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1 Introduction

Let X be a real Banach space with norm || - || and let X* be the dual of X.
Denote by (-,-) the duality product. Let {x,} be a sequence in X, x € X. We
denote by xz, — x the strong convergence of {z,} to  and by x,, — = the weak
convergence of {z,} to z. Also, we denote by w,(z,) the weak w-limit set of
{z,}, that is,

wy(xy) = {2z Jx,, — x}.

Let C' be a nonempty closed convex subset-of X and let T': C' — C be a
mapping. Now let Fiz(T) be the fixed point set of T'; namely,

Fiz(Lgr—aic W T— 1 }.

Recall that T is a Lipschitzian mapping if, for each n > 1, there exists a constant
k, > 0 such that
[Tz = T[S Kallr ~ ]| (1.1)

for all z,y € C' (we. may:assume that all k, > 1). A Hipschitzian mapping T is
called uniformly k-Lipschitzianif k, =k for all n > 1, nonexpansive if k, = 1 for
all n > 1, and asymptotically nonexpanswe-if lim,,_,. k, = 1, respectively. The
class of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [4] as a generalization of the class of nonexpansive mappings. They proved
that if C' is a nonempty bounded closed convex subset of a uniformly convex
Banach space X, then every asymptotically nonexpanisve mapping 7' : C' — C
has a fixed point.

On the other hand, as the classes of non-Lipschitzian mappings, there appear

in the literature two definitions, one is due to Kirk who says that T is a mapping



of asymptotically nonezpansive type [7] if for each z € C,

lim sup sup([|T"z — T"y|| — [lz — y|[) <0 (1.2)

n—oo yeC
and TV is continuous for some N > 1. The other is the stronger concept due to
Bruck, Kuczumov and Reich [1]. They say that T' is asymptotically nonexpansive
in the intermediate sense if T" is uniformly continuous and
limsup sup ([|T"z = T"y|| - |z —y[[) <0 (1.3)
n—oo e
In this case, observe that if we define
O := sup ([T"z — T"y|| — ||z =y|) V0, (1.4)
z,yeC
(here a V b := max{a,b}), then 6, > 0 forall n > 1, 6, — 0 as n — oo, and

thus (1.3) immediately reduces to
1T = T < ||z =yll +0n (1.5)

for all z, y € C' and n > 1.

Let C be a nonempty closed convex subset: of a‘real Banach space X, and
let T : C — C be a nonexpansive mapping with Fiz(T) # (). Recall that the
following Mann [8] iterative method is extensively used for solving a fixed point

equation of the form Tx = x:
Tpr1 = (1 —ap)zy, + @, Tx,, n >0, (1.6)

where {a,} is a sequence in [0,1] and xy € C' is arbitrarily chosen. In infinite-
dimensional spaces, Mann’s algorithm has generally only weak convergence. In
fact, it is known [10] that if the sequence {as,} is such that Y, o, (1—ay,) = oo,

then Mann’s algorithm (1.6) converges weakly to a fixed point of 7" provided the

2



underlying space is a Hilbert space or more general, a uniformly convex Banach
space which has a Fréchet differentiable norm or satisfies Opial’s property. Fur-
thermore, Mann’s algorithm (1.6) also converges weakly to a fixed point of T" if X
is a uniformly convex Banach space such that its dual X* enjoys the Kadec-Klee
property (KK-property, in brief), i.e., z, — x and ||z,|| — ||z| = z, — x.
It is well known [2] that the duals of reflexive Banach spaces with a Frechet dif-
ferentiable norms have the KK-property. There exists uniformly convex spaces
which have neither a Fréchet differentiable norm nor the Opial property but their
duals do have the KK-property; see Example 3.1 of [3].

Let C' be a nonempty closed convex subset of a real Banach space X . Recall
also that a discrete family & = {T,, : C — C} is said to be asymptotically non-
expansive type (in briefly, ANT) on C' if there exists a nonnegative real sequence

{d,}, n>1 with d,, — 0 such that

HTnx - TnyH S ||£L‘ o y” 4 dn, (17)

for all z,y € Cand n > 1. Furthermore, we say that ' is continuous on

C provided each T,-€ & is-continuous on (. In particular, we say that
S ={T,: C — C} is simply ANT when C' ="X.

Let C be a nonempty closed convex subset of a real Banach space X . In this
paper, we firstly consider a discrete ANT semigroup & = {7,, : C — C, n > 0}
on C, namely, a ANT family equipped with the following semigroup properties:

(i) Tox ==, x € C,
(i) Thimz =T, Tz, n,m >0, x € C.

In section 3, we give the demiclosedness of I — < at zero of such a continuous

ANT semigroup < in the sense that if {z,} is a sequence in C' converging weakly

3



to x € C' and

lim sup lim sup ||z, — Txx,| = 0, (1.8)

k—o0 n—00

then = € Fiz(SJ) := N, Fix(T,), the set of common fixed points of .

2 An example

The following example is a special case of Examples 1.7 in [6]. For the sake of

convenience we introduce its proof.

Example 2.1. ([6]) Let'C be a nonempty closed convewr.subset of a real Banach
space X . Let & = {T,, : C — C} be a continuous ANT family on C with a
control sequence’ d,, such thaty >~ d, < 00w Let {a,} and {8,} be sequences
in [0,1]. Then the family S = {S, : C — C} defined by

Sy = (18 ) o, BNCNG, L+ 5,.T,)

is also continuous ANT on C, i.e., there exist {cin} converging to zero, > - d, <
o0, such that

||Sn$ - SnyH — ||11 e y” =t Czna T,y € C.
Proof. Putting U, := (1 — ,)I + 3, T,, and using (1.7) yield
1Unz = Unyll < (1= Ba)llz = yll + Bul T — TPy|

(1= Bo)llz = yll + Bullz = yll + dn)

IN



for all z,y € C'. Then, we can also compute

[Sn = Snyll

IN

(1 = an)llz = yll + an|[To(Unz) = To(Uny)|

IA

(1 —an)llr = yl| + an(|Unz — Upyl| + dy)
<l =yl + 2d,

Therefore, the family S = {.S,, : C' — C} is continuous TAN on C' with d,=2d,.
]

3 Demiclosedness principle of ANT semigroups

Here we summarize the notations used in the sequel. The convex hull of a subset
A of a real Banach space X is denoted by co A, and the closed convex hull by
co A. We put

A= A=A A, i) s A 0@ =1,2,- - ,n) and Z)\i:g
i=1
and for » > 0
D, =plr-c X Jrieger].
Now let us begin with the following slight modification of Lemma 2.1 in [9].

Lemma 3.1. Let C' be a nonemptly closed conver subset of a uniformly con-
vex Banach space X . Let a family S = {T,, : C — C} be ANT on C with
Fiz() = N2 Fix(T,) # 0. Let K be a bounded closed convex subset of C
containing x* for some x* € Fix(S). Then, for € > 0 there exists an inte-
gers Ne > 1 and 6y, with 0 < dy < € such that k > N, x1, xo € K and if

|z — @o|| — |Thrr — Thaa|| < o, then
HTk<)\1u’E1 + )\23}2) — MTexr — )\QTkaH <€

5



for all X = (M, Xg) € AL,

Proof. We employ the method of the proof in [9]. Since X is uniformly convex,
the modulus of convexity ¢ is a continuous and strictly increasing function on

[0,2] (see [5] for more details). Then the function F': R™ — R* defined by

L6t dt, ifo<az<2;

F(I) — 2 fO ( ) — —
S(x—2)+F(2), ifz>2

is clearly strictly increasing, continuous and convex on RT. Obviously, since

F(z) <d(z) (0 <z <2), the uniform convexity of X implies that
22X E(lz =yll) <1 —{A1z + Aoyl (3.1)

for A= (A, \2) € AL, |lz]] <1 and ||y|| <.
If either A\; or Ay is 1 or 0, our conclusion is clearly satisfied. So assume that

0 < A1, A2 <1 and let € >0 be arbitrary given. Set
M = diam K < oo.

Choose d, > 0 such that %F‘l (%) < € and put 4y, = min{e, d., %} For
5276 = min{ ;02 : ¢ =1,2} > 0ysince d,, — .0, there exists an integer N, > 1

(depending on the set K') such-that if &> N,
dy, < 0.
Then, by (1.7), we have
1Tz — Tiyll < llz = yll + di < [lo =yl + 02 (3.2)

for all £ > N, z,y € K. Now let £ > N, and let zy, x5 € K with
|21 — @al| = [[Thw1 — Thaa|] < da.c. On letting
': Tkl’g — Tk()\lxl + /\QLL’Q) L Tk(/\lxl + )\2.732) - Tkl’l

and vy =
M ([[#1 — ] + 0a0) Y (e — wall + 620

?



we have ||z|| <1, |ly]| <1 by with help of (3.2) and

Thxo — Trxy

A Aol = .
WA = T = 2l + oa

(3.3)

On letting 0 < ¢ := ZAo([lz1 — 2af| + 02) < 23 (M +2) < 1, we observe

that

2
and

1 e — || — | Thry — Thaa|| + dac
1— Mz + A % :
2/\1)\2< || ! 2yH) 2)\1)\2(”1’1 - IL‘QH + 5216)
209 .
< —. .
i (3.5)
Using (3.1), (3.4), (3.5) and the convexity of F with F'(0) =0, we have
2
F <Ml|)\1Tk$1 —+ )\QTk$2 = Tk:()\l-rl + )\QCL‘Q>H>
= F(t|z —yl) = F(tlz =yl + 1 -1)0)
<\ F(lz=yll) + (1 — 8)F(0)
t 205 . * ol

< 1 — < - L

and so we have
M 2d,
H/\lTk-CEl + )\QTkIBQ — Tk()\liﬁl + )\2.%’2)” S 7F_1 (M) <€

from the choice of d, and the proof is complete. n

Now on mimicking Lemma 2.2 and 2.3 in [9] we have the following result.

Lemma 3.2. Let C' be a nonemptly closed conver subset of a uniformly con-

vex Banach space X. Let a family & = {1, : C — C} be ANT on C



with Fix(S) # 0. Let K be a bounded closed convex subset of C contain-
ing x* for some x* € Fix(J). Then, for € > 0 there exists an integers
N, > 1 and o, with 0 < 6. < € such that k > N., x1, 2o, -+ ,x, € K and

if |\ — 4|l = [|[Thwi — Thr;|| < 6c for 1 <i,j <mn, then

i=1 i=1

for all A= (A, Xg, -+, \p) € AL

<e€

As a direct application of Lemma 3.2, we have the following demiclosedness

principle for continuousANT semigroups.

Theorem 3.3. Let C' be a nonempty closed convex subset of a.uniformly convex
Banach space X . Let S ={T, : C — C,n' > 0} be a continuous ANT semigroup
on C with Fiz(S) # 0. Let {x,} be a sequence in C such that x, — x (€ C)
and it satisfies (1.8), namely,

lim sup lim sup ||z, — Tz, | = 0.
k—o00 n—00

Then x € Fix(S).

Proof. First, we claim that limg_,,, Tz = x. For this end, fix p € Fiz(S).
Since {x,} is bounded in C, take K in Lemma 3.2 by the closed convex hull of
{p}U{z, :n>1}. For e > 0, take N, > 1 and 6, with 0 < J. < € as in Lemma
3.2. From (1.8), there exists an integer ko (> N.) such that

limsup ||z, — Tpz,|| < 0./2

n—oo

for all £ > ky. Also, we can choose an integer ng (> ko) such that
|ty — Thwn|| < 0./2 (k,n > nog). (3.6)

8



Since =, — x and = € ¢o{z; : i > n} for each n > 1, we can choose for each

n > 1 a convex combination

m(n)
Yn = Z )‘z(n)xiJrn’ where )\(n) = (Agn)v )‘gn)u T 7>\1(:()n)) € Am(n)—l

i=1
such that ||y, — z|| — 0. Let k,n > ny. Then it follows from (3.6) that, for

1<i,j<m(n),

@itn = @iall = | Tiign — Tity
< Newn — B T s = Tl

Pl ) g A

and so applying Lemma 3.2 yields

m(n)
HTkyn ) Z X" Tl < e
=1

and hence

m(n) m(n)
| Thyn — ynl < HTkyn = Z /\Z(")Tkl’i-f—n + H Z /\En) (Th@itn — Tisn)
=1 A

for k,n > ng. Since & = {T,, : C — C} is ANT on C, this implies that, for

kan Z no,

[Tew — || < [[Te = Tignll + [ Tktn = yall + lyn — 2|

IN

[ = ynll + di + (3/2)€ + [[yn — ]|

= 2|lyn — 2| + di + (3/2)e. (3.7)

Taking the limsup as n — oo at first and next the limsup as k£ — oo in both

sides of (3.7), we have limsup,_, . ||[Tkz — z|| < (3/2)e and since € is arbitrary

9



given, Tpx — . Then we easily obtain that x € Fiz(J) because, for each fixed

n>1, we get

T,x = Tn(kIEEO Tyx) = klggo Thipr =z

using continuity of 7, and semigroup property of &. The proof is complete. [
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