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황해볼락 (Sebastes koreanus) 자치어의 외부형태 및 골격 발달 

 

유 효 재 

 

부경대학교 대학원 해양생물학과 

 

요    약 

 

2011 년부터 2013 년 동안 황해에서 채집된 황해볼락(Sebastes koreanus) 자어[6.11–11.10 mm body 

length(BL)]와 치어(18.60 mm BL)를 대상으로 분자 동정을 실시하고, 성장에 따른 외부 형태 발달 및 내부 

골격 발달을 상세히 기술하였다. 또한, 황해볼락 친어에서 얻은 부화 직전 알과 난황자어의 외부 형태를 

자세하게 기재하였다. 황해볼락의 부화 직전 알은 구형을 띠고, 배체에는 어떠한 흑색소포도 없는 것이 

특징이며, 난황자어 역시 복부 위쪽 일부를 제외하고 흑색소포가 나타나지 않았다. 척색장 6.74 mm 

자어에서 처음으로 척색 말단의 굴곡이 시작되고 두부극이 나타나기 시작하였으며, 척색장 8.84 mm 

자어에서 척색 말단의 굴곡이 완료되었다. 또한 척색장 7.66 mm 자어에서 등지느러미 및 뒷지느러미가 

처음 분화되어 나타났다. 자어기부터 두정부와 복강에 점상 또는 선상의 흑색소포가 출현하였으며, 일부 

개체는 후두부 뒤쪽으로 흑색소포가 나타나기도 하였으나, 이는 종내 개체변이로 사료된다. 치어기에는 
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체측에 3 개의 불분명한 흑색소포가 가로 띠를 형성하며, 등쪽과 배쪽에 뚜렷한 흑색소포가 분포하였다. 

따라서 황해볼락 자치어는 흑색소포의 분포 및 형태에서 볼락속의 다른 종류와 뚜렷하게 구분되었다. 

황해볼락의 최초 골화는 척색장 6.27 mm 자어에서 시작되었으며, 체장 18.60 mm 치어에서 모든 골격의 

골화가 완성되었다. 최초 골격 발달은 악골, 새개부, 견대, 설궁에서 진행되었는데, 이는 섭식과 호흡, 

유영에 필수적인 골격 요소에 우선적으로 골화되는 경향을 나타내었다. 또한, 두개골의 골화는 액골, 

노정골, 익이골에서 최초로 시작되었으며, 이후 부설골과 기저후두골의 골화가 진행되었다. 치어에서 

견대부의 견갑골과 가장 위쪽 사출골이 가깝게 연접해있지만, 아직 융합되지 않았다. 또한, 치어에서 

미골의 하미축골이 서로 융합되어 3 개(1+2, 3+4, 5)로 골화되었다. 황해볼락의 초기 골격 발달에서 

부설골과 상설골의 골화가 늦게 시작되는 점에서 다른 볼락속 및 쏨뱅이속 어류와 뚜렷한 차이를 보였다. 

자치어의 형태 및 골격 발달 관점에서, 황해볼락은 다른 볼락속 어류와 달리 황해라는 독특한 환경에 

고유하게 진화되어 온 분류군임을 확인할 수 있었다.  
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I. Introduction 

 

The rockfish Sebastes belonging to the family Scorpaenidae (or Sebastidae 

sensu Nakabo 2013) comprises approximately 110 species worldwide (Nelson 

2006). Of there, more than 30 species are found in the northwest Pacific, 

including in Korea (Kim 2011; Yu and Kim 2014) and Japan (Nakabo 2013). This 

genus is commercially important all over the world (Leet et al. 1992; Love et al. 

2002; Kim et al. 2004; Nakabo 2013).  

The rockfish is an ovoviviparous fish; as such, after mating, the mother 

releases free-swimming larvae which, after a pelagic stage, settle to the sea floor 

or on to drift algae (Helvey 1982; Boehlert and Yoklavich 1984; Shinomiya and 

Ezaki 1991; Love et al. 2002; Koya and Muñoz 2007). Generally, the larvae and 

juveniles of Sebastes have a relatively large head, strong spines on head or check, 

short preanal length, and tapering tail during larval stage, which are well 

distinguished from those of the other genera of the family Scorpaenidae (Matarese 

et al. 1989; Kendall 1991) or other familys (Carangidae, Serranidae, etc.) 

(Okiyama 2014). Larvae and juveniles of Sebastes species can be identified based 
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on pigmentation pattern, head-spine development, and pectoral-fin shape (Moser 

et al. 1977; Kendall 1991). However, their identification on the basis of 

morphological features has difficult, as little or insufficient information at early 

life stages is available and significant intraspecific variations in phenotype exist 

(Sakuma et al. 2005). Therefore, the application of molecular techniques, such as 

DNA sequencing, can help resolve species identification problems (Rocha-

Olivares et al. 2000; Taylor and Watson 2004; Kendall et al. 2007; Kim et al. 2010; 

Ko et al. 2013). 

Osteological development in teleost fishes involves a sequence of remarkable 

morphological and functional changes, occurring in different developmental 

stages (Löffler et al. 2008; Kang et al. 2012; Ott et al. 2012). These ontogenetic 

changes strongly influence the feeding, breathing and swimming behaviors of 

both larvae and juveniles. These are therefore useful in functional and ecological 

analyses and inferences about phylogenetic relationships among teleost taxa 

(Omori et al. 1996; Faustino and Power 1999; Koumoundouros et al. 2000, 2001a, 

b; Liu 2001; Lima et al. 2013; Voskoboinikova and Kudryavtseva 2014). 

Practically speaking, an accurate knowledge of skeletal development is essential 

for the detection and elimination of skeletal deformities appearing during artificial 
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seedling production, and to promote effective aquacultural and population 

assessment (Koumoundouros et al. 1997a, b). 

Sebastes koreanus Kim and Lee 1994 was originally described as a new 

species by Kim and Lee (1994) based on specimens collected from the eastern 

margin of the Yellow Sea. However, in recent years, S. koreanus has been 

collected from the Shandong Peninsula, China (Choi and Yang 2008), and, 

accordingly, its distribution appears to be expanded to the western margin of the 

Yellow Sea. Although S. koreanus has been regarded as representative species in 

the Yellow Sea, few studies have been conducted, except for brief comments on 

its spawning season (Kim et al. 2004) and a report on the complete mtDNA 

sequence (Jang et al. 2014). Furthermore, the very restricted distributional range 

of the species may cause the collapse of the population, resulting in an 

environmental pollution and/or climate change in the Yellow Sea. In this respect, 

these need artificial seedling production for species conservation. 

Therefore, the objective of the present study was to describe and compare the 

external morphological traits and osteological development of the wild-captured 

larvae and juvenile of S. koreanus revealed by molecular method with those of 

congeneric species. In addition, This study aims to provide morphological 
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information on eggs, and yolk-sac larvae obtained from a gravid fish of S. 

koreanus and extrapolate the phylogenetic inferences based on their ontogenetic 

characteristics. In addition, we estimated the release season of S. koreanus larvae. 
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II. Materials and methods 

 

1. Sample collection 

 

All individuals were collected off the west coast of Korea, on the eastern 

margin of the Yellow Sea (Fig. 1). Larvae of Sebastes koreanus were collected off 

the Taean Peninsula in June 2011 [6.11–11.10 mm body length (BL), n = 32] and 

May 2013 (6.41–8.90 mm BL, n = 11), using a bongo net (0.6 m mouth opening, 

with 330 µm and 500 µm mesh size; bottom depth 15–24 m), and the juvenile of 

Sebastes koreanus (18.60 mm BL, n = 1) was collected off Gang-hwa-do in July 

2012, using a stow net. The individuals were preserved in 99 % EtOH and 5% 

formalin immediately after collection. And the specimens fixed at formalin were 

washed with distilled water, and had preserved in 99 % EtOH. We also collected a 

gravid fish of S. koreanus [168.60 mm standard length(SL), n = 1] off Heuk-san-

do in May 2013, using a long line. After transport to the laboratory under 

conditions of ice storage, the eggs and yolk-sac larvae were obtained by pressing 

on the abdomen of the gravid fish and upon release immediately preserved in 99 % 
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EtOH. The gravid fish was deposited at Pukyong National University (PKU), and 

the eggs, larvae, and juvenile were deposited at the Ichthyoplankton Laboratory of 

PKU (PKUI). 
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Fig. 1. Map showing the sampling sites. Circle indicates the sampling site of 

juvenile of S. koreanus. Triangle indicates the sampling site of larvae of S. 

koreanus. Rectangle indicates the sampling site of gravid fish of S. koreanus. 
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2. Molecular analyses 

 

Total DNA was extracted from the right eyeballs of larvae (n = 9) and the 

juvenile (n = 1) using a DNA Extraction Kit (Bioneer Trade Co. LTD, Korea). A 

polymerase chain reaction (PCR) was used to amplify the mitochondrial DNA 

cytochrome oxidase subunit I (mtDNA COI) gene using the VF2 (5′- TCG ACT 

AAT CAT AAA GAT ATC GGC AC -3′) and FishR1 (5′- TAG ACT TCT GGG 

TGG CCA AAG AAT CA -3′) PCR primers (Ward et al. 2005). The PCR was 

performed using a Thermal Cycler (Bio-rad MJ mini PTC-1148, USA) with a 

PCR solution containing 2 μL of total DNA, 3 μL of 10 × PCR buffer, 2.4 μL of 

2.5 mM dNTPs, 1 μL of each primer, 0.1 μL of EX Taq polymerase (BioMedics, 

Seoul, Korea), and distilled water, to bring the final volume to 30 μL. The 

conditions of the PCR were as follows: initial denaturation at 95 °C for 5 min, 35 

cycles of denaturation at 95 °C for 1 min, annealing at 50 °C for 1 min, extension 

at 72 °C for 1 min, and a final extension at 72 °C for 5 min. The PCR products 

were purified using a DavinchTM PCR Purification Kit (Davinch-K Co., Korea). 

The DNA was sequenced on an ABI 3730XL Sequencer (Applied Biosystems Inc., 

USA) using the ABI BigDye Terminator Cycle Sequencing Ready Reaction Kit 
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v3.1 (Applied Biosystems Inc., USA). The mtDNA COI sequences were aligned 

using Clustal W (Thompson et al. 1994) in BioEdit version 7 (Hall 1999). Genetic 

distances among specimens were calculated using the Kimura two-parameter 

model (Kimura 1980) as implemented in the software MEGA version 6 (Tamura 

et al. 2013). The neighbor-joining tree (Saitou and Nei 1987) was constructed with 

1,000 bootstrap replications. For molecular comparisons, we obtained the mtDNA 

COI sequences of 20 species of the family Scorpaenidae from PKU and the 

National Center for Biotechnology Information (NCBI) (see Appendix). 

 

3. Morphological analyses 

 

Morphological characters were observed using a stereo microscope (Olympus 

SZX16, Japan). The following measurements and counts were obtained according 

to the methods of Leis and Carson-Ewart (2000). The following body parts were 

measured to the nearest 0.01 mm: body length (BL), standard length (SL), head 

length (HL), preanal length (PAL), snout length (SnL), eye diameter (ED), and 

body depth (BD). Analysis of melanophore shapes and distributions followed 

Russell (1976), the terminology of head spination followed Moser and Ahlstrom 
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(1978), and the terminology of developmental stages followed Kim et al. (2011). 

Sketches of the external shapes of specimens were made using a camera lucida 

(Olympus SZX-DA, Japan) attached to a microscope. For comparisons, 

measurements and counts were made using adult specimens of S. koreanus 

(89.12–168.55 mm SL, n = 10), deposited at PKU. In addition, we subdivided the 

pigmentation patterns of preflexion larvae into 22 positions, a modification of the 

26 positions suggested by Kendall and Lenarz (1986) (Fig. 2). 
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Fig. 2 Schematic drawing of a preflexion larva of Sebastes showing pigment 

positions. The numbering of positions is modified from Kendall and Lenarz 

(1986). 
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4. Skeletal staining 

 

The skeletal staining technique was derived from the double staining protocol 

of Darias et al. (2010), and the anatomical terminology relating to skeletal 

structures follows Russell (1976). After staining, the specimens were examined on 

their right sides and dorsal sides with a stereomicroscope, and photographs taken 

with a camera lucida (Olympus SZX-DA, Japan) attached to the microscope. 

Drawings of the different skeletal parts were prepared from the photographs. We 

compared the skeletal structures of the larvae and the juvenile with those of adult 

S. koreanus specimens, to observe the precise locations and shapes of the skeletal 

elements. We also compared stained specimens with a stained Sebastes inermis 

complex juvenile (17.06 mm BL, n = 1) collected in the wild. The stained 

specimens were preserved in 100% glycerin in glass bottles, and were deposited at 

Pukyong National University (PKU). 

 

5. Materials examined 

 

i. Morphological development 
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Examined materials included eggs (1.42–1.77 mm egg diameter, n = 20; PKUI 

188), yolk-sac larvae (3.59–4.36 mm BL, n = 20; PKUI 189), preflexion larvae 

(6.41–6.49 mm BL, n = 2; PKUI 190–191), flexion larvae (6.74–8.24 mm BL, n = 

7; PKUI 192–198), postflexion larvae (8.84–8.90 mm BL, n = 2; PKUI 199–200), 

juvenile (18.60 mm BL, n = 1; PKUI 21), and adults of S. koreanus (89.12–168.55 

mm SL, n = 10; PKU 2469, PKU 2471, PKU 2476, PKU 2479, PKU 4577, PKU 

4583, PKU 4600, PKU 7138, PKU 7142, PKU 8815) 

 

ii. Osteological development 

 

Examined materials included preflexion larvae (6.11–6.27 mm BL, n = 2; 

PKUI 367–368), flexion larvae (6.43–8.40 mm BL, n = 19; PKUI 369–387), 

postflexion larvae (8.44–11.10 mm BL, n = 11; PKUI 388–398), juvenile (18.60 

mm BL, n = 1; PKUI 21), and juvenile of S. inermis complex (17.06 mm BL, n=1; 

PKUI 399). 

 

iii. Species examined in molecular comparisons 
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MtDNA COI sequences of 20 species of the family Scorpaenidae from PKU 

and the National Center for Biotechnology Information (NCBI). Sebastes 

koreanus (PKU 2467), Sebastes pachycephalus (PKU 5733), Sebastes nudus 

(PKU 5728), Sebastes hubbsi (PKU 6), Sebastes longispinis (PKU 7), Sebastes 

vulpes (PKU 5727), Sebastes zonatus (PKU 4858), Sebastes schlegelii (PKU 

1913), Sebastes steindachneri (PKU 1), Sebastes inermis complex (PKU 1204), 

Sebastes thompsoni (PKU 1065), Sebastes owstoni (PKU 10410), Sebastes 

taczanowskii (DQ678391), Sebastes oblongus (DQ678400), Sebastes minor 

(DQ638399), Sebastes trivittatus (DQ678389), Sebastes matsubarae (DQ678395), 

Sebastiscus tertius (PKU 2140, as an outgroup), Sebastiscus marmoratus (PKU 

2166, as an outgroup), and Scorpaena miostoma (PKU 5718, as an outgroup). 
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III. Results 

 

1. Molecular identification 

 

A total of 578 base pairs of the mtDNA COI gene of nine larvae of Sebastes sp. 

and one juvenile of Sebastes sp. were compared with those of 20 other scorpaenid 

species. The resulting neighbor-joining tree showed that the 10 individuals 

clustered closely with adult of S. koreanus (pairwise genetic distance, d = 0.000–

0.003) (Fig. 3). The 10 individuals differed from other species of Sebastes: 

Sebastes pachycephalus Temminck and Schlegel 1843 (d = 0.032–0.034), 

Sebastes vulpes Döderlein in Steindachner and Döderlein 1884 (d = 0.036–0.040), 

Sebastes oblongus Günther 1877 (d = 0.041–0.043), and Sebastes taczanowskii 

Steindachner 1880 (d = 0.045–0.047). The genetic distances between the 10 

individuals and Scorpaena miostoma Günther 1877 were in the range of 0.194–

0.196; these distances were greater than the distances between congeneric 

individuals. Based on the results of the DNA comparison, the 10 larval and 

juvenile individuals examined in this study were identified as S. koreanus. 
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Fig. 3. Neighbor-joining tree based on partial mtDNA COI sequences, 

showing the relationships among larvae and a juvenile of Sebastes collected 

from the Yellow Sea and 20 scorpaenid species. The tree was constructed 

using the Kimura 2-parameter model and 1,000 bootstrap replications. The 

bottom bar indicates a genetic distance of 0.02. Parentheses and superscripts 

indicate the voucher number and NCBI registration number, respectively. 
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2. Morphological development 

 

i. General morphology 

 

Measurements and counts for all individuals are shown in Table 1. Also, 

drawings of egg, larvae, and juvenile are shown in Figs. 4–5. The embryos in the 

eggs possessed large eyeballs and appeared to be close to hatching. The eggs were 

spherical, with a mean diameter of 1.57 mm, and contained one oil globule (Fig. 

4a). The yolk-sac larvae, with a mean length of 4.06 mm BL, each possessed a 

large yolk sac with a single oil globule (Fig. 4b), an unopened mouth, and opened 

anus. In the preflexion larval stage of 6.41 mm BL, the yolk and oil globule had 

been completely absorbed; the preflexion larvae possessed 25 or 26 myomeres 

and an opened mouth (Fig. 4c). The percentage of head length to BL and of 

preanal length to BL both increased with size (Fig. 13a and b, respectively). 

However, the percentage of eye diameter and body depth to BL showed less 

variance during growth (Fig. 13c and d, respectively). The flexion larva with a 

length of 7.72 mm BL possesse a single nostril that begins to split into two 

nostrils when the larva grows to 8.24 mm BL. The juvenile showed a body color 
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similar to that of adult S. koreanus (Fig. 5d). 

 

ii. Head spines 

 

Development of the head spine is shown in Table 2. Although preflexion larvae 

as small as 6.49 mm BL lacked any head spines, flexion larvae more than 6.74 

mm BL possessed a parietal spine prior to the head spine. A flexion larva with a 

length of 7.21 mm BL possessed three preopercular spines, and flexion larvae 

larger than 8.24 mm BL possessed four preopercular spines. A flexion larva with a 

length of 7.21 mm BL possessed postocular spines, and a flexion larva with a 

length of 7.66 mm BL possessed preocular spines and pterotic spines. A 

postflexion larva with a length of 8.84 mm BL possessed two opercular spines, 

three ocular spines, and one nuchal spine. The juvenile possessed prominent head 

and opercular spines: one parietal spine, one pterotic spine, one nasal spine, three 

ocular spines, five preopercular spines, and two opercular spines. 
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iii. Fin rays 

 

Yolk-sac larvae possessed a primordial finfold, but lacked real fin rays. 

Pectoral-fin and caudal-fin rays first appeared in a preflexion larva with a length 

of 6.41 mm BL, and dorsal-fin and anal-fin rays were present in a flexion larva 

with a length of 7.66 mm BL. Dorsal-fin and anal-fin rays, reaching to XIV, 13 

dorsal-fin rays and III, 6 anal-fin rays, respectively, in a postflexion larva with a 

length of 8.84 mm BL. A postflexion larva with a length of 8.84 mm BL possessed 

5 pelvic-fin rays, but lacked a spine. In the juvenile with a length of 18.60 mm BL, 

the numbers of fin spines and rays were equal to those in adults: XIV, 12 dorsal-

fin rays, 17 pectoral-fin rays, I, 5 pelvic-fin rays, and III, 6 anal-fin rays. 

 

iv. Pigmentation 

 

Melanophores on the head and body were completely absent in embryos just 

before hatching. After hatching, however, some yolk-sac larvae (7 of 20 

individuals) possessed a row of 2–7 faint melanophores on the dorsal surface of 

the abdominal region. 9 to 20 punctate-shaped melanophores were present in the 
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occipital region in flexion larvae as small as 6.83 mm BL, but these melanophores 

were transformed to donut-shaped melanophores in larvae more than 7.21 mm BL. 

All larvae possessed 4 to 10 branch-shaped melanophores in the abdominal region. 

Because only 2 or 3 larvae possessed melanophores behind the nape (positions 13 

and 14, Fig. 2), this character may be difficult to use for species identifications. 

Similarly, 1 to 3 melanophores were present on the ventral contour of the tail, but 

were absent in most of the larvae examined here. On the other hand, the juvenile 

possessed a pigmentation pattern strikingly different from those in larvae smaller 

than 8.90 mm BL; some punctate-shaped melanophores were present around the 

eye, occipital, operculum, and jaw regions, and three distinct transverse stripes 

appeared in the trunk and caudal regions. 
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Fig. 4. Drawings of an egg, yolk-sac larva, and larvae of Sebastes koreanus. a 

Egg (diameter, 1.66 mm) (PKUI 188). b Yolk-sac larva (4.31 mm BL) (PKUI 

189). c Preflexion larva (6.41 mm BL) (PKUI 190). d Flexion larva (6.75 mm 

BL) (PKUI 193). Bars 1 mm. 
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Fig. 5. Drawings of larvae and a juvenile of Sebastes koreanus. a Flexion larva 

(7.66 mm BL) (PKUI 196). b Flexion larva (8.24 mm BL) (PKUI 198). c 

Postflexion larva (8.84 mm BL) (PKUI 199). d Juvenile (18.60 mm BL) 

(PKUI 21). Bars 1 mm.
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Table 1. Measurements and counts of larvae, juvenile, and adults of Sebastes koreanus. 

 

 
Yolk-
sac 
larvae 

 
Preflexion 
larvae 

 
Flexion larvae 

 
Postflexion 
larvae 

 
Juvenile 

 

adults  
n = 10 

  
PKUI 
189                     

n = 20 

 PKUI 
190 
 n = 

1 

PKUI 
191 
 n = 

1 

 
PKUI 
192 

n = 1 

PKUI 
193 
 n = 

1 

PKUI 
194 

n = 1 

PKUI 
195 

n = 1 

PKUI 
196 

n = 1 

PKUI 
197 

n = 1 

PKUI 
198 

n = 1 

 
PKUI 
199 

n = 1 

PKUI 
200 

n = 1 

 
PKUI  

21  
 n = 1 

 

     

Total length  
 

  
 

       
 

  
 

23.31 
 106.31–

202.30 
(160.58) 

Standard length 
 

 
  

 
       

 
  

 
 

 89.12–
168.55 

(134.78) 

Body length 

3.59–
4.36 

(4.06) 

 
6.41 6.49 

 
6.74 6.75 6.83 7.21 7.66 7.72 8.24 

 
8.84 8.90 

 
18.60 

 

 

Measurements  
(% of BL) 

 
  

 
       

 
  

 
 

 
 

Head length 
 

 
26.8 26.5 

 
26.7 27.4 25.6 29.5 27.4 28.1 29.7 

 
35.2 34.6 

 
37.4 

 35.7–39.0  
(37.3) 

Preanal 
length  

 
50.4 52.9 

 
51.2 49.3 48.2 51.6 50.0 54.0 51.8 

 
56.0 55.3 

 
72.1 

 61.6–72.2  
(66.0) 

Snout length 
 

 
7.8 8.3 

 
7.3 7.9 8.5 8.2 7.3 7.4 8.0 

 
10.4 9.1 

 
9.8 

 7.5–9.4  
(8.4) 

Eye diameter  
 

 
9.2 10.2 

 
11.0 10.1 10.5 9.7 9.7 9.1 9.7 

 
10.6 10.8 

 
11.4 

 9.1–11.2  
(10.3) 

Body Depth 
 

 
22.5 25.4 

 
24.3 23.1 23.3 23.7 23.4 24.6 23.4 

 
28.4 28.0 

 
33.5 

 35.4–38.9  
(36.9) 
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Table 1. Continue. 

X absent; ? present but indistinct or damaged 

Parentheses indicate means 

 
Yolk-
sac 
larvae 

 
Preflexion 
larvae 

 
Flexion larvae 

 
Postflexion larvae 

 
Juvenile 

 

adults  
n = 10 

  
PKUI 
189                     

n = 20 

 PKUI 
190 
 n = 

1 

PKUI 
191 
 n = 

1 

 
PKUI 
192 

n = 1 

PKUI 
193 
 n = 

1 

PKUI 
194 

n = 1 

PKUI 
195 

n = 1 

PKUI 
196 

n = 1 

PKUI 
197 

n = 1 

PKUI 
198 

n = 1 

 
PKUI 
199 

n = 1 

PKUI 
200 

n = 1 

 
PKUI  

21  
 n = 1 

 

     

Total length  
 

  
 

       
 

  
 

23.31 
 106.31–

202.30 
(160.58) 

Standard length 
 

 
  

 
       

 
  

 
 

 89.12–
168.55 

(134.78) 

Body length 
3.59–
4.36 

(4.06) 

 
6.41 6.49 

 
6.74 6.75 6.83 7.21 7.66 7.72 8.24 

 
8.84 8.90 

 
18.60 

 

 

Counts 
 

 
  

 
       

 
  

 
 

 
 

Dorsal-fin rays X  X X  X X X X 11 11 0,13  XIV,13 XIV,12  XIV,12  XIV,12–13 

Anal-fin rays X  X X  X X X X 4 4 6  III,6 III,6  III,6  III,6 

Pectoral-fin rays  X  9? 9?  10? 13 14 15 14 15 16  17 16  17  16–17 

Pelvic-fin rays  X  X X  X X X X X X X   5 5  I,5  I,5 
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Table 2. Ontogenetic variations in head spination of Sebastes koreanus. 

  Body length (mm) 

 
Preflexion 
larvae  

 Flexion larvae  
 

Postflexion 
larvae   

Juve
nile 

  6.41 6.49  
6.
74 

6.
75 

6.
83 

7.
21 

7.
66 

7.
72 

8.
24 

 8.84 8.90  
18.6

0 

Parietal spine 
  

 ╋ ╋ ╋ ╋ ╋ ╋ ╋ 
 
╋ ╋ 

 
╋ 

Nuchal spine 
           

╋ ╋ 
 

╋ 

Pterotic spine        ╋ ╋ ╋  ╋ ╋  ╋ 

Nasal spine                          ╋ 

Preocular spine 
       

╋ ╋ ╋ 
 
╋ ╋ 

 
╋ 

Supraocular spine 
           

╋ ╋ 
 
╋ 

Postocular spine 
      

╋ ╋ ╋ ╋ 
 
╋ ╋ 

 
╋ 

Upper opercular 
spine 

 
          

╋ ╋ 
 
╋ 

Lower opercular  
Spine            

╋ ╋ 
 
╋ 

Second anterior 
preopercular spine       

╋ ╋ ╋ ╋ 
     

Fourth anterior 
preopercular spine       

╋ ╋ ╋ ╋ 
     

First posterior 
preopercular spine       

╋ ╋ ╋ ╋ 
 
╋ ╋ 

 
╋ 

Second posterior 
preopercular spine   

 ╋ ╋ ╋ ╋ ╋ ╋ ╋ 
 
╋ ╋ 

 
╋ 

Third posterior 
preopercular spine       

╋ ╋ ╋ ╋ 
 
╋ ╋ 

 
╋ 

Fourth posterior 
preopercular spine          

╋ 
 
╋ ╋ 

 
╋ 

Fifth posterior 
preopercular spine               

╋ 

╋ presence of spine
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3. Osteological development 

 

The osteological development of S. koreanus at various developmental stages 

was described in the following skeletal regions: neurocranium, jaw bones, palate 

series, opercular series, hyoid arch, pectoral girdle, infraorbital bone, caudal 

skeleton, and vertebrae. The development results are summarized in Table 3. 

 

i. Neurocranium 

 

The development and ossification of the neurocranium for individuals at 

different developmental stages are illustrated in Figs 6 and 7. In the smallest 

larvae (6.11 mm BL; preflexion stage), no skeletal structures of the neurocranium 

were visible. Ossification of the neurocranium started at 6.27 mm BL, with 

ossification of the parietal, frontal, and pterotic bones (Fig. 6A); ossification of 

these elements appeared to begin at the tips of the spines. In the 7.11 mm BL larva, 

the skeletal elements that had appeared in earlier stages continued to ossify, but no 

ossification of additional elements was observed (Fig. 6B). At 8.11 mm BL, the 

posterior of the parasphenoid and the anterior of the basioccipital had started to 
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ossify, and the two elements were joined. At the same time, the exoccipital began 

to ossify along its posterior margin (Fig. 6C). At 9.06 mm BL, ossification of the 

frontal had extended to the dorsal area of the neurocranium, and then the frontal 

boundary line joined the parietal. In addition, the supraoccipital, sphenotic, and 

prootic elements had started to ossify along their margins at this stage (Fig. 6D). 

At 10.20 mm BL, the lateral ethmoid had started to ossify along its dorsal margin, 

and the parietal, pterotic, parasphenoid, and basioccipital were almost fully 

ossified (Fig. 7A). At 11.10 mm BL, ossification of the frontal had extended to 

most regions, and ossification of the sphenotic and supraoccipital was complete. 

The epiotic, which appeared relatively late compared with the other neurocranial 

elements, had started to ossify at this stage (Fig. 7B), and the vomer and medial 

ethmoid appeared simultaneously along their anterior margin. At this stage, 

although all the elements of the neurocranium had started to ossify, some elements 

continued to ossify in the cartilaginous regions. In the juvenile stage (18.60 mm 

BL), the ossification of the neurocranium was fully complete (Fig. 7C). 



 

28 
 

 

Fig. 6. Developmental sequence of the neurocranium of Sebastes koreanus, 

showing dorsal (left) and lateral (right) views of preflexion to postflexion 

larvae. (A) Preflexion larva; 6.27 mm BL. (B) Flexion larva; 7.17 mm BL. (C) 

Flexion larva; 8.17 mm BL. (D) Postflexion larva; 9.06 mm BL. Dotted lines 

show the outlines of skeletal structures in the adult. Open areas show 

nonskeletal structures. Solid lines show the boundaries of ossified areas. 

Dotted areas show ossified elements. bop, basioccipital; eop, exoccipital; f, 

frontal; p, parasphenoid; pa, parietal; pe, pterotic; pro, prootic; sop, 

supraoccipital; sp, sphenotic. Bars 0.5 mm. 



 

29 
 

 

Fig. 7. Developmental sequence of the neurocranium of Sebastes koreanus, 

showing dorsal (left) and lateral (right) views of postflexion larval to juvenile 

stages. (A) Postflexion larva; 10.20 mm BL. (B) Postflexion larva; 11.10 mm 

BL. (C) Juvenile; 18.60 mm BL. Dotted lines show the outlines of skeletal 

structures in the adult. Open areas show nonskeletal structures. Solid lines 

show the boundaries of ossified areas. Dotted areas show ossified elements. 

bop, basioccipital; eop, exoccipital; et, epiotic; f, frontal; le, lateral ethmoid; 

me, medial ethmoid; p, parasphenoid; pa, parietal; pe, pterotic; pro, prootic; 

sop, supraoccipital; sp, sphenotic; v, vomer. Bars 0.5 mm. 
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ii. Jaw bones, Palatine and Opercular series 

 

The development and ossification of the jaw bones, palatine, and opercular 

series for individuals at different developmental stages are illustrated in Fig. 8. No 

skeletal structures were visible in the smallest preflexion larva (6.11 mm BL). At 

6.27 mm BL, the maxillary and premaxillary had both begun to ossify at their 

anterior and ventral margins, respectively (Fig. 8A). The dentary also started to 

ossify along its V-shaped anterior margin. The hyomandibular started to ossify at 

opposite medial margins (Fig. 8A). At the same time, the strongest three 

preopercular spines on the preopercle began to ossify, and the opercle had 

simultaneously ossified at its anterior margin (Fig. 8A). At 7.17 mm BL, the 

quadrate and the symplectic started to ossify in the region in which the two 

elements join (Fig. 8B). At 8.17 mm BL, the interopercle and preopercle had 

begun to ossify at their margins (Fig. 8C). The premaxillary, maxillary, and 

dentary also continued to ossify, and then the premaxillary had formed the 

ascending process and articular process. At 9.06 mm BL, the angular had ossified 

(Fig. 8D), and the endopterygoid and ectopterygoid had started to ossify along 

their adjacent margins. In particular, the upper part of the hyomandibular had 
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quickly and fully ossified, and the opercle had extended to the strongest first spine. 

At 10.20 mm BL, the articular had started to ossify, and the maxillary and 

premaxillary had fully ossified and assumed their adult forms (Fig. 8E). The 

palatine started to ossify along its anterior margin, but the degree of ossification 

was small. At 11.10 mm BL, the ossification of the jaw bones was complete, and 

the opercular series was almost fully ossified at this stage, except for small parts 

of the subopercle and interopercle (Fig. 8F). At the juvenile stage (18.60 mm BL), 

the ossification of the jaw bones, palatine, and opercular series was complete (Fig. 

8G). 
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Fig. 8. Developmental sequences of the jaw bone, palate, and opercular series 

of Sebastes koreanus in preflexion larval to juvenile stages (lateral views). (A) 

Preflexion larva; 6.27 mm BL. (B) Flexion larva; 7.17 mm BL. (C) Flexion 

larva; 8.17 mm BL. (D) Postflexion larva; 9.06 mm BL. (E) Postflexion larva; 

10.20 mm BL. (F) Postflexion larva; 11.10 mm BL. (G) Juvenile; 18.60 mm 

BL. Dotted lines show the outlines of skeletal structures in the adult. Open 

areas show nonskeletal structures. Solid lines show the boundaries of ossified 

areas. Dotted areas show ossified elements. a, angular; at, articular; d, 

dentary; edp, endopterygoid; etp, ectopterygoid; hm, hyomandibular; iop, 

interopercle; m, maxilliary; mtp, metapterygoid; op, opercle; po, preopercle; 

pm, premaxilliary; pt, palatine; q, quadrate; s, symplectic; sob, soborbital. 

Bars 0.5 mm. 
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iii. Hyoid arch and Pectoral girdle 

 

The development and ossification of the hyoid arch and pectoral girdle in 

individuals at all stages of development are illustrated in Figs 9 and 10. At 6.27 

mm BL, development of the hyoid arch and pectoral girdle had begun, with the 

ossification of the branchiostegal ray and clavicle, respectively (Figs 9A and 10A). 

The fifth branchiostegal ray, which was the first branchiostegal ray to begin 

ossification, started to ossify in its middle region, and the clavicle was fully 

ossified as a long needle-shaped. At 7.17 mm BL, the fourth branchiostegal ray 

and the upper clavicle had started to ossify (Figs 9B and 10B). At 8.17 mm BL, all 

of the branchiostegal rays, except the first ray, had started to ossify, and the 

ceratohyal had started to ossify along its dorsal and ventral margins (Fig. 9C). The 

posttemporal and supratemporal had also started to ossify, and were connected to 

the upper clavicle (Fig. 10C). At 9.06 mm BL, the first branchiostegal ray had 

started to ossify, and the other branchiostegal rays were fully ossified (Fig. 9D). 

The upper postclavicle and lower postclavicle of the pectoral girdle had also 

started to ossify and were connected to one other (Fig. 10D). At 10.20 mm BL, the 

ceratohyal had enlarged anteriorly and the posttemporal was fully ossified (Figs 
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9E and 10E). At 11.10 mm BL, the anterior parts of the ceratohyal and clavicle 

were fully ossified, and the seven pairs of branchiostegal rays had approached 

their adult number and shape (Figs 9F and 10F). In the juvenile stage (18.60 mm 

BL), the hyoid arch and pectoral girdle were fully ossified (Figs 9F and 10F). 

However, although the scapula and uppermost radial of the pectoral girdle were 

nearly joined, they had not fused (Fig. 10F). 

 

iv. Infraorbital bone 

 

The development and ossification of the infraorbital bone in individuals at all 

stages of development are illustrated in Fig, 11. At 9.06 mm BL, the infraorbital 

bone elements on the preorbital had started to ossify (Fig. 11A). At 10.20 mm BL, 

the area of ossification of the preorbital had increased, but no additional elements 

were visible (Fig. 11B). At 11.10 mm BL, the first and second suborbital bones 

had started to ossify along their dorsal margins (Fig. 11C). In the juvenile stage 

(18.60 mm BL), the infraorbital bone was fully ossified (Fig. 11D). 
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Fig. 9. Developmental sequence of the hyoid arch of Sebastes koreanus in 

preflexion larval to juvenile stages (lateral views). (A) Preflexion larva; 6.27 

mm BL. (B) Flexion larva; 7.17 mm BL. (C) Flexion larva; 8.17 mm BL. (D) 

Postflexion larva; 9.06 mm BL. (E) Postflexion larva; 10.20 mm BL. (F) 

Postflexion larva; 11.10 mm BL. (G) Juvenile; 18.60 mm BL. Dotted lines 

show the outlines of skeletal structures in the adult. Open areas show 

nonskeletal structures. Solid lines show the boundaries of ossified areas. 

Dotted areas show ossified elements. br, branchiostegal ray; cy, ceratohyal; 

eh, epihyal; ih, interhyal; hy, hypohyal. Bars 0.5 mm. 
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Fig. 10. Development of the pectoral girdle of Sebastes koreanus in preflexion 

larval to juvenile stages (lateral views) (A) Preflexion larva; 6.27 mm BL. (B) 

Flexion larva; 7.17 mm BL. (C) Flexion larva; 8.17 mm BL. (D) Postflexion 

larva; 9.06 mm BL. (E) Postflexion larva; 10.20 mm BL. (F) Postflexion larva; 

11.10 mm BL. (G) Juvenile; 18.60 mm BL. Dotted lines show the outlines of 

skeletal structures in the adult. Open areas show nonskeletal structures. Solid 

lines show the boundaries of ossified areas. Dotted areas show ossified 

elements. ac, actinost; cl, clavicle; co, coracoids; lpcl, lower postclavicle; pt, 

posttemporal; sca, scapula; scf, scapula foramen; st, supratemporal; ucl, 

upper clavicle; upcl, upper post clavicle. Bars 0.5 mm. 
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Fig. 11. Development of the infraorbital bone of Sebastes koreanus in 

postflexion larval to juvenile stages (lateral views). (A) Postflexion larva; 9.06 

mm BL. (B) Postflexion larva; 10.20 mm BL. (C) Postflexion larva; 11.10 mm 

BL. (D) Juvenile; 18.60 mm BL. Dotted lines show the outlines of skeletal 

structures in the adult. Open areas show nonskeletal structures. Solid lines 

show the boundaries of ossified areas. Dotted areas show ossified elements. po, 

preorbital bone; so, suborbital. Bars 0.5 mm. 
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v. Vertebrae and Caudal skeleton 

 

The development and ossification of the vertebrae and caudal skeleton in 

individuals at all stages of development are illustrated in Figs 12. The skeletal 

elements of the vertebrae were first apparent at 7.17 mm BL (Fig. 12A). The first 

visible ossified elements of the vertebrae were the neural spines; no ossification of 

the centra was observed at this stage. The centra first started to ossify in the dorsal 

regions at 8.17 mm BL (Fig. 12B). After a centrum had formed, the neural spines 

appeared to elongate dorsally. The first hemal spines were observed at 9.06 mm 

BL, at which time ossification was visible in 10 centra, 14 neural spines, and three 

hemal spines (Fig. 12C). The development of the neural spines in the vertebrae 

occurred more rapidly than did the vertebral centra. Two to three ossified 

parapophyses appeared on the trunk centra at this stage. At 10.20 mm BL, the 

anterior centra, neural spines, and hemal spines were almost fully ossified, 

completely surrounding the notochord, whereas the posterior vertebrae continued 

to ossify consecutively towards the caudal complex (Fig. 12D). The urostyle had 

also started to ossify for the first time at this stage, along its anterior margin (Figs 

12D). At 11.10 mm BL, despite the progressive ossification of consecutive 
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vertebrae, a few posterior vertebrae were still only present as cartilaginous 

structures (Fig. 12E). In the caudal skeleton, the urostyle had fully ossified at this 

stage, but no additional ossification was visible in the caudal skeleton (Fig. 12E). 

In the juvenile stage (18.60 mm BL), all the vertebral centra had completely 

surrounded the notochord, and the adjacent neural spines and hemal spines were 

also ossified (Fig. 12F). In addition, the hypurals, equals, parahypurals, 

parapophyses, and uroneural in the caudal skeleton were fully ossified in the 

juvenile (Fig. 12F). At the juvenile stage, the first and second hypurals and the 

third and fourth hypurals had also fused to form, together with the fifth hypural, 

three hypural segments (hy 1 + 2, hy 3 + 4, and hy 5). 
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Fig. 12. Development of the vertebrae and caudal skeleton of Sebastes 

koreanus in flexion larval to juvenile stages (lateral views). (A) Flexion larva; 

7.17 mm BL. (B) Flexion larva; 8.17 mm BL. (C) Postflexion larva; 9.06 mm 

BL. (D) Postflexion larva; 10.20 mm BL. (E) Postflexion larva; 11.10 mm BL. 

(F) Juvenile; 18.60 mm BL. Dotted lines show the outlines of skeletal 

structures in the adult. Open areas show nonskeletal structures. Solid lines 

show the boundaries of ossified areas. Dotted areas show ossified elements. ep, 

epural bone; hs, hemal spine; hy, hypural bone; pp, parapophysis; ns, neural 

spine; u, urostyle bone; un, uroneural. Bars 0.5 mm. 
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Table 3. Developmental sequence of ossification in Sebastes koreanus. 

Elements 

Body length (mm) 

Preflexion larvae Flexion larvae Postflexion larvae Juvenile 

6.11 6.27 7.17 8.17 9.06 10.20 11.10 ᆞᆞᆞᆞᆞ 18.60 

Neurocranium                   

parasphenoid        ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

exoccipital        ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

basioccipital`       ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

supraoccipita         ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

epiotic              ▶ ▬▬ ▬▬ 

prootic          ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

frontal    ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

sphenotic          ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

pterotic    ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

vomer              ▶ ▬▬ ▬▬ 

lateral ethmoid            ▶ ▬▬ ▬▬ ▬▬ 

medial ethmoid              ▶ ▬▬ ▬▬ 

parietal    ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

Jaw bone                    

maxillary   ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

premaxillary   ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

dentary   ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

articular            ▶ ▬▬ ▬▬ ▬▬ 

angular          ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

Hyoid arch                    

ceratohyal        ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

epihyal                ▶ ▬▬ 

hypohyal                ▶ ▬▬ 

branchiostegal ray  ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

interhyal                ▶ ▬▬ 



 

42 
 

Table 3. Continue. 

Elements 

Body length (mm) 

Preflexion larvae Flexion larvae Postflexion larvae Juvenile 

6.11 6.27 7.17 8.17 9.06 10.20 11.10 ᆞᆞᆞᆞᆞ 18.60 

Palate                   

palatine            ▶ ▬▬ ▬▬ ▬▬ 

metapterygoid            ▶ ▬▬ ▬▬ ▬▬ 

ectopterygoid          ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

endopterygoid          ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

hyomandibular    ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

synplectic      ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

quadrate      ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

Opercular                    

opercle    ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

subopercle        ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

preopercle    ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

interopercle        ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

Pectoral girdle                    

clavicle    ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

upper clavicle      ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

actimost                ▶ ▬▬ 

coracoid                ▶ ▬▬ 

scapula               ▶ ▬▬ 

scapula foramen               ▶ ▬▬ 

lower postclavicle        ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

upper postclavicle        ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

supratemporal        ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

posttemporal        ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 
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Table 3. Continue. 

Elements 

Body length (mm) 

Preflexion larvae Flexion larvae Postflexion larvae Juvenile 

6.11 6.27 7.17 8.17 9.06 10.20 11.10 ᆞᆞᆞᆞᆞ 18.60 

Caudal skeleton                    

equral                ▶ ▬▬ 

hypural                ▶ ▬▬ 

parhypral                ▶ ▬▬ 

urostyle           ▶ ▬▬ ▬▬ ▬▬ 

parapophysis                ▶ ▬▬ 

caudal bony plate              ▶ ▬▬ 

Infraorbital bone                   

preorbital          ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

suborbital              ▶ ▬▬ ▬▬ 

Vertebrae                   

neural spine     ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 

hemal spine         ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

parapophysis         ▶ ▬▬ ▬▬ ▬▬ ▬▬ 

centrum       ▶ ▬▬ ▬▬ ▬▬ ▬▬ ▬▬ 
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IV. Discussion  

 

1. Morphological development 

 

The present study is the first to provide detailed ontogenetic information on 

Sebastes koreanus, and these data are expected to provide insights into 

systematics of the species of Sebastes. In this study, larvae and a single juvenile of 

Sebastes sp., collected from the Yellow Sea, were identified as Sebastes koreanus 

based on mtDNA COI sequences and compared with larvae of 15 other species of 

Sebastes. 

As in other similar species of Sebastes [Sebastes schlegelii Hilgendorf 1880, 

Sebastes thompsoni (Jordan and Hubbs 1925), and S. taczanowskii], larvae and the 

juvenile of S. koreanus showed that the percentage of HL relative to BL increased 

with growth (Fig. 13a) and that these values approached those of adults (35.7–

39.0 %) at a length of 89.12–168.55 mm BL (Nagasawa and Kobayashi 1995; 

Nagasawa and Domon 1997; Nagasawa et al. 2008). 

Yolk-sac larvae of S. koreanus have single oil globules (Fig. 4b), which is also 
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observed in the yolk-sac larvae of S. schlegelii, S. pachycephalus and S. oblongus 

(see Kim and Han 1991; Byun at al. 1995; Han at al. 1996). But, yolk-sac larvae 

of S. thompsoni and Sebastes inermis Cuvier 1829 have multiple oil globule (2–3 

and 3–4, respectively) (Han 1991; Kim and Han 1993).  

Development of head spination in larvae of S. koreanus was similar to that of S. 

thompsoni, S. vulpes, S taczanowskii, S. schlegelii and S. inermis, but some 

differences were found (Nagasawa and Kobayashi 1995; Nagasawa and Domon 

1997; Nagasawa 2000; Nagasawa et al. 2000, 2008). In the larvae of S. koreanus, 

parietal spine and the second posterior preopercular spine appeared first on the 

head part (Table 2), whereas in five other species of Sebastes mentioned above, 

the third posterior preopercular spine appeared first. In the case of S. thompsoni, S. 

vulpes, S taczanowskii, and S. schlegelii, pterotic spine appears first. In Sebastes 

inermis pterotic and parietal spines appeared at the same time. The second and 

fourth anterior preopercular spines appeared in flexion larva of S. koreanus (7.21 

mm BL) and disappeared in the postflexion larva of S. koreanus (8.84 mm BL) 

(Table 2). This seems to be similar to those of S. thompsoni, S. vulpes, S 

taczanowskii, S. schlegelii, and S. inermis, but the anterior preopercular spines of 

larvae of S. koreanus disappeared earlier than those of S. thompsoni, S. vulpes, S 
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taczanowskii, S. schlegelii, and S. inermis. In the five species of Sebastes 

mentioned above, the anterior preopercular spines disappeared in the late 

postflexion and transforming larvae (Nagasawa and Kobayashi 1995; Nagasawa 

and Domon 1997; Nagasawa 2000; Nagasawa et al. 2000, 2008). 

The most distinct feature of the embryos in the egg and yolk-sac larvae of S. 

koreanus is the absence of melanophores, except on the upper margin of the 

abdominal region in a few yolk-sac larvae, where the melanophores persist until 

the preflexion larval stage; subsequently, melanophores appear at the top of the 

head and in the abdominal region, but are absent on the remaining body parts. 

Three transverse stripes, which are present in the juvenile of S. koreanus, 

correspond to the coloration observed in adult. Such a pigmentation pattern is also 

observed in congeneric species (S. vulpes, S. inermis, and S. thompsoni) at similar 

sizes (16.5–20.2 mm BL) (Kim et al. 1993; Nagasawa and Kobayashi 1995; 

Nagasawa 2000). The examined larvae and juvenile of S. koreanus are clearly 

distinguished from the other 15 species of Sebastes by the distribution and shapes 

of the melanophores. A comparison of the pigmentation pattern among 15 species 

of Sebastes showed that S. koreanus was the only species with melanophores 

present in positions 4, 11, and 12; however, other species have melanophores in 
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various positions (positions 5–16) (Table 4). 

The sympatric species of S. koreanus, S. pachycephalus, S. schlegelii, and S. 

thompsoni show similar release seasons of larvae (Kokita and Omori 1998; 

Okiyama 1998), which may cause confusion in species identifications during 

early life stages; however, the species can be identified by the following 

morphological traits: larvae of S. pachycephalus possess many melanophores on 

the pectoral fins; larvae of S. schlegelii possess many melanophores on the dorsal 

and ventral edges of the tail; and larvae of S. thompsoni have melanophores along 

the mid-lateral region of the tail (Nagasawa and Kobayashi 1995; Han et al. 1996; 

Nagasawa and Domom 1997). Sebastes koreanus and S. owstoni are the most 

similar in the number of fin rays, but the two species are distinguished by the 

three distinct transverse stripes during a juvenile stage (present in S. koreanus vs. 

absent in S. owstoni) (Okiyama 1988; Kim et al. 2005).  
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Fig. 13. Relative growth of various body parts in larvae and a juvenile of 

Sebastes koreanus. a Head length (HL) as a percentage of body length (BL) 

versus BL. b Preanal length (PAL) as a percentage of BL versus BL. c Eye 

diameter (ED) as a percentage of BL vs. BL. d Body depth (BD) as a 

percentage of BL vs. BL. 
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Table 4. Comparison of pigmentation pattern in preflexion larvae of 16 species of Sebastes from the 

northwest Pacific. 

0 absent; 1 present 

  Melanophore positon   

Species  1 2 3 4 5 6 7 8 9 
1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

2
1 

2
2 

References 

S. koreanus  0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Present study 

S. pachycephalus  0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 Han et al. 1996 

S. thompsoni 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 
Nagasawa and Kobayashi 
1995 

S. schlegelii 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 Nagasawa and Domon 1997 

S. vulpes 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 Nagasawa 2000 

S. longispinis  1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 Okiyama 1988 

S. hubbsi 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 Okiyama 1988 

S. inermis 
complex 

0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 Nagasawa et al. 2000 

S. oblongus 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 Okiyama 1988 

S. owstoni 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 Okiyama 1988 

S. taczanowskii 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 Nagasawa et al. 2008 

S. steindachneri 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 Sasaki 1974 

S. wakiyai 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 Sasaki 1976 

S. minor 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 Nagasawa 1993 

S. matsubarae 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 Okiyama 1988 

S. trivittatus 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 Nagasawa 2014 
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2. Osteological development 

 

This study is the first to examine and describe in detail the sequence of 

osteological development in S. koreanus collected in the wild, and to provide data 

with which to infer the phylogenetic relationships of species within the suborder 

Scorpaenoidei. In S. koreanus, ossification of the skeletal elements is first 

observed in the neurocranium, jaw bones, palatine, opercular, hyoid arch, and 

pectoral girdle of the preflexion larva with a length of 6.27 mm BL [6.45 mm 

Total length(TL)], and then the only one juvenile (18.60 mm BL) was fully 

completed the skeletal development of all elements (Table 3). In a previous study 

of early skeletal development in the genus Sebastes, ossification was first 

observed in S. inermis complex at 7 days (7.0 mm mean TL) (Kim et al. 1993), in 

S. schlegelii Hilgendorf 1880 at 6–8 days (6.85 mm TL) (Kim and Han 1991), and 

in S. oblongus Günther 1877 at 3 days after release (8.0 mm TL) (Byun et al. 

2012). In a study of early skeletal development in S. macdonaldi (Eigenmann and 

Beeson 1893) from southern California, ossification was first observed in the 

smallest larva (6.11 mm BL) (Moser 1972). Like this, the ossification of wild-

captured S. koreanus larvae was first observed even smaller larva than reared 
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larvae of S. inermis, S. schlegelii and S. oblongus (but not in S. macdonaldi). 

These differences in the sizes of the larvae at the onset of ossification are probably 

related to the size at which the larvae are released from the adult, which is smaller 

than 6.11 mm BL in S. koreanus (this study), 6.12 mm TL in S. inermis (Kim et al. 

1993), 5.52 mm TL in S. schlegelii (Kim and Han 1991), 7.2 mm TL in S. 

oblongus (Byun et al. 2012), and 4.5 mm BL in S. macdonaldi (Moser 1972). 

These differences may also be affected by external environmental factors, such as 

temperature and salinity (Fuiman 2002; Ložys 2004; Löffler et al. 2008; Ott et al. 

2012), which may cause corresponding osteological differences (Matsuoka 1987; 

Wimberger 1993; Koumoundouros et al. 1997a) and meristic variations (Fowler 

1970; Lau and Shafland 1982) between reared larvae and wild-captured larvae 

(Boglione 2001). Therefore, despite the similar size of the released larval of S. 

koreanus, S. inermis and S. schlegelii, the first ossification size is considered to 

differ from each other because the larvae of S. koreanus was collected in the wild. 

In addition, ossification was first observed in the reared larva of Sebastiscus 

marmoratus (Cuvier 1829) and Sebastiscus tertius (Barsukov and Chen 1978) at 

3.35 mm TL and 4.4 mm TL, respectively, and these larvae were ossified even 

smaller than the larvae of species of Sebastes (Kim et al. 1997; Han et al. 2001). 
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These result was also probably related to the size at larval release, because the 

larval release size is smaller than larvae of Sebastes (Kim et al. 1997; Han et al. 

2001). 

In most cases, early skeletal development occurs in elements that are necessary 

for feeding and respiration, and therefore affect the survival of young larvae 

(Vandewalle et al. 1997; Wagemans and Vandewalle 1999). For example, the total 

resorption of the vitellus is essential for the transition from endogenous to 

exogenous feeding, because the efficiency of suction feeding increases with 

increasing prey size and the ossification of the related skeletal elements 

(Gluckmann et al. 1999). In S. koreanus, the skeletal elements that first start to 

ossify (at 6.27 mm BL) are the premaxillary, maxillary, dentary, preopercle, 

opercle, hyomandibular, and the fifth branchiostegal ray (Figs 8 and 9), and the 

order of ossification is initially defined by the importance of the skeletal elements 

to feeding, swimming and respiration. The cleithrum in the pectoral girdle ossifies 

in the same developmental stage (Fig. 10), and the early ossification of the 

clavicle produces an attachment site for the sternohyoideus muscle, which is 

important for feeding in subsequent growth stages (Wagemans and Vandewalle 

1999; Koumoundouros et al. 2001a; Cloutier et al. 2011). Similar patterns of early 
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skeletal development have been observed in other species of Sebastes (e.g., S. 

inermis, S. schlegelii, S. oblongus, Sebastiscus marmoratus, and Sebastiscus 

tertius). However, the timing of the ossification of the hyomandibular is highly 

variable (Kim and Han 1991; Kim et al. 1993; Kim et al. 1997; Byun et al. 2012). 

In most teleostei, the parasphenoid is the first element to ossify, except in some 

species in which the parasphenoid ossifies simultaneously with the frontals 

(Pagrus major; Matsuoka 1987) or the basioccipital (Heterobranchus longifilis; 

Vandewalle et al. 1997), or is ossified after the ossification of the frontals 

(Scophthalmus maximus; Wagemans et al. 1998). In S. koreanus, the first-ossified 

elements in the neurocranium (at 6.27 mm BL) are the spines of the parietal, 

frontal, and pterotic (Fig. 6). Subsequently, the parasphenoid and basioccipital 

begin to ossify at 8.17 mm BL (Fig. 6); these elements may help to reinforce the 

cranial floor to prevent damage to the neurocranium during feeding (Vandewalle 

et al. 1992) and to promote the balance needed for swimming (Weisel 1967). 

Therefore, the ossification of the parasphenoid and basioccipital during early 

skeletal development is important because they significantly affect feeding and 

swimming behavior, as do the jaw bones and clavicle. 

The order of ossification of the neurocranial elements appears similar in 
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different Sebastes species, but variations exist, particularly in the timing of the 

ossification of the parasphenoid. In many species of Sebastes and Sebastiscus, 

such as S. macdonaldi, S. inermis, S. schlegelii, Sebastiscus marmoratus, and 

Sebastiscus tertius, the parasphenoid is the first element to ossify (Moser 1972; 

Kim and Han 1991; Kim et al. 1993; Kim et al. 1997; Han et al. 2001), whereas in 

S. koreanus, the parasphenoid begins to ossify simultaneously with the 

basioccipital and exoccipital, just after the ossification of the parietal, frontal, and 

pterotic (present study), or in S. oblongus, the parasphenoid beings to ossify 

simultaneously with the supraoccipital, just after the ossification of the parietal 

and frontal (Byun et al. 2012). The pterotic and parietal also begin to ossify 

relatively early in some species, including S. koreanus, S. macdonaldi, Sebastiscus 

marmoratus, and Sebastiscus tertius, but no significant or clear differences 

between the species of Sebastes and Sebastiscus are apparent (Moser 1972; Kim 

et al. 1997; Han et al. 2001). In S. koreanus, the early ossification of the hyoid 

arch appears on the ceratohyal and branchiostegal rays, but there is no additional 

ossification of elements between 8.17 and 11.10 mm BL (Fig. 9). In contrast, the 

ossification of the hyoid arch is clearly different in many species of Sebastes and 

Sebastiscus from that observed in S. koreanus, and begins to occur at the same 
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time as the ossification of the ceratohyal and epihyal (in S. inermis, S. schlegelii, 

Sebastiscus marmoratus, and Sebastiscus tertius), or the epihyal begins to ossify 

just after the ossification of the ceratohyal (as in S. oblongus) (Kim and Han 1991; 

Kim et al. 1993; Kim et al. 1997; Han et al. 2001; Byun et al. 2012). 

Ossification of the pectoral girdle also shows a high degree of variability 

between different species of Sebastes and Sebastiscus. In S. koreanus, the 

ossification of the pectoral girdle begins with the clavicle, followed by the upper 

clavicle and soon thereafter by the supratemporal and posttemporal (Fig. 10). In 

contrast, in S. oblongus, the ossification of the clavicle first begins 3 days after 

release, and the ossification of the upper clavicle and posttemporal begin at 20 

days, soon after the initial ossification of the supratemporal (Byun et al. 2012). In 

S. inermis, the first ossification on the clavicle begins 7 days after release, 

followed by the ossification of the postclavicle at 45 days and the upper clavicle at 

50 days. The supratemporal begins to ossify at 65–69 days (Kim et al. 1993). In 

Sebastiscus marmoratus, the ossification of the clavicle first appears 5 days after 

release, and the ossification of the upper clavicle, posttemporal, scapula, and 

coracoid begin at 28 days (Kim et al. 1997). Therefore, it is difficult to determine 

a common ossification pattern for the pectoral girdle because of the observed 
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variability between species. According to Ishida (1994), adults of Sebastes, 

Sebastiscus, and Hozukius (suborder Scorpaenoidei) share the derived 

characteristic of a fusion of the scapula and uppermost radial in the pectoral girdle. 

However, although the fusion of the scapula and uppermost radial was observed in 

adults of S. koreanus in this study, fusion was not observed in the S. koreanus 

juvenile (18.60 mm BL) (Fig. 10G). In some species of Sebastes (e.g., S. oblongus, 

Byun et al. 2012; S. schlegelii, Kim and Han 1991, Omori et al. 1996; S. 

macdonaldi, Moser 1972), fusion between the scapula and uppermost radial is not 

observed during skeletal development. The separation of the scapula and 

uppermost radial was also clearly observed in an S. inermis juvenile in this study 

(17.06 mm BL). Thus, it appears that the scapula and uppermost radial fuse 

slowly after (or starting in) the juvenile stage. Actually, the scapula and uppermost 

radial were closely adjoined along a thin boundary line in the S. koreanus juvenile 

observed in this study, presumably just prior to fusion. Similarly, in the S. inermis 

juvenile observed in this study (17.60 mm BL), the scapula was closely adjoined 

to the uppermost radial, although the two elements were not fused with one 

another. However, in S. schlegelii, the illustration of the pectoral girdle provided 

by Omori et al. (1996) showed no fusion of the scapula with the uppermost radial 
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until a relatively later stage of juvenile development (30.10 mm TL). In this 

respect, any uncertainty in the timing of ontogenetic transformations, such as the 

timing of the fusion of the scapula and uppermost radial, can cause confusion 

about phylogenetic relationships. Thus, more extensive research into early skeletal 

development is needed to confirm the fusion time of these elements and the extent 

of the ontogenetic variations. 

With respect to locomotion, the swimming of larvae immediately after their 

release from the adult is possible only through the antagonistic interactions of the 

notochord and trunk muscles (Ott et al. 2012). With growth, the notochord is 

gradually replaced by vertebrae, and the ossified vertebrae contribute stronger 

attachment sites for the powerful dorsalis trunci muscles, which are primarily 

responsible for swimming (Rojo 1991). In S. koreanus, after the ossification of the 

neural spine at 7.17 mm BL, the ossification of the vertebral centra mainly 

proceeds from the abdominal to the caudal vertebrae, and the urostyle is fully 

ossified before the ossification of the caudal vertebrae is complete (Fig. 12). This 

pattern is similar to that observed in other species of Sebastes and Sebastiscus, 

except in S. schlegelii (Kim and Han 1991; Omori et al. 1996), e.g., in S. oblongus 

(Byun et al. 2012), S. inermis (Kim et al. 1993), Sebastiscus marmoratus (Kim et 
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al. 1997), and Sebastiscus tertius (Han et al. 2001). Furthermore, in adults, the 

caudal skeleton in Sebastes and Sebastiscus species is formed by three hypurals 

(hy 1 + 2, hy 3 + 4, and hy 5), because the first and second hypurals and the third 

and fourth hypurals are fused (Ishida 1994). A similar trend is observed in the 

skeletal development of Sebastes and Sebastiscus species, including S. koreanus, 

S. inermis, S. schlegelii, S. koreanus, S. macdonaldi, Sebastiscus marmoratus, and 

Sebastiscus tertius (Fig. 12F) (Kim et al. 1993; Omori et al. 1996; Kim et al. 1997; 

Han et al. 2001; Byun et al. 2012). Therefore, the ontogenetic characteristics 

reflect the taxonomic characteristics of the adults well. In particular, the hypural 

cartilages fuse before ossification, unlike the fusion of the scapula and the 

uppermost radial (Omori et al. 1996). 

Park et al. (2015) provided a brief overview of the external and osteological 

development of S. koreanus based on the artificial breeding of hatched larvae, 

using a gravid adult collected from the southern Korean Strait. However, 

compared with present study, there are several differences, such as the 

pigmentation patterns and sequence of osteological development. Thus, we can be 

able to explain their differences in the three hypotheses. The first hypothesis is 

that it could be caused by the difference of population, because present study and 
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Park et al. (2015) are different in sampling site (Yellow Sea vs. Korean Strait). In 

this respect, there is a possibility of existence of the different population, that isn't 

realized to exist the southern population of S. koreanus. Similarly, Kim et al. 

(2010) confirmed that the two populations of Ammodytes personatus larvae 

showed the morphological differences in morphometric characters and 

pigmentation. The second hypothesis is that it could be caused by the difference in 

water temperature. The larvae and juvenile of S. koreanus (present study) was 

collected at the average water temperature 12.0–15.1°C from Taean Peninsula 

(May and June), whereas reared larvae and juveniles were reared at the water 

temperature 13.5–15.5°C. These water temperature difference (ca. 1–3.5°C) can 

especially become the cause of the ontogenetic differences (Löffler et al. 2008; 

Ott et al. 2012). Finally, the third hypothesis is that it could be caused by 

difference of food source between reared larvae and wild-captured larvae. 

Particularly, calcium deficiency at the food source induces a delay in the ontogeny 

of skeletal development without affecting final bone mineralization (Fontagne et 

al. 2009). In addition, we should be considered for the case that the specimens 

fixed in formalin or alcohol can be reduced or disappeared the pigmentation. 

Therefore, further research with microsatellite DNA and comparison of rearing is 
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required to confirm the difference between reared larvae and wild-captured larvae. 

In summary, although the sequences and periods of osteological development 

in Sebastes and Sebastiscus species show some variation, the early ossification of 

the skeleton proceeds in a sequence that prioritizes the elements required for 

feeding, swimming, and respiration. In this way, larvae are equipped with 

functional capacities that enhance the probability of their survival at this stage of 

their life cycle. Also, the ossification of parasphenoid and epihyal in the 

neurocranium appeared relatively later than congeneric species, this features 

indicated that S. koreanus is a unique species, which has been evolved in 

distinctive marine environment of the Yellow Sea. 
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3. Release season estimates 

 

The release season of S. koreanus larvae has been reported to be during the 

winter (Kim et al. 2004), but the following data obtained in the present study 

indicate that the release season is during the spring (ca. April–June): (1) a fully 

gravid female of S. koreanus was collected in May; (2) larvae of S. koreanus were 

collected in May and June; and (3) a juvenile of S. koreanus was collected in July. 

The release time of S. koreanus larvae can be estimated from the size of larvae 

collected in the wild, based on data from previous studies on their early life 

history obtained under artificial conditions. Larvae of the S. inermis complex were 

grown to 16.1–19.2 mm TL, 55–69 days after their release (Kim et al. 1993); 

larvae of S. thompsoni were grown to 23 mm TL, 60 days after their release 

(Kokita and Omori 1998); and larvae of S. oblongus were grown to 20.0–24.5 mm 

TL, 50 days after their release (Kwak et al. 2006). According to Park et al. (2015) 

larvae of S. koreanus were grown to 15.5–16.2 mm TL, 40–45 days after their 

release. On this basis, the release time of the 18.60 mm BL (23.31 mm TL) 

juvenile of S. koreanus collected in the Gang-hwa-do area in July can be estimated 

to be May or June. Therefore, the release season of larvae of S. koreanus 
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examined in this study is estimated to be during the spring. 
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