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상대적인 비-Lipschitzian사상에 대한 반복알고리즘

차 혜 정

부경대학교 교육대학원 수학교육전공

요 약

집합 C를 Banach공간 X의공집합이아닌닫힌볼록부분집합(closed convex

subset)이라 하고, 사상 T : C → C의 부동점들의 집합을

F (T ) = {x ∈ C : Tx = x}

로 표기한다. 점 p에 약수렴하는 C내에 있는 수열 {xn}이 ‖xn − Txn‖ → 0을

만족할때,점 p ∈ F̂ (T )를점근적부동점이라한다. X가 smooth이면 J는 X의

정규쌍대사상으로서

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2, x, y ∈ X

로 정의된 범함수 φ : X ×X → R가 잘 정의된다. 우리는 T : C → C가 다음

세 조건 (i)-(iii)을 만족할 때, 상대점근적비확대형사상(a mapping of relatively

asymptotically nonexpansive type)라 말한다.

(i) F (T ) 6= ∅ ,

(ii) F (T ) = F̂ (T ),

(iii) 각 x ∈ C에 대하여

φ(p, T nx) ≤ φ(p, x) + cn(x), ∀ p ∈ F (T )

을 만족하는 x에 의존하여 0에 수렴하는 비음의 실수열 {cn(x)}가 존재한다.
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본 논문에서는 X가 균등볼록인 smooth한 Banach공간일 때, 먼저 한 점

x0 ∈ C로부터 출발하여 다음처럼 반복적으로 정의된 새로운 혼합형 알고리

즘(hybrid algorithm)
Hn = {z ∈ C : φ(z, T nxn) ≤ φ(z, xn) + cn(xn)},

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wnx0, n ≥ 0

을 생각한 후, T : C → C가 상대점근적비확대형 균등 k -Lipschitzian사상이고

F (T )(6= ∅)라는가정하에서위의혼합형알고리즘으로정의된수열 {xn}은항

상 F (T ) 의 점 ΠF (T )x0에 강수렴한다는 것을 밝혔다. 여기서 J는 정규쌍대사

상(normalized duality mapping)이고 ΠF (T )는 X로부터 F (T ) 위로의 일반화된

사영(generalized projection)이다.
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1 Introduction

Let C be a nonempty closed convex subset of a real Banach space

X and let T : C → C be a mapping. Then T is said to be a Lips-

chitzian mapping if, for each n ≥ 1, there exists a constant kn > 0

such that ‖T nx − T ny‖ ≤ kn‖x − y‖ for all x, y ∈ C . A Lips-

chitzian mapping T is called uniformly k-Lipschitzian if kn = k for

all n ≥ 1, nonexpansive if kn = 1 for all n ≥ 1, and asymptotically

nonexpansive [9] if limn→∞ kn = 1, respectively.

On the other hand, as the classes of non-Lipschitzian mappings,

there appear in the literature two definitions, one is due to Kirk

who says that T is a mapping of asymptotically nonexpansive type

[15] if for each x ∈ C ,

lim sup
n→∞

sup
y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0 (1.1)

and TN is continuous for some N ≥ 1. The other is the stronger

concept due to Bruck, Kuczumov and Reich [3]. They say that

T is asymptotically nonexpansive in the intermediate sense if T is

uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0 (1.2)
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Remark 1.1. In the case of (1.1), for each x ∈ C , if we define

cn(x) := sup
y∈C

(‖T nx− T ny‖ − ‖x− y‖) ∨ 0,

(here a ∨ b := max{a, b}), then cn(x) ≥ 0 for all n ≥ 1, cn(x)→ 0

as n→∞ for each x ∈ C , and thus (1.1) immediately reduces to

‖T nx− T ny‖ ≤ ‖x− y‖+ cn(x) (1.3)

for all y ∈ C and n ≥ 1. Observe that the converse always remains

true, namely, (1.3) also implies (1.1). Indeed, (1.3) implies

‖T nx− T ny‖ − ‖x− y‖ ≤ cn(x), y ∈ C,

i.e., cn(x) is upper bound of {‖T nx− T ny‖ − ‖x− y‖ : y ∈ C} and

thus

sup
y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ cn(x),

which implies (1.1) since cn(x)→ 0. Similarly, if we define

cn := sup
x∈C

cn(x)

for each n ≥ 1, note that (1.2) is equivalent to the following (1.4)

‖T nx− T ny‖ ≤ ‖x− y‖+ cn (1.4)

for all x, y ∈ C and n ≥ 1, where {cn} is a sequence of nonnegative

real numbers such that cn → 0 as n→∞.

2



A point x ∈ C is a fixed point of T provided Tx = x. Denote by

F (T ) the set of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}.

A point p in C is said to be an asymptotic fixed point of T [24] if C

contains a sequence {xn} which converges weakly to p such that the

strong limn→∞(xn − Txn) = 0. The set of asymptotic fixed points

of T will be denoted by F̂ (T ).

Let X be a smooth Banach space and let X∗ be the dual of X .

The function φ : X ×X → R is defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2

for all x, y ∈ X , where J is the normalized duality mapping from X

to X∗ . Recall that a mapping T : C → C is relatively asymptotically

nonexpansive(denoted simply by RAN ) [14] if F (T ) is nonempty,

F̂ (T ) = F (T ) and, for each n ≥ 1 there exists a constant kn > 0

such that

φ(p, T nx) ≤ k2nφ(p, x) (1.5)

for x ∈ C and p ∈ F (T ), where limn→∞ kn = 1. In particular, T

is called relatively nonexpansive [19] if kn = 1 for all n; see also

[3,4,5].

Motivated and initiated by (1.3) and (1.5), we say that T : C → C

is a mapping of relatively asymptotically nonexpansive type(denoted
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simply by RANT ) if F (T ) is nonempty, F̂ (T ) = F (T ) and, for

each x ∈ C there exists a sequence {cn(x)} of nonnegative real

numbers, cn(x)→ 0, such that

φ(p, T nx) ≤ φ(p, x) + cn(x) (1.6)

for all p ∈ F (T ) and n ≥ 1.

Remark 1.2. Observe that if T : C → C is RAN and F (T ) is

bounded, then it is clearly a mapping of RANT by taking

cn(x) = (k2n − 1) sup
p∈F (T )

φ(p, x)→ 0

as n→∞ for each x ∈ C .

Construction of approximating fixed points of nonexpansive map-

pings is an important subject in the theory of nonexpansive map-

pings and its applications in a number of applied areas, in particu-

lar, in image recovery and signal processing. However, the sequence

{T nx} of iterates of the mapping T at a point x ∈ C may not

converge even in the weak topology. Thus three averaged iteration

methods often prevail to approximate a fixed point of a nonexpan-

sive mapping T . The first one is introduced by Halpern [10] and

is defined as follows: Take an initial guess x0 ∈ C arbitrarily and
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define {xn} recursively by

xn+1 = tnx0 + (1− tn)Txn, n ≥ 0, (1.7)

where {tn} is a sequence in the interval [0, 1].

The second iteration process is now known as Mann’s iteration

process [17] which is defined as

xn+1 = αnxn + (1− αn)Txn, n ≥ 0, (1.8)

where the initial guess x0 is taken in C arbitrarily and the sequence

{αn} is in the interval [0, 1].

The third iteration process is referred to as Ishikawa’s iteration

process [11] which is defined recursively by yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn,
n ≥ 0, (1.9)

where the initial guess x0 is taken in C arbitrarily and {αn} and

{βn} are sequences in the interval [0, 1]. By taking βn = 1 for all

n ≥ 0 in (1.9), Ishikawa’s iteration process reduces to the Mann’s

iteration process (1.8). It is known in [6] that the process (1.8)

may fail to converge while the process (1.9) can still converge for a

Lipschitz pseudo-contractive mapping in a Hilbert space.
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In general, the iteration process (1.7) has been proved to be

strongly convergent in both Hilbert spaces [10, 16, 28] and uni-

formly smooth Banach spaces [22, 25, 30], while Mann’s iteration

(1.8) has only weak convergence even in a Hilbert space [8].

Attempts to modify the Mann iteration method (1.8) or the

Ishikawa iteration method (1.9) so that strong convergence is guar-

anteed have recently been made. Nakajo and Takahashi [21] pro-

posed the following modification of Mann’s iteration process (1.8)

for a single nonexpansive mapping T with F (T ) 6= ∅ in a Hilbert

space H : 

x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x0,

(1.10)

where PK denotes the metric projection from H onto a closed con-

vex subset K of H . They proved that if the sequence {αn} is

bounded above from one, then the sequence {xn} generated by

(1.10) converges strongly to PF (T )x0 . As a special case, taking

αn = 0 for all n, the above iteration scheme (1.10) reduces to the

following:
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

x0 ∈ C chosen arbitrarily,

Cn = {z ∈ C : ‖Txn − z‖ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn
x0.

(1.11)

On the other hand, Kamimura and Takahashi [12] considered the

problem of finding an element u of a Banach space X satisfying

0 ∈ Au, where A ⊂ X ×X∗ is a maximal monotone operator and

X∗ is the dual space of X . They studied the following algorithm:

x0 ∈ X chosen arbitrarily,

0 = vn + 1
rn

(Jyn − Jxn), vn ∈ Ayn,

Hn = {z ∈ X : 〈yn − z, v〉 ≥ 0},

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wn
x0,

(1.12)

where J is the duality mapping on X , {rn} is a sequence of positive

real numbers and ΠK denotes the generalized projection from X

onto a closed convex subset K of X ; see the section 2 for more

details. They proved that if A−10 6= ∅ and lim infn→∞ rn > 0,

then the sequence {xn} generated by (1.12) converges strongly to

an element of A−10. This generalizes the result due to Solodov and

Svaiter [26] in a Hilbert space.
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Recently, Matsushita and Takahashi [19] extended Nakajo and

Takahashi’s iteration process (1.10) to the following modification of

Mann’s iteration process (1.8) using the hybrid method in mathe-

matical programming for a relatively nonexpansive mapping T : C → C

in a uniformly convex and uniformly smooth Banach space X :

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJxn + (1− αn)JTxn),

Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wn
x0,

(1.13)

where J is the normalized duality mapping. Then they proved that

if the sequence {αn} is a sequence in [0, 1) and lim supn→∞ αn < 1,

then the sequence {xn} generated by (1.13) converges strongly to

ΠF (T )x0 , where ΠK denotes the generalized projection from X onto

a closed convex subset K of X . As a special case, taking αn = 0

for all n in (1.13), the iteration scheme reduces to the following:

x0 ∈ C chosen arbitrarily,

Hn = {z ∈ C : φ(z, Txn) ≤ φ(z, xn)},

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠHn∩Wn
x0,

(1.14)
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which generalizes the iteration scheme (1.11) in a Hilbert spaces.

Very recently, they also established that even though the condition

of uniformly smooth of X is only weakened by the smooth condition

of X , the sequence {xn} generated by (1.14) still converges strongly

to ΠF (T )x0 .

The purpose of this paper is to employ the idea due to Matsushita

and Takahashi [20] to prove some strong convergence theorems for

uniformly Lipschitzian mappings which are relatively asymptoti-

cally nonexpansive in uniformly convex and smooth Banach spaces.

The paper is organized as follows. In the next section we intro-

duce some lemmas and propositions studied recently in [12] and

[13, 14] which play crucial roles for our argument. In Section 3,

motivated by [20], we extend Matsushita and Takahashi’s iteration

process (1.14) to the wider class of uniformly Lipschitzian mappings

which are relatively asymptotically nonexpansive and discuss some

applications relating to our main result.

2 Preliminaries

Let X be a real Banach space with norm ‖ · ‖ and let X∗ be the

dual of X . Denote by 〈·, ·〉 the duality product. When {xn} is a
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sequence in X , we denote the strong convergence of {xn} to x ∈ X

by xn → x and the weak convergence by xn ⇀ x. We also denote

the weak ω -limit set of {xn} by ωw(xn) = {x : ∃xnj
⇀ x}. The

normalized duality mapping J from X to X∗ is defined by

Jx = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for x ∈ X .

A Banach space X is said to be strictly convex if ‖(x+y)/2‖ < 1

for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and x 6= y . It is also said to be

uniformly convex if ‖xn−yn‖ → 0 for any two sequences {xn}, {yn}

in X such that ‖xn‖ = ‖yn‖ = 1 and ‖(xn + yn)/2‖ → 1.

Let U = {x ∈ X : ‖x‖ = 1} be the unit sphere of X . Then the

Banach space X is said to be smooth provided

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for each x, y ∈ U . It is also known that if X is uni-

formly smooth, then J is uniformly norm-to-norm continuous on

each bounded subset of X . Some properties of the duality mapping

have been given in [7, 23, 27]. A Banach space X is said to have

the Kadec-Klee property if a sequence {xn} of X satisfying that

xn ⇀ x ∈ X and ‖xn‖ → ‖x‖, then xn → x. It is known that if
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X is uniformly convex, then X has the Kadec-Klee property; see

[7, 27] for more details.

Let X be a smooth Banach space. Recall that the function

φ : X ×X → R is defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2

for all x, y ∈ X . It is obvious from the definition of φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2 (2.2)

for all x, y ∈ X . Further, we have that for any x, y, z ∈ X ,

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, J(z)− J(y)〉.

In particular, it is easy to see that if X is strictly convex, for

x, y ∈ X , φ(y, x) = 0 if and only if y = x (see, for example,

Remark 2.1 of [19]).

Let X be a reflexive, strictly convex and smooth Banach space

and let C be a nonempty closed convex subset of X . Then, for any

x ∈ X , there exists a unique element x̃ ∈ C such that

φ(x̃, x) = inf
z∈C

φ(z, x).

Then a mapping ΠC : X → C defined by ΠCx = x̃ is called the

generalized projection (see [1, 2, 12]). In Hilbert spaces, notice that
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the generalized projection is clearly coincident with the metric pro-

jection.

The following result is well known (see, for example, [1, 2, 12]).

Proposition 2.1. ([1, 2, 12]) Let K be a nonempty closed convex

subset of a real Banach space X and let x ∈ X .

(a) If X is smooth, then, x̃ = ΠKx if and only if 〈x̃−y, Jx−Jx̃〉 ≥ 0

for y ∈ K .

(b) If X is reflexive, strictly convex and smooth, then

φ(y,ΠKx) + φ(ΠKx, x) ≤ φ(y, x)

for all y ∈ K .

The following subsequent two lemmas are motivated by Lem-

mas 1.3 and 1.5 of Martinez-Yanes and Xu [18] in Hilbert spaces,

respectively; for detailed proofs, see [13].

Lemma 2.2. ([13]) Let C be a nonempty closed convex subset of a

smooth Banach space X , x, y, z ∈ X and λ ∈ [0, 1]. Given also a

real number a ∈ R, the set

D := {v ∈ C : φ(v, z) ≤ λφ(v, x) + (1− λ)φ(v, y) + a}

is closed and convex.
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Lemma 2.3. ([13]) Let X be a reflexive, strictly convex and smooth

Banach space with the Kadec-Klee property, and let K be a nonempty

closed convex subset of X . Let x0 ∈ X and q := ΠKx0 , where ΠK

denotes the generalized projection from X onto K . If {xn} is a

sequence in X such that ωw(xn) ⊂ K and satisfies the condition

φ(xn, x0) ≤ φ(q, x0)

for all n. Then xn → q (= ΠKx0).

Recently, Kamimura and Takahashi [12] proved the following re-

sult, which plays a crucial role in our discussion.

Proposition 2.4. ([12]) Let X be a uniformly convex and smooth

Banach space and let {yn}, {zn} be two sequences of X . If φ(yn, zn)→ 0

and either {yn} or {zn} is bounded, then yn − zn → 0.

Finally, concerning the set of fixed points of a mapping of RANT,

we shall prove the following result.

Proposition 2.5. Let X be a uniformly convex and smooth Ba-

nach space, let C be a nonempty closed convex subset of X , and

let T : C → C be a continuous mapping of RANT. Then F (T ) is

closed and convex.
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Proof. First, we show that F (T ) is closed. Let {xn} be a sequence

of F (T ) such that xn → x ∈ C . Since T is a mapping of RANT,

we have that

φ(xn, T
mx) ≤ φ(xn, x) + cm(x)

for each n,m ≥ 1. Fix m ≥ 1. Firstly taking the limit on both

sides as n→∞, we have

φ(x, Tmx) = lim
n→∞

φ(xn, T
mx) ≤ lim

n→∞
[φ(xn, x) + cm(x)]

= φ(x, x) + cm(x) = cm(x).

As taking the limit on both sides as m → ∞, since cm(x) → 0

as m → ∞. It follows from Proposition 2.4 that Tmz → z as

m → ∞ and hence z ∈ F (T ) by the continuity of T . Next, we

show that F (T ) is convex. For x, y ∈ F (T ) and λ ∈ (0, 1), put

z = λx+ (1− λ)y . It suffices to show that z ∈ F (T ). Indeed, as in

[19], we have that for n ≥ 1,

φ(z, T nz) = ‖z‖2 − 2〈z, JT nz〉+ ‖T nz‖2

= ‖z‖2 − 2〈λx+ (1− λ)y, JT nz〉+ ‖T nz‖2

= ‖z‖2 − 2λ〈x, JT nz〉 − 2(1− λ)〈y, JT nz〉+ ‖T nz‖2

= ‖z‖2 + λφ(x, T nz) + (1− λ)φ(y, T nz)− λ‖x‖2 − (1− λ)‖y‖2

≤ ‖z‖2 + [λφ(x, z) + (1− λ)φ(y, z)] + 2cn(z)− λ‖x‖2 − (1− λ)‖y‖2.
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Since cn(z) → 0, the right hand side of the above inequality con-

verges to 0 because

‖z‖2 + λφ(x, z) + (1− λ)φ(y, z)− λ‖x‖2 − (1− λ)‖y‖2.

= ‖z‖2 − 2〈λx+ (1− λ)y, Jz〉+ ‖z‖2

= ‖z‖2 − 2〈z, Jz〉+ ‖z‖2 = 0

By Proposition 2.4 again, we have T nz → z and hence z ∈ F (T )

by the continuity of T .

3 Strong convergence theorems

In this section we first propose an iteration process, motivated by

the idea due to [20], to have strong convergence for uniformly Lips-

chitzian mappings which are relatively asymptotically nonexpansive

in the intermediate sense in uniformly convex and smooth Banach

spaces.

Theorem 3.1. Let X be a uniformly convex and smooth Banach

space, let C be a nonempty closed convex subset of X and let

T : C → C be a uniformly k-Lipschitzian mapping of RANT. As-

15



sume that F (T ) 6= ∅. Define a sequence {xn} in C by the algorithm:

x0 ∈ C chosen arbitrarily,

Hn = {v ∈ C : φ(v, T nxn) ≤ φ(v, xn) + cn(xn)},

Wn = {v ∈ C : 〈xn − v, Jxn − Jx0〉 ≤ 0},

xn+1 = ΠHn∩Wn
x0.

Then the sequence {xn} converges in norm to ΠF (T )x0 .

Proof. First, observe that Hn is closed and convex by Lemma 2.2,

and that Wn is obviously closed and convex for each n ≥ 0. Next

we show that F (T ) ⊂ Hn for all n. Indeed, for all p ∈ F (T ), Since

T is a mapping of RANT, we get

φ(p, T nxn) ≤ φ(p, xn) + cn(xn)

and so p ∈ Hn ; hence F (T ) ⊂ Hn for all n ≥ 0. Moreover, we show

that

F (T ) ⊂ Hn ∩Wn (3.1)

for all n ≥ 0. It suffices to show that F (T ) ⊂ Wn for all n ≥ 0.

We prove this by induction. For n = 0, we have F (T ) ⊂ C = W0 .

Assume that F (T ) ⊂ Wk for some k ≥ 1. Since xk+1 is the gen-

eralized projection of x0 onto Hk ∩Wk , by Proposition 2.1 (a) we

have

〈xk+1 − z, Jx0 − Jxk+1〉 ≥ 0
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for all z ∈ Hk ∩Wk . As F (T ) ⊂ Hk ∩Wk , the last inequality holds,

in particular, for all z ∈ F (T ). This together with the definition of

Wk+1 implies that F (T ) ⊂ Wk+1 . Hence (3.1) holds for all n ≥ 0.

So, {xn} is well defined. Obviously, since xn = ΠWn
x0 by the

definition of Wn and Proposition 2.1 (a), and F (T ) ⊂ Wn , we have

φ(xn, x0) ≤ φ(p, x0) for all p ∈ F (T ). In particular, we obtain, for

all n ≥ 0,

φ(xn, x0) ≤ φ(q, x0), where q := ΠF (T )x0 . (3.2)

Therefore, {φ(xn, x0)} is bounded; so is {xn} by (2.2).

Noticing that xn = ΠWn
x0 again and the fact that xn+1 ∈ Hn∩Wn ⊂ Wn ,

we get

φ(xn, x0) = min
z∈Wn

φ(z, x0) ≤ φ(xn+1, x0),

which shows that the sequence {φ(xn, x0)} is increasing and so the

limn→∞ φ(xn, x0) exists. Simultaneously, from Proposition 2.1 (b),

we have

φ(xn+1, xn) = φ (xn+1,ΠWn
x0) ≤ φ(xn+1, x0)− φ(ΠWn

x0, x0)

= φ(xn+1, x0)− φ(xn, x0)→ 0. (3.3)

By Proposition 2.4, we have

‖xn+1 − xn‖ → 0. (3.4)
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Now since xn+1 ∈ Hn , it follows from the definition of Hn , (3.3)

and cn(xn)→ 0 by virtue of Cantor’s diagonal process that

φ(xn+1, T
nxn) ≤ φ(xn+1, xn) + cn(xn)→ 0.

Using Proposition 2.4 again yields

‖xn+1 − T nxn‖ → 0

and this combined with (3.4) gives

‖xn − T nxn‖ → 0. (3.5)

Since T is uniformly k -Lipschitzian, it follows from (3.4) and (3.5)

that

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T n+1xn+1‖

+‖T n+1xn+1 − T n+1xn‖+ ‖T n+1xn − Txn‖

≤ (1 + k)‖xn − xn+1‖+ ‖xn+1 − T n+1xn+1‖

+k‖T nxn − xn‖ → 0. (3.6)

By (3.6), ωw(xn) ⊂ F̂ (T ) = F (T ). This, combined with (3.2) and

Lemma 2.3 (with K = F (T )), guarantees that xn → q = ΠF (T )x0 .

The proof is complete.

As a direct consequence of Remark 1.2 and Theorem 3.1 we have

the following

18



Corollary 3.2. Let X be a uniformly convex and smooth Banach

space, let C be a nonempty closed convex subset of X and let

T : C → C be a uniformly k-Lipschitzian mapping of RAN. Assume

that F (T ) is a nonempty bounded subset of C . Define a sequence

{xn} in C by the algorithm:

x0 ∈ C chosen arbitrarily,

Hn = {v ∈ C : φ(v, T nxn) ≤ φ(v, xn) + cn(xn)},

Wn = {v ∈ C : 〈xn − v, Jxn − Jx0〉 ≤ 0},

xn+1 = ΠHn∩Wn
x0,

where cn(xn) = (k2n − 1) · sup{φ(p, xn) : p ∈ F (T )}. Then the se-

quence {xn} converges in norm to ΠF (T )x0 .

Let C be a closed convex subset of a Hilbert space H and let

T : C → C be an asymptotically nonexpansive mapping. Then,

after noticing that φ(x, y) = ‖x− y‖2 for all x, y ∈ H , we see that

‖T nx−T ny‖ ≤ kn‖x−y‖ is equivalent to φ(T nx, T ny) ≤ k2nφ(x, y).

It is therefore easy to show that every asymptotically nonexpansive

mapping is both uniformly k -Lipschitzian and RAN. In fact, it suf-

fices to show that F̂ (T ) ⊂ F (T ). The inclusion follows easily from

the well-known demiclosedness at zero of I − T (c.f., [29]), where I

denotes the identity operator. Thus we have the following Hilbert

19



space’s version of Corollary 3.2.

Corollary 3.3. Let X be a Hilbert space, let C be a nonempty

closed convex subset of X and let T : C → C be an asymptotically

nonexpansive mapping. Assume that F (T ) is a nonempty bounded

subset of C . Define a sequence {xn} in C by the algorithm:

x0 ∈ C chosen arbitrarily,

Cn = {v ∈ C : ‖v − T nxn‖2 ≤ ‖v − xn‖2 + ηn},

Qn = {v ∈ C : 〈xn − v, xn − x0〉 ≤ 0},

xn+1 = PCn∩Qn
x0,

where ηn = (k2n− 1) · sup{‖p−xn‖2 : p ∈ F (T )}. Then the sequence

{xn} converges in norm to PF (T )x0 , where PF (T ) is the metric pro-

jection from X onto F (T ).

Finally, as a slight modification of Theorem 3.1, we propose an-

other iteration process to have strong convergence for uniformly

Lipschitzian mappings of RANT in uniformly convex and smooth

Banach spaces.

Theorem 3.4. Let X be a uniformly convex and smooth Banach

space, let C be a nonempty closed convex subset of X and let

T : C → C be a uniformly k-Lipschitzian mapping of RANT. As-

sume that F (T ) is nonempty. Define a sequence {xn} in C by the
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algorithm:

x0 ∈ C chosen arbitrarily,

Hn = {v ∈ C : lim supi→∞[φ(v, T ixn)− φ(v, xn)] ≤ 0},

Wn = {v ∈ C : 〈xn − v, Jxn − Jx0〉 ≤ 0},

xn+1 = ΠHn∩Wn
x0.

Then {xn} converges in norm to ΠF (T )x0 .

Proof. We first show that Hn is closed and convex. In fact, the

closedness of Hn is obvious from the continuity of φ(·, x) for x ∈ X .

Let us show that Hn is convex. As a matter of fact, the defining

inequality in Hn is equivalent to the inequality

lim sup
i→∞

[2〈v, Jxn − JT ixn〉+ ‖T ixn‖2 − ‖xn‖2] ≤ 0.

Thus, Hn is clearly convex.

Next we show that F (T ) ⊂ Hn for all n. Indeed, for all

p ∈ F (T ), Since T is a mapping of RANT,

φ(p, T ixn)− φ(p, xn) ≤ ci(xn)

and taking the lim sup on the both sides as i → ∞, the right side

converges to 0 for each n ≥ 1 and so p ∈ Hn ; hence F (T ) ⊂ Hn

for all n ≥ 0. Moreover, using the same processes of the proof of
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Theorem 3.1, we can show that

F (T ) ⊂ Hn ∩Wn (3.7)

for all n ≥ 0, and furthermore (3.2)-(3.4). Now since xn+1 ∈ Hn ,

from the definition of Hn , we have

lim sup
i→∞

[φ(xn+1, T
ixn)− φ(xn+1, xn)] ≤ 0,

and so

lim
n→∞

lim sup
i→∞

φ(xn+1, T
ixn) = 0.

Then it is not hard to see that there exists a j ∈ N∪ {0} such that

lim
n→∞

φ(xn+1, T
n+jxn) = 0.

Using Proposition 2.4 again yielding

‖xn+1 − T n+jxn‖ → 0

and this combined with (3.5) gives

‖xn − T n+jxn‖ → 0. (3.8)

Since T is uniformly k -Lipschitzian, it follows from (3.4) and (3.8)
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that

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T n+j+1xn+1‖

+‖T n+j+1xn+1 − T n+j+1xn‖+ ‖T n+j+1xn − Txn‖

≤ (1 + k)‖xn − xn+1‖+ ‖xn+1 − T n+1+jxn+1‖

+k‖T n+jxn − xn‖ → 0. (3.9)

By (3.9), ωw(xn) ⊂ F̂ (T ) = F (T ). This, combined with (3.2) and

Lemma 2.3 (with K = F (T )), guarantees that xn → q = ΠF (T )x0 .

The proof is complete.

23



References

[1] Ya. I. Alber, Metric and generalized projection operators in Ba-

nach spaces: properties and applications, in: A. G. Kartsatos

(Ed.), Theory and Applications of Nonlinear Operators of Ac-

cretive and Monotone Type, Marcel Dekker, New York, 1996,

pp. 15–50.

[2] Ya. I. Alber and S. Reich, An iterative method for solv-

ing a class of nonlinear operator equations in Banach spaces,

PanAmer. Math. J., 4 (1994), 39–54.

[3] R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iter-

ates of asymptotically nonexpansive mappings in Banach spaces

with the uniform Opial property, Colloq. Math., 65 (1993), 169–

179.

[4] D. Butnariu, S. Reich and A. J. Zaslavski, Asymptotic behavior

of relatively nonexpansive operators in Banach spaces, J. Appl.

Anal., 7 (2001), 151–174.

[5] D. Butnariu, S. Reich and A. J. Zaslavski, Weak convergence of

orbits of nonlinear operators in reflexive Banach spaces, Numer.

Funct. Anal. Optim., 24 (2003), 489–508.

24



[6] C. E. Chidume and S. A. Mutangadura, An example on the

Mann iteration method for Lipschitz pseudocontractions, Proc.

Amer. Math. Soc., 129 (2001), 2359-2363.

[7] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings

and Nonlinear Problems, Kluwer Academic Publishers, Dor-

drecht, 1990.

[8] A. Genel and J. Lindenstrass, An example concerning fixed

points, Israel J. Math., 22 (1975), 81-86.

[9] K. Goebel and W. A. Kirk, A fixed point theorem for asymp-

totically nonexpansive mappings, Proc. Amer. Math. Soc., 35

(1972), 171-174.

[10] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer.

Math. Soc., 73 (1967), 957–961.

[11] S. Ishikawa, Fixed points by a new iteration method, Proc.

Amer. Math. Soc., 44 (1974), 147-150.

[12] S. Kamimura and W. Takahashi, Strong convergence of a

proxiaml-type algorithm in a Banach space, SIAM J. Optim.,

13 (2003), 938–945.

25



[13] T. H. Kim and H. J. Lee, Strong Convergence of modified itera-

tion processes for relatively nonexpansive mappings, Kyungpook

Math. J., 48 (2008), 685–703.

[14] T. H. Kim and W. Takahashi, Strong convergence of modified

iteration processes for relatively asymptotically nonexpansive

mappings, Taiwanese J. Math., 14 (2010), 2163-2180.

[15] W. A. Kirk, Fixed point theorems for non-Lipschitzian map-

pings of asymptotically nonexpansive type, Israel J. Math., 17

(1974), 339–346.

[16] P. L. Lions, Approximation de points fixes de contractions, C.R.
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