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어떤 비-Lipschitz반군의 반닫힘원리

문 초 영

부경대학교 교육대학원 수학교육전공

요 약

집합 C를 실 Banach공간 X의 볼록이고 닫힌 부분집합(closed convex sub-

set)이라할때,함수 T : C → C의부동점들의집합을 Fix(T ) = {x ∈ c : Tx = x}로

표기한다. 이산인가산개의함수 Tn : C → C , n ≥ 0들의족 = = {Tn : n ≥ 0}가

점근적비확대형(asymptotically nonexpansive type)라 함은 0에 수렴하는 수열

{dn}가 존재하여

‖Tnx− Tny‖ ≤ ‖x− y‖+ dn , ∀x, y ∈ C

을 만족하는 것을 말한다. 모든 함수 Tn이 C 상에서 연속일 때 집합족 =이

C 상에서 연속이라 부른다. 덧붙여, =가 다음 두 조건을 만족할 때 =를 C 상

의 점근적비확대형반군이라 말한다.

(i) T0x = x , ∀x ∈ C ;

(ii) Tn+mx = TnTmx , ∀n,m ≥ 0, x ∈ C .

본 논문의 주 결과는 다음과 같다.

정리. 집합 C는 균등볼록인 Banach공간 X의 공집합이 아닌 볼록닫힌부분집

합이고 함수들의 집합족 = = {Tn : C → C, n ≥ 0}가 Fix(=) 6= ∅인 C 상의 연

속인 점근적비확대형반군이라 하자. 만약 수열 (xn) ⊂ C이 xn ⇀ x (∈ C)하고

lim sup
k→∞

lim sup
n→∞

‖xn − Tkxn‖ = 0

을 만족하면 x는 =의 공통부동점이다. 즉, Tnx = x , ∀n ≥ 0.
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1 Introduction

Let X be a real Banach space with norm ‖ · ‖ and let X∗ be the dual of X .

Denote by 〈·, ·〉 the duality product. Let {xn} be a sequence in X , x ∈ X . We

denote by xn → x the strong convergence of {xn} to x and by xn ⇀ x the weak

convergence of {xn} to x . Also, we denote by ωw(xn) the weak ω -limit set of

{xn} , that is,

ωw(xn) = {x : ∃xnk ⇀ x}.

Let C be a nonempty closed convex subset of X and let T : C → C be a

mapping. Now let Fix(T ) be the fixed point set of T ; namely,

Fix(T ) := {x ∈ C : Tx = x}.

Recall that T is a Lipschitzian mapping if, for each n ≥ 1, there exists a constant

kn > 0 such that

‖T nx− T ny‖ ≤ kn‖x− y‖ (1.1)

for all x, y ∈ C (we may assume that all kn ≥ 1). A Lipschitzian mapping T is

called uniformly k -Lipschitzian if kn = k for all n ≥ 1, nonexpansive if kn = 1 for

all n ≥ 1, and asymptotically nonexpansive if limn→∞ kn = 1, respectively. The

class of asymptotically nonexpansive mappings was introduced by Goebel and

Kirk [4] as a generalization of the class of nonexpansive mappings. They proved

that if C is a nonempty bounded closed convex subset of a uniformly convex

Banach space X , then every asymptotically nonexpanisve mapping T : C → C

has a fixed point.

On the other hand, as the classes of non-Lipschitzian mappings, there appear

in the literature two definitions, one is due to Kirk who says that T is a mapping
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of asymptotically nonexpansive type [7] if for each x ∈ C ,

lim sup
n→∞

sup
y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0 (1.2)

and TN is continuous for some N ≥ 1. The other is the stronger concept due to

Bruck, Kuczumov and Reich [1]. They say that T is asymptotically nonexpansive

in the intermediate sense if T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0 (1.3)

In this case, observe that if we define

δn := sup
x,y∈C

(‖T nx− T ny‖ − ‖x− y‖) ∨ 0, (1.4)

(here a ∨ b := max{a, b}), then δn ≥ 0 for all n ≥ 1, δn → 0 as n → ∞ , and

thus (1.3) immediately reduces to

‖T nx− T ny‖ ≤ ‖x− y‖+ δn (1.5)

for all x, y ∈ C and n ≥ 1.

Let C be a nonempty closed convex subset of a real Banach space X , and

let T : C → C be a nonexpansive mapping with Fix(T ) 6= ∅ . Recall that the

following Mann [8] iterative method is extensively used for solving a fixed point

equation of the form Tx = x :

xn+1 = (1− αn)xn + αnTxn, n ≥ 0, (1.6)

where {an} is a sequence in [0, 1] and x0 ∈ C is arbitrarily chosen. In infinite-

dimensional spaces, Mann’s algorithm has generally only weak convergence. In

fact, it is known [10] that if the sequence {αn} is such that
∑∞

n=1 αn(1−αn) =∞,

then Mann’s algorithm (1.6) converges weakly to a fixed point of T provided the
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underlying space is a Hilbert space or more general, a uniformly convex Banach

space which has a Fréchet differentiable norm or satisfies Opial’s property. Fur-

thermore, Mann’s algorithm (1.6) also converges weakly to a fixed point of T if X

is a uniformly convex Banach space such that its dual X∗ enjoys the Kadec-Klee

property (KK-property, in brief), i.e., xn ⇀ x and ‖xn‖ → ‖x‖ ⇒ xn → x .

It is well known [2] that the duals of reflexive Banach spaces with a Frechet dif-

ferentiable norms have the KK-property. There exists uniformly convex spaces

which have neither a Fréchet differentiable norm nor the Opial property but their

duals do have the KK-property; see Example 3.1 of [3].

Let C be a nonempty closed convex subset of a real Banach space X . Recall

also that a discrete family = = {Tn : C → C} is said to be asymptotically non-

expansive type (in briefly, ANT) on C if there exists a nonnegative real sequence

{dn}, n ≥ 1 with dn → 0 such that

‖Tnx− Tny‖ ≤ ‖x− y‖+ dn, (1.7)

for all x, y ∈ C and n ≥ 1. Furthermore, we say that = is continuous on

C provided each Tn ∈ = is continuous on C . In particular, we say that

= = {Tn : C → C} is simply ANT when C = X .

Let C be a nonempty closed convex subset of a real Banach space X . In this

paper, we firstly consider a discrete ANT semigroup = = {Tn : C → C, n ≥ 0}

on C , namely, a ANT family equipped with the following semigroup properties:

(i) T0x = x, x ∈ C ,

(ii) Tn+mx = TnTmx, n,m ≥ 0, x ∈ C .

In section 3, we give the demiclosedness of I − = at zero of such a continuous

ANT semigroup = in the sense that if {xn} is a sequence in C converging weakly
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to x ∈ C and

lim sup
k→∞

lim sup
n→∞

‖xn − Tkxn‖ = 0, (1.8)

then x ∈ Fix(=) := ∩∞n=1Fix(Tn), the set of common fixed points of = .

2 An example

The following example is a special case of Examples 1.7 in [6]. For the sake of

convenience we introduce its proof.

Example 2.1. ([6]) Let C be a nonempty closed convex subset of a real Banach

space X . Let = = {Tn : C → C} be a continuous ANT family on C with a

control sequence dn such that
∑∞

n=1 dn < ∞. Let {αn} and {βn} be sequences

in [0, 1]. Then the family S = {Sn : C → C} defined by

Sn = (1− αn)I + αnTn[(1− βn)I + βnTn]

is also continuous ANT on C , i.e., there exist {d̃n} converging to zero,
∑∞

n=1 d̃n <

∞, such that

‖Snx− Sny‖ ≤ ‖x− y‖+ d̃n, x, y ∈ C.

Proof. Putting Un := (1− βn)I + βnTn and using (1.7) yield

‖Unx− Uny‖ ≤ (1− βn)‖x− y‖+ βn‖T (2)
n x− T (2)

n y‖

≤ (1− βn)‖x− y‖+ βn(‖x− y‖+ dn)

≤ ‖x− y‖+ dn
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for all x, y ∈ C . Then, we can also compute

‖Snx− Sny‖ ≤ (1− αn)‖x− y‖+ αn‖Tn(Unx)− Tn(Uny)‖

≤ (1− αn)‖x− y‖+ αn(‖Unx− Uny‖+ dn)

≤ ‖x− y‖+ 2dn

Therefore, the family S = {Sn : C → C} is continuous TAN on C with d̃n = 2dn .

3 Demiclosedness principle of ANT semigroups

Here we summarize the notations used in the sequel. The convex hull of a subset

A of a real Banach space X is denoted by coA , and the closed convex hull by

coA . We put

4n−1 = {λ = (λ1, λ2, · · · , λn) : λi ≥ 0 (i = 1, 2, · · · , n) and
n∑
i=1

λi = 1}

and for r > 0

Br = {x ∈ X : ‖x‖ ≤ r}.

Now let us begin with the following slight modification of Lemma 2.1 in [9].

Lemma 3.1. Let C be a nonempty closed convex subset of a uniformly con-

vex Banach space X . Let a family = = {Tn : C → C} be ANT on C with

Fix(=) = ∩∞n=1Fix(Tn) 6= ∅. Let K be a bounded closed convex subset of C

containing x∗ for some x∗ ∈ Fix(=). Then, for ε > 0 there exists an inte-

gers Nε ≥ 1 and δ2,ε with 0 < δ2,ε ≤ ε such that k ≥ Nε , x1, x2 ∈ K and if

‖x1 − x2‖ − ‖Tkx1 − Tkx2‖ ≤ δ2,ε , then

‖Tk(λ1x1 + λ2x2)− λ1Tkx1 − λ2Tkx2‖ < ε
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for all λ = (λ1, λ2) ∈ 41 .

Proof. We employ the method of the proof in [9]. Since X is uniformly convex,

the modulus of convexity δ is a continuous and strictly increasing function on

[0, 2] (see [5] for more details). Then the function F : R+ → R+ defined by

F (x) =

 1
2

∫ x
0
δ(t)dt, if 0 ≤ x ≤ 2;

1
2
(x− 2) + F (2), if x > 2.

is clearly strictly increasing, continuous and convex on R+ . Obviously, since

F (x) ≤ δ(x) (0 ≤ x ≤ 2), the uniform convexity of X implies that

2λ1λ2F (‖x− y‖) ≤ 1− ‖λ1x+ λ2y‖ (3.1)

for λ = (λ1, λ2) ∈ 41, ‖x‖ ≤ 1 and ‖y‖ ≤ 1.

If either λ1 or λ2 is 1 or 0, our conclusion is clearly satisfied. So assume that

0 < λ1, λ2 < 1 and let ε > 0 be arbitrary given. Set

M := diamK <∞.

Choose dε > 0 such that M
2
F−1

(
2dε
M

)
< ε and put δ2,ε = min

{
ε, dε,

M
4

}
. For

δ̄2,ε = min{λiδ2,ε : i = 1, 2} > 0, since dn → 0, there exists an integer Nε ≥ 1

(depending on the set K ) such that if k ≥ Nε ,

dk < δ̄2,ε.

Then, by (1.7), we have

‖Tkx− Tky‖ ≤ ‖x− y‖+ dk ≤ ‖x− y‖+ δ̄2,ε (3.2)

for all k ≥ Nε , x, y ∈ K . Now let k ≥ Nε and let x1, x2 ∈ K with

‖x1 − x2‖ − ‖Tkx1 − Tkx2‖ ≤ δ2,ε . On letting

x :=
Tkx2 − Tk(λ1x1 + λ2x2)

λ1(‖x1 − x2‖+ δ2,ε)
and y :=

Tk(λ1x1 + λ2x2)− Tkx1
λ2(‖x1 − x2‖+ δ2,ε)

,
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we have ‖x‖ ≤ 1, ‖y‖ ≤ 1 by with help of (3.2) and

λ1x+ λ2y =
Tkx2 − Tkx1
‖x1 − x2‖+ δ2,ε

. (3.3)

On letting 0 < t := 2
M
λ1λ2(‖x1 − x2‖ + δ2,ε) ≤ 2

M
1
4

(
M + M

4

)
< 1, we observe

that
2

M
‖λ1Tkx1 + λ2Tkx2 − Tk(λ1x1 + λ2x2)‖ = t‖x− y‖ (3.4)

and

1

2λ1λ2
(1− ‖λ1x+ λ2y‖) =

‖x1 − x2‖ − ‖Tkx1 − Tkx2‖+ δ2,ε
2λ1λ2(‖x1 − x2‖+ δ2,ε)

≤ 2δ2,ε
tM

. (3.5)

Using (3.1), (3.4), (3.5) and the convexity of F with F (0) = 0, we have

F

(
2

M
‖λ1Tkx1 + λ2Tkx2 − Tk(λ1x1 + λ2x2)‖

)
= F (t‖x− y‖) = F

(
t‖x− y‖+ (1− t)0

)
≤ tF (‖x− y‖) + (1− t)F (0)

≤ t

2λ1λ2
(1− ‖λ1x+ λ2y‖) ≤

2δ2,ε
M
≤ 2dε

M

and so we have

‖λ1Tkx1 + λ2Tkx2 − Tk(λ1x1 + λ2x2)‖ ≤
M

2
F−1

(
2dε
M

)
< ε

from the choice of dε and the proof is complete.

Now on mimicking Lemma 2.2 and 2.3 in [9] we have the following result.

Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly con-

vex Banach space X . Let a family = = {Tn : C → C} be ANT on C
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with Fix(=) 6= ∅. Let K be a bounded closed convex subset of C contain-

ing x∗ for some x∗ ∈ Fix(=). Then, for ε > 0 there exists an integers

Nε ≥ 1 and δε with 0 < δε ≤ ε such that k ≥ Nε , x1, x2, · · · , xn ∈ K and

if ‖xi − xj‖ − ‖Tkxi − Tkxj‖ ≤ δε for 1 ≤ i, j ≤ n, then∥∥∥∥∥Tk
(

n∑
i=1

λixi

)
−

n∑
i=1

λiTkxi

∥∥∥∥∥ < ε

for all λ = (λ1, λ2, · · · , λn) ∈ 4n−1 .

As a direct application of Lemma 3.2, we have the following demiclosedness

principle for continuous ANT semigroups.

Theorem 3.3. Let C be a nonempty closed convex subset of a uniformly convex

Banach space X . Let = = {Tn : C → C, n ≥ 0} be a continuous ANT semigroup

on C with Fix(=) 6= ∅. Let {xn} be a sequence in C such that xn ⇀ x (∈ C)

and it satisfies (1.8), namely,

lim sup
k→∞

lim sup
n→∞

‖xn − Tkxn‖ = 0.

Then x ∈ Fix(=).

Proof. First, we claim that limk→∞ Tkx = x . For this end, fix p ∈ Fix(=).

Since {xn} is bounded in C , take K in Lemma 3.2 by the closed convex hull of

{p} ∪ {xn : n ≥ 1} . For ε > 0, take Nε ≥ 1 and δε with 0 < δε ≤ ε as in Lemma

3.2. From (1.8), there exists an integer k0 (≥ Nε) such that

lim sup
n→∞

‖xn − Tkxn‖ < δε/2

for all k ≥ k0 . Also, we can choose an integer n0 (≥ k0) such that

‖xn − Tkxn‖ ≤ δε/2 (k, n ≥ n0). (3.6)
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Since xn ⇀ x and x ∈ co{xi : i ≥ n} for each n ≥ 1, we can choose for each

n ≥ 1 a convex combination

yn =

m(n)∑
i=1

λ
(n)
i xi+n, where λ(n) = (λ

(n)
1 , λ

(n)
2 , · · · , λ(n)m(n)) ∈ 4m(n)−1

such that ‖yn − x‖ → 0. Let k, n ≥ n0 . Then it follows from (3.6) that, for

1 ≤ i, j ≤ m(n),

‖xi+n − xj+n‖ − ‖Tkxi+n − Tkxj+n‖

≤ ‖xi+n − Tkxi+n‖+ ‖xj+n − Tkxj+n‖

≤ δε/2 + δε/2 = δε

and so applying Lemma 3.2 yields∥∥∥Tkyn − m(n)∑
i=1

λ
(n)
i Tkxi+n

∥∥∥ < ε.

and hence

‖Tkyn − yn‖ ≤
∥∥∥Tkyn − m(n)∑

i=1

λ
(n)
i Tkxi+n

∥∥∥+
∥∥∥m(n)∑

i=1

λ
(n)
i

(
Tkxi+n − xi+n

)∥∥∥
< ε+ δε/2 ≤ (3/2)ε

for k, n ≥ n0 . Since = = {Tn : C → C} is ANT on C , this implies that, for

k, n ≥ n0 ,

‖Tkx− x‖ ≤ ‖Tkx− Tkyn‖+ ‖Tkyn − yn‖+ ‖yn − x‖

≤ ‖x− yn‖+ dk + (3/2)ε+ ‖yn − x‖

= 2‖yn − x‖+ dk + (3/2)ε. (3.7)

Taking the lim sup as n → ∞ at first and next the lim sup as k → ∞ in both

sides of (3.7), we have lim supk→∞ ‖Tkx − x‖ ≤ (3/2)ε and since ε is arbitrary
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given, Tkx→ x . Then we easily obtain that x ∈ Fix(=) because, for each fixed

n ≥ 1, we get

Tnx = Tn( lim
k→∞

Tkx) = lim
k→∞

Tn+kx = x

using continuity of Tn and semigroup property of = . The proof is complete.
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