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1 Introduction

A lot of extensions of the average mean (AM) and the geometric mean (GM),
which are the basic functions among the aggregation operators, have been devel-
oped. For example, Yager [29] proposed the ordered weighted averaging (OWA)
operator to reordering the arguments before being aggregated, motivated by
which, some authors [7, 24] investigated the ordered weighted geometric (OWA)
operator. For the case that the given arguments is a continuous interval valued
rather than a finite set of arguments, Yager [31] developed a continuous ordered
weighted averaging (C-OWA) operator, and Yager and Xu [34] further developed
the continuous ordered weighted geometric (C-OWA) operator. For the linguis-
tic information, some aggregation operators were also developed based on the
AM and the GM, such as the linguistic weighted averaging (LWA) operator [20],
the linguistic ordered weighted averaging (LOWA) operator [18], the linguistic
weighted geometric averaging (LWGA) operator [19] and the linguistic ordered
weighted geometric averaging (LOWGA) operator [19].

It is noted that the above aggregation operators consider the aggregation
arguments independent. However, the aggregated arguments are correlative, es-
pecially in multi-criteria decision making. To overcome this limitation, many
aggregation operators have been developed to investigate the correlation among
the arguments, Yager [30] introduced the power average (PA) to provide an ag-
gregation operator which allows arguments values to support each other in the
aggregation process, based on which, Xu and Yager [27] developed the power
geometric (PG) operator and.its weighted form, developed the power ordered
geometric (POG) operator-and-the power ordered-weighted geometric (POWG)
operator, and studied some of their-properties. Xu {23] extended the PA and
applied it to aggregate intuitionistic fuzzy information. Motivated by the Cho-
quet integral [8], Yager [32] introduced the idea of order induced aggregation to
the Choquet aggregation operator and defined the induced Choquet ordered av-
eraging operator. Xu [22], Tan and Chen [15] developed some intuitionistic fuzzy

correlated operators based on Choquet integral.



The Bonferroni mean (BM) originally introduced by Bonferroni [3] and then
generalized by Yager [33]. The desirable characteristic of the BM is its capa-
bility to capture the interrelationship between input arguments. Xu and Yager
28] further applied the Bonferroni mean to intuitionistic fuzzy environment and
introduced the intuitionistic fuzzy Bonferroni mean (IFBM). Xia et al. [16] pro-
posed generalized intuitionistic fuzzy Bonferroni mean. Zhou and He [35] devel-
oped some geometric Bonferroni means. Xia et al. [17] developed the geometric
Bonferroni mean (GBM) based on the BM and GM and extends it to aggre-
gate the intuitionistic fuzzy information introducing the intuitionistic fuzzy ge-
ometric Bonferroni means (IFGBM) and weighted intuitionistic fuzzy geometric
Bonferroni means (WIFGBM), and proposed a method for multi-criteria deci-
sion making. However, the classical GBM and even the extended GBMs can
not reflect the interrelationship between the individual criterion and other crite-
ria. To deal with this issue, in this thesis, we developed the optimized weighted
geometric Bonferroni mean (OWGBM) and the generalized optimized weighted
geometric Bonferroni mean (GOWGBM), whose characteristics are to reflect the
preference and interrelationship of the aggregated arguments. Furthermore, we
developed the intuitionistic fuzzy eptimized weighted geometric Bonferroni mean
(IFOWGBM) and generalized intuitionistic fuzzy optimized weighted geometric
Bonferroni mean (GIFOWGBM), and study their desirable properties such as
idempotency, commutativity, monotonicity and boundedness.

The remainder of this thesis'is organized as follows. In Chapter 2 we pro-
pose two GBMs inducing the OWGBM and GOWGBM. Chapter.3 extends the
OWGBM and GOWGBM to-aggregate the intuitionistic_fuzzy information in-
troducing the IFOWGBM and GIFOWGBM,; whose properties and special cases
are also studied. In Chapter 4 we develop an approach for multi-criteria deci-
sion making, and give a example to demonstrate the advantage of the presented

approach. Chapter 5 ends this paper with some concluding remarks.



2 Geometric Bonferroni means

The Bonferroni mean operator was initially proposed by Bonferroni [3] and was

also investigated intensively by Yager [33]:

Definition 2.1 Let p,¢ > 0anda; (i = 1,2,...,n) be a collection of nonnegative

numbers. If
Bp’q(al,ag,...,an) = | —F—=< Z afa? ’ (1)

then B is called the Bonferroni mean (BM).

Based on the usual geometric mean (GM) and the BM, Xia et al. [17] intro-

duced the geometric Bonferroni mean such as:

Definition 2.2 Let p,q > 0 and-a; (¢ = 1,2,...,n) beacollection of nonnegative

numbers. If

1

1
(paz+-qa)”m D4 (2)

GB?(ai,a9,...,a,) =——
( ) =

1‘“\\:3

then GBP? is called the geometric Bonferroni mean (GBM).

Obiously, the GBM has the following properties:

(1) GB*4(0,0,..",0) = 0.

(2) GB?(a,a,...,a) = 04if a; = a for all 7.

(3) GBP(ay, aq, ..., ay) > GB"(dy,ds, . .., d,), i.e, GBP* is monotonic,
if a; > d; for all i.

(4) min;{a;} < GB?(ay,aq,...,a,) =0 < max;{a;}.

Furthermore, if ¢ = 0, then Eq. (2) reduces to the geometric mean:

n

(b )i = [](a;)x.

=1
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GB" (a1, ay, ..., a,) =
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Definition 2.3 Let p,q,7 > 0 and a; (1 = 1,2,...,n) be a collection of nonneg-
ative numbers. If
1 n

1
GGBP""(ay, ag, ... ,a,) = ———— (pa; + qa; + ray)"e-DE=2) (4)
pHa+r 31;[:1 !
i£j#k

then GGBP?" is called the generalized geometric Bonferroni mean (GGBM).

The GBM and GGBM just consider the whole correlationship between the cri-
terion a; and all criterion and cannot reflect the interrelationship between the indi-
vidual criterion a; and other criteria a; which is the main advantage of the GBM.
To deal with these issues, in the following, we propose the optimized weighted
versions of GBM and its generalized form, that is, the optimized weighted GBM
(OWGBM) and the generalized optimized weighted GBM (GOWGBM). Based
on the GBM, we define the following.

Definition 2.4 Let p,q > 0 and a;(i = 1,2, ..., n) bea collection of nonnegative
numbers. w = (wy, wy, . .. ,w,)T be the weight vector a; (i = 1,2,...,n), where
w; indicates the importance degree of a;, satisfying w; > 0 and >.7" ; w; = 1.

If

1 L e
OWGB?(ay, as, . . . yap) = —— <Pa§”i +qa1_wi> ’ 5
(a1, a ) voq 1L ; (5)
i#]

then OWGB? is called the optimized weighted geometric Bonferroni mean
(OWGBM).

Definition 2.5 Let p,q,7 >0.and a; (i = 1,2,...,n) be.acollection of nonneg-
ative numbers. w = (wy, ws, .., w,)t-be the weightivector a; (i = 1,2,...,n),
where w; indicates the importance degree of a;, satistying w; > 0 and >-7' | w; = 1.
If

GOWGB" " (aq, as, . ..,ap) = ————— al +qa; " 4ra, 7], (6
Lo, 2 ) p+q+m,j,1;[:1 (p 1 ‘ ©)
i#£j#k

then GOWGB??" is called the generalized optimized weighted geometric Bonfer-
roni mean (GOWGBM).



Furthermore, we can transform the OWGBM and GOWGBM into the inter-
relationship between the OWGBM and GOWGBM forms as follows:

OWGB"(ay, as, . .., ay,) pa;t + qal z , 7
(@00, v) = | Tt + 1] 1)

1731

GOWGBp’q’T(al, s, ..., ap)

Wk

Hp +an1 wl+ H ml R (8)

p—l—q~|—r =1

7# k#l#]

wi

According to Egs. (7) and (8), we see that the terms [} qa;_i"” and []7 k=1
wy w, J#i k#j#i
1—w;— w

qa]1 "t ra; , respectively,-is the weighted power geometric satisfaction

of all criteria except a;, which represents the interrelationship between the in-

dividual criterion a; and other criteria a; (j # i), and Y == = 1 and
5 y
Y1 i = 1. If we, respegtively, denote the above terms as qu; and
kit i i

qu; + rv;, then

1 n
OWGB?(ay,as,...,a,) = —— | | (pa;” + qu;), 9
(11,00, ) = = ) )

1 n
GOWGB??" (ay; a9, mvgy) = —————— a4 qu; +7Tv;). 10
(@0, S =TT 7). (10



3  Intuitionistic fuzzy GBMs based on OWGBM and GOWGBM

The Intuitionistic fuzzy sets (IFS) [1, 2] A = {(z, pa(z),va(z))|xr € X} on the
set X with the condition that pa(z), va(x) > 0 and 0 < pa(z) + va(zr) < 1is
a useful tool to express the fuzziness and uncertainty, because that it contains
three parts: the membership function p4(z), the non-membership function v4(z)
and the hesitant function ms(x) = 1 — pa(x) — va(x), which can reflect the de-
cision makers’ preference more objectively. It is noted that the hesitant function
ma(x) is determined by the membership function p4(z) and the non-membership
function v(x), therefore, we only consider pa(z) and va(x) in this paper. If
the aggregation information in OWGBM and GOWGBM are replaced by intu-
itionistic fuzzy numbers (IFNs), which is the basic element of IFS and denoted
by & = (fta,Va), Where pig, Vo > 0, po + Vo < 1, then we introduce two new
aggregation operators in this section. Before doing this, we first introduce some
basic operational laws for IFNs.:

Definition 3.1 Let a; = (o, v;) (i = 1,2) and o = (pq, v,). be three TFNs;
then we have

(1) a; @ ap = (f‘m HiHay 7 Nauuaza’/myaz)-

(2) a1 ® g = (fta{ g, Vay + Vab — VayVay)-

(3) Ada = (1= (1= o), 12), A > 0.

(4) o = (uz, 1 = (1 =a)Y), A 2 0.

Moreover, the relations of these operational laws are given as:

To Rank any two IFNs «; = (fta,,Va,) (1 = 1,2), Xu and Yager [26] gave a
straightforward method:



Definition 3.2 Let s,, = pa, — Va, (i = 1,2) be the scores of a; (i = 1,2)
respectively, and ha, = fia, + Vo, (1 = 1,2) be the accuracy degrees of «i; (i = 1,2)
respectively, then
o If s,, > s,,, then ay is larger than as, denoted by a3 > aw;
o If s,, = 54,, then
1) if hy, = ha,, then o and s represent the same information, i.e.,
Loy = May a0d Vo, = V4, denoted by ag = ay;

2) if hy, < hq,, then a4 is smaller than as, denoted by a; < ap.

To aggregate the intuitionistic fuzzy correlated information, based on the
OWGBM and GOWGBM, respectively, we develop two intuitionistic fuzzy GBM

operators:

Definition 3.3 Let o = (fta;, Va,) (1 = 1,2,...,n) be a collection of IFNs and
w = (wy, Wy, ..., wy,)T be the weight vector a; (i = 1;2...,n), where w; indicates
the importance degree of ay; satisfying w; > 0 and »1' | w; = 1.

For p,q > 0, if

1 wi 1105%
IFOWGB (a1, ag; .. ., a) = R ®7;;=jl <p% D qq; ) ; (11)

then IFOWGB" is called the intuitionistic fuzzy optimized weighted geometric
Bonferroni mean (IFOWGBM).

Based on the operational laws of IFNs in Definition 3.1, we can derive the

following theorem:

Theorem 3.4 Let p,q > 0, @y-= (fla,, Va,) (@ = 1,2,.,n) be a collection of
IFNs and w = (wy,wy, ..., w,)T be the weight vector a; (i = 1,2,...,n) such
that w; > 0 and 7' ; w; = 1. Then the aggregated value by using the IFOWGBM

is also an IFN, and

IFOWGB?(ay, ag, . . ., cvy)



1

n N v
=l1-11-1] (1—(1—u2”ii)”(1—uéjwi)q> :
i,j=1

i#£]
n ws pta
1= T (1= 0= (= wa)"P (1 = (=) =0)7)
(12)
Proof By the operational laws (1), (3) and (4) described in Definition 3.1, we
have
pal = (1= (L= 2, (1= (1= v, ) ))

0] = (1= (1= g1, (1= (1 =, 5)1) (13
and then
pag’t ® q&;_ﬁ

w.; w;

_ (1 Y AL Ty L (L= (1 YL = — D)),

(10 < vy =k >>>

W

_ (1 1 P (1= (1 S (= (1 >*>)

(14)

Let Bij = (Nﬁijv V,Bij)
Y
= poy" B qa; "

= (1= (= )P = il (U= (1= v 21— (1= 1)) 00)1),
then

wj
[FOWGB" (v, g, . ..y 00) = —— R (pa;t”i ® qa;‘wi>

= —— ®%=1 By (15)



Since

®?7_j:_1 62] - H /’Lﬁij7 1- H (1 - Vﬂij) ) (16)
i#] i,q%:ll i,;:}
1#£] Eav)

w;
J

1—w;

which has been proven in [26], then we replace Sy, ug,, and vg,; by pa” © qa; ™™,
J

1 - (1 - Mzuf)p(l - M‘;J wz) and (1 - (1 - Vai)wi)p(l - (1 — Vq; )17%) in Eq (16)7
respectively:

wj
®1J 15@] = (1_(1_szil)p(1_ﬂéj wz)Q) )
i#] i,j=1

=

- (1 (1= (L— ) (1 — (1= 1, >1w54>q) a7

i,j=1
i#£]

and then by Eq. (17) and the operational law (3), it yields

IFOWGBp’q<C¥1, o, ., Oén)

1 w N -
7@1]1 pall@qaj ¢

p+4q i#j
n B\
—|\' <1_ H (1_(1_:ug;)p(1_lua] wl)q>> )
_1
n Wwj p+q
<1_ H (1—(1—(1_Vai)wi)p(1-(1—Vai)m)q)> )
(18)
i.e.,Eq (12) holds. In addition, since
_1
n w; pta
o< 1-|1- 1] (1—(1—%?)’)(1—#%%)6’) <1 (19)
i,j=1
i#i



and

n w;

o< [1=TI (1-0-=v) P 0=w)™p) | <1 @)

then we have

i#j
1
n w pt+q
H{1= T (1 0= =)™ = (1= v =5))
_1
n w; p+q
<11 0T (1- -l )
l
n Wy m
+ VAT (1= 0 - epa - u )
Z;;J;,g:'l
1 (21)

which completes the proof of Theorem 1.

In what follows, we investigate some desirable properties of [IFOWGBM:
(1) (Idempotency) If alla; (1 = 1,2,...,n) are eqaul,i.e, a; = a = (ta, Vo),

for all 7, then

IFOWGBP(ay, o, . . . , ) = IFOWGBPY(ct; a, .. . , @)

1 &1 (pa @ lwij)
= —— ®%=1 (pa™ ® gaT v
p+q g b 1
1 5
= — ?: Wi n: Oél_wi
(L) @ (@ (@0 ) )
1
= —(pa®qa) = a. (22)
P+q

10



(2) (Commutativity) Let a; =
IFNs. Then

[FOWGB”?(ay, ag, . .., o)
where (dy, ds, ...

Proof Since (a1, ds,. ..

IFOWGBP’Q(O{l, Qg, ...

) =

(fa;sVa;) (1 =1,2,....n

,0lp) is any permutation of (aq, o, .. .

) be a collection of

= IFOWGBp’q(dl, Qo ... ,dn), (23)
; Q).
, (i) 1s any permutation of (aq, ag, ..., ay), then
1 ® w; @ lw{u
o i a 7 O[ 7
p+q ZJ¢J1 P q
Lo ( o 1)
7, az v [0 )
p + q 137311 p 49
= IF()VVGBp’q(0217 Qg, ... 7O[n) (24)
7”) and §; = (Mﬁw’/ﬁi)

(3) (Monotonicity) Let o= (fta;, V0,) (i = 1,2, .
n) be two collections of IFNs. If p1,, < pg and-v,, > vg, for all i,

(1=1,2,...,
then

IFOWGBp’q(Oél, Qoy. ..

) < IFOWGBP(8,, B3, ...

)

 Bn)- (25)

Proof Since p,, < pg, and vy, > v, for allé, then

II (1—(1 u&”:)p(l—uéjwl )
i,7=1

n s
- H (1 — (1 = pia)" (1= fra; ““)q)

I

W |

(=0 mra= ). oo

n

i,j=1
i)

o il
- p+q

1

W p+q

PEP(L— L >q) (27)

11



Similarly, we obtain

177 :.1
i#]

(1 - ﬁ (1 — (1= (1= wg,)")P(1 — (1 — Vaj)ljwi)q>) P

ij=1
i#]

>(1ﬁ(1<1<1uﬁi>wl>p<1<1ugj>1wfw>q)> @)

Let @ = IFOWGB??(ay, ag, ..., ay) and = IFOWGB(f4, B, . .., B,), and
let s, and sg be the scores of @ and 3, repectively. By Eqgs. (27) and (28), and
Definition 3.2, we have s, < sg and thus it clear that Eq. (25) holds.

(4) (Boundedness) Let a; = (a,;,Vs,) (1 = 1,2,...,n) be a collection of
IFNs, and let o~ = (min;{u,, }, max;{vy,}) and o™ = (max;{uq, }, min;{v,,}),
then

o~ <IFOWGBP(ay, qs,. .., o) < ot (29)

which can be obtained easily by the monotonicity:
If the valued of the parameters p and ¢ change in the [IFOWGBM, then some
special cases can bo obtained as follows:

Case 1. If ¢ — 0, then by Eq. (12), we have

1 _ =
IFOWGBP? (a0, ... o) = —— Q%o | pal @ qaj1 L
p+q i

1 n W,
2 ]_9 ®; 3 {pa™)

1

_ (1-(1—12[(1—(1—,,631')?))?,

i=1

(1 _ ﬁ (1—(1—(1- vai)“”)p)> )

i=1

= IFOWGB”®(ay, ay, . .., o) (30)

12



which we call the generalized intuitionistic fuzzy weighted geometric mean

(GIFWGM).
Case 2. If p=2 and ¢ — 0, then by Eq. (12) is transformed as:

®iz1 (2057)

1

_ (1— (1—i212[1(1—(1—ﬂéii)2)>2 ,
T =00 my)) (31)
( )

=1

1
IFOWGB* (ay, g, ... an) = 5

which we call the intuitionistic fuzzy weighted square geometric mean (IFWSGM).
Case 3. If p=1 and ¢ — 0, then by Eq. (12) reduces to intuitionistic fuzzy
weighted geometric mean (IFWGM) [26]:

IFOWGBLO(OQ? Qg, . ,Oén) x ®?=1 (Oé’qujl)

. (13 o, (1 ~ yai)wZ)) 32

i=1

Case 4. If p =g =1, then by Eq. (12) reduces to the following:

1,1 1 n w; %
IFOWGB™ (O{l,OéQ,...,Oén) = §®i:1 OZZZ@(X] ¥

_ (1 i (1 > Inl (1 - _“Zii)(l—uaj%)>)5 7

=1

(1 11 (1 (T - A T yaj)%))f) .

i=1
(33)
which we call the intuitionistic fuzzy interrelated weighted square geometric mean

(IFTWSGM).
The IFOWGBM operator, however, can only deal with the situation that there

are correlations between any two aggregated arguments, but not the situation

13



that there exist connections among any three aggregated arguments. To solve

this issue, and motivated by Definition 2.5, we define the following:

Definition 3.5 Let o; = (ua,,vs;) (1 = 1,2,...,n) be a collection of IFNs and
w = (wy,ws, ..., w,)" be the weight vector a; (i = 1,2...,n), where w; indicates
the importance degree of «;, satisfying w; > 0 and > ; w; = 1.

For p,q,r > 0, if
GIFOWGB?*" (ay, ag, . .., ay)

]_ . 1?7] 175111”_
= ——— Q% (pafi ®qa; " Drag, 7|, 34
p_+>q_+_r Qgiif#i <p 7 EBq J S k ) ( )

then GIFOWGBP4" is called the generalized intuitionistic fuzzy optimized weig
hted geometric Bonferroni mean (GIFOWGBM).

Similar to Theorem 3.4, we can derive the following theorem:

Theorem 3.6 Let p,q,r > 0, &; = (o, Va,) (i = 1,2,..:,n) be a collection of
[FNs and w = (wy, ws, . .+, w, )T be the weight vector a; (i =1,2,...,n) such that
w; > 0 and Y1 ; w; = 1. Then the aggregated value by using the: GIFOWGBM
is also an IFN, and

GIFOWGBP*" (v, agy - . ., Ol

1

W

n J 7$%Lw. y. pratr
- 1_<1— I1 <1—(l—uffj)p(l—ué{w")q(l—u;k’ J))) )

i,5,k=1
i# ik

(1‘ Il (1 G )"y (1 - (1 — v

i,5,k=1
1
Wi ptq+r
X(1= (1= )" V)) ) | (35)

i#i#k
Proof By the operational laws (1), (3) and (4) described in Definition 3.1, we
have

pa;w = (1 - (1 - /L}fj)pa (1 - (1 o Vai)m)p) )

14



w 5 w.;

—w; 1—w, —J
QOZ; t = <1 - (1 - :u‘ij Z) a(l - (1 - Vocj)liwi )q)
Wk Wk wy,

rakl:—wl w (1 . (1 . Iuolé;wl wj ) (1 . (1 . yak)lwle)r) (36)

w s

and then

pat @ qa " ®roy,

Wi
W

= (1= =y = B (1= (= )" P (= (1= ) 0))

wk*w‘ T T r
@(1—<1—uéx L= (1= )T

= (1 Tl
(1= (1= wa)") (1= (1= 001 = (1= w05 ). (30)

Let ﬁijk (:U'ﬂijkv Vﬁijk)
j 1s Ut” =
[ = ]

= pa” @qa Y BTy

wy Wi

— (1= (- P =70 — o ),
(1~ (U=l (= v ) T = (1 - )T 7)),

then we have

GIFOWGBp’q’T<C¥1, a9, ..., Oén)

1 — e
=\ QUM <a ® qo; "B ra, ])
pratr. e’ 4 5

1
= — S SAohi 8 38
PEIPERT L s Big- (38)

Since
n n
®7z‘l_,j,l;:1 51']‘]@ = H Nﬁijm H Vﬁuk
i#j#k i,j,k=1 5.k
{55 i#j
_ . Wi \P 1“’17'% q 1_11“? iy
= | II (1= =pg)" (1= pa, ) (1 = pra. )" ]
ij,k=1
i#j#k

15



then by Eq. (39) and the operational law (3), it yields

GIFOWGBP?*" (aq, g, . .., uy)

1 =i e,
= — ®7il,j,k:1 YD QOé P T’Oék v
pHq+r  izizk

n i — . patr
~ (1= (1= 10 a-wra—E o —um o))

i,5,k=1
i#i#k

(1_ ﬁ (1—(1—(1—%1.)““)”(1—(1—1/%)%)(1

i,7,k=1
ik

)(1 (1 — 1o )55 >’”)> ) SNCY)

i.e, Eq. (35) holds. In addition, sinee

n i Pk ptatr
0<1~ (1 — H (1 — (1_Mzi)p(1_uéjwl) (1_113% i J)r)> <1 (41)
[
and
< IT (1 (= (F)™)P (1 = (1= v,) =5 5y
Ly

1

Wi ptaq+r
X (1= (1= vg,) " % Y)) <1, (42)

then we have
1
- w — Ty | PO
1= (1= 0T (- 0= -l - )

i,4,k=1
i#jEk
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n y 1wi : wwlliw , p+q+r
ST (1= T (1= (= p) (= pa, )L = ™))
[
1
n 1wi} - u‘ik . Pratr
#(1= TL (- 0= -l - 7))
i
—1 (43)

which completes the proof of Theorem 3.6.

Similar to properties of IFOWGBM, we obtain desirable properties of GI-
FOWGBM as follows:

(1) (Idempotency) Ifall a; (1 =1,2,...,n) are eqaul, i.e, a; = a = (la, Vo),
for allz, then

GIFOWGBP " (a1, s, . . ., @) = GIFOWGB"?" (a, v, . .., o0) = v (44)

(2) (Commutativity) Let @; = (fa,;, Vo) (2 = 1,2,...,n) be a collection of
IFNs. Then

GIFOWGBP,Q,T(QI, Q9. .. ,(In) — Gt:[FC)VVGer’q’r(0217 Qo ... ,dn), (45)

where (ay, da, ..., d,) is‘any permutation of (ay, ag, . .5 )

(3) (Monotonicity) Let a;=(flas Va,) (0 = 1270..5n) and §; = (ugs,, vg,)
(¢ =1,2,...,n) be two collections of IFNs. If f1,, < pg, and v,, > v, for all i,
then

GIFOWGBp’q’T(OZh ag, ..., Oén) < GIFOWGBp’q’T<ﬂ1, 62, R 7671)- (46)

(4) (Boundedness) Let a; = (a,;,vs,) (i = 1,2,...,n) be a collection of
IFNs, and let o~ = (min;{uq, }, max;{vy,}) and o™ = (max;{p,, }, min{v,, }),

17



then

a~ < GIFOWGBP" (o, i, . . .,
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4  Decision making based on intuitionistic fuzzy information

In this section, we apply the [IFOWGBM or the GIIFOWGBM to multi-criteria
decision making under intuitionistic fuzzy environment, which involves the fol-

lowing steps.

Step 1. For a multi-criteria decision making problem, let X = {z1,zs,..., 2}
be a set of m alternatives, and Y = {y1, 42, ...,yn} be a set of n criteria, whose
weight vector is w = (wy,wy, ..., w,)", satisfying w; > 0 (j = 1,2,...,n) and

i, w; = 1, where w; denotes the importance degree of criterion y;. The perfor-
mance of the alternative x; with respect to the criterion y; is measured by an IFN
a;; = (pij, vij), where p;; indicates the degree that the alternative z; satisfies the
criterion y; and v;; indicates the degree that the alternative z; does not satisfies
the criterion y;, such that 0 < p;;,v;; < 1 and p;; + v < 1o All oy = (paj, vij)
(1=1,2,...,m; j=1,2,...,n) are contained in an intuitionistic fuzzy decision

matrix A = (a;;)mxn (see Table1).

Table 1: Intuitionistic fuzzy decision matrix A

n Y2 S Yn
Z1 (un, V11) (u12, V12) e (,Uln7 V1n)
Hp) (,U217 7/21) (,U227 1/22) R (,uzm V2n>
Tm (,umla l/ml) (/ng, Vm2) <. (/erw an)

If all the criteria y; (j = 1,2, .+, n).are of the same type, then the performance
values do not need normalization. Whereas there are, generally, benefit criteria
(the bigger the performance values the better) and cost criteria (the smaller the
performance values the better) in multi-criteria decision making, in such case,
we may transform the performances values of the cost type into the performance

values of benefit type. Then, A = (a;;)mxn can be transformed into the matrix
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B = (fij)mxn, where

Bij = (tij, fi3)
B { a;j, for benefit criterion y;;

B o i=1,2,....m;j=1,2,...,n,(48)
@;j, for cost criterion y;,

where @;; is the complement of «;; such that &;; = (v45, pij)-
Step 2. Utilize the IFOWGBM (in general, we can take p # 0 and ¢ # 0):

Bi = (ti, fi) = IFOWGB”(B1, Bia, - - -, Bin) (49)
or the GIFOWGBM (in general, we can take p # 0, ¢ # 0 and r # 0):
Bi = (i, fi) = GIFOWGB”*" (81, Bia, . . ., Bin) (50)

to aggregate all the performance value 3;; (j = 1,2,...,n) of the ith line and get

the overall performance values 3; corresponding to the alternatives x;.

Step 3. Utilize the method in Definition 3.2 to rank the overall performance
value 3; (i =1,2,...,m).

Step 4. Rank all the alternatives x; (1 = 1,2,...,m) in accordance with
Bi (i = 1,2,...,m) in descending.order, and-then, select the most desirable

alternative with the largest overall performance value.

Especially, if we do not consider the non-membership information in intuition-
istic fuzzy decision making, then the usual fuzzy decision making method can be
obtained as follows:

The performance of the alternative x; with respect to the criterion y; is mea-
sured by a usual fuzzy. number «;;, where 0 < a;; <-1, and all the values,
a; (1=1,2,...,m; j =1,2,..7,n), are contained in the fuzzy decision matrix
A = (ij)mxn. Then we can use the OWGBM or the GOWGBM to solve this

problem:

Step 1’. Transform the decision matrix A = (@4j)mxn into the normalized

decision matrix B = (f;j)mxn, where

i, for benefit criterion y;; . ‘
@j:{ * Yi 1=1,2,....m;3=1,2,...,n,

1 — o , for cost criterion y;,
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(51)

Step 2'. Aggregate all the performance values 3;; (j = 1,2,...,n) of the ithe
line, and get the overall performance values 3; corresponding to the alternative
x; by the OWGBM or the GOWGBM:

n w

1 ws =
ﬁi = OWGBZLq(ﬁilaﬁi% s 76271) = H (paz t+ qa] Z) D, q > 0 (52)

p+q ij=1
i#
or
Bi = GOWGBP*" (81, B2, . - -, Bin)
- 1 ﬁ (paw" + QQ% + mluikwj> p,q,r >0 (53)
pra+r e \U ¢ o
i#itk
Step 3'. Rank the overall performance values 3; (i = 1,2,...,m) and obtain
the priority of the alternatives x; (i = 1,2,...,m).

Next, we give an example to illustrate the proposed method:

Example 1. A city is planning to build a municipal library. " One of the
problems facing the city development commissioner is to determine| what kind
of air-conditioning systems should be installed.in the library (adapted from Ref.
[28]). The contractor offers five feasible alternatives x; (i = 1,2,3,4,5), which
might be adapted to the physical structure of the library. Suppose that three
criteria: (1) y;: economic (2) yo: functional (3) y3: operational, are taken into
consideration in the installation problem, the weight vector of the criteria y;
(i=1,2,3)isw = (0.3,0.5,0:2)7. Assume that the characteristics of the alterna-
tives z; (1 = 1,2, 3,4, 5) with respect to theeriteriay; (j = 1,2, 3) are represented
by IFNs a;; = (w5, vi5), and all oy (1 = 1,2,3,4,5;5 = 1,2,3) are contained in

the intuitionistic fuzzy decision matrix A = (c;)sx3 (see Table2).
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Table 2: Intuitionistic fuzzy decision matrix A

Y1 Y2 Y3
z1 | (0.3,0.4) (0.7,0.2) (0.5,0.3)
z2 | (0.5,0.2) (0.4,0.1) (0.7,0.1)
z3 | (0.4,0.5) (0.7,0.2) (0.4,0.4)
z4 | (0.2,0.6) (0.8,0.1) (0.8,0.2)
x5 | (0.9,0.1) (0.6,0.3) (0.2,0.5)

Step 1. Considering all criteria y; ( 2,3) are the benefit criteria, the

J=1
performance values of the alternatives x; (i = 1,2, 3,4,5) do not need normaliza-

tion.

Step 2. Utilize the IFOWGBM (let p = ¢ = 1) to aggregate all the per-
formance values «;; (7 = 1,2, 3) of the ith line, and get the overall performance

value «; corresponding to the alternative z; (i = 1,2,3,4,5):
a; = (0.4704,0.3063), s = (0.4612,0.1343), «g = (0.4771,0.3678)
ayq = (0.5897,0.2678), a5 = (0.5406,0.2999):
Step 3. Calculate the scores of all the alternatives:
S0, = 0.1642] s,, = 0.3269, 84, = 0.1092,
s, 70,3219, Sy =N0524 (8

Since Sa, > Say > Sas > Sap. > Sas, then the ranking-of the alternatives x;
(1=1,2,3,4,5) is:

Xo = Xy = Ty =Ty~ T3.

If we utilize the GIFOWGBM (let p = ¢ = r = 1), then by a; = GIFOWGB

111
(a1, o, ai3), We get

ay = (0.6215,0.1693), as = (0.6559,0.0465), a5 = (0.6182,0.2236),
ay = (0.7092,0.1216), a5 = (0.7881,0.1345).
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Then we calculate the scores of all the alternatives:

Say = 04522, sq, = 0.6095, sq, = 0.3945,
Sa; = 0.6686, sq, = 0.6536.

Since S, > Sas > Say > Sa; > Sag, then the ranking of the alternatives z;
(i=1,2,3,4,5) is:

Xy = Ty = To > L1 = T3.
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5  Conclusions

To further develop the GBM, in this paper, we have developed the optimized
weighted geometric Bonferroni mean (OWGBM) and generalized optimized weig
hted geometric Bonferroni mean (GOWGBM). Then, we developed the new
GBMs under the intuitionistic fuzzy environment, that is, the intuitionistic fuzzy
optimized weighted geometric Bonferroni means (IFOWGBM) and the gener-
alized intuitionistic fuzzy optimized weighted geometric Bonferroni means (GI-
FOWGBM). The new GBMs can reflect the preference and interrelationship of
the aggregated arguments and can satisfy the basic properties of the aggregation
techniques. Some desirable properties of the IFOWGBM and GIFOWGBM are
investigated. Based on the IFOWGBM and GIFOWGBM, we have proposed an
approach to multi-criteria decision making with intuitionistic fuzzy information,
and have also applied the proposed approach to the problem of determining what
kind of air-conditioning systems-should be installed in-the library. The merit of
the proposed approach is that it is more flexible than the classical ones because it
can provide the decision makers more choices as parameters are assigned different

values.
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