

Thesis for the Degree of Master of Education

Demiclosedness Principle of a

Nonlipschitzian Semigroup

by

Cho Young Moon Graduate School of Education Pukyong National University

August 2014

Demiclosedness Principle of a Nonlipschitzian Semigroup (어떤 비-Lipschitz반군의 반닫힘원리)

Advisor : Tae Hwa Kim

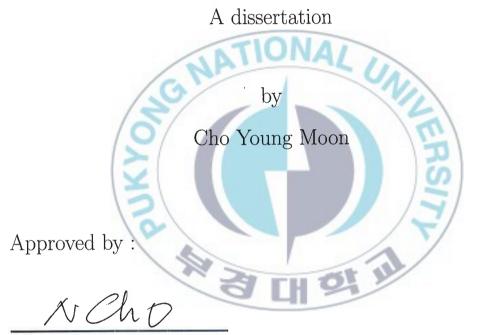
A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Education

Graduate School of Education Pukyong National University

August 2014

Demiclosedness Principle of a Nonlipschitzian Semigroup



(Chairman) Nak Eun Cho

(Member) Jin Mun Jeong

(Member) Tae Hwa Kim

August 25, 2014

CONTENTS

Abstract(Korean)	ii
1. Introduction	1
2. An example	4
3. Demiclosedness of ANT semigroups	5
References	10
a H a	

어떤 비-Lipschitz반군의 반닫힘원리

문 초 영

부경대학교 교육대학원 수학교육전공

요 약

집합 $C = \Delta$ Banach 공간 X의 볼록이고 닫힌 부분집합(closed convex subset)이라 할 때, 함수 $T: C \rightarrow C$ 의 부동점들의 집합을 $Fix(T) = \{x \in c: Tx = x\}$ 로 표기한다. 이산인 가산 개의 함수 $T_n: C \rightarrow C$, $n \geq 0$ 들의 족 $\Im = \{T_n: n \geq 0\}$ 가 점근적비확대형(asymptotically nonexpansive type)라 함은 0에 수렴하는 수열 $\{d_n\}$ 가 존재하여

||T_nx - T_ny|| ≤ ||x - y|| + d_n, ∀x, y ∈ C
을 만족하는 것을 말한다. 모든 함수 T_n 이 C 상에서 연속일 때 집합족 ℑ이
C 상에서 연속이라 부른다. 덧붙여, ℑ가 다음 두 조건을 만족할 때 ℑ를 C 상
의 점근적비확대형반군이라 말한다.

- (i) $T_0 x = x, \forall x \in C;$
- (ii) $T_{n+m}x = T_nT_mx, \forall n, m \ge 0, x \in C.$

본 논문의 주 결과는 다음과 같다.

정리. 집합 C는 균등볼록인 Banach 공간 X의 공집합이 아닌 볼록닫힌부분집 합이고 함수들의 집합족 $\Im = \{T_n : C \to C, n \ge 0\}$ 가 $Fix(\Im) \neq \emptyset$ 인 C 상의 연 속인 점근적비확대형반군이라 하자. 만약 수열 $(x_n) \subset C$ 이 $x_n \to x (\in C)$ 하고

$$\limsup_{k \to \infty} \limsup_{n \to \infty} \|x_n - T_k x_n\| = 0$$

을 만족하면 $x \in \Im$ 의 공통부동점이다. 즉, $T_n x = x, \forall n \ge 0$.

1 Introduction

Let X be a real Banach space with norm $\|\cdot\|$ and let X^* be the dual of X. Denote by $\langle \cdot, \cdot \rangle$ the duality product. Let $\{x_n\}$ be a sequence in $X, x \in X$. We denote by $x_n \to x$ the strong convergence of $\{x_n\}$ to x and by $x_n \to x$ the weak convergence of $\{x_n\}$ to x. Also, we denote by $\omega_w(x_n)$ the weak ω -limit set of $\{x_n\}$, that is,

$$\omega_w(x_n) = \{ x : \exists x_{n_k} \rightharpoonup x \}.$$

Let C be a nonempty closed convex subset of X and let $T : C \to C$ be a mapping. Now let Fix(T) be the fixed point set of T; namely,

$$Fix(T) := \{ x \in C : Tx = x \}.$$

Recall that T is a Lipschitzian mapping if, for each $n \ge 1$, there exists a constant $k_n > 0$ such that

$$||T^{n}x - T^{n}y|| \le k_{n}||x - y||$$
(1.1)

for all $x, y \in C$ (we may assume that all $k_n \ge 1$). A Lipschitzian mapping T is called *uniformly* k-Lipschitzian if $k_n = k$ for all $n \ge 1$, nonexpansive if $k_n = 1$ for all $n \ge 1$, and asymptotically nonexpansive if $\lim_{n\to\infty} k_n = 1$, respectively. The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [4] as a generalization of the class of nonexpansive mappings. They proved that if C is a nonempty bounded closed convex subset of a uniformly convex Banach space X, then every asymptotically nonexpansive mapping $T: C \to C$ has a fixed point.

On the other hand, as the classes of non-Lipschitzian mappings, there appear in the literature two definitions, one is due to Kirk who says that T is a mapping of asymptotically nonexpansive type [7] if for each $x \in C$,

$$\limsup_{n \to \infty} \sup_{y \in C} (\|T^n x - T^n y\| - \|x - y\|) \le 0$$
(1.2)

and T^N is continuous for some $N \ge 1$. The other is the stronger concept due to Bruck, Kuczumov and Reich [1]. They say that T is asymptotically nonexpansive in the intermediate sense if T is uniformly continuous and

$$\limsup_{n \to \infty} \sup_{x, y \in C} (\|T^n x - T^n y\| - \|x - y\|) \le 0$$
(1.3)

In this case, observe that if we define

$$\delta_n := \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|) \vee 0, \tag{1.4}$$

(here $a \lor b := \max\{a, b\}$), then $\delta_n \ge 0$ for all $n \ge 1$, $\delta_n \to 0$ as $n \to \infty$, and thus (1.3) immediately reduces to

$$||T^{n}x - T^{n}y|| \le ||x - y|| + \delta_{n}$$
(1.5)

for all $x, y \in C$ and $n \ge 1$.

Let C be a nonempty closed convex subset of a real Banach space X, and let $T: C \to C$ be a nonexpansive mapping with $Fix(T) \neq \emptyset$. Recall that the following Mann [8] iterative method is extensively used for solving a fixed point equation of the form Tx = x:

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n, \quad n \ge 0, \tag{1.6}$$

where $\{a_n\}$ is a sequence in [0, 1] and $x_0 \in C$ is arbitrarily chosen. In infinitedimensional spaces, Mann's algorithm has generally only weak convergence. In fact, it is known [10] that if the sequence $\{\alpha_n\}$ is such that $\sum_{n=1}^{\infty} \alpha_n(1-\alpha_n) = \infty$, then Mann's algorithm (1.6) converges weakly to a fixed point of T provided the

underlying space is a Hilbert space or more general, a uniformly convex Banach space which has a Fréchet differentiable norm or satisfies Opial's property. Furthermore, Mann's algorithm (1.6) also converges weakly to a fixed point of T if X is a uniformly convex Banach space such that its dual X^* enjoys the Kadec-Klee property (KK-property, in brief), i.e., $x_n \rightharpoonup x$ and $||x_n|| \rightarrow ||x|| \Rightarrow x_n \rightarrow x$. It is well known [2] that the duals of reflexive Banach spaces with a Frechet differentiable norms have the KK-property. There exists uniformly convex spaces which have neither a Fréchet differentiable norm nor the Opial property but their duals do have the KK-property; see Example 3.1 of [3].

Let C be a nonempty closed convex subset of a real Banach space X. Recall also that a discrete family $\Im = \{T_n : C \to C\}$ is said to be asymptotically nonexpansive type (in briefly, ANT) on C if there exists a nonnegative real sequence $\{d_n\}, n \ge 1$ with $d_n \to 0$ such that $\|T_n x - T_n\|$

$$||T_n x - T_n y|| \le ||x - y|| + d_n,$$
(1.7)

for all $x, y \in C$ and $n \ge 1$. Furthermore, we say that \Im is *continuous* on C provided each $T_n \in \mathfrak{S}$ is continuous on C. In particular, we say that $\mathfrak{F} = \{T_n : C \to C\}$ is simply ANT when C = X.

Let C be a nonempty closed convex subset of a real Banach space X. In this paper, we firstly consider a discrete ANT semigroup $\Im = \{T_n : C \to C, n \ge 0\}$ on C, namely, a ANT family equipped with the following semigroup properties:

- (i) $T_0 x = x, x \in C$,
- (ii) $T_{n+m}x = T_nT_mx, n, m \ge 0, x \in C.$

In section 3, we give the demiclosedness of $I - \Im$ at zero of such a continuous ANT semigroup \Im in the sense that if $\{x_n\}$ is a sequence in C converging weakly to $x \in C$ and

$$\limsup_{k \to \infty} \limsup_{n \to \infty} \|x_n - T_k x_n\| = 0, \tag{1.8}$$

then $x \in Fix(\mathfrak{S}) := \bigcap_{n=1}^{\infty} Fix(T_n)$, the set of common fixed points of \mathfrak{S} .

2 An example

The following example is a special case of Examples 1.7 in [6]. For the sake of convenience we introduce its proof.

Example 2.1. ([6]) Let C be a nonempty closed convex subset of a real Banach space X. Let $\Im = \{T_n : C \to C\}$ be a continuous ANT family on C with a control sequence d_n such that $\sum_{n=1}^{\infty} d_n < \infty$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in [0,1]. Then the family $S = \{S_n : C \to C\}$ defined by $S_n = (1 - \alpha_n)I + \alpha_nT_n[(1 - \beta_n)I + \beta_nT_n]$

is also continuous ANT on C, i.e., there exist $\{\tilde{d}_n\}$ converging to zero, $\sum_{n=1}^{\infty} \tilde{d}_n < \infty$, such that $\|S_n x - S_n y\| \le \|x - y\| + \tilde{d}_n, \quad x, y \in C.$

Proof. Putting
$$U_n := (1 - \beta_n)I + \beta_n T_n$$
 and using (1.7) yield

$$||U_n x - U_n y|| \leq (1 - \beta_n) ||x - y|| + \beta_n ||T_n^{(2)} x - T_n^{(2)} y|$$

$$\leq (1 - \beta_n) ||x - y|| + \beta_n (||x - y|| + d_n)$$

$$\leq ||x - y|| + d_n$$

for all $x, y \in C$. Then, we can also compute

$$|S_n x - S_n y|| \leq (1 - \alpha_n) ||x - y|| + \alpha_n ||T_n(U_n x) - T_n(U_n y)||$$

$$\leq (1 - \alpha_n) ||x - y|| + \alpha_n (||U_n x - U_n y|| + d_n)$$

$$\leq ||x - y|| + 2d_n$$

Therefore, the family $S = \{S_n : C \to C\}$ is continuous TAN on C with $\tilde{d}_n = 2d_n$.

3 Demiclosedness principle of ANT semigroups

Here we summarize the notations used in the sequel. The convex hull of a subset A of a real Banach space X is denoted by coA, and the closed convex hull by $\overline{co}A$. We put

$$\triangle^{n-1} = \{\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n) : \lambda_i \ge 0 \ (i = 1, 2, \cdots, n) \text{ and } \sum_{i=1}^n \lambda_i = 1\}$$

and for r > 0

$$B_r = \{x \in X : ||x|| \le r\}.$$

Now let us begin with the following slight modification of Lemma 2.1 in [9].

Lemma 3.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space X. Let a family $\mathfrak{T} = \{T_n : C \to C\}$ be ANT on C with $Fix(\mathfrak{T}) = \bigcap_{n=1}^{\infty} Fix(T_n) \neq \emptyset$. Let K be a bounded closed convex subset of C containing x^* for some $x^* \in Fix(\mathfrak{T})$. Then, for $\epsilon > 0$ there exists an integers $N_{\epsilon} \geq 1$ and $\delta_{2,\epsilon}$ with $0 < \delta_{2,\epsilon} \leq \epsilon$ such that $k \geq N_{\epsilon}$, $x_1, x_2 \in K$ and if $||x_1 - x_2|| - ||T_k x_1 - T_k x_2|| \leq \delta_{2,\epsilon}$, then

$$\|T_k(\lambda_1 x_1 + \lambda_2 x_2) - \lambda_1 T_k x_1 - \lambda_2 T_k x_2\| < \epsilon$$

for all $\lambda = (\lambda_1, \lambda_2) \in \Delta^1$.

Proof. We employ the method of the proof in [9]. Since X is uniformly convex, the modulus of convexity δ is a continuous and strictly increasing function on [0,2] (see [5] for more details). Then the function $F: \mathbb{R}^+ \to \mathbb{R}^+$ defined by

$$F(x) = \begin{cases} \frac{1}{2} \int_0^x \delta(t) dt, & \text{if } 0 \le x \le 2; \\ \frac{1}{2} (x - 2) + F(2), & \text{if } x > 2. \end{cases}$$

is clearly strictly increasing, continuous and convex on \mathbb{R}^+ . Obviously, since $F(x) \leq \delta(x) \ (0 \leq x \leq 2)$, the uniform convexity of X implies that

$$2\lambda_1 \lambda_2 F(\|x - y\|) \le 1 - \|\lambda_1 x + \lambda_2 y\|$$
(3.1)

for $\lambda = (\lambda_1, \lambda_2) \in \Delta^1$, $||x|| \le 1$ and $||y|| \le 1$.

If either λ_1 or λ_2 is 1 or 0, our conclusion is clearly satisfied. So assume that $0 < \lambda_1, \, \lambda_2 < 1$ and let $\epsilon > 0$ be arbitrary given. Set

$$M := \operatorname{diam} K < \circ$$

Choose $d_{\epsilon} > 0$ such that $\frac{M}{2}F^{-1}\left(\frac{2d_{\epsilon}}{M}\right) < \epsilon$ and put $\delta_{2,\epsilon} = \min\left\{\epsilon, d_{\epsilon}, \frac{M}{4}\right\}$. For $\bar{\delta}_{2,\epsilon} = \min\{\lambda_i \delta_{2,\epsilon} : i = 1, 2\} > 0$, since $d_n \to 0$, there exists an integer $N_{\epsilon} \ge 1$ (depending on the set K) such that if $k \ge N$

 $d_k < \bar{\delta}_{2,\epsilon}.$

Then, by (1.7), we have

$$||T_k x - T_k y|| \le ||x - y|| + d_k \le ||x - y|| + \bar{\delta}_{2,\epsilon}$$
(3.2)

for all $k \geq N_{\epsilon}, x, y \in K$. Now let $k \geq N_{\epsilon}$ and let $x_1, x_2 \in K$ with $||x_1 - x_2|| - ||T_k x_1 - T_k x_2|| \le \delta_{2,\epsilon}$. On letting

$$x := \frac{T_k x_2 - T_k (\lambda_1 x_1 + \lambda_2 x_2)}{\lambda_1 (\|x_1 - x_2\| + \delta_{2,\epsilon})} \text{ and } y := \frac{T_k (\lambda_1 x_1 + \lambda_2 x_2) - T_k x_1}{\lambda_2 (\|x_1 - x_2\| + \delta_{2,\epsilon})}$$

we have $||x|| \le 1$, $||y|| \le 1$ by with help of (3.2) and

$$\lambda_1 x + \lambda_2 y = \frac{T_k x_2 - T_k x_1}{\|x_1 - x_2\| + \delta_{2,\epsilon}}.$$
(3.3)

On letting $0 < t := \frac{2}{M} \lambda_1 \lambda_2 (||x_1 - x_2|| + \delta_{2,\epsilon}) \le \frac{2}{M} \frac{1}{4} (M + \frac{M}{4}) < 1$, we observe that

$$\frac{2}{M} \|\lambda_1 T_k x_1 + \lambda_2 T_k x_2 - T_k (\lambda_1 x_1 + \lambda_2 x_2)\| = t \|x - y\|$$
(3.4)

and

$$\frac{1}{2\lambda_1\lambda_2}(1 - \|\lambda_1x + \lambda_2y\|) = \frac{\|x_1 - x_2\| - \|T_kx_1 - T_kx_2\| + \delta_{2,\epsilon}}{2\lambda_1\lambda_2(\|x_1 - x_2\| + \delta_{2,\epsilon})} \le \frac{2\delta_{2,\epsilon}}{tM}.$$
(3.5)

Using (3.1), (3.4), (3.5) and the convexity of
$$F$$
 with $F(0) = 0$, we have

$$F\left(\frac{2}{M}\|\lambda_1 T_k x_1 + \lambda_2 T_k x_2 - T_k(\lambda_1 x_1 + \lambda_2 x_2)\|\right)$$

$$= F(t\|x - y\|) = F(t\|x - y\| + (1 - t)0)$$

$$\leq tF(\|x - y\|) + (1 - t)F(0)$$

$$\leq \frac{t}{2\lambda_1\lambda_2}(1 - \|\lambda_1 x + \lambda_2 y\|) \leq \frac{2\delta_{2,\epsilon}}{M} \leq \frac{2d_{\epsilon}}{M}$$

and so we have

$$\|\lambda_1 T_k x_1 + \lambda_2 T_k x_2 - T_k (\lambda_1 x_1 + \lambda_2 x_2)\| \le \frac{M}{2} F^{-1} \left(\frac{2d_{\epsilon}}{M}\right) < \epsilon$$

from the choice of d_{ϵ} and the proof is complete.

Now on mimicking Lemma 2.2 and 2.3 in [9] we have the following result.

Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space X. Let a family $\Im = \{T_n : C \rightarrow C\}$ be ANT on C

with $Fix(\mathfrak{T}) \neq \emptyset$. Let K be a bounded closed convex subset of C containing x^* for some $x^* \in Fix(\mathfrak{T})$. Then, for $\epsilon > 0$ there exists an integers $N_{\epsilon} \geq 1$ and δ_{ϵ} with $0 < \delta_{\epsilon} \leq \epsilon$ such that $k \geq N_{\epsilon}, x_1, x_2, \cdots, x_n \in K$ and if $||x_i - x_j|| - ||T_k x_i - T_k x_j|| \leq \delta_{\epsilon}$ for $1 \leq i, j \leq n$, then

$$\left\| T_k\left(\sum_{i=1}^n \lambda_i x_i\right) - \sum_{i=1}^n \lambda_i T_k x_i \right\| < \epsilon$$

for all $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n) \in \triangle^{n-1}$.

As a direct application of Lemma 3.2, we have the following demiclosedness principle for continuous ANT semigroups.

Theorem 3.3. Let C be a nonempty closed convex subset of a uniformly convex Banach space X. Let $\mathfrak{T} = \{T_n : C \to C, n \ge 0\}$ be a continuous ANT semigroup on C with $Fix(\mathfrak{T}) \neq \emptyset$. Let $\{x_n\}$ be a sequence in C such that $x_n \rightharpoonup x (\in C)$ and it satisfies (1.8), namely,

 $\limsup_{k \to \infty} \limsup_{n \to \infty} \|x_n - T_k x_n\| = 0.$

Then $x \in Fix(\Im)$.

Proof. First, we claim that $\lim_{k\to\infty} T_k x = x$. For this end, fix $p \in Fix(\mathfrak{F})$. Since $\{x_n\}$ is bounded in C, take K in Lemma 3.2 by the closed convex hull of $\{p\} \cup \{x_n : n \ge 1\}$. For $\epsilon > 0$, take $N_\epsilon \ge 1$ and δ_ϵ with $0 < \delta_\epsilon \le \epsilon$ as in Lemma 3.2. From (1.8), there exists an integer $k_0 (\ge N_\epsilon)$ such that

$$\limsup_{n \to \infty} \|x_n - T_k x_n\| < \delta_\epsilon/2$$

for all $k \ge k_0$. Also, we can choose an integer $n_0 (\ge k_0)$ such that

$$\|x_n - T_k x_n\| \le \delta_{\epsilon}/2 \qquad (k, n \ge n_0). \tag{3.6}$$

Since $x_n \rightharpoonup x$ and $x \in \overline{co}\{x_i : i \ge n\}$ for each $n \ge 1$, we can choose for each $n \ge 1$ a convex combination

$$y_n = \sum_{i=1}^{m(n)} \lambda_i^{(n)} x_{i+n}, \text{ where } \lambda^{(n)} = (\lambda_1^{(n)}, \lambda_2^{(n)}, \cdots, \lambda_{m(n)}^{(n)}) \in \Delta^{m(n)-1}$$

such that $||y_n - x|| \to 0$. Let $k, n \ge n_0$. Then it follows from (3.6) that, for $1 \le i, j \le m(n),$

$$\|x_{i+n} - x_{j+n}\| - \|T_k x_{i+n} - T_k x_{j+n}\|$$

$$\leq \|x_{i+n} - T_k x_{i+n}\| + \|x_{j+n} - T_k x_{j+n}\|$$

and so applyin

$$\leq \delta_{\epsilon}/2 + \delta_{\epsilon}/2 = \delta_{\epsilon}$$

and so applying Lemma 3.2 yields
$$\left\| T_{k}y_{n} - \sum_{i=1}^{m(n)} \lambda_{i}^{(n)} T_{k}x_{i+n} \right\| < \epsilon.$$

and hence
$$\left\| T_{k}y_{n} - y_{n} \right\| \leq \left\| T_{k}y_{n} - \sum_{i=1}^{m(n)} \lambda_{i}^{(n)} T_{k}x_{i+n} \right\| + \left\| \sum_{i=1}^{m(n)} \lambda_{i}^{(n)} (T_{k}x_{i+n} - x_{i+n}) \right\|$$

$$< \epsilon + \delta_{\epsilon}/2 \leq (3/2)\epsilon$$

for $k, n \ge n_0$. Since $\Im = \{T_n : C \to C\}$ is ANT on C, this implies that, for $k, n \ge n_0,$

$$||T_k x - x|| \leq ||T_k x - T_k y_n|| + ||T_k y_n - y_n|| + ||y_n - x||$$

$$\leq ||x - y_n|| + d_k + (3/2)\epsilon + ||y_n - x||$$

$$= 2||y_n - x|| + d_k + (3/2)\epsilon.$$
(3.7)

Taking the lim sup as $n \to \infty$ at first and next the lim sup as $k \to \infty$ in both sides of (3.7), we have $\limsup_{k\to\infty} ||T_k x - x|| \le (3/2)\epsilon$ and since ϵ is arbitrary given, $T_k x \to x$. Then we easily obtain that $x \in Fix(\mathfrak{S})$ because, for each fixed $n \ge 1$, we get

$$T_n x = T_n(\lim_{k \to \infty} T_k x) = \lim_{k \to \infty} T_{n+k} x = x$$

using continuity of T_n and semigroup property of \Im . The proof is complete. \Box

References

- R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, *Colloq. Math.*, 65 (1993), 169–179.
- [2] J. Diestel, Geometry of Banach spaces -Selected Topics, Lecture Notes in Mathematics, vol. 485, Springer, New York, 1975.
- [3] J. Garcia Falset, W. Kaczor, T. Kuczumov and S. Reich, Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, *Nonlinear Anal.*, 43 (2001), 377–401.
- [4] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174.
- [5] K. Geobel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, New York, NY, 1990.
- [6] T. H. Kim and Y. K. Park, Approximation of Common Fixed Points for a Family of Non-Lipschitzian Mappings, to appear in Kyungpook Math. J., 49 (2009), 701–712.

- [7] W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, *Israel J. Math.*, 17 (1974), 339–346.
- [8] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
- [9] H. Oka, An ergodic theorem for asymptotically nonexpansive mappings in the intermediate sense, Proc. Amer. Math. Soc., 125 (1997), 1693-1703.
- [10] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274–276.

