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비모수적 적합도 검정에서 밀도함수의 

꼬리부분이 사전분포와 커널 선택에 미치는 영향

엄 태 웅

부 경 대 학 교  대 학 원  통 계 학 과

요약

본 논문에서는 밀도함수의 적합도검정절차로 베이즈인수를 비모수적인 방법으로 정의한 후 고전적인

방법을 사용하여 검정하는 절차를 제안한다.여기서 베이즈인수는 두 개의 한계우도함수들의 비로 정

의되는데 이 중 한 한계우도함수는 밀도함수의 커널추정량과 사용되는 평활모수의 사전분포의 곱을

적분하여 구해진다.

일반적으로 밀도함수의 커널 추정량은 평활모수의 선택에 가장 큰 영향을 받는 것으로 알려져 있다.

그러나 참 밀도함수의 꼬리부분이 두터운데 사용된 커널의 꼬리부분이 얕을 경우 추정된 우도는 좋은

성질을 갖지 못한 것으로 알려져 있다.이에 본 연구에서는 참 밀도함수의 꼬리부분과 평활모수의 사

전분포의 꼬리부분의 두터운 정도들이 어떤 관계가 있는지 살펴본다.

이 때 검정절차는 참 밀도함수의 귀무가설에서 계산된 백분위수들과 계산된 베이즈인수 값들을 비교

하여 실행된다.즉,고전적인 검정절차를 따르게 된다.또한 새롭게 제시된 검정통계량을 이용한 적

합도검정방법을 기존의 적합도 검정방법과 비교하기 위해 몬테칼로 모의실험방법을 수행한다.
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1. INTRODUCTION

  The Bayesian approach to hypothesis testing was developed by Jeffreys 

in a 1935 paper  and in a 1961 book Theory of Probability, where he 

elaborated a procedure of quantifying the evidence favoring a scientific 

claim. The key point was a measure, now termed the Bayes factor, which 

is the posterior odds of the null hypothesis when the prior distribution on 

the null is one-half. 

  In goodness of fit testing for a parametric null against a nonparametric 

alternative, Bayesian approaches have been investigated in the literature 

particularly in the context of Bayesian nonparametric testing of goodness 

of fit problem. However, because of the specification of an alternative 

model, and the computation of the Bayes factor in addition to theoretical 

issues such as Bayes factor consistency, Bayesian nonparametric goodness 

of fit testing is often regarded as a challenging inferential problem. In this 

regards, there have been several advances in Bayesian goodness of fit 

testing form nonparametric Bayesian point of view. 

  On the other hand, Bayes factors may also be used in frequentist fashion 

to test the fit of one model against another, an idea which appears to be 

due to Good (1957). The idea referred toas Bayes/non-Bayes synthesis 

has been proposed using the distribution of a Bayes factor and -value in 

corresponding to the Bayes factor as a significance criterion (see e.g. 

Good (1992) for an extensive review). Much more recently Hart (2009) 

proposed using approximations to posterior probabilities to test lack of fit 

in the context of regression, and Albert (2010) revisited Good’s approach 

(Good, 1967) for Bayesian categorical data analysis.

  Accordingly, in this research we also attempt to provide a kind of 

Bayes/non-Bayes compromise for hypothesis testing and propose a 

frequentist-Bayesian goodness of fit testing procedure of parametric null 

model against the nonparametric alternative using the Bayes factor in a 

nonparametric fashion. Specifically, a nonparametric Bayes factor is 

computed in which a kernel density estimate for the marginal likelihood 

under the nonparametric alternative is compared with a fitted parametric 

marginal likelihood under the null model from the Bayesian perspective 

while the testing procedure with the Bayes factor is performed in the 
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frequentist framework. That is, a pseudo Bayes, nonparametric procedure 

for testing the fit of a parametric model for a density is considered, and a 

Bayes factor in which a kernel density estimate is compared with a fitted 

parametric model is formulated with a suitable specification of prior 

distribution of the bandwidth in the kernel density estimate.

  Although bandwidth selection is not a primary concern in this field, it is 

of some interest to know how the prior distributions of the bandwidth 

affect the posterior mode of the bandwidth. To this end we will consider a 

small simulation comparing the posterior modes corresponding to different 

choices of prior of the bandwidth. 

  In general, the quality of the kernel density estimate is known as to be 

primarily determined by the choice of bandwidth and only in a minor way 

by the choice of kernel (see e.g., Silverman (1986), Scott (1992), and 

Wand and Jones (1995)). However, when the true density is heavy-tailed 

and the kernel too light-tailed, the estimated likelihood of Bayes factor is 

known to behave poorly (Hall, 1987). As discussed in Hall (1987), the 

kernel needs to be chosen so that tail effects become negligible. 

  Therefore we need to choose the kernel in an appropriate way  by the 

assumed null distribution. Hence, in this research, we examine these two 

issues on choice of the prior as well as the choice of the kernel for the 

goodness of fit testing purpose.

  In order to complete the topic, in section 2 we review types of priors 

and kernels. In section 3 the nonparametric Bayes factor is defined and 

computed for some pairs of selected priors and kernels. We deal with the 

goodness of fit testing using the proposed nonparametric Bayes factor in 

frequentist fashion in section 4. Finally in section 5 we summarize the 

simulation results for the goodness of fit test and investigate further 

extension with the proposed Bayes factor.
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2. PRIOR DISTRIBUTIONS

  Central in Bayesian statistics is Bayes’ theorem, which can be written 

as follows:

 ∝  

Given the likelihood function   and the prior , it is easy to 

calculate the posterior distribution of ,  , which is used for doing 

inference. An important problem in Bayesian analysis is how to define the 

prior distribution.

  The prior distribution represents the information about an uncertain 

parameter that is combined with the probability distribution of new data to 

yield the posterior distribution, which in turn is used for future inferences 

and decisions involving the parameter. Thus we have two types of priors: 

informative and noninformative.

2.1 Noninformative Priors  

  If prior information about the parameter  is available, it should be 

incorporated in the prior distribution. 

If we have no prior information, we want a prior with minimal influence on 

the inference. We call such a prior a noninformative prior.

  An important question is, how do we construct a noninformative prior? 

The Bayes/Laplace postulate, stated about 200 years ago says the 

following: When nothing is known about  in advance, let the prior   be 

a uniform distribution, that is, let all possible outcomes of  have the same 

probability. This is also known as the principle of insufficient reason.

  Fisher did not support the Bayes/Laplace postulate. He argued that Not 

knowing the chance of mutually exclusive events and knowing the chance 

to be equal are two quite different states of knowledge. He accepted 

Bayes’ theorem only for informative priors.

  The fundamental problem by using the uniform distribution as our 

noninformative prior, is that the uniform distribution is not invariant under 

reparametrization. If we have no information about , we also have no 

information about for example 1/, but a uniform prior on  does not 

correspond to a uniform prior for 1/. By the transformation formula, the 
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corresponding distribution for a one-to-one function  is given below:

 ,   ⇒  



Another problem with the uniform prior is that if the parameter space is 

infinite, the uniform prior is improper, which means, it does not integrate 

to one. This is however not always a serous problem, since improper 

priors often lead to proper posteriors. Now we look at the interpretation of 

noninformative priors.

2.2 Interpretation of Noninformative Priors   

  Kass and Wasserman (1996) stated two different interpretations of 

noninformative priors: 1) Noninformative priors are formal representations 

of ignorance. 2) There is no objective, unique prior that represents 

ignorance, instead noninformative priors are chosen by public agreement 

much like units of length and weight. In the second interpretation, 

noninformative priors are the default to use when there is insufficient 

information to otherwise define the prior. Today, no one use the first 

interpretation to claim that one particular prior is truly noninformative. The 

focus is on comparing different priors to see if any is preferable in some 

sense.

  Box and Tiao (1973) define a noninformative prior as a prior which 

provides little information relative to the experiment. Bernardo and Smith 

(1994) use a similar definition, they say that noninformative priors have 

minimal effect relative to the data, on the final inference. They regard the 

noninformative prior as a mathematical tool, it is not a uniquely 

noninformative or object prior. These definitions are related to the second 

interpretation of Kass and Wasserman (1996).

  Pericchi and Walley (1991) have a quite different view. They say that 

no single probability distribution can model ignorance satisfactory, 

therefore large classes of distributions are needed. They use the first 

interpretation of Kass and Wasserman (1996), but they realize that a 

single distribution is not enough. Therefore they introduce classes of prior 

distributions.

2.3 Invariant Noninformative Priors  
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  In the previous introduction, we saw that the fundamental problem by 

using the uniform distribution as noninformative prior, is that it is not 

invariant under reparametrization. Now we will see how we can construct 

invariant noninformative priors.

  One approach is to look for an invariance structure in the problem and 

let the prior have the same invariance structure. Mathematically, this 

means that the model and the prior should be invariant under action of the 

same group and we should use the right Haar measure as prior. The right 

Haar measure is the prior that is invariant to right multiplication with the 

group. For reasons not to be discussed here, we prefer the right invariant 

Haar measure instead of the left, as our noninformative prior. See for 

example Berger (1980) or Robert (1994) for a more throughly discussion 

of group invariance and Haar measures. 

  We illustrate the method by two simple examples.

Example 1. Location parameters:

Let  be distributed as , which is a location density, and  is called 

a location parameter. A location invariant density is invariant to linear 

transformation. This means that  is distributed as  with 

 , that is  and  have the same distribution, but with different 

location parameters. Since the model is location invariant, the prior 

distribution should be location invariant. Therefore:

  ∀  ⇒   .

An invariant noninformative prior for a location parameter is the uniform 

distribution.   

  Another argument leading to the same result, is that since  and  are 

location parameters in the same model, they should have the same prior.

Example 2. Scale parameters:

Let  be distributed as 


 
 , which is a scale invariant density with 

scale parameter . That the distribution is scale invariant, means that 

  has the same distribution as , but with a different scale 

parameter. Since the density is scale invariant, the prior distribution should 

be scale invariant:
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 
 

∀∈ ∞ and   

This leads to 

 
 


    ⇒  




so the invariant noninformative prior for a scale parameter is  , 

which is an improper distribution.

  We see that in both location and scale cases, the invariant 

noninformative prior is improper. 

  A difficulty with this method is that all problems do not have an 

invariance structure and the right Haar measure does not exist. In the 

following we present methods for finding invariant noninformative priors 

which do not take the structure of the problem into account.

2.3.1 Diffuse prior  One of the most common priors is the flat, 

uninformative, or diffuse prior where the prior is simply a constant,




 for ≤≤

This conveys that we have no a priori reason to favor any particular 

parameter value over another. With a flat prior, the posterior just a 

constant times the likelihood,

   

and we typically write that  ∝ . In many cases, classical 

expressions from frequentist statistics are obtained by Bayesian analysis 

assuming a flat prior.

  If the variable of interest ranges over ∞ or ∞∞, then strictly 

speaking a flat prior does not exist, as if the constant takes on any 

non-zero value, the integral does not exist. In such cases a flat prior 

(assuming  ∝  ) is referred to as an improper prior.

2.3.2 Jeffreys' prior  This method was described by Jeffreys (1946), 

and it is base on the Fisher information given by 

   
log   




 log   

Jeffreys' prior is defined as 
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∝ 

A full discussion, with derivation, can be found in Lee (1997, Section 3.3). 

Jeffreys justified his method by the fact that it satisfies the invariant 

reparametrization requirement, shown by the following two equations:

    ′

∝   ′   ′

In the last equation we recognize the transformation formula.

  A motivation for Jeffreys' method is that the Fisher information   is 

an indicator of the amount of information brought by the model 

(observation) about . To favor the values for  of which   is large is 

equivalent to minimizing the influence of the prior.

  When the parameter  is one-dimensional, the Jeffreys prior coincides 

with the right Haar measure when it exists.

  Jeffreys' prior can be generalized to multidimensional parameters  by 

letting the prior be proportional to the square root of the determinant of 

the Fisher information matrix:

 ∝det   

where   is the Fisher Information matrix, the matrix of the expected 

second partials,

    
 log 

However, there are problems with this generalized Jeffreys' prior, as the 

following example, taken from Bernardo and Smith (1994) will show.

Example 3.

  We let    be iid   . First we assume that the mean is 

known, and equal to zero. Then we have a scale density, and Jeffreys' 

noninformative prior for  is given by  
. With this choice of prior, 

the posterior of  is such that 


 




 ∼ 



Then we assume that the mean is unknown. The two dimensional Jeffreys' 

prior for    is now 
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  

With this choice of prior, the posterior of  is such that 


 




  ∼ 

 

This is however un acceptable, since we would expect to loose one degree 

of freedom when we estimate .

  Jeffreys' advice in this case, and other location-scale families was to 

assume that  and  are independent a prior and use the one-dimensional 

Jeffreys prior for each of the parameters. Then the prior for    

becomes 

   ⋅


 




which is also the right invariant Haar measure, and gives us the correct 

degrees of freedom.

2.3.3 Reference priors  Another well-known class of noninformative 

priors, is the reference prior, first described by Bernardo (1979) and 

further developed by Berger and Bernardo (1989). The method for 

deriving the reference prior is also referred to as the Berger-Bernardo 

method.

  The method leads to Jeffrey's prior in the one-dimensional case, but as 

we see later, it is advantageous to Jeffreys' method in the multidimensional 

case. The definition of a reference prior is the prior that maximizes the 

missing information in the experiment. The reference prior is derived as 

follows. Let   ⋯ be iid random variables. Define the 

Kullback-Leibler distance between the posterior and the prior distribution 

as,

 
    log

   
Let 

 be the expected Kullback-Leibler distance with respect to  :

 
      .

The missing information is now given as the limit of  
 as the number of 

observations,  goes to infinity. So we find the prior that maximizes
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∞
  lim

→∞

 

.

  Unfortunately, this limit is usually infinite. To overcome this difficulty, 

we find the prior  maximizing  
  and find the limit of the corresponding 

sequence of posteriors . Then the reference prior is given as the prior 

that produces the limiting posterior.

  The Berger-Bernardo method can be extended to handle nuisance 

parameters. Then the parameter is given by    where  is the 

parameter of interest and is the nuisance parameter. We can write the 

prior for  as

 

  The idea is now to first define the conditional prior  to be the 

reference prior for  with  fixed. Then we find the marginal model

  (2.3.1)

and take the prior for ,  to be the reference prior based on the 

marginal model . There are some technical problems here, because 

the prior  is often improper, and the integral (2.3.1) diverges. To 

accomplish this, we restrict the integral to a sequence of compact sets.

  The method is invariant in choice of nuisance parameter. This seems 

reasonable, since the parameter of interest is independent of the nuisance 

parameter.

  The method can also be generalized to multidimensional parameter 

spaces. Then we let the parameter vector   ⋯ be ordered 

according to importance, with  being the most important parameter. We 

write the prior for  as

 ⋯⋯    

and use the procedure above recursively. It should be noted that the 

ordering of the parameters is very important. Different orderings may lead 

to different reference priors. In some cases it might be difficult to chose 

the correct ordering. However, this method avoids the problem we saw 

with Jeffreys' multidimensional method.

2.3.4 Other methods  Box and Tiao (1973) described a method based on 

something they called data-translated likelihoods. The method leads to 
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Jeffreys’ prior. A likelihood function is data-translated if it can be 

written as  . They suggested to use a uniform prior when 

this is satisfied. An approximate data-translated likelihood was introduced 

to motivate for Jeffreys’ general rule. 

  Jaynes (1968) suggested to select the prior that maximizes the entropy. 

This method is only good for discrete, finite parameter space. If no further 

constraints are imposed on the problem, this method gives the uniform 

prior. The method has been used successfully in many problems.

  Welch and Peers (1963) developed a method called probability matching. 

They seek a prior  so that the posterior confidence interval for  has 

coverage error  in the frequentist sense. This means that the 

difference between the posterior and frrequentist confidence interval should 

be small. Their method is equivalent to Jeffreys’ prior when  is 

one-dimensional. Tibshirani (1989) extended the method to be able to 

handle nuisance parameters.

2.4 Informative Priors

  Informative prior distributions summarise the evidence about the 

parameters concerned from many sources and often have a considerable 

impact on the results.

  Using informative priors distributions allows the incorporation of 

information available to researcher form the literature and in light of their 

experience. However, using informative priors may lead to problems 

because of the subjective beliefs. Unfortunately, even inf we wanted to use 

noninformative priors, the best method for choosing such priors is still an 

issue of considerable debate. 

  Here are two techniques used most frequently to develop informative 

prior distributions.

2.4.1 Pooling by Expert Opinions  In principle, one of the most 

powerful methods for developing informative priors is to synthesise the 

information from a group of experts. Although the development of priors 

by consensus risks all the problems related to the impact of the subjective 

biases of the various parties in the assessment process (arguably priors 

developed using expert opinion are examples of "dreamt up" priors, to use 

an expression we used in the previous section), this approach can be 



- 11 -

successful. 

  A potentially major problem with the development of priors by consensus 

is that different "experts" will suggest different priors. It is far from a 

trivial exercise (theoretically) to pool such priors to form a "consensus 

prior" (and it is impossible to include more than one prior for each 

parameter in a Bayesian assessment). We recommend that the various 

priors be multiplied together and then normalized because at least this 

procedure has the desirable property that the assessment results are 

independent of whether the priors are pooled and then the assessment 

conducted or whether assessments are conducted using each alternative 

prior in turn and the results then pooled. One very undesirable feature of 

this approach to pooling, however, is that if one expert believes that some 

parameter value/model has zero probability, the posterior is forced to be 

consistent with this opinion. Therefore, if this approach is to be used, our 

earlier advice that no plausible value for a parameter should be assigned 

zero probability should be followed.

2.4.2 Data summaries  If the parameters of the model are chosen to be 

independent of the parameter that scales the population, data for other 

similar models can be used to construct priors for the model for which an 

assessment is needed. This approach to conducting priors is known as 

meta-analysis. Methods for constructing priors using data for other 

relevant models range from simply tabulating the estimates to hierarchical 

meta-analysis (Gelman et al., 1995). Simple tabulation methods can be 

extended by fitting a smooth functional form to the data and by weighting 

each estimate by a measure of its uncertainty and comparability to the 

model for which an assessment is required. Hierarchical meta-analysis 

(Gelman et al., 1995) is a more formal method for developing a prior for a 

parameter from values for that parameter for other similar models under 

the assumption that the models differ in that parameter.

  "Selection bias" is a potential problem when developing a prior using 

meta analysis.

2.5 Conjugate Priors

  In Bayesian probability theory, if the posterior distributions   are in 

the same family as the prior probability distribution , the prior and 
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posterior are then called conjugate distributions, and the prior is called a 

conjugate prior for the likelihood function. For example, the Gaussian 

family is conjugate to itself (or self-conjugate) with respect to a Gaussian 

likelihood function: if the likelihood function is Gaussian, choosing a 

Gaussian prior over the mean will ensure that the posterior distribution is 

also Gaussian. This means that the Gaussian distribution is a conjugate 

prior for the likelihood which is also Gaussian. The concept, as well as the 

term conjugate prior, were introduced by Howard Raiffa and Robert 

Schlaifer (1961). 

  Consider the general problem of inferring a distribution for a parameter 

 given some data  =(). From Bayes' theorem, the posterior 

distribution is equal to the product of the likelihood function   and 

prior , normalized (divided) by the probability of the data :

  ′′′
 



  Let the likelihood function be considered fixed; the likelihood function is 

usually well-determined from a statement of the data-generating process. 

It is clear that different choices of the prior distribution  may make 

the integral more or less difficult to calculate, and the product   

may take one algebraic form or another. For certain choices of the prior, 

the posterior has the same algebraic form as the prior (generally with 

different parameter values). Such a choice is a conjugate prior.

  A conjugate prior is an algebraic convenience, giving a closed-form 

expression for the posterior: otherwise a difficult numerical integration 

may be necessary. Further, conjugate priors may give intuition, by more 

transparently showing how a likelihood function updates a prior distribution.

  All members of the exponential family have conjugate priors. See Gelman 

et al. (2003) for a catalog. Table 2.1 gives the conjugate priors for 

several common likelihood functions.
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Table 2.1 Conjugate Priors for Common Likelihood Functions.

Likelihood Function Conjugate Prior

Binomial Beta

Multinomial Dirichlet

Poisson Gamma

Normal

   unknown,  known Normal

   known,    unknown Inverse Chi-Square

Multivariate Normal

   unknown,  known Multivariate Normal

   known,    unknown Inverse Wishart
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3. KERNELS IN DENSITY ESTIMATION

3.1 Weighting Function

  Let … be an independent and identically distributed sample drawn 

from some distribution with an unknown density . From the definition of 

the probability density function, , of a random variable, , one has that 






 ≈ 

and hence,

≈


 

  The above probability can be estimated by a relative frequency in the 

sample, hence



 numberofobservations ∈ 


An alternative way to represent  is,

 



 



  (3.1.1)

where … are sample and,















for

 



The  defined in (3.1.1) has the properties of a pdf, that is  is 

non-negative for all , and the area between  and the -axis is equal 

to one.

  One way to think about (3.1.1) is to imagine that a rectangle (height 

 and width ) is placed over each observed point on the -axis. The 

estimate of the pdf at a given point is  times the sum of the heights of 

all the rectangles that cover the point. By increasing  one increases the 

width of each rectangle and thereby increases the degree of smoothing.

  Instead of using rectangles in (3.1.1) one could use other weighting 

functions, for example triangles,
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










 
   for     

 otherwise



  The resulting  is indeed a pdf. Note that here too larger values of  

lead to smoother estimates . Another alternative weighting function is 

the Gaussian,





  ∞ ∞.

3.2 Kernels  

  The above weighting functions, , are all of the form,

 


 
 ,

where  is a function of a single variable called the kernel.

  A kernel is a standardized weighting function, namely the weighting 

function with  . The kernel determines the shape of the weighting 

function. The parameter  is called the bandwidth or smoothing parameter. 

It determines the amount of smoothing applied in estimating . Six 

examples of kernels are given in Table 3.1.

Table 3.1  Six Kernels and their Efficiencies

Kernel 

Epanechnikov   









  

 for    

 otherwise

Biweight   










   for     

 otherwise

Triangular        for      otherwise

Gaussian   


 

 , ∞   ∞

Rectangular     for     
 otherwise
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  In general any function having the following properties can be used as a 

kernel,

a)  ,    b)  ,   c)    

It follows that any symmetric pdf is a kernel. However, non–pdf kernels 

can also be used, e.g. kernels for which   for some values of . 

The latter type of kernels have the disadvantage that  may be negative 

for some values of .

  Kernel estimation of pdfs is characterized by the kernel, , which 

determines the shape of the weighting function, and the bandwidth, , 

which determines the "width" of the weighting function and hence the 

amount of smoothing. The two components determine the properties of 

. Considerable research has been carried out (and continues to be 

carried out) on the question of how one should select  and  in order to 

optimize the properties of . 

  We are interested in estimating the shape of this function . Its kernel 

density estimator is,

 



 



  



 



 
 

where ∙ is the kernel a symmetric but not necessarily positive 

function that integrates to one and  is a smoothing parameter called 

the bandwidth. A kernel with subscript  is called the scaled kernel and 

defined as    . Intuitively one wants to choose  as small as 

the data allow, however there is always a trade-off between the bias of 

the estimator and its variance; more on the choice of bandwidth below.

3.3 Properties of Kernel Estimators

3.3.1 Quantifying the accuracy of kernel estimators  There are 

various ways to quantify the accuracy of a density estimator. We will 

focus here on the mean squared error (MSE) and its two components, 

namely bias and standard error (or variance). We note that the MSE of 

 is a function of the argument :
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   


  

  





  A measure of the global accuracy of  is the mean integrated squared 

error (MISE)

         
∞

∞





                   
∞

∞

 

                   
∞

∞

  
∞

∞



We consider each of these components in term.

3.3.2 The Bias, Variance and Mean Squared Error of 

                  


 











 

                        



 





 
∞

∞

 
 

                        


∞

∞

 
 

The transformation  


 i.e.,    

  


 yields

  
∞

∞



Expanding  in a Taylor series yields

 ′


″

where  represents terms that converge to zero faster than  as  

approaches zero. Thus
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          
∞

∞

 
∞

∞

′

                  
∞

∞




″

                
∞

∞

 ′ 
∞

∞



                  


″

∞

∞

 

                


″



         ≈

″

This depends on














Bias→  as → ,

variance of the kernel,

curvature of the density at the point 

The variance of  is given by

                   


 
 

                          


 







 

 
because the ,   ⋯, are independently distributed. Now

          
   

 


  
 



                           
 



   
 





   



 
 



  

 
 

 


            



 
 



  

 



Substituting  


, one obtains

 
   


 
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Applying a Taylor approximation yields

 
 ′  


 

Note that if  becomes large and  becomes small then the above 

expression becomes approximately:

≈

 

We note that the variance decreases as h increases.

The above approximations for the bias and variance of  lead to

                   

                            




 ″  




(3.3.1)

where   and   . 
Integrating (3.3.1) with respect to  yields

 ≈

 

 ″  


 (3.3.2)

  Of central importance is the way in which   changes as a function 

of the bandwidth . For very small values of  the second term in (3.3.2) 

becomes large but as  gets larger so the first term in (3.3.2) increases. 

There is an optimal value of  which minimizes  .

3.3.3 Optimal Bandwidth  Expression (3.3.2) is the measure that we use 

to quantify the performance of the estimator. We can find the optimal 

bandwidth by minimizing (3.3.2) with respect to . The first derivative is 

given by



 
 

 ″  



Setting this equal to zero yields the optimal bandwidth, , for the given 

pdf and kernel:

  


″

 


 (3.3.3)

where   
. Substituting (3.3.3) for  in (3.3.2) gives the minimal 
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MISE for the given pdf and kernel. After some manipulation this can be 

shown to be


  

 
 

 





 (3.3.4)

  We note that  depends on the sample size, , and the kernel, . 

However, it also depends on the unknown pdf, , through the functional 

. Thus as it stands expression (3.3.3) is not applicable in practice. 

However, the “plug-in” estimator of , to be discussed later, is simply 

expression (3.3.3) with  replaced by an estimator.

3.3.4 Optimal Kernels  The   can also be minimized with respect 

to the kernel used. It can be shown (see, e.g., Wand and Jones, 1995) 

that Epanechnikov kernel is optimal in this respect.

  











 


 for

 



This result together with (3.3.4) enables one to examine the impact of 

kernel choice on . The efficiency of a kernel , relative to the 

optimal Epanechnikov kernel  , is defined as

  


 









 
 


  
  








  The efficiencies for a number of well-known kernels are given in Table 

3.1. It is clear that the selection of kernel has rather limited impact on the 

efficiency.

  The rectangular kernel, for example, has an efficiency of approximately 

93%. This can be interpreted as follows: 

The 
 obtained using an Epanechnikov kernel with    is 

approximately equal to the  obtained using a rectangular kernel 

with   .

3.4 Selection of the Bandwidth

  Selection of the bandwidth of kernel estimator is a subject of 
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considerable research. We will outline four popular methods.

3.4.1 Selection with Reference to some given Distribution  Here one 

selects the bandwidth that would be optimal for a particular pdf. 

Convenient here is the normal. We note that one is not assuming that  

is normal; rather one is selecting  which would be optimal if the pdf 

were normal. In this case it can be shown that

 ″ 



and using a Gaussian kernel leads to

  
 


 ≈ 



 (3.4.1)

  The normal distribution is not a “wiggly” distribution; it is unimodal 

and bell-shaped. It is therefore to be expected that (3.4.1) will be too 

large for multimodal distributions. Secondly to apply (3.4.1) one has to 

estimate . The usual estimator, the sample variance, is not robust; it 

overestimates  if some outliers (extreme observations) are present and 

thereby increases  even more. To overcome these problems Silverman 

(1986) proposed the following estimator


 (3.4.2)

where   min
 , where   



 





 and  is the 

interquartile range of the data. The constant 1.34 is derived from the fact 

that for a    random variable , one has    . The 

expression (3.4.2) is used as the default option in the  function 

"density". It is also used as a starting value in some more sophisticated 

iterative estimators for the optimal bandwidth.

3.4.2 Cross–Validation  The technique of cross-validation will be 

discussed in more detail in the chapter on model selection. At this point 

we will only outline its application to the problem of estimating optimal 

bandwidths. By definition
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            
                      

  The third term does not depend on the sample or on the bandwidth. An 

approximately unbiased estimator of the first two terms is given by

   


 



  


 




where   is the estimated density at the argument  using the original 

sample apart from observation . One computes   for different 

values of  and estimates the optimal value, , using the  which 

minimizes  . 

3.4.3 Plug-in estimator  The idea developed by Sheather and Jones 

(1991) is to estimate  from (3.3.2) by applying a separate smoothing 

technique to estimate ″ and hence ″. For details see, e.g. Wand and 

Jones (1995), section 3.6. An  function to carry out the computations is 

available in the  library "sm" of Bowman and Azzalini (1997).
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4. BAYES FACTOR

4.1 Bayes Factor

  In the classical hypothesis testing framework, we have two alternatives. 

The null hypothesis  that the unknown parameter  belongs to some set 

or interval ∈, versus the alternative hypothesis  that  belongs 

to the alternative set ∈.  and  contain no common elements 

∩ ⊘ and the union of  and  contains the entire space of 

values for (i.e., ∪ ).

  In the classical statistical framework of the frequentists, one uses the 

observed data to test the significant of a particular hypothesis, and (if 

possible) compute a -value (the probability  of observing the given 

value of the test statistic if the null hypothesis is indeed correct). Hence, 

at first blush one would think that the idea of a hypothesis test is trivial in 

a Bayesian framework, as using the posterior distribution,

Pr  


  and Pr 


 

  The kicker with a Bayesian analysis is that we also have prior 

information and Bayesian hypothesis testing addresses whether, given the 

data, we are more or less inclined towards the hypothesis than we initially 

were. For example, suppose for the prior distribution of  is such that 

Pr   , while for the posterior distribution Pr   . The 

later is significant at the 5 percent level in a classical hypothesis testing 

framework, but the data only doubles our confidence in the alternative 

hypothesis relative to our belief based on prior information. If 

Pr    for the prior, then a 5% posterior probability would greatly 

increase our confidence in the alternative hypothesis. Hence, the prior 

probabilities certainly influence hypothesis testing. 

  To formalize this idea, let,

 Pr∈    Pr∈  

denote the probability, given the observed data , that  is in the null () 

and alternative () hypothesis sets. Note that these are posterior 
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probabilities. Since ∩ ⊘ and ∪ , it follows that  . 

Likewise, for the prior probabilities we have,

 Pr∈  Pr∈.

Thus the prior odds of  versus  are , while the posterior odds 

are .

  The Bayes factor  in favor of  versus  is given by the ratio of 

the posterior odds divided by the prior odds,

 





.

The Bayes factor is loosely interpreted as the odds in favor of  versus 

 that are given by the data. Since   and  , we can also 

express this as,

 


.

Likewise, by symmetry note that the Bayes factor  in favor of  

versus  is just,

 .

When the hypotheses are simple, say   and  , then for   ,

∝    .

Thus,




 

 
.

and the Bayes factor (in favor of the null) reduces the,

 

 
.

which is simply a likelihood ratio.

  When the hypotheses are composite (containing multiple members), 

things are slightly more complicated. First note that the prior distribution 

of  conditioned on  vs.  is,

  for   . (4.1.1)

as the total probability ∈ , so that dividing by  normalizes the 
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distribution to integrate to one. Thus,

 Pr∈  
∈

  

∝
∈

 

 
∈

 

where the second step follows from Bayes’theorem and the final step 

follows from Equation (4.1.1), as  . The Bayes factor in favor 

the null hypothesis thus becomes,

  
 

 
∈

 


∈

 

.

which is a ratio of the weighted likelihoods of  and .

  A compromise between Bayesian and classical hypothesis testing was 

suggested by Lindley (1965). If the goal is to conduct a hypothesis test of 

the form      vs.   ≠ and we assume a diffuse prior, then a 

significance test of level  follows by obtaining a  HDR for the 

posterior and rejecting the null hypothesis if and only if  is outside of the 

HDR. See Lee (1997) are further discussions on hypothesis testing (or 

lack thereof) in a Bayesian framework.

4.2 Nonparametric Bayes Factor

  Let   ⋯ be a random sample of size n from an unknown 

probability density f, and we wish to test whether the density f, against 

the non-parametric alternative,

  ∈Г  ∙ ∈    ∈ГГ.

 Suppose that  is from an unknown probability density ∉ГГ, and 

define the following cross-validated, nonparametric likelihood:


 


  

  


≠

 
   (4.2.1)

  Let  be a prior for  and  a prior for , both of which are assumed 

to be proper. Define the following nonparametric Bayes factor  of two 
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marginal likelihoods, the marginal nonparametric likelihood of (4.2.1) for 

the numerator (cf. Vexler et al. (2013) for the Bayes factor in terms of 

the ratio of empirical likelihoods) and the marginal parametric likelihood for 

the denominator,

 




 



  




∞


.

4.2.1 The Role of Prior and Kernel Estimate  Prior to selecting the 

smoothing parameter for the nature of the noninformative general prior 

satisfaction as much as possible but there is no improper the weak point 

of noninformative prior, proper prior that was used. To this end, 

Richardson and Green (1997) is propsed Gaussian of the kernel estimator 

is called mixture model of the normal distribution for the prior  paying 

attention to what is proposed inverse-gamma. Thus, prior for  is 

considered prior derived from the inverse-gamma prior  of . The 

prior for  induced by assuming that  is inverse-gamma is,

 





exp

  ∞ (4.2.2)

  This prior is noninformative when  and  are smaller. However, the 

appropriate choice can be as informative. Alternative to the prior of 

(4.2.2), the inverse-gamma prior for  using a factor exp instead of 

,

 





exp

  ∞
  We may choose  and  small as in the case of  , say    and 

  , but a sample-size dependent inverse-gamma prior  can also be 

considered with ,

 





 


exp

  ∞ 
  We consider simulation comparing the posterior modes corresponding to 

different choices of prior of the bandwidth ,  with  and  ,  

with  and  , and ,



- 27 -







exp 

   ∞

 


exp 

   ∞


log


exp

log   ∞
  Typically, properties of the kernel estimators is known that smoothing 

parameter  is depended rather than kernel. But case of the 

cross-validated likelihood is not exactly certainly. 

  According to Hall(1987), true density is heavy-tailed and in contrast, if 

the kernel is light-tailed, properties of estimated nonparametric likelihood 

is not good. Thus Hall(1987) is proposed that the effect of the tail part 

could not infect and as a general rule, if the tail part of the density 

function of is the thicker, the kernel must be the thicker thus the 

Hall(1987) is proposed that use to kernel .

  The following practical choice was suggested by Hall (1987):

 



exp





log




  ∞ ∞

where  denotes the standard normal distribution function and 

 

≐ Note that tails of  decrease more slowly than 

exp for any   (Hall, 1987). Tail part of  induced slowly than 

tail part of the normal distributions because case of heavy-tailed density 

function is appropriate kernel than gaussian kernel.

  The purpose of this study is that assumed density function under  in 

the form of listed above two types of prior and of a kernel selection look 

a goodness of fit test of the effect.
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  Figure 4.1. Gamma Density for Various Parameters.

  Figure 4.2. Inverse Gamma Density Various Parameters.
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5. SIMULATIONS

  Firstly, we consider random sample of size  = 100 from the standard 

normal distribution. And then we compute  and repeat the perform 

100,000 times. Thus, based on  = 105 samples of ′,  ⋯
, we 

approximate the null distribution of  and use them as a empirical null 

distribution. Indeed, six empirical distributions of log were obtained using 

two different kernels and three different prior distributions, and four of 

them based on two by two combinations of the kernel (normal kernel and 

) with the prior of ( and ) are illustrated in Table 5.2. As shown 

the summary statistics of 's in Table 5.1, the distributions of log are 

the summary statistics of four empirical distributions are negative in the 

general. Note that the purpose of evaluating the empirical null distribution 

is to perform the GOF testing for the normal data using the nonparametric 

Bayes factor, . Bayes factors which support the null hypothesis in other 

words it means that the consistency of Bayes factors as the property.

Table 5.1 Summary Statistics of log,  

Kernel/

Prior

Summary Statistics

Min Q1 Median Mean Q3 Max

Normal/ -4.888 -2.395 -1.890 -1.656 -1.168 10.530

Normal/ -5.466 -0.410 0.543 0.812 1.749 14.158

/ -31.083-28.916-27.757-27.386-26.257 -7.279
/ -5.798 -2.927 -1.886 -1.627 -0.617 17.414

  Table 5.2 illustrated empirical type I error probabilities based on the 

proposed GOF using two different kernel functions ,  and two 

different prior distributions ,  in comparison with Shapiro-Wilk(SW) 

and Anderson-Darling(AD) tests as well as a GOF test based on different 

sample sizes     and  with the .
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Table 5.2 Empirical Type I Error Probabilities()

sample 

size

Proposed Tests with   (Kernel/Prior) GOF Tests

        SW AD

  0.0565 0.0585 0.0051 0.0550 0.0625 0.0450
  0.0560 0.0530 0.0515 0.0510 0.0500 0.0460
  0.0540 0.0605 0.0485 0.0520 0.0395 0.0480
  0.0505 0.0590 0.0400 0.0565 0.0525 0.0620

  Table 5.3 illustrated the empirical powers of the GOF tests among 

several non-normal alternatives when the sample size is  . Note that 

Mix distribution in Table 5.2 denotes the half-and-half normal mixtures 

with 


 


 , and DE(0,1) in Table 5.3 denotes the double 

exponential distribution with a location parameter 0 and a scale parameter 

1. The proposed GOF tests are more powerful than two popular GOF tests, 

SW and AD and much more powerful than the nonparametric likelihood 

ratio test. Among the proposed four GOF tests with , the test with  

kernel and prior distribution  is the most powerful in all cases as 

shown with bold faced decimals in Table 5.3. 

Table 5.3 Empirical Power Analysis (   )

Alter.

Dist.

Proposed Tests with   

(Kernel/Prior)
GOF Tests

        SW AD 

 0.1585 0.0665 0.2365 0.1170 0.1055 0.0825 0.0645
 0.4005 0.1955 0.5525 0.3230 0.2300 0.1755 0.1340
 0.5415 0.3050 0.6865 0.4575 0.3100 0.2305 0.1780
 0.8500 0.6680 0.9270 0.7900 0.6220 0.4845 0.3710
 0.9910 0.9695 0.9970 0.9850 0.8820 0.8510 0.7590
 1.0000 0.9995 1.0000 1.0000 0.9860 0.9830 0.9635
MIX 1.0000 1.0000 1.0000 1.0000 0.9980 1.0000 0.9985

DE(0,1) 0.9785 0.9400 0.9915 0.9705 0.7775 0.8230 0.6410
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6. CONCLUSION

  In this study, a nonparametric frequentist-Bayes procedure was 

proposed for testing the goodness of fit of a parametric model. The test 

statistic is based on a nonparametric Bayes factor  which compares the 

two marginal likelihoods corresponding to a kernel estimate and the 

parametric model. The marginal likelihood for the kernel estimate is 

obtained by proposing a prior for the bandwidth of kernel estimate, and 

then integrating the product of this prior and a leave-one-out kernel 

likelihood. 

  We considered the numerical comparison of the effect of different 

choices of the prior distribution in terms of the bandwidth selection 

purpose by Monte Carlo simulations with different sample sizes.

  While Bayesian principles are used to construct the statistic, the test is 

done in frequentist way by comparing the Bayes factor with its null 

percentiles. Monte Carlo was used to compare the power of the new test 

with that of the existing goodness-of-fit testing procedures in the 

important case of testing for normality. 

  In terms of the large-sample behavior of , we could establish the 

consistency of Bayes factor  that ensures the proposed GOF test with 

 favors the true model from which the data is generated. 

  The nonparametric GOF we proposed in the research could be 

generalized into several directions that include the multivariate data.
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