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Regularity for semilinear hyperbolic
evolution equations

Hae-Jun Hwang

Abstract

This paper deals with the regularity for solutions of semilinear second
order equations contained the nonlinear convolution with cosine families and
obtain a variation of constant formula for solutions of the given equations.

Keywords:semilinear second order equations, regularity for solutions, co-
sine family, sine family

AMS Classification Primary 35F25; Secondary 35K55

1 Introduction

Our objective of this paper is-to investigate the regularity of solutions of the following
abstract semilinear second order initial value problem

{ w'(t) = Aw(t) + F(t,w) + f(t), 0<t<T, (1.1)

w(0) = o, w'(0) = o

in a Banach space X. Here, the nonlinear part is given by

F(t, w) = /0 k(t — $)g(s, w(s))ds

*, ** Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea
jmjeong@pknu.ac.kr(J. M. Jeong), hhj3447@naver.com(H. J. Hwang)



where k belongs to L?(0,7) and g : [0,T] x D(A) — X is a nonlinear mapping such
that w — ¢(t, w) satisfies Lipschitz continuous. In (1.1), the principal operator A is
the infinitesimal generator of a strongly continuous cosine family C(t), t € R.

In [1] a one-dimensional nonlinear hyperbolic equation of convolution type is
considered and in [2] a hyperbolic equation of convolution type which is nonlinear
in the partial differential equation part and linear in the hereditary part is treated.
The existence and regularity of solutions for equations of parabolic type under some
general condition of the Lipschitz continuity of the nonlinear operator is considered
in [3, 4], which is reasonable and widely used in case of the nonlinear system.

In this paper, we propose an approach different from that of earlier works (see
[5, 6, 7]) to study mild, strong, and classical solutions of Cauchy problems. We allow
implicit arguments about L2-regularity results for semilinear hyperbolic equations
under more general hypotheses of nonlinear term F. These consequences are ob-
tained by showing that results of the linear cases to those of [5, 8] on the L%-regularity
remain valid under the above formulation of the semilinear problem (1.1).

We will prove the existence of a solution w € L?(0,T; D(A)) N W2(0,T; E) for
each T" > 0 when f : R — X is continuously differentiable, zy € D(A),yy € E,
and k € W12(0,T)), T > 0. Here, we denote by-£ the subspace of all x € X which
C(t)x is a once continuously differentiable function of ¢. We will make use of some
of the basic ideas from cosine family referred to [9, 10] for a discussion of the results
we will use. We also establish to a variation of constant formula for solutions of
the second order nonlinear system (1.1) and see that the necessary assumption is
more flexible than one in [11]. "An example illustrated the applicability of our work
is given in the last section.

2 Preliminaries

In this section, we give some definitions, notations, hypotheses and Lemmas. Let X
be a Banach space with norm denoted by | - |].

Definition 2.1. [9] A one parameter family C(t), t € R, of bounded linear operators
i X is called a strongly continuous cosine family if

c(1) C(s+1t)+C(s—t)=2C(s)C(t), foralls, teR,
c(2) C(0)=1,

c(8) C(t)xr s continuous in t on R  for each fized x € X.



If C(t), t € R is a strongly continuous cosine family in X , then S(t), ¢ € R is
the one parameter family of operators in X defined by

t
S(t)x = / C(s)xds, v € X, teR. (2.1)
0
The infinitesimal generator of a strongly continuous cosine family C'(¢), ¢t € R

is the operator A : X — X defined by

d2

Ap = 2
T e

C(0)x.

We endow with the domain D(A) = {z € X : C(t)z is a twice continuously differ-
entiable function of ¢} with norm

d
lzllpeay= llzl| +supijl Ct)z]] .t € Ry [|Az]].
We shall also make use of the set

E ={x € X : C(t)z is a once continuously differentiable function of ¢}

with norm ;
[12]lz =llell + sup{[|==C(&)]| : ¢ € R}.

It is not difficult to show that D(A) and E with given norms are Banach spaces.
The following Lemma is from Proposition 2.1 and Preposition 2.2 of [1].

Lemma 2.1. Let C(t)(t € R) be-a strongly continuous cosine family in X. The
following are true :

c(4) C(t)=C(=t) forallt € R,

c(5) C(s),S(s),C(t) and S(t) commute for all s,t € R,

c(6) S(t)z is continuous in t on R for each fivred z € X,

c(7) there exist constants K > 1 and w > 0 such that
|IC@®)|| < Ke“ for all t € R,

t1
[|S(t1) — S(t2)|| < K / ewlslds‘ for all t1,ty € R,

to




c(8) ifx € E, then S(t)x € D(A) and

d d?
dtC( Yo = AS(t)x = S(t)Ax = dtQS(t)x

c(9) if x € D(A), then C(t)x € D(A) and

2

@C(t)x = AC(t)x = C(t)Ax,

c(10) ifx € X andr,s € R, then

/5 S(r)zdr € D(A) and A(/S S(r)zdr) = C(s)x — C(r)z,

¢(11) C(s+t)+C(s — t)y= 20(s)C(t) for all 5,t € R,
c(12) S(s+1t) = SE)C{E) +SH)C(s) for all 5,t € R,
c(13) C(s+1t) ='C)C(s) — SE)S(s) for all 8yt € R,
¢(14) Cs+t)—
The following Lemma is from Proposition 2.4 of [9].

Lemma 2.2. Let. C(t)(t € R) be a strongly continuous cosine family in X with
infinitesimal generator A. If f : R — X s continuously. differentiable, xo € D(A),
Yo € E, and

w(t) = C(t)xo + S(t)yo+ /Ot S(t=13s)f(s)ds, t € R,

then w(t) € D(A) fort € R, w is twice continuously differentiable, and w satisfies

/

w' (t) = Aw(t) + f(t), t € R, w(0) =1z, w (0) = yo. (2.2)

Conversely, if f : R — X is continuous, w(t) : R — X is twice continuously
differentiable, w(t) € D(A) fort € R, and w satisfies (2.2), then

w(t) = C(t)xo + S(t)yo + /Ot S(t—s)f(s)ds, teR.



Proposition 2.1. Let f : R — X is continuously differentiable, xy € D(A), yo € E.
Then

w(t) = C(t)xo + S(t)yo + /OtS(t —s)f(s)ds, teR

is a solution of (2.2) belonging to L*(0,T; D(A)) NW2(0,T; E). Moreover, we have
that there exists a positive constant Cy such that for any T > 0,

lwllz20ripay < CL(1+ llzollpay + [lvolle + Il fllwr20.:x))- (2.3)

Proof. From Lemma 2.1 it follows that w satisfies (2.2), w(t) € D(A) for t €
R and w is twice continuously differentiable. It is easily seen that there exists a

constant C > 0 such that

l[w|]20,7;x)-<C(||Zollpay + |lwoll 2 + Tl 21200,m:x))- (2.4)

To prove that w € L*(0,T; D(A)), notice that using ¢(7) and ¢(9) we have
¥
[ lac el < K@% Dol (2.5)
and if yo € E, by ¢(8), we have
% 2 - 2 2
[N s @ulrar= [ Ctml R < T, (26)
It is proved in Proposition-2.4 of-{9] that

44arwv@w:cwﬂm—ﬂm+émw—@—nf@w.

So, noting that

/||/Ct—s (s)ds|dt < (Ke*T +1)? / /Hf )||ds)?dt
S(Ke“’T+1)2/ t/ I1F (s)]Pdst

< et [ s



it holds that

/||A/ (t— ) (s)ds| dt</ 1C() £(0)] Pt 2.7)
FTIFO)) + /||/ (t— ) (s)ds| [2dt

< K2e*TT]| f(0 ||2+T||f I
wT 2T2 / 2
+ (K +1)"— ||f (s)l["ds.
0

Noting that from c(8)

jtc( )/D S(t— ) f(s)ds (2.8)

= AS(t) /Ot S(t—s)f(s)ds = S(t)A/OtS(t —5)f(s)ds,

we can obtain the relation of (2.3)from (2.4)-(2.8). Combing (2.1) and ¢(7), we also
obtain that an analogous estimate to (2.3) holds for w € W12(0,T; E). O

If f is continuously differentiable and _(zo,%0) € D(A) x E, it is easily shown
that w is continuously differentiable and satisfies

w' (1), = AS(t)xo + C(t)yo + /tC(t —s)f(s)ds, t €R.

Let us remark that if w is a selution of (2.2) in an interval [0, t; + t5] with ¢1,t5 > 0.
Then when t € [0, + t5], from ¢(11)-c(14), we have

w(t) = C(t —t)w(ty) + St —t)w (t,) + /tt S(t—s)f(s)ds

= Ot = t){C )0 + S(t )y + / Sty — $)f(s)ds}

0

+ S(t —t1){AS(t1)zo + C(t1)yo + /Otl C(ty — s)f(s)ds}

—l—/t S(t—s)f(s)ds

t1

= oo+ S(m + | S(t = ) (s)ds,



here, we used the relation
1 1
S(t)AS(s) = AS(t)S(s) = 50(25 +5) — §C(t —s5)=C(t+s)—C(t)C(s)
for all s,t € R. This mean the mapping ¢t — w(t; 4+ t) is a solution of (2.2) in
0,2, + t5] with initial data (w(t,),w’(t,)) € D(A) x E.
3 Nonlinear equations

This section is to investigate the regularity of solutions of abstract semilinear second
order initial value problem

{ w' (1) = Aw(t) +F(tw)+f(t), 0<t<T, (3.1)

w(0) =, . w (0) =y,

in a Banach space X Let g : [0,7] x D(A) — X be a nonlinear mapping such that
t — g(t,w) is measurable and

(g1) ||g(t,w1) — g(t,wa)||pay < Lf|wy — wal|,
(g2) g(t,0)=0

for a positive constant L.
For w € L*(0,T; D(A)), we set

FY) = /0 k(t — s)g(s,w(s))ds

where k belongs to L?(0,T). Then, we will seek a mild solution of (3.1), that is, a
solution of the integral equation

w(t) = C(t)zo + S(t)yo + /0 S(t — s){F(s,w) + f(s)}ds. (3.2)

Remark 3.1. If g : [0,T] x X — X is a nonlinear mapping satisfying
lg(t, wi) — g(t, w2)|| < Lifwy — wol|

for a positive constant L, then our results can be obtained immediately.



Lemma 3.1. Let w € L*(0,T; D(A)), T > 0. Then F(-,w) € L*(0,T;X) and
1 ()00 < LIkl 200 VT w1207 p(4))-
Moreover if wy, wy € L*(0,T; D(A)), then
[|F(-,wr) — F(, w2)||L2(o,T;X) < L||k||L2(O,T)\/T||w1 - w2||L2(o,T;D(A))-

Proof. From (gl), (g2) and using the Holder inequality, it is easily seen that

T t
(o 0) o) < / | / k(t — )g(s, w(s))ds| Pt
T t
< etz / / 12|w(s)|[Pdsdt

< LVklZ20m THw! 220 2:m( 4 -

The proof of the second paragraph is similar. Il

Lemma 3.2. If k. e WY2(0,T), T > 0, then
t
A/ S(t— s)F(s,w)ds = —F(t,w) (3.3)
0
+ /0 (C(t—s)— I)/O disk(s —7)g(r,w(7))dr ds
+ / (Ct=s) = Dk(0)g(s,w(s))ds.
0
Proof. From the fact that

A/O S(t—s)F(s,w)ds:—F(t,w)+/O <C(t—s)—1)diip(s,w)ds

and

ds
it follows (3.3). O

%F(s, w) = /08 ik;(s —1)g(T,w(T))dT + k(0)g(s, w(s)),

Now we are ready to give the following result on a local solvability of (3.1).



Theorem 3.1. Suppose that the assumptions (g1), and (g2) are satisfied. If f :
R — X is continuously differentiable, xo € D(A), yo € E, and k € W'(0,T),
T > 0, then there exists a time T > Ty > 0 such that the functional differential
equation (3.1) admits a unique solution w in L?(0,Ty; D(A)) N W12(0, Tp; E).

Proof. Let us fix Ty > 0 so that

Cy =w 'K LT (€™ — 1)1k 2 (0.10) (3.4)
+ {w T K (™ — 1) + 1} LKl 2010V To
+{w K (4T — 1) + 1YT3? VL K e™ + 1|kl lw20m)
+ {w K (e T — 1) + 1}y /V2L| | K e ™ + 1]||k(0)]] < 1

where K and L are constants-in ¢(7) and (g2), respectively. Invoking Proposition
2.1, for any v € L?(0, Ty; D(A)) we obtain the equation

(3.5)

{w”<t>: w(ty+ Bt ot f(t), 0<t<T,
w(0) = xg, w/(O):

has a unique solution w € L*(0,Ty; D(A)) N Wh2(0,7y; E). Let wy, we be the
solutions of (3.5) with v replaced by vy, vg € L%(0,Ty; D(A)), respectively, that is

{ (wy —ave)” (t) = A(wi— wo)(#) + F(t,v1) = F(t,v), 0<t,
<U)1 — ’w2)<0) = O, (U)l — ’lUg)l(O) =0.

Put
J(w)(t) = C(t)xog + S(t)yo + /0 S(t—s){F(s,v)+ f(s)}ds.
Then
J(wy)(t) — J(we)(t) = /0 S(t— s){F(s,v1) — F(s,vy)}ds,

so, from Lemmas 3.1, 3.2, it follows that for 0 <t < Tj,

I /0 S(t— s){F(s,v1) — F(s,v9)}ds|| (3.6)

< CflKLTo(ewT0 — D)[|E]] 20,00 |1 = val| L2001 D04))
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and

||A/ St — s){F(s,v1) — F(s,vy)}ds|| (3.7)
< ||F(t,v1) — F(s,v9)]]

HI [ € =5)= 1) [ = fatrnr) = gt vam))ir sl

+1 / (t = 5) = Dk(0)(g(s, v1(s)) = g(s, va(s)))ds]]

< ||F(t,v1) — F(s,v9)|]
+ tL||Ke“" + |||kl lwr20,m) | [v1 — V2]l L2(0.105004))
+ VEL|| K e + 1]]|[k(0)|[[vr — va]|r2(0.10:0(4))-

We also obtain that
20w [t = ){Pls, ) — Fls.va)ias] (3:5)
< Ao f 5= F (mls Fls. v}l
< 50A §t—) (BBun) = Fls. o)l

Thus, from (3.6),(3.7), and (3.8), we conclude that

[ (w1) — J(w2) 120z A)) (3.9)
< w K LT (70 =1)|Kffzc0 my o1 — sl i2015:000)

+ {w™ K (e — 1) + 1}L|[E] |20V Tollor — val|20,70:0())

+ {w K (4T — 1) + 1YTy? /VBL|| K e™ + 1| |l lwr 20,z Jo1 — va|

+{w T K ("0 = 1) + 13Ty /V2L| | Ke™ + 1] |[k(0)|| [[or — vall.

So by virtue of the condition (3.4) the contraction mapping principle gives that the
solution of (3.1) exists uniquely in [0, Tp]. O

Now, we give a norm estimation of the solution of (3.1) and establish the global
existence of solutions with the aid of norm estimations.

Theorem 3.2. Suppose that the assumptions (g1), and (g2) are satisfied. If f : R —
X is continuously differentiable, xog € D(A),yo € E, and k € W2(0,T), T > 0,
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then the solution w of (3.1) exists and is unique in L*(0,T; D(A)) NW2(0,T; E),
and there exists a constant C3 depending on T such that

llw|[z20,m;00ay) < C3(1 + |[2ollpeay + [|vollz + || fllwr20,r:x))- (3.10)

Proof.  Let w(:) be the solution of (3.1) in the interval [0,7,] where Ty is a
constant in (3.4) and v(-) be the solution of the following equation

v’ (t) = Av(t) + f(t), 0 <t,

zg, v (0) = yo.

<
—~
(==
~—
I

Then

and in view of (3.9)

|[w = vl z2(0,m:0(4)) < CallwllL20,m0:0(4), (3.11)

that is, combining (3.11) with Proposition 2.1 we have

1
|[wl] 2 0,mmspa)) < |[v]| 22 0,0: D)) (3.12)
1—0C
(O]
< (1 + [|zollpeay + Hvolle + [1f [lwr20,m0:x))-
1=0
Now from
To
A S(To —=8){E(syw) + f(s)}ds
0

:cmmmwﬁmw+éia%—$—nf@@

d

— F(Ty,w) + /0 O(C(T(] —s)—1) /OS gk(s —7)g(r,w(7))dr ds

+ [0 = ) = Dk s, ws)s

and since

%(](t)/o S(t— s){F(s,v)+ f(s)}ds

— S(H)A /O S(t— $){F(s,0) + f(s)}ds,
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we have

To
lw(To)lpcay = ||C(To)zo + S(To)yo +/ S(To — s){F(s,w) + f(s)}ds||p(a)
0
< (WK (e = 1) + D{Ke™|xo| | pa) + w K (T = 1)||yol |
+ KT FO)]| + LTI+ [ K (e + 1)/ Tol | fllwr20,7:x)

+ LIk 22 0,10) | [wl| 2 (0,70:D(4))
+ tL||Ke“" + 1| ||k]lwr20m0) W] L20.1:(4))

+ VEL|| K e + 1|1k O0)]|[|w]] 20,00 }-
Hence, from (3.12), there exists a positive constant C' > 0 such that

|lw(To)l|peay < C( A [[zollpeay+lyol | + [[fllwi20m:x))-

Since the condition (3.4).is independent of initial values; the solution of (3.1) can
be extended to the interval [0,nTp] for every natural number n. An analogous
estimate to (3.12) holds for the solution in [0, n7Tp], and hence for the initial value
(w(nTy),w’ (nTy))'€ D(A) x E in'the interval [nTy, (n + 1)T}). O

Example. Let X = L?([0,7];R). We consider the following partial differential
equation

w'\(t,z) = Awltye) + Ft,w) F &), 0<t/ 0<zx<m,
w(ty0) =w(t,m) =0, teR (E)
w(0,2).= (), w'(0,2) = yo(z), 0 <mw<m

s

A: X — X be defined by

Let e,(z) = \/;sin nx. Then{e,in = 1,--- }-is an-orthonormal base for X. Let

Aw(z) = w'"(x),

where D(A) = {w € X :w, w’ are absolutely continuous, w” € X, w(0) = w(r) =
0}. Then

Aw = Z —n*(w,e,)en, w € D(A),
n=1
and A is the infinitesimal generator of a strongly continuous cosine family C(t),
t € R, in X given by

Ct)w = Zcosnt(w, en)en, weE X.

n=1
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The associated sine family is given by

o0 . t
S(tyw = Z sn;n (w,en)en, weX.
n=1

Let ¢1(t,z,w,p), p € R™ be assumed that there is a continuous p(t,7) : R x
R — R* and a real constant 1 < « such that

(f1) g1(t,2,0,0) =0,
(£2) g1t z,w,p) — g1(t, x,w, q)| < p(t, |w|)|p — ql,
<f3) |gl<t7x7w17p) - gl(t’x7w2ap)| S p(t7 |U}1| + |w2|)|w1 — Wa|.

Let
g(t,w)z = g(t, z,w, Dw, D*w).

Then noting that

lg(t, )= g(t, wa)flB < 2 / m LTy
Q
+ 2/ |gl<t7 u,wy, q) i gl(ta U, ws, Q)|2du
Q

where p = (Dwy, D*w;) and q = (Dwy, D*wy), it follows from' (f1), (f2) and (f3)
that

lg(t, =) — 9t Y)llGz S Lol otz — yllpw

where L(||w1||p(ay, ||wa]|pea)) is a constant-depending on ||w:||pay and ||wa||pay.
We set

t
F(t,w) = / k(t — s)g(s,w(s))ds
0
where k belongs to L?(0,T). Then, from the results in section 3, the solution w of

(E) exists and is unique in L*(0, T; D(A))NW2(0, T; E), and there exists a constant
C3 depending on T such that

HwHLQ(O,T;D(A)) < Cs(1+ ||$0||D(A) + |lvol| & + |‘fHW1’2(07T;X))-
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