

Attribution-NonCommercial-NoDerivs 2.0 KOREA

You are free to :

 Share — copy and redistribute the material in any medium or format

Under the follwing terms :

Attribution — You must give appropriate credit, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but

not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may

not distribute the modified material.

You do not have to comply with the license for elements of the material in the public domain or where your use

is permitted by an applicable exception or limitation.

This is a human-readable summary of (and not a substitute for) the license.

Disclaimer

http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0
http://creativecommons.org/licenses/by-nc-nd/2.0/kr

Thesis for the Degree of Master of Engineering

An OAuth Implementation on the

OwnCloud for Secure Access by Social

Networking Sites

by

Otieno Mark Brian

Department of IT Convergence and Application Engineering

The Graduate School

Pukyong National University

February 2016

[UCI]I804:21031-000002236432

ii

An OAuth Implementation on the

OwnCloud for Secure Access by Social

Networking Sites

 (소셜 네트워킹 사이트의 안전한 접근을

위한 OwnCloud 상의 OAuth 구현)

Advisor: Prof. Kyung-Hyune Rhee

by

Otieno Mark Brian

 A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Engineering

Department of IT Convergence and Application Engineering,

The Graduate School,

Pukyong National University

February 2016

iii

An OAuth Implementation on the OwnCloud for Secure Access by

Social Networking Sites

A thesis

by

Otieno Mark Brian

Approved by:

(Chairman) Prof. Kim-Chang Soo

(Member) Prof. Man-Gon Park (Member) Prof. Kyung-Hyune Rhee

February 26, 2016

iv

Table of Contents

Table of Figures .. v

List of Tables .. vi

1. INTRODUCTION .. 1

1.1. Background .. 1

1.2. Overview and Contribution .. 3

2. PRELIMINARIES.. 6

2.1. OwnCloud .. 6

2.2. OAuth 2.0 ... 7

2.3. How OAuth Works ... 10

2.4. Related Work .. 18

3. PROPOSED SCHEME .. 21

3.1. System Model ... 21

3.2. System Setup .. 28

4. IMPLEMENTATION AND SECURITY ANALYSIS 33

4.1. Third Party Integration ... 33

4.2. Security Analysis .. 37

4.3. Performance Evaluation ... 39

Source code ... 41

5. CONCLUSION ... 44

References ... 46

Acknowledgement .. 50

v

Table of Figures

Figure 1: OwnCloud’s Architecture ... 6

Figure 2: OAuth Protocol Flow ... 9

Figure 3: The OAuth server-flow protocol sequence 12

Figure 4: The OAuth client-flow protocol sequence 15

Figure 6: proposed System Model ... 22

Figure 7: OwnCloud login screen .. 28

Figure 8: Integration of Facebook Login Backend .. 29

Figure 9: Facebook login backend ... 30

Figure 10: OAuth2.0 integration into OwnCloud infrastructure 31

Figure 11: OAuth2.0 Authorization Server introspection endpoint 32

Figure 12: Alternative logins via social networking sites 34

Figure 13: Permission dialog to access Facebook public profile 35

Figure 14: OwnCloud-Facebook Authentication dialog 36

Figure 15: Authentication dialog for login via Twitter 37

Figure 16: Successful request JSON document ... 43

vi

List of Tables

Table 1: Notations and descriptions ... 11

Table 2: Application redirection endpoint .. 23

Table 3: JSON response parameters and values .. 24

Table 4: Successful access token JSON response .. 24

Table 5: Comparison between performance test results 40

Table 8: Authentication endpoint code .. 41

Table 9: Introspection endpoint code ... 42

vii

소셜 네트워킹 사이트의 안전한 접근을 위한 OwnCloud 상의

OAuth 구현

오티에노 마크 브라이언

부경대학교 대학원 IT 융합응용공학과

요 약

클라우드 스토리지 서비스뿐만 아니라 소셜 미디어 사이트의

급속한 발전으로 인해, 기존의 웹 기반 서비스를 포함하여 블로그나

사진공유 형태의 소셜 네트워크 서비스가 점점 더 인기를 끌고 널리

사용되고 있는 추세이다. 그러나 이때 여러 사이트 간의 미디어 공유

서비스에 대한 보안도 중요하게 고려할 필요가 있다. 이에, 본 논문은

클라우드 기반의 안전한 데이터 공유시스템을 구현하기 위해

OwnCloud 와 OAuth 를 이용한 접근제어 프로토콜을 설계하였다.

OwnCloud 는 사용자 스토리지 서버 시스템으로서, 파일 동기화 및

공유 서비스에 대한 유연성을 제공한다. OAuth 는 다양한 서비스들

간의 식별정보 (identity) 관리를 위한 표준 프로토콜이다. 따라서

OwnCloud 와 OAuth 를 연동하여 페이스북이나 트위터 같은 소셜

네트워킹 서비스를 통해 사용자들 간에 안전하게 파일을 공유할 수

있는 시스템을 제공할 수 있다.

.

viii

An OAuth Implementation on the OwnCloud for Secure Access by

Social Networking Sites

Otieno Mark Brian

IT Convergence and Application Engineering, Graduate School

Pukyong National University

Abstract

There has been advancement in the area of cloud storage services as well as a

tremendous growth in the embrace of social media sites. Allowing one Web service to

act on our behalf of another has become increasingly important as social Internet

services such as blogs, photo sharing, and social networks have become widely

popular. With this increased cross-site media sharing arises numerous security

implications and thus the need to come up with security protocols and considerations.

OwnCloud is an enterprise file sync and share that is hosted in user’s data center, on

user’s servers, using user’s storage. OwnCloud’s server is flexible to enable

Information Technology experts to protect and manage files within the OwnCloud

environment; from file storage to user provisioning and data processing. OAuth, a

new protocol for establishing identity management standards across services,

provides an alternative to sharing our user-names and passwords, and exposing

ourselves to attacks on our on-line data and identities. We are therefore proposing an

OAuth implementation to the OwnCloud environment for Secure Access by Social

Networking Sites like Facebook and Twitter.

1. INTRODUCTION

1.1. Background

Internet-based social networking sites have created a revolution in

social connectivity. Social networking sites are Internet-based services that

allow people to communicate and share information with a group. Facebook,

Twitter, Google+, LinkedIn and other social networks have become an integral

part of online lives. Social networks are a great way to stay connected with

others through the sharing of information such as photos, videos, and personal

messages.

The use physical storage devices is quite limiting in terms of storage

scalability. They therefore need a scalable storage and are thus seeking cloud

platforms like OwnCloud and Dropbox to store their media.

Dropbox is ideal but it has several limitations in-terms of control and

storage. Much of the control lies in the hands of the host client and additional

storage is charged. OwnCloud is therefore preferred because the owner has

full control of his data, because it is deployed within his own server/ domain.

And further more is quite scalable because the storage capability depends on

the server space the owner owns.

In the traditional client-server authentication model according to D.

Hardt [1], the client requests an access-restricted resource (protected resource)

2

on the server by authenticating with the server using the resource owner's

credentials. In order to provide third-party applications access to restricted

resources, the resource owner shares its credentials with the third party. This

creates several problems and limitations:

 Third-party applications are required to store the resource owner's

credentials for future use, typically a password in clear-text.

 Servers are required to support password authentication, despite the

security weaknesses inherent in passwords.

 Third-party applications gain overly broad access to the resource

owner's protected resources, leaving resource owners without any

ability to restrict duration or access to a limited subset of resources.

 Resource owners cannot revoke access to an individual third party

without revoking access to all third parties, and must do so by

changing the third party's password.

 Compromise of any third-party application results in compromise of

the end-user's password and all of the data protected by that password.

OAuth addresses these issues by introducing an authorization layer and

separating the role of the client from that of the resource owner. In OAuth, the

client requests access to resources controlled by the resource owner and hosted

by the resource server, and is issued a different set of credentials than those of

3

the resource owner.

Instead of using the resource owner's credentials to access protected

resources, the client obtains an access token which is a string denoting a

specific scope, lifetime, and other access attributes. Access tokens are issued

to third-party clients by an authorization server with the approval of the

resource owner. The client uses the access token to access the protected

resources hosted by the resource server [24].

1.2. Overview and Contribution

OAuth 2.0 support is a key requirement which will make OwnCloud

attractive as a platform for third-party developers who need to integrate

OwnCloud into their applications. OAuth is a security protocol that allows

third-party applications to request access to protected information without

providing the username and the password to other party. Currently, third-party

applications have to use Basic Authentication which involves sending the

username and password to access the OwnCloud instance which has the

following disadvantages:

 Users have to provide their credentials to third-party applications. If

one of the third-party providers has been compromised then OwnCloud

login will be lost.

4

 An authentication can only be revoked by changing the user password

which is suboptimal.

 Third-party developers do currently have access to the whole

OwnCloud instance; they even could change your password.

 Instead of using passwords for authorization, OAuth is using unique

tokens for every client. In OAuth, the client requests access to the needed

resources (scopes) by redirecting the user to a website where he has to approve

these permissions.

In this thesis, we propose a secure sharing platform between

OwnCloud cloud storage and internet based social networking sites. This

resolves the limitation of the current OwnCloud infrastructure and third-party

applications by providing a security protocol that allows third-party

applications to request access to the protected information without providing

the username and the password to other party. The proposed protocol entails

integrating third-party login into the OwnCloud framework, thereby allowing

third party internet social networking sites to have access to all the media files

stored within the cloud storage. In order to achieve these goals, we propose the

integration of OAuth 2.0 security protocol into the OwnCloud platform.

OAuth 2.0 will ensure security by ensuring the proper authorization flow is

followed during communication between OwnCloud and the social

5

networking sites. In addition, it performs authentication of the resource

owner/clients through the Authorization Server. Moreover, it ensures a token is

issued that not only authorizes but also dictates the scope and lifetime of a

given action.

This implementation will be of benefit to different users, developers

and administrators on different levels. Users will be able to grant third-party

applications access to their data without providing their passwords or granting

access to the whole instance. Users and administrators will be able to see

which applications have access to which data and manage them. And lastly,

developers will be able to use standard libraries to integrate with OwnCloud.

The rest of this thesis is organized as follows. The next chapter briefly

introduces OwnCloud, Secure Socket Layer (SSL) and OAuth 2.0 and their

system architectures. In Chapter 3, we present the proposed protocol for

secure sharing between OwnCloud and internet based social networking sites

through integration of the OAuth 2.0 security protocol. We give the security

and performance evaluations of the proposed protocols in chapter 4. Finally,

we conclude the thesis in chapter 5.

6

2. PRELIMINARIES

2.1. OwnCloud

OwnCloud is enterprise file sync and share that is hosted in your data

center, on your servers, using your storage. OwnCloud provides Universal File

Access through a single front-end to all of your disparate systems. Users can

access company files on any device, anytime, from anywhere while IT can

manage, control and audit file sharing activity to ensure security and

compliance measures are met. [2]

Figure 1: OwnCloud’s Architecture

Unlike consumer-grade file sharing services such as Dropbox,

OwnCloud’s server enables IT to protect and manage files within the

OwnCloud environment; from file storage to user provisioning and data

processing. OwnCloud can be extended to do far more than basic file sync and

7

share through the use of mobile libraries, open Application Program Interfaces

(APIs) and plug-in applications [19].

2.2. OAuth 2.0

The OAuth 2.0 authorization framework enables a third-party

application to obtain limited access to an HTTP service, either on behalf of a

resource owner by orchestrating an approval interaction between the resource

owner and the HTTP service, or by allowing the third-party application to

obtain access on its own behalf.

The OAuth 2.0 authorization protocol standardizes delegated

authorization on the Web. Popular social networks such as Facebook, Google

and Twitter implement their APIs based on the OAuth protocol to enhance

user experience of social sign-on and social sharing.

In [5], F. Yang et al. describes OAuth (open standard for authorization)

as a protocol that provides a generic framework to let a resource owner

authorize third-party to access the owner’s resource held at a server without

revealing to the third-party the owner’s credentials (such as user-name and

password) [1], [6].

OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0

protocol. It allows Clients to verify the identity of the End-User based on the

8

authentication performed by an Authorization Server, as well as to obtain basic

profile information about the End-User in an inter-operable and

Representational State Transfer (REST)-like manner.

The OAuth 2.0 security protocol defines four roles which helps it

accomplish the purpose it is tasked with reliably. [7]

 Resource owner - This refers to an entity capable of granting access to

a protected resource. When the resource owner is a person, it is

referred to as an end-user.

 Resource server - The server hosting the protected resources, capable

of accepting and responding to protected resource requests using

access tokens.

 Client - An application making protected resource requests on behalf

of the resource owner and with its authorization.

 Authorization server - The server issuing access tokens to the client

after successfully authenticating the resource owner and obtaining

authorization.

9

Figure 2: OAuth Protocol Flow

OAuth 2.0 flow illustrated in Figure 3 above describes the interaction

between the four roles and includes the following steps:

1. The client requests authorization from the resource owner. The

authorization request can be made directly to the resource owner, or

preferably indirectly via the authorization server as an intermediary.

2. The client receives an authorization grant, which is a credential

representing the resource owner's authorization, expressed using one

of four grant types defined in this specification or using an extension

grant type. The authorization grant type depends on the method used

10

by the client to request authorization and the types supported by the

authorization server.

3. The client requests an access token by authenticating with the

authorization server and presenting the authorization grant.

4. The authorization server authenticates the client and validates the

authorization grant, and if valid, issues an access token.

5. The client requests the protected resource from the resource server and

authenticates by presenting the access token.

6. The resource server validates the access token, and if valid, serves the

request.

2.3. How OAuth Works

In [8], OAuth-based SSO systems are based on browser redirection in

which a relying party (RP) redirects the user’s browser to an IdP that interacts

with the user before redirecting the user back to the RP website. The identity

provider (IdP) authenticates the user, identifies the RP to the user, and asks for

permission to grant the RP access to resources and services on behalf of the

user.

11

Table 1: Notations and descriptions

Notations Descriptions

RP Relying party

IdP Identity provider

U User

B Browser

Once the requested permissions are granted, the user is redirected back

to the RP with an access token that represents the granted permissions and the

duration of the authorization.

Using the authorized access token, the RP then calls web APIs

published by the IdP to access the user’s profile attributes.

The OAuth 2.0 specification defines two flows for RPs to obtain access

tokens: server-flow (known as the “Authorization Code Grant” in the

specification), intended for web applications that receive access tokens from

their server side program logic; and client-flow (known as the “Implicit Grant”)

for JavaScript application running in a web browser.

Figure 3 below illustrates the following steps, which demonstrate how

the server-flow works:

12

Figure 3: The OAuth server-flow protocol sequence

1. User U clicks on the social login button rendered by the RP to initiate

an SSO process. The browser B then sends this login HTTP request to

RP.

2. RP sends response_type=code, client ID i (assigned during registration

with the IdP), requested permission scope p, and a redirect Uniform

13

Resource Locator (URL) r to IdP via B to obtain an authorization

response. The redirect URL r is where IdP should return the response

back to RP (via B). RP could also include an optional state parameter

a, which will be appended to r by IdP when redirecting U back to RP,

to maintain state between the request and response.

3. B sends response_type=code, i, p, r and optional a to IdP. IdP checks i

and r against its own local storage. If a cookie that was previously set

after a successful authentication with U is presented in the request, and

the requested permissions p has been granted by U before, IdP could

omit the next two steps (4 and 5).

4. IdP presents a login form to authenticate the user.

5. U provides her credentials to authenticate with IdP, and then consents

to the release of her profile information.

6. IdP generates an authorization code c, and then redirects B to r with c

and a (if presented) appended as parameters.

7. B sends c and a to r on RP.

8. RP sends i, r, c and a client secret s (established during registration

with the IdP) to IdP’s token exchange endpoint through a direct

communication (i.e., not via B).

9. IdP checks i, r, c and s, and returns an access token t to RP.

14

10. RP makes a web API call to IdP with t.

11. IdP validates t and returns U’s profile attributes for RP to create an

authenticated session.

12. The client-flow is designed for applications that cannot embed a secret

key, such as JavaScript clients running in browsers. The access token

is returned directly in the redirect response, and its security is handled

in two ways:

 The IdP validates the redirect URI matches a pre-registered

URL to ensure the access token is not sent to unauthorized

RPs;

 The token itself is appended as an URI fragment (#) of the

redirect URI so that the browser will never send it to the server,

and hence prevents the token from exposing in the network.

Figure 4 below illustrates how the client-flow works:

15

Figure 4: The OAuth client-flow protocol sequence

1. User U initiates an SSO process by clicking on the social login button

rendered by RP.

2. B sends response_type=token, client ID i, permission scope p, redirect

URL r and an optional state parameter a to IdP.

3. IdP presents a login form to authenticate the user, followed by an

authorization consent form. The authentication step could be omitted if

the user has logged to IdP in the same browser session; and the

consent step could be skipped if the requested permissions have

already been granted before.

16

4. U signs into IdP, and grants the requested permissions.

5. IdP returns an access token t appended as an URI fragment of r to RP

via B. State parameter a is appended as a query parameter if presented.

6. B sends a to r on RP. Note that B retains the URI fragment locally, and

does not include t in the request to RP.

7. RP returns a web page containing a script to B. The script extracts t

contained in the fragment using JavaScript command such as

document.location.hash. With t, the script could call IdP’s web API to

retrieve U’s profile that is bounded to t.

To ensure protocol security, several approaches based on formal

methods [11, 12, 13] were used to analyze the OAuth protocol. The results of

that analysis suggest that the protocol is secure, provided that the

comprehensive security guidelines from the OAuth working group included in

“OAuth threat model” [14] are followed by the IdP and RP.

However, given that the formal proofs are executed on abstract models,

some important implementation details could be inadvertently left out.

Furthermore, it is unclear whether real implementations actually do follow the

above guidelines. Thus, the research question regarding the security of OAuth

implementations remains open [18].

17

OAuth-based SSO systems are built upon the existing web

infrastructure, but web application vulnerabilities (e.g., insufficient transport

layer protection, cross-site scripting (XSS), cross-site request forgery (CSRF))

are prevalent [15] and constantly being exploited [16, 17]. Moreover, as the

protocol messages are passed between the RP and IdP via the browser, a

vulnerability found in the browser could also lead to significant security

breaches.

To enhance the security of OAuth SSO systems, firstly, further

understanding of how those well-known web vulnerabilities could be

leveraged to compromise OAuth SSO systems. Next, is the fundamental

enabling causes and its consequences? Thirdly, is how prevalent they are, and

lastly how to prevent them in a practical way. These particular issues are still

poorly understood by researchers and practitioners. [8, 20]

18

2.4. Related Work

There has been several implementations and integrations of secure an

extensive sharing to internet social networking sites. These implementations

normally involve the integration of the capability to login into host sites via a

popular social networking site account. A good example is the Picasa Web

Albums Data API allows for websites and programs to integrate with Picasa

Web Albums, enabling users to create albums, upload and retrieve photos,

comment on photos.

Dropbox and OwnCloud are the two most adopted cloud storage

platforms. OwnCloud does not however support the ability to directly share

the media stored in it to the social networking sites. The integration involves

allowing the capability to login into OwnCloud via social networking sites

such as Facebook. OwnCloud have not embraced this feature because of the

implications that arise from such integration. From a security perspective, as

the popularity of these social sites grows, so do the risks of using them.

Hackers, spammers, virus writers, identity thieves, and other criminals follow

the traffic [20]. Over sharing has also been cited as a major concern for the

reluctance in the integration of this model. This is because once information is

posted to a social networking site, it is no longer private. According to [9], the

Federal Bureau of Investigation (FBI) warns that the more information you

19

post, the more vulnerable you may become. Even when using high security

settings, friends or websites may inadvertently leak your information. From a

business perspective, this move tends markets the social internet networking

site instead of promoting the hosts application. And with the embrace of a

single sign-on (SSO) feature, most users will prefer to use an existing account

as compared to creating a new account which requires management as well.

For users and customers, the ability to log into a site using Facebook Connect

means they have one less password to remember and therefore a much faster

path to signing up for and using your site in the first place.

OwnCloud currently uses the Lightweight Directory Access Protocol

(LDAP) and the Web Distributed Authoring and Versioning (WebDAV).

LDAP is a directory service protocol that runs on a layer above the TCP/IP

stack. It provides a mechanism used to connect to, search, and modify Internet

directories. The LDAP directory service is based on a client-server model.

Web Distributed Authoring and Versioning (WebDAV) is an extension

of the Hypertext Transfer Protocol (HTTP) that allows clients to perform

remote Web content authoring operations. The WebDAV protocol provides a

framework for users to create, change and move documents on a server,

typically a web server or web share. LDAP on one hand is used for user

authentication while WebDAV on the other hand is used for file access. There

20

is also a "user_webdavauth" app, but this is to allow authenticating to

OwnCloud via any http service which, upon retrieval of login data, returns 100

if login should be successful or any other value if not.

The external API inside OwnCloud allows third party developers to

access data provided by OwnCloud apps. Methods are registered inside the

appinfo/routes.php using OCP\API. Once the API backend has matched your

URL, your callable function as defined in $action will be executed. This

method is passed as array of parameters that you defined in $url. To return

data back to the client, you should return an instance of OC_OCS_Result. The

API backend will then use this to construct the XML or JSON response.

Because Representational State Transfer (REST) is stateless you have to send

user and password each time you access the API. Therefore running

OwnCloud with SSL is highly recommended otherwise everyone in your

network can log your credentials.

21

3. PROPOSED SCHEME

3.1. System Model

The proposed framework involves implementing the OAuth 2.0

security protocol into the OwnCloud platform. The OAuth 2.0 server

authentication flow is used whenever an OwnCloud account uses the

integration for the first time. The OwnCloud user must login to their account

and give permission to the third-party social networking sites application to

access their OwnCloud account. The server authentication flow consists of two

main transactions:

 The third-party application makes an authorization request

 The authorization server responds with an authorization code

 The third-party application then makes an access token request

using the authorization code

 The authorization server responds with an access token.

The interactions between the user, the third-party application, the

OwnCloud, and the OAuth 2.0 Authorization Server are illustrated in the

figure 6 below.

According to the proposed system model, these are the four main roles;

1. The Resource Server is represented by OwnCloud

2. The User represents the Owner/User

22

3. The Authorization Server is represented by the OAuth 2.0

protocol

4. The Third-Party Application represents the Social Networking

Sites such as Facebook and Twitter

Figure 5: proposed System Model

23

The proposed process flows as follows:

1. The User visits the Third-Party Application (Social Media Sites)

webpage

2. The application directs the user to the OAuth 2.0 authorization

server security protocol (Authorization Server)

3. The User authenticates with OAuth 2.0 and grants the Third-party

Application access to their account.

4. The Authorization Server redirects the User to the application

using the redirect URI, and provides an authorization code if the

user granted access to the application. The User is redirected to

the application’s redirection endpoint, the redirect_url, with an

authorization code in the code URL parameter,

Table 2: Application redirection endpoint

HTTP/1.1 302 Found

Location:

https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&

state=xyz

5. The application then exchanges the authorization code for an

access token for use in all API calls for that account.

The application uses the Authentication Code to obtain Access

https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=xyz
https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA&state=xyz

24

and Refresh Tokens using a POST request to the

login.owncloud.com/auth/oauth2/token endpoint. The

POST request should include a JSON body with the following

parameters;

Table 3: JSON response parameters and values

Parameter Value Required?

grant_type Must be authorization_code Yes

code The authorization code Yes

redirect_uri Application’s registered redirection endpoint Yes

The authorization server validates the authorization code and, if valid,

responds with a JSON body containing the access token, refresh token, access

token expiration time, and token type, as indicated in the table below:

Table 4: Successful access token JSON response

HTTP/1.1 200 OK

Content-Type: application/json

{

 "access_token":"2YotnFZFEjr1zCsicMWpAA",

 "token_type":"bearer",

 "expires_in":3600,

 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"

}

25

In this proposed model, the resource servers assert the token issued by

the authorization server. According to the OAuth 2.0 specification, RFC6749

[1], it very specifically punts on this issue in section 7: “The methods used by

the resource server to validate the access token (as well as any error responses)

are beyond the scope of this specification but generally involve an interaction

or coordination between the resource server and the authorization server.”

For small deployments, it can look it up in a database. In many

instances, the RS and the AS are usually co-located and very tightly bound so

they have access to the same data store. When the AS part of the server mints a

token, it drops the token or a hash of it into a database along with all of the

information about the token that will be needed to make an authorization

decision. When that token comes back in later, the RS part of the server just

looks up the token value or its hash and plucks any other bits of data that it

needs from that record in order to authorize or deny the request being made.

Alternatively, in an instance where there are multiple RS's and a single

AS, then there is need for a means to communicate all that meta-information

surrounding the token including what scopes it has, who authorized it, what

client it was authorized for, when it expires from the AS to the RS.

The solution is to use a structured token value like JSON Web Token

(JWT). JWT is a compact, URL-safe means of representing claims to be

26

transferred between two parties. The claims in a JWT are encoded as a

JavaScript Object Notation (JSON) object that is used as the payload of a

JSON Web Signature (JWS) structure or as the plaintext of a JSON Web

Encryption (JWE) structure, enabling the claims to be digitally signed or

MACed and or encrypted. (https://tools.ietf.org/html/draft-ietf-oauth-json-

web-token-32)

JWTs are good constructs being that it's a blob of JSON that can be

signed and encrypted in a way that won't get mucked up in transit. JWTs

define a set of common claims, such as issuer, audience, subject, and other bits

needed for a security object like this. The RS gets handed a JWT, it parses the

JWT, checks the signature or decrypts it, reads the claims, sees who the token

is for and what it is for and if it’s expiry. The RS could get everything it needs

from that.

JWTs define a set of common claims, such as issuer, audience, subject

etc. but packing all this information into the token could raise some issues:

 The token could become rather large and unwieldy if there is a

lot to say about the authorization context.

 There is the risk of the client being able to read what is in the

token, which might leak sensitive information.

https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-32
https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-32

27

OAuth tokens are opaque to clients, which mean they do not have to

read the token to use it, but that does not mean that a client cannot try to read

the token and get something useful out of it. This can be combatted by

encrypting the token, but even the JWT specification says that the best way to

avoid privacy leakage issues is to just not put sensitive information inside the

token itself. And it also assumes that the owner is okay with tokens being good

until they expire, because if the RS is parsing the token on its own, there is no

good way to revoke a token once it is in flight. However, this can be

combatted by having short enough timeouts on the tokens.

Alternatively, the RS can have a service it calls at runtime to get

information about the token in the context of its authorization decision, then

find out in real time if the token has been revoked or not. And if it is making

that call, it could also just as easily find out all of the important meta-

information about that token. Token Introspection defines a very simple HTTP

service that lets an RS send the token over in a POST and get back a JSON

document that says what the token is good for. Introspection re-uses the claims

defined in JWT and adds a few of its own. The RS authenticates to the AS

during this call so that not just anyone can go search for token information.

28

3.2. System Setup

The proposed framework involves implementing the OAuth 2.0

security protocol into the OwnCloud platform. The OAuth 2.0 is written in

both PHP and JavaScript programming language. The first step is the

installation of OwnCloud into the Apache web server. Upon successful setup

installation, OwnCloud should be accessible via the browser either through

localhost or domain used.

Figure 6: OwnCloud login screen

The OAuth 2.0 source code is then integrated into the Apps folder of

OwnCloud. As shown in figure 8 below, successful implementation of

29

Facebook connect will be integrated as a third party application under the

Apps menu in the OwnCloud backend. Its functionality can be enable or

disabled by the administrator as preferred.

Figure 7: Integration of Facebook Login Backend

When the login connect is enabled, a configuration screen will be

formed at the Admin menu section of OwnCloud. At the Admin section, an

App ID and App Secret will be displayed in the Facebook login settings as

shown in figure 9 below. The App credentials are retrieved from the chosen

internet social networking site of choice. In the case of Facebook, one needs to

register the OwnCloud application at the developer section of Facebook under

the link (http://developers.facebook.com/apps). The registration requires an

http://developers.facebook.com/apps

30

App Name and declaring our app as a Website and therefore giving a Website

URL. The App ID and App Secret will be automatically generated uniquely for

each application created. And the credentials are added to the code end of the

Facebook login connect so that it is able to pull the data of the account to

which the credentials belong to.

Figure 8: Facebook login backend

OAuth2.0 source code is downloaded and edited appropriately so it can

integrate well within the OwnCloud infrastructure. The edited source code is

then added to the Apps folder within the OwnCloud architecture which is

hosted within the Apache environment. OwnCloud picks OAuth2.0 as an

internal app and thus is accessible at the OwnCloud backend under the Apps

31

menu as shown in the figure 10 below. Enabling the OAuth will establish a

security protocol which will run mostly as a background process.

Figure 9: OAuth2.0 integration into OwnCloud infrastructure

The Introspection Endpoint is an OAuth 2.0 Endpoint that responds to

HTTP POST requests and optionally HTTP GET requests from token holders,

particularly including Resource Servers and Clients. The endpoint takes a

single parameter representing the token and optionally further authentication

32

and returns a JavaScript Object Notation (JSON) document representing the

Meta information surrounding the token. The endpoint MUST be protected by

TLS or equivalent. The endpoint MAY allow other parameters to provide

context to the query. The retrieved metadata can be used in order to determine

the appropriateness of the token being presented or the approved scopes and

the context in which a token was issued.

Figure 10: OAuth2.0 Authorization Server introspection endpoint

Since the introspection endpoint takes in OAuth 2.0 tokens as

parameters, it MUST be protected by TLS or equivalent. A server MAY

require an HTTP POST method only to the endpoint.

33

4. IMPLEMENTATION AND SECURITY ANALYSIS

4.1. Third Party Integration

When OwnCloud connects to an internet social networking site, then it

can always access the site’s public profile. OwnCloud may optionally ask for

other pieces of information as well. This can include the list of friends using

the app, their email, the events that they are attending, their hometown or the

things they have liked. All of these are available behind optional permissions,

which are asked for during the login process. You can ask for additional

permissions later, after a person has logged in. A user may optionally choose

to decline sharing data that the OwnCloud application asks for.

34

Figure 11: Alternative logins via social networking sites

The login dialog creates a trusted link between the user, OwnCloud and

their information. It displays consistent messaging across all devices, enabling

OwnCloud to request permissions anywhere. The permission requested is

clearly explained in the dialog. The dialog also lets a user to decline to share

data that OwnCloud has requested on a piece by piece basis, except for the

35

public profile which is always shared. Some permission are extra-sensitive,

like publishing or access to a user’s pages, and a user will have to confirm in

an extra screen that they allow OwnCloud to have access to those capabilities.

Figure 12: Permission dialog to access Facebook public profile

36

Figure 13: OwnCloud-Facebook Authentication dialog

37

Figure 14: Authentication dialog for login via Twitter

4.2. Security Analysis

Access tokens can be used as proof of authentication. Since an

authentication usually occurs ahead of the issuance of an access token, it is

possible to consider reception of an access token of any type proof that such

an authentication has occurred.

Access of a protected API can also be used as a proof of authentication.

Since the access token can be traded for a set of user attributes, it is viable to

assume that possession of a valid access token is enough to prove that a user is

38

authenticated. This is especially true in cases where the token was freshly

minted in the context of a user being authenticated at the authorization server.

Authentication of the user who is trying to access OwnCloud via a

third party is also established based on the integration of the OAuth 2.0

protocol which acts to establish identity management. A dialogue notification

pops up upon any access giving the owner (OwnCloud) the authority to either

grant access or deny access and also to determine the scope and sharing

limitations of the access. Figure 14 and 15 above illustrate the permission and

scope being granted by OwnCloud other third party applications namely

Facebook and Twitter respectively.

Token Assertion is done by the by Resource Server. This works on the

assumption that the RS will be able to call the AS for each token that it sees,

and that there is no problem with the extra network traffic. Thus there is the

accuracy/performance tradeoff in most networked systems: you can have live

information by calling the authoritative source in real time (using introspection)

or you can have self-contained information that you don't have to make a

network call for (using JWT). You can, of course, cache the introspection call,

and most implementations do this on the client side, at least to an extent.

39

4.3. Performance Evaluation

To evaluate the performance of the server after applying after

integration of the OAuth 2.0 security protocol, a load tester JMeter is used.

The Apache JMeter is an open source java software application designed to

load test functional behavior and measure performance. This works by

simulating multiple users to have access to the server concurrently. There are

three main parameters that are considered in this simulation.

 Number of threads: This represents the number of users connected to

the target website.

 Ramp-Up period: This denotes the time it takes for a user to start a new

session.

 Loop count: This denotes the number of request for each user.

The number of users is then varied in sets of tens from 10 all the way

to 100 for this particular scenario. The application is set to handle 10 user

requests with a Ramp-Up period of 1 second. The Rump-Up period determines

how long the next user should take to begin a new session. The table 5 below

shows a comparison of the performance results between three different

identity management protocols OAuth 2.0, SAML and OpenID.

40

Table 5: Comparison between performance test results

The result shows that the performance of OwnCloud as the number of

users’ increases considerably increases the response time.

Using the same values in the required parameters, it was observed that

the response time according to the increase of the users was higher in an

implementation instance where OpenID protocol was integrated as compared

to an instance where either OAuth 2.0 or SAML protocol was used. This

means that the integration of OAuth security protocol within the OwnCloud

environment resulted in a better performance compared to other identity

management protocols.

41

Source code

Authentication Endpoint

The authentication endpoints used in this implementation include the

following ones:

 /oauth/initiate - this endpoint is used for retrieving the Request Token.

 /oauth/authorize - this endpoint is used for user authorization (Client).

 /admin/oauth_authorize - this endpoint is used for user authorization

(Admin).

 /oauth/token - this endpoint is used for retrieving the Access Token

Table 6: Authentication endpoint code

<?php

// INCLUDE LIBS

require('OAuth2/client.php');

require('OAuth2/GrantType/IGrantType.php');

require('OAuth2/GrantType/AuthorizationCode.php');

// SET URL PARAMS

$client_id = 'YOUR CLIENT KEY';

$client_secret = 'YOUR SECRET KEY';

$state = 'test';

$scope = 'brian.profile'; // FETCH BRIAN DATA

$redirect_uri = 'https://localhost';

$authorize_uri = 'https://eu.battle.net/oauth/authorize';

$token_uri = 'https://eu.battle.net/oauth/token';

// CREATE NEW OAUTH2

$client = new OAuth2\Client($client_id, $client_secret);

// IF NO CODE PARAM REQUEST TOKEN

if (!isset($_GET['code'])) {

 $auth_url = $authorize_uri.'?client_id='.$client_id.'&scope='.$scope.

'&state= '.$state.'&redirect_uri='.$redirect_uri.'&response_type=code';

 header('Location: ' . $auth_url);

 die('Redirect');

}

else {

 // ESLE GET TOKEN AND ACCESS DATA

42

 $params = array('code' => $_GET['code'], 'redirect_uri' => $redirect_uri);

 $response = $client->getAccessToken($token_uri, 'authorization_code',

$params);

 $info = $response['result'];

 $client->setAccessToken($info['access_token']);

 $response = $client-

>fetch('https://eu.api.battle.net/brian/user/characters');

 var_dump($response);

}

Introspection Endpoint

This specification defines a method for a client or protected resource to

query an OAuth authorization server to determine meta-information about an

OAuth token. The Introspection Endpoint responds to HTTP POST requests

and HTTP GET requests from token holders, particularly including Resource

Servers and Clients. The endpoint takes a single parameter representing the

token and returns a JSON document representing the Meta information

surrounding the token.

Table 7: Introspection endpoint code

<?php

OCP\User::checkAdminUser();

OCP\Util::addScript("user_oauth", "admin");

$tmpl = new OCP\Template('user_oauth', 'settings');

$tmpl->assign('introspectionEndpoint',

OCP\Config::getSystemValue("introspectionEndpoint",

'https://frko.surfnetlabs.nl/workshop/php-oauth/introspect.php'));

return $tmpl->fetchPage();

43

Figure 15: Successful request JSON document

44

5. CONCLUSION

This thesis proposes the implementation of OAuth 2.0 security protocol

into the OwnCloud platform environment. This implementation is to enable

secure access of the OwnCloud stored data during communication between

OwnCloud and other third-party applications. The third-party applications

considered in this particular case are the online social networking sites. We

have used Facebook and Twitter as the demonstration social networks in order

to implement this particular protocol. The implementation has thus proved that

the integration has provided secure access by allowing OAuth 2.0 security

protocol to act as the identity management tool between OwnCloud and the

Social Networking Sites by providing user verification and authentication.

OwnCloud is therefore tasked with the authority to grant or deny access to any

third-parties and to also determine the scope of what can be accessed or

shared. It has also further prevented the conventional method of sharing user

credentials which include username and password.

It was also concluded that the access tokens could be used as proof of

authentication. Since an authentication usually occurs ahead of the issuance of

an access token, it was possible to consider the reception of an access token of

any type proof that such an authentication has occurred. Secondly, the access

of a protected API could also be used as proof of authentication. Since the

45

access token can be traded for a set of user attributes, it is viable to assume

that possession of a valid access token is enough to prove that a user is

authenticated. Authentication of the user who is trying to access OwnCloud

via a third party is also established based on the integration of the OAuth 2.0

protocol which acts to establish identity management. The perfomance result

testing for OwnCloud with OAuth 2.0 security protocol integration was

plotted in a comparison graph with the use of the same values in the required

parameters. Based on the performance results, it was observe that the response

time with an increase in the number of users was higher in an OwnCloud

instance where OpenID and SAML protocols were used as opposed to an

instance where OAuth protocol was integrated. This means that the integration

of OAuth security protocol within the OwnCloud environment resulted in a

better performance.

46

References

1. D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749

(Proposed Standard), October 2012.

2. ownCloud, “ownCloud’s Architecture Overview” Whitepaper at

https://owncloud.com/whitepapers , March 2014.

3. J. Wang, Z. A. Kissel, “Introduction to Network Security: Theory

and Practice”, John Wiley & Sons, September 2015, pp 183 – 186

4. Sarath Pillai, “Understanding the working of Secure Socket Layer

(SSL)”, Slashroot, January 2015.

5. Feng Yang; Manoharan, S., "A security analysis of the OAuth

protocol," in Communications, Computers and Signal Processing

(PACRIM), 2013 IEEE Pacific Rim Conference on , vol., no.,

pp.271-276, 27-29 Aug. 2013

6. E. Hammer-Lahav, "The OAuth 1.0 protocol," The Internet Eng.

Task Force RFC 5849, April 2010.

7. Er. Gurleen Kaur, Er. Deepak Aggarwal, “A Survey Paper on Social

Sign-On Protocol OAuth 2.0,” Journal of Engineering Computers

& Applied Sciences (ISSN: 2319-5606), Volume 2, No 6, June

2013, pp 93-96

8. S. San-Tsai, K. Beznosov, “Simple But Not Secure: An Empirical

https://owncloud.com/whitepapers

47

Security Analysis of OAuth 2.0-Based Single Sign-On Systems,”

CCS’12, October 16–18, 2012

9. U.S. Department of Justice, Federal Bureau of Investigation,

“Internet Social Networking Risks” https://www.fbi.gov/about-

us/investigate/counterintelligence/internet-social-networking-risks-

1

10. Covert Redirect and its real impact on OAuth and OpenID Connect,

http://www.thread-safe.com/2014/05/covert-redirect-and-its-real-

impact-on.html

11. S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh. Formal

verification of OAuth 2.0 using Alloy framework. In Proceedings

of the International Conference on Communication Systems and

Network Technologies (CSNT), pages 655–659, 2011.

12. S. Chari, C. Jutla, and A. Roy. Universally composable security

analysis of OAuth v2.0. Cryptology ePrint Archive, Report

2011/526, 2011.

13. Q. Slack and R. Frostig. OAuth 2.0 implicit grant flow analysis

using Murphi. http://www.stanford.edu/class/cs259/WWW11/ ,

2011.

https://www.fbi.gov/about-us/investigate/counterintelligence/internet-social-networking-risks-1
https://www.fbi.gov/about-us/investigate/counterintelligence/internet-social-networking-risks-1
https://www.fbi.gov/about-us/investigate/counterintelligence/internet-social-networking-risks-1
http://www.thread-safe.com/2014/05/covert-redirect-and-its-real-impact-on.html
http://www.thread-safe.com/2014/05/covert-redirect-and-its-real-impact-on.html
http://www.stanford.edu/class/cs259/WWW11/

48

14. T. Lodderstedt, M. McGloin, and P. Hunt. OAuth 2.0 threat model

and security considerations. http://tools.ietf.org/html/ draft-ietf-

oauth-v2-threatmodel-01, 2011.

15. OWASP. Open web application security project top ten projects.

http://www.owasp.org/, 2010.

16. WhiteHat Secuirty. Whitehat website secuirty statistics report.

https://www.whitehatsec.com/resource/stats.html , 2011. [Online;

accessed 16-May-2012].

17. NIST. National vulnerability database.

http://web.nvd.nist.gov/view/vuln/statistics, 2011.

18. ownCloud, “ownCloud’s Data Encryption 2.0 Model” Whitepaper

at https://owncloud.com/whitepapers

19. ownCloud, "Optimizing ownCloud Security" Whitepaper at

https://owncloud.com/whitepapers

20. Khash Kiani, “Four Attacks on OAuth - How to Secure Your

OAuth Implementation”, A technical study of an emerging open-

protocol technology, SANS Working Papers in Application Security

21. Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M Pai and Sanjay

Singh. “Formal Analysis of OAuth 2.0 using Alloy Framework”

2011 International Conference on Communication Systems and

http://tools.ietf.org/html/
http://www.owasp.org/
https://www.whitehatsec.com/resource/stats.html
http://web.nvd.nist.gov/view/vuln/statistics
https://owncloud.com/whitepapers
https://owncloud.com/whitepapers

49

Network Technologies. 978-0-76954437-3/11, 2011 IEEE DOI

10.1109/CSNT.2011.141

22. Chetan Bansal, Karthikeyan Bhargavan and Sergio Maffeis.

“Discovering Concrete Attacks on Website Authorization by

Formal Analysis” 2012 IEEE 25th Computer Security Foundations

Symposium, 2012 IEEE 10.1109/CSF.2012.27

23. Xingdong Xu, Leyuan Niu and Bo Meng. “Automatic Verification

of Security Properties of OAuth 2.0 Protocol with CryproVerif in

Computational Model” 2013 Asian Network for Scientific

Information. Information Technology Journal 12 ISSN 1812-5638

/DOI:10.3923/itj.2013.2273.2285

24. A. Santana de Oliveira, G. Serme, Y. Lehmann, "Platform-level

support for Authorization in Cloud Service with OAuth 2,"

Intercloud workshop co-located with IEEE International

Conference on Cloud Engineering (IC2E), March 2014.

50

Acknowledgement

First and foremost, I am grateful to the Almighty God for the good health

and sound wellbeing that was necessary to successfully accomplish my

graduate study at PKNU. I would like to express my sincere gratitude to my

advisor Prof. Kyung-Hyune Rhee for the continuous support of my graduate

study and related research, for his patience, motivation, and immense

knowledge. His guidance helped me in all the time of research and writing of

this thesis. I could not have imagined having a better advisor and mentor for

my graduate study.

Besides my advisor, I would like to thank the rest of my thesis committee:

Prof. Kim-Chang Soo, and Prof. Man-Gon Park, for their insightful comments

and encouragement which incented me to widen my research from various

perspectives. My sincere thanks also goes to Dr. Park and Dr. Chul Sur, who

equipped me with the necessary research knowledge and advice through

seminars. Without their precious support it would not be possible to conduct

this research.

I thank my fellow lab mates Lewis, Bayu, MyeongHak and Sam for the

insightful discussions, reassurance, and for all the pleasurable moments we

shared in the course of my study. Also, I thank my friends for their support

and encouragement. In particular, I am grateful to Bright Gameli Mawudor for

enlightening me on the availability of this research and for his invaluable input

throughout the writing of this research.

Last but not the least, I would like to thank my family: my parents, my

brothers and sister for supporting me spiritually throughout the writing of this

thesis and for my life in general.

	1. INTRODUCTION
	1.1. Background
	1.2. Overview and Contribution

	2. PRELIMINARIES
	2.1. OwnCloud
	2.2. OAuth 2.0
	2.3. How OAuth Works
	2.4. Related Work

	3. PROPOSED SCHEME
	3.1. System Model
	3.2. System Setup

	4. IMPLEMENTATION AND SECURITY ANALYSIS
	4.1. Third Party Integration
	4.2. Security Analysis
	4.3. Performance Evaluation
	Source code

	5. CONCLUSION
	References
	Acknowledgement

<startpage>10
1. INTRODUCTION 1
 1.1. Background 1
 1.2. Overview and Contribution 3
2. PRELIMINARIES 6
 2.1. OwnCloud 6
 2.2. OAuth 2.0 7
 2.3. How OAuth Works 10
 2.4. Related Work 18
3. PROPOSED SCHEME 21
 3.1. System Model 21
 3.2. System Setup 28
4. IMPLEMENTATION AND SECURITY ANALYSIS 33
 4.1. Third Party Integration 33
 4.2. Security Analysis 37
 4.3. Performance Evaluation 39
 Source code 41
5. CONCLUSION 44
References 46
Acknowledgement 50
</body>

