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Chapter 1

Introduction

Most of real-world problems such as decision making, pattern recognition, medical
diagnosis, clustering analysis, and image processing not always involve crisp data.
So one cannot successfully use the traditional methods because of various types
of uncertainties presented in those problems. Since Zadeh [90] introduced fuzzy
sets (FSs) as a tool treating imprecision and uncertainty, many its extensions
such as intuitionistic fuzzy sets (IFSs) [2], interval-valued fuzzy sets (IVFSs) [92],
interval-valued intuitionistic fuzzy sets (IVIFSs) [4], hesitant fuzzy sets (HFSs)
[54, 56|, dual hesitant fuzzy sets (DFSs) [99], and generalized hesitant fuzzy sets
(GHFSs) [47] allowed people to deal with uncertainty and information in much
broader perspective.

The entropy, cross-entropy and similarity measures are three important top-
ics in the fuzzy set theory. Entropy describes the fuzziness degree of a FS [91].
Since its appearance, entropy has received great attentions. De Luca and Termini
[16] introduced some axioms which captured people’s intuitive comprehension to
describe the fuzziness degree of a FS, and developed several formulas based on
Shannon’s function. Kaufmann [28] introduced a method for measuring the fuzzi-
ness degree of a FS by the metric distance between its membership function and
the membership function of its nearest crisp set. Another method proposed by

Yager [79] is to view the fuzziness degree of a F'S in term of a lack of distinction



between the FS and its complement. Based on the axiomatic definitions, Zeng
and Li [93] investigated the relationships among entropy, similarity and inclu-
sion measures for FSs. Later on, other entropies for FSs have been given from
different views [6, 18, 31, 34, 45, 49|, and lots of studies of this issue have devel-
oped and extended to extended environments of FSs. Burillo and Bustince [7]
introduced an entropy measure on IVFSs and IFSs. Zeng and Li [94] presented
a new concept of entropy for IVFSs with a different view from [7]. Szmidt and
Kacprzyk [51] introduced a non-probabilistic entropy measure for IFSs. Zhang et
al. [97] proposed an entropy measure for IVIFSs by using membership interval
and non-membership interval of IVIF'S, which complies with the extended form of
De Luca-Termini axioms for fuzzy entropy. Sen and Pal [48] proposed classes of
entropy measures based on rough set theory and its certain generalizations. Xu
and Xia [76] introduced an axiomatic definition of entropy for HFSs, proposed
some entropy formulas for HFSs and applied them decision making.

Similarity measure and cross-entropy are mainly used to measure the discrim-
ination information, and then it is an important measure in decision making,
pattern recognition and other real-world problems. Up to now, a lot of research
has been done about this issue. Vlachos and Sergiadis [57] introduced the con-
cepts of discrimination information and cross-entropy for IFSs, and revealed the
connection between the notions of entropies for FSs and IFSs in terms of fuzzi-
ness and intuitionism. Hung and Yang [27] constructed .J-divergence of [FSs and
introduced some useful distance and similarity measures between two IFSs, and
applied them to clustering analysis and pattern recognition. Based on which,
Xia and Xu [64] proposed some cross-entropy and entropy formulas for IFSs and
applied them to group decision making. Ye [85] proposed a method of fault diag-
nosis based on the vague cross-entropy. He [86] also introduced the cross-entropy
for IFSs and IVIFSs and utilized then to solve multi-criteria decision making
(MCDM) problems. Wang and Li [59] provided two improved methods for solv-
ing MCDM problems, which were based on the cross-entropy for [F'Ss. Hung et
al. [26] introduced the discrimination information and cross-entropy for IFSs and

also used them to improve the fault diagnosis of turbine problems. Mao et al.



[37] introduced the cross-entropy and entropy measures for IFSs. Zang and Yu
[98] constructed a series of mathematical programming models, which were based
on an interval-valued intuitionistic fuzzy cross-entropy, in order to determine the
criteria weights and applied them to MCDM problems. Xia and Xu [64] proposed
two methods for determining the optimal weights of criteria and developed two
pairs of entropy and cross-entropy measures for intuitionistic fuzzy values. The
relationships among the entropy, cross-entropy and similarity measures have also
attracted many attentions. For example, Liu [34] gave the axiomatic definitions
of entropy, distance measure, and similarity measure of fuzzy sets and discussed
their basic relations. Based on the axiomatic definitions, Zeng and Li [93] investi-
gated the relationships among inclusion measure, similarity measure and entropy
for FSs. They [94] also discussed the relationship between the similarity measure
and the entropy of IVFSs. Zang and Jiang [96] discussed the relationship between
the similarity measure and the entropy of IVIFSs. Zhang et al. [97] presented
the cross-entropy of IVIFSs and discussed the relationship between the proposed
entropy measures and the existing information measures of IVIFSs. Xu and Xia
[76] analyzed the relationships among the entropy, cross-entropy and similarity
measures for HFSs, and use them to develop two multi-attribute decision making

methods.

From the above analysis, we can recognize that all existing entropy, cross-
entropy and similarity measures are based on FSs, IFSs, IVFSs, IVIFSs, and
HFSs. However, when people make a decision, they are usually hesitant and
irresolute for one thing or another, which make it difficult to reach a consensus
on final decision. The difficulty of establishing a common membership degree
is that they have a hesitation among several possible membership degrees with
uncertainties. During the evaluating process to get a more reasonable decision
result, a decision organization, which contains a lot of experts, is authorized
to provide the preference information about a set of alternatives. In practice,
they may have several possible membership degrees take the forms of both crisp
values and interval values in [0, 1] when discussing the membership degree of an

alternative with respect to a criterion. For example, some experts in the decision



organization provide 0.4 doubtless, some provide [0.5,0.6] and the others insist on
at least 0.6, and when these three parts cannot persuade each other, then these
three membership degrees can be represented by a generalized hesitant fuzzy
element (GHFE) {(0.4,0.6), (0.5,0.4), (0.6,0)}, which is the unit of generalized
hesitant fuzzy set. In such circumstances, it is not possible to solve this problem
by utilizing either FSs, IFSs, IVFSs or HFSs. To deal with such cases, Qjan
et al. [47] introduced the concept of generalized hesitant fuzzy sets (GHFSs)
considered as a generalization of both IFSs and HFSs. GHFS can reflect the
human’s hesitance more objectively than other extensions of fuzzy set (IFS, IVIFS
and HFS). They redefined some basic operations of GHFSs, and discussed some
arithmetic operations and relationships among them. Since hesitation among
several possible membership degrees with uncertainties in evaluating process is
a very common problem in practical decision making, it is necessary to develop

some entropy and cross-entropy measures for GHFSs.

To do this, Chapter 2 of this thesis is organized as follows. In Section 2.1,
we present axiomatic definitions of entropy and similarity measure for GHFEs,
and show that the entropy and the similarity measure for GHFEs can be trans-
formed by each other based on their axiomatic definitions. Section 2.2 develops
two cross-entropy formulas for GHFEs, and gives two entropy formulas based on
them. In Section 2.3, we propose two approaches for solving multiple attribute
decision making under generalized hesitant fuzzy environment. The first ap-
proach is based on the proposed entropy and cross-entropy measures, and second
one utilizes TOPSIS method. In Section 2.4, we propose axiomatic definition of
subsethood measure for GHFEs, and prove an generalized hesitant fuzzy version
of the entropy-subsethood theorem [29, 30, 32|, and derive entropy for GHFEs.
Based on the concept of average possible cardinality, we extend the fuzzy entropy
theorem [29, 30, 32] in the generalized hesitant fuzzy setting. Furthermore, we
investigate the relationship between generalized hesitant fuzzy subsethood and
generalized hesitant similarity measures. Finally, conclusion of Chapter 2 is given

in Section 2.5.



During the evaluating process in practice, however, several possible member-
ships for an element to a set may be not only intuitionistic fuzzy values (IFVs),
but also interval-valued IFVs. To deal with this, Chapter 3 of this thesis is orga-
nized as follows. In Section 3.1, we briefly review the concept of IVIFS and some
of their operations. In Section 3.2, we extend HFSs by IVIFSs to interval-valued
generalized hesitant fuzzy sets (IVGHFSs) and discuss the relationships between
IVGHFSs and other types of F'Ss such as [FSs, IVIFSs, HFSs and GHFSs. The en-
velop and basic operations of interval-valued generalized hesitant fuzzy elements
(IVGHFESs) are defined and then some relationships and operational laws among
those operations are also discussed. We further introduce the comparison law
to distinguish two IVGHFEs according to score function and consistency func-
tion. Besides, the extension principle, which enables us to employ aggregation
operators of IVIFSs to aggregate IVGHFESs, are proposed. Section 3.3 develops
two approaches for solving multiple attribute decision making with anonymity
under interval-valued generalized hesitant fuzzy information. Two practical ex-
amples are presented to illustrate the developed approaches. Finally, we give

some conclusions of Chapter 3 in Section 3.4.



Chapter 2

Generalized hesitant fuzzy
entropy and cross-entropy and
their use in multiple attribute

decision making

In this chapter, we present the entropy, cross-entropy and similarity measure
for generalized hesitant fuzzy information, and discuss their desirable proper-
ties. Some measure formulas are developed, and the relationships among them
are investigated. We show that the similarity measure and entropy for general-
ized hesitant fuzzy information can be transformed by each other based on their
axiomatic definitions. Then we develop two approaches for solving multiple at-
tribute decision making, in which the attribute values are given in the form of
generalized hesitant fuzzy elements. In first approach, the attribute weight vector
is determined by the generalized hesitant fuzzy entropies, and the optimal alter-
native is obtained by comparing the generalized hesitant fuzzy cross-entropies
between alternatives and positive-ideal or negative-ideal solutions; in second ap-
proach, the attribute weight vector is derived from the maximizing deviation

method and optimal alternative is obtained by using TOPSIS method. Finally,



an example is provided to illustrate the practicality and effectiveness of the de-

veloped approaches.

2.1 Entropy for generalized hesitant fuzzy ele-

ments

2.1.1 Basic concepts

Intuitionistic fuzzy set introduced by Atanassov [2] have been proven to be highly
useful to deal with uncertainty and vagueness. Hesitation of which was charac-

terized by a membership function and a nonmembership function.

Definition 2.1.1 [2] Let X be ordinary non-empty set. An intuitionistic fuzzy
set (IFS) A in X is defined as

A ={(x, pa(x), va(@))le € X}, (2.1)

where 4,74 : X — [0, 1] denote, respectively, the membership and nonmember-
ship functions of A with the condition: 0 < p4(z) + va(x) <1 for all z € X.

For an IFS A, ma(x) = 1 —pa(x) —va(z) represents the degree of hesitation or
intuitionistic index of z to A. For a fuzzy set, the degree of hesitation m4(x) = 0.
Thus for each x, pa(z) and va(x) define an interval [pa(x),1 — va(z)]. This
interval is the vague value of value set by Gau and Buethrer [21] (Bustince and
Burillo [10] proved that vague sets are equivalent to IFSs). Further, the interval
can also represent an interval-valued fuzzy set. Hence Xu [68] concluded that

[FSs are also equivalent to interval-valued fuzzy sets, and replaced Eq. (2.1) with
A ={(z, [pa(z), 1 —va(z)])|z € X} (2.2)

The ordered pair a(x) = (ua(x),v4(z)) is referred to an intuitionistic fuzzy
value (IFV) [68], where puq(x),v0(z) € [0,1] and pa(z) + vo(z) < 1. Asso-
ciated with the degree of hesitation, an IFV can also be equivalently denoted

7



by a(x) = (pa(x), Va(x), mo(x)), where po (), vo(z), mo(z) € [0,1] and pq(x) +
Va(2) + mo(x) = 1. In the rest of this chapter, for a certain x in X, IFV
a = (p, v, ) is abbreviated as a = (u, ) when no misunderstanding raises. Since
an IFV represent an interval, an interval [, 1 — v] in [0, 1] will be directly trans-
formed into (u,v).

The hesitant fuzzy set, as a generalization of FS, permits the membership
degree of an element to a set presented as several possible values between 0
and 1, which can better describe the situations where people have hesitancy in

providing their preferences over objects in process of decision making.

Definition 2.1.2 [54, 56] Given a fixed set X, a hesitant fuzzy set (HFS) on X
in terms of function « is that when applied to X returns a subset of [0, 1], which

can be represented as the following mathematical symbol:
A = {(z,a(z))|z € X}, (2.3)

where a(z) is a set of the some values in [0, 1], denoting the possible membership
degrees of the element z € X to the set A. For convenience, Xia and Xu [63]
called a(z) a hesitant fuzzy element (HFE) and the set of all HFEs is denoted
by HFES. Especially, it there is only one value in a(z), then the HFS reduces to
the F'S, which indicates that FSs are special type of HF'Ss, therefore, the theory
for HF'Ss can also be applied to FSs.

During the evaluating process, several possible memberships of an alternative
satisfying a certain criterion may be not only crisp values but also interval values
in [0,1]. In order to handle this kind of assessment in decision making, Qjan et
al. [47] extended HFSs by using IFSs to modify Definition 2.1.2.

Definition 2.1.3 [47] Let ([0, 1] x[0,1])* = {(z, y)|z,y € [0,1],2+y < 1}. Given
a fixed set X, the generalized hesitant fuzzy set (GHFS) on X is in terms of a
function & that when applied to X returns a subset of (|0, 1] x [0, 1])*, which can
be represented as the following mathematical symbol:

A= {(z,a(x))|z € X}, (2.4)

8



where a(x) = {(ua(z), va(x))} is a set of some values in ([0, 1] x [0, 1])* (i.e, a set
of some IFVs in [0, 1]), denoting the possible membership degrees of the element

x € X to the set A. For convenience, Qjan et al. [47] called &(z) a generalized
hesitant fuzzy element (GHFE) and the set of all GHFEs is denoted by GHFES.

In particular, if there is only one value in &(z), then the GHFS reduces to
the IFS; if p5 + v5 = 1 for each ¥ = (p5,v5) € a(x), then the GHFS reduces
to the HFS; if &(z) contains only one value ¥ and p5 + v5 = 1, then the GHFS
reduces to the FS. Thus, it indicates that FSs, IFSs and HFSs are special types

of GHFSs. Some useful operations on GHFEs are as follows:

Definition 2.1.4 [47] Let &, &; and ay be three GHFEs and A > 0, then

(1) aaUde = Uz eqy saea {11 UT2} = Usiear saea { (max{ps,, ps, b, min{vy,, 15, 1) |
2) auNas = Usyear geea A NMY2} = Usiear qaea, { (min{ s, , ps, b, max{vs, 15, 1)}
) & = Usea{¥°}t = Useal (5, 13) 15
4) a1 @z = Usyean mean {1 ©V2} = Usiear macas { (15 + 13 — 5. 14555 V31 V52) 15
) 1 ®ay = Usiean, 926072{:71 RY2} = Usean, 72€5é2{(/vW1N%> Vi + V5, — V“?l’/’yz)};
) Ad = Usea{ M} = Usea{ (1 = (1 — pug), 12) };
) at = Us {7 b= Uvea{(ﬁ‘w L=l = V’Y) )}-

l

We can obtain the following relationships among the operational laws (4)-(7):

Theorem 2.1.5 Let &, &y and d be three GHFEs and X\, A, \a > 0, then
(1) &1 ®agy = a2 ® au;

(2) 1 ®agy = G ® g}

(3) My ® ag) = Ay @ Adg, A > 0;

(4) (@1 ® ) = a? ® ay, A > 0;

(5) (A1 + A2)ad = Ma @ Aa@, A, Ay > 0

(6) al

Mitr2) — GM @ @M, A, Ag > 0.

Proof We prove only (5) and (6).



M B A = Usea{ M7 & AoV}
s {1 (1 ™ +1 = (1= )
—(1= (1= p5)™)(1 = (1 = ps) ™), 121022 }
= Usea { (1= (1= ) (1= ) 01032) }
= e {(1= (1= )
= Usea{ (A1 + X2)7} = (M1 + A2)a

M ® & = Usea{7M ® 7}
= Usea { (11, 1 = (1 =)™ +1 = (1 —w5)™
=@ =)= (1 - 5)))}
s {15 5 L = (L= m) M (1= 3)) |

Use
U {1 =0 =)
U { A1+A2 } 5 >\1 +)\2

It is noted that the number of IFVs in different GHFEs may be different, let
la be the number of IFVs in @. By comparison method [77] of IFVs, we arrange
the elements in & in decreasing order, let a7 = (ua( ), g(’)) (1=1,2,...,1z)
be the ith largest IFV in a. To operate correctly, we assume that the GHFEs
& and J should have the same length [ when we compare them. If the one is
shorter than the other, we should extend the shorter one until both of them have
the same length. To extend the shorter one, the best way is to add the same
IFVs several times in it. In fact, we can extend the shorter one by adding any
IFVs in it. The selection of this IF'V mainly depends on the decision makers’ risk
preferences. Optimists anticipate desirable outcomes and may add the maximum

IFV, while pessimists expect unfavorable outcomes and may add the minimum
IFV.

10



2.1.2 Entropy measurs for GHFEs

As entropy measures have wide applications in real-world problems such as deci-
sion making, pattern recognition, clustering analysis, and image processing, it is
very necessary to develop some entropy measures under generalized hesitant fuzzy

environment. In what follows, we first give the axiomatic definition of entropy
for GHFEs.

Definition 2.1.6 An entropy on GHFE & is a real-valued function £ : GH —
0, 1], satisfying the following axiomatic requirements:
(1) E(&) =0 if and only if & = (0,1) or & = (1,0);
(2) BE(&) = 1 if and only if pZ® = 2% for i = 1, 2 s
(3) E(a) < E(B) if pu2® < 1" 7(@) and 20 > y ) for ,ug(l) < 29 or if
)

(@ and vg z)<1/‘3(Z for,uﬁ()z B() z:1,2,...,l,

o(i
:u’a = B

1
(4) E(a) = E(a).

On the basis of Definition 2.1.6, we can construct some entropy formulas as

follows:
. 1 & 1+ qu{(i) _ l/fj(i)) (1 —pd (i) i VU(Z))
Fi(ad) = ——— sin 2 ¢~ 1+ sin @ —11(2.5
1 la (1 “'MU(Z) U(Z)) ( [ (4) . ot ))
Bsy(a) = cos + cos = —11(2.6
2( ) l&(ﬂ _ 1) o ( 4 4 ( )

|l (1 Fpl® 2@ g e e
=1

T lan2 & n
o(i)
T Va ) (2.7)

2 2
o (i) (1) o (i)
Now, we give the generalized hesitant fuzzy similarity measure defined as

1—pul” +vg 1— p2
(07 [0 1 (07
+ 2 1 2

11



Definition 2.1.7 For two GHFEs & and B, the similarity measure between &
and 3, denoted as S (&, B), should satisfy the following properties:

(1) S(&, ) = 0 if and only if & = (0,1), 5 = (1,0) or & = (1,0), 3 = (0, 1);
(2) S(&,3) = 1if and only if & = 3, ie. pa() = 1 7@ and ya(l) = I/g(i),
1= 1727 7l7

3, i puZ0 < pfD < g g0 >
o () o(@) - .
S ﬁ Syﬁ, 7Z—1,2,...,l’

(3) (a,7) < S(a, B), S(a,9) < S

8,
)

_fy7a

Based on Definition 2.1.7, some generalized hesitant fuzzy similarity measures

can be constructed as:

l

~ 3 1 o7 o(% o o1
$1(@ B) = 1 — 5 3~ (Iug? =g + 105" — v5)) (28)
=1
~ N ]- d o1 o(z o(1 o(%
Sa(@, B) =1- J 5 2 (80 =s 2 05" — 3 Pp) (2.9)
=1
5 13 @ _ < )
S5(@ B) =1 = {57 2 (I = g2+ 2 — w5 1) (2:10)
i=1

~ N b o ot o(i o1

516, 8) = 1 - 5 (malluf® = p5 ) + max{g® = 00)) @)
~ N 1 ot ot o1 o1

S5(@, ) = 1= 5 (max{lg® — 3Py + max((g® - S0P} 21

1 o(1 o(1 o1
S6(,8) = 1= 5 ({1 = 3P} + max{(pf® - 70p})  (2.13)

12



- 1(1 o(@)  old) o) o)
S7(a, B) :1_4<l¢:21<|ud —pg |+ e — g |)

P = 0+ (g <O 21

S(d, §) =1~ (@Z( g+ (5 - g2

=1

1 o1 o1 o(1 o(1
g (mas G = i5OP) + a1 - 20} ) 2.5)

So(é f) = 1 —(JSZI(W =i+ 50 = vZ0)

1 (e o(d ot ot
g (maE® = 150 + a1 - 20} ) 2.6)

From analyzing these similarity measures, we can find that S; and S, are
based on the Hamming distance and the Euclidean distance, respectively; S, and
S5 apply the Hausdorff metric to Sy and Sy; S7 (resp. Sg) combines Sy (resp. Sa)
and Sy (resp. S5); Sz, S¢ and Sy are further generalizations of S and Sy, Sy and
Ss, and S; and Sy, respectively; if p = 1, then S35 reduces to Sy, Sg reduces to
Sy, and Sy becomes S7; if p = 2, then S3 reduces to Sy, Sg reduces to S5, and Sy
becomes Sg.

The relationships between similarity measures and entropy formulas have been
studied by many authors under different environments, such as interval-valued
fuzzy sets, interval-valued intuitionistic fuzzy sets and hesitant fuzzy sets. In
the following, we investigate the relationships between generalized hesitant fuzzy

similarity measures and generalized hesitant fuzzy entropy formulas:

Theorem 2.1.8 Let & be a GHFE, then S(&,a°) is an entropy for a.

13



Proof (1) S(&,a°) =0« a = (0,1) and a° = (1,0) or @ = (1,0) and a° =

o(i) - )
Va 7'5:1,2,...,l7
then /ﬂ(i) < lu{(i) < o0 o (i)
* — B

< v < v;’. Therefore, by the definition of similarity
< S(B, ac) < S(B, 3°). With the same reason, when

@ for /Lg(i) > yg(i), i = 1,2,...,1, we can prove

Example 2.1.9 For two GHFEs & and 3, we can construct the following entropy

formulas based on the similarity measures Sy (1,2,...,9):
(0.9 = 1- L Y - ) 2.17)
Sy, =1\ 1 flwz(“ g0y (218)
Sh@a) =1 ! é:ﬁ;wz@ 0 (2.19)
S1(@, 6% = 1 = max{g®” — 5} (2:20)
5@, 6%) = 1 = max{luz" - vi"[") 2:21)



So(@, %) = 1 — max{|ug” — vg" |} (2.22)

1 ]- ls o(1 o1 o(1 o(1
Se(@,d) =1 — ( 112” — w29+ max{|pd® — g H}) (2.23)

1 1 ls , . . .
ssw,dﬂzl—@z m;ff”—ug<“|2+max{|ug“>—u;“>|2}) (2:24)

~ ~c 1,1 la o7 o(e ot ot
So(@, 6°) = —Q(dkZm@“—ud“|p+mgx{md“—ud“m) (2.25)

In the following, we propose a transform method of setting up generalized

hesitant fuzzy similarity measure based on generalized hesitant fuzzy entropy.

Theorem 2.1.10 For two GHFEs & and 3, let |u2"” —,ug(i)| < [pglttY — g+

|yg(7’)—yg(l)| > |yg(’“)—ug(‘“)|, i=1,2,...,1—1, and we define a GHFE f (&, f3)
as follows:
o(1 o o(1 o(1
fa . 1+|Ma() 'uB()| 1 V&()_VB()|
(8% —
’ 2 I 2 ’
o(2 o(2 o(2 o(2
R I o
2 ’ 2 ’

o(l o(l o(l o(l
N R St
A 2 ) 2 Y

(2.26)

then E(f(&, B)) is the similarity measure of & and 3.
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Proof (1) E(f(a,f)) =0« f(&08) = (1,0) or f(a,5) = (0,1) & &= (0,1),
B =(1,0) or &= (1,0), 3 ( 1);
~ |NU(Z) U(’L‘)‘ 1—|I/g(i)—l/f(i)| . (i)

(2) E(f(&,pB) =1« 5 = s, i =12,...,l & uy =
,u%(l), g(l) = VB() 1=1,2,...,1;

(3) Since ,ua() ,u”(” < 'L‘ﬁ( ), yg(i) > Vg(i) > Vg(i), i=1,2,...,1, then we ob-

1+ o (i) _ U() o-(i)i o (i) 1@ _ a(i) 1o _ o

tain s 5 |<1+| Hy |and Ve 5 |21|°‘2 3 ‘,i:l,Q,...,l.
Hence /uLfE; 5 < 'M;&)ﬁ) and y;(((;)ﬁ) Z ;/U((;) " @" = 1,2,...,1. From the def-
inition of f(&, (), we know that ,u;E;)B) > 1/;((23), i = 1,2,...,1, and thus
E(f(&,%)) < E(f(&,B)). With the same reason, we can prove that it is also

o(i) -

true for pZ" > “E() > ”v() o0 < I/E(i) < V%T(i), 1=1,2,...,1;

)

(4) E(f(a,5)) = E(f(5 ,54))-

Example 2.1.11 For two GHFEs & and /3, we get

o (i) o (i) o (i) o (i)
1 l T2+ |pg — s |+ |vs —vsil)
Ei(f(@&,B) = —=—— | sin e £ £
e = 8
o G TN 240l
+sin C P 1] @27

8

(2 + g - ug(’)l + 2@ — 20

.= 1 l
B(f&B) = a2 : :
el =1
(2 — g — p3?) = 5 = 5
+ cos ’88 ! —1[(2.28)
o (i) o (i) o (i) o (i)
i 1 2+ e —pg [+ vs —vg
By(f(@.5) = 555 > — :
=1
2+ |uq” — ) + v = 59
X In 1

16



2 g — g1 = g — 3"
+ s s

1
2 — [ug? — ) = w9 — v
1

o(i) |

x In (2.29)

Corollary 2.1.12 Let & and B be two GHFEs, and E be the entropy of GHFE,
then E((f(&,3))) is the similarity measure of the GHFEs & and f3.

Corollary 2.1.13 Let & and 3 be two GHFEs, |2 ug(i)| < |ug(i+l)—ug(i+l)|

Y

1@ — 5 70| > gt —IJB 70t i =1,2,...,1—1, and we define a GHFE ¢(a, 3)
as follows:
<~ B) 1+ mg(l) 0(1 ‘p 1— | o(l) Vg(l)‘
(6% =
g Y 2 ) 2 Y
1+ mg@) 0(2 ¥ 1N\ o(2) Vg(2)|
2 ) 2 AR
gd” |qu(l) il qu(l)’p 1 - |I/U(l - U‘Z(l)|p
& B B
, Cp>0, (2.30
g 3 p (2.30)
then E(g(&, 3)) is the similarity measure of & and .
Theorem 2.1.14 For two GHFEs & and 3, let |p2"” _:“5 D) < gt - B(Hl)],

|Vg(i) )| > v olil) _ el ZH |, i=1,2,...,1—1, and we define « GHFE h(&, j3)
as follows

h(a, B)
o(1 o(1 o(1 o(1
IR e o) T e _ 7
_ 5 g 3 5
2 ’ 2 ’

17



B B B B
2 ) 2 ) )
o(l o(l o(l o(l
g — ug( ), g uﬂ()l,
1+ mi 1 — ma
A Vq(l)| o0 Vq(l)’
2 ’ 2 T

then E(h(&, B)) is the similarity measure of & and 3.

Proof (1) E( (&,6)) =0 < h(&,B) = (1,0) or h(a, B) = (0,1) < a = (0,1),
=(1

f=(10)r 0, 5=, 1)(;» @) 1,00 _ o6 2 gy 70
X tpmin{[ul® SO OO 1emax((ug OO 7O
(2) B(h(@,B)) = 1 Smnls g IME kil
i=1,2,...,l e u? :Mg“), A yg(’), i= 1,2,...,1;
(3)According to the assumption, ,ug(i) < ug(i) < ug(i), yg(i) 2 yg(i) > yf’(i) i=
fet-rdin o(i) d(i)’yg(i)fyg(i) mind1,2® _ o'(z) _,0®
1,2,...,1, then we have e & i |}_1+ e . s s ‘},
1—max o(i) 0’(") l/?(i)fl/q(i) — . (i) Vo(z) c_7'(7,)
{|.“‘ 2 [l 1} > = {|M 2 H Vs |},i:1,2,...,l, which
implies {J/Zgl) 5 < uhga),y and y A )’ 5) > 'VZ((Q,&), 1 =1,2,...,1. From the definition
of h(a, ), we know that ,uhé )ﬁ) > I/Z(((;)B), i=1,2,...,1, and thus E(h(a,7)) <

E(h(a, B)) With the same reason, we can prove that it is also true for ug(i) >
/J’%(Z) Z /l’g(l)7 ngi) S V,g(i) SN Vg/—(i)’ = 17 27 Ty ’l7
(4) E(h(a,B)) = E(h(B,a)).

Example 2.1.15 For two GHFEs & and B, we get

E(f(&5))

18



_ ( 2+ min{| g —u;(’)l g =g )
1 l

. +max{|pg"” — u3 ), 5" — ””|}
= 72 S1n
l<\/§ -1)= 8
W ( 2 = minfly = 0 e = ) )
o(i) U(’L o( o(7)
— maxy |Ug ]/~ — U=
+ sin { i LA 1 (2.32)

8

_ 2+ min{|ug” — pZ), 15" — v}
L +max{[pg" — p3), 50 - g o))
= ——F— COS
l(ﬂ_l) i=1 8
w7 minls gLl - 5
—max{|ug” — "“| AREZR)
+ cos 5 - —1| (2.33)
(2+mm{ma - 13, W -
o (i) )
3 & +max{|ud? = u%, [wg? D1}
By(f(@.5) = 55 > .
=1

2+m1n{|u”() ﬁ ||zf’“ v
+max{[pg"” — p3 ), 15" —ug@r}
4

x In
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2 — min{|ug” — pZ), V3

— max{|pZ"

(

a (i) o (i)
— M3 |7’Vd -
_ B

o(@) _

1
2 — min{[ug"” — p

(

— macf]u? — 2, 2

RIN4

O
) _

x In
4

Corollary 2.1.16 Let & and 8 be two GHFEs, and E b

e the entropy of GHFE,

then E((h(d, 3))¢) is the similarity measure of the GHFEs & and 3.

Corollary 2.1.17 Let & and 8 be two GHFEs, \,ug(i) — L

Lz(i—l-l)
B

,

o(7) o(i+l)
5 | < lps K

|Vg(i) —I/g(i)| > |Vg(i+1) —Vg(i+1)|, i=1,2,...,1—1, and we define a GHFE k(&, /3)

as follows:
k(a, B)
- 5 2P, ) g = BgP,
+ min ]1/7(1) V(f(l)}p — max ]yq(l) = Vg(l)’p
_ B B B B
2 ’ 2 ’
e [ ED =P 1g® — w5,
+ min |V€,(2) R Vg_(Q) |p — Imax |V€-(2) i ]/?.-(2) |p
B B B B
9 ) 2 Yty
o(l o(l o(l o(l
' |M@() M~()|p, ‘Md()_u~()|p’
1 4+ min h 1 — max
W50 — O I O
B B B B
5 , 5 ,p>0,(2.35)

then E(k(&,3)) is the similarity measure of & and §.
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Theorem 2.1.18 For a GHFE &, let [pul® — v9| < |ug0H — 20+,

&

1,2,...,1 =1, and we define two GHFEs m(&) and n(&) as follows:

1 o) _ oeMha 1 _q,e® o)
m(&):{( S 7SO M el S /AN A

2 ’ 2
o(2 o(2 o(2 o(2
1+(Md()_Va( ))4 1_|Nd()_Va()|
2 ’ 2 ’

1+(”<{(1)_Vf(l)) |M0(l U(l)|
. “ . 2.36
7 ( 2 Y 2 ( )

o (1 = -
n(a) = { ( 2 Y Y

2
a(2) o(2 a(2 a(2
1_W( _Vd()| 1+(M&()_Va( ))2
2 / 2 ’

0(1 a(l) a() cr(l)
7 1 O Y

then S(m(&),n(&)) is the entropy of &.

Proof (1) S(m(a),n(&)) =0 < m(a) = (1,0), n(a) = (0,1) or m(a) = (0,1),
n(@) = (1,0) & &= (1,0) or a = (0,1):
N ~ 1+(9) —p2@ys B 26 o), 1= |ug® 7@
(2()) S((W)L(a n@) =1« S d = a—— and —45 - =
o (i a(i)\2 . ,
L 5 o )" for j = 1,2y, . ke ug(l) = yg(l) for i =172 W Js
(3) Since ,ud() < ,ug(i) and Vg(i) ' 4 yg(i), for ,ug(i) < yg(i), i=1,2,...,1,
Ce e o(d) o (i) o (i) o(i) - g -1
which implies ps; ~ < 1 < v <vg’,1=12,...,1, we have —&——5— >
7)o@ a(i)_ o) 14+(u7 D —p20)4
Lzﬁ‘, i = 1,2,...,1, which means that el o ! > 3 5 %5 ) >
1— 2@ 7@ IR ORO) 1= 2@ 2@ 1— |,f’<l) °<i>| 14 (g —p7@y2
g _p2ith2 .. e
M, 1=1,2,...,1. Therefore, from the definition of similarity measure

of GHFEs, we have S(m(a),n(a)) < S(m(B),n(a)) < S(m(B),n(s)). With the
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Corollary 2.1.19 Suppose that S is the similarity measure for GHFEs, then
S(m(a)¢, n(&)) is also the entropy of the GHFE a.

Example 2.1.20 For a GHFE &, we have some entropy formulas
S1(m(@), n(@))
1 &

7 2 (0 =g 2E? = g0+ (ug? — 2))  (2.38)

a =1

—1-

1 o1 o(1 o o(i o(i o(i
=1- 1 (maX{( 20— 2O 4 2)uZ® — 2O 4 (g — 12 ))2}> (2.39)

1 & ot ot o(t o( ot o(t
= _<Z<(N&()—Vd())4+2|ﬂa() — 3+ (ug® _Va())Q)

{2 <5+ 260 <050 + 460 - ) ) 20)

2.2 Cross-entropy measures for GHFEs

In this section, we shall present the axiomatic definition of cross-entropy measure
for GHFE motivated by Bhandai and Pal [6], Shang and Jiang [49], Vlachos and
Sergiadis [57], Hung and Yang [27], and Xu and Xia [76], from which we can get

some entropy measures for GHFEs.

Definition 2.2.1 Let & and B be two GHFEs, then the cross-entropy C(&, 5) of

& and B should satisfy the following conditions:

(1) C(&,B) = 0;
(2) C(&, B) = 0 if and only if ps® = ,u%(i) and 2" = I/E(i), i=1,2,...,1
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Based on Definition 2.2.1, we can construct two cross-entropy formulas of &
and B defined as

1 & (i) (14 g™ + (14 qud ) In(1 4 quf”)
Ol (Oé, 6) = ﬁ Z D)
=1

24 qui” +qpl” 2+ qui? + qug?

— n
2 2

1+ @21+ @) + (1 + qua( Nn(1 + qua( N

+
2

9 4 qyg(Z) +qyg(l) 92 4 ql/g(z) + qyg(l)

- 5 In 5 , (2.41)

where T'= (14+¢)In(1+¢) — (2+ ¢)(In(2+ ¢) —In2) and ¢ > 0.

() P a(i\p o(i)\p a(@)yp
! P+ gy A+ (59)

Co (. B) =
2(057/6> (1 21 —p l Zzl 2 + 2
ot ot p a(t ot P
Ma( ) MB( ) I/a(z) Sk VB( ) 1) (2.42)
b > = 1. :
Remark 2.2.2 (1) Since Cg In 2112(]'1 > 0, then 7" is an increasing function about
q, and thus 7" > 0. In addition, let f(x ) (1 +gx)In(1+qx), 0 <z <1, then
M =qIn(l+qz)+q >0 and % = 14z > 0. Then f(z) is a concave upward

functlon of z and f(%f) = @—i—& if and only if a = b. Therefore, Cy(a, §) > 0
and C, (&, §) = 0 if and only if,ug( = ,u;( ), ;() = 1/5() i=1,2,...,1. According
to Definition 2.2.1, C1(&, /) is the cross-entropy of & and B.

(2) Let g(z) = 2P, 0 < 2 < 1 and p > 1, since d*‘;—f) = paP~! and % =
p(p—1)zP~2 > 0, g(x) is a concave upward function of z, and then Cy((&, 3)) > 0
and C’Q(&,B) = 0 if and only if ,ug( p;(l), g(i) = I/;(Z), 1 =1,2,...,1. From
Definition 2.2.1, Cy(@&, B) is the cross-entropy of & and B.
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Theorem 2.2.3 Let & be a« GHFE, then E(a) =1 — Cy(&,a%) is the entropy of

Q.

Proof Let

Q
2 la 1 a(i) In(1 o (i) 1 o (i) In(1 o (i)
(1 +qug ) In(1 +qug ") + (1 +quvz ) In(1 + qvg ")
2

2t g 2+ g

2 2

o (i)
i ) g >0, (2.43)

where T'= (1 4+ ¢)In(14+¢q) — (2+ ¢)(In(2+¢) — In2).

(1) By the definition of E(&), F(a) = 0 & Ci(a,a°) =1 < a = (1,0) or
a=(0,1);

2) E(@) =1%o Cy(&6°) =0 < ul? =029 =12, I

(3) If ug(i) < ug(i) and 2 > ug(i) for u2® < 2% i =1,2,... 15, then we
have ug(i) < ,u%(i) < z/g(i) ~ yg(i), i =1,2,...,1, which implies \,ug(i) — Vg(i)] >
|ug(i) —Vg(i)|,i: 1,2,...,0. Let 0 <&,y <1,t=|z—y|, and

(1+gx)In(1+gz) + (1 + qy) In(1 + qy)
2

_2+q:c+qyln2+qx+qy

2 Z 4

fx,y) =

q>0. (2.44)

If x >y, then x =t +y, and

(I+q(t+y) In(1+q(t+y)) + (1 +qy) In(1 + qy)

2+ q(t 24 q(t
_2+q(tty) tay, 2+ +y)+qy7q>0' (2.45)
2 2
and thus
0f(ty) _q+qln(+qlt+y) ¢ aq, 2+4qlt+y) +ay
ot 2 2 2 2
2(1 + q(t
_ g, 2 Hdtty) Sy (2.46)

2 2+4q(t+y)+qy —
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Therefore, f(z,y) is a nondecreasing function of |z — y|, for x > y. With the

same reason, we can also prove that it is true for x < y. Hence E(a) < E(f).
(4) E(a) = E(a°).

Theorem 2.2.4 Let & be a GHFE, then E(&) =1 — Cy(a, &%) is the entropy of

Q.
Proof Let

E(&) = 1 — Cs(a, &)
9 ! a(i)\p a(i)\p o@) , o\
:1—l2<(ﬂa ) +(Va ) B e *s 7p>1'(2'47)
1

(1-2"P) =

(1) By the definition of E(a), E(a) = 0 & Cy(a,ac) =
a=(0,1);
(2) BE(@) =1« Cy(a,6°) =0« ud? =02" i=12. I

3) If p2® < 7@ and vI? = 79 for u2® < I/?(i), 1 =1,2,...,ls, which

means |2 — 29| > \,ug(i) — yg(i)|7 i=1,2,...,0. Let t = |z — y| and
Py P P
g(wy) == ;ry —(x;ry) , 0<2,y<1, p>1 (2.48)
If x >y, then x =t +y, and
t 4 y)P + yP £\
g(t,y)=<;—(y+2> , p>1 (2.49)
Since
dg(t,y) _p 1 A
) _ Py —< ) p> 1, 2.50

g(x,y) is a nondecreasing function of |x — y|, for x > y. With the same reason,

we can also prove that it is true for z < y. Hence E(a) < E(f).
(4) E(a) = E(a°).
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2.3 Methods based on information measures for
multiple attribute decision making with gen-

eralized hesitant fuzzy information

Suppose that there are m alternatives y; (i = 1,2,...,m) and n attributes z;
(j = 1,2,...,n) with the attribute weight vector w = (wy,ws,...,w,)T such
that w; € [0,1], j = 1,2,...,n, and >7_,w; = 1. Suppose that a decision
organization is authorized to provide all the possible degrees that the alternative
y; satisfies the attribute z;, denoted by a GHFE &;;.

In following, we develop two approach to multiple attribute group decision
making with generalized hesitant fuzzy information. First, we extend the entropy
method to generalized hesitant fuzzy environment and obtain the final optimal

alternative by comparing the cross-entropy measures with the ideal solutions.

Approach I

Step 1. The decision organization provides all possible evaluations the al-
ternative y; under the attribute z;, denoted by the GHFE &;; (i = 1,2,...,m;
j=12...,n).

Step 2. If the information about the weight w; of the attribute z; is unknown
completely, then we establish an exact model of entropy weights for determining

the attribute weights:

P L5 )

m

n—3 50 (% ie1 E@‘z‘j))

w; = , §=1,2,.20n, (2.51)
where E(d;;) is the entropy of &;; given by Egs. (2.43) or (2.47).

Step 3. Let J; and J, be the sets of benefit attributes and cost attributes,
respectively. Suppose that the generalized hesitant fuzzy positive-ideal solution is
at = (af,as,...,a") and the generalized hesitant fuzzy negative-ideal solution
isa” = (ay,45,...,04, ), where 64;“ =(1,0), a; =(0,1), j € J; and &;r =(0,1),

a; = (1,0), j € Jo. Then we calculate the cross-entropy between the alternative
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y; and positive-ideal solution and the negative-ideal solution:

ij (aj,al), i=1,2,...,m, (2.52)

}:% (Gij, 05 ), i=1,2,...,m. (2.53)

Step 4. Calculate the closeness degree of the alternative y; to the positive-

ideal solution by using the following

C*(yi) .
Cly;) = , 1=1,2,...,m. 2.54
W= e+ ) 25
Step 5. Rank the alternatives y; (i = 1,2,...,m) according the values of
C(y;) (i =1,2,...,m) in ascending order, and the smaller the value of C(y;), the

better the alternatlve Yi-

Next, if we utilize the maximizing deviation method to derive the weight
vector of the attributes in Step 2 of Approach I, and use the TOPSIS method
[58] to compare the alternatives in Steps 3 and 4 of Approach I, then we can

obtain the following approach:

Approach 11
Step 1. For this step, see Approach I.
Step 2. Utilize the maximizing deviation method to calculate the attribute

weight w; of the attribute z;:

711 2?21 d<dija dkj)
Y1 Xty Sty d(Guig, )

w; = i=1,2:7..m, (2.55)

where d(a;;, du;) is distance between &;; and dy; such that for two GHFEs & and
B, the distance between & and 3, denoted as d(a, B), defined by

~ 3 1 d ot ot o
d(@,5) = 573 (g — 3?1+ 12 =2 7)) . (2.50)

i=1
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Step 3. Calculate the distance between the alternative y; and the positive-

ideal solution & = (af, a3, ..., a; ") and the negative-ideal solution &~ = (a7, &5 ,
C Q)
d* (i) = Y (wid(ds,67)), i =1,2,...,m, (2.57)
=1
d™(yi) = Y (wid(ds,67)), i=1,2,...,m. (2.58)

—

B

Step 4. Calculate the closeness degree of the alternative y; to the positive-

ideal solution @t by using the following

)
d=(yi) +d*(y;)’

Step 5. Rank the alternatives y; (i = 1,2,...,m) according the values of

D(y;) = i=1,2,...,m. (2.59)

D(y;) (i =1,2,...,m) in descending order, and the larger the value of D(y;), the

better the alternative y;.

In the following, we use a multiple attribute decision making problem of de-
termining what kind of air-conditioning systems should be installed in a library

(adapted from [78] [88]) to illustrate the proposed approaches.

Example 2.3.1 A city is planning to build a municipal library. One of the
problems facing the city development commissioner is to determine what kind
of air-conditioning systems should be installed in the library. The contractor
offers four feasible alternatives y; (¢ = 1,2,3,4), which might be adapted to
the physical structure of the library. The offered air-conditioning system must
take a decision according to the following five attributes: (1) performance (),
(2) maintainability (z3), (3) flexibility (x3), (4) cost (x4), (5) safety (x5). Let
J = {x1, 29,3, 24, x5} be the set of five attributes, and assume that x;, 25, x5 and
x5 are benefit attributes and x4 is cost attribute. That is, J; = {x1, z9, x3, x5}
and Jo = {z4}.
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To get the optimal alternative, the following steps are given if Approach I is
used:

Step 1. The decision organization provides all possible evaluations of the
alternative y;, by a GHFE &;;, with respect to the attribute z;, listed in Table

2.1 (i.e. generalized hesitant fuzzy decision matrix D = (&;;)axs).

Table 2.1: Generalized hesitant fuzzy decision matrix

x1 T3
y1 | {(0.3,0.2),(0.3,0.4)} {(0.6,0.2),(0.5,0.2), (0.4,0.3)}
y2 | {(0.7,0.2),(0.5,0.2)} {(0.5,0.1),(0.4,0.2), (0.3,0.1)}
y3 | {(0.6,0.3),(0.5,0.2)} {(0.9,0.05),(0.8,0.1), (0.7,0.1)}
ya | {(0.5,0.3),(0.5,0.4)} {(0.8,0.1),(0.8,0.3), (0.6,0.3)}
T3 T4
y1 | {(0.4,0.5),(0.3,0.4)} {(0.4,0.2),(0.3,0.4),(0.2,0.6),(0.2,0.7)}
y2 | {(0.8,0.1),(0.7,0.2)} {(0.8,0.1),(0.7,0.2), (0.6,0.3),(0.5,0.3) }
y3 | {(0.4,0.3),(0.4,0.4)} {(0.8,0.1),(0.7,0.2), (0.6,0.1),(0.4,0,1)}
ys | {(0.7,0.3),(0.5,0.4)} {(0.8,0.1),(0.7,0.3), (0.6,0.3),(0.4,0,2)}

L5
(0.8,0.1), (0.7,0.2)}
(0.7,0.2), (0.6,0.3)}
( ) ( )}
( ) ( )}

y1 | {
y2 | {
{(0.2,0.5), (0.2,0.6
{(0.6,0.3),(0.4,0.5

Y3
Y4

)

Step 2.
attribute z; is unknown completely, then we utilize Eq. (2.43) (let ¢ = 2) to

Suppose that the information about the attribute weight w; of the

calculate the entropy matrix (see Table 2.2)

and then by Eq. (2.51), we can obtain the attribute weight vector:
w = (0.0927,0.2995,0.1416,0.2471,0.2191)".

Step 3. Utilize Egs. (2.41) (let ¢ = 2), (2.52) and (2.53) to calculate the

cross-entropy between the alternative y; and the positive-ideal solution & or the
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Table 2.2: Entropy matrix determined by the cross-entropy C}

T 45 zs3 T4 Ts
y1 | 0.9880 0.9052 0.9893 0.8788 0.6204
yo | 0.8219 0.9014 0.6204 0.7769 0.8273
ys | 0.9037 0.4578 0.9944 0.7100 0.8635
ya | 09737 0.7249 0.9180 0.8006 0.9495

negative-ideal solution a:

CH(y1) = 0.2193, C* (y2) = 0.1086, C* (y3) = 0.1749, CF (y4) = 0.1352,
C~(y1) = 0.3720,C (y2) = 0.5161,C~ (y3) = 0.4785, C~ (y4) = 0.4553.

Step 4. Utilize Eq. (2.54) to calculate the closeness degree of the alternative
y; to positive-ideal solution & :

C(y1) = 0.3709, C(y2) = 0.1739, C(y3) = 0.2677, C(y4) = 0.2290.

Step 5. Rank the alternatives y; (i = 1,2,3,4) according to the values of
C(y;) (i =1,2,3,4) in ascending order:

Yo =Yg > Y3 > Y1-

If we utilize Eq. (2.47) (let p = 2) in the above Approach I, then the following
steps are given:

Step 1. See the above.

Step 2. Utilize utilize Eq. (2.47) (let p = 2) to calculate the entropy matrix
(see Table 2.3)

and then by Eq. (2.51), we can get the attribute weight vector:

w = (0.0909,0.2982,0.1448, 0.2458,0.2203)" .

Step 3. Calculate the cross-entropy between the alternative y; and the

positive-ideal solution &+ or the negative-ideal solution @~ by Eqgs. (2.42) (let
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Table 2.3: Entropy matrix determined by the cross-entropy Cs

T 45 zs3 T4 Ts
y1 | 0.9900 0.9133 0.9900 0.8850 0.6300
y2 | 0.8300 0.9200 0.6300 0.7825 0.8300
ys | 0.9100 0.4758 0.9950 0.7300 0.8750
ya | 09750 0.7233 0.9150 0.8050 0.9500

p=2), (2.52) and (2.53):

CH(y1) = 0.2268, C* (y2) = 0.1183, C* (y3) = 0.1817, CF (y4) = 0.1342,
C~(y1) = 0.3748,C~ (y») = 0.5137, C~ (y3) = 0.4757, C~ (ys) = 0.4534.

Step 4. Utilize Eq. (2.54) to calculate the closeness degree of the alternative
y; to positive-ideal solution a*:

C(y1) = 0.3769, C(y2) = 0.1872, C'(ys) = 0.2764, C(y4) = 0.2283.

Step 5. Rank the alternatives y; (i = 1,2,3,4) according to the values of
C(y;) (i =1,2,3,4) in ascending order:

Y2 =Yg = Y3 > Y1-

If we use Approach II, then the following steps are given:

Step 1. For this step, see Approach I.

Step 2. Calculate the attribute weight w; of the attribute x; by Eqgs. (2.55)
and (2.56):

w = (0.1375,0.1818, 0.2040, 0.1973, 0.2794)7 .

Step 3. Utilize Egs. (2.57) and (2.58) to calculate the distance between the

alternative y; and the positive-ideal solution @™ or the negative-ideal solution &~ :

A (y1) = 0.4219, d* (y2) = 0.2893,d" () = 0.4087, d" (y4) = 0.3653,
d™(y1) = 0.5781,d" (1) = 0.7107,d" (y5) = 0.5913,d~ (y4) = 0.6347.
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Step 4. Calculate the closeness degree of the alternative y; to negative-ideal
solution &t by Eq. (2.59):

D(y1) = 0.5781, D(y2) = 0.7107, D(y3) = 0.5913, D(y4) = 0.6347.

Step 5. Rank the alternatives y; (i = 1,2,3,4) according to the values of
D(y;) (i =1,2,3,4) in descending order:

Yo = Ya = Y3 = Y1.
which is the same result as that in Approach I.

If we use the extension principle [47] of generalized hesitant fuzzy sets (i.e.
we conduct Arithmetic Mean associated with the IFA operator [68]) to aggregate
the generalized hesitant fuzzy information for each alternative, then by the score
function [47] of GHFESs, we get the score s(y;) of each alternative y; (i = 1,2, 3,4):

s(y1) = 0.9783, s(y) = 0.9962, s(y3) = 0.9916, s(y4) = 0.9937.

Ranking the alternatives y; (i = 1,2,3,4) according to the values of s(y;) (i =
1,2,3,4) in ascending order, we obtain the same ranking order result: yo > y4 >
Ys = Y1

From the analysis presented above, when comparing three approaches, we
know that the first approach focuses on the entropy and cross-entropy measures,
the second one utilize the distance measures to apply the TOPSIS method, and
both of them are suitable for dealing with the situations that the weight vector
of the attributes are unknown; the last one is only suitable for the situations
that the weights of the attributes are equal. The first two approaches are much
simpler than the last one, because the aggregation operator in the last approach

need a lot of computation.

2.4 Subsethood measures for GHFEs

The purpose of this section is to establish a unified formulation of subsethood,

entropy, cardinality and similarity for genralized hesitant fuzzy elements. We
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present an axiomatic skeleton for subsethood measures in the generalized hesi-
tant fuzzy setting, in order for subsethood to reduce an entropy measure. The
notion of average possible cardinality is presented and its connection to least and
biggest cardinalities is established. Moreover, the entropy-subsethood and en-
tropy theorems in generalized hesitant fuzzy setting are stated and algebraically
proved, which generalize the works of Kosko [29] for F'Ss and Liu and Xiong [36]
for IFSs. Finally, we investigate the relationship between generalized hesitant

fuzzy subsethood and generalized hesitant similarity measures.

According to Section 2.1, we define the inclusion between two GHFEs & and
B as follows:

& C B if and only if ug(i) < ,ug(i), l/g(i) > l/g(i)7 fori=1,2,...,1. (2.60)

In this section, we shall present the axiomatic definition of subsethood measure
for GHFE motivated by Liu and Xiong [36], Vlachos and Sergiadis [57] and Park
et al. [43], from which we can establish a connection between subsethood, entropy

and similarity measures for GHFEs.

Definition 2.4.1 Let @ and 3 be two GHFEs, then the subsethood measure of
& to B3, denoted as s(a, B), should satisfy the following conditions:

(1) s(@,B) = 1 if and only if @ C f, ie., ,ug(i) < ,ug(i), Vg(i) > Vg(i), for
1=1,2,...,1;

(2) If & C @, then s(a,ac) = 0 if and only if & = (1,0);

(3)If B C &1 C @y, then s(ay, B) > s(dw, B), and if B C Bo, then s(a, f;)
s(a, /5’2)

IN

Theorem 2.4.2 Let & and § be two GHFES, then

5 oy (max{0, #g(i) - [ﬁ(i)} + max{0, 20 _ ,/g(i)}
si(a,B) =1~ 1 ( l B 0 B ) (2.61)
=1 (1 + /JLd - Vd )

1s subsethood measure of & to [3.
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Proof (1) s1(&, ) = 1 < max{0, pa JZ)}—OandmaX{O 1/~ —l/g(i)}:(),
i:1,2,...,l<:>,u&()_uﬁ~(' andyg)gyd(),z—l,l...,l.

(2) Suppose that a° C @, then p,g(i) > Vg(i) for i = 1,2,...,l. From Eq.
(2.61), we obtain

2%, (max{() ug(l U(l)})
(i u"(’) /20)
2 (40— )
(s ua() 20)

Thus, we have s;(&,a°) =0 < a = (1,0).
(3) Suppose that  C @; C G, then ,uggi) > ;ng” > /LE(Z) and ygél) <129 <

— [o%1

—1—

o (i) L : o (i) o() o () o(i) o(i) o ()
Vs for ¢ = 1,2,...,1. Since pg, — 1 > g, — g and Vg = Vg, >

y;(i) — ygfi) fori=1,2,...,1, we have

l o(d) U(i) l o(i) G(i)
s1(a17ﬁ~)=Zi: (1+M i ) > izt (1+M )

6
T (L7 = 0) i (1 — o)

= 51(d2, B). (2.63)

Next, suppose that 8; C B, then ug() i ﬁf) > ,ug(z) L 55) and Vgl(i) — Vg(i) >

;2(1) yg(i), i=1,2,...,1. Due to the monotonicity of max operator, it follows
that

; L ({0, 57} + max{0, 150 150}

si(a, Br) =1 - s (1 + 00— Vg(z‘))
il Y (max{O, MR /Lg(i)} - max{O, ng) — Vg(i)})
= S (14 10 — )
= 51(&, 5a). (2.64)

Remark 2.4.3 Note that if @ = (0,1), Eq. (2.61) is undefined. However, since
(0,1) € B for any GHFE 3, by the definition, we have s,((0,1), 5) = 1.
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Theorem 2.4.4 For two GHFEs & and B, we define

> 1 ot o2 o2
52(a, szm{lg P nd 0,0 =50 1)), (2.65)

where g : [0,2] x [0,2] — [0,2] is real function with the properties: 1) x >y =
9(x,2) < g(y, 2), g(2,2) > g(2,y) forz,y,2 €[0,2]; 2) g(z,y) =0 & v =2,y =
0; 3) g(1,1) = 1 and ¢,¢ : [0,2] — [0,2] are real functions with the following
prperties 1) 5 >y > 92) > 609, $6) > b0y for .y € 10,25 2 o) =
0 =2 Ul) =04y =0; 9) 6(1) = v(1) =

Then so(@, ) is subsethood measure of & to 6.

Proof (1) Suppose that & C 3, let a; = ug(i) - ,ug(i) +1 and 3 = Vg(i) —
I/g(i) +1,7=1,2,...,0. Since a; < 1 and 3; > 1, we have ¢(a;) < 1 and
¥(B;) > 1 and then g(o(a;),¥(6:)) > g(1,4(8;)) > g(1,1) = 1. Thus, we have
so(@, ) = 1 Lyt min{1, g(¢(a:), ¥(B;))} = 1. Suppose that so(@, 3) = 1, then
glo(u? - %“+1yw%@—»§“+n)21,¢=1ﬂw”¢ Thus, we get
pl® — /Lé(l) +1<1and 2" — yg(i) +1>1,4=1,2,...,0I. In fact, suppose

that there exists j such that ,ug(j) — ,ug(j) = B OF Vg(j) - Vg(j) +1 <1 If

o= pg? = pf? +1 > 1, then ¢(a) > 1 and thus g(é(a),¥(8)) < g(1,4(8)) <
g(1,1) = 1, which is a contradiction. If § = v ) g(j) +1 < 1, then ¢(a) < 1
and thus g(¢(a), ¥ (8)) < g(é(a),1)) < g(1,1) = 1, a contradiction. So, we have
,ug(i) < ug(i), yg(i) > Vg(i), i=1,2,...,1, and thus & C 3.

(2) Suppose that a¢ C &, then we have

$2(6,6°) =0 < ¢(ul® =20 1) =2, 929 — @ + 1) =0,i=1,2,...,1
& 2l - w“+1—2yﬂ%qﬁ“+1_0z—12 N/

< a=(1,0).

(3) Suppose that B C a1 C ay, let Qg = ug(:) — ,u%(i) + 1 and Bi,; =
2 ug(i) + 1, k=1,2; i =1,2,...,1. Then ¢(ay;) < ¢(aa;) and ¥(51,)

L

>
V(Bai), @ = 1,2,...,1, which implies g(¢(a,), ¥ (Bri)) > g(@(ans), v(Bri)) >
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g(p(agi), ¥(B2i)), @ = 1,2,...,1. Thus sa(de, ) < sa(d, ). With the same

reason, we can prove that 52(07,31) < s9(@, 52) is also true for 3, C fs.

Now, to generalize the fuzzy entropy theorem in the setting of GHFEs, we
start with the following definition.

Definition 2.4.5 Let & and § be two GHFEs, then
(1) @08 = Ul_ {(max{ug®, u7"}, min{g", 17}

(2) aMB = Uiy {(mingu5?, x5}, max{ug®, 15O ))).

Theorem 2.4.6 Let &, (3 and v be three GHFFEs , then

(1) a0 = pUa;

(2) aNB = BNa;

(3) a°0p° = (aNP)*;

(4) anpe = (a0p)°;

(5) aL(8y) = (aUB)N(aly),;
(6) an(puy) = (aNB)u(any)

Proof We prove only (5).
(5) By Definitions 2.1.4 and 2.4.5, we have

G0(A) = Uy {(max{ud®, min{ud®, pug9}, min{pg", max {7, v V})}
= Uiy { (min{max{pg"™, p"}, ma{ug", u"}},
. oo() oli) (O R(C)
max{min{v; Vs }, min{vg", vz }})}
— (a0B)A(E07).

The relationships between subsethood measures and entropy have been stud-
ied by many authors under different environments, such as fuzzy sets, interval-
valued fuzzy sets and interval-valued intuitionistic fuzzy sets. In the following,
we investigate the relationships between generalized hesitant fuzzy subsethood

measures and generalized hesitant fuzzy entropy:
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Theorem 2.4.7 Let & be a GHFE, then E(a) = s(aUa‘, aNa®) is an entropy

for a.

Proof (1) Suppose that @ = (1,0) or & = (0,1), then aUa® = (1,0) and
ana® = (0,1). Since aNa® = (aUac)¢, we have &O&C = (1,0) D (aUac)¢ and
thus by (2) of Definition 2.4.1, E(&) = s(aUa¢, aNa®) = 0. Suppose that E(a) =
s(aUac, aNa©) = 0, that is s(aUac, (aUac)¢) = 0. Then, since aUa“ D aNa’, by
(2) of Definition 2.4.1, we obtain aUac = (1, ) Hence & = (1,0) or & = (0, 1).

(2) Suppose that pZ o) — Cf(i) fori=1,2,...,ls, then aUa® = aNac and thus
by (1) of Definition 2.4.1, F(a) = s(aJa® aNa®) = 1. Suppose that F(a) =
s(adac, anac) = 1, then from (1) of Definition 2.4.1, we deduce aUa“ = aNac
which implies /ﬂ(i) = v @ for i = 1,2,...,15.

(3) Suppose that ua(l) ug(i) and vg ) > y ) for /Lﬂ 70 < yg(i), i=1,2,...,1,
then pu2® < MB() < VB() < 2% By (3) of Deﬁnltlon 2.4.1, s(alac, anac) <

s(alac, BOSe) < s(BOSC, BﬁBC) and thus E(a) < F(8). With the same reason,

7

Whenp()>u

E(&) < E(B).
(4) B(&) = s(a°0&, a°Na) = s(GUa°, GNac) = E(a).

)andy )<V 9 for,uﬁ()>1/g(l) 1=1,2,...,[, we can prove

Remark 2.4.8 Theorem 2.4.7 describes an interesting relationship between the
entropy and subsethood measure for GHFEs. It states that the entropy E(&)
expresses the degree to which the supset @Ua¢ is a subset of its own subset aNa®.
Evaluating for the proposed subsethood measures Eqs. (2.61) and (2.65), yields

two new entropy measures for GHFEs given by
B (&) = s;(adar, anac)
Yt (1 — max{u®, v39Y 4 min {20, Vg(i)})

) Zien (1 T maX{Mg(i), Vg(i)} - min{ug(i)7 yg(i)}) , (2.66)
Ea(a) = sy(a0a’, aNac)
B }Zzl:lmm {1’ g (gzﬁ(max{,ug(' 1 — min{pZ®, 791 + 1),
P(minfug™, vi"} — max{ud” 50} + 1))} (2.67)
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Szmit and Kacprzyk [51] defined the concept of cardinality for IFSs. Vlachos
and Sergiadis [57] provided an interpretation of cardinality under a geometrical
framework and presented the concept of average possible cardinality for IFSs. We

extend these concepts in the generalized hesitant fuzzy setting.
Definition 2.4.9 For a GHFE a, the following two cardinalities are defined:

e the least cardinality or min-sigma-count, which is given by

la .
min » _ Count(d) = 1 > 2 (2.68)

la =

e the biggest cardinality or max-sigma-count defined as
- 1 o (i)
max »_ Count(&) = T > (1 — vy ) . (2.69)

The cardinality of the GHFE & is defined as the interval
card(a) = [min > Count(a), max ) C’ount(d)} ; (2.70)

Definition 2.4.10 For a GHFE @&, the average possible cardinality M (&) is
defined as

1j
M<d) = dh((07 1)7d) = Tl~

& j—

(g +1 -5, (2.71)
1

where dj (&, B) is the Hamming distance between & and § given by dp (&, B) =
3 2 (15 = g 4+ 15 = g ).

From Egs. (2.71) and (2.70) it follows that M (&) is the midpoint of the inter-
val [min }> Count(&), max Y. Count(@)]. It should be point out that Eq. (2.71)

encompasses the notions of least, biggest, and average possible cardinalities.

We are going to generalize the fuzzy entropy theorem in the setting of GHFES,
by stating the following theorem.
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Theorem 2.4.11 (Generalized hesitant fuzzy entropy theorem) Let & be « GHFE
and M be an average possible cardinality of GHFEs, then

- M(aNna®)
E = 2.72
(@) M(aUac) (2.72)
is an entropy for a.
Proof For a GHFE & and its complement a¢, it holds that
a0a* = U { (max{yg” ““’} min{r7”, 120N} (273)
ana® = U {(min{pg", v} max{vi®, ug"})}. (2.74)

From the definition of average possible cardinality, we obtain that

~ 1 s ot ot . ot ot
M(a0a) = 53 (1+ max{g”, w37} —min{sZ? pZV}) . (275)
@ =1
~ 1 £ o ot ot o1
M(anac) = T (1 = min{,u&( ) 2t )} - max{yd( ) pgl )}> . (2.76)
@ =1

Substituting Eqgs. (2.75) and (2.76) into Eq. (2.66) yields Eq. (2.72). This
completes the proof.

In the following, we investigate the relationships between generalized hesitant

fuzzy subsethood measure and generalized hesitant similarity measure:

Theorem 2.4.12 Let & and B be two GHFEs, then S(&, ) = s(&, B) A s(B3, &)

1s a similarity measure of & and f3.

Proof (1) If &= (0,1) and 8 = (1, ) then & = 3¢ C . By (2) of Definition
2.4.1, we have S(@, ) = ( 3) A s(B,a) = 0A s(B,a) = 0. With the same

07
reason, when & = (1,0) and § = (0,1), we can prove S(a, 5) = 0.

(2) S(@f) =1« s(@pf) =sfa)=1sa=0



(3) If ug(i) < ug(i) < ug(i), 2@ > I/g(i) > I/g(i) for + = 1,2,...,1, then

& C  C 4 and thus, by (1) and (3) of Definition 2.4.1, we have

S(@, ) = s(a, ) A s(B,a) = s(8,d) > s(7,a) = 1 A s(5,@)
=s(a,y) N s(7,a) = S(&,7), (2.77)
S(@,7) = s(&,7) A s(3,d) = s(3,a) < s(3,8) = 1 A s(¥, 5)
= s(B,%) A s(%,B) = S(B,9). (2.78)

With the same reason, when ug(i) > U
1,2,...,1, we can prove S(&, 3) > S(&, 4

(4) Obviously, S(&, ) = S(B,a).

2.5 Conclusions

In this chapter, the entropy, cross-entropy and similarity measures for GHFEs
were proposed, and several theorems that the entropy, cross-entropy and similar-
ity measures for GHFEs can be transformed by each other were proved. Besides,
two approaches of multiple attribute decision making problems where attribute
weights are unknown and the evaluation values of attributes for each alternative
are given in the form of GHFEs were investigated. To get optimal weight vector
of attributes, the first approach utilized the entropy method which focuses on
the fuzziness of the provided information; while the second one utilized the max-
imizing deviation method which focuses on the deviations among the decision
information. These two approaches utilized the weights of attributes to calculate
closeness degrees of alternatives and to get their ranking. Furthermore, the illus-
trative example demonstrated the practicality and effectiveness of the developed
approaches. The prominent feature of two approaches is that they can provide
a flexible way to facilitate the decision process under generalized hesitant fuzzy
environment and be more applicable than existing ones, because our approaches
can avoid complex computations. Besides, in Section 2.4, we presented a unified

framwork for subsethood, entropy, cardinality and similarity for GHFEs. An ax-
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iomatic skeleton for subsethood was introduced and new subsethood and entropy
measures in the generalized hesitant fuzzy setting were proposed. The notion
of average possible cardinality was presented. Moreover, generalized hesitant
fuzzy version of the entropy and entropy-subsethood theorems were stated and
proved, which generalized the works of Kosko [29] for F'Ss and Liu and Xiong [36]
for IFSs. Finally, we investigated the relationship between generalized hesitant

fuzzy subsethood and generalized hesitant similarity measures.
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Chapter 3

Interval-valued generalized
hesitant fuzzy sets and their

application in decision making

In this chapter, we extend GHFSs to interval-valued generalized hesitant fuzzy
sets (IVGHFSs). Some basic operations and them are defined, such as union,
intersection and some arithmetic operations on their elements. And their prop-
erties and relationships with IVIFVs are discussed as well. Then we develop a
comparison law to distinguish information of IVGHFEs. A corresponding exten-
sion principle is introduced for further application to multiple attribute decision

making.

3.1 Interval-valued intuitionistic fuzzy sets

As a generalization of the notion of IFSs, Atanassov and Gargov [4] introduced
the notion of interval-valued intuitionistic fuzzy sets in the spirit of interval-valued

fuzzy sets.

Definition 3.1.1 [4] Let X be ordinary non-empty set. An interval-valued in-
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tuitionistic fuzzy set (IVIFS) A on X is defined as
A= {(z, pa(@),va(z))lz € X}, (3.1)

where fig : X — DI[0,1], 74 : X — DJ[0,1] are two functions, where D|0, 1] be
the set of all closed subintervals of the unit interval [0, 1], with the condition

sup fia(z) +supva(z) <1 for all z € X.

The intervals fis(x) and 74(x) denote, respectively, the degree of belonging-
ness and the degree of non-belongingness of the element x to A. Then for each
x € X, fia(x) and D4 (z) are closed intervals and their lower and upper end points
are denoted by fiar(x), fiav(x), ar(x) and ay(x), respectively, and thus we can
replace Eq. (3.1) with

A= {2, [ftar (@), fao (@), [Par(@), pav(@))) |z € XY, (3.2)

where 0 < fiap(z) + Dap(x) <1 for all x € X.

Bustince and Burillo [9] proposed a new operator, so that each point z € X
we take a value p and a value r corresponding to that point. For each x € X, we
take p,, 7, € [0,1] and we consider H,, ,, : IVIFSs(X) — IFSs(X) given by

Hp, r,(A) = {(2, frar(x) + paWpa(2), vap(@) + raWoa(z))lz € X}, (3.3)

where Wia(x) = fiav(z) — frar(x) and Wia(z) = vap(z) — Dar(z) is amplitudes
of fia(z) and D4(x), respectively. Evidently, H,, , (A) is an IEFS for all IVIFS
A. The most important properties of this operator can be found in [8]. They [9]
presented a theorem for the construction of IVIFSs from an IFS as follows.

Let A be an IFS A and let us consider mappings X — [0,1] x [0,1], z —
(Az, pz), such that if m4(x) # 0, A\, and p, satisfy A\, < ’;A—(z) and p, < va(2)

A(z) ma(z)’

Theorem 3.1.2 [9] Let (;,n, € [0,1] such that 0 < (, +n, < 1. Let I :
IFSs(X) — IVIFSs(X) be a function given by I'(A) = {(z, firca)(x), ray(x))|x €
X} such that
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(1)
(2)
(3) Iray(x) = @’ +Vva(x) — pema(x) with fized o',V € R for all IFSs A;
(4)
(5)

Then we have
(a) firayr(x) = pa(z) — Aoma(@), firaw () = pa(®) + Gralz);
(b) Ireayr(x) = valz) — poma(), Prayw (@) = valz) + nema(z)
and conversely.

By means of the H,, ,, operators, they [9] studied the way of to recover the
IFS A used in the construction of IVIFS I'(A) with the above theorem.

Theorem 3.1.3 [9] Let A be an IFS and T'(A) be the IVIFS constructed in the
previous theorem, such that 0 < ¢ + A <1 and 0 < n, 4+ p, <1 forall x € X.
Then

H e e (LAY maed: (3.4)

CxtAa ' nx+px

For convenience, Xu [69] called the ordered pair &(z) = (fa(x),7a(x)) an
interval-valued intuitionistic fuzzy value (IVIFV), where jis(z),75(z) C [0,1]
and sup fiz(z) + sup vgz(z) < 1. Atanassov [3] and Atanassov and Gargov [4]
introduced some basic operations on IVIFSs, which not only can ensure that the
operational results are IVIF'Ss but also are useful in the calculus of variables under
interval-valued intuitionistic fuzzy environment. Motivated by the operations in
[4, 3], Xu [69] and Xu and Chen [72] defined some operational laws of IVIFVs,

which are useful in the remainder of this thesis, as follows:

Definition 3.1.4 [69, 72| Let & = (jia, Va), B = (fi3,73) be two IVIFVs and
A > 0, then
(1) au B = ((max(fiar, figp), max(fiav, figy)], [min(Zar, 73,), min(Zay, 75)));
(2) an B = ([min(fiar, fizg), min(fiav, fizy)]; [max(Zar, U3;,), max(Pau, Va;)]);
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(3) & = ([Par, Vav], [far, flav]);

(4) @@ B = ([fiaL + figy — farilzy, v + figy — favfizy), [Parvsr. vavvay));
(5) a@® B = ([Rariizy, Aavhigy), [Par + D5 — Darisp, Vav + Pay — ZauZ5y));
(6) Aa = ([1 = (1 = far)™ 1 = (1 = fiav)], [Par, Pav));

(7) at = ([ﬁéLaN&U]? [1 - (1 - ﬂdL))\a 1 - (1 - 5&U>A])'

By the above operations, Xu [69] and Xu and Chen [72], respectively, proposed
the aggregation operators for IVIF'Vs as follows: For a collection of IVIFVs @; =
([fa, L, fa,u), [Py Pa,u]) (0 =1,2,...,n), then

(1) the interval-valued intuitionistic fuzzy averaging (IIFA) operator [69]:

1FA(Gy, o, .. Gy) = &7, (Tlla)
S ([0 1 (RN | (R MR (CREN (GO IEE

(2) the interval-valued intuitionistic fuzzy geometric (IIFG) operator [72, 61]:

1

IIFG(dl,dQ, ‘e d ) == ®? 15(5

_ (lﬁl fia)® H ] , l1 1@ - Pae)b, 1= TTCL = ﬁ&iu)ib (3.6)

=1 i=1

3.2 Interval-valued generalized hesitant fuzzy sets

When considering the degree of an alternative satisfying a certain attribute, due
to insufficiency in available information, we may have a doubt among several
possible memberships with the form of both IFVs and IVIFVs. In order to
handle this kind of assessment in decision making process, we extend the concept

of HFSs by IVIFSs. Let us consider the following example.

Example 3.2.1 Four experts evaluate an alternative with respect to an attribute
presented by interval-valued fuzzy value, IFV or IVIFV, which are [0.6,0.8],
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(0.6,0.3), ([0.65,0.7],]0.25,0.3]) and (0.7,0.2), respectively. By Definition 2.1.3,
those evaluations form a GHFE such that

h = {(0.6,0.2), (0.6,0.3), (0.7,0.2)} U {([0.65,0.7],0.25,0.3])},

where (][0.65,0.7],[0.25,0.3]) is an IVIFV.

Then we can conclude that a GHFS is a generalized extension of interval-
valued fuzzy set, IFS and IVIF'S by Definition 2.1.3. Without loss of generality, we
consider each membership as an IVIFV. Then by Theorem 3.1.2 (let A = £ x0.01,
p="%x001,¢=A\n=p), the GHFE in Example 3.2.1 can be rewritten as

h = {(]0.594, 0.606], [0.198,0.202]), ([0.594, 0.606], [0.297, 0.303)),
([0.693,0.707], [0.198,0.202]), ([0.65, 0.7], [0.25, 0.3])}.

However, Definition 2.1.3 emphasizes that possible memberships take the
forms of both crisp and IFV as its elements. All existing literatures involved
in HFSs and GHFSs focused in this case. As shown in Example 3.2.1, from the
necessity of potential applications, we extend HF'Ss by using IVIFSs to modify
Definition 2.1.2.

Definition 3.2.2 Given a set of N membership functions:

M = {dl N (ﬁ&wﬁdi)

Pa; = [BaL, Baw), ¥ = [Pa,L, Va,u] C [0, 1],

ﬂdiU—i_I;&iUS172.:]-’27"'7]\7}7 (37)

the interval-valued generalized hesitant fuzzy set (IVGHFS) associated with M,

that is hyy, is defined as follows:

har () = Us,enr{ (fia, (2), Vs, (2)) }
= Us,enm{([fia; (%), fia,uo ()], [Pa,0(7), Da,u (2)]) }- (3.8)

Note that GHFSs, IVIFSs and IFSs are special cases of IVGHFSs. In fact,
it fig,, = fla,u and Vs, = Us,p for all ¢ = 1,2, ..., N, then IVGHFSs reduce to
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GHFSs. If N =1, then IVGHFSs reduce to IVIFSs. If N =1, fiayr = flayv and
VanL = Vayu, then IVGHFSs reduce to IFSs. Thus, IVGHFSs are not only the

extension of GHFSs, but also the generalized representation of IFSs, IVIFSs and
GHF'Ss.

For convenience, given a x € X, 7 is considered as a real number in B(x),
& = (Jla, Va) represents an IFV as well as an interval in h(z) and & = (fig, )
represents an IVIFV in A(z). Similar to [47, 63], & in an IVGHFS h is referred
to as interval-valued generalized hesitant fuzzy element (IVGHFE). In the rest
of this section, an IVGHFS h, represented by its membership function hyy, is
denoted by Eqgs. (3.7) and (3.8) as default. Now, we first extend basic operations
defined by Qjan et al. [47] in the new setting.

3.2.1 Basic operations

For a given IVGHFE h with its elements &; = ([fig,z, fla,v); [PaL, Va]) (i =
1,2,..., N), the upper and lower bounds of h are denoted by
(1) upper bound: = max;—12.  ~n{1— Vs, }
= [max;—15. {1 — Va,u}, max;—1 2. n{1 = Pa,}];
(2) lower bound: h= = min;—q 2. n{fa}

:[mini:1,2 ,,,,, N{ﬂdiL},minisz ..... N{/]/o?iU}]-

Obviously, the pair of h~ and 1 —h* define an IVIFS, which form the envelope
of the IVGHFE. We present it in the following definition.

Definition 3.2.3 Given an IVGHFE £, we define an IVIFV Aem(ﬁ) as the en-
velope of h, where Aem(ﬁ) can be represented as (fia, Va), with fia = h= and
Da=1—ht

Then according to the notions of upper and lower bounds, the envelope of an
IVGHFE h can be rewritten as

Acpo(h) = < min N{ﬁ@i},izgﬁn N{ﬁdi}>

i=1,2,..., 2,...,
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- ([ min N{M&iL}>i:$ln N{:U“&iU}} )

i=1,2,..,N Yo
L:Lr%fr.l.,w{ym}’i:{g}P,N{V&@-U}]> : (3.9)

Similar to [47, 63], we can define the union, intersection and complement of
IVGHFEs as follows.

Definition 3.2.4 Given three IVGHFESs iL, hy and ﬁg, then
(1) Complerjnent:~ he = Useid (s, fia)} = Usei{ (Par, Pav), [fiar, fiav)) };
(2) Union: hy Uhe = Ug, e, a,eh{ (Har, Vay) U (fay, Vas) }
= Uz, chy achy LMax{fia, 1, flarr } max{fia, v, fla,v };
[min{ s, 1, Va,r }, min{va,v, Va,uv }) };
(3) Intersection: hy N hy = UdleleﬁQeEQ{(ﬁdl, Vay) N (flags Vay) }
= Uz, el anchn LMin{fia, o, fla,r b, min{fia,v, fla,v},

[max{ﬁdlln ﬁd2L}7 max{ﬂﬁqU? ﬁd2U}])}'

As can be seen in Definitions 2.1.3 and 3.1.1, we define some useful opera-
tions to deal with IVGHFEs when making decision in interval-valued generalized
hesitant fuzzy information.

Definition 3.2.5 Given three IVGHFEs h, h; and hy and A > 0, then

(1) Bi = Uaei{@'} = Uaerl([@ar, fiz), [1 = (1 = Zar)™ 1 = (1 = Zav) D)}

(2) M= Usen{Aa} = Uz {([1 = (1 = fian)* 1 = (1 = fiav)™), (73, Zau])};

(3) h1 @ ha = Ug, ci, anein 101 © Ga} = Ug i) anein A ([larL + fasr — flayLiasLs
flaU + flasr — flaUftasv], [PayLVasLs VauVasu)) }s

(4) hy®@hy = Us, e ancin 01 @02} = Uy ciy aneio A ([Har LlG, Ly flay U fasu], [Pan L
+ VapL — VayLVas Ly VayU + Vasu — VayuVasu)) }-

3.2.2 Properties

In this subsection, we focus on some properties of operations defined hereinbe-
fore. Some relationships among basic operations are introduced in the following
theorem.
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Theorem 3.2.6 Given three IVGHFEs h, hy and hy and \ > 0, then
(1) hcuhc—(hmi@) .

AR = (RM)E.
5) h§ @ hy = (7 ® hy)°
6) h$ @ h§ = (hy @ hy)°.

Proof From Definitions 3.1.4, 3.2.4 and 3.2.5, we have:
(1)
hiUhg = Ud1€iL1,&2€iL2{d({ Uas}h
= Ua1€h1 &s€ho {([max{ﬂﬁlln ﬂdgL}; maX{ﬂohU; ﬁdzU}]a
[min{fia, 1, flapr b, min{ fia, v, fdasv H) }
= Ualeﬁl,dQGiLQ{(dl N d?)c} g (hl N hg)c.
(2)
hiNhg = Ualeﬁl,&zeﬁz{di N as
- Ualehl aoEhs {([min{ﬁdlLa ﬁdgL}, min{ﬂdlU, I;dQU}]7
[max{fia, 1, flasr b Max{fia, v, fasv t])}
. U&IEFLI,&QEBQ{(&l U &2)0} = (hl U hg)c.

- Udeﬁ ([~)\L7 ﬁéUL [} N (1 N ﬂdL)Av Iy (1 = ﬂdU))\])}

AR = User{Aa“}
= Useid (1 = (0 = Zap)* 1 = (1= 7a0) ], [, fido])}
= Useid (@)} = ()"



(5)

B(f D Eg - Udleﬁl,dze/@{&i D as}

= Us, ehngocio A PanL + Vart = VayLVas Ly VayU + Vasu — VayuVasvl,
[y Lo Ly flayu fasu]) }

= Ug, ey dnein i (01 @ Qo)) = (hy ® hs)°.

(6)

hi @ hs = Usi e aachy, 107 © G5}
= Ug, ehy anein\ ([Ha Litas Ly VayUVasv ]
[fiar + Hasr — e plasrs fau + flasu — favfasu)) }
= Ug, ey ancin (1 © G2)°} = (hy @ ho)°.

Moreover, the relations of these operational laws are given as:

Theorem 3.2.7 Given three IVGHFEs B, hy and hsy and A, A, A >0, then
(1) hl@hz hz@hl
(2) hl & h2 h2 & h1

(3) A(hy @ hy) = Ahy & Ahs.

(4) (h ® hQ) =h} @ h.

(5) Mih @ Ash = (A1 + Ao)h.

(6) W't @ b2 = prite,

Proof (1) and (2) are straightforward.
(3)
Ay @ Ahy
- Ualeﬁl,dgeﬁg{)‘dl B Adz }
= U, ehnanchp L1 = (1= fiay ) (1 = figor), 1 = (1= fia,0) (1 = fiaev)],
[VglLﬁ(i\gLv ~21UV22U]>}

= Us, ehgocint ([ — (1= fla L — fla,r + fia, Lilaar),

20



1= (1= figu — flasu + fayuiau) ]| QILVQQLa ~21UV22U])}

= U 1€ h1 agehg{A(al @ 042)}

= My @ hy).

(4)
hY @ hy
= Ud1€ﬁ1,d2€ﬁ2{&i\ ® 655\}

= Ua1€h1 OAQGhz{([MO&lL/’LQQIM :uoclUluazU]

1— (1= 7a,0) M1 = Payr)™ 1= (1= 7a,0) (1 = Zay0) )}
é LﬂazLﬂ MalUﬂazU] [1 - (1 - ﬁdlL - ﬁd2L + DdlLﬂ&QL)A7

[
1— (1_Va1U Vd2U+D&1UI>5¢2U))\])}

- &1€ﬁ1,d2€ﬁ2{(

U&eﬁ{)‘l‘i ® )‘25‘}
Usernd(1 = (1 = far)™ (1 — fiar), 1 — (1 — far)™ (1 = fiar) ™),

(2L 522 o 22])}

= Usen{ ([ = (1= fian)™ 7,1 = (1= frap) ™), (73172, 772))}
= Uzent (A1 + Ag)a}
= (/\1 + )\Q)il
(6)
h>\1 h}\g
= Usen{d™ @ @™}

&GE{([:UO[L:U(/}LQL? ﬂgbuaU] [1 - (1 - ﬁdL))\l(l - ﬁdL))Qa
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L= (1= )™ (1= 7a0) )}
aerd (AL 35720 [ = (1= 2an )M, 1 = (1= a0) ™))}

deﬁ{&h—w\?}

BM A2

il
c C

Then, we give the further study of the relationship between IVGHFEs and IV-
[F'Vs, that is, the notion of envelope brings some relationships between IVGHFEs
and IVIFVs.

Theorem 3.2.8 Given three IVGHFEs h, hy and hy and \ > 0, then

(2) Aeno(h1 U o) = Ao (h1) U Acny (o)
(3) Aenw(hr Mh2) = Ao (h1) N Acny (o)
(4) Acno(?) = (Acn(h))

(5) Aens(AR) = MAuu (R)). ~
(6) Aenw(hy @ ha) = Acpo(h1) © Acno(ha).
(7) Aenv(ﬁl & ilg) 7 Aenv(ill) ® Aenv(iL2>'

Proof We prove only (1), (2), (4) and (6).
(1) From Definitions 3.2.3 and 3.2.4, we have

Aenv(ilc) it (Uaeﬁ{<[ﬂ&L, favl, [PaL, 17&U])C})
= Ae'rw (Udeﬁ{qﬁdlza ﬁ&UL [ﬂ&Lu ﬂ&U])})

B Qel?{ﬁ@}’glelﬁn{ﬁdlj}] ’ [glelﬁn{ﬂaﬂaglelhn{ﬂw}b

= ([Ianelzl{ﬂm},fanelzl{ﬂw}] ) [Ianel}fll{ﬁaL}»ranelzl{ﬁaU}D
(Aeno(h))".

(2) From Definitions 3.2.3 and 3.2.4, we have

Aem)(iLl U El)
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= Aen’u (Ud1€/tb1,5¢2€]~7,2 {([max{ﬂﬁqL; /1072[/}7 maX{ﬂd1U7 /]’ng}L

[min{7a, 1, Va,r }, min{Zs,v, Va,u }]) })

I
/—\

_011€h Gacha a1€h,a2€hs

min _ {min{7s, 1, Va,r}}, min _ {min{D&IU,DdQU}}]>
a1 Eh a2€h2 a1€h,a2€h2

a1€hy Go€ha

ai€hy ao€ha

1€l ag€ho ajehy az€h2

_ (me {1}, min {ualy}] [mig{ﬂdw}’ min {7 ‘“U}D

|&1€h a1€hy a1€hy

a2€hs Ga€h2 Ga€h2

U (lmm {fa,}, melzl {MQQU}] Lﬂlig {Va,r}, min {ﬁ&QU}D
= Aeno (1) U Acpy (ho).
(4) From Definitions 3.1.4, 3.2.3 and 3.2.5, we have
Acno (1)
= Aoy (Vs {1z, B3o) [t = (1 = Zar)’, 1 = (1= 7a0))})

— ([mintihe G2 fmints < (1 = 7)) min1 = 1 -
ach ach ach ach

_ (:(gﬁil{ﬂ“}y’ (r;éﬁn{ﬂ@ﬁ) A] |

:1 . (1 - réleig{ﬁab}y iy (1 i réleig{ﬂw}ﬂ)
= ([ min i [?ég{ﬂdL%?;%{ﬁ&U}DA

= (Aenv(il)))\-
(6) From Definitions 3.1.4, 3.2.3 and 3.2.5, we have

Aenv(ilfl ©® EQ)
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= Aenv(Us, ciy anchy LAarL + fiasr = fla, Liiaa s fayU + flanU — flayUfasu),

(Vay LV Ly VarUVasu)) })

= ({ min _ {fig, + flaL — BaiLia,n},  min  {jia,u + flayu ﬂaluﬁaQU}} ;

&1€h1,02€hs a1€hy,80€hs
min _ {¥s,r%,r},  min _ {Zs,uvau} >
L&a1Ehy,&2E€h ai1€hy,aa€hs i
= ([ min {1 - (1 - fg,r)(1 = fa,z)}, min {1 —(1—jguv)(1 - ﬂdzU)}] ;
&1E€h1,&2€hs &1€h1,82€hs
min _ {Pa,1%a,L} min _ {7s,uVa,U} )
Ll&1€h1,&a€hs a1€hy,a2€hs |

= ([ (- o ) (1 i ey )1 (1 i 7))
X (1 — min {ﬂdzU}>:| , [mip {Pa,r} - min {Zs,1}, min {75,v} - min {'7d2U}D

a2€ha ai€hy az€ha ai1€h; ag€ha

— (Lmip {fia,}, min {ﬂ&IU}:| , [}nil} {7a,r}, min {DdlU}]>

a1€hy a1€hy a1€hy a1€hy

@ ([ min {fiz,r}, min {ﬁdzU}:| ; [}nil} {a,r}, min {ﬂaQU}D

Gx€hs G2€ha G2€ha Ga€hsa

- Aenv(ill) ® Aenv(i@)-

3.2.3 Comparison of IVGHFESs
Qjan et al. [47] defined the score function of a GHFE h, i.e. s(h) = ﬁ > aen Ela),

where [(h) is the number of elements in A and E(«) is the expect value of element
« in h given by E(a) = $(pta + 1 — va). However, the definition is unavailable
if some elements in A take the form of IVIFV. To deal with this situation, we
extend the definition to IVGHFEs as follows.

Definition 3.2.9 Given an IVIFV & = ([ftar, fav]; [Par, Vau]), the expect value
of & is defined by
1
E(d) = Z(/ldL +1—var + pflav +1 — D&U), (3.10)
where F(a) € [0,1]. The larger the value of F(&), the higher the IVIFV a.
Especially, if E(&) = 1, then & = ([1,1],[0,0]), which is the largest IVIFV; if
E(a) =0, then @ = ([0,0], [1, 1]), which is the smallest IVIFV.
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Note that E(&) = 5(fiar + 1 — Par) if and only if fizr = figu and Uar = Vav,
in other words, & reduces to an IFV; E(&) = [igy if and only if fiar, = fiav,
Var = Vau and [igr + Vs, = 1, in other words, & reduces to a fuzzy set. Further,
E(a) = % + 0.5, where S(&) is the score function [69] of a.

Definition 3.2.10 Given an I[VGHFE iL, the score function of l~1, denoted by
s(h), is defined by

s(h) = l(ﬁ)%E(d), (3.11)

where (k) the number of elements in & and @& is an element in & taken the form
of IVIFV.

Definition 3.2.11 Given an IVGHFE h, the consistency function of h, denoted
by C(il), is defined by

~ L( . . - \J A e
c(h) = B <T}1€1£1{MdL} 5 melﬁn{ﬂaU} o melg{V&L} + T{lel}bl{V&U}> : (3.12)

where & = ([fia, flav), [Var, Vav]) is an element in A taken the form of IVIFV.

The score function represents the average of expect values of all elements in h,
while the consistency function focus on the degree of consistency of all elements in
h. For example, the committee of some experts represent the characteristic of an
alternative by an IVGHFE with respect to an attribute, then the score function
quantizes the average opinion of experts, but the consistency function reflects
how they agree with each other. Based on these two definitions, we introduce the

following method for comparing any two IVGHFEs.

Definition 3.2.12 Given two IVGHFEs h; and hs, then
(1) if s(h1 5(hs), then hy is small than hy, denoted by hy < hs;
(2) if s(hy) = s(h ) then
(a) if c( 1) < ( »), then Ay is small than hy, denoted by hy < h;
(b) if ¢(hy) = ¢(hs), then hy and hy represent the same information, denoted
by hy = hy.

) <
)
h
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Example 3.2.13 Let h; = {(0.5,0.4)}, hy = {([0.4,0.5],[0.3,0.4])} and hs =
{(]0.3,0.35],[0.4,0.55]), (0.4,0.55)} be three IVGHFEs. To compare three IVGFEs,
we firstly construct IVIFVs from IFVs in IVGHFEs h; and hs. From Theo-
rem 3.1.2 (let A = £ x 0.005, p = £ x 0.005, ¢ = A, n = p), we have i =
{[0.4975, 0.5025], [0.398, 0.402]} and hs = {([0.3,0.35],[0.4, 0.55]), ([0.398, 0.402],
0.5473,0.5528])}, then we calculate the score of h; (i = 1,2, 3):

1
s(hi) = (04975 + 1 0.398 + 0.5025 + 1 — 0.402) = 0.55,

1
s(hy) = (04 +1-03+0.5+1-04) =055,

- 171
s(hy) = 5 (4(0.3 +1-04+0.35+1—0.55)

1
+1(O.398 +1—-0.5473 40402+ 1 — 0.5528)) = 0.425.

and thus, s(ﬁl) = s(ﬁz) > S(iLg), we get hy > hs and hy > hs. On the other hand,
we calculate the consistency degrees of hy and ho:

- o)
c(hn) = 5(0.4975 +0.5025 +0.398 + 0.402) = 0.9,

1
c(he) = 5(04+0.5+0.3+0.4) =08,

then since c(ﬁl) > C(BQ), we have hy > hy. Therefore, hy > hy > hs.

3.2.4 Extension principle

As discussed in Subsection 3.2.3, IVGHFSs permit us to represent the situation
in which a group, or even several group, of experts have to make decisions on
a set of alternatives. Whereas we need to develop a function or mechanism to
aggregate evaluations taking the form of IVGHFSs, so as to obtain the overall
satisfaction degree to select the most relevant one. Motivated by [54, 47], we
present an extension principle to export operations on IVIFSs to IVGHFSs as

follows.
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Definition 3.2.14 Let © be a function © : (D[0,1]x D[0,1])" — DJ0,1]x D|0, 1]
and H = {711, ho, ..., BN} be a set of IVGHF'Ss on the reference set X. Then the
extension of © on H is defined, for each z € X, by:

O7(%) = Uach, (2)xha (2)x - xine () LO(E) }- (3.13)

To deal with aggregation of IVGHFEs according to Definition 3.2.14, we can
employ some aggregation operators on IVIFVs such as the IIFA operator (Eq.
(3.5)) and the IIFG operator (Eq. (3.6)) etc. Let’s clarify it in the following

example.

Example 3.2.15 Let hy = {(0.4,0.5)}, hy = {([0.3,0.4],[0.4,0.45])} and hs =
{(]0.3,0.35],[0.45,0.55]), (0.35,0.45)} be three IVGHFESs, then, from Theorem
3.1.2 (let A = £x0.008, p = 2 x0.008, ¢ = A, n = p), we construct IVIFVs from

IFVs in IVGHFEs hy and hs as follows: hy = {([0.3968, 0.4032], [0.496, 0.504])}
and hs = {([0.3,0.35],[0.45,0.55]), ([0.3472,0.3528],[0.4464, 0.4536])}. Then the
Arithmetic Mean (AM) of them is conducted, associated with the IIFA operator
(Eq. (3.5)), as follows:

AM(hy, ha, hs) = Ug e, iy LIFA(G)}
= {IIFA(([0.3968,0.4032], [0.496, 0.504]), ([0.3,0.4], [0.4, 0.45]), ([0.3,0.35], [0.45,0.55])) }
U{ITFA((]0.3968, 0.4032], [0.496, 0.504]), ([0.3, 0.4], [0.4, 0.45]), ([0.3472, 0.3528], [0.4464,
0.4536]))}

= {([0.3339, 0.3849], [0.4469, 0.4997]), ([0.3492, 0.3858], [0.4457, 0.4686]) }.

The Geometric Mean (GM) of them is also conducted, associated with the
ITFG operator (Eq. (3.6)), as follows:

GM(h1, ha, h) = Ugehy, iy iy (ITFG(@)}
— {IIFG(([0.3968, 0.4032], [0.496, 0.504]), ([0.3, 0.4], [0.4, 0.45]), ([0.3, 0.35], [0.45, 0.55]))}
U{ITFG (([0.3968, 0.4032], [0.496, 0.504]), ([0.3, 0.4], [0.4, 0.45)), ([0.3472, 0.3528], [0.4464,
0.4536)))}

= {([0.3293,0.3836], [0.4501, 0.503]), ([0.3457, 0.3846], [0.4489, 0.4698]) }.

Furthermore, based on interval-valued intuitionistic fuzzy aggregation oper-

ators such as in [69, 72, 71, 70, 78, 44|, we can also develop other versions of
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aggregation operators for aggregating IVGHFEs. For example, if IVGHFEs have
different relative weights, the weighting aggregation operator should be consid-
ered; if the ordering of IVGHFESs is provided, the ordered weighting aggregation
operator should be dealt with.

3.2.5 Distance measure of IVGHFEs

Because that distance and similarity measures can be applied to many areas
such as pattern recognition, cluster analysis, approximate reasoning and decision
making, they have attracted a lot of attention. A lot of distance measures have
been developed for FSs, I[FSs, IVIFSs and HFSs as mentioned in introduction, but
there is little research on IVGHFEs. Thus, it is very necessary to develop some
distance measure under interval-valued generalized hesitant fuzzy environment.

We first present this issue by proposing the axioms for distance measure.

Definition 3.2.16 Let h; and hy be two IVGHFEs, then the distance measure
between hy and hs is defined as d(ﬁl, ﬁg), which satisfies the following properties:
(D1) 0 < d(hy, hy) < 1;
(D2) d(hy, hy) = 0 if and only if hy = hy;
(D3) d(hy, hy) = d(ha, hy).

In most cases of two IVGHFESs izl and 712, the numbers of elements of izl
and hy may be different, i.e. I(hy) # I(hy), and for convenience, let I; =
max{l(h;),1(hy)} To operate correctly, we should extend the shorter ones, un-
til both of them have the same length when we compare them. To extend the
shorter one, the best way is to add the same values several times in it. In
fact, we can extend the shorter one by adding any values in it. The selection
of this value mainly depends on the decision makers’ risk preferences. Opti-
mists anticipate desirable outcomes and may add the maximum value, while
pessimists expect unfavorable outcomes and may add the minimum value. For
example, let hy = {(]0.4,0.5],[0.3,0.4]), ([0.5,0.6], [0.2.0.3]), ([0.5, 0.6], [0.1,0.2]) },
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hy = {(]0.5,0.6],0.2,0.3]), ([0.3,0.4], [0.4,0.5])}, then we get I(hy) > I(hs). To op-
erate correctly, we should extend hs until it has the same length of hy. Using the
score function [69] of IVIFVs, the optimist may extend hs as hy = {([0.5,0.6], [0.2,
0.3]), ([0.5,0.6],[0.2,0.3]), ([0.3,0.4],[0.4,0.5]) }, and the pessimist may extend it
as hy = {([0.5,0.6],[0.2,0.3]), ([0.3,0.4], [0.4,0.5]), ([0.3,0.4], [0.4,0.5])} (If some
elements of IVGHFE are in the form of IFVs, then we use Theorem 3.1.2 to con-
struct to IVIFVs from [FVs). Although the results may be different if we extend
the shorter one by adding different values, it is reasonable because the decision
makers’ risk preferences can directly influence the final decision. In this chapter,
we assume that the decision makers are all pessimistic (other situation can be

studied similarly).

Based on the Hamming distance and the Euclidean distance, we define the

interval-valued generalized hesitant normalized Hamming distance:

-

-~ 1 2k
divghnh(hla hZ) — E (
- % )

lu’d‘i'(J)L — Mdg(J)L

+ M@T(J)U . Md;(J)U

+ +

) (3.14)

and the interval-valued generalized hesitant normalized Euclidean distance:

V&‘I(J)[] e V&Z(])L V&T’(J)U b V&Z'(J)U

2
+

2

M&T(J)U i ’U/ng)U

] 319

),z’ = 1,2 are the jth largest

/’1’&‘17(])[/ B /’[/&ZU)L

.1 1
divghne<h1> h2) = [41~ Z (

b j=1

2

+ V&T(])L - Vng)L + V&T(])[] B V&S’(J)U

~o(@) _ (|7 "
where o; 7/ = ([qumyﬂdqm(}
7 2

values in hy and hs, respectively.

V&?(j)L7 Vd;f(j)U

Y

Example 3.2.17 Let h; = {([0.7,0.8],[0.3,0.45]), ([0.35,.39], [0.4, 0.45]), ([0.5,
0.57],[0.6, 0.65]), ([0.1,0.3],[0.2,0.8]), ([0.4, 0.5], [0.7,0.9))} and hy = {([0.7,0.9],
[0.3,0.7)), ([0.5,0.65], 0.2, 0.4]), ([0.2,0.3], [0.1,0.2]), ([0.4,0.7], [0.5, 0.6]), ([0.35,
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0.45],10.7,0.85])} be two IVGHFEs. By definition of the interval-valued gen-
eralized hesitant normalized Hamming distance (Eq.(3.14)), we calculate the
divghnh(hla h?):

divghnh(ﬁly 712) = 0194

and we also calculate the diughne(ﬁl, ﬁg) by definition of the interval-valued gen-

eralized hesitant normalized Euclidean distance (Eq.(3.15)):

divghne(ﬁla BQ) = 0.2458.

3.3 Decision making based on interval-valued

generalized hesitant fuzzy information

In some practical problems, for example, the presidential election or the blind peer
review of thesis, anonymity is required in order to protect the decision makers’
privacy or avoid influencing each other. In this section, we develop two approaches
for solving multiple attribute decision making with anonymity under interval-

valued generalized hesitant fuzzy information.

3.3.1 Two approaches to multiple attribute decision mak-
ing

Suppose that there are m alternatives O; (i = 1,2,...,m) and n attributes z;
(7 = 1,2,...,n). An none specific weighting operator has been developed, we
suppose that the weights of attributes are indifferent. If the decision makers
provide several values such as IVIFVs or IFVs for the alternatives O; under the
attribute z; with anonymity, these values can be considered as IVGHFE Ew In
the case where two decision makers provide the same value, then the value emerges
only once in Bl] Suppose that the decision matrix H= (;lij>m><n is the interval-
valued generalized hesitant fuzzy decision matrix, where Bij (1 = 1,2,...,m;
j=1,2,...n) are in the form of IVGHFEs.
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Then, we utilize the extension principle, i.e. the AM or GM in Example
3.2.15, to develop an approach to multiple attribute decision making problems
with interval-valued generalized hesitant fuzzy information, which can be de-

scribed as following:

Approach III

Step 1. Construct the decision matrix H= (ﬁij)mxn, where all the arguments
ﬁij (t=1,2,...,m; j = 1,2,...n) are IVGHFEs, given by decision makers, for
alternative O; with respect to the attribute z;.

Step 2. Utilize Theorem 3.1.2 to construct IVIFVs from IFVs in IVGHFEs
hiy (i=1,2,....m; 5 =1,2,...n).

Step 3. Aggregate all IVGHFEs izl-j (j = 1,2,...,n) of alternatives O; (i =
1,2,...,m) with respect to attributes x; (j = 1,2,...,n) into the overall values
h; by using the AM, associated with IIFA operator on IVIFVs, in Example 3.2.15:

hfi = AM(;L“, iLi27 ety iLln)

&i1€hi1,8i2€hi2,.., dinEBm{HFA(&“’ di2’ ) dm)}
| - _ 1 F _ 1
= U5zi1€f~l¢1,5ti2€f~l¢2 ----- &in€hin 1_ H(l " 'udijL)n’ L= H(l L 'udijU)n ’
| =1 j=1

or the GM, associated with ITFG operator on IVIFSs, in Example 3.2.15:
iLi = GM(iLzla Ei?v Fy 7717,77,)
n{IIFG(&ﬂ, ONéZ'Q, il ,O~ém)}

. 1 i n”
H ﬂ£i1L7 H /]’gllU] )
1 j=1

U&ﬂ €hi1,&i2€hi2,....8in €Ny

j=

i=1

{1 - f{lu et - [0 - >]> } - (317)

where &;; = ([fia,; L, fla,,u], [Va,, L, Va,u)) is an element in hi; taken the form of
IVIFV.
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Step 4. Compute the score values s(h;) (i =
by Definition 3.2.10:
- 1

s(hi) = —— 3 E(a
h azeh
=— > (B + 1 = Dayr + fiaw + 1 — Vayu), (3.18)

4l(h) =

where l(ﬁl) is the number of elements in h; and &; = ([fa;L, a0, [PasL, Va,u)) is an
element in h; taken the form of IVIFV. If there is no difference between two score
values s(h;) and s(h;), then we need to calculate the consistency degrees c(h;)
and c(ﬁj) of the alternatives O; and O; (i,j = 1,2,...,m,i # j), respectively, by
Definition 3.2.11:

c(h;y) = ; (mln{,ua L} + min{jig,v} + min{s,.} + min{7s, U}) (3.19)

a; €N a;€h; a;€h; a;€h;
Step 5. Rank the alternatives O; (i = 1,2,...,m) according to Definition
3.2.12 and then select the most desirable alternative(s).
Step 6. End.

In the situations where the information about attribute weights is completely

known, that is, the weight vector w = (w1, ws, ..., w,)"

of the attributes z;
(t = 1,2,...,n) can be completely determined in advance, then we can con-
struct the weighted interval-valued generalized hesitant fuzzy decision matrix
H* = (h;})mxnv where h:‘}‘ = wjh;; = Ua”eﬁw{wjdm} = a”el}”{([l - (1 -
ﬁdijL)wj7 1_(1_ﬁdijU>wj]7 [V;UZJL7 ~a” ])} is the Welghted IVGHFE y= 1 2 m;

Jj = 1,2,...,n, and w; is weight of the attribute z; such that w; > 0 and
Z?Zl w; = 1.

The positive ideal solution and negative ideal solution can be denoted as ht =
{([1,1],]0,0))} and A~ = {([0,0],[1,1])}, respectively, within the interval-valued
generalized hesitant fuzzy environment. The separation between alternatives can
be usually measured by Hamming distance or Euclidean distance. The separation
degrees, ST(0;) and S™(0;), of each alternative O; (i = 1,2,...,m) to the PIS
h* and NIS h~, respectively, are derived from Egs. (3.14) and (3.15):
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e Separation degree based on the interval-valued generalized hesitant normalized

Hamming distance d;ygnnn:

1 -
St (Oz) = E Z divghnh(hij7 h+)

divghnh —
Jj=
= — = ]_ iy J + 1 o (k) wj
njzl [4[(}%) 1;1 (< ’uam(k)L) (1-a 7(k o)
+ﬁ:‘;(k)L + ﬂ;v;_(k)U> ‘| ) (3.20)
1 ij
- 1 ~
Sdivghnh(oi) - n Z divghnh(hij7 h™)
j=1
AV 1= (1= fiom ;)" + 1= (1= fi_oww,, )"
n; [41(}%) 1; ( ( Maij(k)L> ( Naij(k)U)
pajul ~Wj Hie ~Wj
+1 I/d;fjw)L +1 Vd;’j“‘)U> ] (3.21)

e Separation degree based on the interval-valued generalized hesitant normalized

Euclidean distance djyghne:

1 .
Sc—ltvg}me (OZ) = ﬁ Z divghne(hijy h+)
j=1
= Z 7 (1 e /l&ff(k) )ij + (1 — ook ) Wi
2 i (O A ;
1
N A Vo )1 2 (3.22)
&j’](k>L &Z(k)U )
. 1 )
di'ughne( Z) = - Zdﬂ)ghne(hu7 h )
7=1
= — _ 1 — 1_~~a j +1_ 1_~~U W
njg:l Ll(hfj) k=1 <( ( Iuaif(k)L) fr--g z‘j(k>U) )



N =

HI= 2% P+ (0= 70, 7) | (3.23)

Then the closeness coefficient C*(0O;) of an alternative O; with respect to PIS
ht is defined as the following:
_ 57(0:)
- SHO) + S (0))

C*(0y) i=1,2,...,m. (3.24)
The bigger the closeness coefficient CT(O;), the better the alternative O; will
be, as the alternative O; is closer to the PIS ht. Therefore, the alternatives O,
(1=1,2,...,m) can be ranked according to the closeness coefficients so that the

best alternative can be selected.

Approach IV

Step 1. For this step, see Approach III.

Step 2. For this step, see Approach III.

Step 3. Calculate the weighted interval-valued generalized hesitant fuzzy
decision matrix H* = (ﬁfj)mxn, where ﬁfj = Uz, ehi, L1 = (1= fayn)*7, 1 — (1 -
fia;0)"); [Pa) > Vs v])} is the weighted IVGHFE, i = 1,2,...,m; j = 1,2,...,n,
and w; is weight of the attribute z; such that w; > 0 and >igw; =1

Step 4. Utilize Egs. (3.20)-(3.23) to calculate the separation degrees S*(O;)
and S~(0;) of each alternative O; (i = 1,2, ...,m) from PIS h* = {([1,1],[0,0])}
and NIS h~ = {([0,0], [1,1])}, respectively.

Step 5. Utilize Eq. (3.24) to calculate the closeness coefficient C*(O;) of
each alternative O; (i = 1,2,...,m) to the PIS h™.

Step 6. Rank the alternatives O; (i = 1,2, ...,m) according to the closeness
coefficient to the PIS ht and then select the most desirable one(s).

Step 7. End.

3.3.2 Illustrative Examples

Example 3.3.1 Let us suppose there is an investment company, which wants to

invest a sum of money in the best option (adapted from [25]). There is a panel
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with four possible alternatives to invest the money: (1) O; is a car company; (2)
O, is a food company; (3) O3 is a computer company; (4) Oy is an arms company.
The investment company must take a decision according to the following three
attributes: (1) z; is the market share analysis; (2) xo is the market growth
analysis; (3) x3 is the benefit analysis. In order to avoid influence each other,
the decision makers are required to evaluate the four possible alternatives O;
(1 = 1,2,3,4), by using the IFVs or IVIFVs, under the above three attributes
in anonymity, then the interval-valued generalized hesitant fuzzy decision matrix
H = (ilij)4><3 is constructed as shown in Table 3.1, where Bij (1=1,2,3,4;5 =
1,2,3) are in the form of IVGHFEs.

Table 3.1: Interval-valued generalized hesitant fuzzy decision matrix H

T
O1 {(0.5,0.6],[0.2,0.3]), (0.3,0.6), (0.7,0.2)}
Oy | {([0.3,0.5],[0.4,0.5]), ([0.6,0.7], [0.1,0.2]), (0.5,0.4)}
Os {(10.6,0.7],10.2,0.3]), (0.5,0.4), (0.6,0.3)}
0, | {([0.5,0.7],]0.1,0.2]), ([0.5,0.6], [0.2,0.3]), (0.5,0.4)}
T2
01 | {([0.3,0.4],[0.4,0.6]), ([0, 4,0.5],[0.3,0.4]), (0.6,0.3)}
Oy {(0.1,0.3], [0.2,0.4]), (0.4,0.5), (0.7,0.2)}
O3 | {([0.3,0.4],[0.4,0.5]), ([0.5, 0.6], [0.1,0.3]), (0.6,0.3)}
O4 {(0.2,0.4], [0.5,0.6]), (0.4,0.5), (0.3,0.6)}
T3

01 | {([0.4,0.5],]0.3,0.5]), (]0.6,0.7], [0.1,0.2]), (0.5,0.3)}
O, | {([0.7,0.8],]0.1,0.2]), ([0.1,0.2], [0.7,0.8]), (0.3,0.4)}
O3 {([0.5,0.8],[0.1,0.2]), (0.5,0.2), (0.8,0.1)}
O4 {(0.4,0.6],[0.2,0.3]), (0.6,0.3), (0.7,0.2)}

Then, we utilize the Approach III to get the most desirable alternative(s),

which involves the following steps:
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Step 1. Utilize Theorem 3.1.2 (here we take A = £ x 0.008, p = £ x 0.008,
¢ = A, n=p) to construct IVIFVs from IFVs in IVGHFEs ﬁij (1=1,2,3,4;j =
1,2,3) and then the constructed interval-valued generalized hesitant fuzzy deci-

sion matrix lflo is shown in Table 3.2.

Table 3.2: Constructed interval-valued generalized hesitant fuzzy decision matrix
H,

1
01 | {([0.5,0.6],[0.2,0.3]), ([0.2976, 0.3024], [0.5952, 0.6048]), ([0.6944, 0.7056], [0.1984, 0.2016]) }
0y {([0.3,0.5],[0.4,0.5]), ([0.6,0.7], [0.1, 0.2]), ([0.496, 0.504], [0.3968, 0.4032])}
03 | {([0.6,0.7],]0.2,0.3]), ([0.496, 0.504], [0.3968, 0.4032]), ([0.5952, 0.6048], [0.2976, 0.3024]) }
04 {([0.5,0.7],[0.1,0.2]), ([0.5, 0.6], [0.2, 0.3]), ([0.496, 0.504], [0.3968, 0.4032]) }
xr2
0, {([0.3,0.4], [0.4,0.6]), ([0, 4, 0.5], [0.3,0.4]), ([0.5952, 0.6048], [0.2976, 0.3024] ) }
02 | {([0.1,0.3],]0.2,0.4]), ([0.3968, 0.4032], [0.496, 0.504]), ([0.6944, 0.7056], [0.1984, 0.2016]) }
O3 {([0.3,0.4],[0.4,0.5)), ([0.5,0.6], [0.1, 0.3]), ([0.5952, 0.6048], [0.2976, 0.3024]) }
04 | {(0.2,0.4],[0.5,0.6]), ([0.3968, 0.4032], [0.496, 0.504]), ([0.2976, 0.3024], [0.5952, 0.6048]) }
3
O, {([0.4,0.5],[0.3,0.5]), ([0.6,0.7], [0.1,0.2]), ([0.496, 0.504], [0.2976, 0.3024] )}
02 {([0.7,0.8],[0.1,0.2]), ([0.1,0.2], [0.7, 0.8]), ([0.2976, 0.3024], [0.3968, 0.4032]) }

03 | {([0.5,0.8],]0.1,0.2]), ([0.496, 0.504], [0.1984, 0.2016)), ([0.7936, 0.8064], [0.0992, 0.1008]) }
04 | {([0.4,0.6],]0.2,0.3]), ([0.5952, 0.6048], [0.2976, 0.3024]), ([0.6944, 0.7056], [0.1984, 0.2016])}

Step 2. Aggregate all IVGHFEs Bij of alternatives O; (i = 1,2,3,4) with
respect to attributes z; (j = 1,2,3) into the overall values h; by Eq. (3.16):

([0.4056, 0.5068], [0.2884, 0.4481)), ([0.4808, 0.5840], [0.2000, 0.3302]),
0.4392, 0.5018], [0.2877,0.3790]), (]0.4354, 0.5358], [0.2621, 0.3915]),
0.5068, 0.6085], [0.1817, 0.2884]), ([0.4673, 0.5371], [0.2614, 0.3311]),
0.5048, 0.5708], [0.2614, 0.3566]), ([0.5674, 0.6380], [0.1812, 0.2628]),
0.5328,0.5720], [0.2607, 0.3016]), ([0.3343, 0.4063], [0.4149, 0.5661]),
0.4185,0.4992], [0.2877, 0.4171]), ([0.3719, 0.4079], [0.4138, 0.4788]),
] 1 D, ( 1 J)

=
(
(
(
(
(
([0.3676,0.4413], [0.3770, 0.4946] ), (0.4476, 0.5288], [0.2614, 0.3644]),

[ [
[ [
[ [
[ [
[ [
[ [
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hs =

0.4033, 0.4428], 10.3760, 0.4182]),
0.5155, 0.5643], [0.2607, 0.3320)),
0.4956, 0.5547], |0.2877,0.3925)),

{ J: ), ([0.4454, 0.4834
(l J [ D
([ ][ )
([0.5241,0.5559], [0.2869, 0.3320)),
(l ][ )
([ I [ D
([ I [ )

0.4767,0.4848
0.5593,0.6244
0.5208, 0.5809
0.5479,0.5820
0.6329,0.6732

,[0.3760,0.4505]),
,0.3750,0.3810)),
[0.1995,0.2892))
[0.2614, 0.3429])
[ )
[ )

Y )

Y )

0.5814, 0.6465], [0.1812, 0.2527]),
0.5797,0.6125], [0.2607, 0.3124]),
0.6035,0.6136], [0.2600,0.2642]) },

,[0.2607, 0.2900)),

(l
(l
(l
(l
(l
(l ,[0.1807,0.2302)),

([0.4261,0.5879], [0.2000, 0.3420)), ([0.1723, 0.3458], [0.3826, 0.5429])
[0.2380, 0.3750], [0.3166, 0.4320]), ([0.4978, 0.6092], [0.2707, 0.3694]),
[0.2757,0.3797], [0.5179, 0.5864]), ([0.3331, 0.4073], [0.4286, 0.4666)),
[0.5996, 0.6912], [0.1995, 0.2722]), ([0.4226, 0.5098], [0.3816, 0.4320)),
[0.4684, 0.5317], [0.3158, 0.3438]), ([0.5238, 0.6524], [0.1260, 0.2520)),
[0.3132, 0.4482], [0.2410, 0.4000]), ([0.3676, 0.4728], [0.1995, 0.3183)),
[0.5832, 0.6704], [0.1705, 0.2722]), ([0.3989, 0.4768], [0.3262, 0.4320)),
[0.4466,0.5001], [0.2700, 0.3438]), ([0.6678, 0.7396], [0.1257, 0.2005))
[ ] 1 D, ([ 1 )
[ ] 1 D, ([ 1 )
[ B D, ([ J 1 )
[ ] D ([ ] 1 )
[ I D, ([ L1 )
[ ] )

)

2 ={
(
(
(
(
(
(
(
([0.5208, 0.5866, [0.2404, 0.3183]), ([0.5588, 0.6050], [0.1989, 0.2533]),
([0.4856,0.5890], [0.1995, 0.3183)), ([0.2582, 0.3475], [0.3816, 0.5053]),
([0.3170,0.3767], [0.3158, 0.4021]), ([0.5499, 0.6103], [0.2700, 0.3438]),
([0.3508, 0.3813], [0.5165, 0.5458]), ([0.4023, 0.4089], [0.4274, 0.4343]),
([0.6412,0.6920], [0.1989, 0.2533)), ([0.4825, 0.5112], [0.3805, 0.4021]),
(10.5235,0.5330], 03149, 0.3200]) },
{(0.4808, 0.6698], [0.2000, 0.3107]), (0.4794, 0.5531], [0.2513, 0.3115))
([0.6134,0.6734], [0.1995, 0.2473)), ([0.5358, 0.7116], [0.1260, 0.2621]),
([0.5346,0.6096], [0.1583, 0.2628]), ([0.6544, 0.7147], [0.1257, 0.2086]),
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0.5674,0.7127], [0.1812, 0.2628]),
0.6779,0.7158], [0.1807, 0.2091]),
0.4377,0.4715], [0.3158, 0.3654]),
0.4673,0.6326], [0.2283, 0.3183]),
0.6033, 0.6365], [0.2277, 0.2533]),

{ s ), ([0.5662,0.6111
(l J [ )
([ [ D
([ ] [ D)
(l ][ D)
([0.5315,0.5402], [0.2861, 0.2908)),
([ I [ )
(l ][ D
([ I [ D
([ [ )
(l ][ )

0.4392,0.6096
0.5824,0.6138
0.4658, 0.5027
0.5328,0.6603
0.6521, 0.6640
0.4773,0.5101
0.5048, 0.6594
0.6313,0.6631
0.5645, 0.5737

,[0.2277,0.2635]),
,[0.2513, 0.3644]),
,[0.2506, 0.2900]),
,[0.2869,0.3192]),
,[0.2277,0.2900]
[0.2271,0.2308]
[ ]
[ ]
[ ]
[ ]

Y 9

0.4787,0.6380], [0.2283,0.3311)),
0.6118,0.6419], |0.2277,0.2635)),
0.5035, 0.5389], [0.2607, 0.2900]),
0.5657,0.6851], [0.2069, 0.2635)),
0.6766, 0.6885], [0.2063, 0.2097 }

,10.2869, 0.3320)),
,10.2075, 0.2892)),
,10.2069, 0.2302)),

(l
(l
(l
(l
(l
(l
(l
(l
(l
(l ,[0.2600,0.2642)),

)
)
)
)
);
)
)
)
)
)

([0.3786, 0.5840], [0.2154, 0.3302]), ([0.4550, 0.5857], [0.2460, 0.3311])
[0.5037, 0.6244], [0.2149, 0.2892]), ([0.4344, 0.5847], [0.2149, 0.3115]),
[0.5039, 0.5864], [0.2453, 0.3124)), ((0.5483, 0.6251], [0.2143, 0.2729)),
[0.4049, 0.5625], [0.2283, 0.3311)), ([0.4781, 0.5643], [0.2607, 0.3320)),
[0.5248, 0.6050], [0.2277, 0.2900)), ([0.4056, 0.5421], [0.2520, 0.3780)),
[0.4787, 0.5440], [0.2877, 0.3790)), ([0.5253, 0.5866], [0.2513, 0.3311]),
[0.4354, 0.5691], [0.2289, 0.3302]), ([0.5048, 0.5708], [0.2614, 0.3311])),
[0.5491, 0.6110], [0.2283, 0.2892]), ([0.5048, 0.6016], [0.2283, 0.3008])
[ bl Dl I )
[ L DA L )
[ I A L )
[ I A L )
[ B DA L )
[ B )

)

{
(
(
(
(
(
(
(
([0.5657,0.6032], [0.2607,0.3016]), ([0.6045, 0.6403], [0.2277,0.2635)),
([0.4040, 0.5081], [0.3166, 0.4171]), ([0.4773,0.5101], [0.3615, 0.4182]),
([0.5241, 0.5559], [0.3158, 0.3654]), ([0.4339, 0.5371], [0.2877, 0.3644]),
([0.5035, 0.5389], [0.3284, 0.3654]), ([0.5479, 0.5820], [0.2869, 0.3192]),
([0.5035, 0.5720], [0.2869, 0.3320]), ([0.5645, 0.5737], [0.3276, 0.3328]),
([0.6035,0.6136], [0.2861, 0.2908 }
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Step 3. Compute the score values s(izl) (1 = 1,2,3,4) of overall values h;
(1=1,2,3,4) by Eq. (3.18), the score values of alternatives O; (i = 1,2,3,4) are

obtained as follows:
s(hy) = 0.5993, s(hy) = 0.5726, s(hs) = 0.6682, s(hs) = 0.6199.

Step 4. Rank the alternatives O; (i = 1,2,3,4) in accordance with the score

values s(h;) (i = 1,2, 3,4) of the overall interval-valued generalized hesitant fuzzy
preference values: Oz = O4 = O1 > Oy, where the symbol “>~" means “superior

to”, and thus the most desirable investment alternative is Oj.

Similarly, if Eq. (3.17) (i.e. the GM associated with IIFG operator) is utilized
in Step 2, then the overall performance value h; corresponding to the alternative
O; (i=1,2,3,4) can be calculated:

hy = {([0.3915,0.4932], [0.3048,0.4808]), ([0.4481,0.5518], [0.2440, 0.3927)),
([0.4206,0.4946], [0.3040, 0.4198]), (0.4309, 0.5313], [0.2681, 0.4056]),
([0.4932,0.5944], [0.2042, 0.3048]), ([0.4629, 0.5327], [0.2673, 0.3358)),
([0.4919,0.5661], [0.2673, 0.3750]), ([0.5631, 0.6333], [0.2033, 0.2690)),
([0.5285,0.5676], [0.2665, 0.3016]), (0.3293, 0.3925], [0.4460, 0.5708)),
([0.3770,0.4391], [0.3976, 0.4981]), ([0.3538, 0.3936], [0.4454, 0.5205]),
([0.3625,0.4228), [0.4168, 0.5087]), (0.4149, 0.4730], [0.3658, 0.4254]),
([0.3894,0.4240], [0.4161, 0.4511]), ([0.4138, 0.4505], [0.4161, 0.4834])
(1 I D, (1 3 )
(1 L D, (1 L )
(1 1 Dl 1 )
(1 L D, (1l B )
(1 L D, (1l L )
(1 I )

)

0.4737,0.5040], [0.3651, 0.3958]), (10.4446, 0.4517], |0.4155, 0.422§)),
0.4368, 0.5206/, |0.3043,0.4575)), (]0.5000, 0.5824], [0.2435, 0.3655)),
0.4692, 0.5220], [0.3035, 0.3938]), (10.4807, 0.5608|, |0.2677,0.3790]),
0.5503,0.6274], [0.2037,0.2736), (|0.5165, 0.5623|, |0.2668, 0.3061)),
0.5488,0.5976/, |0.2668, 0.3470)), (]0.6283, 0.6685], [0.2027, 0.2362)),
0.5896, 0.5991], [0.2660, 0.2703 },

(
(
(
(
(
(
(
(
(
(
(
(
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hy = {([0.2759,0.4932], [0.2440,0.3786]), ([0.1442, 0.3107], [0.4759, 0.6085]),
([0.2075, 0.3566], [0.3384, 0.4364]), ([0.4368, 0.5443], [0.3520, 0.4168]),
([0.2283,0.3429], [0.5507, 0.6326)), ([0.3284, 0.3936], [0.4329, 0.4710]),
(05264, 0.6560], [0.2435,0.3165)), ([0.2752, 0.4132], [0.4755, 0.5694]),
([0.3958,0.4743], [0.3380, 0.3801]), ([0.3476, 0.5518], [0.1347, 0.2732]),
([0.1817,0.3476], [0.4000, 0.5421)), ([0.2614, 0.3990], [0.2427, 0.3408]),
([0.5503, 0.6089)], [0.2582, 0.3178)), ([0.2877, 0.3836], [0.4856, 0.5703]),
([0.4138,0.4403], [0.3508, 0.3813)), ([0.6632, 0.7338], [0.1341, 0.2005]),
([0.3467,0.4623], [0.3996, 0.4964)), ([0.4987, 0.5306], [0.2422, 0.2749]),
([0.3262, 0.4946), [0.2427, 0.3408)), ([0.1705, 0.3115], [0.4749, 0.5847)),
([0.2453,0.3576], [0.3373, 0.4021)), ([0.5165, 0.5458], [0.3508, 0.3813]),
(02700, 0.3438], [0.5499, 0.6103]), ([0.3884, 0.3946], [0.4319, 0.4389]),
(06224, 0.6577], [0.2422, 0.2749)), ([0.3254, 0.4143], [0.4746, 0.5432]),
(10.4680,0.4755], 03368, 0.3424]) },

hs = {([0.4481,0.6073], [0.2440, 0.3458]), ([0.4469, 0.5206], [0.2727, 0.3462]),

0.5227, 0.6089
0.5299, 0.5960
0.5631, 0.6971
0.6569, 0.6989
0.4195, 0.4666
0.4629, 0.5864
0.5400, 0.5879
0.5271, 0.5356
0.4469, 0.5784
0.5213,0.5800

,[0.2438,0.3198]), ([0.5313, 0.6952], [0.1347, 0.2681]),
,[0.1674, 0.2686]), ([0.6198, 0.6971], [0.1344, 0.2391]),
,[0.2033,0.2690]), ([0.5616, 0.5976], [0.2334, 0.2695)),
,[0.2030, 0.2399]), ([0.4206, 0.5443], [0.3120, 0.4241]),
,[0.3380, 0.4245]), ([0.4906, 0.5458], [0.3117, 0.4012]),
0.2757,0.3408]), ([0.4617, 0.5027], [0.3031, 0.3412)),
[ D, ( [ )
[ D, ([ [ )
[ D, ([ [ )
[ D, ( [ )

)

,[0.2755, 0.3146]), ([0.5285, 0.6248], [0.2748, 0.3068)),
,[0.3023,0.3073)),
,[0.2761,0.3934]),
,[0.2759, 0.3693)),

0.6165, 0.6264
0.4457, 0.4959
0.4919, 0.6231

,[0.2746,0.2793)),
,[0.3035,0.3938)),
,[0.2380, 0.3056)),

[t W B s i
—— e T I S o IS I
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([0.4906, 0.5342], [0.2668, 0.3061]), ([0.5738, 0.6248], [0.2377, 0.2780)),
([0.5616, 0.6639], [0.2371,0.2698]), ([0.5601, 0.5691], [0.2660, 0.2703)),
(10.6551,0.6657],[0.2369, 0.2408]) },

1= {([0.3420,0.5518], [0.2886, 0.3927]), ([0.3904, 0.5533], [0.3188, 0.3934]),
([0.4110,0.5824], [0.2881, 0.3655)), ([0.4297, 0.5533], [0.2867, 0.3475)),
(04906, 0.5547], [0.3170, 0.3483)), ([0.5165, 0.5840], [0.2863, 0.3183]),
([0.3904, 0.5027], [0.3370, 0.3951]), ([0.4457, 0.5040], [0.3651, 0.3958]),
([0.4692, 0.5306], [0.3365, 0.3680)), ([0.3915, 0.5241], [0.2732, 0.4191]),
([0.4469, 0.5255], [0.3040, 0.4198)), ([0.4705, 0.5533], [0.2727, 0.3931]),
([0.4309, 0.5646], [0.2348, 0.3351]), ([0.4919, 0.5661], [0.2673, 0.3358]),
([0.5179,0.5960], [0.2343,0.3053]), ([0.4919, 0.6016], [0.2340, 0.3008]),
([0.5616,0.6032], [0.2665, 0.3016)), ([0.5912, 0.6350], [0.2334, 0.2695)),
([0.3904, 0.4946], [0.3384, 0.4492)), ([0.4457, 0.4959], [0.3665, 0.4498]),
([0.4692, 0.5220], [0.3380, 0.4245)), ([0.4297, 0.5327], [0.3036, 0.3695]),
(04906, 0.5342], [0.3331, 0.3702]), ([0.5165, 0.5623], [0.3031, 0.3412]),
([0.4906, 0.5676], [0.3028, 0.3370]), ([0.5601, 0.5691], [0.3324, 0.3378]),
(10.5896,0.5991], (0.3023, 0.3073]) }.

Then, the score value s(h;) of overall values h; (i = 1,2,3,4) can be obtained:
s(hy) = 0.5716, s(hy) = 0.5100, s(hs) = 0.6370, s(hs) = 0.5905.

Then s(hs) > s(hs) > s(hy) > s(hy) and so the final ranking is O3 = O, >
O; = Os. Thus the best alternative is also Os.

Example 3.3.2 Let us consider a factory which intends to select a new site for
new buildings. Four alternatives O; (i = 1,2, 3,4) are available, and the decision
makers consider three attribute to decide which site to choose: (1) x; is the price

analysis; (2) x9 is the location analysis; (3) z3 is the environment analysis. The
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weight vector of the attributes x; (j = 1,2,3) is w = (0.5,0.3,0.2)”. In order to
avoid influence each other, the decision makers are required to evaluate the four
possible alternatives O; (i = 1,2,3,4), by using the IFVs or IVIFVs, under the
above three attributes in anonymity, then the interval-valued generalized hesitant
fuzzy decision matrix H = (ﬁij)4X3 is constructed as shown in Table 3.3, where

hij (1 =1,2,3,4;j =1,2,3) are in the form of IVGHFEs.

Table 3.3: Interval-valued generalized hesitant fuzzy decision matrix H

Z1

O1 | {(]0.4,0.5],]0.3,0.4]), ([0.3,0.4], [0.5,0.6]), (0.6,0.3)}
O, | {(]0.4,0.5],]0.3,0.4]), ([0.6,0.7],[0.1,0.2]), (0.7,0.2)}
Os {(10.6,0.7],10.1,0.2]), (0.5,0.4), (0.6,0.3)}

O, | {(]0.5,0.6],]0.2,0.3]), ([0.5,0.6], [0.3,0.4]), (0.5,0.4)}

€2
01 | {([0.5,0.6],[0.3,0.4]), ([0,6,0.7],[0.1,0.2]), (0.7,0.2)}
O, {(]0.3,0.4], [0.2,0.3]), (0.5,0.4), (0.8, 0.1)}
05 | {([0.4,0.5],[0.3,0.4]), ([0.5,0.6], [0.1,0.2]), (0.6,0.3)}
O, {(0.3,0.4], [0.4,0.5]), (0.5,0.4), (0.3,0.6)}

z3

01 | {([0.5,0.6],]0.1,0.2]), ([0.7,0.8], [0.1,0.2]), (0.5,0.4)}
Oy | {([0.7,0.8],]0.1,0.2]), ([0.5, 0.6], [0.3, 0.4]), (0.2,0.7) }
04 {(0.5,0.8),[0.1,0.2]), (0.5,0.4), (0.8, 0.1)}
O, {([0.4,0.5], [0.3,0.4]), (0.6,0.3), (0.8,0.1)}

Then, we utilize the Approach IV to get the most desirable alternative(s),
which involves the following steps:

Step 1. Utilize Theorem 3.1.2 (let A = £ % 0.008, p = £ x 0.008, ¢ = A,
n = p) to construct IVIFVs from IFVs in IVGHFEs Bij (1=1,2,3,4;7=1,2,3)

and then transform the interval-valued generalized hesitant fuzzy decision matrix
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H into the constructed interval-valued generalized hesitant fuzzy decision matrix
Hy (see Table 3.4).

Table 3.4: Constructed interval-valued generalized hesitant fuzzy decision matrix
Hy

x1
0, {([0.4,0.5],[0.3,0.4]), ([0.3,0.4], [0.5, 0.6]), ([0.5952, 0.6048], [0.2976, 0.3024]) }
02 {([0.4,0.5],[0.3,0.4)), ([0.6,0.7], [0.1,0.2]), ([0.6944, 0.7056], [0.1984, 0.2016]) }
O3 | {([0.6,0.7],[0.1,0.2]), ([0.496, 0.504], [0.3968, 0.4032]), ([0.5952, 0.6048], [0.2976, 0.3024]) }
04 {([0.5,0.6], [0.2,0.3]), ([0.5, 0.6], [0.3, 0.4]), ([0.496, 0.504], [0.3968, 0.4032])}
2
0, {([0.5,0.6], [0.3,0.4]), ([0, 6,0.7], [0.1,0.2]), ([0.6944, 0.7056], [0.1984, 0.2016]) }
Oy | {(]0.3,0.4],[0.2,0.3]), ([0.496,0.504], [0.3968, 0.4032]), ([0.7936, 0.8064], [0.0992, 0.1008]) }
O3 {([0.4,0.5],[0.3,0.4]), ([0.5, 0.6], [0.1,0.2]), ([0.5952, 0.6048], [0.2976, 0.3024]) }

04 | {(]0.3,0.4],[0.4,0.5]), ([0.496,0.504], [0.3968, 0.4032]), ([0.2976, 0.3024], [0.5952, 0.6048]) }

x3

o) {([0.5,0.6],[0.1,0.2]), ([0.7,0.8], [0.1, 0.2]), ([0.496, 0.504], [0.3968, 0.4032] ) }

02 {([0.7,0.8],[0.1,0.2]), ([0.5,0.6], [0.3, 0.4]), ([0.1984, 0.2016], [0.6944, 0.7056]) }

O3 | {(0.5,0.8],[0.1,0.2]), ([0.496, 0.504], [0.3968, 0.4032]), ([0.7936, 0.8064], [0.0992, 0.1008]) }
04 | {([0.4,0.5],[0.3,0.4]), ([0.5952, 0.6048], [0.2976, 0.3024]), ([0.7936, 0.8064], [0.0992, 0.1008]) }

Step 2. Utilize Definition 3.2.5 (let w = (0.5,0.3,0.2)7 be the weight vec-
tor of attributes z; (j = 1,2,3)) to obtain the weighted IVGHFEs izfj = w;hyj of
IVGHFEs h;; (1 =1,2,3,4;j = 1,2,3) in H, and then construct the weighted con-
structed interval-valued generalized hesitant fuzzy decision matrix H* = (ﬁfj)4X3
(see Table 3.5).

Step 3. Utilize Egs. (3.20) and (3.21) to calculate the separation de-
grees S*(0;) and S~(0;) of each alternative O; (i = 1,2,3,4) from PIS At =
{([1,1],]0,0])} and NIS A~ = {([0,0],[1, 1])}, respectively:

SH(01) = 0.7133, S1(05) = 0.6947, SF(03) = 0.6884, ST(0,) = 0.7461,
S7(0;) = 0.2867, S~(05) = 0.3053, S~ (03) = 0.3116, S~ (O4) = 0.2539.

Step 4. Calculate the closeness coefficient C*(O;) of each alternative O;
(i =1,2,3,4) to the PIS ht by Eq. (3.24):

CH(0) = 0.2867, C*(0,) = 0.3053, C*(03) = 0.3116, C*(04) = 0.2539.
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Table 3.5: Weighted constructed interval-valued generalized hesitant fuzzy deci-

sion matrix H*

x1
01 | {([0.2254,0.2929],[0.5477, 0.6325]), ([0.1633,0.2254], [0.7071, 0.7746]), ([0.3638, 0.3714], [0.5455, 0.5499]) }
Oz | {([0.2254,0.2929], [0.5477,0.6325]), ([0.3675, 0.4523], [0.3162, 0.4472]), ([0.4472, 0.4574], [0.4454, 0.4490]) }
O3 | {([0.3675,0.4523], [0.3162, 0.4472]), ([0.2901, 0.2957], [0.6299, 0.6350]), ([0.3638, 0.3714], [0.5455, 0.5499]) }
04 | {([0.2929,0.3675],[0.4472, 0.5477]), ([0.2929, 0.3675], [0.5477, 0.6325]), ([0.2901, 0.2957], [0.6299, 0.6350]) }
2
01 | {([0.1877,0.2403], [0.6968, 0.7597]), ([0, 2403, 0.3032], [0.5012, 0.6170]), ([0.2993, 0.3071], [0.6155, 0.6185])}
02 | {([0.1015,0.1421], [0.6170, 0.6968]), ([0.1858, 0.1897], [0.7578, 0.7615]), ([0.3771, 0.3890], [0.5000, 0.5024]) }
O3 | {([0.1421,0.1877],[0.6968, 0.7597]), ([0.1877,0.2403], [0.5012, 0.6170]), ([0.2376, 0.2431], [0.6952, 0.6985])}
Os | {([0.1015,0.1421], [0.7597, 0.8123]), ([0.1858, 0.1897], [0.7578, 0.7615]), ([0.1006, 0.1024], [0.8559, 0.8600]) }
3
01 | {([0.1294,0.1674], [0.6310, 0.7248]), ([0.2140, 0.2752], [0.6310, 0.7248]), ([0.1281,0.1308], [0.8312, 0.8339]) }
02 | {([0.2140,0.2752], [0.6310, 0.7248)), ([0.1294, 0.1674], [0.7860, 0.8326]), ([0.0433, 0.0440], [0.9297, 0.9326])}
O3 | {([0.1294,0.2752],[0.6310, 0.7248]), ([0.1281, 0.1308], [0.8312, 0.8339]), ([0.2706, 0.2799], [0.6299, 0.6320]) }
04 | {([0.0971,0.1294], [0.7860, 0.8326]), ([0.1655, 0.1695], [0.7847, 0.7873]), ([0.2706, 0.2799], [0.6299, 0.6320]) }

Step 5. Rank the alternatives O; (i = 1,2,3,4) in accordance with the

closeness coefficient CT(0O;) to the PIS ity (B O - Or Oy, and thus the

most desirable alternative is Os.

Similarly, if Egs. (3.22) and (3.23) are utilized in Step 3, then the separation

degrees S*(0;) and S™(0;) of each alternative O; (i = 1,2, 3,4) from PIS A" and
NIS 71_, respectively, can be calculated:

SH(0y) = 0.7187, SH(05) = 0.7049, SF(03) = 0.6954, S*(04) = 0.7496,
S7(0) = 0.3002, S~(0,) = 0.3285, S~ (03) = 0.3267, S~ (04) = 0.2641,

and the closeness coefficient C*(0;) of each alternative O; (i = 1,2,3,4) to the
PIS h* can be obtained:

CH(0y) = 0.2946, C*(0,) = 0.3179, C*(03) = 0.3197, C*(04) = 0.2605.

Then CT(03) > C*t(Oy) > CT(01) > C*(0O4) and so the final ranking is

O3z = O9 = O1 = O4. Thus the best alternative is also Os.
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3.4 Conclusions

In this chapter, we both generalized HFS [54, 56] and extended GHFS [47] us-
ing IVIFSs in group decision making framework. Firstly, the basic concept of
IVGHFS was proposed. The IVGHFS is fit for the situation when decision makers
have a hesitation among several interval-valued memberships with uncertainties.
Then, we discussed the relationships between IVGHFSs and other types of FSs
such as GHFSs, IVIFSs and IFSs. The envelop and basic operations of IVGHFESs
were defined and then some relationships and operational laws among those op-
erations were also discussed. In order to apply these IVHGFEs to group decision
making, we proposed the extension principle which enables us to employ aggre-
gation operators of IVIFSs to aggregate IVGHFEs. Finally, the effectiveness and
applicability of the proposed approaches to solve multiple attribute decision mak-
ing problem was illustrated with two practical examples. The examples showed
the less aggregation time and the flexibility of expressing decision makers’ opinion
of IVGHFEs.

As future work, we consider the study of proper aggregation operators in
interval-valued generalized hesitant fuzzy setting, and apply these operators in
many actual fields such as decision making, pattern recognition, medical diagnosis

and clustering analysis.

75



Bibliography

1]

[9]

B.S. Ahn, Parameterized OWA operator weights: An extreme point ap-
proach, International Journal of Approximate Reasoning 51 (2010), 820-831.

K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986),
87-96.

K. Atanassov, Operators over interval-valued intuitionistic fuzzy sets, Fuzzy
Sets and Systems 64 (1994), 159-174.

K. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy
Sets and Systems 31 (1989), 343-349.

W. Bandler and L. Kohout, Fuzzy power sets and fuzzy implication opera-
tors, Fuzzy Sets and Systems 4 (1980), 13-30.

D. Bhandari and N.R. Pal, Some new information measures for fuzzy sets,
Information Sciences 67 (1993), 209-228.

P. Burillo and H. Bustince, Entropy on ituitionistic fuzzy sets and on
interval-valued fuzzy sets, Fuzzy Sets and Systems 78 (1996), 305-316.

H. Bustince, Conjuntos Intuicionistas e Intervalo valorados Difusos:
Propiedades y Construccion. Relaciones Intuicionistas Fuzzy. Thesis, Uni-
versidad Publica de Navarra, (1994).

H. Bustince and P. Burillo, A theorem for constructing interval-valued in-
tuitionistic fuzzy sets from intuitionistic fuzzy sets, NIFS 1 (1995), 5-16.

76



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

H. Bustince and P. Burillo, Vague sets are intuitionistic fuzzy sets, Fuzzy
Sets and Systems 79 (1996), 403-405.

H. Bustince, V. Moehdano, E. Barrenechea and M. Pagola, A method for
constructing V. Young’s fuzzy subsethood measures and fuzzy entropies, in:
Proc. Third IEEE Conf. on Intelligent Systems, London, United Kingdom,
2006, pp. 208-214.

T. Calvo, G. Mayor and R. Mesiar, Aggregation Operators: New Trends
and Applications, Kluwer, Heidelberg (2002).

G. Choquet, Theory of capacities, Annales de l'institut Fourier 5 (1953),
131-295.

C. Cornelis and E.E. Kerre, Inclusion measures in intuitionistic fuzzy set
theory, in: T.D. Nielsen, N.L. Zhang (Eds.), Proc. Seventh European Conf.
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
Lecture Notes in Artificial Intelligence, vol. 2711, Springer, Berlin, Heidel-
berg, 2003, pp. 345-356.

C. Cornelis, C. Van der Donck and E.E. Kerre, Sinha-Dougherty approach
to the fuzzification of set inclusion revisited, Fuzzy Sets and Systems 134
(2003), 283-295.

A. De Luca and S. Termini, A definition of nonprobabilistic entropy in the
setting of fuzzy sets theory, Information and Control 20 (1972), 301-312.

D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications,
Academic Press, New York (1980).

J.L. Fan, Some new fuzzy entropy formulas, Fuzzy Sets and Systems 128
(2002), 277-284.

J. Fan, W. Xie and J. Pei, Subsethood measure: New definitions, Fuzzy
Sets and Systems 106 (1999), 201-2009.

77



[20]

[25]

[26]

28]

[29]

D.P. Filev and R.R. Yager, On the issue of obtaining OWA operator weights,
Fuzzy Sets and Systems 94 (1998), 157-169.

W.L. Gau and D.J. Bueherer, Vague sets, IEEE Transactions on Systems,
Man, and Cybernetics 23 (1994), 610-614.

M. Grabisch, Fuzzy integral in multicriteria decision making, Fuzzy Sets
and Systems 69 (1995), 279-298.

P. Grzegorzewski and E. Mréwka, Subsethood measure for intuitionistic
fuzzy sets, in: Proc. 2004 Internat. Conf. on Fuzzy Systems, Budapest,
Hungary, 2004, pp. 139-142.

X. Gu, Y. Wang and B. Yang, A method for hesitant fuzzy multiple at-
tribute decision making and its application to risk investment, Journal of
Convergence Information Technology 6 (2011), 282-287

F. Herrera, E. Herrera-Viedma and J.L. Verdegay, Linguistic decision anal-
ysis: Steps for solving decision problems under linguistic information, Fuzzy
Sets and Systems 115 (2000), 67-82.

K.C. Hung, K.P. Lin and C.C. Weng, Fault diagnosis of turbine using an
improved intuitionistic fuzzy croos entropy approach, in: 2011 International

Conference on Fuzzy System, Taipei, Taiwan, 2011, pp. 590-594.

W.L. Hung and M.S. Yang, On the J-divergence og intuitionistic fuzzy sets
with its application to pattern recognition, Information Sciences 178 (2008),
1641-1650.

A. Kaufmann, Introduction to the Theory of Fuzzy sets: Fundamental The-

oretical Elements, vol. 1, New York, Academic Press, 1975.

B. Kosko, Fuzzy entropy and conditioning, Information Sciences 40 (1986),
165-174.

78



[30]

[31]

[34]

[35]

[36]

[38]

[39]

B. Kosko, Fuzziness vs. probability, International Journal of General Sys-
tems 17 (1990), 211-240.

B. Kosko, Addition as fuzzy mutual entropy, Information Sciences 73 (1993),
273-284.

B. Kosko, Fuzzy Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1997.

J.Q. Li, G.N. Deng, H.X. Li and W.Y. Zeng, The relationship between sim-
ilarity measure and entropy of intuitionisticfuzzy sets, Information Sciences
188 (2012), 314-321.

X.C. Liu, Entropy, distance measure and similarity measure of fuzzy sets
and their relations, Fuzzy Sets and Systems 52 (1992), 305-318.

X.W. Liu, The orness measures for two compound quasi-arithmetic mean
aggregation operators, International Journal of Approximate Reasoning, 51
(2010), 305-334.

Y.H. Liu and F.L. Xiong, Subsethood on intuitionistic fuzzy sets, in: Proc.
First Internat. Conf. on Machine Learning and Cybernetics, vol. 3, Beijing,
China, 2002, pp. 1336-1339.

J.J. Mao, D.B. Yao and C.C. Wang, A novel cross-entropy and entropy mea-
sures of IFSs and their applications, Knowledge-Based Systems 48 (2013),
37-45.

S. Miyamoto, Remarks on basics of fuzzy sets and fuzzy multisets, Fuzzy
Sets and Systems 156 (2005), 427-431.

S. Miyamoto, Multisets and fuzzy multisets, Z.-Q. Liu, S. Miyamoto (Eds.),
Soft Computing and Human-Centered Machines, Springer, Berlin (2000),
pp- 9-33.

79



[40]

[41]

[42]

[43]

[44]

[46]

[47]

48]

O. Ngwenyama and N. Bryson, Eliciting and mapping qualitative prefer-
ences to numeric rankings in group decision making, European Journal of
Operational Research 116 (1999), 487-497.

W. Ogryczak and T. Sliwinski, On efficient WOWA optimization for deci-
sion support under risk, International Journal of Approximate Reasoning
50 (2009), 915-928.

J.H. Park, H.E. Kwark and Y.C. Kwun, Information measures for general-
ized hesitant fuzzy information, in: Proc. of KIIS Autumn Conference 2015,
Vol. 25, pp. 78-79.

J.H. Park, K.M. Lim and B.Y. Lee, Relationship between subsethood mea-
sure and entropy of interval-valued intuitionistic fuzzy sets, Journal of Com-
putational Analysis and Applications 18 (2015), 357-370.

J.H. Park, I.Y. Park, Y.C. Kwun and X.G. Tan, Extension of the TOPSIS
method for decision making problems under interval-valued intuitionistic
fuzzy environment, Applied Mathematical Modelling 35 (2011), 2544-2556.

O. Parkash, P.K. Sharma and R. Mahajan, New measures of weighted fuzzy
entropy and their applications for the study of maximum weighted fuzzy
entropy principle, Information Sciences 178 (2008), 2389-2395.

R.O. Parreiras, P.Y. Ekel, J.S.C. Martini and R.M. Palhares, A flexible
consensus scheme for multicriteria group decision making under linguistic
assessments, Information Sciences 180 (2010), 1075-1089.

G. Qjan, H. Wang and X.Q. Feng, Generalized hesitant fuzzy sets and
their application in decision support system, Knowledge-Based Systems 37
(2013), 357-365.

D. Sen and S.K. Pal, Generalized rough sets, entropy, and image ambiguity
measures, IEEE Transaction on Systems, Man and Cybernetics B 39 (2009),
117-128.

80



[49]

[50]

[51]

[58]

X.G. Shang and W.S. Jiang, A note on fuzzy information measures, Pattern
Recognition Letter 18 (1997), 425-432.

D. Sinha and E.R. Dougherty, Fuzzification of set inclusion: Theory and
applications, Fuzzy Sets and Systems 55 (1993), 15-42.

E. Szmidt and J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Sets
and Systems 118 (2001), 467-477.

V. Torra, The weighted OWA operator, International Journal of Intelligence
Systems 12 (1997), 153-165.

V. Torra, Information Fusion in Data Mining, Springer, Berlin (2003).

V. Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems
25 (2010), 529-539.

V. Torra and Y. Narukawa, Modeling Decisions: Information Fusion and

Aggregation Operators, Springer (2007).

V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, in: The
18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea,
2009, pp. 1378-1382.

[LK. Vlachos and Sergiadis, Intuitionistic fuzzy information application to
pattern recognition, Pattern Recognition Letter 28 (2007), 197-206.

Y.M. Wang, Useing the method of maximizing deviations to make decisio
fo multi-indices, Journal of Systems Engineering and Electronics 8 (1998),
21-26.

J.Q. Wang and J.J. Li, Multi-criteria fuzzy decision making method based
on cross entropy and score functions, Expert Systems with Applications 38
(2011), 1032-1038.

81



[60]

[61]

[62]

[66]

[67]

[68]

[69]

G.W. Wei, Hesitant fuzzy prioritized operators and their application to
multile attribute decision making, Knowledge-Based Systems 31 (2012), 176-
182.

G.W. Wei and X.R. Wang, Some geometric aggregation operators on
interval-valued intuitionistic fuzzy sets and their application to group deci-
sion making, Proceedings of 2007 ICCIS (2007), pp. 495-499.

G.W. Wei, X.F. Zhao and R. Lin, Some hesitant interval-valued fuzzy ag-
gregation operators and their applications to multiple attribute decision
making, Knowledge-Based Systems 46 (2013), 43-53.

M.M. Xia and Z.S. Xu, Hesitant fuzzy information aggregation in decision
making, International Journal of Approximate Reasoning 52 (2011), 395-
407.

M.M. Xia and Z.S. Xu, Entropy/cross entropy based group decision making

under intuitionistic fuzzy environment, Information Fusion 13 (2012), 31-47.

M.M. Xia, Z.S. Xu and N. Chen, Some hesitant fuzzy aggregation opera-
tors with their application in group decision making, Group Decision and
Negotiation 22 (2013), 259-279.

7.S. Xu, On consistency of the weighted geometric mean complex judgment
matrix in AHP, European Journal of Operational Research 126 (2000), 683-
687.

Z.S. Xu, An overview of methods for determining OWA weights, Interna-
tional Journal of Intelligent Systems 20 (2005), 843-865.

7.S. Xu, Intuitionistic fuzzy aggregation operators, IEEE Transactions on
Fuzzy Systems 15 (2007), 1179-1187.

7.S. Xu, Methods for aggregating interval-valued intuitionistic fuzzy infor-
mation and their application to decision making, Control and Decision 22
(2007), 215-219.

82



[70]

[71]

[72]

[74]

[75]

[76]

[77]

78]

[79]

7.S. Xu, Choquet integrals of weighted intuitionistic fuzzy information, In-
formation Sciences 180 (2010), 726-736.

Z.S. Xu and J. Chen, An approach to group decision making based
on interval-valued intuitionistic judgment matrices, Systems Engineering-

Theory & Practice 27 (2007), 126-133.

Z.S. Xu and J. Chen, On geometric aggregation over interval-valued intu-
itionistic fuzzy information, Proceedings of Fourth International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD’07) vol. 2, pp. 466-471,
2007.

Z.S. Xu and Q.L. Da, An overview of operators for aggregating information,
International Journal of Intelligent Systems 18 (2003), 953-969.

7.S. Xu and M.M. Xia, Distance and similarity for hesitant fuzzy sets, In-
formation Sciences 181 (2011), 2128-2138.

7.S. Xu and M.M. Xia, On distance and correlation measures of hesitant
fuzzy information, International Journal of Intelligence Systems 26 (2011),
410-425.

Z.S. Xu and M.M. Xia, Hesitant fuzzy entropy and cross-entropy and their
use in multiattribute decision-making, International Journal of Intelligent
Systems 27 (2012), 799-822.

Z.S. Xu and R.R. Yager, Some geometric aggregation operators based on
intuitionistic fuzzy sets, International Journal of General Systems 35 (2006),
417-433.

7.S. Xu and R.R. Yager, Intuitionistic fuzzy Bonferroni means, IEEE Trans-
actions on Systems, Man, and Cybernetics 41 (2011), 568-578.

R.R. Yager, On the measure of fuzziness and negation, Part 1: Membership
in the unit interval, International Journal of General Systems 5 (1970), 221-
229.

83



[80]

[81]

[87]

[88]

[89]

[90]

R.R. Yager, On the theory of bags, International Journal of General Systems
13 (1986), 23-37.

R.R. Yager, On ordered weighted averaging aggregation operators in multi-
criteria decision making, IEEE Transactions on Systems, Man, and Cyber-
netics 18 (1988), 183-190.

R.R. Yager, Generalized OWA aggregation operators, Fuzzy Optimization
and Decision Making 3 (2004), 93-107.

R.R. Yager and D.P. Filev, Induced ordered weighted averaging operators,
IEEE Transactions on Systems, Man, and Cybernetics 29 (1999), 141-150.

R.R. Yager and J. Kacprzyk, The Ordered Weighted Averaging Operator:
Theory and Application, Kluwer, Norwell, MA (1997).

J. Ye, Fault diagnosis of turbine based on fuzzy cross entropy of vague sets,
Expert Systems with Applications 36 (2009), 3103-3106.

J. Ye, Multicriteria fuzzy decision-making method based on intuitionistic
fuzzy cross-entropy, in: Proceedings of the 2009 International Conference
on Intelligent Human-Machine and Cybernetics, Hangzhou, China, 2009,
pp- H9-61.

J. Ye, Fuzzy cross entropy of interval-valued intuitionistic fuzzy sets and
its optimal decision-making method based on the weights of alternatives,
Expert Systems with Applications 38 (2011), 6179-6183.

K. Yoon, The propagation of errors in multiple-attribute decision analysis:
A practical approach, Journal of the Operational Research Society 40 (1989),
681-686.

V.R. Young, Fuzzy subsethood, Fuzzy Sets and Systems 77 (1996), 371-384.

L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.

84



[91]

[92]

[95]

[96]

98]

[99]

L.A. Zadeh, Probability measures of fuzzy events, Journal of Mathematical
Analysis and Applications 23 (1968), 421-427.

L.A. Zadeh,The concept of a linguistic variable and its application to ap-

proximate reasoning-I, Information Sciences 8 (1975), 199-249.

W.Y. Zeng and H.X. Li, Inclusion measure, similarity measure and the fuzzi-
ness of fuzzy sets and their relations, International Journal of Intelligenct
Systems 21 (2006), 639-653.

W.Y. Zeng and H.X. Li, Relationship between simialrity measure and en-
tropy of interval-valued fuzzy sets, Fuzzy Sets and Systems 157 (2006),
1477-1484.

Q.S. Zhang and S.Y. Jiang, A note on information entropy measure for

vague sets and its application, Information Sciences 178 (2008), 4184-4191.

Q.S. Zhang and S.Y. Jiang, Relationships between entropy and simialrity
measure of interval-valued intuitionistic fuzzy sets, International Journal of
Intelligent Systems 25 (2010), 1121-1140.

Q.S. Zhang, S.Y. Jiang, B.G. Jia and S.H. Luo, Some information measures
for interval-valued intuitionistic fuzzy sets, Information Sciences 180 (2010),
5130-5145.

H.M. Zhang and L.Y. Yu, MADM method based on cross-entropy and ex-
tended TOPSIS with interval-valued intuitionistic fuzzy sets, Knowledge-
Based Systems 30 (2012), 115-120.

B. Zhu, Z.S. Xu and M.M. Xia, Dual hesitant fuzzy sets, Journal of Applied
Mathematics 2012 (2012), Article ID 879629, 13 pages.

85



£ ERol SAHAAA B e AT WAL ¢ YES HHFAL B
AZE GojetAe] oPAYE RS F4 HAE YA WA MY So] Al
SYUT REY ALY = BT BES UG AR Be 4 2AL
% % Ugedl TA W Yol BAEIHUL

SmA B E =EAAY FAL RolFAL HEol e Adsh odg: =
g AFA A9A wFY, BT B w20 B 5 =R A= APE 95
A ESF BPW, T¥ AARFAT BES 22T A 29 HFY 243
BHY a3 B BUR ARE oA FoA & W @EEA QHOE gAE
IR

ob=d BAUA AAHFA 749 o8 AL ¥E =53 A8 I8
+¥e dFA FFAY, DALY, A3 dY, Ado] Y, #7584 = =

5538 2o AE AAFHFAIL 4

oWy, FA% A AR FF FulA #A
o] Z¥la &t A ko] & ol A 1:!
e Ao|A ek FAg Am JFAL mRgoe= B
F BAE AT dAY vt A FAE F FIHET oFHEARE FAE-Y
o R 2 A7l AR Y = S EHsta $4ETI7HA HIE gFol =
Fd Ao FEEE ORT ABOE AXNFIL AY ol AZ 7Eolx JHL
2 AR FIL oMAFE A GHAA DI AT TS A o] MBS F
A st Ay gl 1590l e o Azkeet Mot g2ejgs A & o
A WA, DSATFEANAE 2 ALY =

Ay
N
N,

>

1o

Lo,

>

il

2

ok

v

0
[

ic)

&
4
I

9
K

x|t o 2 o] FoA AFsA EIPAW A7t 5 V7R B #HA
=, 47 AF30F4 g2 EEA A=Y, g5 A8 AR AT o



	1. Introduction 
	2. Generalized hesitant fuzzy entropy and cross-entropy and their use in multiple attribute decision making
	2.1. Entropy for generalized hesitant fuzzy elements 
	2.2. Cross-entropy measures for GHFEs 
	2.3. Methods based on information measures for multiple attribute decision making with generalized hesitant fuzzy information 
	2.4. Subsethood measures for GHFEs 
	2.5. Conclusions 

	3. Interval-valued generalized hesitant fuzzy sets and their application in decision making
	3.1. Interval-valued intuitionistic fuzzy sets
	3.2. Interval-valued generalized hesitant fuzzy sets 
	3.3. Decision making based in interval-valued generalized hesitant fuzzy information 
	3.4. Conclusions 

	Bibliography 


<startpage>7
1. Introduction  1
2. Generalized hesitant fuzzy entropy and cross-entropy and their use in multiple attribute decision making 6
 2.1. Entropy for generalized hesitant fuzzy elements  7
 2.2. Cross-entropy measures for GHFEs  22
 2.3. Methods based on information measures for multiple attribute decision making with generalized hesitant fuzzy information  26
 2.4. Subsethood measures for GHFEs  32
 2.5. Conclusions  40
3. Interval-valued generalized hesitant fuzzy sets and their application in decision making 42
 3.1. Interval-valued intuitionistic fuzzy sets 42
 3.2. Interval-valued generalized hesitant fuzzy sets  45
 3.3. Decision making based in interval-valued generalized hesitant fuzzy information  60
 3.4. Conclusions  75
Bibliography  76
</body>

