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국제 컨테이너 터미널 에너지 소비분석                                                                             

-DEA 기법을 통한 효율성 측정- 

Hermouche Toufik Sabri (사브리) 

부경대학교 대학원 국제통상물류학과 

요약 

 

세계의 대부분 현대화 된 컨테이너 터미널의 등장으로 실제적으로 많은 

항만이 그들의 Throughput 을 올리며 소위 화물 처리능력에서 특별히 새로운 

기록을 달성할 수 있도록 하였다. 하지만 고도화된 기계화와 다양한 기계와 

설비의 도입이 항만 산업계에는 과다한 에너지 소비를 증가시켰다. 

 예를 들면 지속성 성장의 한계, 자원의 감소, 유해 물질 배출과 같은 수 많은 

바람직하지 못한 측면효과도 발생시켰다. 항만산업은 이러한 바람직하지 

못한 컨테이너화에 따른 효과를 극복해야 되는 도전에 직면함에 따라 

항만운영자들은 글로벌 전략과 공중보건, 환경적 충격 그리고 지속성과 같은 

점을 감안한 정책을 도입해야 할 상황에 처하게 되었다. 

환경과 지속 성장이란 측면에서 노력은 에너지 소비의 절감노력은 중요한 

요소로 등장하게 되었다.  사실 항만운영자들은 그의 정책을 지원하는 정확한 

자료가 없다면 에너지 소비 감소정책을 계획하는데 주저할 수 밖에 없는 

것이다. 따라서 항만의 에너지 효율성의 측정은 효율적인 에너지 개발과 

관련된 정책을 지원하는 단단한 기반을 제공하는 중요한 요소의 한 가지가 

되고 있다. 
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본 연구는 컨테이너 터미널에서 에너지 효율성을 측정하는 대안을 

제시하는데 있다. 상이한 10 개국에 위치한 자동화 그리고 전통적인 터미널 

처리 설비를 갖고 있는 18 개 터미널의 자료를 가지고 분석을 하였다.  

자료에 대한 접근방식은 1957 년 Farrel 에 의해 소개된 비모수 효율측정 

방법인 DEA(Data Envelopment Analysis)를 사용해서 분석하였다. 

측정대상을 효율과 비효율로 2 분하여 나누고, 비효율 터미널의 에너지 

효율성이 최적에 도달할 때까지 감소시켜야 할 잠재적인 에너지 소비량을 

계산하였다. 아울러 동류집단의 개선 참고치를 파악하여 각 비효율 터미널의 

최적 개선방안을 제시하였다.
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Energy Consumption Analysis of International Container Terminals    

-An Efficiency Analysis Using DEA- 

Hermouche Toufik Sabri 

Department of International Commerce and Logistics,                                    

the Graduated School, Pukyong National University. 

Abstract 

The emergence of modern container terminals in most of ports all over 

the world has indeed helped many ports to increase their throughputs, 

and reach extraordinary new records in term of cargo handling volume. 

However, the high mechanization and the introduction of a wide range 

of machinery and equipment to the port industry increased dramatically 

the consumption of energy in the sector, and lead to numerous 

undesirable side effects; (i.a. ‘sustainability issues, and depletion of 

natural resources’, and ‘harmful emissions’). To face the challenge of 

getting over the undesirable effects of containerization in the port 

industry, decision makers must adopt global strategies and policies that 

consider the public health, environmental impacts, and sustainability. 

In the line of efforts to face environmental and sustainability issues, 

energy consumption has been emerging as an important matter. In fact 

decision makers are reluctant to act while planning energy use 

reduction policies, if there is no consistent data and accurate 

information to support the policy position they may take. Therefore, 
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measuring the energy efficiency of ports becomes one of the crucial 

elements that may provide solid basis to develop effective energy 

related policies. 

This work aims to propose an alternative method to measure the 

energy use efficiency in container Terminals. The study includes a 

sample of eighteen units composed from both automated and traditional 

terminals located in ten different countries. The Approach is based on 

Data Envelopment Analysis (DEA), a non-parametric efficiency 

measurement method introduced by Farrell in 1957. The objective is to 

dichotomize the data set into efficient and inefficient units, compute the 

potential amount of energy consumption likely to be reducible by 

inefficient container terminals, to reach an optimal level of energy 

efficiency, find an improvement reference peer group, and investigate 

the best improvement path for each inefficient unit.
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Chapter I : Introduction  

I.1. Research Background and Problem Statement 

During the last 20 years the international trade knew an increasing 

growth, with an annual average of 5.3% (World Trade Organization, 2013) 

that goes in tandem with a considerably increasing seaborne trade, 

driven particularly by the rise of China’s domestic demand as well as an 

increasing intra-Asian and South–South trade. 

With the increase in seaborne trade (estimated at 4.4 % in 2013), about 

9.6 billion tons of goods were handled in ports worldwide (Review of 

Maritime Transport, 2013), in 2013 containerized goods shared about 

16.5% of the total shipped volume, while in 2007 the value of 

containerized good was equivalent to more than half of the total value 

of the seaborne trade (Review of Maritime transport, 2013). 

Due to the rapid growth of containerization and the globalization of the 

market, container ports sector knows a fierce competition, where each 

port seeks to increase its productivity and operational efficiency, 

through the use of latest technologies, and the acquisition of more 

performing equipment.  

Indeed, the emergence of a large number of modern container 

terminals helped many ports to increase their throughputs, enlarge their 

handled cargo volume, and obtain a bigger regional and international 

market share; however, the high level of mechanization, and the 

introduction of a wide range of machinery and equipment to the port 
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industry, increased dramatically the ports’ consumption in energy, and 

resulted into numerous undesirable side effects, and negative 

repercussions on the public health and the environment. 

Governments are increasingly focusing on, and pressuring for, more 

climate sound strategies. However, their policies and actions focus 

rather on emissions as a symptom of industrial activities, than on causes, 

of which energy consumption is an important factor. Therefore a 

detailed understanding of energy consumption in the port industry is a 

necessary step to engage in strategies and policies toward a more 

sustainable performance and more environment friendly practices. 

I.2. Research Motivation and Objectives 

Traditionally, energy efficiency has not been a critical factor in the 

port industry due to the relative low weight of the energy cost over the 

total expenditures of container ports and terminals. However, in recent 

years this perception is changing due to different factors, like the 

increase in energy prices, the adoption of strong environmental 

regulations limiting the allowed levels of industrial emissions, and the 

civil society’s awareness regarding sustainability and environmental 

impact of industrial activities. 

By this work we aims to use Data Envelopment Analysis (DEA) as an 

alternative method to measure the energy use efficiency (energy 

efficiency) in the port industry, the focus will be on container terminals. 

The objective is to evaluate the energy use efficiency performed by a 

set of eighteen container terminals from ten different countries, and 
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investigate the potential increase in their energy efficiency. The data 

set includes both traditional and automated container terminals. 

I.3. Method 

The method consists of five steps, briefly explained below.  

I.3.1. Data Collection  

 The quality of the collected data will in a big part determine; the 

robustness of the model, the accuracy of the analyses, and thus the 

quality of the eventual decision. 60% of data have been collected on site 

via direct interview with terminals managers, 30% were collected by e-

mails sent directly to the terminals managers, and 10% of the data are 

second hand data. 

I.3.2. Designation of the Model’s Variables:  

 To identify the energy usage profile, and assign each energy 

consumption to the proper port operation. There are two main questions 

to answer; first “What are the sources of energy in the terminal”? 

Second “What are the main factors directly involved in the port’s energy 

use”? One word of caution is that the set of factors should be limited in 

size, and accordingly, only the main factors which significantly affect 

the port’s energy consumption should be included in the data set. Too 

many indices with a limited number of data points will result in losing 

discriminatory power. The recommended maximum number of input and 

output indices for DEA will be detailed in Chapter V. 
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I.3.3. Model Selection 

 According to the property of the indices, and the decision purpose, we 

can select the most appropriate DEA model to our approach.  

Model types might change based on our expected calculation of the 

projection (CCR, ADD), or problem/ variable characteristics (such as 

input oriented, or output oriented models). Steps 2 and 3 must be treated 

very carefully as the property of the indices would have a strong 

influence on the model’s robustness.  

I.3.4. Running the DEA Model 

 There are several software packages for DEA calculations such as; 

Frontier Analyst, DEA Frontier, Excel DEA Solver, etc. in this study, we 

used DEA Online Software (DEAOS).  

I.3.5. Analysis’ Result Discussion 

  The results obtained after running the software are analyzed, to 

determine the efficient and inefficient DMUs, and to evaluate the 

improvement path of each inefficient DMU according to its appropriate 

benchmarks.  

I.4. Research Scope 

 Due to the multiple activities involved in the port industry, Port takes 

the form of a complex organization of a large variety of agents (port 

authorities, terminal operators , consignees, etc.), with various activities 
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and tasks (preservation of the infrastructure, docking, handling of 

merchandise, administration, nautical assistance, etc.), for this reason 

the study of ports as a whole homogenous entity is not recommended, 

it is preferable to centre the analysis on a concrete activity, on a specific 

type of cargo, and limited number of units (Tongzong, 2001).  

 This work covers only container terminals, the sample to analyze 

comprises a total number of 18 units, including terminals from different 

regions in the world to ensure a good representation of the international 

container terminal industry.  

I.5. Reasons to Use DEA  

Unlike typical statistical methods, characterized as a central tendency 

approach that evaluate producers relative to an average producer, DEA 

compares each producer (Decision Making Unite) with only the "best" 

producers. DEA is not always the right tool for a problem, but is 

appropriate in certain cases and if it is used wisely DEA can be a 

powerful tool. A few of the characteristics that make it powerful are: 

1) DEA can handle multiple input and multiple output models. 

2) It doesn't require an assumption of a functional form relating 

inputs to outputs. 

3) DMUs are directly compared against a peer or combination of 

peers. 

4) Inputs and outputs can have very different units. For example; 

𝑋1 could be in units of Number, while 𝑋2 could be in units of tons 

or dollars without requiring a priori tradeoff between the two. 
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I.6. Organization of Chapters and Research Structure 

The structure of the research depicted in <Figure I.1>, indicates the 

five steps that compose the framework of this study, the first step 

establish the background and foundation of the study, the second step 

marks the research method orientation, third and fourth steps 

summarize the research methodology, and the fifth step includes results 

discussion and conclusion. 

The thesis structure is as following:  

Chapter II, reviews efficiency measurement using DEA, and previous 

related works. Chapter III, aims to conduct a brief presentation of the 

port industry’s impact on the environment. Chapter IV, introduces the 

typical equipment used by container terminals and details their energy 

consumption profile. Chapter V, is composed of three major parts; the 

first part presents the basic principle of the DEA method applied to this 

study and its theoretical aspect, the second part contains a detailed 

presentation of data points and variables, and explains the process that 

determines the sample’s size and the variables selection; in the third 

part, data analysis is ran to get the final results, and finally Chapter VI, 

discusses the conclusion and suggests future complementary research 

works. 
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Figure I.1: Research Structure  
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Chapter II : Literature Review 

II.1. Theoretical Framework 

II.1.1. Efficiency Measurement  

 The origin of the modern discussion of efficiency measurement dates 

back to (Farrell, 1957), who identified two different ways in which 

productive units could be inefficient, the productive unit; can use more 

inputs than technically required to obtain a given level of output, or use 

a sub-optimal input combination given the input prices and their 

marginal productivities.  

  The first type of inefficiency is termed technical inefficiency while 

the second one is known as allocative inefficiency. Both theoretical and 

empirical measures of efficiency are based on ratios of observed output 

levels to the maximum that could have been obtained, given the inputs 

utilized. This maximum constitutes the efficient frontier which will be 

the benchmark for measuring the relative efficiency of the observations. 

Numerous techniques have been developed over the past decades to 

tackle the empirical problem of estimating the unknown and 

unobservable efficient frontier, these may be classified using several 

taxonomies. The two most widely used catalog methods into parametric 

or non-parametric, and into stochastic or deterministic. The parametric 

approach assumes a specific functional form for the relationship 

between the inputs and the outputs as well as for the inefficiency term 

incorporated in the deviation of the observed values from the frontier. 
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The non-parametric approach calculates the frontier directly from the 

data without imposing specific functional restrictions (Herrera and Pang, 

2008.) The first approach is based on econometric methods, while the 

second one uses mathematical programming techniques. The 

deterministic approach considers all deviations from the frontier 

explained by inefficiency, while the stochastic focus considers those 

deviations combining inefficiency and random noises outside the control 

of the decision maker. 

II.1.2. Alternative Techniques to Measure Efficiency 

1. Ordinary Least Squares (OLS)  

 An estimation and regression method that fits an ‘average line’ 

through the data, Its strong points are; first, It is consistent with the 

underlying economic theory that offers a potential explanation for cost 

or production structures, and distinguishes between different variables’ 

roles which affects output; second, there is an ample range of standard 

statistical tests available to assist the analysis. Its weakness is that all 

firms are considered as rational, i.e., there is no inefficiency, and thus 

all deviations from the frontier are attributed to random noise, this 

assumption is not always true in reality. Therefore, the estimation bears 

this built-in inaccuracy. 
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2. Corrected Ordinary Least Squares (COLS) 

 A parametric approach to evaluate productive efficiency, It belongs 

to the regime of regression methods, but differs from the OLS 

estimation method.  

  Its strong points are; first, it reveals information about the production 

technique, and it distinguishes between different variables’ roles in 

affecting output as all parametric methods do; second, the adjustment 

from the average line to the ‘frontier’ allows for the measurement of 

relative efficiency. 

Its weaknesses are; first, as all parametric methods it requires a priori 

specification of the production or cost function; second, it is not 

possible to measure errors, and other statistical noise (Greene W., 

1993); and third, it is sensitive to outliers, since the ‘best’ performer 

along any dimension serves as the anchor for how much the ‘average’ 

line needs to be corrected in order to become the frontier. 

3. Data Envelopment Analysis (DEA)  

A mathematical programming approach to estimate productive 

efficiency, The strength of this method is that no a priori structural 

assumption is placed on the production process, the drawback is that it 

does not take into account the measurement error and other statistical 

noises, it is therefore not possible to test the statistical significance of 

the efficiency index for a specific observation. The choice of approach 

must be based on the objective of the research and the available data. 
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II.2. Review of Previous Researches on Energy Efficiency 

Traditionally, energy efficiency has not been a critical factor on the 

port industry, and solicited a limited number of academic works due to 

the relative low energy cost over the total port’s expenditures. 

However, in the recent years this perception is changing due to some 

emerging factors, such as the increase in energy prices, the adoption 

of strong environmental regulations, and the society awareness 

regarding sustainability and environmental impact of industrial activities.  

As stated by Zhou and Ang (2008) and Zhou et al. (2008), DEA has 

gained in popularity in energy efficiency analysis. Initiated by Farrell 

(1957) and Developed by Charnes et al. (1978), DEA involves the use 

of linear programming methods to construct a non-parametric frontier. 

The best practices located on the efficiency frontier form the 

benchmarks, against which the potential energy saving for units not 

located on the frontier can be calculated. Therefore, by comparing the 

practices of different ports and terminals, we can identify the potential 

amount of energy reduction.  

Various papers with different backgrounds deal with the topic of 

energy efficiency using a DEA framework, but those tackling the 

problem in the port industry tend to be scarce. Nassiri and Singh (2009), 

and Heidari et al. (2012) determined the amount and efficiency of 

energy consumption for paddy and horticultural greenhouses 

production in Iran using radial DEA methods, these two studies 

calculated the embodied energy of inputs based on a life cycle energy 

analysis, the weak point of this approach is that the conversion 
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coefficients are not accurate, and their respective values vary 

considerably with the different calculation methods. Lee (2008) 

combined a multiple linear regression method with DEA, to examine the 

efficiency of energy management in governmental buildings in Taiwan, 

Onut, and Soner (2006) used a DEA approach to assess energy 

efficiency for the Antalya Region hotels in Turkey, Wu et al. (2010) 

used a DEA model with undesirable output, to assess Industrial energy 

efficiency with CO₂ emissions of Chinese firms. 

As mentioned previously, in the port industry the use of DEA to 

analyze energy efficiency tends to be limited, while the few existing 

works focus mostly on emissions as a symptom of the port activity, and 

omit the causes of which energy consumption is a major factor. Shin 

and Jeong (2013) performed a comparative analysis of container 

terminals in Busan and Kwanyang ports, using an output oriented DEA 

window analysis with undesirable output to measure their respective 

environmental efficiency, CO₂ emissions was selected as an 

undesirable output, Chang (2013) used a Slacks-Based Measure DEA 

model to assess the environmental efficiency of Korean ports, 

considering CO₂ emissions as undesirable output, Chang (2013) had a 

more interesting approach considering the amount of energy 

consumption in the port, as well as its CO₂ emissions, however the 

only consideration of CO₂ emissions limited the energy consumption 

at fossil fuels, while fossil fuels are not the only energy source in a port 

as CO₂ is not its only undesirable externality. 

In this study we use DEA to analyze the energy efficiency of a set of 

container terminals located in different regions in the world. To assess 
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the Technical energy efficiency of each unit in the Data set, determine 

the origin of the overall inefficiency, and full ranking container 

terminals in term of best practices in energy use.
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Chapter III : The Environmental Impact of 

Container Terminals 

Container terminals’ environmentally harmful emissions can be divided 

into two categories, direct emissions and indirect emissions. Direct 

emissions are those related to activities which the port is directly in 

control of, such as emissions to the air, noises from the port’s non-road 

vehicles and working machinery, etc., whereas indirect emissions are 

those related to the transport to and from the port, whether by road, 

rail, or sea and inland waterways, in which case the port has very 

limited possibilities to influence. 

III.1. Indirect Impact  

III.1.1. Vessels Traffic Emissions  

1. Air Pollution  

Vessels calling container terminals produce the biggest share of air 

pollution from ports <Figure III.2>, they emit to the atmosphere a big 

amount of contaminants, toxic agents, and greenhouse gases (GHG), 

such as: 

_ Dioxide of carbon (CO2), resulted from the combustion of fossil fuels, 

it has a global impact on the biosphere and the climate (global warming). 
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_ Oxides of nitrogen (NOx), generated by high temperature 

combustions, it can causes irritation of the eyes, inflammation of lung 

tissue, and emphysema, and it contribute in the formation of secondary 

pollutants that cause even more serious health problems. 

_ Sulfur dioxide (SO2), originated from the sulfur contained in fossil 

fuels, SO2 is a toxic gas that may causes irritation of the eyes and 

respiratory passages, aggravates symptoms of respiratory diseases, 

and creates acid rains that may damage crops and buildings. 

_ Carbon monoxide (CO), hydrocarbons (HC) and volatile organic 

compounds (VOCs), generated from partial combustions, cause the 

acidification of the soil and ozone formation at the lower layers of the 

atmosphere. 

_ Diesel particulate matters that makes up diesel exhaust. It has a gas 

phase and a particle phase. The gas phase is composed of many of the 

urban hazardous air pollutants, such as acetaldehyde, formaldehyde and 

polycyclic aromatic hydrocarbons, etc., the particle phase is of greatest 

health concern; especially particles that are in the categories of fine, 

and ultra-fine particles. They are composed of elemental carbon with 

adsorbed compounds, such as organic compounds, sulfate, nitrate, 

metals and other trace elements. 

2. Water pollution  

Emissions to water stem from ships mainly by leakage of toxic agents 

from antifouling paint of ship hulls, release of harmful alien species and 

organisms with ballast water during ship loading operations <Figure 

http://en.wikipedia.org/wiki/Acid_rain
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III.1>, spill during bunker operations, leakage from bilge water that 

often mixes with oil leaking from engine and machinery spaces or from 

engine maintenance activities, and Discharges of untreated or 

inadequately treated sewage that causes bacterial and viral 

contamination of fisheries and shellfish beds, etc..  

Figure III.1: Ballast Water Cycle 

Source: Self Developed 

3. Noise Pollution 

Noise emissions from ships arise during the port approach, 

berthing/unberthing maneuvering in the port area, and from the 

auxiliary engines and ventilating systems when at berth. The ship 
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engines contribute mainly to the low frequency noise that difficult to 

quench and can be transported over long distances. 

III.1.2. Inland Transport Emissions 

Inland transportation can be divided into three main categories; roads, 

railways, and inland waterways (canals, rivers, lakes, etc.). 

1. Air Pollution  

The principal sources of air pollution are road transport trucks, and 

inland waterways vessels, such as barges. While railways have a little 

influence, and are considered as one of the least environmentally 

damaging modes of inland transportation. The type of air emissions 

related to inland transportation are similar to those mentioned for 

vessels traffic, with the consideration of the respective differences in 

concentration and volume of the various toxic elements and pollutants 

emitted. 

2. Water Pollution  

Inland water pollution is caused exclusively by inland waterways 

transportation. Impacts are proportional to the traffic density, depend 

on the type of vessels carrying the cargo, and on maintenance activities 

required to keep channels navigable. The water pollution origin can be; 

fuel and oil spillage, accidents and disposal of waste, wastewater and 

sewage from vessels, and pollution from shore or bankside activities, 

such as; vessel maintenance, or fuel and goods storage. 
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3. Noise Pollution 

Trucks are a significant inland source of noises, the inland waterways 

impact depends on; the size of the waterway, the density of its traffic, 

and type of vessels sailing through it. While the noise nuisance posed 

by rail is generally considered to be less than that posed by the two 

other modes, this is in large measure because a railway noise is 

intermittent, whereas highway noise for example ends to be relatively 

constant. 

III.2. Direct Impact  

III.2.1. Air Pollution  

Consumption of energy in container terminal results in; direct 

emissions of toxic gases, GHGs, and other externalities from diesel fuel 

combustion, and indirect emissions from public grids and power plants, 

where electricity to supply container terminals is generated. These 

emissions that are a direct result of the energy consumption, have a 

dramatic impact on the climate and health; they cause the global 

warming, destroy the natural environment, and represent harmful risks 

for the population’s health. 

According to a study made on the port of Busan in Republic of Korea, 

and air emissions inventory of the port of Long Beach <Figure III.2>, 

cargo handling equipment and machinery are responsible of about 

respectively 14% and 16%, of total air emissions in the port area (Shin 

& Cheong, 2011, Port of Long Beach, 2011). 
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Another study made by the Swedish environmental research institute 

on Goteborg Port, reveals that direct emissions to the air within the 

port area arise mainly from non-road vehicles and working machinery 

of the port, with a breakdown of 90% of the NOX, CO and exhaust PM 

emissions, and 75% of the CO2 and VOC emissions (Swedish 

Environmental Research Institute, 2007). 

 

Figure III.2: Examples of Air Emissions Distribution 

 

Source: Shin & Cheong, 2011, Air Emissions Inventory of Port of Long Beach. 

2011 
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III.2.2. Water pollution  

 Emissions to the water within the port area arise from the yard’s 

surface water released directly to the harbor basin. Risks of water 

pollution from the container yard are essentially due to: 

Risks of chronic pollution due to yard tractors and other cargo handling 

vehicles parking at the yard, resulting into grease and engines oil 

leakage, emissions of heavy metals from car bodies, particles from tires, 

etc… 

Accidental pollution risks due to handling and stacking of containers 

containing dangerous cargo. 

III.2.3. Dredging  

Dredging operations are often made to maintain the depth of the harbor 

basin. During the dredging a temporary turbidity and dispersion of 

pollutants may occurs. These pollutants may be of a local origin, or 

transported from remote locations and accumulated over a long period 

of time leading to exceedances of contaminants concentrations. 

However, the extent of dredging to maintain the required depths of the 

harbor basin does not have a major environmental impact compared to 

other factors. 
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III.2.4. Noise Pollution  

 Noise generated by the container terminal’s platform arises in general 

from non-road vehicles and cargo handling machinery, e.g., reach 

stackers, trailers, tractors, etc… 

The increase in the port activities leads to increase the overall number 

of units and the overall number of operation hours of these units, 

resulting into a higher noise emissions.
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Chapter IV : Container Terminals and 

Energy Consumption  

IV.1. an Over View of Operation Subsystems of Container 

Terminals  

Container terminals are complex systems that can function efficiently 

only when their layouts are designed in such a way to allow a smooth 

cargo handling process. Container terminals’ layouts vary from one 

terminal to the other. Nevertheless, most terminals have a comparable 

arrangement of their subsystems and facilities <Figure IV.1>. The basic 

concept of a container terminal consist of three major operational 

subsystems: 

Figure IV.1: Basic Concept of a Container terminal 

Source: Self Developed 
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IV.1.1. Ship-to-Shore Subsystem 

Located at the quay wall edge, it is the subsystem in charge of 

loading/unloading containers from ships to the shore and vice-versa, 

composed of rail mounted portainers (quay container gantry crane) it is 

the direct interface that ensures the transfer of containers, from the 

sea transportation mode to land transportation modes. 

IV.1.2. Horizontal Transportation Subsystem 

It ensures the cargo transportation between containers stacking area 

and the loading/unloading and delivery/reception areas, Cargo 

transportation can be ensured using a number of vehicles varying in 

carrying capacity, flexibility, propulsion modes and velocity, automation, 

etc…, the use of horizontal transportation vehicles depends on the 

operational model and the cargo handling concept of the container 

terminal. It is composed of two parts, quay side and gate side.  

The quay side horizontal transportation follows the ship-to-shore 

subsystem, it is in charge of cargo transfer along the quay’s apron to 

the storage area. While the gate side horizontal transportation ensures 

the movement of containers between the storage area and the gate. The 

gate acts as an interface for the container terminal with other modes of 

transportation, such as rails, road, and inland waterways. 
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IV.1.3. Containers Storage Subsystem 

The center piece of the container storage subsystem is the storage 

yard, where containers are stacked according to several blocks 

composed of bays, rows, and tiers. Blocks are composed according to 

the attributes of the containers, there are blocks of containers planned 

for vessel loading, or of containers planned for hinterland departure, 

and other blocks are used as storage areas for empty containers, 

damaged containers, container carrying dangerous goods, and reefers. 

IV.2. Container Terminals Machinery and Equipment 

Cargo handling equipment in container terminals can be divided into 

two categories; quayside equipment in charge of ship-to-shore 

subsystem operations, and yard equipment that is used for both 

Horizontal transportation and containers stacking. 

IV.2.1. Quay Side Equipment  

Quay container gantry cranes (called also portainers, or Sip-To-Shore 

cranes) are the main equipment used to load and unload containers from 

vessels to the dock and vis-versa <Figure IV.2>. Most of modern 

container terminals use electric operated rail mounted quay cranes, the 

use of rubber tired gantry cranes is not infrequent, because they are 

less performing in term of productivity and containers handling capacity, 

even though they have a better flexibility in term of motion.  
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To perform the movements necessary for loading/unloading 

operations, quay cranes have three major moving components; portal, 

trolley, and spreader <Figure IV.2>. The portal is the frame of the 

gantry crane that ensures the crane’s movement alongside the quay 

wall. The trolley is mounted on the crane’s beam, where it can moves 

along allowing the containers’ transfer between the ship and the shore. 

The spreader is connected to the trolley by means of winches and 

cables, it is the only crane component that physically contacts the 

container, by means of a system of pins that allows to secure containers, 

and safely lock them during cargo handling operations.  

Figure IV.2: Ship-To-Shore Crane and its Moving Components 

Source: Self Developed 
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IV.2.2. Yard Equipment   

Container yard equipment represents the machinery used for the 

horizontal transportation, container stacking, and gate side 

loading/unloading operations, it is composed of a range of different 

vehicles and cranes. Container yard handling equipment inventoried in 

this study consisted of; transfer cranes, reach stackers, yard tractors, 

forklifts, empty container handlers, and straddle carriers, categorized 

into transfer equipment and stacking equipment. In addition to reefer 

plugs used to supply refrigerated containers by electricity.  

1. Transfer Equipment  

All vehicles used for the horizontal transport between containers 

stacking yard and loading/unloading areas on both quay and gate sides. 

They may vary from container terminal to another. However, we can 

classify them into three main categories following their specific 

characteristics; the two first categories are straddle carriers and yard 

tractors that are manually operated diesel driven vehicles, the third 

category is automated-guided vehicles (AGV), these are electric 

remote controlled vehicles less frequently used than the two other 

categories <Figure IV.3>. While straddle carries are capable to auto-

load and stack containers, AGVs and yard tractors need the assistance 

of containers stacking vehicles. 
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Figure IV.3: Container transfer Vehicles 

Source: Self Developed 

2. Stacking Equipment  

Containers stacking machinery varies in size, mode of propulsion, 

stacking height, and lifting capacity. Their main tasks are; to store 

containers at the terminal’s yard in blocks, using a system of bay-raw-

tier according to numerical coordinates related to length, width, and 

height, and to ensure containers loading/unloading operations on/off the 

horizontal transport vehicles. The most frequently used stacking 

vehicles are; reach stackers, empty/loaded containers handlers <Figure 

IV.4>, straddle carriers (seen previously), and yard transfer cranes that 

can be rail mounted (RMG) or rubber tired (RTG), <Figure IV.5>. 
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Figure IV.4: Container Yard Stacking Vehicles 

Source: Self Developed 
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Figure IV.5: Container Yard Transfer Crane 

Source: Self Developed 
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3. Reefer Plugs  

Preservation of temperature sensitive goods involves the use of 

reefers or refrigerated containers <Figure IV.6>. This type of 

containers is equipped with an integral refrigeration unit, however, the 

energy autonomy of the refrigerating unit is limited, and reefers have 

to rely on external energy supply from reefer plugs (electrical power 

points) at a land based site. 

The layout of container terminals includes an area equipped with 

electrical power points, to ensure the energy supply for reefers during 

their yard storage time. 

Figure IV.6: Refrigerated Container (Reefer) 

Source: Self Developed 
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IV.3. Container Terminals Energy Consumption Pattern 

To elaborate an energy consumption map of a container terminal there 

are three main questions to answer; what kind of energy is consumed? 

Where is the energy consumed? And how much energy is consumed? 

In container terminals energy consumption profile varies from one 

subsystem to another, but it also differs among machinery and 

equipment in the same subsystem. The first step to do is to determine 

the type of each energy source supplying the terminal, then classify the 

terminal’s machinery and equipment following their respective technical 

specifications, finally the type of energy and its consumption amount 

for each type of consumer is evaluated. That would provide key 

information to understand the actual energy consumption pattern of a 

container terminal.  

To make an energy consumption disaggregation the cases of some 

container terminals from our sample have been investigated. Selected 

terminals can be fairly considered as representative of our data set, 

thus the results obtained can be easily extrapolated to the whole 

observation points. 

IV.3.1. Determination of Types of Energy Sources 

The first thing to consider is the summary of the annual energy 

consumption for major energy aspects for the container terminal. 

<Figure IV.7> shows that the major energy sources for each of three 

different container terminals, selected from our data set are electricity 
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and fossil fuel (diesel in particular), with the specification that 

automated container terminals tend to consume relatively more 

electricity than traditional ones, while traditional container terminals 

tend to consume relatively more fossil fuel than automated ones. 

We can conclude that, the main energy sources used by container 

terminals to run and operate their equipment and facilities, are 

electricity and diesel oil. 

Figure IV.7: Examples of Energy Consumption Profile  

Source: Self Developed, based on the collected data 
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IV.3.2. Energy Consumption by Type of Equipment  

Now we can analyze the energy consumption related to each consumer. 

The consumed energy is disaggregated by aspect and quantity 

consumed, according to each type of energy consumer from the whole 

subsystems of the container terminal. <Figure IV.8> summarizes the 

type of machinery and facilities that use electricity as source of energy, 

and their respective consumption rates in three different terminals from 

our data set. We can notice that, even though the relative percentage 

of energy consumed by each element varies from one terminal to 

another, the type of electricity consumers represent big similarities. 

We conclude that, the main equipment and facilities that are operated 

using electrical energy are; ship-to-shore cranes, reefer containers, 

RMGs, terminal’s lightning, and offices. We notice that the biggest share 

of electricity consumption goes always to reefer containers, and STS 

cranes. 
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Figure IV.8: Examples of Electricity Consumption Distribution  

Source: Self Developed based on the collected data & Green Cranes “Report 

on Container Terminals Energy Profile, Feb 2013” 

<Figure IV.9> summarizes the equipment operated using diesel as 

energy source by two different container terminals of our data set. The 

chart shows that the main fossil fuel consumers in the container 

terminals are; reach stackers, yard tractors, forklifts, and RTGs.  
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Figure IV.9: Examples of Diesel Consumption Distribution  

Source: Green Cranes “Report on Container Terminals Energy Profile Feb 

2013” 

We can elaborate the energy consumers’ inventory as following; the 

main energy consumers of electricity are ship-to-shore cranes, reefer 

containers, RMGs, terminal’s lightning and buildings. While diesel 

consumers are equipment used in horizontal transport and stacking 

operations, e.g., reach stackers, yard tractors, forklifts, and RTGs.                                      
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Chapter V : DEA Methodology and 

Discussion of the Analysis Results 

V.1. the Concept of Input Oriented Data Envelopment 

Analysis 

  DEA is a non-parametric analytic method that measures the relative 

efficiency of homogenous sets of organizations or Decision Making 

Units (DMUs), performing the same tasks to transform resources 

(Inputs) into final products or services (Outputs) <Figure V.1>, i.e., 

efficiency is the ratio of sum of weighted outputs to sum of weighted 

inputs Eq. (1). 

Figure V.1: The Basic Concept of DEA 

   

Source: Self Developed 
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𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡

∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐼𝑛𝑝𝑢𝑡𝑠
                       (1) 

Where the DMU is considered efficient when it achieves a score of 1 

or mathematically as (Cooper, et al. 2006):  

𝜃 =
∑ 𝑢𝑝𝑦𝑝, 𝑗𝑃

𝑝=1

∑ 𝑣𝑞𝑥𝑞 , 𝑗𝑄
𝑞=1

                                                             (2) 

Where ‘x’ and ‘y’ refer respectively to inputs and outputs, ‘v’ and ‘u’ 

are the respective weights of inputs and outputs, ‘q’ is the number of 

inputs (q = 1, 2,…, Q), ‘p’ represents the number of outputs (p =1, 2,…, 

P), and ‘j’ represent 𝑗𝑡ℎ DMU. 

In our case the DMUs refer to Container Terminal Operators, the 

inputs are the electricity and diesel fuel consumed to perform the 

terminals’ Operations, and as outputs the total annual container 

throughput and the amount of equipment operated within each terminal 

have been considered. 

In DEA there are two methods to improve the efficiency of an 

inefficient DMU, the first one is output oriented, it aims to increase the 

outputs level while holding the inputs level Constant, the second method 

is input oriented method were the outputs level is kept Constant while 

decreasing the level of inputs is needed, in our case we aim to decrease 

the consumption of energy for each inefficient DMU, therefore it is 

more appropriate to opt for an input oriented method. 
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DEA has two Basic Models, CCR Model developed by Charnes, Cooper 

and Rhodes (1978) on the assumption of Constant Return to Scale (CRS), 

and the BCC Model developed by Banker, Charnes and Cooper (1984) 

with Variable Return to Scale (VRS), thus the efficiency by DEA is 

defined according to three distinctive forms, Overall Technical 

Efficiency (TE) under CCR Model, that can be decomposed into Pure 

Technical Efficiency (PTE), and Scale Efficiency (SE) under BCC Model 

(Cooper et al., 2006), Eq. (3)  

TE = PTE ∗  SE                                        (3)  

This decomposition, which is unique, depicts the sources of the overall 

inefficiency, whether it is caused by inefficient operation (PTE) or by 

disadvantageous conditions displayed by the scale efficiency (SE) or by 

both. 

V.1.1. Input-Oriented DEA Model with Constant Return 

to Scale  

The Farrell (1957) input-oriented measure of technical efficiency of 

𝐷𝑀𝑈𝑗 is given by Eq. (4) 

 

F (𝑌𝑗 , 𝑋𝑗) = Min {𝜆: 𝜆𝑋𝑗Є 𝐿(𝑌𝑗)}                                   (4) 
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The Farrell measure projects observed production possibilities as far 

as possible, ensuring that the resulting projection is on Isoq L(Y). One 

of the maintained assumptions in traditional DEA models is that all 

observed production possibilities are feasible. Consequently, the 

approach does not allow for measurement errors or other statistical 

noises and requires proper selection of inputs and outputs. 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
∑ 𝑢𝑝 𝑦𝑝𝑗

𝑃
𝑝=1

∑ 𝑣𝑞𝑥𝑞𝑗
𝑄
𝑞=1

≤ 1                                       (5) 

𝑢𝑝, 𝑣𝑞  ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 𝑎𝑛𝑑 𝑞 

This model can be algebraically rewritten as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜃𝑘 =  ∑ 𝑢𝑝𝑦𝑝𝑘

𝑃

𝑝=1

 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑢𝑝𝑦𝑝𝑗

𝑃

𝑝=1

≤  ∑ 𝑣𝑞𝑥𝑞𝑗

𝑄

𝑞=1

                           (6) 

With further manipulations the following linear programming 

formulation is obtained: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜃𝑘 =  ∑ 𝑢𝑝𝑦𝑝𝑘

𝑃

𝑝=1

 

Subject to:  

∑ 𝑢𝑝𝑦𝑝𝑗

𝑃

𝑝=1

−  ∑ 𝑣𝑞𝑥𝑞𝑗

𝑄

𝑞=1

≤ 0  𝑗 = 1,2, … , 𝐽 
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 ∑ 𝑣𝑞𝑥𝑞𝑘

𝑄

𝑞=1

= 1                                                                  (7) 

𝑢𝑝, 𝑣𝑞 ≥ 0  

 

1. Weights Assessment  

To observe the detailed information such as benchmarks and their 

weights “λ”, as well as ∑ λ  leading to returns to scale (RTS) 

assessments, we need to employ the dual linear program to model in 

Eq. (7). Charnes et al. (1978) developed the dual model <Figure V.2> 

as follows:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝜃𝑘,𝜃𝑘 

 Subject to:  

∑ 𝑗𝑦𝑝𝑗

𝐽

𝑗=1

 ≥  𝑦𝑝𝑘 , (𝑝 = 1, 2, … , 𝑃)  

∑ 𝑗𝑥𝑞𝑗

𝐽

𝑗=1

 ≤ 𝜃 𝑥𝑞𝑘 ,   (𝑞 =  1, 2, … , 𝑄)                        (8) 

  𝑗  ≥ 0,   (𝑗 =  1, 2, … , 𝐽) 

Where λ𝑗is a vector of J elements representing the influence of each 

grower in determining the technical efficiency of the 𝐷𝑀𝑈𝑘 under study 

and θ is the technical efficiency. 
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Figure V.2: graphical Depiction of DEA-CCR Model  

Source: Self Developed 

In this dual formulation, Eq. (8), the linear program seeks efficiency 

by minimizing (dual) efficiency of a focal DMU “k” subject to two sets 

of inequality. The first inequality emphasizes that the weighted sum of 

inputs of the DMUs should be less than or equal to the inputs of focal 

DMU being evaluated. The second inequality similarly asserts that the 

weighted sum of the outputs of the non-focal DMUs should be greater 

than or equal to the focal DMU. The weights are the λ values. When a 

DMU is efficient, the λ values would be equal to 1. For those DMUs that 

are inefficient, the λ values will be expressed in their efficiency 

reference set.  
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2. Mathematical Details for Slacks 

In DEA analysis the slacks can be obtained by solving a second stage 

linear programming model, after solving the dual linear programming 

model presented as Eq. (8).The second stage of the linear program is 

formulated for slack values as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑠𝑞
−

𝑄

𝑞=1

+ ∑ 𝑠𝑝
+

𝑃

𝑝=1

 

∑ 𝑗𝑦𝑝𝑗

𝐽

𝑗=1

− 𝑠𝑝
+ = 𝑦𝑝𝑘 , (𝑝 = 1, 2, … , 𝑃)  

∑ 𝑗𝑥𝑞𝑗

𝐽

𝑗=1

+ 𝑠𝑞
− = 𝜃∗𝑥𝑞𝑘 ,   (𝑞 =  1, 2, … , 𝑄)              (9) 

 𝑗  ≥ 0,   (𝑗 =  1, 2, … , 𝐽) 

Here, 𝜃∗ is the DEA efficiency score resulted from the initial run, Eq. 

(7), of the DEA model. Here, 𝑠𝑞
−  and 𝑠𝑝

+  represent input and output 

slacks, respectively. It is to note that the superscripted minus sign on 

input slack indicates reduction, while the superscripted positive sign on 

output slacks require augmentation of outputs. 

In fact, models in Eq. (7) and Eq. (9) can be combined and rewritten 

as: 

Eq. (10), Input-Oriented CRS Model 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜃 − 𝜀 (∑ 𝑠𝑞
−

𝑄

𝑞=1

+ ∑ 𝑠𝑝
+

𝑃

𝑝=1

) 
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∑ 𝑗𝑦𝑝𝑗

𝐽

𝑗=1

− 𝑠𝑝
+ = 𝑦𝑝𝑘 , (𝑝 = 1, 2, … , 𝑃)  

∑ 𝑗𝑥𝑞𝑗

𝐽

𝑗=1

+ 𝑠𝑞
− = 𝜃𝑥𝑞𝑘 ,   (𝑞 =  1, 2, … , 𝑄)             (10) 

 𝑗  ≥ 0,   (𝑗 =  1, 2, … , 𝐽) 

The ε in the objective function is called the non-Archimedean, which 

is defined as infinitely small, or less than any real positive number. The 

presence of ε allows a minimization over efficiency score θ to preempt 

the optimization of slacks, 𝑠𝑞
− and 𝑠𝑝

+. The model of Eq. (10) first obtains 

optimal efficiency scores 𝜃∗ from model of Eq. (7) and calculates them, 

and then obtains slack values and optimizes them to achieve the 

efficiency frontier. 

3. Determination of Fully Efficient and Weakly 

efficient DMUs 

According to the DEA literature, the performance of DMUs can be 

assessed either as fully efficient or weakly efficient (Ozcan, 2014). The 

following conditions on efficiency scores and slack values determine 

the full and weak efficiency status of DMU <Table V.1> 
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Table V.1: weakly and Fully Efficient DMUs  

Condition                   𝜃      𝜃∗                𝑎𝑙𝑙 𝑠𝑞
−                        𝑎𝑙𝑙 𝑠𝑝

+ 

Fully Efficient           1.0    1.0                  0                              0 

Weakly Efficient       1.0     1.0     at least one 𝑠𝑞
− ≠ 0     at least one 𝑠𝑝

+ ≠ 0        

Source: Ozcan, Y. A., 2014 

When model of Eq. (10), or those of Eq. (7) and Eq. (9) are sequentially 

run, weakly efficient DMUs cannot be in the efficient reference set of 

other inefficient DMUs. However, if only Eq. (7) is executed, then 

weakly efficient DMUs can appear in the efficient reference set of 

inefficient DMUs. The removal of weakly efficient DMUs from the 

analysis would not affect the frontier or the analytical results (Ozcan, 

2014). 

4. Calculation of Efficient Targets for Input-

Oriented DEA-CCR Model  

In input-oriented CRS models, the calculation of levels of efficient 

targets for inputs and outputs is as follows: 

𝑂𝑢𝑡𝑝𝑢𝑡𝑠: �̂�𝑝𝑘 = 𝑦𝑝𝑘 +  𝑠𝑝
+∗   𝑝 = 1, … , 𝑃 

 𝐼𝑛𝑝𝑢𝑡𝑠: �̂�𝑞𝑘 = 𝜃∗𝑥𝑞𝑘 − 𝑠𝑞
−∗  𝑞 = 1, … , 𝑄               (11) 
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V.1.2. Input-Oriented DEA Model with Variable Return 

to Scale 

In 1984 Bankers et al. proposed the BCC Model based on variable 

return to scale (VRS), Adopted from the input-oriented model 

represented by Eq. (10). <Figure V.3>. 

 VRS input model formulation requires an additional set of constraints, 

in which summation of λ values are set equal to 1, Eq. (12).  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜃 − 𝜀 (∑ 𝑠𝑞
−

𝑄

𝑞=1

+ ∑ 𝑠𝑝
+

𝑃

𝑝=1

) 

∑ 𝑗𝑦𝑝𝑗

𝐽

𝑗=1

− 𝑠𝑝
+ = 𝑦𝑝𝑘 , (𝑝 = 1, 2, … , 𝑃)  

∑ 𝑗𝑥𝑞𝑗

𝐽

𝑗=1

+ 𝑠𝑞
− = 𝜃𝑥𝑞𝑘 ,   (𝑞 =  1, 2, … , 𝑄)              

∑ 𝑗

𝐽

𝑗=1

= 1,                                                                        (12) 

𝑗  ≥ 0, (𝑗 =  1, 2, … , 𝐽) 

The equation ∑ 𝑗
𝐽
𝑗=1 = 1 is the convexity constraint, which specifies 

the VRS framework. Without this convexity constraint, the BCC model 

will be a CCR model (Heidari et al., 2012). 
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Figure V.3: Graphical Depiction of DEA-BCC Model 

Source: Self Developed 

V.1.3. DEA Scale Efficiency 

Scale efficiency measures can be obtained for each Terminal by 

conducting both CCR and BCC DEA models, then decomposing the TE 

score obtained from CCR DEA into two components, scale efficiency 

and Pure Technical efficiency. If there is a difference in the CCR and 

BCC scores for a particular terminal, this indicates that the unit has 

scale inefficiency (Timothy J. Coelli et al. 2005), <Figure V.4>. Eq. (3) 

can be also defined by: 

 

𝑆𝐸 =  
𝑇𝐸𝐶𝐶𝑅

𝑃𝑇𝐸𝐵𝐶𝐶

                                                                  (13) 
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Source: Self Developed 

V.1.4. DEA Super Efficiency 

 CCR and BCC models dichotomize DMUs into inefficient and efficient 

units. However, it is not possible to differentiate between the efficient 

units, since all of them receive the same efficiency score of “1”, e.g., 

in our case we can differentiate between the most inefficient terminals 

and the least inefficient terminals according to their location from the 

efficient frontier, but we cannot differentiate between the most efficient 

terminals and the least efficient terminals, because all of them are 

located on the efficient frontier1. 

                                            

1 All efficient units have score equal to 1 

Figure V.4: Graphical Depiction of DEA Return to Scale 
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To overcome this limitation Andersen and Petersen (1993) proposed 

the Super-Efficiency ranking method for only efficient DMUs. The 

Super-Efficiency measures how much can the inputs be increased (or 

the outputs decreased) while not become inefficient (So et al. 2007).  

The super-efficiency model is identical to the DEA model previously 

described, but a DMU under evaluation (k) is excluded from the 

reference set. The formulation for the super-efficient model, follows 

Eq. (7), but is evaluated without unit k, (for i=1,...,n, i ≠ k). For an 

efficient unit, its exclusion from the reference set will alter the frontier 

and allow the unit to be located above the efficient frontier, and to be 

super-efficient. 

V.2. Measuring Energy Efficiency of Container Terminals 

Using DEA 

V.2.1. DEA Model Selection  

1.  The Sample’s Size  

There are two contrasting facts to consider when evaluating the size 

of the data set, the larger is the Number of DMUs included to the data 

set, the greater is the probability of capturing high performance units 

that would determine the efficient frontier, and improve discriminatory 

power. On the other hand, a larger data set includes more exogenous 

factors that may decrease the homogeneity of the sample. 
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Yet, academics fixed some rules of thumb on the minimum number of 

DMUs to include in the data set, by considering their relation to the 

number of selected inputs and outputs. For example; Bowlin (1998) 

stipulates that to get a good discriminatory power the model needs to 

have three times the number of DMUs as there are input and output 

variables. While Golany and Roll (1989) established a rule of thumb that 

limits the minimum number of units at twice the number of inputs and 

outputs considered. Boussofiane et al. (1991) mention the need to have 

the number of DMUs equal to the multiple of the number of inputs and 

the number of outputs. And Dyson et al. (2001) recommend that the 

total of DMUs should correspond to two times the product of the number 

of input and output variables. 

2. Selection of Inputs and Outputs 

The basic functions of a container terminal are the transfer and the 

storage of containers. Container handling productivity is directly 

related to the transfer function. The efficient use of energy relates to 

the way the equipment is operated and to the terminal’s layout, e.g., 

improving the utilization of ground space typically reduces movement 

of the equipment and optimizes its energy consumption. As we saw in 

chapter IV the major energy sources for container terminals are 

electricity and diesel, thus these two elements are selected as energy 

inputs. However, to provide more robustness to our model there is a 

factor of heterogeneity to overcome, the energy consumption profile 

differs between automated terminals and traditional ones, i.e., 

regardless the efficiency use of energy automated terminals will 
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relatively consume more electricity than traditional ones, on the other 

hand traditional terminals will consume more fossil fuel than automated 

ones, do not consider this major difference may affect the accuracy of 

the analysis. To overcome this issue instead of using the energy 

sources according to their respective units, each input will be converted 

into its equivalent in Joule2 then their sum will be used as one single 

input. 

Outputs include, ship to shore gantry cranes, yard vehicles and 

machinery, reefer plugs, and buildings and yard lighting. As 

representative to buildings and yard lighting the terminal’s size is 

considered. To ensure that the low consumption of energy is due to 

efficiency and not to operational underperformance, container 

throughput is included as an additional output variable. <Table V.2> 

shows data summary statistics of the year 2012, for more details refer 

to <Appendix 1>. 

Table V.2: Summary Statistics for Input and Outputs  

 

                                            
2 1 kwh of electricity = 36 10−4 GJ, and 1 liter of diesel = 387 10−4 GJ 
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3. Correlation among Inputs and Outputs 

The degree of correlation between inputs and outputs is an important 

issue that has a great impact on the robustness of the DEA model. Thus, 

a correlation analysis is crucial in order to select the appropriate inputs 

and outputs. If for example a very high correlation is found between an 

input variable and any other input variable, this input variable may be 

thought of as a proxy of the other variable. Therefore, this input could 

be excluded from the model. On the other hand, if the input variable has 

a very low or a negative correlation with all the output variables, it may 

indicate that this variable does not fit the model, i.e., an increase in any 

input should not result in a decrease in any output. Correlation analyses 

were done for each pair of variables, <Table V.3> shows the correlation 

matrix 

Table V.3: Variables Correlation Coefficients  

 

No DMUs with inappropriate Data with respect to the sellected model 

have been detected, which is a validation for our DEA model.  
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V.2.2. DEA Input-Oriented Analysis 

An online DEA software “DEAOS” has been run to analyze the 

respective energy efficiency scores of the units in our data set. To 

compute energy efficiency two input oriented models have been applied, 

DEA-CCR with constant return to scale, and DEA-BCC that assumes a 

variable return to scale, DEA is carried on eighteen container terminals 

from different regions in the world, among them six are automated, 

while the rest of them are traditional terminals, <Table V.4>. 

 

Table V.4: List of Container Terminals in the Data Set  

Country Port 

Container 

Terminal 
Type 

Algeria Bejaia BMT Traditional 

Brazil Santos Libra Traditional 

China QingDao 

Qianwan 

United 
Traditional 

India 

L&T 

Kattupalli 

Kattupalli 

International 
Automated 

Italy Livorno 

Darsena 

Toscana 
Traditional 

Korea 

Busan 

New 

BNCT Automated  
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Korea 

Busan 

North 

DPCT Traditional  

Korea 

Busan 

New 

Hanjin 

Busan 
Automated 

Korea 

Busan 

North 

Hutchison Traditional 

Korea 

Busan 

New 

Hyundai Automated 

Korea 

Busan 

North 

KBCT Traditional 

Korea 

Busan 

New 

PNC Automated 

Korea 

Busan 

New 

PNIT Automated  

Korea 

Busan 

North 

SBCT Traditional  

Slovenia Koper 

Luka 

Koper 
Traditional 

Spain Valencia Noatum Traditional 

Sri 

Lanka 

Colombo Jaya Traditional 

Taiwan Kaohsiung 

Hanjin 

Pacific 
Traditional  
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1. Interpretation of the Results for CCR Model  

<Table V.5> depicts the abridged version of the efficiency report, 

where efficiency scores of all eighteen container terminals are reported. 

This one-input and three-output model shows that three of the eighteen 

terminals are efficient using these four dimensions. Among the efficient 

units, Jaya container terminal could be easily determined as efficient 

unit, because it is ranked in the fourth position in term of cargo volume 

handled, and in the thirteenth position for the amount of energy used. 

While, we observe that the efficiency of the two terminals BMT and 

Kattupalli International, that handled the smallest cargo volumes, 

respectively ranked in the seventeenth and eighteenth larger volumes, 

using also the seventeenth and eighteenth larger amounts of energy, 

respectively (Appendix I and Appendix II), Could not be determined in 

ratio based analysis. However, with DEA using multiple inputs and 

outputs at the same time, we are able to discover them. 

 

Table V.5: Analysis results with Constant return to Scale  

 Efficiency Graph 

bmt 100 % 100% 
 

 

libra 41.9 % 42% 
 

  

qianwan united 61.3 % 61% 
 

  

kattupalli international 100 % 100% 
 

 

darsena toscana 70 % 70% 
 

  

bnct 73.7 % 74% 
 

  

dpct 59.5 % 59% 
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hanjin busan 44.1 % 44% 
 

  

hutchison 69 % 69% 
 

  

hyundai 46.7 % 47% 
 

  

kbct 52.7 % 53% 
 

  

pnc 53.8 % 54% 
 

  

pnit 74.9 % 75% 
 

  

sbct 37.7 % 38% 
 

 

luka koper 34.5 % 34% 
 

 

noatum 50.2 % 50% 
 

  

jaya 100 % 100% 
  

hanjin pacific 31 % 31% 
 

 

 : Efficient 

 

1) Efficiency and Inefficiency 

Fifteen container terminals have scores of less than 1 but greater than 

0, and thus they are identified as inefficient. These terminals can 

improve their efficiency, or reduce their inefficiencies proportionately, 

by reducing their inputs. For example, KBCT Container terminal can 

improve its efficiency by reducing inputs up to 47.3 % (1.0_0.527). 

However, PNIT container terminals is closer to an efficiency frontier 

and needs only a 25.1% reduction in resources. These input reductions 

are called total inefficiencies which comprise not only the amount of 

proportional reductions, but also an amount called “Slack” for those 

Terminals that cannot reach their efficiency targets (at frontier) despite 

the proportional reductions. 
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2) Slacks for Inputs and Outputs  

<Table V.6> contains the “Slack” values of the DEA computation 

results. Mathematical derivation of these slacks is presented by Eq. (9). 

Here, we observe that none of the efficient terminals have any slacks. 

Slacks exist only for terminals identified as inefficient. However, slacks 

represent only the leftover portions of inefficiencies after proportional 

reductions in inputs, if a DMU cannot reach the efficiency frontier 

slacks are needed to help the DMU to reach the frontier. We can note 

that in our case there is no excess in inputs for the whole inefficient 

terminals after the proportional reduction. However there are outputs 

shortages for fourteen out of the fifteen inefficient units. 

 

Table V.6: Inputs Slacks for CCR Model  

 
total 

energy 

"gj" 

terminal’s 

area “m²” 
nº equipment 

throughput 

"teu" 

bmt 0 0 0 0 

libra 0 374248.225 0 0 

qianwan 

united 
0 1744629.363 0 0 

kattupalli 

international 
0 0 0 0 

darsena 

toscana 
0 0 21.985 0 

bnct 0 0 248.578 67447.012 

dpct 0 0 414.682 0 

hanjin 

busan 
0 0 354.479 0 
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hutchison 0 0 432.149 0 

hyundai 0 0 1102.29 0 

kbct 0 0 842.542 0 

pnc 0 0 1177.783 0 

pnit 0 0 0 0 

sbct 0 0 67.718 0 

luka koper 0 0 207.702 0 

noatum 0 0 1519.886 0 

jaya 0 0 0 0 

hanjin pacific 0 0 248.209 0 

 

For example we can notice that Darsena Toscana container terminal 

do not require additional reduction in its energy use. However, to 

achieve efficiency, Darsena Toscana container terminal should augment 

the number of its equipment by about 22 units, corresponding to about 

3% of its original number of equipment. A similar situation in a different 

magnitude exists for ten out of the fifteen inefficient terminals3. On the 

other hand, Qianwan United terminal, cannot reduce any inputs, but to 

reach its efficient target this terminal must overcome shortage issues 

related to size4. A similar situation in a different magnitude exists for 

Libra terminal. Lastly, BNCT terminal should increase its equipment by 

about 21%, and the throughput by about 13.3%. It is to note that these 

                                            
3 Any increase in the number of equipment is supposed to result in an increase in the 

throughput. 

4 It is to notice that Qianwan United terminal has the largest number of equipment and 

throughput, and consumes the largest amount of energy in our data set, while it is ranked 

only sixteenth in term of size. 
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calculations are the results of Eq. (7) and Eq. (9) executed in succession 

or Eq. (10)5. 

3) Efficiency Targets 

We can summarize the efficiency targets by examining <Table V.7>. 

Here, for each Terminal, target input and output levels are prescribed. 

These targets are the results of respective slack values added to 

proportional reduction amounts. To calculate the target values for 

inputs, the input value is multiplied with an optimal efficiency score, and 

then slack amounts are subtracted from this amount (Ozcan, 2014). For 

detailed formulations of these calculations, refer to Eq. (11).  

 

Table V.7: Input and Outputs Efficiency Targets for CCR Model  

 total energy "gj" 
terminal’s area 

“m²” 

nº 

equipment 

throughput 

"teu" 

bmt 
28951.077 to 28951

.077 
332000 to 332000 567 to 567 

226856 to 22685

6 

libra 
159489.796 to 6680

9.957 

155000 to 529248

.225 
1319 to 1319 

648400 to 64840

0 

qianwan 

united 
566736.102 to 3472

04.106 

244000 to 198862

9.363 
6180 to 6180 

5450000 to 5450

000 

kattupalli 

internatio

nal 

19774.8 to 19774.8 172000 to 172000 404 to 404 
150000 to 15000

0 

darsena 

toscana 
55981.876 to 39173

.378 
386000 to 386000 

717 to 738.9

85 

413800 to 41380

0 

                                            

5 Refer to Chapter VI, VI.1, VI.1.1, Eq: (7), (9) & (10). 
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bnct 
99351.446 to 73249

.712 
840000 to 840000 

1186 to 1434

.578 

506526 to 57397

3.012 

dpct 
105875.479 to 6298

6.877 
308000 to 308000 

634 to 1048.

682 

1193690 to 1193

690 

hanjin 

busan 
299287.436 to 1320

68.006 
687590 to 687590 

1863 to 2217

.479 

2432255 to 2432

255 

hutchiso

n 
128543.663 to 8866

2.045 
624000 to 624000 

1129 to 1561

.149 

1358431 to 1358

431 

hyundai 
236951.884 to 1106

98.315 
553068 to 553068 

746 to 1848.

29 

2078010 to 2078

010 

kbct 
274827.935 to 1448

01.332 

1012159 to 10121

59 

1704 to 2546

.542 

2230306 to 2230

306 

pnc 
368021.023 to 1978

54.603 

1202000 to 12020

00 

2221 to 3398

.783 

3353330 to 3353

330 

pnit 
134690.695 to 1008

40.891 
840000 to 840000 1878 to 1878 

1220000 to 1220

000 

sbct 
167565.749 to 6321

7.536 
446250 to 446250 

1046 to 1113

.718 

966341 to 96634

1 

luka 

koper 
109952.96 to 37893

.69 
270000 to 270000 

461 to 668.7

02 

575000 to 57500

0 

noatum 
306702.485 to 1539

83.535 

1152217 to 11522

17 

1222 to 2741

.886 

2243516 to 2243

516 

jaya 
114878.637 to 1148

78.637 
455000 to 455000 1865 to 1865 

2357500 to 2357

500 

hanjin 

pacific 
187103.933 to 5804

7.535 
420000 to 420000 

779 to 1027.

209 

870000 to 87000

0 

 

As it can be observed from <Figure V.5>, the target values for efficient 

terminals are equivalent to their original input and output values. 

However, for the inefficient Units, the targets for input variables “�̂�𝑞𝑘” 

in our DEA model will comprise proportional reduction in the input 

variables by the efficiency score of the DMU minus the slack value, if 

any, given by the formula: 
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�̂�𝑞𝑘 = 𝜃∗𝑥𝑞𝑘 − 𝑠𝑞
−∗  𝑞 = 1, … , 𝑄 

For example, the input target calculation for the Energy Use (EU) of 

BNCT container terminal is calculated as the following: 

�̂�𝐸𝑈.𝐵𝑁𝐶𝑇 = 𝜃∗𝑥𝐸𝑈.𝐵𝑁𝐶𝑇 − 𝑠𝐸𝑈
−∗    

�̂�𝐸𝑈.𝐵𝑁𝐶𝑇 =  0.418898004 ∗ 159489.7956 − 0 

�̂�𝐸𝑈.𝐵𝑁𝐶𝑇 = 73249.71213 

Where 0.418898004 is the efficiency score <Table V.5>, 

159489.7956350 is the amount of energy consumed in “GJ” < Appendix. 

II>, and 0 represents the slack value of the input <Table V.6>. The 

result can be confirm with <Table V.7>.  

<Table V.7> shows the respective possible reduction in energy 

consumption for inefficient terminals 

In an input-oriented model, efficient output targets are calculated as: 

�̂�𝑝𝑘 = 𝑦𝑝𝑘 + 𝑠𝑝
+∗   𝑝 = 1, … , 𝑃 

Using the same example of BNCT container terminal, Number of 

Equipment (NE), Terminal’s Size (TS) and Throughput (TH) targets are: 

 NE𝐵𝑁𝐶𝑇: �̂�𝑁𝐸.𝐵𝑁𝐶𝑇 = 𝑦𝑁𝐸.𝐵𝑁𝐶𝑇 +  𝑠𝑁𝐸
+∗  

�̂�𝑁𝐸.𝐵𝑁𝐶𝑇 = 1186 + 248.5783133 

 �̂�𝑁𝐸.𝐵𝑁𝐶𝑇 = 1434.578313 ≈ 1435 

 

TS𝐵𝑁𝐶𝑇:  �̂�𝑇𝑆.𝐵𝑁𝐶𝑇 = 𝑦𝑇𝑆.𝐵𝑁𝐶𝑇 +  𝑠𝑇𝑆
+∗ 

�̂�𝑇𝑆.𝐵𝑁𝐶𝑇 = 840000 + 0 
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�̂�𝑇𝑆.𝐵𝑁𝐶𝑇 = 840000 

 

 𝑇𝐻𝐵𝑁𝐶𝑇: �̂�𝑇𝐻.𝐵𝑁𝐶𝑇 = 𝑦𝑇𝐻.𝐵𝑁𝐶𝑇 + 𝑠𝑇𝐻
+∗  

�̂�𝑇𝐻.𝐵𝑁𝐶𝑇 = 506526 + 67447.012 

�̂�𝑇𝐻.𝐵𝑁𝐶𝑇 = 573973.012 ≈ 573974 

 

These results can be confirmed with <Table V.7> for BNCT container 

terminal. The other inefficient terminals’ targets are calculated in the 

same manner. 

4) Weights 

Optimal input and output weights 𝑣𝑞 and 𝑢𝑝, shown in Eq. (5), (6), and 

(7), are derived by solving the DEA based on relative evaluation of all 

DMUs in the data set. 

These weights also provide information on how efficiency 

improvements can be achieved for the inefficient container terminals. 

For example, BNCT terminal has an efficiency ratio of 0.737. This 

means that this terminal must increase its rating by 2.63% (1 - 0.737 = 

0.263) to become relatively efficient among the other terminals in the 

data set. Using the weights reported in <Table V.8>, this terminal can 

decrease its energy use by 26101.68 GJ (0.263/1.0065*10−5 = 26101.68), 

to an efficient target of 73249.71 GJ, as reported in <Table V.7>.  
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Table V.8: Optimal Input and Outputs Weights for CCR Model  

 
total energy 

"gj" 

terminal’s area 

“m²” 

nº 

equipment 

throughput 

"teu" 

bmt 3.45E-05 3E-06 0 0 

libra 6.3E-06 0 0.0002739 1E-07 

qianwan 

united 
1.8E-06 0 7.71E-05 0 

kattupalli 

international 
5.06E-05 7E-07 0.0021906 0 

darsena 

toscana 
1.79E-05 1.1E-06 0 7E-07 

bnct 1.01E-05 9E-07 0 0 

dpct 9.4E-06 6E-07 0 3E-07 

hanjin busan 3.3E-06 2E-07 0 1E-07 

hutchison 7.8E-06 5E-07 0 3E-07 

hyundai 4.2E-06 3E-07 0 2E-07 

kbct 3.6E-06 2E-07 0 1E-07 

pnc 2.7E-06 2E-07 0 1E-07 

pnit 7.4E-06 1E-07 0.0002861 1E-07 

sbct 6E-06 4E-07 0 2E-07 

luka koper 9.1E-06 6E-07 0 3E-07 

noatum 3.3E-06 2E-07 0 1E-07 

jaya 8.7E-06 0 0.0003803 1E-07 

hanjin pacific 5.3E-06 3E-07 0 2E-07 

 

5) Benchmarks  

<Table V.9> provides benchmark results, “benchmarks” are created 

through the DEA computations. Here, terminal managers whose 
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container terminals are inefficient can observe the benchmark DMUs to 

improve their efficiency. 

 

Table V.9: Benchmarks for CCR Model  

 Peer Group Frequencies 

bmt bmt 14 
 

libra kattupalli international,jaya 0   

qianwan united kattupalli international,jaya 0   

kattupalli international kattupalli international 4 
 

darsena toscana bmt,jaya 0   

bnct bmt 0   

dpct bmt,jaya 0   

hanjin busan bmt,jaya 0   

hutchison bmt,jaya 0   

hyundai bmt,jaya 0   

kbct bmt,jaya 0   

pnc bmt,jaya 0   

pnit bmt,kattupalli international,jaya 0   

sbct bmt,jaya 0   

luka koper bmt,jaya 0   

noatum bmt,jaya 0   

jaya jaya 15  

hanjin pacific bmt,jaya 0   

     : Referenced 

 

Efficient units may consider themselves to be their own “benchmarks”; 

e.g., the benchmark for BMT terminal is BMT terminal. However, for 

inefficient Terminals, at least one of the efficient terminals is 

considered as a benchmarking peer; e.g., the benchmark for BNCT 



 

 

 

  

64 

 

terminal is the efficient unit BMT terminal, and benchmarking peers for 

Noatum container terminal are two terminals, BMT and Jaya, i.e., to 

become efficient, Noatum terminal must use a virtual terminal that is 

the combination of BMT and Jaya to become efficient <Figure V.5>.  

Figure V.5: Benchmarking Peers 

 

The values of contribution of BMT terminal and Jaya terminal to form 

this virtual benchmark of efficiency achievement, are calculated and 

reported in <Table V.10> for each benchmarking peer terminal, i.e., λ 

(lambda) weights obtained from the dual version of the linear program 

that is solved to estimate these values6.  

                                            

6 Refer to Chapter VI, VI.1, VI.1.1, Eq. (7). 
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Table V.10: Lambda for CCR Model  

 
bmt 

kattupalli 

international 
jaya 

bmt 1 0 0 

libra 0 2.825 0.095 

qianwan 

united 
0 6.549 1.895 

kattupalli 

international 
0 1 0 

darsena 

toscana 
1.062 0 0.073 

bnct 2.53 0 0 

dpct 0.269 0 0.48 

hanjin busan 0.757 0 0.959 

hutchison 1.255 0 0.455 

hyundai 0.527 0 0.831 

kbct 2.018 0 0.752 

pnc 1.925 0 1.237 

pnit 1.564 1.075 0.299 

sbct 0.901 0 0.323 

luka koper 0.552 0 0.191 

noatum 2.495 0 0.712 

jaya 0 0 1 

hanjin pacific 0.875 0 0.285 

 

For example, Darsena Toscana terminal will attempt to become like 

BMT terminal more than Jaya terminal as observed from respective λ 

weights of these two terminals, becaue BMT terminal λ value 
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( 𝜆𝐵𝑀𝑇 =1.062174118) is larger than Jaya terminal λ value 

(𝜆𝐽𝑎𝑦𝑎=0.07331471). 

2. Interpretation of the Results for BCC Model  

In BCC models more DMUs can find their way to the frontier. 

Additionally, BCC efficiency scores are generally higher than efficiency 

scores with constant return to scale. Thus, using this approach makes 

more terminals appear to be efficient using this approach. 

1) Return to Scale 

In order to calculate and assess the RTS (whether is increasing, 

constant, or decreasing) the summation of lambda “𝜆𝑗” weight values is 

needed. If the summation of lambda weights is ∑ 𝜆 < 1, then for such 

DMU increasing return to scale prevail. On the other hand, if ∑ 𝜆 > 1, 

then the DMU exhibits decreasing rates of return to scale. The efficient 

DMUs are considered as having constant returns to scale, and they will 

have ∑ 𝜆 = 1. 

 <Table V.11> displays ∑ 𝜆 and RTS for the whole units in the data set. 

For terminals that have only one benchmark in their reference set, ∑ 𝜆 

is equal to λ weight of that reference. On the other hand those with more 

than one terminal in their benchmarks set, ∑ 𝜆 is an addition of their 

respective λ weights; e.g., ∑ 𝜆 value of KBCT terminal, is calculated by 

adding λ weight of BNCT terminal and λ weight of PNC terminal, and 

PNIT terminal (0.006+0.476+0.518=1). 
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Table V.11: Return to Scale for BCC Model  

  bmt 
qianwan 

united 

kattupalli 

international 
bnct pnc pnit noatum jaya 

  

 RTS 

bmt 1 0 0 0 0 0 0 0 1  Constant 

libra 0.421 0 0 0 0 0 0 0.579 1  Constant 

qianwan 

united 
0 1 0 0 0 0 0 0 1  Constant 

kattupalli 

internatio

nal 

0 0 1 0 0 0 0 0 1  Constant 

darsena 

toscana 
0.836 0 0 0.088 0 0 0 0.076 1  Constant 

bnct 0 0 0 1 0 0 0 0 1  Constant 

dpct 0.015 0 0.513 0 0 0 0 0.472 1  Constant 

hanjin 

busan 
0 0 0 0 0.238 0.143 0 0.62 1.001 Decreasing 

hutchison 0.069 0 0 0.461 0 0 0 0.471 1.001 Decreasing 

hyundai 0 0 0 0 0.003 0.249 0 0.748 1  Constant 

∑ 𝜆 



 

 

 

6
8
 

kbct 0 0 0 0.006 0.476 0.518 0 0 1  Constant 

pnc 0 0 0 0 1 0 0 0 1  Constant 

pnit 0 0 0 0 0 1 0 0 1  Constant 

sbct 0.527 0 0 0.145 0 0 0 0.328 1  Constant 

luka 

koper 
0.29 0 0.528 0 0 0 0 0.182 1  Constant 

noatum 0 0 0 0 0 0 1 0 1  Constant 

jaya 0 0 0 0 0 0 0 1 1  Constant 

hanjin 

pacific 
0.608 0 0 0.103 0 0 0 0.288 0.999 Increasing 
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2) Efficient Targets  

<Table V.12> and <Table V.13> display together slacks and targets for 

the VRS model. The calculation of targets is the same as for the CRS 

model, refer to Eq. (11). 

 

Table V.12: Input and output Slacks for BCC Model  

 
total energy 

"gj" 

terminal’s 

area “m²” 

nº 

equipment 

throughput 

"teu" 

bmt 0 0 0 0 

libra 0 248260.401 0 812850.675 

qianwan united 0 0 0 0 

kattupalli 

international 
0 0 0 0 

darsena toscana 0 0 3.297 0 

bnct 0 0 0 0 

dpct 0 0 462.393 0 

hanjin busan 0 0 88.544 0 

hutchison 0 0 334.113 0 

hyundai 0 0 1123.371 0 

kbct 0 0 332.994 0 

pnc 0 0 0 0 

pnit 0 0 0 0 

sbct 0 0 36.769 0 

luka koper 0 0 256.778 0 

noatum 0 0 0 0 

jaya 0 0 0 0 

hanjin pacific 0 0 226.207 0 
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Table V.13: Input and Output Targets for BCC  

 total energy "gj" 
terminal’s area 

“m²” 

nº 

equipment 
throughput "teu" 

bmt 
28951.077 to 28951.

077 

332000 to 33200

0 
567 to 567 226856 to 226856 

libra 
159489.796 to 7873

3.454 

155000 to 40326

0.401 
1319 to 1319 

648400 to 146125

0.675 

qianwan 

united 
566736.102 to 5667

36.102 

244000 to 24400

0 
6180 to 6180 

5450000 to 54500

00 

kattupalli 

internatio

nal 

19774.8 to 19774.8 
172000 to 17200

0 
404 to 404 150000 to 150000 

darsena 

toscana 
55981.876 to 41684.

046 

386000 to 38600

0 

717 to 720.2

97 
413800 to 413800 

bnct 
99351.446 to 99351.

446 

840000 to 84000

0 
1186 to 1186 506526 to 506526 

dpct 
105875.479 to 6482

5.129 

308000 to 30800

0 

634 to 1096.

393 

1193690 to 11936

90 

hanjin 

busan 
299287.436 to 1779

24.502 

687590 to 68759

0 

1863 to 1951

.544 

2432255 to 24322

55 

hutchison 
128543.663 to 1018

33.393 

624000 to 62400

0 

1129 to 1463

.113 

1358431 to 13584

31 

hyundai 
236951.884 to 1206

12.732 

553068 to 55306

8 

746 to 1869.

371 

2078010 to 20780

10 

kbct 
274827.935 to 2454

46.438 

1012159 to 1012

159 

1704 to 2036

.994 

2230306 to 22303

06 

pnc 
368021.023 to 3680

21.023 

1202000 to 1202

000 
2221 to 2221 

3353330 to 33533

30 

pnit 
134690.695 to 1346

90.695 

840000 to 84000

0 
1878 to 1878 

1220000 to 12200

00 

sbct 
167565.749 to 6737

5.665 

446250 to 44625

0 

1046 to 1082

.769 
966341 to 966341 
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luka 

koper 
109952.96 to 39784.

538 

270000 to 27000

0 

461 to 717.7

78 
575000 to 575000 

noatum 
306702.485 to 3067

02.485 

1152217 to 1152

217 
1222 to 1222 

2243516 to 22435

16 

jaya 
114878.637 to 1148

78.637 

455000 to 45500

0 
1865 to 1865 

2357500 to 23575

00 

hanjin 

pacific 
187103.933 to 6100

3.534 

420000 to 42000

0 

779 to 1005.

207 
870000 to 870000 

 

Now the number of inefficient terminals decreased to ten <Table V.14>, 

and they cannot reach the BCC frontier through input reduction only, 

outputs augmentations are needed. If we consider Hyundai terminal (HY) 

as example, using the values in <Appendix. II> and the target 

formulations from Eq. (11); for energy use (EU), we get: 

�̂�𝑞𝑘 = 𝜃∗𝑥𝑞𝑘 − 𝑠𝑞
−∗  𝑞 = 1, … , 𝑄 

For Hyundai terminal it will be, 

𝐸𝑈𝐻𝑌: �̂�𝐸𝑈.𝐻𝑦 = 𝜃∗𝑥𝐸𝑈.𝐻𝑦 − 𝑠𝐸𝑈
−∗    

�̂�𝐸𝑈.𝐻𝑦 = 0.509018* 236951.88 - 0 

�̂�𝐸𝑈.𝐻𝑦 =120612.73 

Similarly for outputs, we get: 

�̂�𝑝𝑘 = 𝑦𝑝𝑘 + 𝑠𝑝
+∗   𝑝 = 1, … , 𝑃 

For Hyundai terminal it will be, 

 𝑁𝐸𝐻𝑌: �̂�𝑁𝐸.𝐻𝑦 = 𝑦𝑁𝐸.𝐻𝑦 +  𝑠𝑁𝐸
+∗  

 

�̂�𝑁𝐸.𝐻𝑦 = 746 + 1123.370612  
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 �̂�𝑁𝐸.𝐻𝑦 = 1869.370612 ≈  1870  

 

𝑇𝑆𝐻𝑌: �̂�𝑇𝑆.𝐻𝑦 = 𝑦𝑇𝑆.𝐻𝑦 +  𝑠𝑇𝑆
+∗ 

�̂�𝑇𝑆.𝐻𝑦 = 553068 + 0 

�̂�𝑇𝑆.𝐻𝑦 = 553068 

 

𝑇𝐻𝐻𝑌: �̂�𝑇𝐻.𝐻𝑦 = 𝑦𝑇𝐻.𝐻𝑦 +  𝑠𝑇𝐻
+∗  

�̂�𝑇𝐻.𝐻𝑌 = 2078010 + 0 

�̂�𝑇𝐻.𝐻𝑦 = 2078010 

 

The results of these calculations can be verified by comparison with 

the target values of Hyundai terminal in <Table V.13>. 

3) Benchmarking peers 

Since the VRS model forms a different frontier, the benchmarks are 

certainly different than those of the CRS frontier. The λ weights 

corresponding to each reference terminal are shown in <Table V.11> 

and <Table V.14>. 

Table V.14: Benchmarking Peers for BCC Model  

 Peer Group Frequencies 

bmt bmt 8 
 

libra bmt,jaya 0   

qianwan united qianwan united 1 
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kattupalli international kattupalli international 3 
 

darsena toscana bmt,bnct,jaya 0   

bnct bnct 6 
 

dpct bmt,kattupalli international,jaya 0   

hanjin busan pnc,pnit,jaya 0   

hutchison bmt,bnct,jaya 0   

hyundai pnc,pnit,jaya 0   

kbct bnct,pnc,pnit 0   

pnc pnc 4 
 

pnit pnit 4 
 

sbct bmt,bnct,jaya 0   

luka koper bmt,kattupalli international,jaya 0   

noatum noatum 1  

jaya jaya 10  

hanjin pacific bmt,bnct,jaya 0  

     : Referenced 

4) Comparing results of CCR, BCC Models, and Scale 

Efficiency 

In this section we will provide a brief overview and compare efficiency 

results. <Table V.15> summarizes the results that were generated using 

input oriented CCR and BCC models. 

Table V.15: Efficiency Score for CCR, Scale, and BCC Models  

 CRS VRS SE 

BMT 100 % 100 % 100 % 

Libra 41.9 % 49.4 % 84.9 % 

Qianwan United 61.3 % 100 % 61.3 % 
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Kattupalli 

International 
100 % 100 % 100 % 

Darsena 

Toscana 
70 % 74.5 % 94 % 

BNCT 73.7 % 100 % 73.7 % 

DPCT 59.5 % 61.2 % 97.2 % 

Hanjin Busan 44.1 % 59.4 % 74.2 % 

Hutchison 69 % 79.2 % 87.1 % 

Hyundai 46.7 % 50.9 % 91.8 % 

KBCT 52.7 % 89.3 % 59 % 

PNC 53.8 % 100 % 53.8 % 

PNIT 74.9 % 100 % 74.9 % 

SBCT 37.7 % 40.2 % 93.8 % 

Luka Koper 34.5 % 36.2 % 95.2 % 

Noatum 50.2 % 100 % 50.2 % 

Jaya 100 % 100 % 100 % 

Hanjin Pacific 31 % 32.6 % 95.2 % 

 

Average efficiency scores for input oriented with VRS models are 

generally greater than those for an input oriented with CRS models. 

In comparing CCR and BCC models, another important aspect of 

efficiency that is scale efficiency, can be depicted (Ozcan, 2014). The 

scale efficiency (SE) can be calculated by dividing the optimal CRS 
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efficiency score by the optimal VRS efficiency score, Eq. (13). Hence, it 

can be written as: 

SE =  
𝜃∗

𝐶𝐶𝑅

𝜃∗
𝐵𝐶𝐶

 

Applying this formula to our results, allows to obtain the SE scores 

shown in <Table V.15>. 

The BCC efficiency scores "𝜽∗
𝑩𝑪𝑪 ” are considered pure technical 

efficient, while CCR efficiency scores "𝜽∗
𝑪𝑪𝑹" are considered technical 

efficient. Thus, from the formula above the technical efficiency is the 

product of pure technical efficiency and scale efficiency, as in:   

𝜃∗
𝐶𝐶𝑅 = 𝑆𝐸 ∗ 𝜃∗

𝐵𝐶𝐶 

The conceptual distances from CCR and BCC fronts to an inefficient 

terminal were shown in <Figure V.6>. Once the distances are calculated, 

CCR and BCC efficiency scores are obtained, and by substituting these 

values into the above ratio, scale efficiency can be obtained by its turn 

(Ozcan, 2014). 

If we take Luka Koper “LK” container terminal as example: 

LK input oriented efficiency with CRS: 

𝜃∗
𝐶𝐶𝑅.𝐿𝐾 = 𝐿𝐾𝐶 /𝐿𝐾 

𝜃∗
𝐶𝐶𝑅.𝐿𝐾 = 37893.69004/109952.9595 = 0.344635472 

The result can be verified from <Table V.6> and <Table V.14> 

LK input oriented efficiency with VRS: 

𝜃∗
𝐵𝐶𝐶.𝐿𝐾 = 𝐿𝐾𝑉/𝐿𝐾 
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𝜃∗
𝐵𝐶𝐶.𝐿𝐾 = 39784.53773/109952.9595 = 0.36183235 

The result can be verified from <Table V.12> and <Table V.14> 

LK input oriented SE: 

𝑆𝐸𝐿𝐾 =
𝜃∗

𝐶𝐶𝑅.𝐿𝐾

𝜃∗
𝐵𝐶𝐶.𝐿𝐾

=
0.344635472

0.36183235
=  0.952472801 

The result can be verified from <Table V.15>. 

 

Figure V.6: Input Reductions and RTS 
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Chapter VI : Conclusion 

VI.1. Research Finding  

After running a DEA model with CRS, the results displayed in <Table 

V.5> show that energy technical efficiency scores for the eighteen 

container terminals, vary from 0.31 for the least inefficient to 1 for 

efficient units7, with an average overall score of 0.61 indicating that on 

an average the terminals represent about 39% of inefficiency. Among 

the eighteen terminals only three are relatively efficient (BMT, 

Kattupalli International, and Jaya), they form the efficient frontier and 

represent the improvement benchmarks for the inefficient units, while 

the other fifteen terminals are inefficient with five terminals 

representing scores above the average and ten terminals have scores 

below the average <Figure VI.1>, as first ascertainment we can notice 

that in our data set 83% of terminals consume energy with an average 

of 39% of inefficiency.   

 

 

 

                                            

7 Score 1 means 100% efficient, and score 0.31 means efficient at 31% or a lack of 69% 

of efficiency. 
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Figure VI.1: Energy use Efficiency Plot for CCR Model 

 

<Table V.7> shows the respective possible reduction in energy 

consumption for inefficient terminals. Each inefficient DMU has one or 

a set of efficient DMUs (Benchmarks)8 with corresponding intensities 

() 9  <Table V.11>, which can be identified as energy efficiency 

improvement references, <Table V.10> shows the frequency of each 

efficient terminal as efficiency improvement reference. 

Inefficient terminals in the data set can reduce a total amount of 

1523590.942 GJ from their total inputs while keeping the same level of 

outputs, which corresponds to about 47.59% from the sample’s total 

energy use, and an individual average waste in energy equal to 46.6%. 

                                            
8 Benchmarks are selected on the basis of their comparable variables to those of the 

inefficient DMUs. 

9
  Is an optimal multiplier to identify the reference sets for each inefficient DMU. 
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After a DEA model with VRS has been applied, Technical efficiency 

scores are decomposed into pure technical and scale efficiencies. 

Which allows to find whether the overall inefficiency is due to pure 

technical inefficiency or scale inefficiency <Table V.15>. 

The decomposition of the overall technical efficiency into its two 

components confirms that the overall inefficient terminals are also pure 

technical efficient, and have constant return to scales10. Among the 

terminals estimated inefficient under CCR model 5 terminals are pure 

technical efficient (Naotum, PNIT, PNC, BNCT, and Qianwan United), 

indicating that the origin of their energy waste is due to unfavorable 

return to scale conditions. While the remaining terminals represent both 

scale and pure technical inefficiencies. But 1 of them (KBCT) has its 

PTE score bigger than the SE score, which suggests that its overall 

inefficiency is mostly affected by operating at inappropriate return to 

scale, while the other 9 terminals (Libra, Darsena Toscana, DPCT, 

Hanjin Busan, Hutchison, Hyundai, KBCT, Luka Koper, Hanjin Pacific) 

have their SE score bigger than their PTE score, which indicates that 

the most dominant reason of their overall inefficiency is probably a 

managerial failure. 

VI.2. Conclusion 

According to the sample’s analysis we conclude that, despite of the 

big similarities in types of equipment and machinery run by container 

                                            

10 Score 1 for both technical and pure technical efficiencies implies scale efficient. 
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terminals, the energy use can varies considerably from one container 

terminal to another.  

Container terminals’ size and automation do not have an apparent 

influence on their energy use efficiency, while the most dominant 

potential cause of inefficiency in our sample is likely to be more 

managerial, because among 15 inefficient terminals 9 have respectively 

their pure technical efficiency score smaller than their scale efficiency 

score, while 6 of them operate at unfavorable return to scale making 

technology related issues likely to be the dominant origin of their 

underperformance. We can conclude that there is no exclusive reason 

of inefficiency in term of energy use, and the cause can be either 

managerial or related to technology11. 

In their initiatives to improve energy efficiency, decision makers of 

inefficient units that the scale efficiency score is higher than the 

technical efficiency score, should concentrate their efforts on 

developing a better use of their inputs to reduce the energy 

consumption by adopting better practices developed by their respective 

benchmarks. On the other hand, those representing pure technical 

efficiency scores higher than scale efficiency scores, they should 

investigate technology related issues, and overcome them using as 

reference their respective benchmarks, to reach an optimal return to 

scale and reduce their energy consumption 

                                            

11 Even though we could notice that the managerial factor is more frequent, that stays 

limited to our sample. 
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VI.3. Study Limitation  

Using DEA allowed to assess the relative energy efficiency of a 

sample of eighteen container terminals from different parts in the world, 

it helped us to identify efficient and inefficient terminals, and for each 

inefficient unit DEA calculated the potential amount of energy likely to 

be saved while keeping the same operational performance, attributed a 

benchmark peer or a set of benchmarks peers that can be used as 

reference, to establish best practices, and develop better policies to 

enhance their energy efficiency.  

By considering a variable return to scale DEA allowed us to target the 

primary cause of energy inefficiency for each underperforming unit, 

whether it is due to technological issues leading to operate at an 

inappropriate return to scale, or due to managerial deficiency in the use 

of inputs that leads to an overuse of energy resources. However, DEA 

does not point exactly the actual causes of inefficiency, it is limited at 

indicating whether the problem is in technology, management or both, 

thus to get more precision in identifying the dominant reasons of 

inefficiency, we need to check further more by using an ordinary least 

square (OLS) analysis.  

VI.4. Future Work  

To bring more accuracy to the research, a multiple regression analysis 

can be used following the steps bellow; 
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First, increase the number of container terminals to reach at least an 

adequate sample’s size for a regression analysis. Second, apply a DEA 

Super-Efficiency model that allows the efficient units under evaluation 

to be excluded from the reference set, and to get a score bigger than 

1. This method makes possible the full ranking of the terminals from 

the relatively most efficient to the relatively most inefficient, allowing 

a full comparison of the terminals’ respective performances. Third, 

establish assumptions that may explain the variation in energy 

efficiency scores. The following are some examples of assumptions to 

test, and the respective reasons to select them: 

1) ISO 50001 certified container terminals are more energy efficient; 

The company’s certification can be a good indicator of the firm’s 

general policy orientation, considering the terminal’s “ISO 50001”12 

certification as a dummy variable, would allow to test whether the 

terminal’s official policy orientation has an actual effect on its energy 

efficiency or not. 

2) Container shipping lines terminals are more energy efficient than 

typical container terminals; 

Container terminals can be divided into two main categories, typical 

container terminals, and container shipping lines terminals, while the 

first category’s objective is simply to sell its services and technology; 

the second category aims to consolidate the control of the shipping line 

                                            

12 ISO 50001 an energy management systems standards. 
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on the whole supply chain steps, by enhancing the efficiency, and 

reducing the costs, which may qualify them to be more energy efficient.   

3) Container terminals located in exclusively container ports are 

more energy efficient than those located in general cargo ports; 

During the collection of the data, I could notice that container terminals 

located in ports composed exclusively of container terminals 

systematically update their data of energy consumption, while single 

container terminals located in general cargo ports have more difficulty 

to provide their data, electricity in particular, in many cases the port 

authority was in charge of the electricity supply management, which 

make them prone to be less efficient in managing their energy 

consumption.  

4) Automated container terminals are more energy efficient. 

According to our study, the automation has no direct effect on the 

energy efficiency, however the sample’s size is too small to allow a 

consistent inference to the whole international population, thus a more 

accurate study with a larger sample is recommended.   

5) Container terminals using hybrid equipment and machinery are 

more energy efficient. 

Some container terminals tend to use come hybrid cargo handling 

machinery that is supposed to combine productivity and energy saving. 

The final step is to determine explanatory variables, considering one 

dependent variable that is the energy efficiency score obtained using 

DEA super efficiency. <Table VI.1> contains some examples of 
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explanatory variables that can be used according to assumptions given 

above as example13.  

 

Table VI.1: Variables for Ordinary Least Square Analysis 

Dependent 

Variable 
Independent Variables 

DEA 

Super-Efficiency 

Score 

Management Related 

Variables 

Technology Related 

Variables 

1) ISO 50001 certified   4) Automation 

2) Shipping liner  
 5) Uses Hybrid 

Technologies  

3) Container Port or 

Single Container Terminal  

 

                                            

13 The number of the variable indicates the corresponding assumption to be supported 

or not. 



 

85 

 

References  

Banker, R.D., Charnes, A., and Cooper, W.W. (1984). “Some Models for 

Estimating Technical and Scale Inefficiencies in Data Envelopment 

Analysis”. Management Science, Vol. 30, No.9, pp. 1078-1092. 

Boussofiane, A., Dyson, R.G., and Thanassoulis, E. (1991). "Applied Data 

Envelopment Analysis". European Journal of Operational Research, 

vol. 52, No. 1, pp. 1-15. 

Bowlin, W. (1998). "An Introduction to Data Envelopment Analysis (DEA)". 

Journal of Cost Analysis. Vol. 7, pp. 3-27. 

Chang, Y. T. (2013). Environmental Efficiency of ports: a Data Envelopment 

Analysis Approach. Maritime Policy & Management, Vol. 40, No. 7., 

pp. 467-478. 

Charnes, A., Cooper, W.W., and Rhodes, E. (1978). “Measuring the 

Efficiency of Decision Making Units". European Journal of 

Operational Research, Vol. 2, No. 6, pp. 429–444. 

Chien, C.F., Lo, F.Y., and Lin, J.T. (2003). “Using DEA to Measure the 

Relative Efficiency of Service Center and Improve Operation 

Efficiency Through Reorganization". IEEE Transactions on Power 

Systems, Vol. 18, No. 1, pp. 366-373. 

Chiu, Y.A., and Wu, M.F. (2010). “Environmental Efficiency Evaluation in 

China: Application of ‘Undesirable’ Data Envelopment Analysis”. 

Polish J. of Environ, Vol. 19, No. 6, pp. 1159-1169. 



 

86 

 

Cooper, W.W., Seiford, L.M., and Tone, K. (2006). Introduction to DEA and 

its Uses with DEA-Solver Software and References. New York: 

Springer. 

Dyson, R.G., Allen, R., Camanho, A.S., Podinovski, V.V., Sarrico, C.S., and 

Shale, E.A. (2001). "Pitfalls and Protocols in DEA". European Journal 

of Operational Research, Vol. 132, No. 2, pp. 245-259. 

Farell, M. (1957). "The Measurment of Productive Efficiency". Journal of 

the Royal Statistical Society. Series A (General), Vol. 120, No. 3, pp. 

253-290. 

Golany, B., and Roll, Y. (1989). "An Application Procedure for DEA". Omega, 

Vol. 17, No. 3, pp. 237-250. 

GREENCRANES. (2013). Report on Port Container Terminals Energy Profile. 

GREENCRANES Consortium and TEN-T EA. 

Greene, W. (1993). The Measurement of Productive Efficiency. Oxford: 

Oxford University Press. 

Hart, S. (1997). The Environmental Effects of Freight. Paris: Organization 

for Economic Co-operation and Development . 

Heidari, M.D., Omid, M., and Mohammadi, A. (2012). “Measuring Productive 

Efficiency of Horticultural Geenhouses in Iran: A Data Envelopment 

Analysis Approach”. Expert Systems with Applications, Vol. 39, No. 

1, pp. 1040–1045. 



 

87 

 

Herrera, S., and Pang, G. (2008). "Efficiency of Infrastructure: The Case of 

Container Ports". Revista Economia, vol. 9, pp.165–194. 

Lee, W. (2008). “Benchmarking the Energy Efficiency of Government 

Buildings with Data Envelopment Analysis”. Energy and Buildings, 

Vol. 40, No. 4, pp. 891–895. 

Liang, Q. F. (2007). “Multi-Regional Input–Output Model for Regional 

Energy Requirements and CO2 Emissions in China”. Energy Policy, 

Vol. 35, No. 3, pp. 1685–1700. 

Linares, P. a. (2010). “Energy Efficiency: Economics and Policy”. Journal of 

Economic Surveys, Vol. 24, No. 3, pp. 573–592. 

Magali, D., and Toffel, M.W. (2004). “Stakeholders and Environmental 

Management Practices: An Institutional Framework”. Business 

Strategy and the Environment, Vol. 13, No. 4, pp. 209-222. 

Merk, O. D. (2011). The Competitiveness of Global Port-Cities: The Case 

of the Seine Axis (Le Havre, Rouen, Paris, Caen). France: OECD 

Regional Development Working Papers. 

Monjezi, N., Sheikhdavoodi, M.J., and Taki, M. (2011). “Energy Use Pattern 

and Optimization of Energy Consumption for Greenhouse Cucumber 

Production in Iran Using Data Envelopment Analysis (DEA)”. Modern 

Applied Science, Vol. 5, No. 6, pp. 139-151. 

Nassiri, S.M., and Singh, S. (2009). “Study on Energy Use Performance for 

Paddy Crop Using Data Envelopment Analysis (DEA) Technique”. 

Applied Energy, Vol. 86, No. 7-8, pp. 1320-1325. 



 

88 

 

Onut, S., and Soner, S. (2006). “Energy Efficiency Assessment for the 

Antalya Region Hotels in Turkey”. Energy and Buildings, Vol. 38, 

No. 8, pp. 964–971. 

Ozcan, Y. A. (2014). Health Care Benchmarking and Performance Evaluation: 

An Assessment Using Data Envelopment Analysis. New York: 

Springer. 

Patterson, M. (1996). “What is Energy Efficiency?: Concepts, Indicators, 

and Methodological Issues”. Energy Policy, Vol. 24, No. 5, pp. 377-

390. 

Porter, M.E., and Van Der Linde, C. (1995, September-October). “Green 

and Competitive: Ending the Stalemate”. Harvard Business Review, 

pp. 119-134. 

Shin, K.,and Cheong, J.P. (2011). "Estimating Transportation-Related 

Greenhouse Gas Emissions in the Port of Busan, S. Korea". Asian 

Journal of Atmospheric Environment, Vol. 5, No. 1, pp. 41-46. 

Shin,C.H., and Jeong, D.H. (2013). Data Envelopment Analysis for Container 

Terminals Considering an Undesirable Output - Focus on Busan Port 

& Kwangyang Port. Journal of Korean Navigation and Port Research, 

Vol. 37, No. 2, pp.195-201. 

Sjödin, Å., and Fridell, E. (2007). Spatial and Environmental Impact of Port 

Dvelopment- Case study for the Port of Göteborg. Malmö: IVL 

Swedish Environmental Research Institute. 



 

89 

 

So, S.H., Kim, J.J., Cho, G., and Kim, D.K. (2007). “Efficiency Analysis and 

Ranking of Major Container Ports in Northeast Asia: An Application 

of Data Envelopment Analysis”. International Review of Business 

Research Papers, Vol. 3 No. 2, pp. 486 – 503. 

Starcrest Consulting Group. (2011). "Port of Long Beach Air Emissions 

Inventory". California: Port of Long Beach, the Green Port. 

Tongzon, J. (2001). "Efficiency Measurement of Selected Australian and 

other International Ports using Data Envelopment Analysis". 

Transportation Research Part A, Vol. 35, No. 2, pp. 107-122. 

United Nations Conference on Trade and Development. (2012). Review of 

Maritime Transportation. Geneva: United Nations Publications. 

United Nations Conference on Trade and Development. (2013). Review of 

Maritime Transportation. Geneva: United Nations Publications. 

World Trade Organization. (2013). Annual Report. Geneva: WTO. 

Zhou, P., and Ang, B.W. (2008). “Decomposition of Aggregate CO2 

Emissions: A Production-Theoretical Approach”. Energy Economics, 

Vol. 30, pp. 1054–1067. 

Zhou, P., Ang, B.W., and Poh, K.L. (2008). “A Survey of Data Envelopment 

Analysis in Energy and Environmental Studies”. European Journal of 

Operational Research, Vol. 189, pp. 1–18. 



 

 

 

9
0
 

Appendix I: Terminals’ Initial Data 

Location Inputs Outputs 

Data 

Source 
Country Port 

Container 

Terminal 

Electricity 

“kwh” 

Diesel 

“Liter” 

Throughput 

“TEU” 

Nº 

Q/C 

Nº 

T/C 

Nº 

Yard 

Vehicles 

Nº 

Reefer 

Plugs 

Terminal’

s Area 

“m²” 

Algeria Bejaia BMT 5187400 265541 226856 2 8 57 500 332000 
Terminal 

Operator 

Brazil Santos Libra 13098610 
290270

8 
648400 10 16 93 1200 155000 

Terminal 

Operator 

China QingDao 
Qianwan 

United 

59601695 

 

910000

0 
5450000 28 60 116 5976 244000 

Terminal 

Operator 

India 

L&T 

Kattupal

li 

Kattupalli 

Internatio

nal 

3300000 204000 150000 6 15 23 360 172000 

the 

Harbor 

Master 

Office 
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Italy Livorno 
Darsena 

Toscana 
6238237 866259 413800 9 14 58 636 386000 

Green 

Cranes 

Report 

2013 

Korea 
Busan 

New 
BNCT 16911124 994093 506526 8 38 36 1104 840000 

Terminal 

Operator 

Korea 
Busan 

North 
DPCT 13095408 

151762

3 
1193690 7 19 42 566 308000 

Terminal 

Operator 

Korea 
Busan 

New 

Hanjin 

Busan 
50003899 

308200

0 
2432255 12 42 109 1700 687590 

Terminal 

Operator 

Korea 
Busan 

North 

Hutchison 16240000 
181084

4 
1358431 14 33 92 990 624000 

Terminal 

Operator 

Korea 
Busan 

New 
Hyundai 40882580 

231975

7 
2078010 11 38 97 600 553068 

Terminal 

Operator 
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Korea 
Busan 

North 
KBCT 28932862 

441006

8 
2230306 15 42 107 1540 1012159 

Terminal 

Operator 

Korea 
Busan 

New 
PNC 56433062 

426000

0 
3353330 17 58 146 2000 1202000 

Terminal 

Operator 

Korea 
Busan 

New 
PNIT 22987582 

134200

0 
1220000 9 28 57 1784 840000 

Terminal 

Operator 

Korea 
Busan 

North 
SBCT 11295910 

327908

2 
966341 7 21 40 978 446250 

Terminal 

Operator 

Sloven

ia 
Koper 

Luka 

Koper 
4853289 

238969

3 
575000 8 18 91 344 270000 

Green 

Cranes 

Report 

2013 

Spain Valencia Noatum 19401856 
612030

5 
2243516 19 56 127 1020 1152217 

Green 

Cranes 

Report 

2013 
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Sri 

Lanka 

Colomb

o 
Jaya 22800000 847510 2357500 20 63 234 1548 455000 

Internet 

Site 

Taiwa

n 

Kaohsiu

ng 

Hanjin 

Pacific 
11566419 

375878

1 
870000 10 0 47 722 420000 

Terminal 

Operator 
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Appendix II: Terminals’ Converted Data 

 

 

 

Container 

Terminal 

Total Energy 

"GJ" 

Terminal’s 

Area “m²” 

Nº 

Equipment 

Throughput 

"TEU" 

BMT 28951.0767 332000 567 226856 

Libra 159489.7956 155000 1319 648400 

Qianwan 

United 
566736.102 244000 6180 5450000 

Kattupalli 

International 
19774.8 172000 404 150000 

Darsena 

Toscana 
55981.8765 386000 717 413800 

BNCT 99351.4455 840000 1186 506526 

DPCT 105875.4789 308000 634 1193690 

Hanjin 

Busan 
299287.4364 687590 1863 2432255 

Hutchison 128543.6628 624000 1129 1358431 

Hyundai 236951.8839 553068 746 2078010 

KBCT 274827.9348 1012159 1704 2230306 

PNC 368021.0232 1202000 2221 3353330 

PNIT 134690.6952 840000 1878 1220000 

SBCT 167565.7494 446250 1046 966341 

Luka Koper 109952.9595 270000 461 575000 

Naotum 306702.4851 1152217 1222 2243516 

Jaya 114878.637 455000 1865 2357500 

Hanjin 

Pacific 
187103.9331 420000 779 870000 
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Appendix III: Data Collection Questionnaire 

Dear Madam/Sir; 

My name is “Hermouche Toufik Sabri” from department of international 

commerce and logistics, Pukyong National University, Busan, South Korea. 

 We are making a study concerning Energy Use Efficiency in container 

terminals, the study is expected to be a contribution to enhance energy 

efficiency in the port industry, and promoting sustainability, using a 

comparative Analysis method among several container terminals all over the 

world. 

We believe, that you are aware that such contribution is supposed to give a 

better image about port industry, and its participation to improve environment 

preservation and sustainability, toward a more responsible use of natural 

resources. 

The questions are quite easy to answer (please refer to the sample bellow), 

for any additional explanation please do not hesitate to email me, I will be 

pleased to answer you back. 

Email: hermouche_toufik@yahoo.fr 
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Sample: 

Terminal Operator’s name: Dongbu Pusan Container Terminal (DPCT) 

Port, City, Country of location: Busan port, Busan, South Korea  

Information for the year 2013 

(If not available, data from the year 2012 are ok) 

 Type of terminal (please check below):  

  ☒ Traditional.  

  ☐ Semi-automated.  

  ☐ Full automated. 

 Terminal’s area size: 308000 m² 

 Total annual Use of diesel for the terminal’s operations (liter): 

1517623 liters 

 Total annual Use of Electricity for the terminal’s operations (kWh): 

13095408 kWh 

 Is the terminal certified ISO 50001? :  YES ☐   NO ☒ 

 Annual containers Throughput (TEU): 1193690 TEU 

 Total Number of ship to shore cranes/portainers (Unites): 9 

 Yard equipment (Unites): 

 Yard transfer cranes: 19 

 Straddle carriers: 0 

 Yard tractors: 39 

 Reach stackers: 3 

 Forklifts: 0  

 Empty container handlers: 2  

 Automated guided vehicles (AGV): 0 
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 Reefer plugs: 566 

 Other: none 
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 Terminal’s name:  

Port, City, Country of location: 

Information for the year 2013 

(If not available, data from the year 2012 are ok) 

 Type of terminal (please check below):  

☐ Traditional  

☐ Semi-automated  

☐ Full automated. 

 Terminal’s total area size (m²):  

 Total annual Use of diesel for the terminal’s operations (liter):  

 Total annual Use of Electricity for the terminal’s operations (kWh):  

 Is the terminal certified ISO 50001? :  YES ☐   NO ☐ 

 Annual containers Throughput (TEU):  

 Total Number of ship to shore cranes –Portainers- (Unites): 20 

 Yard equipment (Unites): 

 Yard transfer cranes:  

 Straddle carriers: 

 Yard tractors:  

 Reach stackers:  

 Forklifts:  

 Empty container handlers:  

 Automated guided vehicles (AGV):  

 Reefers Plugs:  

 Other: 
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After completion please send the file to this e-mail: 

hermouche_toufik@yahoo.fr 

 

 

Thank you for your precious contribution  
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