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Feature Selection in Supervised Learning Problems using Data Mining Approach 

Farnaz Pirasteh 

Department of Chemical Engineering, The Graduate School, 

Pukyong National University 

Abstract 

When analyzing high dimensional massive data, it is desirable to identify a few 

important features that affect a certain outcome of interest using feature selection methods. 

Feature selection methods play more important role when the number of features (𝑝) far 

exceeds the number of observations (𝑛), which makes the traditional statistical methods 

infeasible for data analysis. This study presents quantitative and qualitative analysis results 

of applying feature selection methods in two case studies, multivariate calibration for 

determining soil carbonate content and cancer prediction using gene expression data, as a 

regression and a classification problems, with comparison of their performance on each case 

study. Feature selection methods compared include Least Angle Regression algorithm 

(LARS), Least Absolute Shrinkage and Selection operator (Lasso), Genetic Algorithm (GA), 

and classical methods such as forward and stepwise selection.  Selected subsets by each 

method are used for the input of Support Vector Machines (SVM) for supervised modeling. 

Root Mean Square Error Prediction (RMSEP), Mean Squared Error (MSE) and Prediction 
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Error (PE) and Area Under the Curve are quantitative criteria used to compare the methods. 

Due to a small number of samples, bootstrapping also applied when building models in order 

to obtain more reliable results. The results of case study 1 show high ability of LARS and 

Lasso in extracting effective features on carbonate content determination, as well as 

choosing the most true features (wavenumbers), while the least prediction errors were 

(RMSEP, MSE, and PE) obtained by applying subset selected by LARS. On the other hand, 

in case study 2 also LARS and Lasso show high accuracy in predicting prostate cancer. 
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CHAPTER 1. INTRODUCTION 

Technological innovations have had deep impact on scientific research as well as on 

society during the past several decades and allowed us to collect massive amount of data 

with very low cost and a short period of time. Now a days, observations with texts, curves, 

images or movies, along with many other typical variables, are frequently encountered in 

scientific research due to the technological development. For example, in gene expression 

data, huge numbers of pixels are in hand with limited number of images. These kinds of 

examples abound in computational biology, climatology, geology, neurology, health science, 

economics, to list just a few. One common theme in various fields such as science, 

engineering and the humanities beside difference in their concerns, is massive and high 

dimensional data have been collected and it will be costly and time consuming to analyze or 

extract new knowledge or information from these amount of data. These high dimensional 

datasets along with many new scientific problems create golden opportunities and significant 

challenges for the development of statistical sciences. The availability of high dimensional 

data along with new scientific problems has caused statistical methods to be useful and 

applicable in these problems regarding dimension reduction and variable selection.  

Thus, high-dimensionality has significantly challenged traditional statistical theories. 

Many new insights need to be unveiled and many new phenomena need to be discovered. 

There is little doubt that the high dimensional data analysis will be the most important 

research topic in statistics in the 21st century (Donoho 2000). Variable selection and feature 

extraction are fundamental to knowledge discovery from massive data. Many variable 
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selection criteria have been proposed in the literature. Variable selection using Akaike 

information criterion (AIC) or Bayesian information criterion (BIC), and traditional variable 

selection methods such as forward and stepwise selection involves a combinatorial 

optimization problem, which is NP-hard (Non-deterministic Polynomial-time hard), with 

computational time increasing exponentially with the dimensionality. The expensive 

computational cost, especially in case of few observations with hundreds or thousands of 

variables, makes traditional procedures infeasible for high-dimensional data analysis. Clearly, 

innovative variable selection procedures are needed to cope with high-dimensionality.  

Computational challenges from high-dimensional statistical endeavors forge cross 

fertilizations among applied and computational mathematics, machine learning, and statistics. 

For example, (Donoho and Elad 2003) showed that the NP-hard best subset regression can 

be solved by a least-square problem, which can be handled by a linear programming when 

the solution is sufficiently sparse. (Balabina and Smirnov 2011) used feature selection 

methods in biodiesel data as a critical step in data analysis for vibrational spectroscopy 

(infrared, Raman, or near infrared spectroscopy (NIRS)). Many other studies can be found 

regarding application of feature selection methods in high dimensional problems. 

          Subset selection (Kohavi and Wrappers 1997) and ridge regression (Hoerl and Kennard 

1970), two well-known techniques for improving the Ordinary Least Squares (OLS) 

estimates in high dimensional problems, both have drawbacks. Subset selection provides 

interpretable models but can be extremely variable because it is a discrete process, i.e., 

regressors are either retained or dropped from the model. Small changes in the data can 

result in very different models being selected and this can reduce its prediction accuracy.  

http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAkaike_information_criterion&ei=tKsGVMC9JJft8AXl64CACw&usg=AFQjCNGNlxmUlIbNYMiXaTaGJ6A6iADK9Q&sig2=alJ7GLILXi1lRkrtk5Ic-g&bvm=bv.74115972,d.dGc
http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAkaike_information_criterion&ei=tKsGVMC9JJft8AXl64CACw&usg=AFQjCNGNlxmUlIbNYMiXaTaGJ6A6iADK9Q&sig2=alJ7GLILXi1lRkrtk5Ic-g&bvm=bv.74115972,d.dGc
http://en.wikipedia.org/wiki/NP_%28complexity%29
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Tibshirani proposed a new technique, called least absolute shrinkage and selection 

operator or Lasso (Tibshirani 1996). It shrinks some coefficients and sets others to 0, and 

hence tries to retain the good features of both subset selection and ridge regression. Lasso 

was applied to many variable selection problems in high dimensional cases as well as other 

various applications; Shah considered prediction and estimation using Lasso algorithm (Shah 

2012). Zhao and Yu proved that a single condition, which is called the irrepresentable 

condition, is almost necessary and sufficient for Lasso to select the true model both in the 

classical fixed p setting and in the large p setting as the sample size n gets large (Zaho and 

Yu 2006). In 2000 Osborne et. al presented a research which makes two contributions to 

computational problems associated with implementing the Lasso (Osborne et al. 2000). A new 

method for variable selection and shrinkage in Cox’s proportional hazards model using 

Lasso was presented by Tibshirani (Tibshirani 1997). This method which is a variation of the 

Lasso proposal of Tibshirani, reduces the estimation variance while providing an 

interpretable final model. Zou (Zou 2012) presented the adaptive Lasso and showed that the 

adaptive lasso enjoys the oracle properties; namely, it performs as well as if the true 

underlying model were given in advance and can be solved by the same efficient algorithm 

for solving the Lasso.  

       On the other hand as an innovation algorithm for Lasso, LARS (Least Angle Regression) 

was presented by Efron et. al (Efron et al. 2004). They introduced LARS as a useful and less 

greedy version of traditional forward selection method that uses a simple mathematical 

formula to accelerate the computations. LARS relates to the classic model-selection method 

known as forward selection or “forward stepwise regression”, described in (Weisberg 1980).  
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       LARS used in a comparison by Wang conducted an extensive simulation study over a 

vast range of data settings and selection methods (Wang 2009). A study on comparison of 

different variable selection methods in high dimensional cases as well as a chemometric 

application of LARS to a near-infrared spectroscopy data was presented by Stodden 

(Stodden 2012).  

 

        As a comparison of this or similar studies to our research, the number of variables 

dealing with in the problem is much less, as well as more sample size, that makes classical or 

ordinary feature selection methods useful for extracting effective variables; also bigger 

sample size let the statistician not to be worry about inaccurate results or small training or 

testing subset, which we are dealing with in our study. 

       In this thesis, the issues of variable selection in  high dimensional supervised learning 

problems are addressed using two representative case studies: multivariate calibration for 

determining soil carbonate content and prostate cancer prediction using gene expression data. 

The rest of this thesis is organized as follows. In Chapter 2, methods that we use in this study 

are outlined and briefly described. In chapter 3, problem description and data for each case is 

explained. Results and conclusion are outlined in chapter 4 and finally in chapter 5 we come 

to a conclusion. 
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CHAPTER 2. METHODS 

 

2.1  Feature Selection Methods 

Feature selection has become the focus of research in various areas of applications where 

datasets with tens or hundreds of thousands of features are involved. These areas include text 

processing of internet documents, gene expression array analysis, and combinatorial 

chemistry, to list just a few. 

        Feature selection can be defined as a process that chooses a minimum subset of m 

features from the original set of p features, so that the feature space is optimally reduced 

according to a certain evaluation criterion (Novakovic 2010). As the dimensionality of a 

domain expands, the number of feature p increases. Finding the best feature subset is usually 

intractable (Domingos and Pazzani 1997) and many problems related to feature selection 

have been shown to be NP-hard  (Blum and Rivest 1992). Researchers have studied various 

aspects of feature selection. Feature selection algorithms can be categorized into filters 

(Almuallim and Dietterich 1991), wrappers (Domingos and Pazzani 1997) and embedded 

approaches (Blum and Langley 1997). Filters methods evaluate quality of selected features, 

independently from the classification algorithm, while wrapper methods require application 

of a model to evaluate this quality. Embedded methods perform feature selection during 

learning of optimal parameters.  
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        The objective of feature selection is three-fold: (1) improving the prediction 

performance of the predictors, (2) providing faster and more cost-effective predictors, and (3) 

providing a better understanding of the underlying process that generated the data.              

         Various feature selection methods were presented for different problems, from simple 

ones with few number of features and samples to high dimensional data with thousands of 

features and thousands of sample size, from regression problems to classification ones, and 

in any research field. Choosing the best feature selection method among all available 

methods is one of the first challenges in this area.  

       In this study we cover two classical feature selection methods and also some innovative 

algorithms, Lasso, LARS and GA. A description of each method is coming in the 

subsubsections 2.1.1 to 2.1.5. 

 

2.1.1 Forward Selection 

One of the classical feature selection approaches is called forward selection (Wilkinson and 

Dallal 1981). In this approach, one adds features to the model one at a time. At each step, 

each feature that is not already in the model is tested for inclusion in the model. The most 

significant of these features is added to the model, so long as its p-value is below some pre-

set level. It is customary to set this value above the conventional 0.05 level at say 0.10 or 

0.15, because of the exploratory nature of this method. 

       Thus we begin with a model including the feature that is most significant in the initial 

analysis, and continue adding features until none of remaining features are "significant" 

when added to the model. Note that this multiple use of hypothesis testing means that the 
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real type I error rate for a feature (i.e. the chance of including it in the model given it isn't 

really necessary), does not equal the critical level we choose. In fact, because of the 

complexity that arises from the complex nature of the procedure, it is essentially impossible 

to control error rates and this procedure must be viewed as exploratory.  

The process can be summarized as follows: 

 Start with no features in the model. 

 For all predictors in the model, check their p-value if they are added to the model. 

Choose the one with lowest p-value less than 𝛼𝑐𝑟𝑖𝑡 (level of significance). 

 Continue until no new predictors can be added.  

The αcrit is sometimes called the “p-to-remove” and does not have to be 5%. If prediction 

performance is the goal, then a 15-20% cut-off may work best, although methods designed 

more directly for optimal prediction should be preferred.  

2.1.2 Stepwise Selection 

Stepwise selection (Efroymson 1960; Hocking 1976) is a method that allows moves in 

direction, dropping or adding features at the various steps. Backward stepwise selection 

involves starting off in a backward approach and then potentially adding back features if 

they later appear to be significant. The process is one of alternation between choosing the 

least significant feature to drop and then re-considering all dropped features (except the most 

recently dropped) for re-introduction into the model. This means that two separate 

significance levels must be chosen for deletion from the model and for adding to the model. 

The second significance must be more stringent than the first.        
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       On the other hand, Stepwise selection is a semi-automated process of building a model 

by successively adding or removing features based solely on the t-statistics of their estimated 

coefficients. Properly used, the stepwise regression option in Statgraphics (or other stat 

packages) puts more power and information at your fingertips than does the ordinary 

multiple regression option, and it is especially useful for sifting through large numbers of 

potential independent features and/or fine-tuning a model by poking features in or out. 

Improperly used, it may converge on a poor model while giving you a false sense of security. 

It's a bit like doing carpentry with a chain saw: you can get a lot of work done quickly, but 

you may end up doing more harm than good if you don't read the instructions, remain sober, 

and keep a firm grip on the controls. 

 

 

2.1.3 Least Absolute Shrinkage and Selection Operator (Lasso) 

Suppose that we have data  (𝐱i, yj), i = 1,2, … , n , where 𝐱i = (xi1, xi2, … , xip)T are the 

predictor features and yis are the responses. As in the usual regression set-up, we assume 

either that the observations are independent or that the yis are conditionally independent 

given the xijs. We assume that the xij are standardized so that ∑
xij

N
= 0 ,i  ∑

x2
ij

N
= 1.i   

Letting  𝛃̂ = (β̂1, … , β̂p)
T

, the Lasso estimate  (α̂, 𝛃̂) is defined by 

 

(α̂, 𝛃̂) = arg min  { ∑ (yi − α − ∑ βjxij
j

)

n

i=1

2

}       subject to    ∑|βj| ≤ t.

j

       (2 − 1) 

 

Here t ≥ 0 is a tuning parameter and α and β are unknown parameters.  Now, for all t, the 

solution for α is α̂ = y̅. We can assume without loss of generality that y̅ = 0 and hence omit 
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α. Computation of the solution to equation (2-1) is a quadratic programming problem with 

linear inequality constraints. The parameter t ≥ 0 controls the amount of shrinkage that is 

applied to the estimates. Let β̂j
° be the full least squares estimates and let t0 = ∑ |β̂j

°|. Values 

of t < t0 will cause shrinkage of the solutions towards 0, and some coefficients may be 

exactly equal to 0. For example, if t = t0/2, the effect will be roughly similar to finding the 

best subset of size p /2.   

The motivation for the lasso came from an interesting proposal of (Breiman 1993). 

Breiman's non-negative garotte minimizes 

∑ (yi − α − ∑ cjβ̂
°xij

j
)

n

i=1

2

   subject to  cj ≥ 0 , ∑ cj ≤ t.                  (2 − 2)

j

 

 

  The garotte starts with the OLS estimates and shrinks them by non-negative factors whose 

sum is constrained. In extensive simulation studies, Breiman showed that the garotte has 

consistently lower prediction error than subset selection and is competitive with ridge 

regression except when the true model has many small nonzero coefficients. 

         A drawback of the garotte is that its solution depends on both the sign and the 

magnitude of the OLS estimates. In overfit or highly correlated settings where the OLS 

estimates behave poorly, the garotte may suffer as a result. In contrast, the lasso avoids the 

explicit use of the OLS estimates. Frank and Friedman in 1993 proposed using a bound on 

the Lq
 -norm of the parameters, where q is some number greater than or equal to 0; the lasso 

corresponds to q = 1 (Frank and Friedman 1993). 
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Orthonormal Design Case 

 

Insight about the nature of the shrinkage can be gleaned from the orthonormal design case. 

Let X be the n × p design matrix with ij-th entry xij, and suppose that 𝐗T𝐗 = 𝐈, the identity 

matrix.  

The solutions to equation (2-2) are easily shown to be 

                                                  β̂j = sign (β̂j
°)(|β̂j

°| − γ)+                                  (2 − 3)   

where γ is determined by the condition ∑|β̂j | = t. Interestingly, this has exactly the same 

form as the soft shrinkage proposals (Donoho and Johnstone 1994; Donoho et al. 1995); 

which applied to wavelet coefficients in the context of function estimation. The connection 

between soft shrinkage and a minimum L1 -norm penalty was also pointed out for non-

negative parameters in the context of signal or image recovery.  

In the orthonormal design case, best subset selection of size k reduces to choosing the k 

largest coefficients in absolute value and setting the rest to 0. For some choice of δ this is 

equivalent to setting β̂j = β̂j
° if |β̂j

°| >  𝛿 and to 0 otherwise. Ridge regression minimizes 

                           ∑ (yi − ∑ βjxij

j

)

2

+  δ ∑ βj
2

j

n

i=1

 

 

 

                             (2 − 4) 

 

or, equivalently, minimizes 

         ∑ (yi −  ∑ βjxij

j

)

2
n

i=1

 

 

 

subject to ∑ βj
2

 

≤ t.                              (2 − 5) 

 

The ridge solutions are  

1

1 + δ
β̂j

° 
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Where γ depends on δ or t. the garotte estimates are 

(1 −
γ

β̂j
°2)

+

β̂j
°. 

 

Fig. 2.1. shows the form of these functions. Ridge regression scales the coefficients by a 

constant factor, whereas the lasso translates by a constant factor, truncating at 0. The garotte 

function is very similar to the lasso, with less shrinkage for larger coefficients. As our 

simulations will show, the differences between the lasso and garotte can be large when the 

design is not orthogonal. 
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Figure 1.1. (a) Subset regression, (b) ridge regression, (c) the lasso and (d) the garotte: 

 form of coefficient shrinkage in the orthonormal design case; .............., 45°-line ,ـــــــــــــــــ

for reference. (Source: Tibshirani, 1996) 
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Geometry of Lasso 

 

It is clear from Fig. 2.1. why the lasso will often produce coefficients that are exactly 0. Why 

does this happen in the general (non-orthogonal) setting. And why does it not occur with 

ridge regression, which uses the constraint ∑ βj
2 ≤ t rather than ∑ |βj

 | ≤ t Fig. 2.1. provides 

some insight for the case p =2.  

The criterion ∑ (yi
n
i=1 − ∑ βjxij) 2  j equals the quadratic function 

 

(𝛃 − 𝛃̂ 
°)

T
𝐗T𝐗 (𝛃 − 𝛃̂ 

°) 

 

(plus a constant). The elliptical contours of this function are shown by the full curves in Fig. 

2.1. (a); they are centered at the OLS estimates; the constraint region is the rotated square. 

The lasso solution is the first place that the contours touch the square, and this will 

sometimes occur at a corner, corresponding to a zero coefficient. The picture for ridge 

regression is shown in Fig. 2.1. (b): there are no corners for the contours to hit and hence 

zero solutions will rarely result. 

An interesting question emerges from this picture: can the signs of the lasso estimates be 

different from those of the least squares estimates β̂j
°  Since the features are standardized, 

when p =2 the principal axes of the contours are at ±45° to the co-ordinate axes, and we can: 

how that the contours must contact the square in the same quadrant that contains β̂j
°  . 

However, when p > 2 and there is at least moderate correlation in the data, this need not be 

true. Fig. 2.2. shows an example in three dimensions. The view in Fig. 2.2. (b) confirms that 

the ellipse touches the constraint region in an octant different from the octant in which its 

centre lies. 



- 16 - 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.2. Estimation picture for the Lasso (left), Example in which the 

Lasso estimate falls in an octant different from the overall least squares 

estimate (right) (Source: Tibshirani, 1996.) 
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2.1.4 Least Angle Regression (LARS) 

 

The LARS algorithm works well especially in the case of p≫n. It's a new feature selection 

algorithm, which is guaranteed to find the best ranking among all possible inputs. The LARS 

provides a stepwise approximation to Lasso. 

       Least Angle Regression (LARS) relates to the classic model-selection method known as 

Forward Selection, or “forward stepwise regression,” described in (Weisberg 1980; Section 

8.5) given a collection of possible predictors, we select the one having largest absolute 

correlation with the response y, say xj1, and perform simple linear regression of  y on xj1 . 

This leaves a residual vector orthogonal to xj1 , now considered to be the response. We 

project the other predictors orthogonally to xj1 and repeat the selection process. After k steps 

this results in a set of predictors  xj1 , xj2, … , xjk  that are then used in the usual way to 

construct a k-parameter linear model. Forward Selection is an aggressive fitting technique 

that can be overly greedy, perhaps eliminating at the second step useful predictors that 

happen to be correlated with xj1. 

      The LARS procedure works as follows. As with classic forward selection, it starts with 

all coefficients equal to zero, and find the predictor most correlated with the response, say 

xj1. Then, it takes the largest step possible in the direction of this predictor until some other 

predictor, say xj2, has as much correlation with the current residual. At this point LARS 

parts company with forward selection. Instead of continuing along xj1., LARS proceeds in a 

direction equiangular between the two predictors until a third feature xj3 earns its way into 

the “most correlated” set. LARS then proceeds equiangularly between xj1, xj2  and xj3, that 
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is, along the “least angle direction,” until a fourth feature enters, and so on. Unlike Lasso, 

features cannot be removed from active set. 

         LARS builds up estimates μ̂ = 𝐗𝛃̂ in successive steps, each step adding one covariate 

to the model, so that after k steps just k of the β̂j ‘s are non zero. Fig. 4.2. illustrates the 

algorithm in the situation m = 2 covariates (m is the number of covariates), X = (x1, x2). In 

this case the current correlations depend only on the projection y̅2 of y into the linear space 

£(X) (L1 norm) spanned by x1 and x2 

c(μ̂) = X′(y − μ̂) = X′(y̅2 − μ̂). 
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Figure 2.3.  The LARS algorithm in case of m=2 covariates; 𝐲̅𝟐 is the projection of 𝐲 

into £(𝐱𝟏, 𝐱𝟐) . Beginning at 𝛍̂𝟎 = 𝟎 , the residual vector 𝐲̂𝟐 − 𝛍̂𝟎  has greater 

correlation with 𝐱𝟏 than 𝐱𝟐; the next LARS estimate is 𝛍̂𝟏 = 𝛍̂𝟎 + 𝛄̂𝟏 𝐱𝟏, where 𝛄̂𝟏 is 

chosen such that 𝐲̂𝟐 − 𝛍̂𝟏  bisects the angle between 𝐱𝟏  and 𝐱𝟐; 𝐭𝐡𝐞𝐧 𝛍̂𝟐 = 𝛍̂𝟏 +

𝛄̂𝟐𝐮𝟐, where 𝐮𝟐 is the unit bisector; 𝛍̂𝟐 = 𝐲̂𝟐 in the case m=2, but not for case m>2. 

(Source: Efron, et al., 2004). 
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2.1.5 Genetic Algorithm 

An interesting heuristic search algorithm well suited for the combinatorial optimization 

problem is the genetic algorithm (GA). Although GA is not widely known among 

statisticians, it has garnered some interest in this community. Chatterjee, Laudato, and Lynch 

gave an introductory review and showed how the GA can be applied to a number of classical 

problems in statistics. 

The optimization strategy used by the GA is very simple. Start with a number of randomly 

generated candidates (the initial population). Using the Darwinian principle of “the survival 

of the fittest,” the weaker (less optimal) candidates are gradually eliminated and the stronger 

ones are allowed to survive and generate offspring. This goes on for a number of generations 

until, in the end, good solutions are produced. In a typical setting, each individual ω is 

represented by a binary string, say of length p, which is treated as the genetic code (DNA) of 

ω; each position can be regarded as a single gene. Starting with a randomly generated 

population of size m, {ω1, ω2 … , ωm} , a new generation is produced with three genetic 

operations: selection, reproduction, and mutation.  

        Selection. Each individual is evaluated by a fitness function, F, often the objective 

function for the underlying optimization problem, and assigned a score. When the goal is to 

maximize (minimize) F, those with high (low) scores are given higher likelihoods of 

surviving to the next generation (Table 2.1).  

 

      Reproduction. Two individuals are selected at random to produce a child. Typically, a 

cross-over position is chosen at random between 1 and p, say j; the child then inherits the 
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first j genes from the father and the rest pj genes from the mother. The cross-over position in 

the illustration is between 3 and 4 (Table 2.2). 

     Mutation. At birth, an individual is allowed, with a certain small probability (called the 

mutation rate), to alter its genetic code at a randomly chosen position. In the typical setting 

where binary codes are used, this amounts to flipping a 0 to a 1 and vice versa (Table 2.3). 

Remark. For the feature selection problem, each ωi represents a different subset of features, 

and hence a different model and the entire population {ω1, ω2 … , ωm} together specifies a 

total of m different models.  
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Table 2.1. An Illustration of Selection 
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Table 2.2. An Illustration of Reproduction 
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Table 2.3. An Illustration of Mutation 
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A waited random selection is applied to the original population where the probability of a 

particular subset (chromosome) being selected is a function of its cost function response. 

Thus chromosomes with a good cost function response will have a greater chance of 

selection. Using this method two of the chromosomes are selected and ‘mated’, swapping 

sections of their respective gene sequences.  This process produces two new ‘child’ 

chromosomes inheriting characteristics of their ‘parents’. These child chromosomes are then 

subjected to random from a ‘1’ to a ‘0’ or vice versa. The probability of this change is 

normally very small. The process of selection followed by mutation is then repeated until n 

new chromosomes are created. The cost function is then evaluated for each of the 

chromosomes and the whole process repeats itself. The algorithm continues until a stopping 

criterion is reached. For example, this may be that a given cost function response is met, a 

certain number of generations has passed, or the chromosomes have converged to a similar 

configuration. 

However, there are various ways of carrying out each step. A full explanation of the subject 

of GAs can be found in (Goldberg 1989; Holland 1992). Tutorial review of their applications 

in chemometrics and analytical chemistry are available in (Lucasius and Kateman 1993), 

while the use of GAs for feature selection in spectroscopy has been described, for instance, 

(Rimbaud  1995; Lucasius et al. 1994). Other studies of wavelength selection in 

spectroscopy include (Breiman 1993; Weisberg 1980; Dowell 1994; Brown1992; Horchner 

and Kalivas 1995; Kalivas et al. 1989; Messick  1994; Sutter and Kalivas 1988; Sutter and 

Kalivas  1992; Brereton and Elbergali  1994; Lindgren et al.  1995). A general schema of 

Genetic Algorithm process is shown in Fig. 2.4.  
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Figure 2.4. GA algorithm process 
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2.2  Support Vector Machines 

 

2.2.1 SVM in Regression problems 

A training data set is defined by D={(x1,y1),…,(xn,yn)} where 𝒙𝑖, 𝒚𝑖 ∈ 𝑅𝑁  and n is the 

number of observations. Support Vector Machines (SVMs) are learning machines, which 

mean that a linear function of f(x) = w
T
Φ(x)+b is used to solve the classification or 

regression problems in a higher dimensional version of x, Φ(x). To consider a regression 

problem in this study, the best line is defined to be a line which minimizes the following cost 

function: 

                                                   
1

2
||𝒘||

2
+  𝐶 ∑(𝜗𝑖

 )

𝑛

𝑖=1

                                      (2 − 6) 

subject to:                               

                                 {

ti − (wT ∙ Φ(𝐱) + b)    ≤   ε +  𝜗𝑖  

(wT ∙ Φ(𝐱) + b) − ti  ≤   ε +  𝜗𝑖
∗

𝜗𝑖   , 𝜗𝑖
∗   ≥   0

                          (2 − 7)                                        

 

where 𝜗𝑖
  is the corresponding error at the ith point, C is the penalty parameter up to ε and  

Φ(xi) maps 𝑥𝑖 into a higher-dimensional space (Cristianini and J. S. Taylor 2000). 

 

 

2.2.2 SVM in Classification Problems 

A training data set is defined by D={(x1,y1),…,(xn,yn)} where 𝒙𝑖 ∈ 𝑅𝑁, 𝑦𝑖 ∈ {−1,1}and n is 

the number of training data points. Support Vector Machines (SVMs) are learning machines, 

which mean that a linear function of f(x) = w
T
Φ(x)+b is used to solve the classification 
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problems in a higher dimensional version of x, Φ(x). The best line is defined to be a line 

which minimizes the following cost function: 

1

2
𝒘𝑇𝒘 + 𝐶 ∑ 𝜗𝑖

 

𝑛

𝑖=1

 

where,  

                            {
𝒘𝑇Φ(xi) + b ≥ +1 − 𝜗𝑖

 ,      𝑖𝑓 𝑦𝑖 = +1

𝒘𝑇Φ(xi) + b ≤ −1 + 𝜗𝑖
 ,      𝑖𝑓 𝑦𝑖 = −1

                                     (2-8) 

 

where 𝜗𝑖
  is the corresponding error at the ith point, C is the penalty parameter and Φ(xi) 

maps 𝑥𝑖 into a higher-dimensional space.  

The minimization of (8-2) is a standard problem in optimization theory: minimization with 

constraints. This can be solved by applying the Lagrangian theory. With the help of 

Lagrange theory, the dual formulation becomes: 
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According to 𝛼𝑖 Lagrange multipliers, the decision function is written as following: 
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where 𝐾(𝑥𝑖, 𝑥)  is named the kernel function. In this study, the following Radial Basis 

Function (RBF) was used: 

                                               
)exp(),(

2

jiji xxK xx  
                                          (11-2) 

where   is the kernel parameter (Seeja and Shweta 2011) 
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2.3 Bootstrapping  

Bootstrapping introduced by Bradley Efron in 1979, is a resampling technique used to obtain 

estimates of summary statistics (Efron 1979). 

Adèr et al. recommend the bootstrap procedure for the following situations:  

 When the theoretical distribution of a statistic of interest is complicated or unknown.  

 When the sample size is insufficient for straightforward statistical inference.  

 When power calculations have to be performed, and a small pilot sample is available. 

In this study regarding limited number of sample size, which satisfies second Ader’s 

recommendations, bootstrapping can be an efficient method to evaluate the model validity. 

Suppose a random sample x = (x1, … , xn) from an unknown probability distribution F. A 

bootstrap sample is defined to be a random sample of size n  drawn from  F̂  say  x∗ =

(x1
∗ , … , xn

∗ ), where F̂ is the empirical distribution defined by 

F(x) =
number of values in x equals to x

n
 

For each bootstrap sample x∗ there is a bootstrap replicate of θ̂,  

θ̂∗ = s(x∗) 

which θ is the parameter of interest we wish to estimate on the basis of x; For this purpose, 

we calculate an estimate θ̂ = s(x) from x.  

The bootstrap estimate of SEF̂(θ̂) is defined by 

SEF̂(θ̂∗) 

This is called the ideal bootstrap estimate of the standard error of s(x). 

In this study, we used boot package in R to apply bootstrapping to the dataset. 

http://en.wikipedia.org/wiki/Resampling_%28statistics%29
http://en.wikipedia.org/wiki/Sample_size
http://en.wikipedia.org/wiki/Statistical_power
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CHAPTER 3. PROBLEM DESCRIPTION  

3.1. Case study I: Multivariate Calibration for Soil Carbonate 

Content Prediction 

3.1.1 Sampling 

Carbonates are a key component of soils influenced by calcareous parent material, as it 

influences both chemical and physical soil properties and thus fertility and productivity 

(Schlichting et al.1995), as well as soil organic carbon (SOC) cycling. Carbonate 

determination is of increasing practical relevance, e.g. for The Intergovernmental Panel on 

Climate Change (IPCC) greenhouse gas inventories and national reporting schemes 

(Kamogawa et al. 2001). Common approaches aiming at SOC quantification are based on 

direct determination of SOC or determination of total carbon (TC) concentrations and 

subsequent subtraction of soil inorganic carbon (SIC) (Bruckman et al. 2011). Simple 

methods, such as the well-known Walkely-Black Method (Cools and Vos 2010) or 

modifications of it and those based on loss-on ignition (LOI) are sufficiently accurate for 

certain research questions.  

However, there are various sources of errors, ranging from the quality of organic matter (e.g. 

humification status), the associated inorganic matter (type and quantity of clay minerals) as 

well as both, SOC and SIC concentrations and their mass ratio, which cannot be tolerated for 

a number of applications. Since a rising number of laboratories are equipped with elemental 

analyzers, dry combustion methods with subsequent IR-analysis of combustion gases are 
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preferably chosen if higher accuracies are desired. As it gives precise estimates on TC, the 

challenge of accurately measuring SIC still remains. The gas-volumetric Scheibler method 

(Huber 2004) is internationally recognized and commonly used, despite its relative low 

analytical precision and sensitivity towards the actual type of carbonate present in the 

respective sample material. 

A number of spectroscopic approaches were developed in the recent years to overcome wet-

chemical shortcomings and to provide a standardized laboratory protocol. These methods are 

based on spectroscopy (Fourier transform infrared (FT-IR) or Raman) or X-ray 

diffractometry (XRD) which have both strengths and weaknesses. While FT-IR and Raman 

are unable to clearly separate different types of carbonates, XRD has problems with 

sensitivity associated with very small concentrations in the sample material. Check 

(Kamogawa 2001) as a good overview for further reading. 

Our case study is based on a dataset of FT-IR and XRD spectra previously collected and 

used in (Bruckman, K. Wriessnig 2013), which developed a model based on Partial Least 

Squares Regression (PLSR) using areas of certain peaks related to soil carbonates. The 

number of features notably far exceeds the number of observations (samples) in our case 

study. Consequently, this high dimensional dataset with p≫n requires distinct methods for 

feature selection. 

3.1.2 FT-IR & XRD data  

Samples for this study are Fourier transform infrared (FT-IR) and XRD data from a study on 

soil carbonate determination. For more details regarding soil sample such as sampling 
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protocol, please refer (Bruckman and Wriessnig 2013). A FT-IR spectrum and an XRD 

diffractogram of each soil sample were used for this study: A FT-IR spectrum consists of 

7,466 wavenumbers and corresponding transmittance values (%), and an XRD diffractogram 

consists of 3,890 diffraction angles (2𝜃 degrees) and corresponding intensity values. Fig. 3.1 

and Fig. 3.2 represent a FT-IR spectrum and an XRD diffractogram for one sample. 
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Figure 3.1. Pure carbonate and bulk soil infrared spectra: FT-IR (Source: Bruckman and 

Wriessnig, et al., 2013) 
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Figure 3.2. X-ray diffractogram of the same carb: XRD (Source: Bruckman and Wriessnig, et 

al., 2013) 
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Two different cases are considered to compare the feature selection techniques:  FT-IR (Case 

I) and FT-IR+XRD (Case II). Including XRD data to our main dataset (FT-IR) can be a good 

case study to check robustness of feature selection methods. Robustness is defined as "the 

ability of a system to resist changes without adapting its initial stable configuration” (Huber 

2004); so if the created methods are not robust enough, adding additional features must 

affect the prediction error and efficiency of system. Finally the purpose is to check which 

feature selection technique can choose relevant peaks as important features and which 

algorithm has more relevant peaks among selected features to predict soil carbonate more 

efficiently and precisely. 

 

3.1.3 Performance evaluation of feature selection methods 

 The challenge in this study is to find out important wavenumbers that affect soil carbonate 

determination. For this reason, different feature selection methods have been applied to the 

data in Case I and Case II and compared qualitatively as well as quantitatively.  As a 

qualitative measure, the number of true features selected was counted considering relevant 

peaks in FT-IR and XRD data.  As mentioned above, peaks in FT-IR and XRD spectra that 

are relevant to soil carbonates are already known through literature. 

Considering the relevant peaks as true features which are included in the selected subsets, 

the challenge will be how many true features will be selected in each subset extracted by 

different feature selection methods. For this reason, comparing the number of true features 

http://en.wikipedia.org/wiki/System
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selected by different feature selection methods can be a good way of comparing them 

qualitatively as well as quantitatively.   

For soil carbonate content prediction, we will apply SVM as a regression technique to all 

subsets obtained by LARS, Lasso and GA for Case I and Case II. To compare the accuracy 

of the methods, criterions such as RMSEP (Root Mean Squared Error of Prediction) 

(Armstrong and Collopy1992), MSE (Mean Squared Error) (Erdogmus and J.C. Principe 

2002) and Percentage of Error (PE) (Swanson 2011) are considered; RMSEP is defined as: 

RMSEP =
1

n
∑(yi − yi

′)2

n

i=1

 

Where y is the actual target value, y′ the predicted target value and n is the number of 

samples. Also MSE is defined as follows: 

𝑀𝑆𝐸 =
1

𝑛
 ∑(yi − yi

′)2

𝑛

𝑖=1

 

and PE as follows: 

𝑃𝐸 =
1

𝑛
∑ |

(𝑦𝑖 − 𝑦𝑖
′)

𝑦𝑖
|

𝑛

𝑖=1

 

where y and y′ are defined same in RMSEP. 

Then the lower values of RMSEP, MSE and PE for each method, the more efficient 

carbonate content prediction. Moreover, as the sample size is very small (41 soil samples), 

confidence intervals of the criterions need to be considered which is obtained by 

bootstrapping techniques (Efron 1979).  
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3.2.  Case Study II: Diagnosing Prostate Cancer using DNA 

Microarray Gene Expression Data for  

Deoxyribonucleic acid (DNA) micro array technology provides tools for studying the 

expression levels of a large number of distinct genes simultaneously (J. Chen and H. Chen 

2003). Micro array technology allows biologists to simultaneously measure the expressions 

of thousands of genes in a single experiment (Lee and C.H. Chao 2003; Seeja and Shweta 

2011; Yang and Thorne 2003). 

Gene expression data is widely used in disease analysis and cancer diagnosis (Yang et al. 

2008). Gene expression data from DNA micro arrays are characterized by many measured 

features (genes) on only a few observations (experiments) although both the number of 

experiments and genes per experiment are growing rapidly (Zheng at al. 2008; Nguyen, D.M. 

Rocke 2002). Gene expression data from DNA micro array can be characterized by many 

features (genes), but with only a few observations (experiments). Prediction, classification, 

and clustering techniques are being used for analysis and interpretation of the data (Nguyen 

and D.M. Rocke 2001). An important application of gene expression micro array data is 

classification of biological samples or prediction of clinical and other outcomes (Dai et al. 

2006). Micro array technology is to classify the tissue samples using their gene expression 

profiles as one of the several types (or subtypes) of cancer. Compared with the standard 

histopathological tests, the gene expression profiles measured through micro array 

technology provide accurate, reliable and objective cancer classification.  

In this study, 148 prostate samples, with various amounts of tumor, stroma, BPH and 

atrophic gland, were used for this study from Vaccine Research Institute of San Diego 

(Sharma and K. Paliwal 2008). 
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Prostate cancer gene expression profiles were studied in this project. A total RNA from 148 

prostate samples with various amount of different cell types were hybridized to Affymetrix 

U133A arrays. The percentage of different cell types vary considerably among samples and 

were determined by pathologist.  

Dataset reference is “Dataset GSE8218” which is related to GEO (Gene Expression 

Omnibus) and is available in The National Center for Biotechnology Information (NCBI) 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgiacc=GSE8218. 

In GSE8218 dataset, RNA from 148 prostate samples is considered. The total number of 

gene expressions is 22,283 which need to be extracted from GEO and then be normalized in 

order to change it to data arrays for being able of numeric analysis. 

In the dataset, tumor cell percentage (the index which significantly relates to overall survival) 

(p) considers to distinguish and divide patients; so for 71 patients, p=0, 56 patients p= 

0.1%~0.8% and 12 patients were not reported; so 71 person are considered as healthy and 65 

are considered as non-healthy (measures are classified as 0 (no cancer) and 1(cancer)) and 

finally 136 samples will be included in this study. 

 

3.2.1. Performance evaluation of feature selection methods 

In this case, since it’s a medical case study related to cancer detection, it is the main 

challenge to find true samples related to each category and the most important features 

impact them. So among more than 22,000 features that are considered as factors affect 

prostate cancer in 148 samples, the aim is to find out most effective gene expressions that 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8218
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can impact prostate cancer; so using LARS, LASSO and GA as feature selection methods in 

high dimensional data, a dimension reduction as well as feature selection can be gained for 

this study. Also to show a comparison of these methods with classical methods, results from 

forward selection and stepwise selection also are presented. 

Then, to compare efficiency of each method, SVM is applied as the modeling algorithm and 

finally the best method is chosen based on the highest area under the curve (AUC) in ROC 

curve (Receiver operating characteristic curve) which is a graphical plot that illustrates the 

performance of a binary classifier (here defines as 0 for no cancer and 1 for cancer in target 

variable). 

In ROC, an area of 1 represents a perfect test; so the more AUC is closer to 1, the more 

accurate is the feature selection methods applied to gene expression data. 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic
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CHAPTER 4. RESULTS AND CONCLUSION 

Results obtained from each method including quantitative results and qualitative results are 

presenting in chapter 4. 

 

4.1  Results for Case Study I: FT-IR & XRD Data 

 

In the first case study, considering FT-IR and XRD datasets, total 7,466 features (i.e., 

wavenumbers) in Case I and 11,356 features (7,466 wavenumbers in a FT-IR spectrum plus 

3,890 diffraction angles in an XRD diffractogram) in Case II were used to apply feature 

selection techniques. For Case I and II, a training set of 30 samples was obtained from total 

41 samples by random selection and the remaining 11 samples were used as a testing set. 

Therefore, for Case I the training set is a 7466×30 matrix and the testing set is a 7466×11 

matrix; as well as 11356×30 as training set and 11356×11 as testing set for Case II.  

As discussed before, the challenge for this case study is to find the most important features 

affect soil carbonate content prediction and at the same time to check if our methods can 

select the true features (features based on peaks) or not. Five feature selection methods were 

applied to Case I and Case II and each method selected a special number of features; some 

methods chose more true features that others and some methods only a few true features. 

Comparing methods would be regarding the true features each method includes in the subset 

selection and also by the prediction error after modeling using subset selected.  
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Table 4.1. shows the results obtained for features selection algorithms, forward selection and 

stepwise selection as traditional methods, LARS and Lasso as new and  algorithms in case of 

high dimensional data and GA as an innovative and well known feature selection algorithm 

which is used widely in various fields of research to compare with performance of LARS & 

Lasso. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 42 - 

 

 

 

 

 

 

 

Table 4.1. Results obtained for each feature selection methods in Case study I 

 Case I Case II 

 Lasso LARS GA 

Forward 

selection 

Stepwise 

selection 

Lasso LARS GA 

Forward 

selection 

Stepwise 

selection 

RMSEP 4.08 3.77 4.59 8.06 8.10 5.78 5.18 6.34 9.13 9.18 

MSE 5.71 5.09 6.73 7.24 7.42 7.34 7.07 8.9 8.34 8.47 

PE 23.16 23.48 30.09 34.20 32.41 31.42 29.74 34.43 38.42 39.74 

#of features 

selected 

47 44 62 147 159 67 65 78 158 160 

#of true  features 

selected 

31 39 30 4 7 12 16 15 3 5 
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In Table 4.1. we can see the results obtained for each feature selection method for Case I and 

Case II. Classical methods, forward selection and stepwise selection, as well as innovative 

and new methods, Lasso, LARS and GA, were applied to data and results are included here. 

To compare the efficiency of each method, three factors were considered in this table: 1- 

number of features selected in each method, 2- number of true features selected in each 

method and 3- calculating prediction error after SVM modeling on all subset selected by 

different methods. Prediction error was calculated mathematically based on RMSEP, MSE 

and PE, the famous criteria for comparing results of modeling.  

Case I: 

 As it is shown in the Table 4.1., in Case I, RMSEP got its lowest value in LARS method 

(3.77), also for Lasso and GA, RMSEP is 4.08 and 4.59; which does not have significant 

difference but we can see in LARS the lowest RMSEP and so we can result in LARS is the 

best feature selection method among new methods for Case I. Looking at the classical 

methods, RMSEPs are 8.10 for stepwise selection and 8.06 for forward selection which has a 

significant difference with LARS, Lasso and GA. Although results show a little better 

performance by forward selection comparing stepwise selection, but we can conclude that 

LARS is the best method regarding RMSEP. 

Regarding MSE and PE, also as explained above by looking at Table 4.1., values for LARS 

are 5.09 and 23.48; comparing to other methods even GA and Lasso which got higher MSE 

and PE, so considering this criteria also LARS is the best method among our feature 

selection methods here. 

The important element here is the number of true features selected by each method. For 

classical methods we see a few true features selected by the method; such that in forward 
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selection only 4 features is among selected subset and in stepwise selection only 7. Even if 

stepwise selected shows a better performance in this issue, but still comparing other methods 

they chose few true variables. Number of true variables selected in LARS is 39, in Lasso 31 

and in GA is 30. As more the number of true variables in subset selected, as more accurate 

the prediction error and finally the better the carbonate content prediction. Thus as the 

number of features selected by LARS is quite good and more than others, then LARS shows 

a good performance in extracting true features comparing others. Also Lasso as in innovative 

feature selection method, does not have a significant difference with LARS and as it’s the 

purpose of this study, these two methods are efficient feature selection methods for high 

dimensional data such as this case study.  

Case II:  

As it is shown in the Table 4.1., in Case II, RMSEP got its lowest value in LARS method 

(5.18), also for Lasso and GA, RMSEP is 5.78 and 6.34; which does not have significant 

difference but we can see in LARS the lowest RMSEP same as Case I, and so we can result 

in LARS is the best feature selection method among new methods for Case II. Looking at the 

classical methods, RMSEPs are 9.18 for stepwise selection and 9.13 for forward selection 

which has a significant difference with LARS, Lasso and GA. Although results show a little 

better performance by forward selection comparing stepwise selection, but we can conclude 

that LARS is the best method regarding RMSEP. 

Regarding MSE and PE, also as explained above by looking at Table 4.1., values for LARS 

are 7.07 and 29.74; comparing to other methods even GA and Lasso which got higher MSE 

and PE, so considering this criteria also LARS is the best method among our feature 

selection methods here. 
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The important element here is the number of true features selected by each method. For 

classical methods we see a few true features selected by the method; such that in forward 

selection only 3 features is among selected subset and in stepwise selection only 5. Even if 

stepwise selected shows a better performance in this issue, but still comparing other methods 

they chose few true variables. Number of true variables selected in LARS is 16, in Lasso 12 

and in GA is 15. As more the number of true variables in subset selected, as more accurate 

the prediction error and finally the better the carbonate content prediction. Thus as the 

number of features selected by LARS is quite good and more than others, then LARS shows 

a good performance in extracting true features comparing others. Also Lasso as in innovative 

feature selection method, does not have a significant difference with LARS and as it’s the 

purpose of this study, these two methods are efficient feature selection methods for high 

dimensional data such as this case study.  

As a conclusion for Table 4.1., as explained above for Case I and Case II, It is obviously 

shown that performance of LARS and Lasso are better than that of GA and LARS is the best 

among them; so the most efficient feature selection algorithm in this case is LARS.  

To show the robustness of our model, we used Case II and it is obviously confirmed from 

the results that by adding a not relevant dataset to our main dataset, the efficiency of the 

model shouldn’t change significantly, even though less efficient results were obtained.   

So we can see in Table 4.1. Case II, that results had a small change comparing Case I in 

almost all criteria as well as number of selected variables. This shows even the robustness of 

our model represents the efficiency in modeling and feature selection by using appropriate 

methods such as LARS and Lasso. 
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As it was explained in Booststrap Section, in case that there are few samples comparing 

number of variables, we have to use some resampling methods in order to overcome this 

problem. It’s a method which provides a confidence interval so the problem of few samples 

for training and testing set can be considered. So instead of one value for errors, a confidence 

interval for errors can be presented for more considerable result. 

Results of 95% confidence interval obtained by bootstrapping in order to check the accuracy 

of the methods concluded in Tables 4.2.1~4.2.6. 
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Table 4.2. 1. Confidence interval of RMSEP using bootstrapping (Case I) 

 FT-IR 

 LARS Lasso GA 

 bias std. error bias std. error bias std. error 

Bootstrap statistics -0.65 0.08 -0.68 0.10 -0.73 0.17 

Confidence interval (3.77 , 5.48) (3.08 , 4.42) (4.44 , 9.12) 
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 FT-IR 

 LARS Lasso GA 

 bias std. error bias std. error bias std. error 

Bootstrap statistics -0.63 0.08 -0.68 0.09 -0.70 0.15 

Confidence interval (3.62 , 5.46) (3.09 , 4.40) (4.47 , 8.94) 

Table 4.2.2. Confidence interval of MSE using bootstrapping (Case I) 
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Table 4.2.3. Confidence interval of PE using bootstrapping (Case I) 

  FT-IR 

 LARS Lasso GA 

 bias std. error bias std. error bias std. error 

Bootstrap statistics -0.67 0.09 -0.70 0.11 -0.74 0.19 

Confidence interval (5.00 , 5.49) (3.10 , 4.49) (4.54 , 9.17) 
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                               Table 4.2.4. Confidence interval of RMSEP using bootstrapping (Case II)          

 

 FT-IR+XRD 

 LARS Lasso GA 

 bias std. error bias std. error bias std. error 

Bootstrap statistics -1.13 2.45 -2.08 2.31 -3.07 4.10 

Confidence interval (4.82 , 5.88) (4.08 , 6.42) (2.44 , 9.12) 
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Table 4.2.5. Confidence interval of MSE using bootstrapping (Case II) 

 
 FT-IR+XRD 

 LARS Lasso GA 

 bias std. error bias std. error bias std. error 

Bootstrap statistics -1.12 2.41 -2.10 2.31 -3.13 4.11 

Confidence interval (4.82 , 5.90) (4.09 , 6.44) (2.54 , 9.22) 
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Table 4.2.6. Confidence interval of PE using bootstrapping (Case II) 

 
 FT-IR+XRD 

 LARS Lasso GA 

 bias std. error bias std. error bias std. error 

Bootstrap statistics -1.19 2.49 -2.11 2.37 -3.17 4.20 

Confidence interval (4.90 , 5.89) (4.13 , 6.48) (2.54 , 9.20) 
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Results of bootstrapping and confidence intervals for different criteria are included in Table 

4.2.1. ~ Table 4.2.6. Bootstrapping method was performed for the data in Case I and Case II 

for RMSEP, MSE and PE. Table 4.2.1. represents Confidence interval of RMSEP using 

bootstrapping (Case I). Bootstrap statistics for Case I in LARS is -0.65 and 0.08, and 

confidence interval is (5.03, 5.48). The statistics here are same as prediction error and the 

lower value for these statistics the better result in accuracy of model. Confidence interval for 

Lasso in this case is (3.08, 4.42) and for GA (4.44, 9.12). Comparing these intervals, we can 

see the one for LARS is less wide in comparison with Lasso and GA; this shows that our 

prediction error is located in a narrow interval and so the accuracy is higher than the ones in 

wider intervals. 

Results in Table 4.2.1 confirm the conclusion obtained from Table 4.1. Bias parameter and 

std. error for LARS algorithm is the least among other methods and the confidence interval 

obtained has the smallest range, indicating more precise in detecting important variables 

among other methods. Also results of Lasso shows better performance comparing GA; 

which shows the efficiency and accuracy of LARS and Lasso in finding the most affective 

variables among too many variables. All the other tables above have same analysis and 

shows LARS as the best feature selection method. 

 

 

 

4.2  Results for Case Study II: Gene Expression Data 

 

Case study II which includes gene expression data representing a classification problem, 

such that in target variable, we have two classes of “0” and “1”; representing “without cancer” 
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and “with cancer”. So the aim is to classify new data based on the data in hand into these 

two groups and then find out the cancer cases among the sample size. As more the true 

classification happens, the more accurate our prediction modeling will be. So different 

feature selection methods were applied to gene expression data and subset selected by each 

method was considered to use for modeling with SVM. Since in this case, we have binary (0 

& 1) feature as the target value, so we use ROC curve in order to find evaluation of each 

method and choose the best method related to the highest area under the curve in ROC curve 

for each method. 

ROC curve for LARS, Lasso and GA are concluded in Figure 4.1. 
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Figure 4.1 ROC Curve for case study II 
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In a ROC curve the true positive rate is plotted in function of the false positive rate. The area 

under the ROC curve (AUC) is a measure of how well a parameter can distinguish between 

two diagnostic groups. The accuracy of the test depends on how well the test separates the 

group, so as we mentioned before, the more AUC is closer to one, the more accurate is the 

method. So as we see, AUC for LARS is 0.993 which shows a high accuracy in 

distinguishing cancer and no cancer group. Lasso and GA also shows good results, but 

among all, LARS could achieve the best accuracy in selecting most effective features. 

In gene expression data, as the purpose of study is to classify “cancer” sample and “no 

cancer” one, so it’s very important to predict truly and group them in the correct one; so the 

accurate modeling and method will be the one which predicts all real cancer values into the 

cancer group and that’s also very challenging with high risk not to predict real “cancer” ones 

to “no cancer”; so an accurate method is the one which predict “cancer” as “cancer” as many 

as possible and predict “cancer” as “no cancer” as few as possible. Results of applying 

LARS, Lasso and Ga also classical methods (forward selection and stepwise selection) for 

this case study are included in Table 4.3.1~Table 4.3.5: 
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Table 4.3.1. Results of applying LARS to Case Study II 

 PREDICTED 

 

ACTUAL 

 Cancer No Cancer 

Cancer 126 22 

No Cancer 32 116 
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Table 4.3.2. Results of applying Lasso to Case Study II 

 PREDICTED 

 

ACTUAL 

 Cancer No Cancer 

Cancer 110 38 

No Cancer 39 109 
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Table 4.3.3. Results of applying GA to Case Study II 

 PREDICTED 

 

ACTUAL 

 Cancer No Cancer 

Cancer 106 42 

No Cancer 48 100 
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Table 4.3.4. Results of applying forward selection to Case Study II 

 PREDICTED 

 

ACTUAL 

 Cancer No Cancer 

Cancer 70 78 

No Cancer 58 90 
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Table 4.3.5. Results of applying stepwise selection to Case Study II 

 PREDICTED 

 

ACTUAL 

 Cancer No Cancer 

Cancer 68 80 

No Cancer 53 95 
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As we see in the tables 4.3.1 ~ 4.3.5, the minimum number of wrong prediction (detecting 

cancer when actually no cancer and detecting no cancer when actually cancer) is achieved in 

LARS algorithm comparing Lasso and GA. Classical methods also show weak results 

regarding accurate prediction. So in Table 4.3.4 and Table 4.3.5 there are big numbers of 

cases who actually have cancer, but modeling categorized them as no cancer. Moreover, 

using classical methods, many cases which actually have no cancer are categorized as cancer 

group. So comparing LARS, Lasso and GA, results show that classical methods are not 

efficient ones regarding thousands of numbers of gene expression in this case study. 
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CHAPTER 5. CONCLUSION 

This study included feature selection methods and comparison of some classical and 

innovative feature selection methods and applying them to regression problem and 

classification problem in two case studies. In spectroscopy data as Case Study I, feature 

selection methods were applied to FT-IR and XRD data as Case I and Case II and then 

subset selected by each method was obtained and used for SVM modeling. Beside feature 

selection problem, the accuracy of methods in case of extracting true variables among all 

variables was also considered. The results showed the best performance and highest 

accuracy for LARS in Case Study I. 

DNA microarray gene expression data for diagnosing prostate cancer used as Case Study II. 

As a classification problem, the main goal was to allocate true variables to the right groups; 

means real “cancer” group would be predicted as “cancer” as many as possible and at the 

same time “cancer” group was predicted as “no cancer” as few as possible because of high 

risk. In this case study also different feature selection methods were applied to the data to 

extract the most important variables on cancer prediction. The result was what expected, 

LARS was the best algorithm among Lasso and GA and significantly classical methods to 

predict cancer. The results anyway show in two general case studies that LARS and Lasso as 

special feature selection methods for high dimensional data, can be applied to massive data 

and extracting the most important variables using these methods. 
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