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준선형 쌍곡선 발전 방정식의 규칙성

황해준

부경대학교 교육대학원 수학교육전공

요 약

이 논문은 코사인 족과 함께 비선형 복잡성 포함된 준선형 2계 방정식의 해의

정칙성을 다루고 주어진 방정식의 해에 대한 거듭되는 상수의 변화를 얻는다.

비선형 연산자의 Lipschitz 연속성과 주작용소의 일반적인 조건 하에 2계 쌍

곡형 형태의 해에 대한 존재성과 정칙성을 고려하고, 이를 비선형방정식의

경우에 합리적이고 폭넓게 사용된다.

이 논문은 ∈∈ ∈     조건 하에    → 가 연

속적으로 미분가능하고 했을 때 ∈ ∩  해의 존재성

을 증명하였다(는 연속적으로 한번 미분 가능한 t의 함수이고 상의

모든 원소 의 부분공간의 로서 표현한다). 새로운 기법을 사용하여 응용

가능한 결과를 유도한 우수한 연구결과로 사료됨.
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Abstract

This paper deals with the regularity for solutions of semilinear second
order equations contained the nonlinear convolution with cosine families and
obtain a variation of constant formula for solutions of the given equations.

Keywords:semilinear second order equations, regularity for solutions, co-
sine family, sine family

AMS Classification Primary 35F25; Secondary 35K55

1 Introduction

Our objective of this paper is to investigate the regularity of solutions of the following
abstract semilinear second order initial value problem

{
w

′′
(t) = Aw(t) + F (t, w) + f(t), 0 < t ≤ T,

w(0) = x0, w
′
(0) = y0

(1.1)

in a Banach space X. Here, the nonlinear part is given by

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds

∗, ∗∗ Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea
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where k belongs to L2(0, T ) and g : [0, T ]×D(A)→ X is a nonlinear mapping such
that w 7→ g(t, w) satisfies Lipschitz continuous. In (1.1), the principal operator A is
the infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R.

In [1] a one-dimensional nonlinear hyperbolic equation of convolution type is
considered and in [2] a hyperbolic equation of convolution type which is nonlinear
in the partial differential equation part and linear in the hereditary part is treated.
The existence and regularity of solutions for equations of parabolic type under some
general condition of the Lipschitz continuity of the nonlinear operator is considered
in [3, 4], which is reasonable and widely used in case of the nonlinear system.

In this paper, we propose an approach different from that of earlier works (see
[5, 6, 7]) to study mild, strong, and classical solutions of Cauchy problems. We allow
implicit arguments about L2-regularity results for semilinear hyperbolic equations
under more general hypotheses of nonlinear term F . These consequences are ob-
tained by showing that results of the linear cases to those of [5, 8] on the L2-regularity
remain valid under the above formulation of the semilinear problem (1.1).

We will prove the existence of a solution w ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;E) for
each T > 0 when f : R → X is continuously differentiable, x0 ∈ D(A), y0 ∈ E,
and k ∈ W 1,2(0, T ), T > 0. Here, we denote by E the subspace of all x ∈ X which
C(t)x is a once continuously differentiable function of t. We will make use of some
of the basic ideas from cosine family referred to [9, 10] for a discussion of the results
we will use. We also establish to a variation of constant formula for solutions of
the second order nonlinear system (1.1) and see that the necessary assumption is
more flexible than one in [11]. An example illustrated the applicability of our work
is given in the last section.

2 Preliminaries

In this section, we give some definitions, notations, hypotheses and Lemmas. Let X
be a Banach space with norm denoted by || · ||.

Definition 2.1. [9] A one parameter family C(t), t ∈ R, of bounded linear operators
in X is called a strongly continuous cosine family if

c(1) C(s+ t) + C(s− t) = 2C(s)C(t), for all s, t ∈ R,

c(2) C(0) = I,

c(3) C(t)x is continuous in t on R for each fixed x ∈ X.
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If C(t), t ∈ R is a strongly continuous cosine family in X , then S(t), t ∈ R is
the one parameter family of operators in X defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ X, t ∈ R. (2.1)

The infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R
is the operator A : X → X defined by

Ax =
d2

dt2
C(0)x.

We endow with the domain D(A) = {x ∈ X : C(t)x is a twice continuously differ-
entiable function of t} with norm

||x||D(A) = ||x||+ sup{|| d
dt
C(t)x|| : t ∈ R}+ ||Ax||.

We shall also make use of the set

E = {x ∈ X : C(t)x is a once continuously differentiable function of t}

with norm

||x||E = ||x||+ sup{|| d
dt
C(t)x|| : t ∈ R}.

It is not difficult to show that D(A) and E with given norms are Banach spaces.
The following Lemma is from Proposition 2.1 and Proposition 2.2 of [1].

Lemma 2.1. Let C(t)(t ∈ R) be a strongly continuous cosine family in X. The
following are true :

c(4) C(t) = C(−t) for all t ∈ R,

c(5) C(s), S(s), C(t) and S(t) commute for all s, t ∈ R,

c(6) S(t)x is continuous in t on R for each fixed x ∈ X,

c(7) there exist constants K ≥ 1 and ω ≥ 0 such that

||C(t)|| ≤ Keω|t| for all t ∈ R,

||S(t1)− S(t2)|| ≤ K
∣∣∣∫ t1

t2

eω|s|ds
∣∣∣ for all t1, t2 ∈ R,
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c(8) if x ∈ E, then S(t)x ∈ D(A) and

d

dt
C(t)x = AS(t)x = S(t)Ax =

d2

dt2
S(t)x,

c(9) if x ∈ D(A), then C(t)x ∈ D(A) and

d2

dt2
C(t)x = AC(t)x = C(t)Ax,

c(10) if x ∈ X and r, s ∈ R, then∫ s

r

S(τ)xdτ ∈ D(A) and A(

∫ s

r

S(τ)xdτ) = C(s)x− C(r)x,

c(11) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R,

c(12) S(s+ t) = S(s)C(t) + S(t)C(s) for all s, t ∈ R,

c(13) C(s+ t) = C(t)C(s)− S(t)S(s) for all s, t ∈ R,

c(14) C(s+ t)− C(t− s) = 2AS(t)S(s) for all s, t ∈ R.

The following Lemma is from Proposition 2.4 of [9].

Lemma 2.2. Let C(t)(t ∈ R) be a strongly continuous cosine family in X with
infinitesimal generator A. If f : R → X is continuously differentiable, x0 ∈ D(A),
y0 ∈ E, and

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R,

then w(t) ∈ D(A) for t ∈ R, w is twice continuously differentiable, and w satisfies

w
′′
(t) = Aw(t) + f(t), t ∈ R, w(0) = x0, w

′
(0) = y0. (2.2)

Conversely, if f : R → X is continuous, w(t) : R → X is twice continuously
differentiable, w(t) ∈ D(A) for t ∈ R, and w satisfies (2.2), then

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R.
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Proposition 2.1. Let f : R→ X is continuously differentiable, x0 ∈ D(A), y0 ∈ E.
Then

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds, t ∈ R

is a solution of (2.2) belonging to L2(0, T ;D(A)) ∩W 1,2(0, T ;E). Moreover, we have
that there exists a positive constant C1 such that for any T > 0,

||w||L2(0,T ;D(A)) ≤ C1(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)). (2.3)

Proof. From Lemma 2.1 it follows that w satisfies (2.2), w(t) ∈ D(A) for t ∈
R and w is twice continuously differentiable. It is easily seen that there exists a
constant C > 0 such that

||w||L2(0,T ;X) ≤ C(||x0||D(A) + ||y0||E + ||f ||L1,2(0,T ;X)). (2.4)

To prove that w ∈ L2(0, T ;D(A)), notice that using c(7) and c(9) we have∫ T

0

||AC(t)x0||2dt ≤ K(e2ωT − 1)||x0||2D(A), (2.5)

and if y0 ∈ E, by c(8), we have∫ T

0

||AS(t)y0||2dt =

∫ T

0

|| d
dt
C(t)y0||2dt ≤ T ||y0||2E. (2.6)

It is proved in Proposition 2.4 of [9] that

A

∫ t

0

S(t− s)f(s)ds = C(t)f(0)− f(0) +

∫ t

0

(C(t− s)− I)f
′
(s)ds.

So, noting that∫ T

0

||
∫ t

0

C(t− s)f ′
(s)ds||2dt ≤ (KeωT + 1)2

∫ T

0

(

∫ t

0

||f ′
(s)||ds)2dt

≤ (KeωT + 1)2

∫ T

0

t

∫ t

0

||f ′
(s)||2dsdt

≤ (KeωT + 1)2T
2

2

∫ T

0

||f ′
(s)||2ds,
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it holds that ∫ T

0

||A
∫ t

0

S(t− s)f(s)ds||2dt ≤
∫ T

0

||C(t)f(0)||2dt (2.7)

+ T ||f(0)||2 +

∫ T

0

||
∫ t

0

C(t− s)f ′
(s)ds||2dt

≤ K2e2ωTT ||f(0)||2 + T ||f(0)||2

+ (KeωT + 1)2T
2

2

∫ T

0

||f ′
(s)||2ds.

Noting that from c(8)

d

dt
C(t)

∫ t

0

S(t− s)f(s)ds (2.8)

= AS(t)

∫ t

0

S(t− s)f(s)ds = S(t)A

∫ t

0

S(t− s)f(s)ds,

we can obtain the relation of (2.3) from (2.4)-(2.8). Combing (2.1) and c(7), we also
obtain that an analogous estimate to (2.3) holds for w ∈ W 1,2(0, T ;E). �

If f is continuously differentiable and (x0, y0) ∈ D(A) × E, it is easily shown
that w is continuously differentiable and satisfies

w
′
(t) = AS(t)x0 + C(t)y0 +

∫ t

0

C(t− s)f(s)ds, t ∈ R.

Let us remark that if w is a solution of (2.2) in an interval [0, t1 + t2] with t1, t2 > 0.
Then when t ∈ [0, t1 + t2], from c(11)-c(14), we have

w(t) = C(t− t1)w(t1) + S(t− t1)w
′
(t1) +

∫ t

t1

S(t− s)f(s)ds

= C(t− t1){C(t1)x0 + S(t1)y0 +

∫ t1

0

S(t1 − s)f(s)ds}

+ S(t− t1){AS(t1)x0 + C(t1)y0 +

∫ t1

0

C(t1 − s)f(s)ds}

+

∫ t

t1

S(t− s)f(s)ds

= C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)f(s)ds,
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here, we used the relation

S(t)AS(s) = AS(t)S(s) =
1

2
C(t+ s)− 1

2
C(t− s) = C(t+ s)− C(t)C(s)

for all s, t ∈ R. This mean the mapping t 7→ w(t1 + t) is a solution of (2.2) in
[0, t1 + t2] with initial data (w(t1), w

′
(t1)) ∈ D(A)× E.

3 Nonlinear equations

This section is to investigate the regularity of solutions of abstract semilinear second
order initial value problem{

w
′′
(t) = Aw(t) + F (t, w) + f(t), 0 < t ≤ T,

w(0) = x0, w
′
(0) = y0,

(3.1)

in a Banach space X. Let g : [0, T ]×D(A)→ X be a nonlinear mapping such that
t 7→ g(t, w) is measurable and

(g1) ||g(t, w1)− g(t, w2)||D(A) ≤ L||w1 − w2||,

(g2) g(t, 0) = 0

for a positive constant L.
For w ∈ L2(0, T ;D(A)), we set

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds

where k belongs to L2(0, T ). Then, we will seek a mild solution of (3.1), that is, a
solution of the integral equation

w(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s){F (s, w) + f(s)}ds. (3.2)

Remark 3.1. If g : [0, T ]×X → X is a nonlinear mapping satisfying

||g(t, w1)− g(t, w2)|| ≤ L||w1 − w2||

for a positive constant L, then our results can be obtained immediately.
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Lemma 3.1. Let w ∈ L2(0, T ;D(A)), T > 0. Then F (·, w) ∈ L2(0, T ;X) and

||F (·, w)||L2(0,T ;X) ≤ L||k||L2(0,T )

√
T ||w||L2(0,T ;D(A)).

Moreover if w1, w2 ∈ L2(0, T ;D(A)), then

||F (·, w1)− F (·, w2)||L2(0,T ;X) ≤ L||k||L2(0,T )

√
T ||w1 − w2||L2(0,T ;D(A)).

Proof. From (g1), (g2) and using the Hölder inequality, it is easily seen that

||F (·, w)||2L2(0,T ;X) ≤
∫ T

0

||
∫ t

0

k(t− s)g(s, w(s))ds||2dt

≤ ||k||2L2(0,T )

∫ T

0

∫ t

0

L2||w(s)||2dsdt

≤ L2||k||2L2(0,T )T ||w||2L2(0,T ;D(A)).

The proof of the second paragraph is similar. �

Lemma 3.2. If k ∈ W 1,2(0, T ), T > 0, then

A

∫ t

0

S(t− s)F (s, w)ds = −F (t, w) (3.3)

+

∫ t

0

(C(t− s)− I)

∫ s

0

d

ds
k(s− τ)g(τ, w(τ))dτ ds

+

∫ t

0

(C(t− s)− I)k(0)g(s, w(s))ds.

Proof. From the fact that

A

∫ t

0

S(t− s)F (s, w)ds = −F (t, w) +

∫ t

0

(C(t− s)− I)
d

ds
F (s, w)ds

and
d

ds
F (s, w) =

∫ s

0

d

ds
k(s− τ)g(τ, w(τ))dτ + k(0)g(s, w(s)),

it follows (3.3). �

Now we are ready to give the following result on a local solvability of (3.1).
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Theorem 3.1. Suppose that the assumptions (g1), and (g2) are satisfied. If f :
R → X is continuously differentiable, x0 ∈ D(A), y0 ∈ E, and k ∈ W 1,2(0, T ),
T > 0, then there exists a time T ≥ T0 > 0 such that the functional differential
equation (3.1) admits a unique solution w in L2(0, T0;D(A)) ∩W 1,2(0, T0;E).

Proof. Let us fix T0 > 0 so that

C2 ≡ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0) (3.4)

+ {ω−1K(eωT0 − 1) + 1}L||k||L2(0,T0)

√
T0

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1||||k||W 1,2(0,T0)

+ {ω−1K(eωT0 − 1) + 1}T0/
√

2L||KeωT0 + 1||||k(0)|| < 1

where K and L are constants in c(7) and (g2), respectively. Invoking Proposition
2.1, for any v ∈ L2(0, T0;D(A)) we obtain the equation{

w
′′
(t) = Aw(t) + F (t, v) + f(t), 0 < t ≤ T0,

w(0) = x0, w
′
(0) = y0

(3.5)

has a unique solution w ∈ L2(0, T0;D(A)) ∩ W 1,2(0, T0;E). Let w1, w2 be the
solutions of (3.5) with v replaced by v1, v2 ∈ L2(0, T0;D(A)), respectively, that is{

(w1 − w2)
′′
(t) = A(w1 − w2)(t) + F (t, v1)− F (t, v2), 0 < t,

(w1 − w2)(0) = 0, (w1 − w2)
′
(0) = 0.

Put

J(w)(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s){F (s, v) + f(s)}ds.

Then

J(w1)(t)− J(w2)(t) =

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds,

so, from Lemmas 3.1, 3.2, it follows that for 0 ≤ t ≤ T0,

||
∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds|| (3.6)

≤ ω−1KLT0(eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A)),
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and

||A
∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds|| (3.7)

≤ ||F (t, v1)− F (s, v2)||

+ ||
∫ t

0

(C(t− s)− I)

∫ s

0

d

ds
k(s− τ)(g(τ, v1(τ))− g(τ, v2(τ))))dτ ds||

+ ||
∫ t

0

(C(t− s)− I)k(0)(g(s, v1(s))− g(s, v2(s)))ds||

≤ ||F (t, v1)− F (s, v2)||
+ tL||Keωt + 1||||k||W 1,2(0,T0)||v1 − v2||L2(0,T0;D(A))

+
√
tL||Keωt + 1||||k(0)||||v1 − v2||L2(0,T0;D(A)).

We also obtain that

|| d
dt
C(t)

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds|| (3.8)

≤ ||AS(t)

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||

= ||S(t)A

∫ t

0

S(t− s){F (s, v1)− F (s, v2)}ds||.

Thus, from (3.6),(3.7), and (3.8), we conclude that

||J(w1)− J(w2)||L2(0,T0;D(A)) (3.9)

≤ ω−1KLT
3/2
0 (eωT0 − 1)||k||L2(0,T0)||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}L||k||L2(0,T0)

√
T0||v1 − v2||L2(0,T0;D(A))

+ {ω−1K(eωT0 − 1) + 1}T 3/2
0 /
√

3L||KeωT0 + 1|| ||k||W 1,2(0,T0)||v1 − v2||
+ {ω−1K(eωT0 − 1) + 1}T0/

√
2L||KeωT0 + 1|| ||k(0)|| ||v1 − v2||.

So by virtue of the condition (3.4) the contraction mapping principle gives that the
solution of (3.1) exists uniquely in [0, T0]. �

Now, we give a norm estimation of the solution of (3.1) and establish the global
existence of solutions with the aid of norm estimations.

Theorem 3.2. Suppose that the assumptions (g1), and (g2) are satisfied. If f : R→
X is continuously differentiable, x0 ∈ D(A), y0 ∈ E, and k ∈ W 1,2(0, T ), T > 0,
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then the solution w of (3.1) exists and is unique in L2(0, T ;D(A)) ∩W 1,2(0, T ;E),
and there exists a constant C3 depending on T such that

||w||L2(0,T ;D(A)) ≤ C3(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)). (3.10)

Proof. Let w(·) be the solution of (3.1) in the interval [0, T0] where T0 is a
constant in (3.4) and v(·) be the solution of the following equation

v
′′
(t) = Av(t) + f(t), 0 < t,

v(0) = x0, v
′
(0) = y0.

Then

(w − v)(t) =

∫ t

0

S(t− s)F (s, w)ds,

and in view of (3.9)

||w − v||L2(0,T0;D(A)) ≤ C2||w||L2(0,T0;D(A)), (3.11)

that is, combining (3.11) with Proposition 2.1 we have

||w||L2(0,T0;D(A)) ≤
1

1− C2

||v||L2(0,T0;D(A)) (3.12)

≤ C1

1− C2

(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T0;X)).

Now from

A

∫ T0

0

S(T0 − s){F (s, w) + f(s)}ds

= C(T0)f(0)− f(T0) +

∫ T0

0

(C(T0 − s)− I)f
′
(s)ds

− F (T0, w) +

∫ T0

0

(C(T0 − s)− I)

∫ s

0

d

ds
k(s− τ)g(τ, w(τ))dτ ds

+

∫ T0

0

(C(T0 − s)− I)k(0)g(s, w(s))ds

and since

d

dt
C(t)

∫ t

0

S(t− s){F (s, v) + f(s)}ds

= S(t)A

∫ t

0

S(t− s){F (s, v) + f(s)}ds,
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we have

||w(T0)||D(A) = ||C(T0)x0 + S(T0)y0 +

∫ T0

0

S(T0 − s){F (s, w) + f(s)}ds||D(A)

≤ (ω−1K(eωT0 − 1) + 1){KeωT0 ||x0||D(A) + ω−1K(eωT0 − 1)||y0||E
+ ||KeωT0f(0)||+ ||f(T0)||+ ||K(eωT0 + 1)

√
T0||f ||W 1,2(0,T ;X)

+ L||k||L2(0,T0)||w||L2(0,T0;D(A))

+ tL||Keωt + 1|| ||k||W 1,2(0,T0)||w||L2(0,T0;D(A))

+
√
tL||Keωt + 1|| ||k(0)||||w||L2(0,T0;D(A))}.

Hence, from (3.12), there exists a positive constant C > 0 such that

||w(T0)||D(A) ≤ C(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T0;X)).

Since the condition (3.4) is independent of initial values, the solution of (3.1) can
be extended to the interval [0, nT0] for every natural number n. An analogous
estimate to (3.12) holds for the solution in [0, nT0], and hence for the initial value
(w(nT0), w

′
(nT0)) ∈ D(A)× E in the interval [nT0, (n+ 1)T0]. �

Example. Let X = L2([0, π];R). We consider the following partial differential
equation 

w
′′
(t, x) = Aw(t, x) + F (t, w) + f(t), 0 < t, 0 < x < π,

w(t, 0) = w(t, π) = 0, t ∈ R
w(0, x) = x0(x), w

′
(0, x) = y0(x), 0 < x < π.

(E)

Let en(x) =
√

2
π

sinnx. Then {en : n = 1, · · · } is an orthonormal base for X. Let

A : X → X be defined by
Aw(x) = w′′(x),

where D(A) = {w ∈ X : w, w
′

are absolutely continuous, w
′′ ∈ X, w(0) = w(π) =

0}. Then

Aw =
∞∑
n=1

−n2(w, en)en, w ∈ D(A),

and A is the infinitesimal generator of a strongly continuous cosine family C(t),
t ∈ R, in X given by

C(t)w =
∞∑
n=1

cosnt(w, en)en, w ∈ X.
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The associated sine family is given by

S(t)w =
∞∑
n=1

sinnt

n
(w, en)en, w ∈ X.

Let g1(t, x, w, p), p ∈ Rm, be assumed that there is a continuous ρ(t, r) : R ×
R→ R+ and a real constant 1 ≤ γ such that

(f1) g1(t, x, 0, 0) = 0,

(f2) |g1(t, x, w, p)− g1(t, x, w, q)| ≤ ρ(t, |w|)|p− q|,

(f3) |g1(t, x, w1, p)− g1(t, x, w2, p)| ≤ ρ(t, |w1|+ |w2|)|w1 − w2|.

Let

g(t, w)x = g1(t, x, w,Dw,D2w).

Then noting that

||g(t, w1)− g(t, w2)||20,2 ≤ 2

∫
Ω

|g1(t, w1, p)− g1(t, w2, q)|2du

+ 2

∫
Ω

|g1(t, u, w1, q)− g1(t, u, w2, q)|2du

where p = (Dw1, D
2w1) and q = (Dw2, D

2w2), it follows from (f1), (f2) and (f3)
that

||g(t, x)− g(t, y)||20,2 ≤ L(||x||D(A), ||y||D(A))||x− y||D(A)

where L(||w1||D(A), ||w2||D(A)) is a constant depending on ||w1||D(A) and ||w2||D(A).
We set

F (t, w) =

∫ t

0

k(t− s)g(s, w(s))ds

where k belongs to L2(0, T ). Then, from the results in section 3, the solution w of
(E) exists and is unique in L2(0, T ;D(A))∩W 1,2(0, T ;E), and there exists a constant
C3 depending on T such that

||w||L2(0,T ;D(A)) ≤ C3(1 + ||x0||D(A) + ||y0||E + ||f ||W 1,2(0,T ;X)).
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