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1 Introduction

Let C' be a nonempty closed convex subset of a real Banach space
X and let T : C' — C be a mapping. Then T is said to be a Lips-
chitzian mapping if, for each n > 1, there exists a constant k, > 0
such that ||T"x — T"y|| < kyllz — y|| for all z,y € C'. A Lips-
chitzian mapping T is called uniformly k-Lipschitzian if k,, = k for
all n > 1, nonexpansive if k, =1 for all n > 1, and asymptotically
nonexpansive [9] if lim,,_, k, = 1, respectively.

On the other hand, as the classes of non-Lipschitzian mappings,
there appear in the literature two definitions, one is due to Kirk
who says that T' is a mapping of asymptotically nonexpansive type

[15] if for each z € C,
limsupsup([|[7"2 — T"y|| = lz = y[)) <0 (1.1)
n—oo yeC
and TV is continuous for some N > 1. The other is the stronger
concept due to Bruck, Kuczumov and Reich [3]. They say that
T is asymptotically nonexpansive in the intermediate sense if T is
uniformly continuous and

limsup sup (|7"z — T"y|| — [lz — y[)) <0 (1.2)

n—oo x,yeC



Remark 1.1. In the case of (1.1), for each = € C, if we define

cn(2) == sup(|[T"z — T"y[| — [lz — y|[) VO,
yeC

(here a Vb := max{a,b}), then ¢,(z) >0 forall n > 1, ¢,(z) = 0

as n — oo for each z € C', and thus (1.1) immediately reduces to
17"z = T"y|| < [l =yl + cn(2) (1.3)

for all y € C' and n > 1. Observe that the converse always remains

true, namely, (1.3) also implies (1.1). Indeed, (1.3) implies
1T = T"y|| = llz =yl < enlz), yeC

i.e., ¢,(x) is upper bound of {||T"z —T"y|| — ||lx —y|| : y € C'} and
thus

sup(|[T"z — T"y[| — [lz — y||) < ca(@),
yel

which implies (1.1) since ¢,(z) — 0. Similarly, if we define

Cp i= sSup ¢, ()
xeC

for each n > 1, note that (1.2) is equivalent to the following (1.4)
17"z = T"y| <z =yl +cn (1.4)

for all z,y € C' and n > 1, where {c,} is a sequence of nonnegative

real numbers such that ¢, — 0 as n — oo.
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A point x € C'is a fized point of T provided Tx = x. Denote by
F(T) the set of fixed points of T'; that is, F(T) ={x € C : Tx = x}.
A point p in C is said to be an asymptotic fived point of T' [24] if C
contains a sequence {x,} which converges weakly to p such that the
strong lim,, oo (2, — Tx,) = 0. The set of asymptotic fixed points
of T will be denoted by F(T).

Let X be a smooth Banach space and let X* be the dual of X.
The function ¢ : X x X — R is defined by

8y, x) = lyll* = 2y, Jo) + [l

for all z,y € X, where J is the normalized duality mapping from X
to X*. Recall that a mapping T' : C' — C'is relatively asymptotically
nonexpansive(denoted simply by RAN) [14] if F(T) is nonempty,
F(T) = F(T) and, for each n > 1 there exists a constant k, > 0
such that
¢(p, T"x) < ko (p, @) (1.5)
for x € C and p € F(T), where lim,_, k, = 1. In particular, T
is called relatively nonexpansive [19] if k, = 1 for all n; see also
3,4,5].
Motivated and initiated by (1.3) and (1.5), we say that T': C' — C'

is a mapping of relatively asymptotically nonexpansive type(denoted

3



simply by RANT) if F(T) is nonempty, F(T) = F(T) and, for
each x € C there exists a sequence {c,(x)} of nonnegative real

numbers, ¢,(x) — 0, such that

o(p, T"x) < ¢(p, ) + cu(x) (1.6)

forall pe F(T) and n > 1.

Remark 1.2. Observe that if 7' : C — C is RAN and F(T) is
bounded, then it is clearly a mapping of RANT by taking
cn(z) = (B2 = 1) sup d(p,z) = 0
peF(T)

as n — oo for each xz € C.

Construction of approximating fixed points of nonexpansive map-
pings is an important subject in the theory of nonexpansive map-
pings and its applications in a number of applied areas, in particu-
lar, in image recovery and signal processing. However, the sequence
{T"x} of iterates of the mapping T at a point z € C' may not
converge even in the weak topology. Thus three averaged iteration
methods often prevail to approximate a fixed point of a nonexpan-
sive mapping 7. The first one is introduced by Halpern [10] and

is defined as follows: Take an initial guess xy € C' arbitrarily and



define {z,} recursively by
Tpi1 = thxo+ (1 —t,)Tx,, n >0, (1.7)

where {t,} is a sequence in the interval [0, 1].
The second iteration process is now known as Mann’s iteration

process [17] which is defined as
Tpi1 = Qpxy + (1 — )Tz, n >0, (1.8)

where the initial guess xg is taken in C' arbitrarily and the sequence
{a,} is in the interval [0, 1].
The third iteration process is referred to as Ishikawa’s iteration

process [11] which is defined recursively by

Tpt1= Oy + (T = )Ty,

n >0, (1.9)

where the initial guess x is taken in C' arbitrarily and {«,} and
{B,} are sequences in the interval [0,1]. By taking g, = 1 for all
n > 0 in (1.9), Ishikawa’s iteration process reduces to the Mann’s
iteration process (1.8). It is known in [6] that the process (1.8)
may fail to converge while the process (1.9) can still converge for a

Lipschitz pseudo-contractive mapping in a Hilbert space.



In general, the iteration process (1.7) has been proved to be
strongly convergent in both Hilbert spaces [10, 16, 28] and uni-
formly smooth Banach spaces [22, 25, 30], while Mann’s iteration
(1.8) has only weak convergence even in a Hilbert space [8].

Attempts to modify the Mann iteration method (1.8) or the
Ishikawa iteration method (1.9) so that strong convergence is guar-
anteed have recently been made. Nakajo and Takahashi [21] pro-
posed the following modification of Mann’s iteration process (1.8)
for a single nonexpansive mapping 7" with F(T') # () in a Hilbert
space H:
xg € C chosen arbitrarily,

Yn = QpTy + (1 — o) Ty,
3 Co=A{z€C: llga— 2 < llan— I} (1.10)
Qn =42z €C: {(z,—= 2,290 — z,) > 0},

Tn+1 = Po,ng, o,

\
where Py denotes the metric projection from H onto a closed con-

vex subset K of H. They proved that if the sequence {a,} is
bounded above from one, then the sequence {z,} generated by
(1.10) converges strongly to Ppezo. As a special case, taking
a, = 0 for all n, the above iteration scheme (1.10) reduces to the

following:



xo € C chosen arbitrarily,

Co={2€C:|Ta, — 2| < |lza — 2|},
(1.11)
QnZ{ZECZ<SCn—Z,IU0—5Un> ZO}’

[ Tn+l = Fe,nq,o-

On the other hand, Kamimura and Takahashi [12] considered the
problem of finding an element u of a Banach space X satisfying
0 € Au, where A C X x X* is a maximal monotone operator and

X* is the dual space of X. They studied the following algorithm:

)
x9 € X chosen arbitrarily,

0= u,+ é(Jyn — Jxn), Uy € Ay,
{ Ho={z€ X : (yo — 2,9 = 0}, (1.12)
Wy'={z €C: (T, — 2y Jxg — Jxp) > 0},

Tny1 = Hg Aw, Zo,

\

where J is the duality mapping on X, {r,} is a sequence of positive
real numbers and Ilx denotes the generalized projection from X
onto a closed convex subset K of X; see the section 2 for more
details. They proved that if A7'0 # 0 and liminf, ..c7, > 0,
then the sequence {x,} generated by (1.12) converges strongly to
an element of A~10. This generalizes the result due to Solodov and

Svaiter [26] in a Hilbert space.



Recently, Matsushita and Takahashi [19] extended Nakajo and
Takahashi’s iteration process (1.10) to the following modification of
Mann’s iteration process (1.8) using the hybrid method in mathe-
matical programming for a relatively nonexpansive mapping 7' : C' — C'

in a uniformly convex and uniformly smooth Banach space X:

(
xg € C' chosen arbitrarily,

Yn = J HanJzn + (1 — ap)JTzy),
y Hn = {Z S e (b(z,yn) < ¢(Z,l'n)}, (113>
Wy={z€C:{x,— 2z Jxg— Jx,) > 0},

Tn+1 = g aw, Zo,

\

where J is the normalized duality mapping. Then they proved that
if the sequence {a,} is a sequence in [0, 1) and limsup,,_,., a, < 1,
then the sequence {x,} generated by (1.13) converges strongly to
g0, where Il denotes the generalized projection from X onto
a closed convex subset K of X. As a special case, taking a,, = 0

for all n in (1.13), the iteration scheme reduces to the following:

,
xg € C' chosen arbitrarily,

) H,={z€C:¢(z,Tx,) < ¢(z,2,)}, (1.14)
W,=4{2¢€C:{x, — 2z Jrg— Jx,) > 0},

Tnt1 = g Aw, xo,



which generalizes the iteration scheme (1.11) in a Hilbert spaces.
Very recently, they also established that even though the condition
of uniformly smooth of X is only weakened by the smooth condition
of X, the sequence {z,} generated by (1.14) still converges strongly
to Ipryzo-

The purpose of this paper is to employ the idea due to Matsushita
and Takahashi [20] to prove some strong convergence theorems for
uniformly Lipschitzian mappings which are relatively asymptoti-
cally nonexpansive in uniformly convex and smooth Banach spaces.
The paper is organized as follows. In the next section we intro-
duce some lemmas and propositions studied recently in [12] and
[13, 14] which play crucial roles for our argument. In Section 3,
motivated by [20], we extend Matsushita and Takahashi’s iteration
process (1.14) to the wider class of uniformly Lipschitzian mappings
which are relatively asymptotically nonexpansive and discuss some

applications relating to our main result.

2 Preliminaries

Let X be a real Banach space with norm || - || and let X* be the

dual of X. Denote by (-,-) the duality product. When {z,} is a



sequence in X | we denote the strong convergence of {x,} to z € X
by x, — x and the weak convergence by x,, — x. We also denote
the weak w-limit set of {z,} by wy(x,) = {z : Ix,, = z}. The

normalized duality mapping J from X to X* is defined by
Jov={z" € X" (z,2") = ||z|* = |="|"}

for x € X.

A Banach space X is said to be strictly convezif ||(x+vy)/2| < 1
for all z, y € X with ||z|| = |ly|| = 1 and = # y. It is also said to be
uniformly convez if ||z, —y,|| — 0 for any two sequences {x,}, {y,}
in X such that ||z,|| = ||ly.|| =1 and |[(z,, + y,)/2]] — 1.

Let U = {x € X : ||z|]| = 1} be the unit sphere of X. Then the

Banach space X is said to be smooth provided

ety e
t—0 t

(2.1)
exists for each z,y € U. It is also known that if X is uni-
formly smooth, then J is uniformly norm-to-norm continuous on
each bounded subset of X . Some properties of the duality mapping
have been given in [7, 23, 27]. A Banach space X is said to have
the Kadec-Klee property if a sequence {z,} of X satisfying that

r, = x € X and ||z,|| — ||z||, then x,, — =. It is known that if

10



X is uniformly convex, then X has the Kadec-Klee property; see
[7, 27] for more details.

Let X be a smooth Banach space. Recall that the function
¢: X x X — R is defined by

oy, x) = lyllI* — 2y, Jo) + [l

for all z,y € X . It is obvious from the definition of ¢ that

(lyll = Tl2l)* < ély, 2) < (lyll + flz])* (2:2)

for all x,y € X. Further, we have that for any x,y,z € X,

¢(x,y) = oz, 2) + 0(2,9) + 2(x — 2, J(2) — J ().

In particular, it is easy to see that if X is strictly convex, for
r,y € X, ¢(y,z) = 0 if and only if y = z (see, for example,
Remark 2.1 of [19]).

Let X be a reflexive, strictly convex and smooth Banach space
and let C' be a nonempty closed convex subset of X. Then, for any

x € X, there exists a unique element & € C' such that

o(z,x) = inf ¢(z, x).

zeC
Then a mapping Ilo : X — C defined by Ilcz = T is called the

generalized projection (see [1, 2, 12]). In Hilbert spaces, notice that

11



the generalized projection is clearly coincident with the metric pro-

jection.

The following result is well known (see, for example, [1, 2, 12]).

Proposition 2.1. ([1, 2, 12]) Let K be a nonempty closed convex

subset of a real Banach space X and let x € X .

(a) If X is smooth, then, T = llgx if and only if (T—y, Jx—JT) > 0
fory e K.

(b) If X is reflexive, strictly convex and smooth, then

for all y € K.
The following subsequent two lemmas are motivated by Lem-

mas 1.3 and 1.5 of Martinez-Yanes and Xu [18] in Hilbert spaces,

respectively; for detailed proofs, see [13].

Lemma 2.2. ([13]) Let C be a nonempty closed convex subset of a
smooth Banach space X, x,y,z € X and A € [0,1]. Given also a

real number a € R, the set

D:={veC:¢w,z) <I(v,z)+ (1 =No(v,y) +a}

18 closed and convex.

12



Lemma 2.3. ([13]) Let X be a reflexive, strictly convex and smooth
Banach space with the Kadec-Klee property, and let K be a nonempty
closed convex subset of X . Let vy € X and q := llgxy, where Il
denotes the generalized projection from X onto K. If {x,} is a

sequence in X such that wy(x,) C K and satisfies the condition

¢(n, x0) < (g, o)
for all n. Then x, — q (= lgzy).

Recently, Kamimura and Takahashi [12] proved the following re-

sult, which plays a crucial role in our discussion.

Proposition 2.4. ([12]) Let X be a uniformly conver and smooth
Banach space and let {y,},{z,} be two sequences of X . If ¢(yn, 2,) — 0
and either {y,} or {z,} is bounded, then y, — 2z, — 0.

Finally, concerning the set of fixed points of a mapping of RANT,

we shall prove the following result.

Proposition 2.5. Let X be a uniformly conver and smooth Ba-
nach space, let C' be a nonempty closed convex subset of X, and
let T :C — C be a continuous mapping of RANT. Then F(T) is

closed and convex.

13



Proof. First, we show that F(7T) is closed. Let {z,} be a sequence
of F(T) such that z,, —» x € C. Since T is a mapping of RANT,

we have that

O(@n, T"x) < G(wn, ) + co(2)

for each n,m > 1. Fix m > 1. Firstly taking the limit on both

sides as n — oo, we have

Oz, T"x) = Tim ¢(r,, ") < lim [¢(r,, 7) + cn (o)

n—oo n—oo

= qﬁ(w,x) oy Cm(x) = Cm(@'

As taking the limit on both sides as m — oo, since ¢, (z) — 0
as m — oo. It follows from Proposition 2.4 that 7™z — z as
m — oo and hence z € F(T) by the continuity of T'. Next, we
show that F(T) is convex. For x,y € F(T) and A € (0,1), put
z =X+ (1 —MN)y. It suffices to show that z € F'(T). Indeed, as in

[19], we have that for n > 1,

(2, T"2) = ||2]|* = 2(z, JT"2) + | T"2||*
= 2l = 20w + (1= Ny, JT"z) + | T"2||?
= llI* = 2Xa, JT"2) — 2(1 = M) (y, JT"2) + || T"2|
= |2l + Ao (2, T"2) + (1 = Ny, T"2) = All|I* = (1 = M)ly]I”
< 2l + [o(, 2) + (1= Ndly, 2)] + 2en(2) = All]|* = (1 = Nyl

14



Since ¢,(z) — 0, the right hand side of the above inequality con-

verges to 0 because

2% + Ad(, 2) + (1 = Ny, 2) = Al ]* = (1= M)ly[l*
= 2l =20 + (1 = Ny, J2) + |2/

= [l2* = 2(z, J2) + [|2]* = 0

By Proposition 2.4 again, we have 7"z — z and hence z € F(T)

by the continuity of T'. []

3 Strong convergence theorems

In this section we first propose an iteration process, motivated by
the idea due to [20], to have strong convergence for uniformly Lips-
chitzian mappings which are relatively asymptotically nonexpansive
in the intermediate sense in uniformly convex and smooth Banach

spaces.

Theorem 3.1. Let X be a uniformly convex and smooth Banach
space, let C' be a monempty closed convex subset of X and let

T :C — C be a uniformly k-Lipschitzian mapping of RANT. As-

15



sume that F(T) # 0. Define a sequence {x,} in C by the algorithm:

)
xg € C' chosen arbitrarily,

H,={veC:¢v,T'z,) < ¢(v,z,) + cn(xn)},
W,={vel: {(xr,—v, Jo, — Jryg) <0},

| Tn+1 = U, nw, Zo.

Then the sequence {x,} converges in norm to pwx.
Proof. First, observe that H,, is closed and convex by Lemma 2.2,
and that W, is obviously closed and convex for each n > 0. Next

we show that F(T') C H, for all n. Indeed, for all p € F(T'), Since

T is a mapping of RANT, we get

and so p € H,; hence F(T) C H, for all n > 0. Moreover, we show
that

F(T)c H,nW, (3.1)
for all » > 0. It suffices to show that F(T) C W, for all n > 0.
We prove this by induction. For n =0, we have F(T) C C = Wj.
Assume that F(T') C Wy for some k > 1. Since xj.; is the gen-
eralized projection of zy onto Hp N Wy, by Proposition 2.1 (a) we
have

(g1 — 2, Jrg — Jrp11) >0

16



for all z € HyNWj. As F(T) C H;NWj, the last inequality holds,
in particular, for all z € F(T'). This together with the definition of
Wiy1 implies that F(T) C Wy.1. Hence (3.1) holds for all n > 0.
So, {z,} is well defined. Obviously, since z,, = Ily, o by the
definition of W,, and Proposition 2.1 (a), and F(T) C W,,, we have
d(xn, z0) < d(p,xo) for all p € F(T). In particular, we obtain, for

all n >0,
O(n,20) < B(g,70),  where ¢ =gz,  (3.2)

Therefore, {¢(z,, o)} is bounded; so is {z,} by (2.2).
Noticing that x,, = Iy, ¥y again and the fact that z,.; € H,NW,, C W,,,
we get,

¢(xn7 5130) - m%l ¢(Z7 130) = ¢(xn+1a xO)a

zeEWn,

which shows that the sequence {¢(x,, %)} is increasing and so the
lim,, o ¢(x,, ) exists. Simultaneously, from Proposition 2.1 (b),

we have

P(Tni1,70) = & (Tny1, Hw,20) < d(2041, 20) — ¢(Iw, w0, 70)

= ¢(xn+17 ':EO) - qb(xna 33()) — 0. (33)
By Proposition 2.4, we have

|Tnt1 — x| — 0. (3.4)

17



Now since x,,1 € H,, it follows from the definition of H,, (3.3)

and ¢, (z,) — 0 by virtue of Cantor’s diagonal process that
O(@nr1, T"xp) < G(Tps1, Tn) + culan) — 0.
Using Proposition 2.4 again yields
|Zny1 —T"2p]| = 0
and this combined with (3.4) gives
|xn — T"x,|| — 0. (3.5)

Since T is uniformly k-Lipschitzian, it follows from (3.4) and (3.5)
that

[0 = T2all < |20 = Busa | + Zass = Tz |
T sy — T || 4 | T e — T
< (At Bllen = spoll + ons — T ]
+k|| Tz, — x| — 0. (3.6)
By (3.6), wy(z,) C F(T) = F(T). This, combined with (3.2) and
Lemma 2.3 (with K = F(T')), guarantees that x,, — ¢ = Ip)wo.
The proof is complete. []

As a direct consequence of Remark 1.2 and Theorem 3.1 we have

the following

18



Corollary 3.2. Let X be a uniformly conver and smooth Banach
space, let C' be a nonempty closed conver subset of X and let
T :C — C be auniformly k-Lipschitzian mapping of RAN. Assume
that F(T) is a nonempty bounded subset of C'. Define a sequence
{z,} in C by the algorithm:

xo € C chosen arbitrarily,
H,={veC:¢(v,T'xz,) < ¢(v,x,) + cp(zn)},
W,=4{velC: {xy—v,Jr,— Jry) <0},

| Znt1 = Ha,ow, Zo,

where c,(x,) = (k2 — 1) - sup{d(p,z,) : p € F(T)}. Then the se-

quence {x,} converges in norm to Ilpq)xy.

Let C' be a closed convex subset of a Hilbert space H and let
T : C — C be an asymptotically nonexpansive mapping. Then,
after noticing that ¢(z,y) = ||z — y||* for all z,y € H, we see that
| Tz —T™y|| < kyl|lz—y|| is equivalent to ¢(T"x, T"y) < k2¢p(x,y).
It is therefore easy to show that every asymptotically nonexpansive
mapping is both uniformly k-Lipschitzian and RAN. In fact, it suf-
fices to show that F(T) C F(T). The inclusion follows easily from
the well-known demiclosedness at zero of I —T (c.f., [29]), where [

denotes the identity operator. Thus we have the following Hilbert

19



space’s version of Corollary 3.2.

Corollary 3.3. Let X be a Hilbert space, let C' be a nonempty
closed conver subset of X and let T : C'— C' be an asymptotically
nonexpansive mapping. Assume that F(T) is a nonempty bounded

subset of C'. Define a sequence {x,} in C' by the algorithm:
xg € C' chosen arbitrarily,

Co={v € C:flv—T"2n[* < flv— 2nl* + 7},
Qn={veC:{x,—v,z,—x9 <0},

\ xn"'l == PCnﬁanO7
where 0, = (k2 —1) -sup{|lp—z,||* : p € F(T)}. Then the sequence
{z,} converges in norm to Pp(ryxo, where Pper) is the metric pro-

jection from X onto F(T).

Finally, as a slight modification of Theorem 3.1, we propose an-
other iteration process to have strong convergence for uniformly
Lipschitzian mappings of RANT in uniformly convex and smooth

Banach spaces.

Theorem 3.4. Let X be a uniformly convex and smooth Banach
space, let C' be a monempty closed convex subset of X and let
T :C — C be a uniformly k-Lipschitzian mapping of RANT. As-

sume that F(T) is nonempty. Define a sequence {x,} in C by the
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algorithm.:

)
xo € C chosen arbitrarily,

H, = {v e C :limsup, . [¢(v, T'z,) — (v, 2,)] < 0},
W,={velC:{(x,—v,Ju, — Jrg) <0},

| Zn+1 = Hp,nw, %o

Then {x,} converges in norm to pw)g.

Proof. We first show that H, is closed and convex. In fact, the
closedness of H, is obvious from the continuity of ¢(-, x) for x € X.
Let us show that H, is convex. As a matter of fact, the defining

inequality in H,, is equivalent to the inequality

lim sup[2(v, Jz, = JT'2,) + | T'zn||* — ||z, |I7] < 0.

1—00
Thus, H, is clearly convex.
Next we show that F(T) C H, for all n. Indeed, for all
p € F(T), Since T is a mapping of RANT,

o(p, Tixn) — ¢(p, xn) < ci(wy)

and taking the limsup on the both sides as i — oo, the right side
converges to 0 for each n > 1 and so p € H,; hence F(T) C H,

for all n > 0. Moreover, using the same processes of the proof of
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Theorem 3.1, we can show that
F(T)c H,nW, (3.7)

for all n > 0, and furthermore (3.2)-(3.4). Now since z,41 € H,,

from the definition of H,,, we have

lim Sup[gb('anrla TZ:UTL) T ¢(xn+17 xn)] S 07

1—00
and so

lim lim sup ¢(z,11, T"z,) = 0.
n—=00 {00

Then it is not hard to see that there exists a j € NU {0} such that
7}1_{130 ¢(Tpy1, T"Ha,) = 0.
Using Proposition 2.4 again yielding
oo = T > 0
and this combined with (3.5) gives

|z — T, — 0. (3.8)

Since T is uniformly k-Lipschitzian, it follows from (3.4) and (3.8)

22



that

T |

|20 = Tapl| < 20 — o || + |lTns —
‘l‘HTijJrlmn—i—l . Tn+j+1an + HTnJerrlxn . Tan

(1 + k)Hxn - xn+1H + Hxn+1 - Tn+1+jxn+1“

IN

+k||T" 2, — 2| — 0. (3.9)

By (3.9), wy(z,) C F(T) = F(T). This, combined with (3.2) and
Lemma 2.3 (with K = F(T)), guarantees that x,, — ¢ = I p@)zo.

The proof is complete. ]
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