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한국산 전어(Konosirus punctatus)의 지역 집단 간 형태 및 유전 변이 

명 세 훈 

  

부경대학교 대학원 해양생물학과 

 

요    약 

 

전어는 경제성 어종으로 최근 어획량이 증가하고 있어 자원붕괴를 막기 위해서

는 전어 자원량을 꾸준히 모니터링 할 필요가 있다. 본 연구는 한국산 전어의 개체군 

구조를 파악하기 위해 우리나라 8개 지역에서 채집된 182개체의 전어에 대해 형태 및 

분자 분석을 실시하였다.  

전어 182개체에 대한 mtDNA Control region 영역 896bp에 의한 분자분석결과, 높

은 유전자형 다양도(0.9662-1.0000)와 낮은 염기다양도(0.0061-0.0434)를 나타냈다. 

Neighbor Joining tree 작성 결과 A집단과 B집단으로 나누어 졌다. A집단은 우리나라 전 

해역에 걸쳐 분포하며, 동해로 갈수록 개체수가 현저히 감소하였다. B집단은 주로 동

해와 남해동부에 분포하며, 남해서부와 서해쪽은 분포하지 않았다. 두 집단 간 유전 

거리는 5.5-6.6%이고, pairwise FST 값은 0.856(P<0.0001)으로 매우 높은 분화정도를 나

타냈다.  

전어 173개체를 대상으로 5개의 계수형질 및 17개의 계측형질을 이용한 형태분

석결과, 계수형질에서는 집단간 등지느러미수, 뒷지느러미수, 척추골수, 인판수에서 유

의한 차이를 나타냈다. 주성분분석결과, 8개의 지역이 겹쳐져 나타났으며, 정준판별분

석 결과, 제 1 판별함수 (head length)에서는 [주문진, 후포, 부산, 고성]과 [부산, 여수, 



 
 

강진, 홍도, 군산]으로 크게 나누어졌으며, 제 2 판별함수 (standard length)로는 여수가 

나머지 지역과 구분되는 경향을 보였다. 또한, 유전결과에 의한 리니지 별로 계수 및 

계측형질을 비교한 결과, 뒷지느러미와 인판수에서 유의한 차이를 보였고, 판별분석에

서 두 리니지는 계측형질에서 90.2% 구분되었다. 

형태 및 분자분석결과를 종합하면, 우리나라 전어는 서해와 남해서부에 분포하

는 집단과 동해와 남해동부에 분포하는 2개의 집단으로 구분해서 관리할 필요가 있다. 
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I. Introduction 

 

The gizzard shad Konosirus punctatus in the family Clupeidae (Clupeiformes) 

is distributed on all coasts of Korea, China, Japan, and Taiwan. Only one species 

in the genus Konosirus is recognized in Korea, whereas two species are known in 

Japan (Kim et al., 2007a). The gizzard shad is one of the most commercially 

important fish species, and inhabits littoral and brackish areas in Korea (Choi et 

al., 2002). It spawns near river mouths from April to August, and the larvae 

become adults within two years and live for five years (Kim et al., 2007a; Lee et 

al, 2010). The gizzard shad catches has decreased since 2007, i.e., 9,873 tonnes in 

2007 but 5,767 tonnes in 2011 (NFRDI, 2013). To prevent the collapse of the 

population, a monitoring and restoration program is required. For this reason, 

many ecological studies of gizzard shad have been conducted, e.g., examining the 

eggs and larval development (Kim et al., 2007a), the food items of postlarvae 

(Park et al., 1996), spawning season and grounds (Matsushita and Nose, 1974), 

reproduction (Takita, 1978a; Takita, 1978b), and age and growth (Oh et al., 2000). 

However, the population structure of the gizzard shad has not been investigated. 

Studies of the degrees of genetic exchange among fish species or populations 

inhabiting each coastal area allow the best management of the fisheries resources 

in each coastal area (Kim, 2009). 

The aim of this population genetic study was to collect basic data for the 

conservation and management of fish stocks. A population genetic analysis is an 

appropriate way to evaluate genetic diversity (Crandall et al., 1999), and the most 

effective method involves the comparison of mitochondrial DNA (mtDNA) 
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sequences (Buonnacorsi et al., 2001). The mitochondrial control region (CR) is 

primarily used for the analysis of population genetic variation, because the CR is 

composed of hypervariable sites and the mutation rate is very high (Aquadro and 

Greenberg, 1983; Nesb et al., 1998). 

Because gizzard shad lives around or near coastal or brackish waters, we 

assumed that the populations of the gizzard shad might differ according to their 

habitats. For instance, the genetic structures of the Korean and Japanese 

populations of Salanx ariakensis, which prefers to live in brackish areas such as 

river mouths, were shown to differ using mtDNA cytochrome b sequences (Kim et 

al., 2006a) and amplified fragment-length polymorphism markers (Kim et al., 

2007b). Lateolabrax japonicus, which prefers to live near coastal areas, also 

shows genetic isolation with distance (Liu et al., 2006a). Therefore, our 

hypothesis in this study was that the Korean gizzard shad has at least two or three 

distinct populations, according to area (or habitat). 

Meristic and morphometric characters have most often been used for population 

discrimination, although recently molecular characters have also been utilized 

(Ihssen et al., 1981; Melvin et al., 1992; Hurlbut and Clay, 1998; Murta, 2000; 

Turan, 2004; Kim et al., 2008). The morphological studies were conducted using 

the principal component analysis (PCA) and canonical discriminant analysis 

(CDA) (Kai and Nakabo, 2002; Kim et al., 2006a). 

The present study aimed to clarify the population structure of K. punctatus from 

Korea, based on partial mtDNA CR gene sequences and morphological traits. 
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II. Materials and methods 

 

1. Sampling 

 

Samples of the gizzard shad were collected from eight localities along the 

Korean coasts between 2008 and 2013 (Table 1, Fig. 1): Jumunjin (Ju, n = 26) and 

Hupo (Hu, n = 16) in the East Sea; Busan (Bu, n = 24), Goseong (Go, n = 10), 

Yeosu (Yeo, n = 24) and Gangjin (Gang, n = 36) in the Korean Strait; Hongdo 

(Hong, n = 15) and Gunsan (Gun, n = 31) in the Yellow Sea. Samples of muscle 

tissue were preserved in 95% ethanol and stored frozen at –20 °C until DNA 

extraction; specimens of gizzard shad were preserved in 5% formalin. The 

specimens used in this study have been deposited at Pukyong National University.



Table 1. Collection localities and sample sizes of Konosirus punctatus 
 

Locality n Time Locality code 

Jumunjin 26 May 2013 Ju 

Hupo 16 January 2011 Hu 

Busan 24 August, September 2009 Bu 

Goseong 10 September, October 2008 Go 

Yeosu 24 August 2013 Yeo 

Gangjin 36 May, July 2009 Gang 

Hongdo 15 April 2013 Hong 

Gunsan 31 April 2013 Gun 

  
Sample size (n) 
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Fig. 1. Map showing the sampling area of Konosirus punctatus from Korea. 
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2. DNA extraction, PCR, and sequencing 

 

Genomic DNA was extracted from the muscle tissues of fish using 10% Chelex 

100 Resin (Bio-Rad, Hercules, CA). An 896-bp fragment of the mtDNA CR was 

amplified with Konosirus-specific primers: Kono-F (5¢-ATCCTCCCTGAGGCCC 

AGAAAAG-3¢) and Kono-R (5¢-GGGGGTTTGTCGCGCGAAAACC-3¢). This 

primer set was newly designed worked well in K. punctatus. PCR was performed 

in a 30 ml reaction containing 3 ml of 10 ´ PCR buffer, 1ml of each primer, 2.4 ml 

of dNTPs, 1 ml of genomic DNA, 0.1 ml of Ex-Taq DNA polymerase, and 22.5 ml 

of sterile distilled H2O. The PCR proceeded under the following conditions: initial 

denaturation at 94 °C for 4 min, 35 cycles of denaturation at 94 °C for 30 s, 

annealing at 59 °C for 30 s, and extension at 72 °C for 5 min. The PCR products 

were purified with ExoSAP-IT (United States Biochemical Corporation, USA). 

The PCR products were sequenced with the ABI PRISM BigDye Terminator v3.1 

Ready Reaction Cycle Sequencing Kit (Applied Biosystems Inc., USA) on an ABI 

3730xl DNA Analyzer (Applied Biosystems Inc.). 

 

3. Molecular analysis 

 

The mtDNA CR sequences were checked and aligned with ClustalW (Thompson 

et al., 1994) in BioEdit ver. 7 (Hall, 1999). A neighbor-joining (NJ) tree was 

constructed using the Kimura two-parameter model (Kimura, 1980), and 

confidence was assessed with 1000 bootstrap replications. The NJ tree shows the 
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genetic relationships among 182 gizzard shad and one outgroup, Clupanodon 

thrissa (JX075099), downloaded from the NCBI GenBank database. 

The haplotype, polymorphic sites, transitions, and transversions were estimated 

for each specimen using Arlequin ver. 3.5.1.2 (Excoffier et al., 2005). Nucleotide 

diversity (p; Nei and Li, 1979) and haplotype diversity (h; Nei, 1987) were 

estimated. To estimate the levels of genetic divergence among the populations of 

the gizzard shad, the divergence measure FST was calculated using analysis of 

molecular variance (AMOVA; Excoffier at al., 1992). The significance of FST was 

determined with 1000 nonparametric data permutations, using Arlequin ver. 

3.5.1.2 (Rice, 1989). Evidence of population expansion was tested using Fu’s Fs 

(Fu, 1997) and neutrality tests for equilibria in mutational drift were tested with 

Tajima’s D (Tajima, 1989) in Arlequin ver. 3.5.1.2. The historical demography of 

the gizzard shad populations was estimated from the mismatch distribution 

(Rogers and Harpending, 1992). Past demographic parameters were estimated, 

including t (time since expansion, expressed in units of mutational time) (Li, 1997) 

and q0 and q1 (q before and after population growth) (Rogers and Harpending, 

1992). The values for t were transformed to estimate the real time since expansion 

with the equation t = 2ut (Rogers and Harpending, 1992), where u is the mutation 

rate for the whole sequence under study and t is the time since expansion. A 

molecular clock for the CR has not been determined with precision for marine 

fishes: for instance, East African cichlids, 2.2%–4.5% divergence per million 

years (Sato et al., 2003), Australian rainbow fish, 3% divergence per million years 

(Zhu et al., 1994), snooks, 3.6% divergence per million years (Donaldson and 

Wilson, 1999), anchovies, 5%–20% divergence per million years (Liu et al., 
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2006b), and sand lance, 8% divergence per million years (Han et al., 2012). The 

gizzard shad has a short generation time and small body size, like the sand lance. 

Therefore, in the present study, a sequence divergence rate of 4%–8% divergence 

per million years was used to estimate its evolutionary history. 

 

4. Morphological analysis 

 

The morphological analysis was based on 173 specimens of K. punctatus. A total 

of 17 morphometric and 5 meristic characteristics were used: morphometric - 

standard length, head length, snout length, orbit length, interorbital width, 

postorbital length, upper jaw length, body depth, body width, caudal peduncle 

depth, pectoral-fin length, pelvic-fin length, dorsal-fin base length, preanal length, 

predorsal length, prepelvic length, anal-fin base length; meristic - dorsal-fin rays, 

anal-fin rays, pelvic-fin rays, vertebrae, and scutes. 17 morphometric were 

measurements followed Nakabo (2002) by vernier calipers after fixation in 99% 

ethanol. Five meristic were counted by radiograph (SOFTEX HA-100, Japan). All 

measurements were taken to the nearest millimeter, always by the same person. 

Five meristic characters were statistically analyzed by the Kruskal-Wallis 

nonparametic test (Zar, 1999). A principal components analysis (PCA) and 

canonical discriminant analysis (CDA) were conducted to identify shape-related 

differences among eight localities populations of Konosirus punctatus. All the 

statistical analyses were performed using SPSS version 12.01. In addition, the 

Kruskal-Wallis test and canonical discriminant analysis (CDA) depending on the 

result of molecular analysis was performed. 
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III. Results 

 

1. Genetic variation 

 

The analysis of 896 bp of the mtDNA CR in 182 gizzard shad individuals from 

eight localities identified 124 haplotypes. A total of 134 polymorphic sites were 

detected, with 88 transitions, 20 transversions, and 48 insertions/deletions. For the 

overall sample, the haplotype diversity (h) and nucleotide diversity (p) were 

0.9662–1.0000 and 0.0061–0.0434, respectively (Table 2). The Goseong locality 

showed the maximum haplotype diversity (1.0000). In contrast, the haplotype 

diversity was lowest at the Jumunjin locality (0.9662). The Gangjin, Hongdo, and 

Gunsan localities showed the lowest nucleotide diversities (0.0065, 0.0061, and 

0.0065, respectively). 
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Table 2. Genetic variability based on the mitochondrial DNA control region 

of Konosirus punctatus 

Sample size (n), number of haplotypes (N), haplotype diversity (h), nucleotide 

diversity (π) 

Ju, Jumunjin; Hu, Hupo; Bu, Busan; Go, Goseong; Yeo, Yeosu; Gang, Gangjin; 

Hong, Hongdo; Gun, Gunsan 

  

Locality n N h π 

Ju 26 18 0.9662 ± 0.0208 0.0434 ± 0.0217 

Hu 16 13 0.9750 ± 0.0295 0.0353 ± 0.0189 

Bu 24 21 0.9891 ± 0.0152 0.0380 ± 0.0192 

Go 10 10 1.0000 ± 0.0447 0.0390 ± 0.0210 

Yeo 24 23 0.9964 ± 0.0133 0.0122 ± 0.0064 

Gang 36 32 0.9921 ± 0.0092 0.0065 ± 0.0035 

Hong 15 13 0.9810 ± 0.0308 0.0061 ± 0.0035 

Gun 31 27 0.9892 ± 0.0119 0.0065 ± 0.0036 
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2. Population structure 

 

An NJ phylogenetic tree constructed from the complete dataset for the 124 

haplotypes of the gizzard shad identified two distinct lineages (designated A and B; 

Fig. 2). The genetic distance between lineages A and B was 5.5%–6.6%, and the 

within-lineage differences for A and B were 0.0–1.1% and 0.0–2.0%, respectively. 

Lineage B was divided into two sublineages: sublineage b1 included fish from 

Jumunjin, Hupo, and Goseong; and sublineage b2 included fish from Jumunjin, 

Hupo, Busan, and Yeosu. The genetic distances between sublineage b1 and b2 

were 1.0%–2.0% and the within-sublineage distances were 0.0%–0.5% (Fig. 2). 

The Gangjin, Hongdo, and Gunsan localities contained only lineage A, but 

Jumunjin, Hupo, Busan, Goseong, and Yeosu contained both lineages A and B. 

Lineage A dominated the western localities (Yellow Sea and Western Korea 

Strait), but its frequency declined steadily from Yeosu (95.8%) to Jumunjin (19%) 

(Fig. 3). 

AMOVA showed strong structuring (FST = 0.856; P < 0.0001) between lineages A 

and B. The greatest differentiation index was observed between the individuals 

from Jumunjin and those from Gangjin (FST = 0.663; P < 0.0001), and the 

smallest was observed between the individuals of Yeosu and Hongdo (FST = 0.025; 

P = 0.045) (Table 3).



Table 3. Pairwise FST values (below the diagonal) and Pairwise FST P values (above the diagonal) for 

the mitochondrial DNA control region among eight populations of Konosirus punctatus 

 
Ju Hu Bu Go Yeo Gang Hong Gun 

Ju 
 

0.928 0.000 0.027 0.000 0.000 0.000 0.000 

Hu -0.041 
 

0.063 0.072 0.000 0.000 0.000 0.000 

Bu 0.167** 0.099 
 

0.748 0.000 0.000 0.009 0.000 

Go 0.163* 0.086 -0.043 
 

0.009 0.000 0.000 0.000 

Yeo 0.576** 0.542** 0.230** 0.234* 
 

0.396 0.045 0.153 

Gang 0.663** 0.651** 0.335** 0.378** 0.001 
 

0.045 0.081 

Hong 0.589** 0.559** 0.258* 0.279** 0.025* 0.047* 
 

0.595 

Gun 0.649** 0.634** 0.319** 0.363** 0.010 0.019 -0.007 
 

*P<0.05; ** P<0.001 

Ju, Jumunjin; Hu, Hupo; Bu, Busan; Go, Goseong; Yeo, Yeosu; Gang, Gangjin; Hong, Hongdo; Gun, 

Gunsan



 

Fig. 2. Neighbor-joining (NJ) tree showing the relationships between 124 

haplotypes of Konosirus punctatus and Clupanodon thrissa (outgroup). 

Numbers at branches indicate bootstrap probabilities in 1000 bootstrap 

replications. Bar indicates 0.02 of Kimura’s (1980) genetic distance. Shaded 

bars indicate proportional representation of individuals from each station 

group, as identified by the embedded key to the figure. 
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Fig. 3. Haplotype frequencies for Konosirus punctatus populations. The area 

of circle is proportional to sample size. 
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3. Demographic history 

 

The mismatch distribution of lineage A was unimodal in shape, and closely fitted 

the expected distribution under the sudden expansion model (Fig. 4). Fu’s Fs and 

Tajima’s D of lineage A agreed well with the mismatch analysis. Fu’s Fs was 

negative (–24.886) and highly significant (P = 0.00). Tajima’s D was also negative 

(–1.535) and statistically significant (P = 0.025) (Table 4). In contrast, the 

mismatch distribution of lineage B was bimodal in shape. Fu’s Fs (Fs = 2.39, P < 

0.821) and Tajima’s D (D = 1.882, P < 0.981) were not statistically significant. 

The observed values for the age expansion parameter (t) were 5.736 and 2.514 of 

the mutational time for lineages A and B, respectively. Based on the method of 

Rogers and Harpending (1992), the expansion time was calculated to be about 

89,000 years ago for lineage A. However, the expansion time for lineage B was 

not calculated because lineage B had two marked modes at five and 49 

substitutions (Fig. 4).



Table 4. Summary of molecular diversity for two lineages of Konosirus punctatus 

  n N h π 

Lineage 
 

A 134 103 0.992±0.003 0.007±0.004 

B 48 21 0.943±0.016 0.023±0.011 

Sample size (n), number of haplotypes (N), haplotype diversity (h), nucleotide diversity (π), Tajima’s D 

and Fu’s Fs, corresponding P value, and mismatch distribution parameter estimates for each lineage were 

indicated 

 

  Tajima's D Fu's Fs Mismatch distribution 

Lineage D P Fs P τ θ0 θ1 

A -1.535 0.025 -24.886 0.000 5.736 0.972 109.531 

B 1.882 0.981 2.39 0.821 2.514 6.692 18.756 
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Fig. 4. The observed pairwise differences (bars), and the expected mismatch 

distributions under the sudden expansion model (solid line) for two lineages 

of Konosirus punctatus. 
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4. Morphological analysis 

Meristic and morphometric characters of the eight localities populations of 

gizzard shad are shown in Table 5. Frequency distributions in meristic characters 

are shown in Table 6. Although each meristic characters overlapped in the 

frequency distributions, the Kruskal-Wallis test showed significant differences in 

the number of dorsal fin rays, anal fin rays, vertebrae, and scutes (P<0.05) (Table 

7). The mean number of anal fin ray was most differences between in the 

Jumunjin (22.4) and Gangjin (23.6) (Fig. 5). 

Principal components analysis (PCA) based on 17 morphometric characters 

indicates an eigenvalue of PC1 as 15.754, accounting for 92.67% of the total 

variation. The second and third components explained 1.81% and 1.18% 

respectively (Table 8). The Standard length (0.9919) and Body depth (0.2451) 

being largest in PC1 and PC2, respectively (Table 8). Plotting PC1 and PC2 

showed that eight localities populations overlapped each other (Fig. 6). 

In canonical discriminant analysis (CDA), seven discriminant functions were 

produced and the first CAN1 accounted for 58.9% and the CAN2 accounted for 

20.1% of the between group variability among populations (Table 9). The head 

length (1.273) and body width (1.749) being largest in CAN1 and CAN2, 

respectively (Table 9). Only 33 specimens were misclassified from among the 173 

specimens (19.1%). The lowest percentage of misclassification was obtained for 

the Yeosu (0%) and highest for the Gunsan (30%) (Table 10). This is divided into 

two groups according to CAN1 (Fig.7). One is polpulations of Jumunjin, Hupo, 

Busan, and Goseong, and the other includes Busan, Yeosu, Gangjin, Hongdo, and 

Gunsan. Busan population has both group and show same trend with genetic 
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analysis (Fig. 8). Yeosu was separated in other populations according to CAN2 

(Fig. 7). Figure 9 is a scatter diagram of the body width of gizzard shad showing 

the difference between Yeosu population and other 7 populations. The Yeosu 

population wider body differentiates it from others. To compare the body width 

between Yeosu and others, 67 specimens (Hupo, 1; Busan, 5; Goseong, 1; Yeosu, 

23; Gangjin, 12; Hongdo, 13; Gunsan, 12) are selected. Those 67 specimens reach 

a standard length of between 130mm and 160mm, the standard length of Yeosu 

population. As a result, most of the Yeosu population (20 specimens) is 

distinguished from other populations by wider body, except for two specimens of 

Gangjin (1) and Hupo (1) (Fig. 9). 

Molecular analysis of gizzard shad in Korea were formed two lineages. Meristic 

and morphometric characters of the two lineages are shown in Table 11. The 

Kruskal-Wallis test showed significant differences in the number of anal fin rays 

and scutes (P<0.05). The mean number of anal fin rays and scutes in the lineage B 

(23.5 and 34.3, respectively) were higher than lineage A (22.8 and 33.6, 

respectively). Result of canonical discriminant analysis (CDA), one canonical 

discriminant function was calculated and the eigenvalue was 1.235. The 

postorbital length (0.856) and head length (0.845) being largest in CAN1. Lineage 

B has a bigger postorbital length (about 17% SL) and head length (about 28% SL) 

than lineage A (about 16% SL and about 26% SL, respectively) (Fig. 10). 

Only 17 specimens were misclassified from among the 173 specimens (9.8%). 

The highest percentage of misclassification was obtained for the lineage A (12%) 

and lowest for the lineage B (2%) (Table 12).  
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Table 5. meristic and morphometric characters of eight localities of Konosirus punctatus 

  Jumunjin (Ju) Hupo (Hu) Busan (Bu) Goseong (Go) 

Number of specimens  25 14 23 9 

Standard length (mm) 169.6-226.7 (188.8) 108.5-221.4 (187.3) 101.6-180.1 (152.3) 154.7-196.4 (173.4) 

Counts 
    

Dorsal-fin rays 17-19 (18.1) 17-20 (18.6) 17-19 (18.2) 17-19 (18.0) 

Anal-fin rays  19-25 (22.4) 22-25 (23.1) 22-26 (23.4) 22-24 (22.7) 

Pelvic-fin rays 8 (8.0) 8 (8.0) 8 (8.0) 8 (8.0) 

Vertebrae 47-49 (48.1) 48-50 (48.8) 47-50 (48.2) 47-49 (48.1) 

Scutes 32-35 (33.6) 33-34 (33.8) 29-35 (33.6) 32-35 (33.7) 

In % of SL 
    

Head length  26.2-29.8 (28.4) 26.5-30.6 (28.4) 26.7-31.0 (28.3) 26.3-28.5 (27.4) 

Snout length 5.8-7.1 (6.5) 5.1-7.3 (6.6) 5.6-7.2 (6.3) 5.7-6.7 (6.2) 

Orbit length 4.1-6.1 (5.2) 4.7-6.5 (5.3) 5.0-6.9 (5.7) 5.1-5.6 (5.3) 

Interorbital width 6.0-7.3 (6.7) 5.9-7.1 (6.5) 5.9-8.2 (6.9) 6.2-7.1 (6.7) 

Postorbital length 16.1-18.5 (17.4) 16.2-18.5 (17.2) 15.7-19.5 (16.9) 15.8-17.1 (16.6) 

Upper jaw length 8.2-10.0 (9.1) 7.8-10.2 (9.0) 8.1-10.2 (9.0) 8.1-9.5 (8.7) 

Body depth  27.0-32.1 (29.6) 27.6-31.7 (29.3) 20.8-34.8 (31.2) 27.9-31.0 (29.7) 

Body width 10.6-14.2 (12.7) 6.8-15.4 (12.6) 8.6-12.5 (11.3) 11.8-13.9 (12.9) 

Caudal peduncle depth 8.2-9.8 (9.0) 7.6-9.0 (8.6) 8.4-10.8 (9.5) 8.3-9.3 (8.9) 

Pectoral-fin length 16.1-20.4 (18.6) 17.5-20.5 (18.7) 17.6-21.4 (19.3) 17.3-19.5 (18.3) 

Pelvic-fin length 9.6-11.8 (10.9) 9.6-11.8 (10.8) 10.2-12.2 (11.2) 9.4-10.7 (10.2) 

Dorsal-fin base length 15.8-18.2 (17.1) 16.4-18.9 (17.8) 17.1-19.6 (18.0) 15.9-18.5 (17.1) 

Preanal length 69.9-75.3 (72.1) 69.6-74.7 (72.0) 69.7-75.1 (71.7) 69.6-73.6 (71.5) 

Predorsal length 44.2-48.8 (46.1) 43.8-48.6 (46.3) 44.5-47.7 (46.0) 42.6-47.1 (45.0) 

Prepelvic length 47.0-52.4 (50.0) 47.3-51.7 (49.3) 46.6-50.8 (49.0) 47.9-51.3 (49.0) 

Anal-fin base length  17.1-19.9 (18.3) 16.9-20.6 (19.0) 17.6-21.9 (20.2) 17.9-20.9 (19.5) 
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  Yeosu (Yeo) Gangjin (Gang) Hongdo (Hong

Number of specimens  23 35 15 

Standard length (mm) 137.4-156.9 (146.1) 105.7-195.8 (141.4) 142.1-166.8 (153.1)

Counts 
   

Dorsal-fin rays 17-19 (17.9) 17-19 (17.8) 17-19 (18.4)

Anal-fin rays  20-24 (22.9) 20-27 (23.6) 23-27 (24.3)

Pelvic-fin rays 8 (8.0) 8 (8.0) 8 (8.0) 

Vertebrae 48-49 (48.3) 48-50 (48.6) 48-49 (48.3)

Scutes 33-36 (34.5) 33-37 (34.6) 33-35 (34.5)

In % of SL 
   

Head length  25.0-27.4 (26.1) 25.2-30.0 (27.2) 25.6-28.1 (27.0)

Snout length 5.6-6.6 (6.0) 5.5-7.0 (6.4) 5.8-6.7 (6.3)

Orbit length 5.2-5.9 (5.6) 4.6-6.8 (5.6) 5.0-5.7 (5.4)

Interorbital width 5.8-6.9 (6.5) 5.9-6.7 (6.4) 5.6-6.4 (6.1)

Postorbital length 13.9-16.3 (15.1) 14.6-17.2 (15.7) 14.9-16.6 (15.7)

Upper jaw length 8.0-9.5 (8.7) 6.8-10.0 (8.9) 8.2-9.3 (8.8)

Body depth  13.2-35.8 (31.4) 26.9-33.6 (29.8) 28.3-32.1 (30.0)

Body width 11.5-13.8 (12.7) 7.9-13.2 (10.1) 9.4-11.9 (10.6)

Caudal peduncle depth 8.6-10.3 (9.5) 8.4-10.1 (9.2) 8.1-9.6 (8.8)

Pectoral-fin length 17.9-21.2 (19.5) 17.5-21.5 (19.9) 18.0-20.6 (19.0)

Pelvic-fin length 9.3-11.6 (10.4) 9.0-12.6 (11.0) 10.0-11.6 (10.8)

Dorsal-fin base length 16.8-19.6 (18.0) 16.7-18.9 (17.7) 16.5-19.6 (18.1)

Preanal length 69.0-73.2 (71.0) 69.4-73.7 (71.1) 67.9-71.6 (69.8)

Predorsal length 44.1-47.7 (46.1) 43.6-47.5 (46.0) 43.9-47.4 (45.9)

Prepelvic length 33.0-49.9 (47.2) 46.1-51.2 (48.6) 46.9-49.8 (48.3)

Anal-fin base length  17.1-20.9 (19.7) 17.8-21.9 (20.3) 18.7-22.6 (20.8)
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Table 6. Frequency distributions of meristic characters of eight localities of 

 

  

Locality n 
Dorsal-fin rays 

 
Anal-fin rays  

17 18 19 20  19 20 21 22 23 24 25 

Ju 25 4 14 7 -  1 - 4 10 6 2 2 

Hu 14 1 8 2 3  - - - 4 6 3 1 

Bu 23 3 12 8 -  - - - 7 5 7 2 

Go 9 3 3 3 -  - - - 4 4 1 - 

Yeo 23 5 16 2 -  - 1 1 5 8 8 - 

Gang 35 11 19 5 -  - 1 2 3 9 12 6 

Hong 15 1 7 7 -  - - - - 4 6 3 

Gun 30 3 21 6 -  - - 2 3 10 7 4 
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Locality n 
Vertebrae  Scutes

45 46 47 48 49 50  29 30 31 32 

Ju 25 - - 3 17 5 -  - - - 2 

Hu 14 - - - 4 9 1  - - - - 

Bu 23 - - 6 8 8 1  1 - - 3 

Go 9 - - 1 6 2 -  - - - 1 

Yeo 23 - - - 15 8 -  - - - - 

Gang 35 - - - 16 18 1  - - - - 

Hong 15 - - - 11 4 -  - - - - 

Gun 30 1 - 1 20 7 1  - - - 1 

 

Sample size (n) 

Ju, Jumunjin; Hu, Hupo; Bu, Busan; Go, Goseong; Yeo, Yeosu; Gang, Gangjin; Hong, Hongdo; Gun, 

Gunsan samples 



 

24 

Table 7. Result of Kruskal-Wallis test for meristic characters of eight 

localities of Konosirus punctatus 

Locality Dorsal-fin rays Anal-fin rays  Pelvic-fin rays Vertebrae Scutes 

Ju 18.1 22.4a 8 48.1a 33.6a 

Hu 18.6a 23.1ab 8 48.8ab 33.8b 

Bu 18.2b 23.4ac 8 48.2b 33.6c 

Go 18.0 22.7d 8 48.1b 33.7d 

Yeo 17.9ac 22.9e 8 48.3b 34.5abcd 

Gang 17.8ab 23.6ade 8 48.6ac 34.6abcde 

Hong 18.4cd 24.3abcde 8 48.3b 34.5abcd 

Gun 18.1d 23.7ad 8 48.2bc 34.1e 

Note: Values and different superscript letters indicate means and significant 

differenced (P<0.05), respectively. If superscripts and the same, there is 

significant difference, but if the superscripts are different, there is no significant 

difference in the level of 95%. 
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Table 8. Eigenvectors for the first three principal components (PC) based on 

17 morphometric characters of Konosirus punctatus 

Character PC1 PC2 PC3 

Standard length  0.9919 0.0260 -0.0326 

Head length  0.9821 -0.1564 0.0034 

Snout length 0.9487 -0.1968 -0.0352 

Orbit length 0.9221 -0.1100 0.0285 

Interorbital width 0.9638 -0.0282 0.0879 

Postorbital length 0.9763 -0.1590 0.0261 

Upper jaw length 0.9634 -0.1805 0.0536 

Body depth  0.9481 0.2451 0.0782 

Body width 0.9336 0.1308 0.2795 

Caudal peduncle depth 0.9540 0.2062 0.0531 

Pectoral-fin length 0.9637 0.0760 -0.1006 

Pelvic-fin length 0.9600 -0.0555 -0.0959 

Dorsal-fin base length 0.9695 0.1086 -0.0645 

Preanal length 0.9902 0.0019 0.0106 

Predorsal length 0.9907 0.0221 -0.0033 

Prepelvic length 0.9756 -0.0800 -0.0126 

Anal-fin base length  0.9276 0.1616 -0.2748 

Eigenvalue 15.7538 0.3080 0.2007 

Proportion 0.9267 0.0181 0.0118 

Cumulative 0.9267 0.9448 0.9566 
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Table 9. Standardized canonical (CAN) coefficients based on 17 

morphometric characters of Konosirus punctatus  

Character CAN 1 CAN 2 CAN 3 

Standard length (mm) -0.737 1.554 1.221 

Head length  1.273 -1.442 0.338 

Snout length 0.240 0.143 0.835 

Orbit length 0.196 0.854 -0.166 

Interorbital width -0.492 0.277 -1.521 

Postorbital length 0.622 -0.407 -1.864 

Upper jaw length 0.335 -0.128 0.173 

Body depth  -0.280 0.237 -0.602 

Body width 0.802 1.749 0.447 

Caudal peduncle depth -0.667 -0.046 -1.320 

Pectoral-fin length -0.488 0.247 0.900 

Pelvic-fin length 0.145 -0.946 -0.207 

Dorsal-fin base length -0.288 0.105 1.103 

Preanal length 0.541 -0.265 -0.989 

Predorsal length -0.127 -0.637 1.832 

Prepelvic length 0.206 -0.388 0.127 

Anal-fin base length  -0.698 -0.634 -0.297 

Eigenvalue 5.172 1.763 0.888 

Proportion 0.589 0.201 0.101 

Cumulative 0.589 0.789 0.891 
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Table 10. Number (and percentage) of individuals classified correctly into their original group for 

the morphometric data. Rows are the original sample group and columns the reclassification group. 

  Ju Hu Bu Go Yeo Gang Hong Gun Total 

Ju 21 (84%) 3 (12%) 0 (0%) 1 (4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 25 

Hu 1 (8%) 12 (92%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 13 

Bu 2 (9%) 0 (0%) 17 (74%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (17%) 23 

Go 0 (0%) 1 (11%) 0 (0%) 8 (89%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 9 

Yeo 0 (0%) 0 (0%) 0 (0%) 0 (0%) 23 (100%) 0 (0%) 0 (0%) 0 (0%) 23 

Gang 0 (0%) 0 (0%) 1 (3%) 0 (0%) 1 (3%) 25 (71%) 4 (11%) 4 (11%) 35 

Hong 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (13%) 13 (87%) 0 (0%) 15 

Gun 0 (0%) 0 (0%) 2 (7%) 0 (0%) 0 (0%) 5 (17%) 2 (7%) 21 (70%) 30 

Ju, Jumunjin; Hu, Hupo; Bu, Busan; Go, Goseong; Yeo, Yeosu; Gang, Gangjin; Hong, Hongdo; Gun, 

Gunsan samples 



Table 11. Comparison of meristic and proportional measurements of 

Konosirus punctatus by lineage 

  Lineage A Lineage B 

Number of specimens  129 44 

Standard length (mm) 101.6-221.3 (145.7) 153.6-226.7 (184.1) 

Counts 
 

 

Dorsal-fin rays 17-20 (18.2) 17-19 (18.0) 

Anal-fin rays  19-25 (22.8) 20-27 (23.5) 

Pelvic-fin rays 8 (8.0) 8 (8.0) 

Vertebrae 47-50 (48.2) 45-50 (48.3) 

Scutes 32-35 (33.6) 29-37 (34.3) 

Measurements (in SL) 
 

 

Head length  25.0-31.0 (27.2) 26.2-30.3 (28.2) 

Snout length 5.5-7.3 (6.3) 5.1-7.3 (6.5) 

Orbit length 4.1-6.9 (5.6) 4.2-6.1 (5.2) 

Interorbital width 5.6-7.9 (6.4) 5.9-8.2 (6.7) 

Postorbital length 13.9-19.5 (15.8) 15.8-18.5 (17.2) 

Upper jaw length 6.8-10.2 (8.9) 7.8-10.2 (9.0) 

Body depth  26.2-35.8 (30.2) 20.8-33.7 (29.9) 

Body width 6.8-14.2 (11.0) 10.3-15.4 (12.6) 

Caudal peduncle depth 7.9-10.8 (9.2) 7.6-10.0 (9.0) 

Pectoral-fin length 16.6-21.5 (19.4) 16.1-20.6 (18.7) 

Pelvic-fin length 9.0-12.6 (10.8) 9.6-11.8 (10.9) 

Dorsal-fin base length 15.8-19.6 (17.8) 16.0-18.9 (17.5) 

Preanal length 67.9-75.1 (71.0) 69.6-75.3 (72.0) 

Predorsal length 42.6-48.4 (45.9) 43.8-48.8 (46.1) 

Prepelvic length 33.0-51.4 (48.4) 46.6-52.4 (49.6)  

Anal-fin base length  16.9-23.2 (20.0) 17.3-21.3 (19.1) 
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Table 12. Number (and percentage) of individuals classified correctly into 

their original group for the morphometric data. Rows are the original sample 

group and columns the reclassification group. 

  Re- classification group   

Original group Lineage A Lineage B Total 

Lineage A 113 (88%) 16 (12%) 129 

Lineage B 1 (2%) 43 (98%) 44 
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Fig. 5. Frequency distributions of total anal-fin rays among population of 

Konosirus punctatus. Open and closed bars indicate the Jumunjin (Ju) and 

Gangjin (Gang), respectively. 

 



 

31 

Fig 6. Plots of the first two principal component (PC) scores based on 17 

morphometric characters of Konosirus punctatus. 
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Fig 7. Plots of discriminant scores on the first and second canonical (CAN) 

axes based on 17 morphometric characters of Konosirus punctatus. 
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Fig 8. Plots of discriminant scores on the first and second canonical (CAN) 

axes based on 17 morphometric characters of Konosirus punctatus. Circle and 

triangle indicate the lineage A in Busan (Busan_A) and lineage B in Busan 

(Busan_B), respectively. 
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Fig 9. Relationship between body width and standard length among 

population of Konosirus punctatus. All population (up) and standard length of 

between 130mm and 160mm (down) 
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Fig 10. Relationship between postorbital length/SL and standard length (up) 

and between head length/SL and standard length (down) in lineage A and 

lineage B of Konosirus punctatus. 



IV. Discussion 

 

1. Genetic diversity and relationships 

 

We analyzed 896 bp of the mtDNA CR sequence in 182 individuals of the gizzard 

shad collected from eight localities of Korea. As a result, the Korean gizzard shad 

was divided into two distinct lineages, A and B (see Fig. 2), with a genetic 

distance of 5.5%–6.6%. We found no shared haplotypes between lineages A and B, 

suggesting that at least two differentiated source populations had been 

successfully recruited (Evans et al., 2010). Lineage B probably contains two 

sublineages (b1 and b2), with a genetic distance of 1.0%–2.0%, suggesting that 

extended spatial sampling is required, as mentioned by Evans et al. (2010). 

The gizzard shad showed high levels of haplotype diversity in lineage A (0.992 ± 

0.003) and lineage B (0.943 ± 0.016), but low levels of nucleotide diversity in 

both lineage A (0.007 ± 0.004) and lineage B (0.023 ± 0.011). According to Grant 

and Bowen (1998), if a population shows high haplotype diversity and low 

nucleotide diversity, it might have undergone a genetic bottleneck event, followed 

by its sudden expansion. The levels of haplotype and nucleotide diversity in the 

gizzard shad (0.943–0.992 and 0.007–0.023, respectively) are similar to the levels 

in the silver pomfret (Pampus argenteus) in the China Sea (0.88 and 0.006, 

respectively) (Peng et al., 2009), and Plectropomus maculatus (0.941 and 0.014, 

respectively) and Lutjanus carponotatus (0.742 and 0.011, respectively) on the 

Great Barrier Reef (Evans et al., 2010). These species may have undergone rapid 



 

37 

population expansion after a period of low effective population size (Santos et al., 

2006; Liu et al., 2008; Peng et al., 2009; Evans et al., 2010), possibly resulting 

from climatic changes, such as glacial and interglacial cycles (Petit et al., 1999). 

Using an mtDNA CR sequence divergence rate of 4%–8% per million years, the 

divergence between lineages A and B was estimated to have occurred 69,000–

138,000 years ago. During the glacial period, the East Sea was isolated from the 

Pacific Ocean by the reduced sea level (Lambeck et al., 2002; Kitamura and 

Kimoto, 2006). As well as the isolation of the two seas, the habitats of the Korean 

gizzard shad might also be separated in the two different seas, potentially resulting 

in lineage sorting. Similarly, Han et al. (2012) calculated that the divergence of 

the two lineages of Ammodytes personatus in Japan and China occurred about 

453,000 years ago, suggesting that water temperature might be the main factor 

differentiating the two lineages. The Japanese anchovy (Engraulis japonicus) and 

Australian anchovy (E. australis) also diverged into different lineages 105,000–

420,000 years ago (Liu et al., 2006b) and Chelon haematocheilus 155,000–

803,000 years ago (Liu et al., 2007). Those studies are consistent with our results, 

showing that the two lineages of K. punctatus differentiated in the late Pleistocene. 

 

2. Demographic history 

 

The Korean gizzard shad shows two differently shaped mismatch distributions, a 

unimodal distribution in lineage A but a bimodal distribution in lineage B. The 

unimodal shape may be attributable to a recent population expansion (Michaux et 

al., 2004), probably following a population bottleneck (Harpending 1994). 
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However, the bimodal shape may be sensitive to the age of the expansion, with the 

right peak representing an older expansion and the other peak a recent expansion 

(Bos et al., 2008; Schneider et al., 2010). From this perspective, lineage B of the 

Korean gizzard shad might have a more complex evolutionary history than 

lineage A. A bimodal mismatch distribution can also be seen in the Japanese S. 

ariakensis (Kim et al., 2006a) and the eastern population of the Korean A. 

personatus (Kim et al., 2006b). Dawson et al. (2002) suggested that a bimodal 

mismatch distribution is attributable to a historically differentiated allopatric 

population. Kim et al. (2006b) also suggested that the eastern population of A. 

personatus comprises a historically larger and older population than the western 

and southern populations. It is likely that lineage B of the Korean gizzard shad 

comprises two allopatrically differentiated populations resulting from their 

different habitats, such as the northern and southern parts of the East Sea. The 

species is distributed north to Vladivostok, Russia, in the East Sea (Froese and 

Pauly, 2014). Therefore, the bimodal mismatch distribution of the Korean gizzard 

shad may have occurred in response to the cold-current ecosystem formed in the 

middle East Sea of the subpolar front (Kim, 2009; Hong et al., 2012; Yoon et al., 

2013). 

The expansion of the lineage A population was estimated to have occurred 

approximately 89,000 years ago during the Late Pleistocene. During the Late 

Pleistocene (the past one million years), the climate was punctuated by a series of 

large glacial–interglacial changes (Imbrie et al., 1992). Population expansions in 

the late Pleistocene have been reported for other species, including 

Mazocraeoides gonialosae 17,000 years ago (Li et al., 2011), the Japanese 
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anchovy E. japonicus, 79,000–317,000 years ago, the Australian anchovy E. 

australis 45,000–178,000 year ago (Liu et al., 2006b), and the fat greening 

Hexagrammos otakii 91,000–327,000 years ago (Habib et al., 2011). It seems that 

marine fish populations around the Korean peninsula may have declined or almost 

become extinct during the glacial period, but increased and recovered rapidly 

during the interglacial period. 

 

3. Population structure 

 

AMOVA showed strong structure (FST = 0.856; P < 0.0001) between lineages A 

and B. Wright (1965) suggests that a pairwise FST range of 0.00–0.05 indicates 

little differentiation, a range of 0.05–0.25 indicates moderate differentiation, and a 

range > 0.25 indicates very great differentiation. In this study, high levels of 

structuring were observed between the two lineages of the gizzard shad with 

AMOVA (FST = 0.856; P < 0.0001). Therefore, the gizzard shad in Korean waters 

shows very great differentiation, according to Wright (1965). 

The genetic distance between the two lineages of the Korean gizzard shad was 

5.5%–6.6%. Nei (1975) suggested that a genetic distance of 0%–5% indicates 

differences within the same population, and a range of 2%–20% indicates 

differences at the subspecies level. In the present study, the Korean gizzard shad is 

considered to form subspecies, but this could not be confirmed because the two 

lineages coexist in the East Sea and Korea Strait. To further understand recent 

events, such as the secondary contact between the two lineages, more samples 

must be collected from the far-northern East Sea and additional studies conducted 
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using more sensitive DNA markers, such as microsatellite DNA. 

The NJ tree showed that the Korean gizzard shad clusters into two reciprocal 

monophyletic groups, lineages A and B. Lineage A is distributed along all the 

coasts of Korea, with occurrence rates of 100% in the Yellow Sea and western 

Korea Strait, but declines steadily from the middle Korea Strait (Yeosu, 81%) to 

the East Sea (Jumunjin, 4.2%) (Fig. 3). Previous studies have suggested that such 

phenomena may be attributable to the influence of seawater temperatures or 

currents (Santos et al., 2003; Kim et al., 2006b; Kim et al., 2010; Han et al., 2012; 

Hong et al., 2012; Yoon et al., 2013). Santos et al. (2003) suggested that seawater 

temperatures and currents are the main factors distinguishing the two Macrodon 

groups. Kim et al. (2006b, 2010) demonstrated very restricted gene flow between 

the eastern population and the western + southern population of A. personatus, 

suggesting that this may be attributable to their unique adaptation to each habitat 

during the glacial period. Han et al. (2012) also suggested that the distributions of 

the two lineages of A. personatus are strongly influenced by seawater temperature. 

The distributions of lineages A and B of the Korean gizzard shad are probably 

maintained by the complexity of various currents, e.g., the Kuroshio Current (KC), 

North Korean Cold Water (NKCW), and Western Korea Coastal Water (WKCoW) 

(Zhang et al., 2000; Johnson and Teague 2002; Chen, 2009). The KC is a 

generally high-temperature (winter, T = 20–24 °C; summer, T = 28–29 °C) and 

high-salinity current (winter, S = 33.5–34.75; summer, S = 33.5–34.5) (Chen, 

2009), whereas the WKCoW is a generally low-temperature (winter, T = 2–5 °C; 

summer, T = 20–26 °C) and low-salinity current (winter, S = 31.5–32.5; summer, 

S < 30) (Zhang et al., 2000; Chen, 2009). Like WKCoW, the annual sea 
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temperature of the NKCW is 1–7 °C and its salinity < 34.1 psu (Yun et al., 2004). 

Based on a comprehensive comparison of genetic and environmental data, we 

speculate that a part of lineage A might have moved to the east with the WKCoW, 

and thereafter a subpart might have moved to Jumunjin (northernmost area of the 

East Sea here), with the KC. However, the occurrence of lineage A declines 

abruptly at Hupo and Jumunjin, which are strongly affected by the NKCW. 

Interestingly, lineage B does not occur west from Yeosu, implying that lineage B 

is more sensitive to seawater temperature or salinity than lineage A. 

 

4. Morphological analysis 

 

Principal components analysis (PCA) showed that eight localities populations 

overlapped from each other. As a result of canonical discriminant analysis (CDA), 

the postorbital length being largest in CAN1, and it is divided into two groups 

(Fig. 7). Busan population has both group and show same trend with genetic 

analysis. This result means Busan population has two lineages which have 

different morphological characteristics by different spawning ground. Shen et al. 

(2011) suggested from msDNA analysis that three lineage about Mugil cephalus 

having different spawning ground. From these results, spawning ground 

investigation about msDNA of Busan population need in the future.        

The body width being largest in CAN2 that Yeosu was separated in other 

populations (Fig. 7). And most of the Yeosu population is distinguished from other 

populations by wider body (Fig. 9). Body width influenced from spawning season. 
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It is known that gizzard shad spawning season from April to August (Kim et al., 

2007a; Lee et al, 2010). Except the populations from Hupo and Goseong, we used 

this survey were captured at spawning season (Table 1). Therefore, wider body 

width of Yeosu population not related to spawning season. It is known that 

morphometric and meristic characters are influenced by environmental conditions 

(Lindsey, 1988; Swain et al., 1999; Turan, 2000). The further study is required to 

analyze environmental conditions of sampling site of gizzard shad. 

Result of genetic data, the Korean gizzard shad was divided into two distinct 

lineages. Based on these result, percentage of correctly classified was obtained 

90.2% by canonical discriminant analysis (CDA). A study conducted by Murta 

(2000) showed that horse mackerel (Trachurus trachurus), for the morphometric 

data, a clear distinction between Cadiz (97%) and all other groups. Our result of 

canonical discriminant analysis (CDA) was smaller than Murta's result, but it was 

similar to a study of Silva (2003), the sardine (Sardina pilchardus) correctly 

classified was 87% (the northern Atlantic-Mediterranean group) and 86% (the 

southern Iberia-Morocco group) between the two groups (Table 12). And Silva 

(2003) suggested that discrimination of the two morphotypes were confirmed 

statistically by the high percentage of correct classification (>85%) of new fish. 

Therefore, the gizzard shad in Korean waters shows divided two lineages, based 

on the result and suggestion of Silva (2003). 

The genetic and morphological analysis of Portuguese sole (Synaptura lusitanica) 

indicated the differences between the west coast (Setùbal) and the south-eastern 

coast by Cabral et al. (2003). According to these authors, Portuguese sole 

conservative approach to the fisheries management of this species should consider 
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to be two independent stocks. In this study, Korean gizzard shad is separated into 

lineage A and lineage B, in a dimension of genetic and morphological results. So, 

we suggest a need for divided management strategies for each lineage. 
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