=1,2,...,n, (2.56)

Ww; =

From the aforementioned analysis, we know that the weight vector derived
from (2.52) is monotone decreasing sequence, the weight vector derived from
(2.53) is monotone increasing sequence, and the weight vector derived from (2.56)
combine the above two cases, i.e., the closer the value d({hyr(z,@)), 9r(Zpi)) }
{hn(2p0)), gn (2p0)}) to the mean - 577y d({har (o)) ga(Tpy) s {hn (Toir))
gn(Tpm)}), the larger the weight w;.

Table 2.5: Results obtained by the generalized dual hesitant ordered weighted

distance dggnow

G1 G G3 Gy Gs Rankings

A=1 0.36852 0.35096 _0.42768  0.49327 @ 0.46518 G2 =-G1 = G3 =G5 = G4
A=2 0.08509  0.08091~ .0.10857 0.15837 | 0.13647 G2 > G1 > Gz~ G5 = G4
A=5 0.00717  0.00605 + 0:00854+.0.02519  0.01897 -7 G2 = Gy ='G3 = G5 = G4
A =10 | 0.00053 0.00032 +0.00045~.0.00347 = 0.00268 G2 = G3 - G1 = G5 = G4

In Example 2.1.6, if the attribute weight vector is unknown, then we can use
the ordered weight distance measures for DHF'Ss to calculate the distance between
each alternative and the ideal alternative. Without loss of generality, suppose that

d = dgpnp in (2.52) and p is given as in (2.43), we use the generalized dual hesitant
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ordered weighted distance measure (2.42) to calculate the distance between each
alternative and the ideal alternative. The derived results are shown in Table 2.5

with the different values of the parameter.

2.3 Conclusions

In this chapter, we have investigated the distance measures for DHFSs. Based on
the well-known Hamming distance, the Euclidean distance, the Hausdorff metric
and their generalizations, we have developed a class of dual hesitant distance
measures, and discussed their properties and relations as their parameters change.
We have also given a variety of ordered weighted distance measures for DHFSs
in which the distances are rearranged in decreasing order, and given three ways
to determine the associated weighting vectors. With the relationship between
distance measures and similarity measures, the corresponding similarity measures
for DHFSs have been obtained. It should be pointed out-that all of the above
measures are based on the assumption that if the corresponding DHFEs in DHFSs
do not have same length, then the shorter one should be extended by adding
the minimum value in membership hesitancy part and the maximum value in
nonmembership hesitancy part in it until both the DHFEs have the same length.
In fact, we can extend the shorter DHFE be adding any values in membership
hesitancy part and the maximum value in nonmembership hesitancy part in it
until it has the same length of the longer one according to the decision makers’

preference and actual situations.
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Chapter 3

Correlation measures for dual

hesitant fuzzy information

3.1 Correlation measures of dual hesitant fuzzy

elements

IFSs, IVFSs, IVIFSs and HESs are the extensions of fuzzy sets [83]. However,
these extensions cannot deal with the situation that people have two kinds of
hesitancy in providing their preferences over ebjects in process of decision making,
which permit the membership degrees and nonmembership degrees of an element,
respectively, to a set presented as several possible values. Zhu et al. [86], recently,

proposed the concept ‘of dual hesitant fuzzy set to deal with such case.

In the following, we first ‘introduce the concept-of correlation coefficient for
DHFEs and then propose several-correlation coefficient formulas and discuss their

properties.

Definition 3.1.1 Let M and N be two DHFESs, then the correlation coefficient
of M and N is defined as ¢(M, N), which satisfies the following properties:

(C1) |e(M,N)| < 1;

(C2) ¢(M,N)=1if M = N;
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(C3) ¢(M,N) = ¢(N, M).

On the basis of Definition 3.1.1, we can construct several correlation coeffi-
cients for DHFEs:
1) ey (M, N) = e :
W) M. N) = o e o S (e P e
T (WD g7 o)

(RSB 47D o<z>)

2 M.N) = i=1 1IN A .
( ) 02( ) ) max{zi:1 %4 z))2+(ga z))2) Z,L 1 (hcr( )) (g a(z))g)}7
o(z) o (1) i
M N — E 1((h h]v[)(h hN)+(gju —QM)(Q _gN))

(3)703( ) [0 (h5 =har) (95, —aar)?) 3o, (- hN> +g3 ) —gn)? )}1/2’

where hy; = %Zé:l h?\/&l)» am = %21:1 9?\/11)7 hy = 12 1hN and gy = Z 197\/ ;
l o(i) 1 0'() o (i) o(i)

4 M.N) = Zizlﬁ(h§4 —har) (W —hn)+(g5 791‘7)(% ng)).

( )_04( ) max{ 37, (] = Py +(g;}> ~ga1)? )Zi 1 (03] TR S L L
wherehM:% L h‘;u(’),gM:% L 1gM 7h = hN( and gy = § st lgfv(l).

_ l l A’Ylnjn+A7max+A7]m1n+AnmaX
(5) 05(M N) - Z (A’YJ(Z)+A’Ymax+A770( )+A77max

where Ay, ]ha(Z —h3! N \ A= mmz{]ho(l h}'\,i 1}, AYmax = maxi{\h}j\y) -

o(7) a(7)

h‘[v(’)|},Anm = 1951 =93l Arin = ming{] 971" — 3" |} anck Atppae = ma {] 97" —

)

Theorem 3.1.2 Let M and N be two DHFESs, then
(1) CQ(M7 N) < cl(M> N)
(2) lea(M, N)| < |es(M, N

Proof (1) Since
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then we have
LR + g7 g3

max {3, (W52 + (g7™)2), Sy (B3)2 + (637)2)}
L (hSPRD  g7to gq iy

CQ(M,N) =

- - - - = C1 M,N .
= L + (@) S () + (e EN)
(3.2)
(2) Since
z B z >
(08 = Ao+ (7 ) AR~ i+ G~ )%

i«h%” —hn) (R < %)%})2) 2

l ] 5 i l ? r )
= max {Z«hi}“ =) 4 (g1 = G)" ), (B =) A (gn” — W)}
i=1 i=1

(3.3)
and if S (A58~ har) (B3 < Rn) + (95 =gu) (g% = gn)) > 0, then we have

0 < cy(M,N)
<<h‘;4 = hag) (WG = hiy) + (g — Gar) (9%~ Gw))
max{¥}_ << han)2 (g5t — 9a)?), S (A2 % )2 + (93 — gn)2)}
<<h§}1 ha) (W2 i) & (G = Ga) (9" — gw))

N [zézl«hM” — han)? + (957 = Gy (Y — h)? + (93 — gn) )12
= 03(]\47 N)

(3.4)
1f S0 (W5 = har) (B3 = ) + (954 = Gar) (93" — gv)) < 0, then we have
63(M7 N)
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S (1" = han) (h" = ) + (931" = 3an) (95" = )
[wa—WVHm>w@)g@W—MVﬂﬁ”QWWQ
h@w had) (W3 — o) + (958 — gar) (3 )

max{Y, (WY — han)? + (95" — an)2)s oy (WY — )2 + (93 — gn)2)}
:C4(M,N) SO

IN

Therefore, |c4(M, N)| < |e3(M, N)|.

From Theorem 3.1.2, we know that (1) ¢, is always smaller than ¢;, but both
of them are bigger than 0, and (2) the absolute value of ¢4 is always smaller
than that of c3, and their values may be smaller or bigger than 0, which not only
provide us the strength of the relationship of DHFEs but also shows that the
DHFEs are positively or negatively correlated.

Theorem 3.1.3 Let M and N be two DHFESs, then
M o< hl? =k <1,0< g2 =k5® < 1,40=1,2,...,1, then
c1(M,N) =c3(M,N) =1 and

cs(M,N)

B li mlnl{hN 1+ maxl{th)} + mlnz{g } + maXz{g } (3.6)
L3 h ()+maxl{hN)}+go()+maXz’{9N)} o

(2) Let 0 < AS=kn® < 170.< g0 = kS <1,i=1,2,.. /1. Ifk > 1,
then co(M, N) = cy(M, N) = 3; if 0 < k < 1, then c(M, N) = ¢s(M,N) = k.
(3) If |39 = h3P| = dand}gdl” — U(l|—e i=1,2 7 _slythen c5(M,N) = 1.

Proof (1) If0 < hQ\") = kh{" < 1,0 < g0 = kgt < 1,i=1,2,...,1, and
k > 0, then
Zi— (hM hN +91\/§‘)97v(i))
S (W52 + (9)2) Sy (A2 + (937)2))2
_ S R+ KGR
ES ()2 + (937)?)
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C3(M7 N)
_ (B = ) (W — ) + (g7 = 9a) (9" = 9v))
L (R = han)? + (g5 — 9a0)?) Ly (AR — h)? + (03 — gn)?)]2

S R — b AR —an)?) (39)
kS (0 = h)? + (g3 = 3n)?)
and since

Ay = W5 — W3] =11 = kIAYY, Ay = logs” — o377 = 11— klg3",
(3.9)

Ain = min{ [R5 — B2 = 1 — k| min{h5"},

i M N i N

Arpin = min{|g5;” — g%} = [1 - k| min{gJ"}, (3.10)

Aymax = max{ 51" = B[} = [1 = k| maxfhy "},

Anngs = max{lgif” — g% [} = 1 — k| max{gl"}, (3.11)

then we have

(M N) = i (Avmm B Yo + AT, Anmax>
| A, ) TR
L g famins (i S P i (") g (o)
7; ( R £ max {50} + ¢57 + max {5} ) '

(3.12)

(2) Let 0 < A5 = knS® < 1,0 g0 = kS <1, i=1,2,... L If k> 1,
then
_ S (03 h + 95" g%") |
max{>1_; (R57)2 + (g51)2), S (W) + (93)2)}

L (R2(A2 + k2(g30)2) K
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and

ca(M,N)
L) = ha) (RS — ) + (95 — ) (9% — )

max{S_, (h5)" — har)? + (971" — 3n)2), Sy (B — h)? + (93 — v)2)}

L (R(h) = hy)? + k(g2 — gn)?) 1

— —— A =_. (3.14)
K2 (B = h)? 4+ (03 — gn)?) K
If 0 <k <1, then
Cz(M N): Z ( U( +g()g (i)) |
max {2 ((h5")2 + <gi} >> ), S ((RR)2 + (9372
_ S KT+ 67 (315)
S (B2 + (g37)2)
and
C4(M, N)
_ Zici (U P i R = ) + (g5 = Ga)(gn” — gn))
max{z (R = han)? + (g = gan) Do (AR = ha)2 % (03 — gn)?)}
k(RS Lk k(g%
_ <<N) hy)”/+ (U@ ))_k. (3.16)
Zi:l(( hN) (QN gN)Q)
(3) If |h3 — S| = d and |5\ — 3| =€, i=1,2,...,1, then
Aqop="1h3s" g = A =min{ b7 =hg" |}
= A = max{yh"@ — R, (3.17)
Aoty = 951" = g = B = min{| g — o3I}
= At = max{|gy” — o3I} = e, (3.18)
and thus
1 ! (A’Ymin + A’}/max + AT]rnin _'_ Anmax>
Cs - =1. 3.19
l Zzzl A’YU(@) + A’}/max + A77(7(1) + A77max ( )
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Theorem 3.1.3 tells us that (1) if the values h}’w(i) and gﬂi) in DHFE M, respec-
tively, are k times the values of h}'v(i) and gj'v(i) in DHFE N, then the correlation
coefficients ¢; and ¢s are 1, ¢; and ¢4 are + (k> 1) or k (0 < k < 1) and (2) if
|h§\r4(i) - hi,(i)| = d and | gﬂi) - gj'v(i)| = e, then ¢5 is 1. This indicates that these five
correlation coefficient formulas reflect different relationships between two DHFESs

M and N, and therefore they may produce different results for the same two
DHFEs, which is reasonable.

In the following, we use an example to illustrate the proposed correlation
coefficient formulas.

Example 3.1.4 [42] To make a proper diagnosis D = {Viral fever, Malaria,
Typhoid, Stomach problem, Chest problem} for a patient with the given values of
the symptoms, S = {Temperature, headache, cough, stomach pain, chest pain},
a medical knowledge base is necessary that-involves elements described in terms
of dual hesitant fuzzy sets. The data are given in Table 3.1, and each symptom
is described by a DHFE. The set of patients is P = {Al, Bob, Joe, Ted}. The

symptoms are given in Table 3.2. We need to seek a diagnosis foreach patient.

Table 3.1: 'Symptoms characteristic for the considered diagnoses

Temperature Headache Cough
Viral fever {{0.6,0.4,0.3},{0.4,0:3,0.2}}  {{0.7,0.5},{0.2,0.1}} {{0.6,0.5},{0.3,0.2}}
Malaria {{0.8,0.7,0.6},{0.2,0.15;0.1}}  {{0.5,0.3},{0.3,0.2}} - {{0.3,0.1},{0.7,0.5}}
Typhoid {{0.6,0.3,0.1},{0.4,0.2,0.1}}  {{0.8,0.7},{0.2,0.1}} {{0.5,0.3},{0.4,0.2}}
Stomach problem | {{0.5,0.4,0.2},{0.4,0.3,0.1}}  {{0.4,0.3},{0.5,0.4}}" - {{04,0.3},{0.4,0.3}}
Chest problem {{0.3,0.2,0.1},{0.6,0.5,0:4}} — {{0.5,0.3};{0:3,0.1}} * {{0.3,0.2},{0.5,0.4}}

Stomach pain Chest pain
Viral fever {{0.5,0.4,0.3},{0.4,0.3,0.2}} {{0.5,0.4,0.2,0.1},{0.5,0.3,0.2,0.1}}
Malaria £{0.6,0.3,0.2},{0.3,0.2,0.1}} {{0.4,0.3,0.2,0.1},{0.5,0.4,0.3,0.2}}
Typhoid {{0.5,0.4,0.2},{0.4,0.3,0.2} } {{0.6,0.4,0.3,0.1},{0.4,0.3,0.2,0.1} }
Stomach problem | {{0.8,0.7,0.65},{0.2,0.15,0.1}}  {{0.5,0.4,0.2,0.1},{0.4,0.3,0.2,0.1}}
Chest problem {{0.6,0.5,0.3},{0.4,0.3,0.1}} {{0.8,0.7,0.6,0.5},{0.2,0.15,0.1,0.05} }
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Table 3.2: Symptoms characteristic for the considered patients

Temperature Headache Cough

Al {0.6,0.5,0.2}, {0.4,0.3,0.2}} {{0.7,0.3},{0.2,0.1}} {{0.6,0.4}, {0.3,0.2}}
Bob {{0.8,0.6,0.5}, {0.2,0.15,0.1}} {{0.5,0.4},{0.3,0.1}} {{0.3,0.25},{0.7,0.5}}
Joe {{0.6,0.4,0.2},{0.4,0.2,0.1}}  {{0.3,0.15},{0.3,0.2}}  {{0.5,0.3},{0.4,0.3}}
Ted {{0.5,0.4,0.2},{0.4,0.3,0.1}}  {{0.4,0.35},{0.5,0.1}}  {{0.4,0.3},{0.5,0.2}}

Stomach pain Chest pain

Al | {{0.5,0.4,0.1},{0.4,0.3,0.1}}  {{0.5,0.4,0.3,0.1},{0.5,0.3,0.2,0.1}}
Bob | {{0.6,0.3,0.1},{0.3,0.2,0.1}} {{0.4,0.3,0.2,0.1},{0.5,0.4,0.3,0.1}}
Joe {{0.5,0.4,0.3},{0.4,0.3,0.1}} {{0.6,0.4,0.3,0.2},{0.4,0.3,0.2,0.1} }
Ted | {{0.8,0.7,0.3},{0.2,0.15,0.1}}  {{0.5,0.3,0.2,0.1},{0.4,0.3,0.2,0.1}}

We utilize the correlation coefficient ¢; to derive a diagnosis for each patient.
All the results for the considered patients are listed in Table 3.3. From the
arguments in Table 3.3, we can conclude that Al suffers from viral fever, Bob

from malaria, and Joe and Ted from stomach problem.

Table 3.3: Values of ¢; for each patient to the considered set of possible diagnoses

Viral fever = Malaria . Typhoid Stomach problem Chest problem
Al 0.9851 0.9010 0.9752 0.9117 0.8902
Bob 0.9168 0.9901 0.9261 0.9104 0.8421
Joe 0.9491 0.9299 0.9513 0.9733 0.9125
Ted 0.9300 0.9189 0.9399 0.9721 0.9052

Table 3.4: Values of ¢ for each patient to the considered set of possible diagnoses

Viral fever. Malaria+ Typhoid Stomach problem” Chest problem
Al 0.9279 0.8034 0.8661 0.7836 0.7601
Bob 0.8034 0.9521 0.7394 0.7198 0.6872
Joe 0.8251 0.7296 0.8368 0-7935 0.7298
Ted 0.7891 0.7065 0.8135 0.9129 0.7428

If we utilize the correlation coefficient formulas ¢o, c3, ¢4 and ¢5 to derive a
diagnosis, then the results are listed in Tables 3.4-3.7, respectively. From Tables
3.4-3.7, we know that the results obtained by different correlation coefficient
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formulas are different. This is because these correlation coefficient formulas are

based on different relationships and may produce different results.

Table 3.5: Values of c3 for each patient to the considered set of possible diagnoses

Viral fever = Malaria  Typhoid Stomach problem  Chest problem
Al 0.9545 0.9485 0.9371 0.9235 0.9286
Bob 0.8973 0.9196 0.9281 0.9128 0.8918
Joe 0.9708 0.9458 0.9609 0.9509 0.9711
Ted 0.8243 0.8373 0.9011 0.8917 0.8860

Table 3.6: Values of ¢4 for each patient to the considered set of possible diagnoses

Viral fever Malaria Typhoid Stomach problem  Chest problem
Al 0.6640 0.6532 0.6839 0.5960 0.6266
Bob 0.7058 0.7559 0.6392 0.6086 0.6834
Joe 0.7374 0.6954 0.8253 0.7137 0.6507
Ted 0.5196 0.6092 0.6733 0:5422 0.5577

Table 3.7: Values of c5 for each patient to the considered set of possible diagnoses

Viral' fever ~ Malaria Typhoid Stomach. problem Chest problem
Al 0.7750 0.8206 0.8192 0.8265 0.8761
Bob 0.8565 0.7950 0.8657 0.7997 0.7838
Joe 0.8311 0.8986 0.8212 0.7970 0.8245
Ted 0.8029 0.8704 0.7569 0.8583 0.7955

3.2 Conclusions

Dual hesitant fuzzy set, as an extension of fuzzy set, can be describe the situation
that people have hesitancy when they make a decision more objectively than other
extensions of fuzzy set (intuitionistic fuzzy set, interval-valued fuzzy set, interval-
valued intuitionistic fuzzy set, hesitant fuzzy set). In this chapter, the correlation
coefficients for DHFEs have been studied. To operate correctly, we have assumed

that the two DHFEs have the same length for membership and nonmembership
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parts and their values are arranged in decreasing order when we compare them.
Their properties have been discussed, and the differences and correlations among
them have been investigated in detail. One example is employed to illustrate
that the results obtained by different correlation coefficient formulas, based on
different linear relationships, are different.
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Chapter 4

Dual hesitant fuzzy Bonferroni
means and their applications in

group decision making

4.1 Basic concepts and operations

4.1.1 Bonferroni means

The Bonferroni mean operator was initially [proposed by Bonferroni [6] and was

also investigated intensively by Yager [78]:

Definition 4.1.1 Let.p,q > 0.and a; (i = 1,2,...,n) be a collection of nonneg-

ative numbers. If

pt+q
1 n
Bpaq<a17 a2, e 7a/n> = (,’M Z a}:a/;]) 5 (41>
=1

i#£]

then BPY is called the Bonferroni mean (BM) operator.

Obviously, the BM has the following properties.
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1) B”4(0,0,...,0) = 0.

2) B*(a,a,...,a) = a, if a; = a for all i.

3) BP%(ay,as,...,a,) > BPUby, by, ..., b,), ie., BP? is monotonic, if a; > b;
for all i.

4) min{a;} < BPY(ay,aq,...,a,) < max;{a;}.

Furthermore, if ¢ = 0, then, by (4.1), it follows that

P 1
1 & 1 & 1 & P
Bp70 L. n — — p _— 0 = - p 4.2
(a17a27 7CL) n;az n—l;a] (n;az> ( )
G
which is a generalized mean operator [17], in particular, the following cases hold.

1) If p=2 and ¢ = 0, then (4.2) reduces to the square mean

13 L\ 2
B*%(ay,as,...,a,) = <n Za?) : (4.3)
i=1

2) If p=1and ¢ =0, then(4.2) reduces to the usual average mean

1 n
BY(ar,as,...,a,) = =Y a;. (4.4)
Baic1
3) If p — 400 and ¢ =0, then (4.2) reduces to the max operator
: »,0 - .
pEI—&I-looB (@1, ag, - - . ,Gp) = mzax{az}. (4.5)

4) If p — 0 and ¢ = 0, then (4.2) reduces to the geometric mean

p—0

lim B”(ai, as, ..., a,) = <H ai> e (4.6)
=1

4.1.2 Dual hesitant fuzzy elements

Zhu et al. [86] defined the some operations on DHFEs. For a DHFE d = {hy, ga},
the corresponding lower and upper bounds to hg and gq are hy, h}, g; and g,
respectively, where h; = min{y|y € hy}, h) = max{y|y € hq}, g; = min{n|n €
gq} and g = max{n|n € g4} represent this group notations and no confusion will

arise in the rest of the paper.
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Definition 4.1.2 Let d = {hg, ga}, di = {ha,, 94, } and dy = {ha,, ga, } be three
DHFEs, then some useful operations on DHFEs is defined as follows [86]:
(1) di @ dy = {hay © hay, 90, @ ga,} = {n + 72 — n2ln € hay,7e €
hay }s {mnalm € gay M2 € ga, }};
(2) di @ dy = {hg, ® hay, ga, ® g} = {2l € hay, 72 € hay by {m +m2 —
mn2|m € gay, M2 € gap }}
(3) Add = {Mh, Ag} = {{1 = (1 =)y € ha}, {00 € ga}}, A > 0;
(4) & = {r*,g*} = {17y € ha}, {1 = (1 = 0)*n € ga}}, A > 0;
Hnln € ga} {vly € ha}}, if g # 0,0 # 0;
(5) d*=q {{l —9ly € ha}, {0}}, it g=0,h#0; ;
{{®}7{1—77|77€gd}}7 ifg?'é@?h:@-
(6) di Udy = {{v € (ha, U hg,)|y = max(hy,hg)}{n € (9a N gar)ln <
min(gy, , 94,) }};
(7) dindy = {{y € (ha, N hay)|ly < min(hg, hg)}An € (9a, U ga,)In >
max(g,,, 9u,) -

We can easily provethe following relationships among the operations (1)-(4):

Theorem 4.1.3 Let d, d; and dy be any three DHFESs, then
(1) di ®dy = dy @ dy;
(2) di @ dy = dp ® du;
(3) )\(d1 S5 dz) = )\dl D) )\dg, A > 0;
(4) (dy ® do)* =dy ® d}, A >'0;
(5) (M + Ao)d = Md D Aad, A1, A2 > 0;
(6) dX1F22) = gM @ dd2) ApsAg > 0.

Proof Since (1)-(4) can be proven. easily, we prove (5)-and (6).
(5) By the operations (1) and (3) in Definition 2.1.3, we have

Md @ Nad = {{1 = (1 =)'}y € ha}, {n™|n € ga}} ©
{1 - (=) ly € ha}, {n**In € ga}}
= {1 = (=DM =)y € ha}, {010 |0 € ga}}
= {1 = (L ="y € hal, {200 € ga}} = (M1 + Ao)d.

42



(6) By the operations (2) and (4) in Definition 2.1.3, we have

M @d? = {1y € ha} {1 - (1 —n)Mn€ g} ®
{1y € ha}, {1 = (L =n)*[n € ga}}
= {7y € ha}, {1 = 1 =M (1 —n)*n € ga}}
= {2y € had {1 = (1 =) 2Py € ga}} = dMH),

To compare the DHFEs, based on the comparing methods [53, 67] of HFEs

and IFNs, we give the following comparison laws.

Definition 4.1.4 For a DHFE d = {hq, ga}, 5(d) = g Cren, ¥ — zg7 Sonega 1 15
called the score function of d, and p(d) = ﬁ Sovehy Y+ ﬁ >negq M is called the
accuracy function of d, where #h, and #g, are the numbers of the elements in
hg and gq, respectively. Let dy = {hg,,ga;}-and dy = {ha,, ga,} be two DHFEs;
then

(1) if s(dy) > s(da), then dy is superior to dy, denoted by dy >"dy;
(2) if s(dy) = s(dg), then
(i) if p(dy) =p(dy), then d; is equivalent to ds, denoted by dy ~ dy;

(ii) if p(dy) > p(dz), then d; is superior than d», denoted by dy > ds.

Now, we define the hesitancy degree of the DHFE d = {hy, g4} as follows

(d*l—*27+*2% (4.7)

7 ha yehqg 9d negy

where #hy and #gy are the numbers of the elements in hy and gy, respectively.
Then we get the relation between the hesitancy degree and the accuracy degree
of the DHFE d

m(d) —1—727%-7277—1—

#ha ~vEhg 9d negq

43



7(d) + p(d) = 1. (4.8)

From (4.8), we know that the higher the accuracy degree p(d), the lower the
hesitancy degree m(d).

4.2 Dual hesitant fuzzy Bonferroni means

In this section, we shall investigate the BM under dual hesitant fuzzy environ-
ments. Based on (4.1), we give the definition of DHFBM as follows.

Definition 4.2.1 Let d; = {hg,,94,} (1 =1,2,...,n) be a collection of DHFEs.
For any p,q > 0, if

1

1 =
DHFBP(dy, dy, . . . ) — <m (@?,,];1 (@& d?))) (4.9)

then DHFB™ is called the dual hesitant fuzzy Bonferroni mean (DHFBM).
Based on operations (1)-(4) of DHFEs deseribed in Definition 4.1.2, we can

derive the following result.

Theorem 4.2.2 Let p, ¢ > 0, and d; = {ha,, 94, } (i = 1,2,...,n) be a collection
of DHFEs. Then, the aggregated wvalue, by using the DHFBM, is also a DHFE,
and

DHFBp’q(dl, dg, R 7dn)

pt+q
n 1
_ P, q\nrn-1)
= 1- H (1 - 'Yj)
i,j=1
i#£]

Vi € ha;; V5 € hay ¢
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1

n p+q
( 1L 0= a-m <1nj>q>wfl>)

Ni € Gd;»Nj € 9d;
1

(4.10)
Proof By operations (2) and (4) described in Definition 4.1.2, we have
= {ha, 92} = Hi'hi € ha 3 {1 = (L= )"l € ga.}},
d? = {hd; 94,3 = {1 € hay b, {1 = (1= ;)" € g4, }} (4.11)

and then

df @ dj = {hy, @ hg, gh ® g4}

= {31 € hais s € ha} A1 = (1= m)P(1 =) |mi € gais s € 9a,}} -
(4.12)

In what follows, we first prove that
Oyos (& @ By =] 0% (Gl Db ), Bl © 95§
i#£] 17 ] =]

n

= { e TT (@ %+%)

i,j=1
i#]

{ ﬁ (1 — (T=)P (X = m)*) | € 9ai5 5 € gd]}} . (4.13)

%< "G g, .

i,j=1
i#]

by using mathematical induction on-n as follows:

1) For n = 2, we have

D2 (B d) = (& @) o (db o d)

i#£]
= {{1 — (1 =" (1 — 5~ ’71 € hay, 72 € hd2} ’

{= @ =mPA—m)?) (1= (1= n)"(1=0)") |m € gay, 2 € g} } -
(4.14)
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2) If (4.13) holds for n =k, i.e.,

@zg l(dp®dq) {@zg 1<hp ®hq ) ®’f,]1(g§®gg)}
i#j i#j ij ' !

k
=491=TI (1=)

Vi € hd“’Vj € hdj )

ij=1
i#j
k
IT (0= @ =m)P(X =) |0 € gaimj € Gay ¢ 5 (4.15)
i,j=1
i#£]

then, when n = k + 1, by operations (1)-(3) given in Definition 4.1.2, we have
L (o d)) = (e (@ @ d)) @ (o (& @ df.)
& (e, (df,, ® dY)). (4.16)
Now, we prove that
Of, (& @ di, )~ { @i, (h, ® hE,., ) ®L, () &g5 )}

k
= {{1 =11 (1 - 7%’%3+1) % € N € hdk+1} ;

=1

{ﬁ (1= (U= m)P (1 = mo1)®) 1 € Gais k1 € gdkﬂ}} (4.17)

=

by using mathematical induction on .k as follows.
1) For k = 2, then by (4.12), we have

a7 ® d2+1 {hd ® hd2+17gd D ggQH}
= {{% V1117 € has va41 € Rayys )
{1 = (1= m)P(1 = n241)" 10 € GaoM241 € Garyi }> 1= 1,2 (418)

and thus
OL, (A @ ) = {@L, (W, @ b, ), ®L,(dh, ® 65,.,)}
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2
= {{1 - H(l _7577;31)‘71 € hdi>73 € hd3}>

=1

{Hafwl—mvu—mvwhewwke%J}. (4.19)

=1

2) If (4.17) holds for k = ko, i.e.,
S (& @ df 1) = { @ (0, @ b, L), @f (dh, @ g5, )}

ko
= {{1 - H(l - '7?71?;04—1”% € ha;, Yeotr1 € hdk0+1} )

=1

ko
{H(l - (1 - ni)p(l - nko+1)q>|ni € 9dis Mko+1 € Idig 11 }} ) (420)

i=1
then, when k = ko + 1, by (4.12) and operations (1) and (2) given in Definition
4.1.2, we have

k0+1 (dp ® dk0+2) Z 1(dp ® dk:0+2> (di):()-i-l ® dZo-{-Q)
— {@koJrl(hP ® hdk ) ® (hflk L ® h§k0+2),

k
247 (g5 © o NI (g5, ., @ 951,

ko+1
{{1 - TL (1 — 79 2% € ha, Yrot2 € hdkﬁg} ,

=1

+
{ H 1 - 1 - 7]2 (1 - nk0+2)q)|ni € Jd;> Mko+2 € gdk0+2}} 7(421)

i.e., (4.17) holds for k =k + 1.+Thus (4.17) holds for all k.

Similarly, we can prove that
Bl (df © df) = { @ (W, @ ). @ (gl ®91)]

k
{ 1- H 7£+17?) )'Vk—l—l € hgy, 1,V € hd]} ,

Jj=1

k
T (1= (0= me)(1 = 0))%) |11 € G175 € G, }} - (422)

Jj=1
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Thus, by (4.15), (4.17) and (4.22), we further transform (4.16) as

L (0 @ df) = { @800 (1, © ), @800 (0 @ ) |
oy i#j i#£]

69{ 1= 1(hp ® h‘dk+1) ®’]L€71(gsz @ ggk+1)}
o{ol (b, @hh), & (dh  ©gi)}

k
=q1= 11 (1)

’L,‘j:.l
i#]

k
H (1= (1 =m)P(1 —ny)?)

@{{1 =TI (1 =)

i=1

Vi € ha;, V5 € ha; ¢

i € 9d;» N € Y,

’Yi S hd“’}/k+1 € hdk+1} )

{H (1 —AT =3P (L =ne1)9)

=1

i€ 9d;» Mk+1€ 9dk+1}}
k

@491~ 11 (1 i 7£+1”Y;‘1) "7k+1 S RS T AW
j=1

k
{H (1 S 1R (el Uj)q) ‘Uk+1 € 9dyy1:Mj € 94, }}

7j=1
k+1
= 1— H (l—vfﬁ) G Ty T o,
k+1
[T (= (F=m)"(1 = ;)97 € Ga,, 15 € ga, ¢ > (4.23)
ij=1
i)

i.e., (4.13) holds for n = k + 1. Thus, (4.13) holds for all n. Then, by (4.13)

and operation (3) described in Definition 4.1.2, we obtain

! (@” (@@ dq)>

n(n —1) i#
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1 1
=17 (Bh=i(hg, hq,>,
{n(n - 1) <@ 2 ha, © i) n(n—1)
n ”(n;—l)
B - H (1 o 75)'7;1) Vi € hdmr}/j S hdj
Z;'J;é:jl

T a-@—mpra- nj)q)ﬁ

Q=1

oy

and then, by (4.24) and operation (4), it yields

DHFBp’q(dl, dg, R ,dn>

{ (n(nl—l) (Gﬂ;@f

n

1= 1]

ij=1
i#]

1

(1- vf’y?)m) i

of € Mdn € N,

_t
pt+q

1— |14 IL (= (L)@ = ;)i

i#]

i.e., (4.10) holds. In addition, let d = DHFB™(dy,ds, ...

vt € hy and nt € gf, since

49

Q%=1 (g @ ".)
( v (94, gd])}

9

Mi € Gd;» M5 € 9d, }} (4.24)

w01))) " (i (1 2 a) ) }

1. € Gdgs My € 9d; )

(4.25)

7dn) - {hdagd}a
<1,

<1 (4.26)



and by (2.5), we have

YT = (1 - ﬁ (1- (7?)’”(7?)")”("1”>
- (1 ST (- nf)q)"("l”>

<1+ (1 ~ I (1-a-nyra nf)q)"("l”)

which completes the proof of Theorem 4.2.2.

Now, let us look at some desirable properties of the DHFBM.
1) Idempotency: If all d;’s (i = 1,2,...,n) are equal, i.e,, d; = d = {hg, ga},

for all 7, then

DHFBP(dy, ds, . . ., dy) = DHFBP(d,d, . . . |d)

: { (e (s i) & (rer (o o)) }

1
n 1

ptq
= 1= 11 (17”7q)“<"1>) VE

4,j=1
i#]
1

1- (1 11 (1(1?7)p(177)q)"<’3“) 0 € ga

i,j=1
i#J

(-0 - el

20




= {{(7”*")”}“’ v e hd} , {1 - (- 77)”*‘1))ﬁ n < gd}}
= {{7lr € ha},{nln € ga}}
= {ha, g4} = d. (4.28)

In particular, if d; = {hg,, g4,} (1 = 1,2,...,n) is a collection of the smallest
DHFEs, i.e., d; = d, = {{0},{1}}, for all 4, then

DHFB”(d,, ds, ..., d,) = DHFBP(d,. d,,...,d.) = {{0},{1}}  (4.29)

which is also the smallest DHFE. If d; = {hg,,94,} (: =1,2,...,n) is a collection
of the largest DHFEs, i.e., d; = d* = {{1},{0}}, for all ¢, then

DHFBP(dy, ds, ..., d,) = DHFBPY(d*, d*, ..., d") = {{1},{0}}  (4.30)
which is also the largest DHFE.
2) Monotonicity: Let d; = {hg,, g4} (i-=1,2,...,n) and d} = {hg,ga }
(i = 1,2,...,n) be two collections of DHFEs. If #hs, = #ha, #9a, = #9a,
Y < and n; > n; for ally; € hq,, ¥; € hay, i € Ga;5 1; € gay, then
DHFBP4(dy, ds, .. ., dy).< DHFBRY(d}, ), . . . d.): (4.31)

Proof Since v; <'v; and n; > #; for all ; € ha,, ¥ € ha, 0i € gazy Wi € ga;, then
%7 < ()P ()T and (1 — )1 —n;)? < (L —(@))P(1 = (n;))? for all 7; € ha,,
Vi € has i € Ga;s M € Gars V5 € a5V € hay s M5 € Gay5 M5 € ga;- Then we have

[T @= 3290 m=m > [ = (3)P(v)Y) D, (4.32)
n 1 n 1_1
I (= (= (U=a) e > T (L2 =57 (1 —4))7) ™7
1j;ézl z,i]#:jl

and hence

—
& u'z3
H
|
Q
\Q
§
\i/
7



< (1 ~Tla- (%)p(%)q)"(“’) : (4.34)

Thus we obtain
1

. a
(1Huﬁﬁth

i,j=1
i#]
1

1(1ﬁ<1<1nmummm%)

177 :.1
i ]

N O (1 - f[ (1= @=ara- yg)q)ﬁ) . (4.36)

Let d = {ha, ga} = DHFB(d,;ds;. .. ,d,) and-d"= {hy,gs} = DHFB?!(d],
dy,...,d)), and let s(d) and s(d’) be the scores of d and d', respectively. Then
since #hg, = #he and #ga, = #ga, (4.36) is equivalent to s(d) < s(d’). Now,
we discuss the following cases.

Case 1. If s(d) < s(d’), then, by Definition 4.1.4, we obtain

DHFB”(dy, ds, . .., d,) < DHFBP(d}, d}, . ... d.). (4.37)
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Case 2. If s(d) = s(d'), then, since #hg = (#ha, X -+ X #ha,) X nl, #g4 =

(#gdl X oo X #gdn) X TL!, #hd/ = (#hdll X oo X #hd/n) x n! and #gd’ = (#gd/l X
o+ X #ga. ) x nl, we have

1

1 n p+a
1

I L= ] @ =Af)meD

#hd #hg 11]_:[1 !

i£]
1
1 n X p+a
—- 1= 1= I = = =gy
#gd #gq ij=1
i#]

1

p+q
1 1
= 1— 1 — (AP ()T ntn—D
T #% ( L= G0 0)) )

i#j

=

1

p+q

1 s Ty

~Z- 1 [ 1 = FAT U= G=o))?) ™ .(4.38)
gd H#ay zlg:Jl

Since v; < v and n; >, for all y; € ha,, Vi € har, M € ga;, M € gay, then

i,j=1 =1l
i#J i#]

ol . L
Gﬂﬂﬁwwﬁ) —Gnuwﬂwwﬁﬂ ,
N
n pt+aq
1
- | 1= [T\ = (1= n)Pl= n)")iesD
1

1 (1 - Ha=a Rl yg)q)ﬁ) (4.39)



1

DD 1(1ﬁuummmmwﬁ>

#9a b=l

i
%
1 n ) pTq
-2 3 |1 T a-Grepn =
d’ #hy zl;:Jl
1
1 L e\
o kT
= h(d"). (4.40)
Then, by Definition 4.1.4, we get
DHFB?(dy, ds, . . .,d,) = DHFBP(d}, d,, ..., d) (4.41)

and hence, (4.37) and (4.41) indicate that (4.31) holds.

3) Commutativity: Let d; = {ha,,94,} (i = 1,2,...,n) be a collection of
DHFEs. Then

DHFBP4(dy,dy, . . {,d,) = DHFB?(dy,d>, . .., d,), (4.42)
where (dy,ds, ..., d,) is any permutation of (dy,da,. ... d,).
Proof Since (dl, 45, . ,dn) is any.permutation of (d,ds, ..., d,), then

DHFB?(dy, ds, . . ., d,,)
1 <@n (hp(g)hq)) Tiq 1 (®n (p@ q)) pvqu
n(n —1) Pl d “\nn—1) gy 94 2 9
=
n( )

_ {<_1 o)) (g (g o)) }

= DHFBP(dy, ds, . . ., d,). (4.43)
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4) Boundedness: Let d; = {hg,94,} (i = 1,2,...,n) be a collection of
DHFEs, and let

dt = {mfxx{h(}:},miin{ggi}} ,
d- = {miin{hgi},mfxx{g;;}}, (4.44)

where h:l:- = manehdi{%‘}y hy, = minwehdi{%}, g:[i = maxmegdi{m} and g, =
min,,eq, {7:}. Then

d~ < DHFB(dy,ds, ..., d,) < d. (4.45)

Proof Since vy, <v; <~ andn, <n; <nf, for all v~ € ming{hy }, vi € ha,,
vt € max;{hg }, n~ € mini{gy }, 7 € ga, and n* € max,;{g; }, then

= e

(1= <@ =np—n)" < (V=) (4.46)
and thus
- _ - _\P+q\ \ p+a N A A noD)
v =(1-[F=G)H )= 1;[(1 ;) T2
i£j

IA
N
—_

I
N\
—_

l
_

+
SN—
=
+
_Q
N———
N A
]
+
=]
Il
2
.t
—
=~
e~
~J
~—

p+q
<1-[1- [ -0 -nya-n))™s
+a\ \ 7Ha
<1- (1— (1— (1=n)" )) =t (4.48)
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Let d = DHFB?Y(dy, ds, ... ,d,) = {ha, ga}. Then we have

#hdZ” #gdZ”

yEhyg nEYa
1 1
+ - +
<— > At > =s(d"),
# hax; h di vt Emax; h+ # man gdl 7N~ €Emin; gd
(4.49)
DV 2
#h’d ’Yehd #gd nNegd
1 v 1 n _
- = s(d™). (4.50
#mlnZ hy Z i #maxlgd Z n s(d”). )

t 4~ €ming h i ptEmax; gd

In what follows, three cases need to be discussed.
Case 1. If s(d) < s(d") and s(d) > s(d7), then, from Definition 4.1.4, it
follows that
A 2D HFBP? (dr dosett. wal) <. d*. (4.51)

Case 2. If s(d) = s(d"), then, by (4.47) and (4.48), we have

1 1 _
Y= I = f n
#hd v%;d # max; ht +€H§( e #g ngg:d # min; 94, e emzm oo
(4.52)
and thus,

#hd Z“#gdzn

vehg 1€ga
1 1
+ - +
=—— Y YT+ —= > np =h(d"). (4.53)
# hax; h di vt Emax; hJr # T, gdl 7N~ Emin; gd
Hence, by Definition 4.1.4, we get
DHFBP(dy, ds, . ..,d,) = d*. (4.54)
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Case 3. s(d) = s(d™), then, from (4.47) and (4.48), it can be obtained that

1 _ 1 _
#ha Yveny V= #min, h, Zv €max; hy. o and #gd 2 inega =

Consequently, we have

1
# max; gJr Z”]Jremaxz 9+ 77 ’

>+
#h g #9 =
1 1
Y oyt Yy —nd). (45)
# min; hdl Y~ €min; by # hax; gdl nt Emax; gd

Hence, by Definition 4.1.4, we get
DHFB™(dy,ds, . ..,d,) = d . (4.56)

Therefore, from all the above-mentioned cases, it is clear that (4.45) holds.

In the following, let us consider some special cases of the DHFBM by taking

different values of the parameters p-and gq.

Case 1. If ¢ — 0, then, by (4.10), we have

1 ptaq
lim DHFB"(d, ;. .., d,) = lim <(. <@” o ® d%))
q

=0\ n(n —1) i

1 e
:1 T T i,j=1 p q >
ql—%{<n(n—1) (EB i (s, ® hay) ) ’

(ot ) }

1
p+q

Vi = hdiaij = hdj 5

q—0

= lim 1- ] (1_7%;,1)%733
ij=1
i

+
n pT4q

L= 1= J[ (1= (=)L =)D

i,j=1
Vi € hdl} 9

i#j
o7

Ni € 9d;» N € Y,

={{(l—ﬁ<1—ﬁ>n&—ﬂ>)p



NS )

= DHFB°(dy, dy, . . ., d,) (4.57)

which we call the generalized dual hesitant fuzzy mean.

Case 2. If p =1 and g — 0, then (4.10) is transformed. as

1
DHFB"(dy ds, ..., dy) = - (@7, d;)

1 n 1 n
— { o), —(Egu)}

- {{1— (i:ﬁl(l_%)f % ehd}{(lf[ln>

which we call the dual hesitant fuzzy average.

Case 3. If p = g =1, then (4.10) reduces to the following:

%
2

1
DHFBY\(dy, dy, . .., d,,) = (m (@,;1(61 & )))

~{ (s e) (i (o)

1
n
= 1 H (1 — fylf)/ )n(n 1)
i,7=1

2

Vi € ha;; V5 € ha, ¢

o8



Ni € Gd;»Nj € Gd;

- (1 Il <1<1m><1m>>n<¢n)

3,j=1
i#]

(4.59)
which we call the dual hesitant fuzzy interrelated square mean.

Example 4.2.3 Assume that we have three DHFEs: d; = {{0.2,0.4},{0.3}},
ds = {{0.5},{0.1,0.3}}, and d3 = {{0.7,0.9},{0.1}}. Here, we use the DHFBM
to fuse these dual hesitant fuzzy data. Without the loss of generality, we let
p=¢q=1. Then

di ® dy = dy ® d; = {{0.10,0.20}, {0.37,0.51}},

di ®ds = d3 ® d; = {{0.14,0.18,0.28,0.36}, {0.37} },

dy ® d3 = d3 ® dy = {{0.35,0.45},{0.19,0.37}}

and thus, by (4.10), we get

1,1 1 3 %
DHFBY(dy, dy, ds) — (6 (@i,{:l (s ® dj)>>

7 j:l
#3

L
3 A=
= 1 —'WQVb 6 Vi € hdi»75 & hdj )

i € 9d;»1j € Yd,

1~ (1 1 <1<1m><1m~>>%)

ij=1
i#]

= {{0.4524,0.5095,0.5285, 0.5870}, {0.1611,0.2230} }.

If we use the dual hesitant fuzzy average (4.57) to aggregate the DHFEs d;

(1 =1,2,3), then we have
DHFB(d;, dy, ds) = - (&%,d;)
1
3
n € gdz}’}

g

= {{0.5068,0.6580, 0.5519, 0.6893}, {0.1442, 0.2080} }.

OO\P‘
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Based on the above-mentioned computational analysis, it can be seen that the
dual hesitant fuzzy average is simpler than the DHFBM from the computational
point of view, but the DHFBM can capture the interrelationship of the given
arguments and thus can take much information into account than the former

one.

4.3 Weighted dual hesitant fuzzy Bonferroni means

In the above-mentioned analysis, only the input data and their interrelationships
are involved in aggregation process, but the importance of each datum is not em-
phasized. However, in many practical situations, the weights of the data should
be taken into account. For example, in multiple attribute decision making, the
considered attribute usually have different importance and thus need to be as-
signed different weights. Now, we define-an weighted DHFBM.

Definition 4.3.1 Let d;= {hq,,94,} (i = 1,2,...,n) be a collection of DHFEs,
let w = (wy,ws,...,w,) T  be the weight vector of h; (4.=1;2;,..,n), where
w; indicates the importance degree of d; (i = 1,2,...,n), satisfying w; > 0
(1=1,2,...,n) and %, w; = 1. For any p,q > 0, if

i ¥
DHFBﬁ}’q(dl, dQ, ST ,dn) = (m (@?EJ;'I ((wzdz)p &® (w]d])q)>> (460)

then DHEFBP is called the weighted dual hesitant fuzzy Bonferroni mean (WD-
HFBM).

Similar to Theorem 4.2.2, we have the following theorem.

Theorem 4.3.2 Let d; = {hg,,94,} (i = 1,2,...,n) be a collection of DHFEs,
whose weight vector is w = (wy,ws, ..., w,)T, which satyisfies w; > 0 (i =
1,2,...,n) and ¥7 ;w; = 1, and let p,q > 0. Then the aggregated value, by
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using the WDHFBM (4.60), is also a DHFE, and

DHFB?Y(dy, ds, . . ., dy)

1

- {(n(nl_l) (9t (wtay @ o))

1
p+q

= 1-— H (1 — (1 — (1 — f}’z)wz)p(l o (1 . ’Yj)wj)q)ﬁ ‘

n
=1

i,
i#]

Vi € hdn’}/j € hdj}a

1

+
n pTq

1
L= 1= I (U= @ =m P =y )) "™ s € gy € 94,

i,j=1
i#]

(4.61)

In what follows, we apply the WDHEFBM to multiple attribute decision making

under dual hesitant fuzzy environment, which invelves the following steps.

Step 1. For a multiple attribute decision making problem, let X ={xy, z,,. ..
, Tm } be a set of m alternatives, and Y = {y1,¥2,...,y,} be a set of n attributes,
whose weight vector is w'= (wi,ws, ..., w, )", satisfying w; >0, j =1,2,...,n
and 327, w; = 1, where w; denotes the importance degree of the attribute y;.
The performance of the alternative x; with respect to the attributey; is measured
by a DHFE dij = {{vi;|Vij-€ has, }, 10ij|n65 € 9a,; }}5 where; indicates the degree
that the alternative z; satisfies-the attribute y;, 7,; indicates the degree that the
alternative z; does not satisfy the attribute y;, such that ;; € [0,1], n;; € [0, 1],
Yy gy < 10 Al diy = {{vlvg € hay b Amilng € gagdt (6= 1,2,...,m; j =
1,2,...,n) are contained in a dual hesitant fuzzy decision matrix D = (d;;)mxn
(see Table 4.1).

If all attribute y; (j = 1,2,...,n) are of the same type, then the performance

values do not need normalization. Whereas there are, generally, benefit attribute
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Table 4.1: The dual hesitant fuzzy decision matrix

Y1 Y2  Yn
x1 | din diz - dip
Ty | do1  dog -+ dop
Tm dml dm2 te dmn

(the bigger the performance the better) and cost attribute (the smaller the per-
formance values the better) in multiple attribute decision making, in such cases,
we may transform the performance values of the cost type into the performance
values of the benefit type. Then, D = (d;j)mxn can be transformed into the

matrix £ = (€;;)mxn, Where

€ij = {heij7geij}

{{isilvis € hay, 3o dnii|nis € ga, 33
(for benefit attribute y;)
_ Umislnig € gayds {vislvis € hag s i hay; # 0594, 7 0,
L — is Vi€ Py 15101}, if ha,; #0, 9a, =0,
{104, {1 — 7 EGE Ty if ha, = 0,94, # 0,
(for cost attribute y;)
i=1,2,\ "y = 1 9 (4.62)
Umijlmig €.gas, Y Aislvis € hay s i hay, 7 Dega,; 70,
and di; = ¢ {{1 — vij]7i; € a3, {043, if hay# 0,94, =0,
0% AL = niglnmiy € Ga 1 if 1,y =0, 9a, # 0,

is the complement of d;;.

Step 2. Utilize the WDHFBM (in general, we can take p = ¢ = 1)
€; = {hei,gei} = DHFBﬁ;q(eil, €i2, ... ,€m) (463)

to aggregate all the performance values e;; (j = 1,2,...,n) of the ith line and

get the overall performance value e; corresponding to the alternative z;.
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Step 3. Utilize the method in Definition 4.1.4 to rank the overall performance

values e; (i =1,2,...,m).
Step 4. Rank all alternatives z; (i = 1,2,...,m) in accordance with e; (i =
1,2,...,m) in descending order, and then, select the most desirable alternative

with the largest overall performance value.

In the above-mentioned procedure, we utilized the WDHFBM to aggregate the
performance values of each alternative with respect to a collection of the pregiven
attributes, so as to rank and select the alternatives. The desirable characteristic
of the WDHFBM is that it can not only consider the importance of each attribute
but also reflect the interrelationship of the individual attributes and thus takes

the decision information into account as much as possible.

4.4 Conclusions

The BM is a traditional mean-type aggregation operator and is generally used
to aggregate the crisp numerical values rather than any other types of data. In
this chapter, we have extended the BM to accommodate dual hesitant fuzzy
environments. We have developed some new dual hesitant fuzzy aggregation
operators, including the DHFBM, the WDHEBM, and the various special cases
of the DHFBM. Then; we have applied the WDHFBM to multiple attribute
decision making with dual hesitant fuzzy information. The main advantage of
the WDHFBM in multiple attribute decision making is that it can not only
consider the importance-of each attribute but also reflect the interrelationship
of the individual attributes and thus-takes the decision information into account
as much as possible. The applications of these operators in many actual fields,
such as pattern recognition, medical diagnosis and clustering analysis, are open
questions for future research.
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