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Chapter 1

Introduction

In this thesis, we study on a decomposition of the curvature tensor on the
homogeneous Riemannian manifold SU(3)/T'(k,l). Specially, we evaluate cur-
vatures such as Ricci curvature and scalar curvature on SU(3)/T'(k,l) with an
arbitrarily given SU (3)-invariant metric. Roughly speaking, variational problems
in the Differential Geometry are to get critical points of functionals which are de-
fined on some proper spaces, and then to show the stability at the critical points.
So, we study on harmonic homomorphisms between two Lie groups. Concisely, a
harmonic mapping is a mapping which is a critical points of given energy func-
tional. Lastly, we treat with the first and second variation of an arbitrarily given

smooth variation of a geodesic on a Riemannian manifold.

In Chapter 2, we introduce briefly the fundamental definitions and concepts

in the Riemannian geometry and Lie group.

In Chapter 3, using the notion of a curvature-like tensor of type (1,3) on
an n-dimensional real inner product space (V,< , >), we decompose the cur-
vature tensor (field) on the homogeneous Riemannian manifold SU(3)/T(k,!)
with an arbitrarily given SU(3)-invariant Riemannian metric g, 1,5, into the
three curvature-like tensor fields, and investigate geometric properties. Geomet-
ric properties on SU(3)/T'(k,[) have been studied by many mathematicians (cf.
1, 7, 10, 13, 15, 19]).

We consider two compact Riemannian manifolds (M, g) and (N, h), and let
C>®(M, N) be the set of all smooth mappings of M into N. And as the function

1



E on C*(M, N), we take

1
B0) = [ ol

where ||d¢|| is the norm of the differential d¢ of a mapping ¢ € C*°(M, N) with
respect to the metrics g and h. Then by definition for any deformation ¢, of ¢,
—e <1 <€ ¢p = ¢, the following statements are equivalent (cf. [16, 22, 23]):

(a) ¢ is a critical point of E.

(b) “E4],q = .

(c) ¢ is a harmonic mapping, i.e., a nonlinear sigma model.

In Chapter 4, we construct group homomorphisms of a closed (compact and
connected) Lie group G with a left invariant metric ¢g into another Lie group H
with a left invariant metric A which are harmonic. First of all, we get a necessary
and sufficient condition for a group homomorphism ¢ of a compact Lie group
G with a left invariant metric g into another Lie group H with a left invariant
metric A to be a harmonic mapping. And then, using this complete condition,
we obtain a necessary and sufficient condition for a group homomorphism ¢ of
SU(2) with a left invariant metric g into the Heisenberg Lie group (H, hg) to be

a harmonic mapping.

In Chapter 5, we obtain a necessary and sufficient condition for the second
variation of an arbitrarily given smooth variation of a geodesic on a Riemannian
manifold to be 0. Here, we make a minute and detailed poof of the calculus parts

which are insufficient and omitted in variation problems of the length integral.



Chapter 2

Preliminaries

In this chapter, we will introduce briefly the fundamental definitions and

concepts in the Riemannian geometry and Lie group.

A (connected) Hausdorff topological space M is called a manifold modeled to
a Banach space E if for each p € M there exist an open neighborhood U, of p
and an into homeomorphism « : U, — E such that a(U,) C E. A pair (U,, a)
is called a coordinate neighborhood in M. When a collection {(U,,«) | a € A}
satisfies the following two conditions (1) and (2), then it is called a C*-coordinate
system, and M is called a C*-manifold modeled to a Banach space E, or simply
a Banach manifold.

(1) M = UgaealU,,

(2) for any two coordinate neighborhoods (U, @), (Ug, ) with U, N Us # 0,
the mapping

Boal:a(U,NUz) — B(UyNUg)

is a C*-diffeomorphism.
In particular, if £ = R", then a C*-manifold modeled to the n-dimensional

Euclidean space R" is called an n-dimensional C*-manifold (cf. [22]).

We now define various tensor spaces over a fixed vector space V. For a positive
integer r, we shall call 7" = V®- - -®V (r times tensor product) the contravariant
tensor space of degree r. An element of T" will be called a contravariant tensor
of degree r. If r = 1, T' is nothing but V. By convention, we agree that TV is
the ground field F itself. Similarly, T, = V* ® --- ® V* (s times tensor product)

3



is called the contravariant tensor space of degree s and its elements contravariant
tensors of degree s. Then T} = V* and, by convention, Ty = F'.
And we define the (mixed) tensor space of type (r,s), or tensor space of con-

travariant degree r and covariant degree s, as the tensor product
T =T"T,=V® - QVV'® ---V~*

with V r-times and V* s-times. In particular, 770 = 77, T%* = T}, and T°° = F.
An element of T is called a tensor of type (r,s), or tensor of contravariant

degree r and covariant degree s (cf. [6]).

A C*-vector field on a C**'-manifold M is a C*-section X in TM, i.e., a
C*-mapping X : M — T(M) satisfying 7o X = id, i.e., X(p) € T,M (p € M).
The value X (p) of X at p is also denoted by X, € T,M.

For p € M, let TyM := L(T,M,R), which is a Banach space with addition,
scalar multiplication, and norm. T7M is called the cotangent space of M at p.
T*M := UpenTy M, which is also a vector bundle over M, is called the cotangent
bundle. A C*-cross section in T*M is called a 1-(differential) form.

For s > 1, an integer, we denote by A*T*M (p € M), the totality of all s-tuple
linear mappings

w:T,Mx--xT,M—R

- 4
v~

S

satisfying the condition
w(ua(1)7 s 7uo(s)) = sign(a)w(ul, cee 7us) (ul € TpMa 1< < S)

for any permutation o of {1,...,s} and sign(o) is its sign. Then it is a closed

subspace of Banach space L*(7,M;R). Moreover
NTH(M) := Upens N Ty M

is a C*-vector bundle over M. A C*-cross section in A*T*(M) is called a C*-
(differential) form.



Let X1,..., X, be s C*-vector fields, and let w be a C*-s-form. Then

p = wp(Xl(p)’ s ,Xs(p))

is a C*-function on M.

In general, considering the tensor space
M =" T,M@Q)* ;M (pe M),

we get the tensor bundle 7™M whose C*-section is called a C*-tensor field of
type (r,s) (cf. [22]).

Let M be a C**lmanifold, and let (H, <, >) be a separable Hilbert space. If
M is a C**l-manifold modeled to (H, <, >), then M is called a Hilbert manifold.
Since the Euclidean space (R", <, >) is an n-dimensional Hilbert space, any n-
dimensional manifold is a Hilbert manifold. If a C*-tensor g of type (0,2) on M
satisfies

(1) gp(u,v) = gp(v,u) (u,v € T,M, pe M),
and

(2) 0 < gp(u,u), and the equality holds if and only if u = 0,
then we call g a C*-Riemannian metricon M, and (M, g) is called a C*- Riemannian
manifold (cf. [22]).

Let M be an n-dimensional C*°-manifold, and let (x1,. .., x,) be the standard

coordinates of R™. For any local coordinate neighborhood (U,, «) of M, where

a: U, — R" define a local coordinate (z5,...,x%) by

fi=z,0a:U,—R (i=1,...,n).
Then each point of U, can be uniquely expressed by the coordinate (x¢,...,z%).
We often simply write U, (x1,...,z,) for the coordinate neighborhood and its

local coordinate, omitting a.



Let Uy, (x¢,...,2%), be the local coordinate of M, and then for p € U, we
denote by
(@7(p), .- 25(p) = (a1, ..., an).

Then we consider a C'-curve ¢; through p defined by

Cz(t) = (CLl, ey Qi1, Q4 + t, (07 ,an),
and we denote by ( aiq> , its tangent vector ¢;(0) at p. Then
o

{(Z), )

is a basis of the tangent space T,M of M at p. A C*-vector field X on M is

written on U, as
n N a
X260 (57) et
i=1 i/ p

where £, i = 1,...,n, are in C*(U,). Moreover, if we take another coordinate

neighborhood Uy, (7, ..., 2?) and denote also on Us,

= d
X2 et =1
then both (£2,...,€2), (€7,...,¢€P) satisty

55_ - ax;@

i «
= 0§

&

on U, NUg. We denote by X(M), the totality of all C*-vector fields on M (cf.
22]).

A connection (covariant differentiation) V on a C*°-manifold M is a mapping
V:X(M)xX(M)> (X,Y) — VxY € X(M)

6



satisfying the following conditions:
(1) Vx(Y+2)=VxY +VxZ,
(2) VxvZ =VxZ +VyZ,
(3) VixY = fVxY,
(4) Vx(fY) = (XY + Vi Z
for f € C*(M) and X,Y,Z € X(M). Due to (3), it turns out that the value
(VxY), € T,M of VxY at p € M depends only on X, € T,M and Y.

Let (M, g) be an n-dimensional C'*°-Riemannian manifold. Then a connection
V (called the Levi-Civita connection) can be given as follows (cf. [22]);
20(VxY,Z)=Xg(Y,Z)+Yg(Z,X) - Zg(X,Y)
+9(Z,[X,Y]) +9(Y, [Z, X]) - g(X, [Y, Z])
for X,Y,Z € X(M). Moreover, the connection V satisfies
(1) X(9(Y; 2)) = g(VxY, Z) + g(Y, Vx Z),

and

(2) VxY — Vy X — [X,Y] = 0.

Let G be a C**°-manifold with a countable base. If G is a group, and if the
mapping (z,y) — xy from the product manifold G X G to G and the mapping
x +— 27! from G to G are both differentiable, then G is called a Lie group.

If a vector field X on a Lie group G satisfies

(Ly)-X = X
for all g € G, then X is called a left invariant vector filed. If X satisfies
()X = X

for all g € G, then X is called a right invariant vector field.
The Lie algebra g formed by the set of all left invariant vector fields on G is
called the Lie algebra of the Lie group G (cf. [8]).

7



For X € g, set
exp tX = (Exp tX)(e).

The mapping X — exp X is a mapping from g to G, and is called the exponential

mapping. exp tX is a one-parameter subgroup of G, and we have
exp(t + s)X = exp(tX)exp(sX), Rexprx = Exp tX.

We have
1
X, Y], = lim Y, — (Rope):Y)s} (XY €9)

Since, for an arbitrary element g of GG, we have A; = R,-1L,, it follows that
Pl 20— i Y
for Y € g. However, since Lj, and R, commute, we have
Ly (RAGA YOS I —77 .. Y

so that R,-1,Y € g. Hence A, Y € gfor g € g. The mapping Y — A, Y is alin-
ear transformation of the vector space g, and we denote this linear transformation
by Ad(g). That is,

Ad(9)Y =AY = R-1.Y (9e€G, Y eg).
Furthermore, since Ay, = AyAp, we have
Ad(gh) = Ad(g)Ad(h)

for any two elements g, h of GG. In particular, it is clear from the definition that
Ad(e) is the identity transformation 1 of the vector space g. Hence we have

Ad(g~')Ad(g) = 1. Hence Ad(g) is a nonsingular linear transformation of g, and
Ad(g)™" = Ad(g™)

8



holds. The mapping ¢ — Ad(g) is called the adjoint representation of the Lie
group G (cf. [8]).

Let us denote by M (n,R) the totality of all n x n real matrices, and let
GL(n,R):={A e M(n,R) | det A # 0},

where detA is the determinant of A. Then GL(n,R) is an open submanifold of
M(n,R) = R™. It can be shown that GL(n,R) is a Lie group, i.e., the mapping
defined by

GL(n,R) x GL(n,R) 3 (A,B) — AB € GL(n,R),
GL(n,R)3 A — A'eGL(n,R)

are both C* mappings. The mappings GL(n,R) 3 A = (a;;) — a;; (1 <1i,5<

n), give the coordinates of GL(n,R). The groups
O(n):={Ae Mn,R) |"AA= A'A =T}

and
SO(n):={Ae€O(n) | detA=1}

are compact closed Lie subgroups, called the orthogonal, the special orthogonal
groups, respectively. Here we denote by ‘A the transposed matrix, and I is the
unit matrix. The Lie algebra of both O(n) and SO(n) is

so(n) :={Aecgl(n,R) |"A+ A= 0},
where gl(n,R) is the Lie algebra of GL(n,R).
And, we denote by M (n,C) the totality of all n x n complex matrices. Then
Un):={2e€Mn,C)|'ZZ=2"Z =1}

9



and
SUn):={Ze€U(n) | detZ =1}

are both compact Lie groups, called the unitary and the special unitary groups,
respectively. Here Z implies the complex conjugate of Z € M(n,C). The Lie
algebras of U(n) and SU(n) are

u(n) :={Ze€ Mn,C) |'Z+ Z =0}

and
su(n) :={Z € u(n) | trZ = 0},

where trZ is the trace of Z € M(n,C) (cf. [22]).

10



Chapter 3

A decomposition of the curvature

tensor

In this chapter, we decompose the curvature tensor (field) on the homogeneous
Riemannian manifold SU(3)/T'(k,l) with an arbitrarily given SU(3)-invariant
Riemannian metric into three curvature-like tensor fields, and investigate geo-

metric properties.

3.1 Introduction

Let (V, <, >) be an n-dimensional real inner product space. In this chapter,
we use the notion of a curvature-like tensor of type (1,3) on (V,< , >) (cf.
(3.2.1)). We put

£(V):={L | L is a curvature-like tensor on (V, <, >)},

L1(V):={L e £(V) | L(u,v) =cuAv for u,v € V and some c € R},
L£,(V):={L € £(V) | the Ricci tensor Ricy, of L is zero},

L(V)={Le & (V)| <L, L' >=0forall ' € £,(V)}.

Then £(V) is decomposed into the orthogonal direct sum £, (V)@ L,(V) D L2(V).
Let L = Ly+L,+ Ly (L € £(V)) be the decomposition corresponding to £, (V') ®
L£,(V)® L£o(V). The component L, of L € £(V) is said to be the Weyl tensor of
L. The curvature-like tensors Ly, Ly, Ly of L = Ly + L, + Ly € £(V) are given

in terms of the Ricci tensor Ricy, and the scalar curvature Sy, of L (cf. Lemma
3.2.1).

11



In this chapter, using Lemma 3.2.1 we decompose the curvature tensor (field)
on the homogeneous Riemannian manifold (SU(3)/T'(k,1), g, x,0,)) into three
curvature-like tensor fields. On the manifold SU(3)/T(k,l), we deal with an

arbitrary SU(3)-invariant Riemannian metric g = g, a,,09)-

Now, let R be the curvature tensor (field) on the homogeneous manifold
(SU3)/T(k,1), g rans))> and R = R+ R4+ R® the orthogonal decomposition

of the curvature tensor R corresponding to
LT(G/H)) = L(T,(G/H)) ® Lo(T,(G/H)) & £2(T5(G/H))

(cf. Lemma 3.2.1), where G := SU(3), H :=T(k,l) and O :={T(k,1)}.

Let m be the subspace of su(3) such that
B(m,t(k,l)) =0 and Ad(h)m C m (h € T(k,1)),

where su(3) is the Lie algebra of SU(3), B is the negative of the Killing form of
su(3), t(k, 1) is the Lie algebra of T'(k,[), and Ad is the adjoint representation of
SU(3) on su(3).

In this chapter, we represent the curvature-like tensors R, R¥ and R® in
the orthogonal decomposition R = RY + R¥ + R® (€ £,(V) @ £,(V) @ £5(V))
of the curvature tensor R on (SU(3)/T(k,1), gin aene)) for (k1) € D, where

D =72\ {(0,t),(t,0), (t, 1), (t, —1t), (t, —2t), (2t, —t) | t € R}

(cf. Theorem 3.4.3). And then, under the condition (k,l) € D C Z?, we obtain
the Ricci tensor Ric® of the component R® of the curvature R = R + R +
R® on the homogeneous space (SU(3)/T(k,1), g aeng)) (cf. Corollary 3.4.4).
Furthermore, we estimate the Ricci curvature 7(?) of the curvature-like tensor R
(cf. Proposition 3.4.5).

12



3.2 Preliminaries

Let (V,< , >) be an n-dimensional real inner product space and gl(V") the
vector space of all endomorphisms of V. We denote by £(V') the vector space of
all tensors of type (1,3) on V which satisfy the following properties:

L:VxV — gl(V)
is an R-bilinear mapping such that, for all vy, ve, v3,v4 € V,

(3.2.1) L(vy,v9)v3,v4 >= — < L(vg,v1)v3,v4 >= — < L(v1,v2)vy, V3 >,
o < L(vy,v9)v3,v4 > + < L(vg,v3)v1, 04 > + < L(v3,v1)v2,v4 >= 0.

A tensor L € £(V) (of type (1,3) on (V,< , >) which satisfies the condition
(3.2.1)) is called a curvature-like tensor (cf. [3, 4]). If L € £(V), then we get
from (3.2.1)

(322) < L(Ul, Ug)Ug,’U4 >=< L(U37’1J4)'U1, Vo > (U17 Vg, V3, Vg € V)

From now on, let {e;}? ; be an orthonormal basis of (V, <, >). The Ricci tensor

Ricy, of type (0,2) with respect to a curvature-like tensor L on V' is defined by
(3.2.3) Ricp(v,w) = Z < L(e;,v)w,e; > (v,w e V).
i=1

The Ricci tensor Ricy, of type (1,1) with respect to L € £(V') is defined by
(3.2.4) < Ricp(v),w >= Ricgp(v,w) (v,w e V).
For L € £(V), we obtain from (3.2.1) ~ (3.2.4)
Ricp(v,w) =< Ricp(v),w >= Ricp(w,v) =< Ricy(w),v >
for v,w e V.

13



The trace of Ricy, for L € £(V)

(325) Sy = Z < RiCL(ei),ei >= Z < L<€j7€i)6iaej >

i=1 ij=1
is called the scalar curvature with respect to L € £(V'). The sectional curvature
K (o) (L € £(V)) for each plane 0 = {v,w}g (C V) is defined by

K, (o) < L(v,w)w,v >
o) = :
L <v,v><w,w>— < v,w >2

In general, the inner product <, > on £(V) is defined by

1 l
(3.2.6) MLES= Y LyLils
i g k=1

where Lijkl =< L(e;, ej)ex, e >.

Let £1(V) be the subspace of £(V') which consists of all elements L € £(V)
such that

L(v,w) =cvAw for v,w € V and some ¢ € R.

Here v A w is an element of gl(V') which is defined by
(A W) (=& wrzgm vEEW, 250
We put
V)t ={Lecg(V)| <L, L'>=0forall L' € £(V)}.

Then £,(V)t ={L € £(V) | Sy =0}. In fact, for L € £(V) and L' € £,(V), we
get from (3.2.5) and (3.2.6), and the definition of £,(V)

(3.2.7) <L, L' >=2¢ S,
where L'(v,w) = ¢ v Aw for some ¢ € R. From (3.2.7), we obtain the following;

<L/ L >=0forall L' e £,(V) < 2¢ S, =0forallceR

<~ S =0.

14



Putting
{L € £(V)" | Ricy =0} = £,(V)

and

{Leg (V)" | <L,I'>=0forall L' € £,(V)} = £(V),

we get the orthogonal direct sum decomposition of £(V') as follows:

L(V)=&(V)® &,(V)® L(V).

Putting together the results above, we obtain the following (cf. [6])

Lemma 3.2.1. Let V' be an n(> 3)-dimensional real inner product space and
L € &V). Then components Ly € £(V), L, € £,(V) and Ly € £5(V) of
L(= Ly + L, + Ls) are given as follows:

Li(u,v) = % uAv,
L,(u,v) = L(u.v)
(3.2.8) !

: . S
> {Rch(u) A v+ u A Ricp(v) — n—Ll u/\v},

n —

1 2
Ly(u,v) = {RicL(u)/\v—i-u/\RicL(v)—% u/\v}.

n—2

Proof. The fact that Ly, Lo, L, appeared in (3.2.8) belong to £(V') is easily
verified. And, L = L; 4+ L, + Ly. Moreover from straightforward computations
we get

Sp, =0, Ricy, =0, < Lo, L, >=0.

Thus the proof of Lemma 3.2.1 is completed.

15



3.3 Inequivalent isotropy irreducible
representations in SU(3)/T(k,1)

3.3.1 Isotropy irreducible representations

Let G be a compact connected semisimple Lie group and H a closed subgroup
of G. The homogeneous space G/H is reductive, that is, in the Lie algebra g of
G there exists a subspace m such that g =+ m (direct sun of vector subspaces)
and Ad(h) m C m for all h € H, where b is the subalgebra of g corresponding to
the identity component H, of H and Ad(h) denotes the adjoint representation of

H in m.

Let 7, (z € G) be the transformation of G/H which is induced by . Taking
differentials of 7, at p, :== {H} (€ G/H), we obtain the fact that the tangent
space 1, (G/H) = m is Ad(H )-invariant. The homogeneous space G/H is said
to be isotropy irreducible if (T,,(G/H),Ad(H)) is an irreducible representation.

3.3.2 Inequivalent isotropy irreducible summands in

SU(3)/T (k. 1)
Here and from now on, without further specification, we use the following
notations:
G := SU(3), g: the Lie algebra of SU(3), i=+/—1,
H :=T(k,1) = {diag[e*™™*? e¥0 ¢=2mik+06 | g ¢ R} for (k,1) € Z2
and |k| + [I] # 0,
t(k,1) : the Lie algebra of T'(k,1), v =k* + kI + 1%,
(X,Y)o=B(X,Y)=—-6tr(XY), X,Y € g: the negative of the
Killing form of g.

Let E;; be a real 3 x 3 matrix with 1 on entry (¢, j) and 0 elsewhere. And we
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put

1
X ——(FEjy— F X —(Fy + E
1= \/ﬁ( 12 21) 2 = \/E( 12 21)
1 .
X ——(Fi3— F X —(E3s+E
3 = \/ﬁ( 13 31) 4 = \/ﬁ( 13 31)
1 .
(331) X5 —\/E(Egg — Egg) X@ E(Egg + Egz)
1
X, = di k+20),—2k+1),(k—1
Xg = diaglk,l, —(k +1
= e gl =k 0}

Then
{Xl, i ,X7} (resp. {Xg})

is an orthonormal basis of m (resp. t(k,[)) with respect to (-, -)o such that
g=m+ t(k,1) and (m,t(k,1))o = 0.

If we put {X1, Xopr= my, {X3, Xafr= ma, {X;, Xe}r= m3, and {X7}g= my,

then m; are irreducible Ad(7T)-representation spaces.

In general, two representations (u3,Vy) and (p2,V2) of a Lie group G are
called equivalent if there exists a linear isomorphism p of Vi onto V5 such that

pou(z) = p(z)opforall x €G.

Park (cf. [13]) obtained the following

Theorem 3.3.1. Assume that |k|+ |l| # 0 (k,l € Z). Then a necessary and
sufficient condition for (m;, Ad(T'(k,1))) (1 = 1,2,3,4) to be mutually inequivalent
18

k£0, 140, k%I, k# -2 and | # —2k.
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3.4 A decomposition of the curvature tensor
on SU(3)/T(k,I)

3.4.1 The curvature tensor field on a homogeneous
Riemannian space

Let G be a compact connected semisimple Lie group and H a closed sub-
group of G. We denote by g and h the corresponding Lie algebras of G and H,
respectively. Let B be the negative of the Killing form of g. We consider the
Ad(H)-invariant decomposition g = h + m with B(h,m) = 0. Then the set of
G-invariant symmetric covariant 2-tensor fields on G/H can be identified with
the set of Ad(H)-invariant symmetric bilinear forms on m. In particular, the set
of G-invariant Riemannian metrics on G/H is identified with the set of Ad(H)-

invariant inner products on m (cf. [2, 6, 10, 13]).

Let <, > be an inner product which is invariant with respect to Ad(H) on
m, where Ad denotes the adjoint representation of H in g. This inner product

<, > determines a G-invariant Riemannian metric g~ on G/H.

For the sake of the calculus, we take a neighborhood V' of the identity element
ein G and a subset N (resp. Ny) of G (resp. H) in such a way that

(i) N =V nexp(m), Ny =V nNexp(h),

(ii) the mapping N X Ng 3 (¢, h) — ch € N - Ny is a diffeomorphism,

(iii) the projection 7 of G onto G/H is a diffeomorphism of N onto a neigh-
borhood 7(N) of the origin {H} in G/H. Here, {exp(tX) |t € R} for X € g is

a l-parameter subgroup of G.

Now for an element X € m, we define a vector field X™* on the neighborhood
m(N)of {H} in G/H by

X:(C) = (TC)*X{H} € TW(C)G/H (C - N)7

18



where 7, denotes the transformation of G/H which is induced by ¢. Let {X;}; be
an orthonormal basis of the inner product space (m,< , >). Then {X;}; is an
orthonormal frame on 7(N)(C G/H).

On the other hand, the connection function « (cf. [9]) on m x m corresponding

to the invariant Riemannian connection of (G/H, g~ , ~) is given as follows:
a(X,Y) = %[X, Vet UX,Y) (X,Y €m),
where U(X,Y) is determined by
2 < UX,Y),Z> =< 2,X],Y >+<X,[Z,Y]. >

for XY, Z € m, and X, denotes the m-component of an element X € g =h+m.
Let V be the Levi-Civita connection on the Riemannian manifold (G/H, g« , ~).
Then on 7(N) (Vx-Y* )iy = a(X,Y) (X,Y € m). Moreover, the expression
for the value at p, := {H }(€ G/H) of the curvature tensor field is as follows (cf.
[9]):
(3.4.1) R(X,Y)Z = a(X,a(Y,2)) — a(Y,a(X, Z))

— o([X, Y], Z) —lIX; Y], 2] (XY, Z € m),

where X, (resp. Xj) denotes the m - component (resp. b -component) of an

element X € g=5h+m.

In general, the Ricci tensor field Ric of type (0,2) on a Riemannian manifold
(M, g) is defined by

(3.4.2) Ric(Y,Z) = tr{X — R(X,Y)Z} (X,Y,Z € X(M)).

Let {Y;}; be an orthonormal basis of the inner product (m, <, >). Since the
group G is unimodular, we obtain the fact (cf. [2]) that

(3.4.3) > Uy Y;) =0
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Using (3.4.1), (3.4.2) and (3.4.3), we obtain the following expression (cf. [2]) for
the value at p, of the Ricci tensor field Ric on (G/H, g , ~):

, 1 1
Rie(Y,Y) == 53 < [V Yl [V, Yi]m > + 5 BO,Y)
(3.4.4) ) ’
+ ZZ< [Y;, Y], Y 7
2

for Y € m, where B is the negative of the Killing form of the Lie algebra g.

3.4.2 Ricci tensor fields on inequivalent isotropy irreducible
homogeneous spaces

We retain the notation as in Subsection 3.4.1. The set of G-invariant symmet-
ric tensor fields of type (0,2) on G/H can be identified with the set of Ad(H)-
invariant symmetric bilinear forms on m. In particular, the set of G-invariant
metrics on G/H is identified with the set of Ad(H )-invariant inner products on

m.

Let (, ), be an Ad(G)-invariant inner product on g such that (m, ), = 0. For
the sake of simplicity, we put (, ), = B. Let m = my + - -- + m, be an orthog-
onal Ad(H)-invariant decomposition of the space (m, B) such that Ad(H )y, is
irreducible for i = 1,..., ¢, and assume that (m;, Ad(H)) are mutually inequiva-
lent irreducible representations. Then, the space of G-invariant symmetric tensor
fields of type (0,2) on G/H is given by

{MBlmy +- -+ A Blm, | Ao A €RY
and the space of G-invariant Riemannian metrics on G/H is given by
(3.4.5) {MBla, + -+ AgBlm, | A1 >0,..., A, >0}

In fact, for an arbitrarily given Ad(H )-invariant inner product < , > on m, we

have <, > |n, = \;B|m, on each m; by the help of Shur’s lemma (cf. [23, 24]),
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and < m;,m; >= 0 for i,j (i # j) since (m;, Ad(H)) are mutually inequivalent
(ct. [10, 13, 20]).

Note that the Ricci tensor field Ric of a G-invariant Riemannian metric on
G/ H is a G-invariant symmetric tensor field of type (0,2) on G/H, and we identify
Ric with an Ad(H )-invariant symmetric bilinear form on m. Thus, if (m;, Ad(H))

are mutually inequivalent irreducible representations, then Ric is written as
(3.4.6) Ric = y1 Blwm, + - + Y Blm,

for some y1,...,y, € R.

3.4.3 The Ricci tensor field and the scalar curvature
on SU(3)/T(k,l) with a SU(3)-invariant metric
We retain the notation as in Subsection 3.4.2. In this subsection, we assume
that the isotropy irreducible representations (m;, Ad(T'(k,1)) (i = 1,2,3,4; k,l €

Z) are mutually inequivalent. For the sake of simplicity, we put

D =7\ {(0,%),(t,0), (t,1), (t, —t), (t, —=2t),(2t, —t) | t € Z}.

Let (, )o be the negative of the Killing form of su(3), and < , > an ar-
bitrarily given Ad(7'(k,l))-invariant inner product on m. By Theorem 3.3.1,
we obtain the fact that the isotropy irreducible representations (m;, Ad(T'(k,())
(1 =1,2,3,4; k,l € Z) are mutually inequivalent if and only if (k,[) in T'(k,1)
belongs to D. Since (m;, Ad(7T'(k,l)) are mutually inequivalent, for the inner
product < , > on m there are corresponding positive numbers Ay, Ao, A3 and \4
such that

(Xi/VM =Y, Xo/V/\ = Ys, X3/\/ A=Y,
(3.4.7) Xa/V o =:Ya, Xs/\/As=1Ys, Xe/\V/ s = Ye,
X1/ Ay = Yz}
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is an orthonormal basis of m with respect to the inner product < , >, by virtue
of (3.3.1), Theorem 3.3.1 and (3.4.5). This inner product < , > determines a
SU (3)-invariant Riemannian metric g, a,,xg,0,) o0 SU(3)/T(k,1).

Now we normalize SU(3)-invariant Riemannian metrics on SU(3)/T'(k,l) by

putting Ay = 1, and denote by g(x, x,,),) the metric defined by

AlB‘ml + )‘QB|m2 + )‘3B‘m3 + B’m4'

By virtue of (3.3.1), (3.4.4), (3.4.6) and (3.4.7), we obtain the following result
(cf. [13]).

Lemma 3.4.1. Assume that (k,l) € D. Then the Ricci tensor Ric on the

Riemannian homogeneous space (SU(3)/T(k,1), gaire0s)) @5 given as follows:

Ric(Y;,Y;) =0 (i # ),

2 2 4l 2 )
Ric(Ys, ) = Ric(Yy, Yo)= 2222 =25 +6M0ds b +])

120 Ao ks 8yA*
. , )\22 = )\32 5 )\12 + 63\ r
Ric(Ys,Y3) = Ric(Yy, Y,) = N
ic(Ys, Ys) = Ric(Ya, Ya) 1 87
. | D D D R SRR
Ric(Ys,Ys) = Ric(Ys, Ye) = -
ic(Ys, Ys) ic(Ye, Ys) 1221 A2)3 8yAs?’

1 k+1)2 12 k2
Rz‘cm,n):g{( ) }

YERD VeV
where v == k* + kI + 2.

The trace of the Ricci tensor Ric of a Riemannian manifold (M,g), (i.e.,
> Ric(ej, ej), where {e;}; is a (locally defined) orthonormal frame on (M, g)),

is called the scalar curvature of (M, g).
By virtue of Lemma 3.4.1, we get (cf. [13])
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Lemma 3.4.2. The scalar curvature Sy, x,.n,) 0f the Riemannian homoge-
neous space (SU(3)/T(k,1), g ran))s (K, 1) € D, is given as follows:

—(A12 X%+ A3+ 6(A A + Aads + AsA))
6 A1 Ao \3

L ((k+0? 12 K
~ 5 Tyt 2
8y A1 A2 A3

S(M)\Q)@) =

where v := k* + kl + [2.

3.4.4 A decomposition of the curvature tensor field on
(SU(S)/T(k7 l)? g()\l,)\g,/\g))

We retain the notation as in Section 3.1 and Subsection 3.4.3. Let V be the
Levi-Civita connection on the homogeneous space (SU(3)/T'(k, 1), gx, x0,0,)) and

VR the curvature tensor field with respect to V.

For the sake of convenience, we use the following notations:
V= T{T(’C»l)}<SU(3>/T<k7 l))? (‘/7 <, >) = (V7 g()\1,>\27>\3)’\/)7 R:=VR.

Then, the curvature tensor R at p,(= {T'(k,1)}) of (SU(3)/T(k,1),gx 2009)) 18

uniquely decomposed as

R=RY + R*+ R®

(3.4.8)
(RY € £,(V), R* € £,(V), R® € £,(V)).

The curvature-like tensor R appeared in (3.4.8) is said to be the Weyl tensor
(field) of the curvature tensor field R on (SU(3)/T(k,1), g(x xa0s))-

Then, by virtue of (3.2.8), Lemmas 3.4.1 and 3.4.2, we obtain

Theorem 3.4.3. Let RV, R* and R® be the the curvature-like tensors
appeared in the curvature tensor R = RY 4+ RY+R® (€ £,(V)® L, (V)@ L2(V))
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0 (SU3)/T(k ), gounans))- If (k1) € D, then
1
R(l)(mv Y;) = ES(/\I:)\Q,)G)}/; A Y;'>
1

RU(Y,.Y)) = R(Y,.Y;) — H{Rie(¥)) 1Y, + Y A Ric(Y,))
1
30

1 2

ROV, Y;) = HRIC(Y) AY; 4 Y ARIC(H)} — 2 S, rgag VAT,

+ 2S00 e Yi A Y,

where {Y;}{_, is an orthonormal basis on (m, < , >) and S\, x,0s) @5 the scalar
curvature of (SU(3)/T(k,1), o rons))-

In general, the Ricci curvature r of a Riemannian manifold (M, g) with respect

to a nonzero vector v € T'M is defined by

) = Pl

From Theorem 3.4.3, we get

Corollary 3.4.4. Let R® be the curvature-like tensor appeared in the curva-
ture tensor R = RY + R + R® on (SU(3)/T(k,1), g rans))s where (k,1) € D.
Then the Ricci tensor of R is given as follows:

1
=7
By the help of Lemma 3.4.1 and Corollary 3.4.4, we obtain

Ric® (Y;,Y;) = == S0, pan) 03 + Ric(Y;,Y)).

Proposition 3.4.5. Assume that (k,l) € D, k >1>0, and
302
<
~ 10(k2 + Kl 4 12)
n (SU3)/T(k,1), goan), A > 0. Then the Ricci curvature r® of the curvature-
like tensor R®) in the curvature tensor R = RY + R + R® on (SU(3)/T(k,1),

giay) is estimated as follows:

A

r(2)(Y1) — r(2)(Y2) <r® < 7«(2)(3/7)’
where v (Y;) = Ric®(Y;,Y;) fori=1,2,...,7.
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Chapter 4

Harmonic homomorphisms

between two Lie groups

In this chapter, we get a complete condition for a group homomorphism of
a compact Lie group with an arbitrarily given left invariant Riemannian metric
into another Lie group with a left invariant metric to be a harmonic mapping,
and then obtain a necessary and sufficient condition for a group homomorphism
of (SU(2), g) with a left invariant metric g into the Heisenberg group (H, hg) to

be a harmonic mapping.

4.1 Introduction

Harmonic mappings of a compact Riemannian manifold (), g) into another

Riemannian manifold (N, k) are the extrema of the energy functional (cf. [22])

1
B6) =5 [ Ndolfv,

where ||d¢|| is the norm of the differential d¢ of a mapping ¢ € C°(M, N) with
respect to the metrics g, h.

In this chapter, we construct group homomorphisms of a closed (compact and
connected) Lie group G with a left invariant metric ¢ into another Lie group H
with a left invariant metric A which are harmonic.

It is well known that every inner automorphism of a Lie group G into itself is
both isomorphic and harmonic with respect to a bi-invariant Riemannian metric

go on G.

25



However, we here deal with a group homomorphism between two Lie groups

with arbitrarily given left invariant metrics.

First of all, we get a necessary and sufficient condition (cf. Proposition 4.2.1)
for a group homomorphism ¢ of a compact Lie group G with a left invariant
metric g into another Lie group H with a left invariant metric A to be a harmonic
mapping.

And then, using this complete condition, we obtain a necessary and sufficient
condition for a group homomorphism ¢ of SU(2) (= G) with a left invariant
metric ¢ into the Heisenberg Lie group (H,hg) (cf. [12, 14]) to be a harmonic
mapping.
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4.2 Harmonic group homomorphisms

Let (M,g), (N,h) be two Riemannian manifolds of dimension n, m, respec-
tively. Let ¢ : M — N be a smooth mapping and let E := ¢~ 'T'N be the induced
bundle by ¢ over M of the tangent bundle TN of N. We denote by I'(E), the
space of all sections V of E, that is, V' € I'(E) implies that V is a mapping of
M into E such that V, € Ty N for all € M. For X € I'(T'M), we define
¢ X € I'(E) by (¢+X)z = ¢4 Xy € TyoyN (x € M), where ¢, is the differential
of ¢ at z. For Y € T'(TN), we also define Y € T'(E) by Y, := Yy (z € M).

We denote V, ¥V the Levi-Civita connections of (M, g), (N, h), respectively.
Then we give the induced connection V on E (cf. [5, 6]) by

d
NP o Viplieo (X € T(TM), V € T(E)),

(VxV)a = = " Py

where x € M, ~(t) is a curve through x at ¢ = 0 whose tangent vector at z is
X,, and N Py = To@)N — T4V is the parallel displacement along a curve
#(7(s)) (0 < s <t) given by the Levi-Civita connection YV of (N, h)).

We define a tension field 7(¢) € I'(E) of ¢ by

n

(4.2.1) () =Y (@eigb*ez- - ng*Veiei) ,

i=1
where {e;}"; is a (locally defined) orthonormal frame field on M. We call ¢ to
be a harmonic mapping if 7(¢) =0 on M.

Let G be an n-dimensional closed (compact and connected) Lie group with an
arbitrarily given left invariant metric g, and H an m-dimensional Lie group with
a left invariant metric h. Let g (resp. h) be the Lie algebra of all left invariant
vector fields on G (resp. H). Let ¢ : G — H be a group homomorphism, {e;}? ,
(resp. {d,}7,) an orthonormal basis of (g, g) (resp. (b, h)). We use the following
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notations:

=) 0" do,
a=1
(4.2.2) IVe,€j =: De,€j =: Zaijk e,
thadb ==. Vdadb =. Z/Babc dc.

Here D (resp. V) is the Levi-Civita connection on (G, g) (resp. (H,h)), and
d¢ (= ¢.) is the differential of the group homomorphism ¢. From (4.2.2) we

obtain

Veiduei = Y ¢ ¢ Ba’ do
a,b,c=1

(4.2.3)

n m

$u(Deer) = > > o ¢,°d,

7j=1 a=1

since a;;* and B, are constants. By the help of (4.2.1), (4.2.3) and the definition

of harmonic mapping, we obtain the following proposition.

Proposition 4.2.1. Let (G, g) be an n-dimensional closed Lie group with an
arbitrarily given left invariant metric g, (H, h) an m-dimensional Lie group with
an arbitrarily given left invariant metric h. Then a group homomorphism ¢ :

(G,g) — (H,h) is a harmonic mapping if and only if

(424) Z (Z ¢z QSZ ﬁab - Zau ¢] ) -

=1 a,b=1

forallc=1,2,...,m.
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4.3 Harmonic group homomorphism between
SU(2) and the Heisenberg group

In this section, we will construct harmonic group homomorphisms of (SU(2), g)

into the Heisenberg Riemannian Lie group (H, hy).
Let su(2) be the Lie algebra of SU(2). The Killing form B of su(2) satisfies
B(X,Y)=4tr(XY) (X,Y €su(2)).
We define an inner product (, )y on su(2) by
(X,Y):=—-B(X,Y) (X,Y €su(2).

Here and from now on, let g be an arbitrarily given left invariant Riemannian
metric on SU(2). The following lemma is known (cf. [5, 11, 18]).

Lemma 4.3.1. Let g be a left invariant Riemannian metric on SU(2). Let
<, > be an inner product on su(2) defined by < XY > = g.(X,,Y.), where
X,Y € su(2) and e is the identity matriz of SU(2). Then there exists an or-
thonormal basis { X1, Xo, X3} of su(2) with respect to (1, )o (= —B) such that

[X1>X2] = (1/\/§)X37 [X27X3] = (1/\/§)X17

(4.3.1)
[Xg,Xl] = (1/\/5))(2, < Xi,Xj >= (5ija12,

where a; (1 = 1,2,3) are positive constants determined by the given left invariant

Riemannian metric g on SU(2).

Let H be the Heisenberg group (cf. [12, 14]), that is,

1 ap a3
H = 0 1 || a as,a3€R
0 O 1
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Denote by z, y, z coordinates on H, say for A € H, 2(A) = aja, y(A) = aqs,
2(A) = ay3. If L is the left translation by an element B € H, we have

Ly de=dx, Lydy=dy, L} (dz—zdy)=dz— xdy.

On H, the vector fields

0 0 0 0
(432) d1 = 8_1," dg = a—y + l’&, d3 =

are dual to dr, dy, dz — zdy, and are left invariant. Moreover, {d,}3_; is or-

thonormal with respect to the left invariant metric Ay on H given by
ds® = dz* + dy* + (dz — xdy)®.

The Riemannian manifold (H,hy) is referred to as the Heisenberg Riemannian

Lie group.

We retain the notations as in Sections 4.2. In general, the Riemannian con-

nection V on a Riemannian manifold (M, g) is given by

29(VxY,Z) = Xg(Y,Z) +Yg(X,Z) — Zg(X,Y)
(4.3.3) +9([X,Y],Z2) +¢([Z, X],Y)
—g([Y, Z], X) (XY, Z € X(M)).

We fix an orthonormal basis {X;, Xs, X3} of su(2) with respect to (, )o
satisfying (4.3.1) in Lemma 4.3.1 and denote by g(a, 45,44 the left invariant Rie-
mannian metric on SU(2) which is determined by positive real numbers ay, as, as
in Lemma 4.3.1. Moreover, we normalize left invariant Riemannian metrics on
SU(2) by putting a3 = 1. We denote by g(a,.as1), Or simply by g(a,a,), the
left invariant Riemannian metric which is determined by positive real numbers

as = 1,(11,@2.
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For the orthonormal basis { X7, Xs, X3} of su(2) with respect to —B =: (, )o

in Lemma 4.3.1, if we put

1 1
e = —Xi, ey :i=—X,, e3:=X;3,
a1 a2

then {ey, ey, e3} is an orthonormal frame basis of (SU(2), ga;,a,)). From (4.3.1),

we have

! e3, [eq, e3] = LIPS le3, eq] = e
\/ECLIQQ 3 2,3 \/50,2 1, 3, ©1 \/§a1 2

By virtue of (4.3.3) and (4.3.4), we get

(4.3.4) le1,e5] =

14 2 2 1 A 2
2\/§ a1a9

2\/§ a1a9
-1 2 2

Desey— MO A Do, =0 (i=1,2,3).

2\/§ a1Qa9

Using (4.2.2), (4.3.4) and (4.3.5), we have

€1,

(4.3.5)

1—(a1)® + (a2)*
3 2
(0% = —=l) s
12 13 S,
1 _ 3 == (a1)2 et (a2)2
Qo3 = —Qig1 =
(4.3.6) 22 aja;

p =14 (a1)® + (a)?

- 2\/§ a1as

ag’ = —agy' =
ozijk = (0 otherwise.
Moreover, by virtue of (4.3.2) and (4.3.3), we get

[dla d2] = d37 [d27 d3] = [d?n dl] = Oa

. 1

(437) dedZ =0 (Z = 1’ 273)7 vd1d2 = _vdzdl = §d3a
1 1

Vd2d3 — Vd3d2 — §d1’ vdgdl = vdldS — _§d2
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From (4.2.2) and (4.3.7), we have

1 1

Bia® = =B’ ==, B’ =P’ =2,

(4.3.8) % 2
Bs1® = Bis”® = —5 Gpe = 0 otherwise.

By virtue of (4.2.4) in Proposition 4.2.1, (4.3.6) and (4.3.8), we obtain a group
homomorphism ¢ : (SU(2), g(a;,a2)) — (H, ho) is a harmonic mapping if and only
if
3 3
> ¢%6° =0 and Y 60 =0.
i=1 i=1

Hence, we have the following theorem.
Theorem 4.3.2. A group homomorphism ¢ of (SU(2), g(a,.a0)) into the
Heisenberg group (H, hg) is a harmonic mapping if and only if

3

> ho(¢ei, da) - ho(¢uei, ds) =0

i=1
and

3
Z ho(¢.€,d3) - ho(d€i,dy) = 0.
i=1
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Chapter 5

Variations of the length integral

In this chapter, we obtain a necessary and sufficient condition for the second
variation of an arbitrarily given smooth variation of a geodesic on a Riemannian

manifold to be 0.

5.1 Introduction
Let 75 : [0,1] - M (—e < s < ¢) be a smooth variation of a geodesic

7o =7 =ux; (0 <t <1)on a Riemannian manifold (M, g) such that 7,(0) = z,
and 75(1) = x; for every s € (—¢,e). We put

v dr
L(s) := L(7s ::/ 2| dt,
(@)= Lm):= [ 15

and calculate the second variation (d2L(s)/ds®)s=o. The second variation is ex-
pressed in terms of the sectional curvature (cf. [13, 15, 17, 21]) and the variation
vector field along the curve 7 = z; (0 <t < 1). And then, we get a necessary and

sufficient condition for the second variation (d*L(s)/ds?)s—o to be 0.

These calculus methods in variation problems are very useful in the study
on natural sciences. But, in most of references, the calculus of variations is
insufficient and omitted. In this chapter, we make a minute and detailed poof of
the calculus parts which are insufficient and omitted in variation problems of the

length integral.
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5.2 The first and second variations of the length
integral

Let (M, g) be a complete Riemannian manifold and V the Levi-Civita con-
nection for the Riemannian metric g. For a C*-curve 7 =z, (0 < ¢ < 1) on M,

let
¢:(t,s) €]0,1] x (—g,e) — o(t,s) e M

be a C'"*°-mapping which satisfies

o(t,0) = zy.

Such a mapping ¢ is called a wvariation of 7 = z; (0 < ¢t < 1). From now
on, we assume that 7 = z; (0 < t < 1) is parametrized by its arc length.
Let 74 : [0,1] — M (—e < s < ¢) be a C*®-mapping which is defined by
Ts(t) := ¢(t,s). The length L(s) of 75 is given by

621) L) = L) = [ fo000/00)0. 0.000)0) .

Let ¢.(0/0t),s) and ¢.(0/0s),s) are defined on [0,1] x (—&,g). Moreover, we
define a vector field X; along the curve 7 =z, (0 <t < 1) by

(5.2.2) X, = 6.(0/0s) ) (0<t<1),

Such a vector field X; (0 <t < 1) along the curve 7 = x; (0 <t < 1) is called
the wvariation vector field along ¢. In this chapter, we assume that ¢(0,s) = zg
and ¢(1,s) = x1, s € (—¢,¢), for any variation ¢ of the curve 7 =z, (0 <t < 1).

Then we have

(5.2.3) Xo=0¢€T, (M), X,=0¢T,, (M).
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Now we calculate the first variation (dL/ds)s—o of L(s). First of all, we get

<\/9 (0/0)(1,5), 0+(0/01)(1,5)) )
(5.2.4) _ 9(Vs0(0/0t)5), 0/ 0)1.5)
V9(9:(0/01) 1,5), (0/0t) (15))

Since

Vs¢u(0/0t) 10y = Vidu(0/05) 1,5 = 94[(0/05) (), (0] Ot) 1,9)]
=T (6:(0/05)1.5) 6+(0/Ot) 1.9))
and TV = 0 (cf. [21]), we obtain on [0, 1] X (—¢,¢)

(5.2.5) Vs@(@/at)(ts) = Vt¢*(8/8s)(t7s).
Here, TV is the torsion of V. We get from (5.2.2) and (5.2.5)
(5.2.6) ¢ (0/0) w0y =y, (Vs:(0/0) (1)) s=0 = Vi Xs.

From (5.2.1), (5.2.4) and (5.2.6), we obtain

(5.2.7) (dlc’l—f)>szo - /0 1g(vtxt,a:;) dt.

Moreover, we get

d
L
By the help of (5.2.7) and (5.2.8), we have

(%(85))820 B /01 {i( (X, 73)) — 9( X, Vt:c;)} dt

1
— [g(Xp )]} — / 9(X,, V) dt.
0

Since Xg=0€ T,,(M) and X; =0 € T,,,(M) from (5.2.3), we get from (5.2.9)

(%is))szo _ /0 (X0 Vi) di.
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(5.2.8) 9(VeXe, 21) = —(9(Xs, 7)) — 9(Xe, Viy).

(5.2.9)



Hence we have the following theorem.

Theorem 5.2.1. Let 75 : [0,1] — M (—e < s < €) be an arbitrarily given
smooth variation of T = x; (0 <t < 1) such that 75(0) = zo and 75(1) = x1 for
every s € (—e,e). Then, (dL(s)/ds),_, = 0 if and only if Vi,z; = 0 for every
t € (0,1), that is, 7 = x4 (0 <t < 1) is a geodesic in the Riemannian manifold
(M, g).

Next, we calculate the second variation (d*L(s)/ds*).—o of the geodesic T = x;
(0 <t <1). From (5.2.4) and (5.2.5), we get

O (/916001 0y 0.(0/ 1)) )
_ 9(VVi8.(9/05) (1), 92(0/08) 1) + || V164(9/05) (1.9 |I?
(5.2.10) {90040/ 00, 64(2/00) )}
 {9(Y16.(0/05) 15y, 64(0/08) ) Y
{9(6:(0/0t)1,0), 30/t .0))}F

Moreover, the following is well known (cf. [17]):
ViV (0/05)1,5) — ViV (0/05)(1,5)
= R(0+(0/05)t.5), 9+(0/0t) 1,5)) 9+(9/ 05) 1,5)-

Here, R is the curvature tensor field on (M, g). Furthermore,
9(ViVs9i(0/05)1,5), $(0/0t)(1.5))
d

= 9(Vs0(9/05)(1.5), Vid(9/0t) 1.5))-
By the help of (5.2.6), (5.2.10), (5.2.11) and (5.2.12), we obtain

(5.2.11)

1

(d L(s)) - [(9(V 56, (0/05) (1.0), D+ (0)00) 1.9)) ) oo] 1_

ds?
1
(5.2.13) L / {g(R(X,, 2) X0, 7)) + || V. X2
0
— (9(V: Xy, 27))? .
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Let X; (0 <t < 1) be the component of X; perpendicular to the geodesic 7 = x;
(0 <t <1), that is,

(5.2.14) X=X, —g(Xy, 7)) ).

Since 75(0) = ¢(0, s) = zo and 75(1) = ¢(1,s) = x; for every s € (—¢,¢), we get
(5.2.15) Vs0:(0/08)0,5) =0, Vs0.(0/0s)1,6) = 0.

From (5.2.14), we obtain

d(g( Xy, x|
VtXt FE, VtXtL + (g( t?mt))x;7

dt
d(g( X,z
WXLID _ o9, xt, 4,

(5.2.16)
0=

because z; (0 < t < 1) is a geodesic in the Riemannian manifold (M, g). From
(5.2.16), we get

(5.2.17) IVeX |2 = (9(VeXe, 20)2 = |V X |12

We obtain from (5.2.13), (5.2.14), (5.2.15) and (5.2.17)

<d2cfs(28))s:0 = /Ol{llthﬁl2 — g(R(X}, x))x), X;H) Y.

Thus, we get the following theorem.

Theorem 5.2.2. Let 75 : [0,1] — M (—e < s < €) be an arbitrarily given
variation of a geodesic o =T = x; (0 <t < 1) on (M,g) such that 75(0) = x
and 7,(1) = 1 for every s € (—¢,¢). Then the second variation (d*>L/ds*).—g is

gien as follows:

d*L(s ! !
< ds(2 )) _/0 {IVeXi|1? = g(R(XG @), Xi) pt
s=0

1
- / (IVXHP — IXHP ot 20}t
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where o(X;, 1)) is the sectional curvature determined by { X, x}}.

By virtue of Theorem 5.2.2, we obtain the following corollary.

Corollary 5.2.3. Assume that (M, g) is a space of constant negative. For an
arbitrarily given variation 75 : [0,1] — M (—e < s <€) of a geodesic 1o = T = x;
(0<t<1)on(M,g) such that 7,(0) = x¢ and 75(1) = x; for every s € (—¢,¢),
a necessary and sufficient condition for the second variation (d*L/ds?)s— to be 0
is X =0(0<t<1).
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