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Chapter 1

Introduction

Most of real-world problems such as decision making, pattern recognition, medical

diagnosis, clustering analysis, and image processing not always involve crisp data.

So one cannot successfully use the traditional methods because of various types

of uncertainties presented in those problems. Since Zadeh [90] introduced fuzzy

sets (FSs) as a tool treating imprecision and uncertainty, many its extensions

such as intuitionistic fuzzy sets (IFSs) [2], interval-valued fuzzy sets (IVFSs) [92],

interval-valued intuitionistic fuzzy sets (IVIFSs) [4], hesitant fuzzy sets (HFSs)

[54, 56], dual hesitant fuzzy sets (DFSs) [99], and generalized hesitant fuzzy sets

(GHFSs) [47] allowed people to deal with uncertainty and information in much

broader perspective.

The entropy, cross-entropy and similarity measures are three important top-

ics in the fuzzy set theory. Entropy describes the fuzziness degree of a FS [91].

Since its appearance, entropy has received great attentions. De Luca and Termini

[16] introduced some axioms which captured people’s intuitive comprehension to

describe the fuzziness degree of a FS, and developed several formulas based on

Shannon’s function. Kaufmann [28] introduced a method for measuring the fuzzi-

ness degree of a FS by the metric distance between its membership function and

the membership function of its nearest crisp set. Another method proposed by

Yager [79] is to view the fuzziness degree of a FS in term of a lack of distinction
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between the FS and its complement. Based on the axiomatic definitions, Zeng

and Li [93] investigated the relationships among entropy, similarity and inclu-

sion measures for FSs. Later on, other entropies for FSs have been given from

different views [6, 18, 31, 34, 45, 49], and lots of studies of this issue have devel-

oped and extended to extended environments of FSs. Burillo and Bustince [7]

introduced an entropy measure on IVFSs and IFSs. Zeng and Li [94] presented

a new concept of entropy for IVFSs with a different view from [7]. Szmidt and

Kacprzyk [51] introduced a non-probabilistic entropy measure for IFSs. Zhang et

al. [97] proposed an entropy measure for IVIFSs by using membership interval

and non-membership interval of IVIFS, which complies with the extended form of

De Luca-Termini axioms for fuzzy entropy. Sen and Pal [48] proposed classes of

entropy measures based on rough set theory and its certain generalizations. Xu

and Xia [76] introduced an axiomatic definition of entropy for HFSs, proposed

some entropy formulas for HFSs and applied them decision making.

Similarity measure and cross-entropy are mainly used to measure the discrim-

ination information, and then it is an important measure in decision making,

pattern recognition and other real-world problems. Up to now, a lot of research

has been done about this issue. Vlachos and Sergiadis [57] introduced the con-

cepts of discrimination information and cross-entropy for IFSs, and revealed the

connection between the notions of entropies for FSs and IFSs in terms of fuzzi-

ness and intuitionism. Hung and Yang [27] constructed J-divergence of IFSs and

introduced some useful distance and similarity measures between two IFSs, and

applied them to clustering analysis and pattern recognition. Based on which,

Xia and Xu [64] proposed some cross-entropy and entropy formulas for IFSs and

applied them to group decision making. Ye [85] proposed a method of fault diag-

nosis based on the vague cross-entropy. He [86] also introduced the cross-entropy

for IFSs and IVIFSs and utilized then to solve multi-criteria decision making

(MCDM) problems. Wang and Li [59] provided two improved methods for solv-

ing MCDM problems, which were based on the cross-entropy for IFSs. Hung et

al. [26] introduced the discrimination information and cross-entropy for IFSs and

also used them to improve the fault diagnosis of turbine problems. Mao et al.
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[37] introduced the cross-entropy and entropy measures for IFSs. Zang and Yu

[98] constructed a series of mathematical programming models, which were based

on an interval-valued intuitionistic fuzzy cross-entropy, in order to determine the

criteria weights and applied them to MCDM problems. Xia and Xu [64] proposed

two methods for determining the optimal weights of criteria and developed two

pairs of entropy and cross-entropy measures for intuitionistic fuzzy values. The

relationships among the entropy, cross-entropy and similarity measures have also

attracted many attentions. For example, Liu [34] gave the axiomatic definitions

of entropy, distance measure, and similarity measure of fuzzy sets and discussed

their basic relations. Based on the axiomatic definitions, Zeng and Li [93] investi-

gated the relationships among inclusion measure, similarity measure and entropy

for FSs. They [94] also discussed the relationship between the similarity measure

and the entropy of IVFSs. Zang and Jiang [96] discussed the relationship between

the similarity measure and the entropy of IVIFSs. Zhang et al. [97] presented

the cross-entropy of IVIFSs and discussed the relationship between the proposed

entropy measures and the existing information measures of IVIFSs. Xu and Xia

[76] analyzed the relationships among the entropy, cross-entropy and similarity

measures for HFSs, and use them to develop two multi-attribute decision making

methods.

From the above analysis, we can recognize that all existing entropy, cross-

entropy and similarity measures are based on FSs, IFSs, IVFSs, IVIFSs, and

HFSs. However, when people make a decision, they are usually hesitant and

irresolute for one thing or another, which make it difficult to reach a consensus

on final decision. The difficulty of establishing a common membership degree

is that they have a hesitation among several possible membership degrees with

uncertainties. During the evaluating process to get a more reasonable decision

result, a decision organization, which contains a lot of experts, is authorized

to provide the preference information about a set of alternatives. In practice,

they may have several possible membership degrees take the forms of both crisp

values and interval values in [0, 1] when discussing the membership degree of an

alternative with respect to a criterion. For example, some experts in the decision
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organization provide 0.4 doubtless, some provide [0.5, 0.6] and the others insist on

at least 0.6, and when these three parts cannot persuade each other, then these

three membership degrees can be represented by a generalized hesitant fuzzy

element (GHFE) {(0.4, 0.6), (0.5, 0.4), (0.6, 0)}, which is the unit of generalized

hesitant fuzzy set. In such circumstances, it is not possible to solve this problem

by utilizing either FSs, IFSs, IVFSs or HFSs. To deal with such cases, Qjan

et al. [47] introduced the concept of generalized hesitant fuzzy sets (GHFSs)

considered as a generalization of both IFSs and HFSs. GHFS can reflect the

human’s hesitance more objectively than other extensions of fuzzy set (IFS, IVIFS

and HFS). They redefined some basic operations of GHFSs, and discussed some

arithmetic operations and relationships among them. Since hesitation among

several possible membership degrees with uncertainties in evaluating process is

a very common problem in practical decision making, it is necessary to develop

some entropy and cross-entropy measures for GHFSs.

To do this, Chapter 2 of this thesis is organized as follows. In Section 2.1,

we present axiomatic definitions of entropy and similarity measure for GHFEs,

and show that the entropy and the similarity measure for GHFEs can be trans-

formed by each other based on their axiomatic definitions. Section 2.2 develops

two cross-entropy formulas for GHFEs, and gives two entropy formulas based on

them. In Section 2.3, we propose two approaches for solving multiple attribute

decision making under generalized hesitant fuzzy environment. The first ap-

proach is based on the proposed entropy and cross-entropy measures, and second

one utilizes TOPSIS method. In Section 2.4, we propose axiomatic definition of

subsethood measure for GHFEs, and prove an generalized hesitant fuzzy version

of the entropy-subsethood theorem [29, 30, 32], and derive entropy for GHFEs.

Based on the concept of average possible cardinality, we extend the fuzzy entropy

theorem [29, 30, 32] in the generalized hesitant fuzzy setting. Furthermore, we

investigate the relationship between generalized hesitant fuzzy subsethood and

generalized hesitant similarity measures. Finally, conclusion of Chapter 2 is given

in Section 2.5.

4



During the evaluating process in practice, however, several possible member-

ships for an element to a set may be not only intuitionistic fuzzy values (IFVs),

but also interval-valued IFVs. To deal with this, Chapter 3 of this thesis is orga-

nized as follows. In Section 3.1, we briefly review the concept of IVIFS and some

of their operations. In Section 3.2, we extend HFSs by IVIFSs to interval-valued

generalized hesitant fuzzy sets (IVGHFSs) and discuss the relationships between

IVGHFSs and other types of FSs such as IFSs, IVIFSs, HFSs and GHFSs. The en-

velop and basic operations of interval-valued generalized hesitant fuzzy elements

(IVGHFEs) are defined and then some relationships and operational laws among

those operations are also discussed. We further introduce the comparison law

to distinguish two IVGHFEs according to score function and consistency func-

tion. Besides, the extension principle, which enables us to employ aggregation

operators of IVIFSs to aggregate IVGHFEs, are proposed. Section 3.3 develops

two approaches for solving multiple attribute decision making with anonymity

under interval-valued generalized hesitant fuzzy information. Two practical ex-

amples are presented to illustrate the developed approaches. Finally, we give

some conclusions of Chapter 3 in Section 3.4.
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Chapter 2

Generalized hesitant fuzzy

entropy and cross-entropy and

their use in multiple attribute

decision making

In this chapter, we present the entropy, cross-entropy and similarity measure

for generalized hesitant fuzzy information, and discuss their desirable proper-

ties. Some measure formulas are developed, and the relationships among them

are investigated. We show that the similarity measure and entropy for general-

ized hesitant fuzzy information can be transformed by each other based on their

axiomatic definitions. Then we develop two approaches for solving multiple at-

tribute decision making, in which the attribute values are given in the form of

generalized hesitant fuzzy elements. In first approach, the attribute weight vector

is determined by the generalized hesitant fuzzy entropies, and the optimal alter-

native is obtained by comparing the generalized hesitant fuzzy cross-entropies

between alternatives and positive-ideal or negative-ideal solutions; in second ap-

proach, the attribute weight vector is derived from the maximizing deviation

method and optimal alternative is obtained by using TOPSIS method. Finally,
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an example is provided to illustrate the practicality and effectiveness of the de-

veloped approaches.

2.1 Entropy for generalized hesitant fuzzy ele-

ments

2.1.1 Basic concepts

Intuitionistic fuzzy set introduced by Atanassov [2] have been proven to be highly

useful to deal with uncertainty and vagueness. Hesitation of which was charac-

terized by a membership function and a nonmembership function.

Definition 2.1.1 [2] Let X be ordinary non-empty set. An intuitionistic fuzzy

set (IFS) A in X is defined as

A = {〈x, µA(x), νA(x)〉|x ∈ X}, (2.1)

where µA, νA : X → [0, 1] denote, respectively, the membership and nonmember-

ship functions of A with the condition: 0 ≤ µA(x) + νA(x) ≤ 1 for all x ∈ X.

For an IFS A, πA(x) = 1−µA(x)−νA(x) represents the degree of hesitation or

intuitionistic index of x to A. For a fuzzy set, the degree of hesitation πA(x) = 0.

Thus for each x, µA(x) and νA(x) define an interval [µA(x), 1 − νA(x)]. This

interval is the vague value of value set by Gau and Buethrer [21] (Bustince and

Burillo [10] proved that vague sets are equivalent to IFSs). Further, the interval

can also represent an interval-valued fuzzy set. Hence Xu [68] concluded that

IFSs are also equivalent to interval-valued fuzzy sets, and replaced Eq. (2.1) with

A = {〈x, [µA(x), 1− νA(x)]〉|x ∈ X}. (2.2)

The ordered pair α(x) = (µα(x), να(x)) is referred to an intuitionistic fuzzy

value (IFV) [68], where µα(x), να(x) ∈ [0, 1] and µα(x) + να(x) ≤ 1. Asso-

ciated with the degree of hesitation, an IFV can also be equivalently denoted
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by α(x) = (µα(x), να(x), πα(x)), where µα(x), να(x), πα(x) ∈ [0, 1] and µα(x) +

να(x) + πα(x) = 1. In the rest of this chapter, for a certain x in X, IFV

a = (µ, ν, π) is abbreviated as a = (µ, ν) when no misunderstanding raises. Since

an IFV represent an interval, an interval [µ, 1− ν] in [0, 1] will be directly trans-

formed into (µ, ν).

The hesitant fuzzy set, as a generalization of FS, permits the membership

degree of an element to a set presented as several possible values between 0

and 1, which can better describe the situations where people have hesitancy in

providing their preferences over objects in process of decision making.

Definition 2.1.2 [54, 56] Given a fixed set X, a hesitant fuzzy set (HFS) on X

in terms of function α is that when applied to X returns a subset of [0, 1], which

can be represented as the following mathematical symbol:

A = {〈x, α(x)〉|x ∈ X}, (2.3)

where α(x) is a set of the some values in [0, 1], denoting the possible membership

degrees of the element x ∈ X to the set A. For convenience, Xia and Xu [63]

called α(x) a hesitant fuzzy element (HFE) and the set of all HFEs is denoted

by HFES. Especially, it there is only one value in α(x), then the HFS reduces to

the FS, which indicates that FSs are special type of HFSs, therefore, the theory

for HFSs can also be applied to FSs.

During the evaluating process, several possible memberships of an alternative

satisfying a certain criterion may be not only crisp values but also interval values

in [0, 1]. In order to handle this kind of assessment in decision making, Qjan et

al. [47] extended HFSs by using IFSs to modify Definition 2.1.2.

Definition 2.1.3 [47] Let ([0, 1]×[0, 1])∗ = {(x, y)|x, y ∈ [0, 1], x+y ≤ 1}. Given

a fixed set X, the generalized hesitant fuzzy set (GHFS) on X is in terms of a

function α̃ that when applied to X returns a subset of ([0, 1]× [0, 1])∗, which can

be represented as the following mathematical symbol:

A = {〈x, α̃(x)〉|x ∈ X}, (2.4)
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where α̃(x) = {(µα̃(x), να̃(x))} is a set of some values in ([0, 1]× [0, 1])∗ (i.e, a set

of some IFVs in [0, 1]), denoting the possible membership degrees of the element

x ∈ X to the set A. For convenience, Qjan et al. [47] called α̃(x) a generalized

hesitant fuzzy element (GHFE) and the set of all GHFEs is denoted by GHFES.

In particular, if there is only one value in α̃(x), then the GHFS reduces to

the IFS; if µγ̃ + νγ̃ = 1 for each γ̃ = (µγ̃, νγ̃) ∈ α̃(x), then the GHFS reduces

to the HFS; if α̃(x) contains only one value γ̃ and µγ̃ + νγ̃ = 1, then the GHFS

reduces to the FS. Thus, it indicates that FSs, IFSs and HFSs are special types

of GHFSs. Some useful operations on GHFEs are as follows:

Definition 2.1.4 [47] Let α̃, α̃1 and α̃2 be three GHFEs and λ > 0, then

(1) α̃1∪α̃2 = ∪γ̃1∈α̃1,γ̃2∈α̃2{γ̃1∪γ̃2} = ∪γ̃1∈α̃1,γ̃2∈α̃2{(max{µγ̃1 , µγ̃2},min{νγ̃1 , νγ̃2})};
(2) α̃1∩α̃2 = ∪γ̃1∈α̃1,γ̃2∈α̃2{γ̃1∩γ̃2} = ∪γ̃1∈α̃1,γ̃2∈α̃2{(min{µγ̃1 , µγ̃2},max{νγ̃1 , νγ̃2})};
(3) α̃c = ∪γ̃∈α̃{γ̃c} = ∪γ̃∈α̃{(νγ̃, µγ̃)};
(4) α̃1⊕ α̃2 = ∪γ̃1∈α̃1,γ̃2∈α̃2{γ̃1⊕ γ̃2} = ∪γ̃1∈α̃1,γ̃2∈α̃2{(µγ̃1 +µγ̃2−µγ̃1µγ̃2 , νγ̃1νγ̃2)};
(5) α̃1⊗ α̃2 = ∪γ̃1∈α̃1,γ̃2∈α̃2{γ̃1⊗ γ̃2} = ∪γ̃1∈α̃1,γ̃2∈α̃2{(µγ̃1µγ̃2 , νγ̃1 +νγ̃2−νγ̃1νγ̃2)};
(6) λα̃ = ∪γ̃∈α̃{λγ̃} = ∪γ̃∈α̃{(1− (1− µγ̃)λ, νλγ̃ )};
(7) α̃λ = ∪γ̃∈α̃{γ̃λ} = ∪γ̃∈α̃{(µλγ̃ , 1− (1− νγ̃)λ)}.

We can obtain the following relationships among the operational laws (4)-(7):

Theorem 2.1.5 Let α̃, α̃1 and α̃2 be three GHFEs and λ, λ1, λ2 > 0, then

(1) α̃1 ⊕ α̃2 = α̃2 ⊕ α̃1;

(2) α̃1 ⊗ α̃2 = α̃2 ⊗ α̃1;

(3) λ(α̃1 ⊕ α̃2) = λα̃1 ⊕ λα̃2, λ > 0;

(4) (α̃1 ⊗ α̃2)λ = α̃λ1 ⊗ α̃λ2 , λ > 0;

(5) (λ1 + λ2)α̃ = λ1α̃⊕ λ2α̃, λ1, λ2 > 0;

(6) α̃(λ1+λ2) = α̃λ1 ⊗ α̃λ2, λ1, λ2 > 0.

Proof We prove only (5) and (6).
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(5)

λ1α̃⊕ λ2α̃ = ∪γ̃∈α̃{λ1γ̃ ⊕ λ2γ̃}
= ∪γ̃∈α̃

{(
1− (1− µγ̃)λ1 + 1− (1− µγ̃)λ2

−(1− (1− µγ̃)λ1)(1− (1− µγ̃)λ2), νλ1γ̃ νλ2γ̃
)}

= ∪γ̃∈α̃
{(

1− (1− µγ̃)λ1(1− µγ̃)λ2 , νλ1γ̃ νλ2γ̃
)}

= ∪γ̃∈α̃
{(

1− (1− µγ̃)λ1+λ2 , νλ1+λ2
γ̃

)}
= ∪γ̃∈α̃{(λ1 + λ2)γ̃} = (λ1 + λ2)α̃.

(6)

α̃λ1 ⊗ α̃λ2 = ∪γ̃∈α̃{γ̃λ1 ⊗ γ̃λ2}
= ∪γ̃∈α̃

{(
µλ1γ̃ µ

λ2
γ̃ , 1− (1− νγ̃)λ1 + 1− (1− νγ̃)λ2

−(1− (1− νγ̃)λ1)(1− (1− νγ̃)λ2)
)}

= ∪γ̃∈α̃
{(
µλ1γ̃ µ

λ2
γ̃ , 1− (1− νγ̃)λ1(1− νγ̃)λ2

)}
= ∪γ̃∈α̃

{(
µλ1+λ2
γ̃ , 1− (1− νγ̃)λ1+λ2

)}
= ∪γ̃∈α̃{γ̃λ1+λ2} = α̃λ1+λ2 .

It is noted that the number of IFVs in different GHFEs may be different, let

lα̃ be the number of IFVs in α̃. By comparison method [77] of IFVs, we arrange

the elements in α̃ in decreasing order, let α̃σ(i) = (µ
σ(i)
α̃ , ν

σ(i)
α̃ ) (i = 1, 2, . . . , lα̃)

be the ith largest IFV in α̃. To operate correctly, we assume that the GHFEs

α̃ and β̃ should have the same length l when we compare them. If the one is

shorter than the other, we should extend the shorter one until both of them have

the same length. To extend the shorter one, the best way is to add the same

IFVs several times in it. In fact, we can extend the shorter one by adding any

IFVs in it. The selection of this IFV mainly depends on the decision makers’ risk

preferences. Optimists anticipate desirable outcomes and may add the maximum

IFV, while pessimists expect unfavorable outcomes and may add the minimum

IFV.
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2.1.2 Entropy measurs for GHFEs

As entropy measures have wide applications in real-world problems such as deci-

sion making, pattern recognition, clustering analysis, and image processing, it is

very necessary to develop some entropy measures under generalized hesitant fuzzy

environment. In what follows, we first give the axiomatic definition of entropy

for GHFEs.

Definition 2.1.6 An entropy on GHFE α̃ is a real-valued function E : GH →
[0, 1], satisfying the following axiomatic requirements:

(1) E(α̃) = 0 if and only if α̃ = (0, 1) or α̃ = (1, 0);

(2) E(α̃) = 1 if and only if µ
σ(i)
α̃ = ν

σ(i)
α̃ for i = 1, 2, . . . , lα̃;

(3) E(α̃) ≤ E(β̃) if µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
and ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
for µ

σ(i)

β̃
≤ ν

σ(i)

β̃
, or if

µ
σ(i)
α̃ ≥ µ

σ(i)

β̃
and ν

σ(i)
α̃ ≤ ν

σ(i)

β̃
for µ

σ(i)

β̃
≥ ν

σ(i)

β̃
, i = 1, 2, . . . , l;

(4) E(α̃) = E(α̃c).

On the basis of Definition 2.1.6, we can construct some entropy formulas as

follows:

E1(α̃) =
1

lα̃(
√

2− 1)

lα̃∑
i=1

sin
π(1 + µ

σ(i)
α̃ − νσ(i)

α̃ )

4
+ sin

π(1− µσ(i)
α̃ + ν

σ(i)
α̃ )

4
− 1

(2.5)

E2(α̃) =
1

lα̃(
√

2− 1)

lα̃∑
i=1

cos
π(1 + µ

σ(i)
α̃ − νσ(i)

α̃ )

4
+ cos

π(1− µσ(i)
α̃ + ν

σ(i)
α̃ )

4
− 1

(2.6)

E3(α̃) = − 1

lα̃ ln 2

lα̃∑
i=1

(
1 + µ

σ(i)
α̃ − νσ(i)

α̃

2
ln

1 + µ
σ(i)
α̃ − νσ(i)

α̃

2

+
1− µσ(i)

α̃ + ν
σ(i)
α̃

2
ln

1− µσ(i)
α̃ + ν

σ(i)
α̃

2

)
(2.7)

Now, we give the generalized hesitant fuzzy similarity measure defined as

11



Definition 2.1.7 For two GHFEs α̃ and β̃, the similarity measure between α̃

and β̃, denoted as S(α̃, β̃), should satisfy the following properties:

(1) S(α̃, β̃) = 0 if and only if α̃ = (0, 1), β̃ = (1, 0) or α̃ = (1, 0), β̃ = (0, 1);

(2) S(α̃, β̃) = 1 if and only if α̃ = β̃, i.e. µ
σ(i)
α̃ = µ

σ(i)

β̃
and ν

σ(i)
α̃ = ν

σ(i)

β̃
,

i = 1, 2, . . . , l;

(3) S(α̃, γ̃) ≤ S(α̃, β̃), S(α̃, γ̃) ≤ S(β̃, γ̃), if µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
≤ µ

σ(i)
γ̃ , ν

σ(i)
α̃ ≥

ν
σ(i)

β̃
≥ ν

σ(i)
γ̃ or if µ

σ(i)
α̃ ≥ µ

σ(i)

β̃
≥ µ

σ(i)
γ̃ , ν

σ(i)
α̃ ≤ ν

σ(i)

β̃
≤ ν

σ(i)
γ̃ , i = 1, 2, . . . , l;

(4) S(α̃, β̃) = S(β̃, α̃).

Based on Definition 2.1.7, some generalized hesitant fuzzy similarity measures

can be constructed as:

S1(α̃, β̃) = 1− 1

2l

l∑
i=1

(
|µσ(i)
α̃ − µσ(i)

β̃
|+ |νσ(i)

α̃ − νσ(i)

β̃
|
)

(2.8)

S2(α̃, β̃) = 1−

√√√√ 1

2l

l∑
i=1

(
(µ

σ(i)
α̃ − µσ(i)

β̃
)2 + (ν

σ(i)
α̃ − νσ(i)

β̃
)2
)

(2.9)

S3(α̃, β̃) = 1− p

√√√√ 1

2l

l∑
i=1

(
|µσ(i)
α̃ − µσ(i)

β̃
|p + |νσ(i)

α̃ − νσ(i)

β̃
|p
)

(2.10)

S4(α̃, β̃) = 1− 1

2

(
max
i
{|µσ(i)

α̃ − µσ(i)

β̃
|}+ max

i
{|νσ(i)

α̃ − νσ(i)

β̃
|}
)

(2.11)

S5(α̃, β̃) = 1− 1

2

(
max
i
{|µσ(i)

α̃ − µσ(i)

β̃
|2}+ max

i
{|νσ(i)

α̃ − νσ(i)

β̃
|2}
)

(2.12)

S6(α̃, β̃) = 1− 1

2

(
max
i
{|µσ(i)

α̃ − µσ(i)

β̃
|p}+ max

i
{|νσ(i)

α̃ − νσ(i)

β̃
|p}
)

(2.13)

12



S7(α̃, β̃) = 1− 1

4

(
1

l

l∑
i=1

(
|µσ(i)
α̃ − µσ(i)

β̃
|+ |νσ(i)

α̃ − νσ(i)

β̃
|
)

+ max
i
{|µσ(i)

α̃ − µσ(i)

β̃
|}+ max

i
{|νσ(i)

α̃ − νσ(i)

β̃
|}
)

(2.14)

S8(α̃, β̃) = 1− 1

2

(√√√√ 1

2l

l∑
i=1

(
(µ

σ(i)
α̃ − µσ(i)

β̃
)2 + (ν

σ(i)
α̃ − νσ(i)

β̃
)2
)

+
1

2

(
max
i
{|µσ(i)

α̃ − µσ(i)

β̃
|2}+ max

i
{|νσ(i)

α̃ − νσ(i)

β̃
|2}
))

(2.15)

S9(α̃, β̃) = 1− 1

2

(
p

√√√√ 1

2l

l∑
i=1

(
|µσ(i)
α̃ − µσ(i)

β̃
|p + |νσ(i)

α̃ − νσ(i)

β̃
|p
)

+
1

2

(
max
i
{|µσ(i)

α̃ − µσ(i)

β̃
|p}+ max

i
{|νσ(i)

α̃ − νσ(i)

β̃
|p}
))

(2.16)

From analyzing these similarity measures, we can find that S1 and S2 are

based on the Hamming distance and the Euclidean distance, respectively; S4 and

S5 apply the Hausdorff metric to S1 and S2; S7 (resp. S8) combines S1 (resp. S2)

and S4 (resp. S5); S3, S6 and S9 are further generalizations of S1 and S2, S4 and

S5, and S7 and S8, respectively; if p = 1, then S3 reduces to S1, S6 reduces to

S4, and S9 becomes S7; if p = 2, then S3 reduces to S2, S6 reduces to S5, and S9

becomes S8.

The relationships between similarity measures and entropy formulas have been

studied by many authors under different environments, such as interval-valued

fuzzy sets, interval-valued intuitionistic fuzzy sets and hesitant fuzzy sets. In

the following, we investigate the relationships between generalized hesitant fuzzy

similarity measures and generalized hesitant fuzzy entropy formulas:

Theorem 2.1.8 Let α̃ be a GHFE, then S(α̃, α̃c) is an entropy for α̃.

13



Proof (1) S(α̃, α̃c) = 0 ⇔ α̃ = (0, 1) and α̃c = (1, 0) or α̃ = (1, 0) and α̃c =

(0, 1);

(2) S(α̃, α̃c) = 1 ⇔ µ
σ(i)
α̃ = µ

σ(i)
α̃c and ν

σ(i)
α̃ = ν

σ(i)
α̃c , i = 1, 2, . . . , l ⇔ µ

σ(i)
α̃ =

ν
σ(i)
α̃ , i = 1, 2, . . . , l;

(3) Suppose that µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
and ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
, for µ

σ(i)

β̃
≤ ν

σ(i)

β̃
, i = 1, 2, . . . , l,

then µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
≤ ν

σ(i)

β̃
≤ ν

σ(i)
α̃ . Therefore, by the definition of similarity

measure of GHFEs, S(α̃, α̃c) ≤ S(β̃, α̃c) ≤ S(β̃, β̃c). With the same reason, when

µ
σ(i)
α̃ ≥ µ

σ(i)

β̃
and ν

σ(i)
α̃ ≤ ν

σ(i)

β̃
, for µ

σ(i)

β̃
≥ ν

σ(i)

β̃
, i = 1, 2, . . . , l, we can prove

S(α̃, α̃c) ≤ S(β̃, β̃c);

(4) S(α̃, α̃c) = S(α̃c, α̃).

Example 2.1.9 For two GHFEs α̃ and β̃, we can construct the following entropy

formulas based on the similarity measures Sk (1, 2, . . . , 9):

S1(α̃, α̃c) = 1− 1

lα̃

lα̃∑
i=1

|µσ(i)
α̃ − νσ(i)

α̃ | (2.17)

S2(α̃, α̃c) = 1−

√√√√ 1

lα̃

lα̃∑
i=1

(µ
σ(i)
α̃ − νσ(i)

α̃ )2 (2.18)

S3(α̃, α̃c) = 1− p

√√√√ 1

lα̃

lα̃∑
i=1

|µσ(i)
α̃ − νσ(i)

α̃ |p (2.19)

S4(α̃, α̃c) = 1−max
i
{|µσ(i)

α̃ − νσ(i)
α̃ |} (2.20)

S5(α̃, α̃c) = 1−max
i
{|µσ(i)

α̃ − νσ(i)
α̃ |2} (2.21)
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S6(α̃, α̃c) = 1−max
i
{|µσ(i)

α̃ − νσ(i)
α̃ |p} (2.22)

S7(α̃, α̃c) = 1− 1

2

 1

lα̃

lα̃∑
i=1

|µσ(i)
α̃ − νσ(i)

α̃ |+ max
i
{|µσ(i)

α̃ − νσ(i)
α̃ |}

 (2.23)

S8(α̃, α̃c) = 1− 1

2

(√√√√ 1

lα̃

lα̃∑
i=1

|µσ(i)
α̃ − νσ(i)

α̃ |2 + max
i
{|µσ(i)

α̃ − νσ(i)
α̃ |2}

)
(2.24)

S9(α̃, α̃c) = 1− 1

2

(
p

√√√√ 1

lα̃

lα̃∑
i=1

|µσ(i)
α̃ − νσ(i)

α̃ |p + max
i
{|µσ(i)

α̃ − νσ(i)
α̃ |p}

)
(2.25)

In the following, we propose a transform method of setting up generalized

hesitant fuzzy similarity measure based on generalized hesitant fuzzy entropy.

Theorem 2.1.10 For two GHFEs α̃ and β̃, let |µσ(i)
α̃ −µ

σ(i)

β̃
| ≤ |µσ(i+1)

α̃ −µσ(i+1)

β̃
|,

|νσ(i)
α̃ −νσ(i)

β̃
| ≥ |νσ(i+1)

α̃ −νσ(i+1)

β̃
|, i = 1, 2, . . . , l−1, and we define a GHFE f(α̃, β̃)

as follows:

f(α̃, β̃) =


1 + |µσ(1)

α̃ − µσ(1)

β̃
|

2
,
1− |νσ(1)

α̃ − νσ(1)

β̃
|

2

 ,
1 + |µσ(2)

α̃ − µσ(2)

β̃
|

2
,
1− |νσ(2)

α̃ − νσ(2)

β̃
|

2

 ,
. . . ,

1 + |µσ(l)
α̃ − µσ(l)

β̃
|

2
,
1− |νσ(l)

α̃ − νσ(l)

β̃
|

2


 , (2.26)

then E(f(α̃, β̃)) is the similarity measure of α̃ and β̃.
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Proof (1) E(f(α̃, β̃)) = 0 ⇔ f(α̃, β̃) = (1, 0) or f(α̃, β̃) = (0, 1) ⇔ α̃ = (0, 1),

β̃ = (1, 0) or α̃ = (1, 0), β̃ = (0, 1);

(2) E(f(α̃, β̃)) = 1 ⇔
1+|µσ(i)α̃ −µσ(i)

β̃
|

2
=

1−|νσ(i)α̃ −νσ(i)
β̃
|

2
, i = 1, 2, . . . , l ⇔ µ

σ(i)
α̃ =

µ
σ(i)

β̃
, ν

σ(i)
α̃ = ν

σ(i)

β̃
, i = 1, 2, . . . , l;

(3) Since µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
≤ µ

σ(i)
γ̃ , ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
≥ ν

σ(i)
γ̃ , i = 1, 2, . . . , l, then we ob-

tain
1+|µσ(i)α̃ −µσ(i)

β̃
|

2
≤ 1+|µσ(i)α̃ −µσ(i)γ̃ |

2
and

1−|νσ(i)α̃ −νσ(i)
β̃
|

2
≥ 1−|νσ(i)α̃ −νσ(i)γ̃ |

2
, i = 1, 2, . . . , l.

Hence µ
σ(i)

f(α̃,β̃)
≤ µ

σ(i)
f(α̃,γ̃) and ν

σ(i)

f(α̃,β̃)
≥ ν

σ(i)
f(α̃,γ̃), i = 1, 2, . . . , l. From the def-

inition of f(α̃, β̃), we know that µ
σ(i)

f(α̃,β̃)
≥ ν

σ(i)

f(α̃,β̃)
, i = 1, 2, . . . , l, and thus

E(f(α̃, γ̃)) ≤ E(f(α̃, β̃)). With the same reason, we can prove that it is also

true for µ
σ(i)
α̃ ≥ µ

σ(i)

β̃
≥ µ

σ(i)
γ̃ , ν

σ(i)
α̃ ≤ ν

σ(i)

β̃
≤ ν

σ(i)
γ̃ , i = 1, 2, . . . , l;

(4) E(f(α̃, β̃)) = E(f(β̃, α̃)).

Example 2.1.11 For two GHFEs α̃ and β̃, we get

E1(f(α̃, β̃)) =
1

l(
√

2− 1)

l∑
i=1

sin
π(2 + |µσ(i)

α̃ − µσ(i)

β̃
|+ |νσ(i)

α̃ − νσ(i)

β̃
|)

8

+ sin
π(2− |µσ(i)

α̃ − µσ(i)

β̃
| − |νσ(i)

α̃ − νσ(i)

β̃
|)

8
− 1

 (2.27)

E2(f(α̃, β̃)) =
1

l(
√

2− 1)

l∑
i=1

cos
π(2 + |µσ(i)

α̃ − µσ(i)

β̃
|+ |νσ(i)

α̃ − νσ(i)

β̃
|)

8

+ cos
π(2− |µσ(i)

α̃ − µσ(i)

β̃
| − |νσ(i)

α̃ − νσ(i)

β̃
|)

8
− 1

 (2.28)

E3(f(α̃, β̃)) = − 1

l ln 2

l∑
i=1

2 + |µσ(i)
α̃ − µσ(i)

β̃
|+ |νσ(i)

α̃ − νσ(i)

β̃
|

4

× ln
2 + |µσ(i)

α̃ − µσ(i)

β̃
|+ |νσ(i)

α̃ − νσ(i)

β̃
|

4
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+
2− |µσ(i)

α̃ − µσ(i)

β̃
| − |νσ(i)

α̃ − νσ(i)

β̃
|

4

× ln
2− |µσ(i)

α̃ − µσ(i)

β̃
| − |νσ(i)

α̃ − νσ(i)

β̃
|

4

 (2.29)

Corollary 2.1.12 Let α̃ and β̃ be two GHFEs, and E be the entropy of GHFE,

then E((f(α̃, β̃))c) is the similarity measure of the GHFEs α̃ and β̃.

Corollary 2.1.13 Let α̃ and β̃ be two GHFEs, |µσ(i)
α̃ −µ

σ(i)

β̃
| ≤ |µσ(i+1)

α̃ −µσ(i+1)

β̃
|,

|νσ(i)
α̃ −νσ(i)

β̃
| ≥ |νσ(i+1)

α̃ −νσ(i+1)

β̃
|, i = 1, 2, . . . , l−1, and we define a GHFE g(α̃, β̃)

as follows:

g(α̃, β̃) =


1 + |µσ(1)

α̃ − µσ(1)

β̃
|p

2
,
1− |νσ(1)

α̃ − νσ(1)

β̃
|p

2

 ,
1 + |µσ(2)

α̃ − µσ(2)

β̃
|p

2
,
1− |νσ(2)

α̃ − νσ(2)

β̃
|p

2

 , . . . ,
1 + |µσ(l)

α̃ − µσ(l)

β̃
|p

2
,
1− |νσ(l)

α̃ − νσ(l)

β̃
|p

2


 , p > 0, (2.30)

then E(g(α̃, β̃)) is the similarity measure of α̃ and β̃.

Theorem 2.1.14 For two GHFEs α̃ and β̃, let |µσ(i)
α̃ −µ

σ(i)

β̃
| ≤ |µσ(i+1)

α̃ −µσ(i+1)

β̃
|,

|νσ(i)
α̃ −νσ(i)

β̃
| ≥ |νσ(i+1)

α̃ −νσ(i+1)

β̃
|, i = 1, 2, . . . , l−1, and we define a GHFE h(α̃, β̃)

as follows:

h(α̃, β̃)

=




1 + min

{ |µσ(1)
α̃ − µσ(1)

β̃
|,

|νσ(1)

β̃
− νσ(1)

β̃
|

}
2

,

1−max

{ |µσ(1)
α̃ − µσ(1)

β̃
|,

|νσ(1)

β̃
− νσ(1)

β̃
|

}
2

 ,
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1 + min

{ |µσ(2)
α̃ − µσ(2)

β̃
|,

|νσ(2)

β̃
− νσ(2)

β̃
|

}
2

,

1−max

{ |µσ(2)
α̃ − µσ(2)

β̃
|,

|νσ(2)

β̃
− νσ(2)

β̃
|

}
2

 , . . . ,


1 + min

{ |µσ(l)
α̃ − µσ(l)

β̃
|,

|νσ(l)

β̃
− νσ(l)

β̃
|

}
2

,

1−max

{ |µσ(l)
α̃ − µσ(l)

β̃
|,

|νσ(l)

β̃
− νσ(l)

β̃
|

}
2




, (2.31)

then E(h(α̃, β̃)) is the similarity measure of α̃ and β̃.

Proof (1) E(h(α̃, β̃)) = 0 ⇔ h(α̃, β̃) = (1, 0) or h(α̃, β̃) = (0, 1) ⇔ α̃ = (0, 1),

β̃ = (1, 0) or α̃ = (1, 0), β̃ = (0, 1);

(2) E(h(α̃, β̃)) = 1⇔
1+min{|µσ(i)α̃ −µσ(i)

β̃
|,|νσ(i)α̃ −νσ(i)

β̃
|}

2
=

1−max{|µσ(i)α̃ −µσ(i)
β̃
|,|νσ(i)α̃ −νσ(i)

β̃
|}

2
,

i = 1, 2, . . . , l ⇔ µ
σ(i)
α̃ = µ

σ(i)

β̃
, ν

σ(i)
α̃ = ν

σ(i)

β̃
, i = 1, 2, . . . , l;

(3)According to the assumption, µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
≤ µ

σ(i)
γ̃ , ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
≥ ν

σ(i)
γ̃ , i =

1, 2, . . . , l, then we have
1+min{|µσ(i)α̃ −µσ(i)

β̃
|,|νσ(i)α̃ −νσ(i)

β̃
|}

2
≤ 1+min{|µσ(i)α̃ −µσ(i)γ̃ |,|νσ(i)α̃ −νσ(i)γ̃ |}

2
,

1−max{|µσ(i)α̃ −µσ(i)
β̃
|,|νσ(i)α̃ −νσ(i)

β̃
|}

2
≥ 1−max{|µσ(i)α̃ −µσ(i)γ̃ |,|νσ(i)α̃ −νσ(i)γ̃ |}

2
, i = 1, 2, . . . , l, which

implies µ
σ(i)

h(α̃,β̃)
≤ µ

σ(i)
h(α̃,γ̃) and ν

σ(i)

h(α̃,β̃)
≥ ν

σ(i)
h(α̃,γ̃), i = 1, 2, . . . , l. From the definition

of h(α̃, β̃), we know that µ
σ(i)

h(α̃,β̃)
≥ ν

σ(i)

h(α̃,β̃)
, i = 1, 2, . . . , l, and thus E(h(α̃, γ̃)) ≤

E(h(α̃, β̃)). With the same reason, we can prove that it is also true for µ
σ(i)
α̃ ≥

µ
σ(i)

β̃
≥ µ

σ(i)
γ̃ , ν

σ(i)
α̃ ≤ ν

σ(i)

β̃
≤ ν

σ(i)
γ̃ , i = 1, 2, . . . , l;

(4) E(h(α̃, β̃)) = E(h(β̃, α̃)).

Example 2.1.15 For two GHFEs α̃ and β̃, we get

E1(f(α̃, β̃))
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=
1

l(
√

2− 1)

l∑
i=1

sin

π

 2 + min{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}

+ max{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}


8

+ sin

π

 2−min{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}

−max{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}


8

− 1

 (2.32)

E2(f(α̃, β̃))

=
1

l(
√

2− 1)

l∑
i=1

cos

π

 2 + min{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}

+ max{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}


8

+ cos

π

 2−min{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}

−max{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}


8

− 1

 (2.33)

E3(f(α̃, β̃)) = − 1

l ln 2

l∑
i=1



 2 + min{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}

+ max{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}


4

× ln

 2 + min{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}

+ max{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}


4
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+

 2−min{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}

−max{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}


4

× ln

 2−min{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}

−max{|µσ(i)
α̃ − µσ(i)

β̃
|, |νσ(i)

α̃ − νσ(i)

β̃
|}


4

 (2.34)

Corollary 2.1.16 Let α̃ and β̃ be two GHFEs, and E be the entropy of GHFE,

then E((h(α̃, β̃))c) is the similarity measure of the GHFEs α̃ and β̃.

Corollary 2.1.17 Let α̃ and β̃ be two GHFEs, |µσ(i)
α̃ −µ

σ(i)

β̃
| ≤ |µσ(i+1)

α̃ −µσ(i+1)

β̃
|,

|νσ(i)
α̃ −νσ(i)

β̃
| ≥ |νσ(i+1)

α̃ −νσ(i+1)

β̃
|, i = 1, 2, . . . , l−1, and we define a GHFE k(α̃, β̃)

as follows:

k(α̃, β̃)

=




1 + min

{
|µσ(1)
α̃ − µσ(1)

β̃
|p,

|νσ(1)

β̃
− νσ(1)

β̃
|p

}
2

,

1−max

{
|µσ(1)
α̃ − µσ(1)

β̃
|p,

|νσ(1)

β̃
− νσ(1)

β̃
|p

}
2


,


1 + min

{
|µσ(2)
α̃ − µσ(2)

β̃
|p,

|νσ(2)

β̃
− νσ(2)

β̃
|p

}
2

,

1−max

{
|µσ(2)
α̃ − µσ(2)

β̃
|p,

|νσ(2)

β̃
− νσ(2)

β̃
|p

}
2


, . . . ,


1 + min

{
|µσ(l)
α̃ − µσ(l)

β̃
|p,

|νσ(l)

β̃
− νσ(l)

β̃
|p

}
2

,

1−max

{
|µσ(l)
α̃ − µσ(l)

β̃
|p,

|νσ(l)

β̃
− νσ(l)

β̃
|p

}
2




, p > 0, (2.35)

then E(k(α̃, β̃)) is the similarity measure of α̃ and β̃.
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Theorem 2.1.18 For a GHFE α̃, let |µσ(i)
α̃ − ν

σ(i)
α̃ | ≤ |µ

σ(i+1)
α̃ − ν

σ(i+1)
α̃ |, i =

1, 2, . . . , l − 1, and we define two GHFEs m(α̃) and n(α̃) as follows:

m(α̃) =


1 + (µ

σ(1)
α̃ − νσ(1)

α̃ )4

2
,
1− |µσ(1)

α̃ − νσ(1)
α̃ |

2

 ,
1 + (µ

σ(2)
α̃ − νσ(2)

α̃ )4

2
,
1− |µσ(2)

α̃ − νσ(2)
α̃ |

2

 ,
. . . ,

1 + (µ
σ(l)
α̃ − νσ(l)

α̃ )4

2
,
1− |µσ(l)

α̃ − νσ(l)
α̃ |

2

 (2.36)

n(α̃) =


1− |µσ(1)

α̃ − νσ(1)
α̃ |

2
,
1 + (µ

σ(1)
α̃ − νσ(1)

α̃ )2

2

 ,
1− |µσ(2)

α̃ − νσ(2)
α̃ |

2
,
1 + (µ

σ(2)
α̃ − νσ(2)

α̃ )2

2

 ,
. . . ,

1− |µσ(l)
α̃ − νσ(l)

α̃ |
2

,
1 + (µ

σ(l)
α̃ − νσ(l)

α̃ )2

2

 , (2.37)

then S(m(α̃), n(α̃)) is the entropy of α̃.

Proof (1) S(m(α̃), n(α̃)) = 0 ⇔ m(α̃) = (1, 0), n(α̃) = (0, 1) or m(α̃) = (0, 1),

n(α̃) = (1, 0) ⇔ α̃ = (1, 0) or α̃ = (0, 1);

(2) S(m(α̃), n(α̃)) = 1 ⇔ 1+(µ
σ(i)
α̃ −νσ(i)α̃ )4

2
=

1−|µσ(i)α̃ −νσ(i)α̃ |
2

and
1−|µσ(i)α̃ −νσ(i)α̃ |

2
=

1+(µ
σ(i)
α̃ −νσ(i)α̃ )2

2
for i = 1, 2, . . . , l ⇔ µ

σ(i)
α̃ = ν

σ(i)
α̃ for i = 1, 2, . . . , l;

(3) Since µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
and ν

σ(i)

β̃
≤ ν

σ(i)
α̃ , for µ

σ(i)

β̃
≤ ν

σ(i)

β̃
, i = 1, 2, . . . , l,

which implies µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
≤ ν

σ(i)

β̃
≤ ν

σ(i)
α̃ , i = 1, 2, . . . , l, we have

|µσ(i)α̃ −νσ(i)α̃ |
2

≥
|µσ(i)
β̃
−νσ(i)

β̃
|

2
, i = 1, 2, . . . , l, which means that

1+(µ
σ(i)
α̃ −νσ(i)α̃ )4

2
≥

1+(µ
σ(i)

β̃
−νσ(i)

β̃
)4

2
≥

1−|µσ(i)
β̃
−νσ(i)

β̃
|

2
≥ 1−|µσ(i)α̃ −νσ(i)α̃ |

2
and

1−|µσ(i)α̃ −νσ(i)α̃ |
2

≤
1−|µσ(i)

β̃
−νσ(i)

β̃
|

2
≤

1+(µ
σ(i)

β̃
−νσ(i)

β̃
)2

2
≤

1+(µ
σ(i)
α̃ −νσ(i)α̃ )2

2
, i = 1, 2, . . . , l. Therefore, from the definition of similarity measure

of GHFEs, we have S(m(α̃), n(α̃)) ≤ S(m(β̃), n(α̃)) ≤ S(m(β̃), n(β̃)). With the
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same reason, when µ
σ(i)
α̃ ≥ µ

σ(i)

β̃
and ν

σ(i)

β̃
≥ ν

σ(i)
α̃ for µ

σ(i)

β̃
≥ ν

σ(i)

β̃
, i = 1, 2, . . . , l,

we can also prove S(m(α̃), n(α̃)) ≤ S(m(β̃), n(β̃));

(4) S(m(α̃), n(α̃)) = S(m(α̃)c, n(α̃)c).

Corollary 2.1.19 Suppose that S is the similarity measure for GHFEs, then

S(m(α̃)c, n(α̃)c) is also the entropy of the GHFE α̃.

Example 2.1.20 For a GHFE α̃, we have some entropy formulas

S1(m(α̃), n(α̃))

= 1− 1

4lα̃

lα̃∑
i=1

(
(µ

σ(i)
α̃ − νσ(i)

α̃ )4 + 2|µσ(i)
α̃ − νσ(i)

α̃ |+ (µ
σ(i)
α̃ − νσ(i)

α̃ )2
)

(2.38)

S4(m(α̃), n(α̃))

= 1− 1

4

(
max
i
{(µσ(i)

α̃ − νσ(i)
α̃ )4 + 2|µσ(i)

α̃ − νσ(i)
α̃ |+ (µ

σ(i)
α̃ − νσ(i)

α̃ )2}
)

(2.39)

S7(m(α̃), n(α̃))

= 1− 1

8

(
1

lα̃

lα̃∑
i=1

(
(µ

σ(i)
α̃ − νσ(i)

α̃ )4 + 2|µσ(i)
α̃ − νσ(i)

α̃ |+ (µ
σ(i)
α̃ − νσ(i)

α̃ )2
)

+ max
i
{(µσ(i)

α̃ − νσ(i)
α̃ )4 + 2|µσ(i)

α̃ − νσ(i)
α̃ |+ (µ

σ(i)
α̃ − νσ(i)

α̃ )2}
)

(2.40)

2.2 Cross-entropy measures for GHFEs

In this section, we shall present the axiomatic definition of cross-entropy measure

for GHFE motivated by Bhandai and Pal [6], Shang and Jiang [49], Vlachos and

Sergiadis [57], Hung and Yang [27], and Xu and Xia [76], from which we can get

some entropy measures for GHFEs.

Definition 2.2.1 Let α̃ and β̃ be two GHFEs, then the cross-entropy C(α̃, β̃) of

α̃ and β̃ should satisfy the following conditions:

(1) C(α̃, β̃) ≥ 0;

(2) C(α̃, β̃) = 0 if and only if µ
σ(i)
α̃ = µ

σ(i)

β̃
and ν

σ(i)
α̃ = ν

σ(i)

β̃
, i = 1, 2, . . . , l.
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Based on Definition 2.2.1, we can construct two cross-entropy formulas of α̃

and β̃ defined as

C1(α̃, β̃) =
1

lT

l∑
i=1

(1 + qµ
σ(i)
α̃ ) ln(1 + qµ

σ(i)
α̃ ) + (1 + qµ

σ(i)

β̃
) ln(1 + qµ

σ(i)

β̃
)

2

−
2 + qµ

σ(i)
α̃ + qµ

σ(i)

β̃

2
ln

2 + qµ
σ(i)
α̃ + qµ

σ(i)

β̃

2

+
(1 + qν

σ(i)
α̃ ) ln(1 + qν

σ(i)
α̃ ) + (1 + qν

σ(i)

β̃
) ln(1 + qν

σ(i)

β̃
)

2

−
2 + qν

σ(i)
α̃ + qν

σ(i)

β̃

2
ln

2 + qν
σ(i)
α̃ + qν

σ(i)

β̃

2

 , (2.41)

where T = (1 + q) ln(1 + q)− (2 + q)(ln(2 + q)− ln 2) and q > 0.

C2(α̃, β̃) =
1

(1− 21−p)l

l∑
i=1

(µ
σ(i)
α̃ )p + (µ

σ(i)

β̃
)p

2
+

(ν
σ(i)
α̃ )p + (ν

σ(i)

β̃
)p

2

−

µσ(i)
α̃ + µ

σ(i)

β̃

2


p

−

νσ(i)
α̃ + ν

σ(i)

β̃

2


p , p > 1. (2.42)

Remark 2.2.2 (1) Since dT
dq

= ln 2+2q
1+q

> 0, then T is an increasing function about

q, and thus T > 0. In addition, let f(x) = (1 + qx) ln(1 + qx), 0 ≤ x ≤ 1, then
df(x)
dx

= q ln(1+qx)+q ≥ 0 and d2f(x)
dx2

= q2

1+qx
> 0. Then f(x) is a concave upward

function of x and f(a+b
2

) = f(a)
2

+ f(b)
2

if and only if a = b. Therefore, C1(α̃, β̃) ≥ 0

and C1(α̃, β̃) = 0 if and only if µ
σ(i)
α̃ = µ

σ(i)

β̃
, ν

σ(i)
α̃ = ν

σ(i)

β̃
, i = 1, 2, . . . , l. According

to Definition 2.2.1, C1(α̃, β̃) is the cross-entropy of α̃ and β̃.

(2) Let g(x) = xp, 0 ≤ x ≤ 1 and p > 1, since dg(x)
dx

= pxp−1 and d2g(x)
dx2

=

p(p−1)xp−2 > 0, g(x) is a concave upward function of x, and then C2((α̃, β̃)) ≥ 0

and C2(α̃, β̃) = 0 if and only if µ
σ(i)
α̃ = µ

σ(i)

β̃
, ν

σ(i)
α̃ = ν

σ(i)

β̃
, i = 1, 2, . . . , l. From

Definition 2.2.1, C2(α̃, β̃) is the cross-entropy of α̃ and β̃.
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Theorem 2.2.3 Let α̃ be a GHFE, then E(α̃) = 1− C1(α̃, α̃c) is the entropy of

α̃.

Proof Let

E(α̃) = 1− C1(α̃, α̃c)

= 1− 2

lα̃T

lα̃∑
i=1

(1 + qµ
σ(i)
α̃ ) ln(1 + qµ

σ(i)
α̃ ) + (1 + qν

σ(i)
α̃ ) ln(1 + qν

σ(i)
α̃ )

2

−2 + qµ
σ(i)
α̃ + qν

σ(i)
α̃

2
ln

2 + qµ
σ(i)
α̃ + qν

σ(i)
α̃

2

 , q > 0, (2.43)

where T = (1 + q) ln(1 + q)− (2 + q)(ln(2 + q)− ln 2).

(1) By the definition of E(α̃), E(α̃) = 0 ⇔ C1(α̃, α̃c) = 1 ⇔ α̃ = (1, 0) or

α̃ = (0, 1);

(2) E(α̃) = 1 ⇔ C1(α̃, α̃c) = 0 ⇔ µ
σ(i)
α̃ = ν

σ(i)
α̃ , i = 1, 2, . . . , l;

(3) If µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
and ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
for µ

σ(i)

β̃
≤ ν

σ(i)

β̃
, i = 1, 2, . . . , lα̃, then we

have µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
≤ ν

σ(i)

β̃
≤ ν

σ(i)
α̃ , i = 1, 2, . . . , l, which implies |µσ(i)

α̃ − νσ(i)
α̃ | ≥

|µσ(i)

β̃
− νσ(i)

β̃
|, i = 1, 2, . . . , l. Let 0 ≤ x, y ≤ 1, t = |x− y|, and

f(x, y) =
(1 + qx) ln(1 + qx) + (1 + qy) ln(1 + qy)

2

−2 + qx+ qy

2
ln

2 + qx+ qy

2
, q > 0. (2.44)

If x ≥ y, then x = t+ y, and

f(t, y) =
(1 + q(t+ y)) ln(1 + q(t+ y)) + (1 + qy) ln(1 + qy)

2

−2 + q(t+ y) + qy

2
ln

2 + q(t+ y) + qy

2
, q > 0. (2.45)

and thus

∂f(t, y)

∂t
=
q + q ln(1 + q(t+ y))

2
− q

2
− q

2
ln

2 + q(t+ y) + qy

2

=
q

2
ln

2(1 + q(t+ y))

2 + q(t+ y) + qy
≥ 0, q > 0. (2.46)
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Therefore, f(x, y) is a nondecreasing function of |x − y|, for x ≥ y. With the

same reason, we can also prove that it is true for x ≤ y. Hence E(α̃) ≤ E(β̃).

(4) E(α̃) = E(α̃c).

Theorem 2.2.4 Let α̃ be a GHFE, then E(α̃) = 1− C2(α̃, α̃c) is the entropy of

α̃.

Proof Let

E(α̃) = 1− C2(α̃, α̃c)

= 1− 2

(1− 21−p)l

l∑
i=1

(µ
σ(i)
α̃ )p + (ν

σ(i)
α̃ )p

2
−

µσ(i)
α̃ + ν

σ(i)
α̃

2

p , p > 1.(2.47)

(1) By the definition of E(α̃), E(α̃) = 0 ⇔ C2(α̃, α̃c) = 1 ⇔ α̃ = (1, 0) or

α̃ = (0, 1);

(2) E(α̃) = 1 ⇔ C2(α̃, α̃c) = 0 ⇔ µ
σ(i)
α̃ = ν

σ(i)
α̃ , i = 1, 2, . . . , l;

(3) If µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
and ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
for µ

σ(i)

β̃
≤ ν

σ(i)

β̃
, i = 1, 2, . . . , lα̃, which

means |µσ(i)
α̃ − νσ(i)

α̃ | ≥ |µ
σ(i)

β̃
− νσ(i)

β̃
|, i = 1, 2, . . . , l. Let t = |x− y| and

g(x, y) =
xp + yp

2
−
(
x+ y

2

)p
, 0 ≤ x, y ≤ 1, p > 1. (2.48)

If x ≥ y, then x = t+ y, and

g(t, y) =
(t+ y)p + yp

2
−
(
y +

t

2

)p
, p > 1. (2.49)

Since

∂g(t, y)

∂t
=
p

2

(
(t+ y)p−1 −

(
y +

t

2

)p−1
)
, p > 1, (2.50)

g(x, y) is a nondecreasing function of |x − y|, for x ≥ y. With the same reason,

we can also prove that it is true for x ≤ y. Hence E(α̃) ≤ E(β̃).

(4) E(α̃) = E(α̃c).
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2.3 Methods based on information measures for

multiple attribute decision making with gen-

eralized hesitant fuzzy information

Suppose that there are m alternatives yi (i = 1, 2, . . . ,m) and n attributes xj

(j = 1, 2, . . . , n) with the attribute weight vector w = (w1, w2, . . . , wn)T such

that wj ∈ [0, 1], j = 1, 2, . . . , n, and
∑n
j=1wj = 1. Suppose that a decision

organization is authorized to provide all the possible degrees that the alternative

yi satisfies the attribute xj, denoted by a GHFE α̃ij.

In following, we develop two approach to multiple attribute group decision

making with generalized hesitant fuzzy information. First, we extend the entropy

method to generalized hesitant fuzzy environment and obtain the final optimal

alternative by comparing the cross-entropy measures with the ideal solutions.

Approach I

Step 1. The decision organization provides all possible evaluations the al-

ternative yi under the attribute xj, denoted by the GHFE α̃ij (i = 1, 2, . . . ,m;

j = 1, 2, . . . , n).

Step 2. If the information about the weight wj of the attribute xj is unknown

completely, then we establish an exact model of entropy weights for determining

the attribute weights:

wj =
1− 1

m

∑m
i=1E(α̃ij)

n−∑n
j=1

(
1
m

∑m
i=1E(α̃ij)

) , j = 1, 2, . . . , n, (2.51)

where E(α̃ij) is the entropy of α̃ij given by Eqs. (2.43) or (2.47).

Step 3. Let J1 and J2 be the sets of benefit attributes and cost attributes,

respectively. Suppose that the generalized hesitant fuzzy positive-ideal solution is

α̃+ = (α̃+
1 , α̃

+
2 , . . . , α̃

+
n ) and the generalized hesitant fuzzy negative-ideal solution

is α̃− = (α̃−1 , α̃
−
2 , . . . , α̃

−
n ), where α̃+

j = (1, 0), α̃−j = (0, 1), j ∈ J1 and α̃+
j = (0, 1),

α̃−j = (1, 0), j ∈ J2. Then we calculate the cross-entropy between the alternative

26



yi and positive-ideal solution and the negative-ideal solution:

C+(yi) =
n∑
j=1

wjC(α̃ij, α̃
+
j ), i = 1, 2, . . . ,m, (2.52)

C−(yi) =
n∑
j=1

wjC(α̃ij, α̃
−
j ), i = 1, 2, . . . ,m. (2.53)

Step 4. Calculate the closeness degree of the alternative yi to the positive-

ideal solution by using the following

C(yi) =
C+(yi)

C+(yi) + C−(yi)
, i = 1, 2, . . . ,m. (2.54)

Step 5. Rank the alternatives yi (i = 1, 2, . . . ,m) according the values of

C(yi) (i = 1, 2, . . . ,m) in ascending order, and the smaller the value of C(yi), the

better the alternative yi.

Next, if we utilize the maximizing deviation method to derive the weight

vector of the attributes in Step 2 of Approach I, and use the TOPSIS method

[58] to compare the alternatives in Steps 3 and 4 of Approach I, then we can

obtain the following approach:

Approach II

Step 1. For this step, see Approach I.

Step 2. Utilize the maximizing deviation method to calculate the attribute

weight wj of the attribute xj:

wj =

∑m
i=1

∑m
k=1 d(α̃ij, α̃kj)∑n

j=1

∑m
i=1

∑m
k=1 d(α̃ij, α̃kj)

, j = 1, 2, . . . , n, (2.55)

where d(α̃ij, α̃kj) is distance between α̃ij and α̃kj such that for two GHFEs α̃ and

β̃, the distance between α̃ and β̃, denoted as d(α̃, β̃), defined by

d(α̃, β̃) =
1

2l

l∑
i=1

(
|µσ(i)
α̃ − µσ(i)

β̃
|+ |νσ(i)

α̃ − νσ(i)

β̃
|
)
. (2.56)
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Step 3. Calculate the distance between the alternative yi and the positive-

ideal solution α̃+ = (α̃+
1 , α̃

+
2 , . . . , α̃

+
n ) and the negative-ideal solution α̃− = (α̃−1 , α̃

−
2 ,

. . . , α̃−n ):

d+(yi) =
n∑
j=1

(
wjd(α̃ij, α̃

+
j )
)
, i = 1, 2, . . . ,m, (2.57)

d−(yi) =
n∑
j=1

(
wjd(α̃ij, α̃

−
j )
)
, i = 1, 2, . . . ,m. (2.58)

Step 4. Calculate the closeness degree of the alternative yi to the positive-

ideal solution α̃+ by using the following

D(yi) =
d−(yi)

d−(yi) + d+(yi)
, i = 1, 2, . . . ,m. (2.59)

Step 5. Rank the alternatives yi (i = 1, 2, . . . ,m) according the values of

D(yi) (i = 1, 2, . . . ,m) in descending order, and the larger the value of D(yi), the

better the alternative yi.

In the following, we use a multiple attribute decision making problem of de-

termining what kind of air-conditioning systems should be installed in a library

(adapted from [78] [88]) to illustrate the proposed approaches.

Example 2.3.1 A city is planning to build a municipal library. One of the

problems facing the city development commissioner is to determine what kind

of air-conditioning systems should be installed in the library. The contractor

offers four feasible alternatives yi (i = 1, 2, 3, 4), which might be adapted to

the physical structure of the library. The offered air-conditioning system must

take a decision according to the following five attributes: (1) performance (x1),

(2) maintainability (x2), (3) flexibility (x3), (4) cost (x4), (5) safety (x5). Let

J = {x1, x2, x3, x4, x5} be the set of five attributes, and assume that x1, x2, x3 and

x5 are benefit attributes and x4 is cost attribute. That is, J1 = {x1, x2, x3, x5}
and J2 = {x4}.
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To get the optimal alternative, the following steps are given if Approach I is

used:

Step 1. The decision organization provides all possible evaluations of the

alternative yi, by a GHFE α̃ij, with respect to the attribute xj, listed in Table

2.1 (i.e. generalized hesitant fuzzy decision matrix D = (α̃ij)4×5).

Table 2.1: Generalized hesitant fuzzy decision matrix

x1 x2

y1 {(0.3, 0.2), (0.3, 0.4)} {(0.6, 0.2), (0.5, 0.2), (0.4, 0.3)}
y2 {(0.7, 0.2), (0.5, 0.2)} {(0.5, 0.1), (0.4, 0.2), (0.3, 0.1)}
y3 {(0.6, 0.3), (0.5, 0.2)} {(0.9, 0.05), (0.8, 0.1), (0.7, 0.1)}
y4 {(0.5, 0.3), (0.5, 0.4)} {(0.8, 0.1), (0.8, 0.3), (0.6, 0.3)}

x3 x4

y1 {(0.4, 0.5), (0.3, 0.4)} {(0.4, 0.2), (0.3, 0.4), (0.2, 0.6), (0.2, 0.7)}
y2 {(0.8, 0.1), (0.7, 0.2)} {(0.8, 0.1), (0.7, 0.2), (0.6, 0.3), (0.5, 0.3)}
y3 {(0.4, 0.3), (0.4, 0.4)} {(0.8, 0.1), (0.7, 0.2), (0.6, 0.1), (0.4, 0, 1)}
y4 {(0.7, 0.3), (0.5, 0.4)} {(0.8, 0.1), (0.7, 0.3), (0.6, 0.3), (0.4, 0, 2)}

x5

y1 {(0.8, 0.1), (0.7, 0.2)}
y2 {(0.7, 0.2), (0.6, 0.3)}
y3 {(0.2, 0.5), (0.2, 0.6)}
y4 {(0.6, 0.3), (0.4, 0.5)}

Step 2. Suppose that the information about the attribute weight wj of the

attribute xj is unknown completely, then we utilize Eq. (2.43) (let q = 2) to

calculate the entropy matrix (see Table 2.2)

and then by Eq. (2.51), we can obtain the attribute weight vector:

w = (0.0927, 0.2995, 0.1416, 0.2471, 0.2191)T .

Step 3. Utilize Eqs. (2.41) (let q = 2), (2.52) and (2.53) to calculate the

cross-entropy between the alternative yi and the positive-ideal solution α̃+ or the
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Table 2.2: Entropy matrix determined by the cross-entropy C1

x1 x2 x3 x4 x5

y1 0.9880 0.9052 0.9893 0.8788 0.6204

y2 0.8219 0.9014 0.6204 0.7769 0.8273

y3 0.9037 0.4578 0.9944 0.7100 0.8635

y4 0.9737 0.7249 0.9180 0.8006 0.9495

negative-ideal solution α̃−:

C+(y1) = 0.2193, C+(y2) = 0.1086, C+(y3) = 0.1749, C+(y4) = 0.1352,

C−(y1) = 0.3720, C−(y2) = 0.5161, C−(y3) = 0.4785, C−(y4) = 0.4553.

Step 4. Utilize Eq. (2.54) to calculate the closeness degree of the alternative

yi to positive-ideal solution α̃+:

C(y1) = 0.3709, C(y2) = 0.1739, C(y3) = 0.2677, C(y4) = 0.2290.

Step 5. Rank the alternatives yi (i = 1, 2, 3, 4) according to the values of

C(yi) (i = 1, 2, 3, 4) in ascending order:

y2 � y4 � y3 � y1.

If we utilize Eq. (2.47) (let p = 2) in the above Approach I, then the following

steps are given:

Step 1. See the above.

Step 2. Utilize utilize Eq. (2.47) (let p = 2) to calculate the entropy matrix

(see Table 2.3)

and then by Eq. (2.51), we can get the attribute weight vector:

w = (0.0909, 0.2982, 0.1448, 0.2458, 0.2203)T .

Step 3. Calculate the cross-entropy between the alternative yi and the

positive-ideal solution α̃+ or the negative-ideal solution α̃− by Eqs. (2.42) (let
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Table 2.3: Entropy matrix determined by the cross-entropy C2

x1 x2 x3 x4 x5

y1 0.9900 0.9133 0.9900 0.8850 0.6300

y2 0.8300 0.9200 0.6300 0.7825 0.8300

y3 0.9100 0.4758 0.9950 0.7300 0.8750

y4 0.9750 0.7233 0.9150 0.8050 0.9500

p = 2), (2.52) and (2.53):

C+(y1) = 0.2268, C+(y2) = 0.1183, C+(y3) = 0.1817, C+(y4) = 0.1342,

C−(y1) = 0.3748, C−(y2) = 0.5137, C−(y3) = 0.4757, C−(y4) = 0.4534.

Step 4. Utilize Eq. (2.54) to calculate the closeness degree of the alternative

yi to positive-ideal solution α̃+:

C(y1) = 0.3769, C(y2) = 0.1872, C(y3) = 0.2764, C(y4) = 0.2283.

Step 5. Rank the alternatives yi (i = 1, 2, 3, 4) according to the values of

C(yi) (i = 1, 2, 3, 4) in ascending order:

y2 � y4 � y3 � y1.

If we use Approach II, then the following steps are given:

Step 1. For this step, see Approach I.

Step 2. Calculate the attribute weight wj of the attribute xj by Eqs. (2.55)

and (2.56):

w = (0.1375, 0.1818, 0.2040, 0.1973, 0.2794)T .

Step 3. Utilize Eqs. (2.57) and (2.58) to calculate the distance between the

alternative yi and the positive-ideal solution α̃+ or the negative-ideal solution α̃−:

d+(y1) = 0.4219, d+(y2) = 0.2893, d+(y3) = 0.4087, d+(y4) = 0.3653,

d−(y1) = 0.5781, d−(y2) = 0.7107, d−(y3) = 0.5913, d−(y4) = 0.6347.
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Step 4. Calculate the closeness degree of the alternative yi to negative-ideal

solution α̃+ by Eq. (2.59):

D(y1) = 0.5781, D(y2) = 0.7107, D(y3) = 0.5913, D(y4) = 0.6347.

Step 5. Rank the alternatives yi (i = 1, 2, 3, 4) according to the values of

D(yi) (i = 1, 2, 3, 4) in descending order:

y2 � y4 � y3 � y1.

which is the same result as that in Approach I.

If we use the extension principle [47] of generalized hesitant fuzzy sets (i.e.

we conduct Arithmetic Mean associated with the IFA operator [68]) to aggregate

the generalized hesitant fuzzy information for each alternative, then by the score

function [47] of GHFEs, we get the score s(yi) of each alternative yi (i = 1, 2, 3, 4):

s(y1) = 0.9783, s(y2) = 0.9962, s(y3) = 0.9916, s(y4) = 0.9937.

Ranking the alternatives yi (i = 1, 2, 3, 4) according to the values of s(yi) (i =

1, 2, 3, 4) in ascending order, we obtain the same ranking order result: y2 � y4 �
y3 � y1.

From the analysis presented above, when comparing three approaches, we

know that the first approach focuses on the entropy and cross-entropy measures,

the second one utilize the distance measures to apply the TOPSIS method, and

both of them are suitable for dealing with the situations that the weight vector

of the attributes are unknown; the last one is only suitable for the situations

that the weights of the attributes are equal. The first two approaches are much

simpler than the last one, because the aggregation operator in the last approach

need a lot of computation.

2.4 Subsethood measures for GHFEs

The purpose of this section is to establish a unified formulation of subsethood,

entropy, cardinality and similarity for genralized hesitant fuzzy elements. We
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present an axiomatic skeleton for subsethood measures in the generalized hesi-

tant fuzzy setting, in order for subsethood to reduce an entropy measure. The

notion of average possible cardinality is presented and its connection to least and

biggest cardinalities is established. Moreover, the entropy-subsethood and en-

tropy theorems in generalized hesitant fuzzy setting are stated and algebraically

proved, which generalize the works of Kosko [29] for FSs and Liu and Xiong [36]

for IFSs. Finally, we investigate the relationship between generalized hesitant

fuzzy subsethood and generalized hesitant similarity measures.

According to Section 2.1, we define the inclusion between two GHFEs α̃ and

β̃ as follows:

α̃ ⊂ β̃ if and only if µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
, ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
, for i = 1, 2, . . . , l. (2.60)

In this section, we shall present the axiomatic definition of subsethood measure

for GHFE motivated by Liu and Xiong [36], Vlachos and Sergiadis [57] and Park

et al. [43], from which we can establish a connection between subsethood, entropy

and similarity measures for GHFEs.

Definition 2.4.1 Let α̃ and β̃ be two GHFEs, then the subsethood measure of

α̃ to β̃, denoted as s(α̃, β̃), should satisfy the following conditions:

(1) s(α̃, β̃) = 1 if and only if α̃ ⊂ β̃, i.e., µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
, ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
, for

i = 1, 2, . . . , l;

(2) If α̃c ⊂ α̃, then s(α̃, α̃c) = 0 if and only if α̃ = (1, 0);

(3) If β̃ ⊂ α̃1 ⊂ α̃2, then s(α̃1, β̃) ≥ s(α̃2, β̃), and if β̃1 ⊂ β̃2, then s(α̃, β̃1) ≤
s(α̃, β̃2).

Theorem 2.4.2 Let α̃ and β̃ be two GHFEs, then

s1(α̃, β̃) = 1−
∑l
i=1

(
max{0, µσ(i)

α̃ − µσ(i)

β̃
}+ max{0, νσ(i)

β̃
− νσ(i)

α̃ }
)

∑l
i=1

(
1 + µ

σ(i)
α̃ − νσ(i)

α̃

) (2.61)

is subsethood measure of α̃ to β̃.
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Proof (1) s1(α̃, β̃) = 1⇔ max{0, µσ(i)
α̃ −µ

σ(i)

β̃
} = 0 and max{0, νσ(i)

β̃
−νσ(i)

α̃ } = 0,

i = 1, 2, . . . , l ⇔ µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
and ν

σ(i)

β̃
≤ ν

σ(i)
α̃ , i = 1, 2, . . . , l.

(2) Suppose that α̃c ⊂ α̃, then µ
σ(i)
α̃ ≥ ν

σ(i)
α̃ for i = 1, 2, . . . , l. From Eq.

(2.61), we obtain

s1(α̃, α̃c) = 1−
2
∑l
i=1

(
max{0, µσ(i)

α̃ − νσ(i)
α̃ }

)
∑l
i=1

(
1 + µ

σ(i)
α̃ − νσ(i)

α̃

)
= 1−

2
∑l
i=1

(
µ
σ(i)
α̃ − νσ(i)

α̃

)
∑l
i=1

(
1 + µ

σ(i)
α̃ − νσ(i)

α̃

) . (2.62)

Thus, we have s1(α̃, α̃c) = 0 ⇔ α̃ = (1, 0).

(3) Suppose that β̃ ⊂ α̃1 ⊂ α̃2, then µ
σ(i)
α̃2
≥ µ

σ(i)
α̃1
≥ µ

σ(i)

β̃
and ν

σ(i)
α̃2
≤ ν

σ(i)
α̃1
≤

ν
σ(i)

β̃
for i = 1, 2, . . . , l. Since µ

σ(i)
α̃2
− µ

σ(i)

β̃
≥ µ

σ(i)
α̃1
− µ

σ(i)

β̃
and ν

σ(i)

β̃
− ν

σ(i)
α̃2
≥

ν
σ(i)

β̃
− νσ(i)

α̃1
for i = 1, 2, . . . , l, we have

s1(α̃1, β̃) =

∑l
i=1

(
1 + µ

σ(i)

β̃
− νσ(i)

β̃

)
∑l
i=1

(
1 + µ

σ(i)
α̃1
− νσ(i)

α̃1

) ≥
∑l
i=1

(
1 + µ

σ(i)

β̃
− νσ(i)

β̃

)
∑l
i=1

(
1 + µ

σ(i)
α̃2
− νσ(i)

α̃2

) = s1(α̃2, β̃). (2.63)

Next, suppose that β̃1 ⊂ β̃2, then µ
σ(i)
α̃ −µσ(i)

β̃1
≥ µ

σ(i)
α̃ −µσ(i)

β̃2
and ν

σ(i)

β̃1
−νσ(i)

α̃ ≥
ν
σ(i)

β̃2
− νσ(i)

α̃ , i = 1, 2, . . . , l. Due to the monotonicity of max operator, it follows

that

s1(α̃, β̃1) = 1−
∑l
i=1

(
max{0, µσ(i)

α̃ − µσ(i)

β̃1
}+ max{0, νσ(i)

β̃1
− νσ(i)

α̃ }
)

∑l
i=1

(
1 + µ

σ(i)
α̃ − νσ(i)

α̃

)
≤ 1−

∑l
i=1

(
max{0, µσ(i)

α̃ − µσ(i)

β̃2
}+ max{0, νσ(i)

β̃2
− νσ(i)

α̃ }
)

∑l
i=1

(
1 + µ

σ(i)
α̃ − νσ(i)

α̃

)
= s1(α̃, β̃2). (2.64)

Remark 2.4.3 Note that if α̃ = (0, 1), Eq. (2.61) is undefined. However, since

(0, 1) ⊂ β̃ for any GHFE β̃, by the definition, we have s1((0, 1), β̃) = 1.
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Theorem 2.4.4 For two GHFEs α̃ and β̃, we define

s2(α̃, β̃) =
1

l

l∑
i=1

min{1, g(φ(µ
σ(i)
α̃ − µσ(i)

β̃
+ 1), ψ(ν

σ(i)
α̃ − νσ(i)

β̃
+ 1))}, (2.65)

where g : [0, 2] × [0, 2] → [0, 2] is real function with the properties: 1) x > y ⇒
g(x, z) < g(y, z), g(z, x) > g(z, y) for x, y, z ∈ [0, 2]; 2) g(x, y) = 0 ⇔ x = 2, y =

0; 3) g(1, 1) = 1 and φ, ψ : [0, 2] → [0, 2] are real functions with the following

properties: 1) x > y ⇒ φ(x) > φ(y), ψ(x) > ψ(y) for x, y ∈ [0, 2]; 2) φ(x) = 2

⇔ x = 2, ψ(y) = 0 ⇔ y = 0; 3) φ(1) = ψ(1) = 1.

Then s2(α̃, β̃) is subsethood measure of α̃ to β̃.

Proof (1) Suppose that α̃ ⊂ β̃, let αi = µ
σ(i)
α̃ − µ

σ(i)

β̃
+ 1 and βi = ν

σ(i)
α̃ −

ν
σ(i)

β̃
+ 1, i = 1, 2, . . . , l. Since αi ≤ 1 and βi ≥ 1, we have φ(αi) ≤ 1 and

ψ(βi) ≥ 1 and then g(φ(αi), ψ(βi)) ≥ g(1, ψ(βi)) ≥ g(1, 1) = 1. Thus, we have

s2(α̃, β̃) = 1
l

∑l
i=1 min{1, g(φ(αi), ψ(βi))} = 1. Suppose that s2(α̃, β̃) = 1, then

g(φ(µ
σ(i)
α̃ − µ

σ(i)

β̃
+ 1), ψ(ν

σ(i)
α̃ − ν

σ(i)

β̃
+ 1)) ≥ 1, i = 1, 2, . . . , l. Thus, we get

µ
σ(i)
α̃ − µ

σ(i)

β̃
+ 1 ≤ 1 and ν

σ(i)
α̃ − ν

σ(i)

β̃
+ 1 ≥ 1, i = 1, 2, . . . , l. In fact, suppose

that there exists j such that µ
σ(j)
α̃ − µ

σ(j)

β̃
+ 1 > 1 or ν

σ(j)
α̃ − ν

σ(j)

β̃
+ 1 < 1. If

α = µ
σ(j)
α̃ − µσ(j)

β̃
+ 1 > 1, then φ(α) > 1 and thus g(φ(α), ψ(β)) < g(1, ψ(β)) ≤

g(1, 1) = 1, which is a contradiction. If β = ν
σ(j)
α̃ − νσ(j)

β̃
+ 1 < 1, then ψ(α) < 1

and thus g(φ(α), ψ(β)) < g(φ(α), 1)) ≤ g(1, 1) = 1, a contradiction. So, we have

µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
, ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
, i = 1, 2, . . . , l, and thus α̃ ⊂ β̃.

(2) Suppose that α̃c ⊂ α̃, then we have

s2(α̃, α̃c) = 0⇔ φ(µ
σ(i)
α̃ − νσ(i)

α̃ + 1) = 2, ψ(ν
σ(i)
α̃ − µσ(i)

α̃ + 1) = 0, i = 1, 2, . . . , l

⇔ µ
σ(i)
α̃ − νσ(i)

α̃ + 1 = 2, ν
σ(i)
α̃ − µσ(i)

α̃ + 1 = 0, i = 1, 2, . . . , l

⇔ α̃ = (1, 0).

(3) Suppose that β̃ ⊂ α̃1 ⊂ α̃2, let αk,i = µ
σ(i)
α̃k
− µ

σ(i)

β̃
+ 1 and βk,i =

ν
σ(i)
α̃k
− νσ(i)

β̃
+ 1, k = 1, 2; i = 1, 2, . . . , l. Then φ(α1,i) ≤ φ(α2,i) and ψ(β1,i) ≥

ψ(β2,i), i = 1, 2, . . . , l, which implies g(φ(α1,i), ψ(β1,i)) ≥ g(φ(α2,i), ψ(β1,i)) ≥
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g(φ(α2,i), ψ(β2,i)), i = 1, 2, . . . , l. Thus s2(α̃2, β̃) ≤ s2(α̃1, β̃). With the same

reason, we can prove that s2(α̃, β̃1) ≤ s2(α̃, β̃2) is also true for β̃1 ⊂ β̃2.

Now, to generalize the fuzzy entropy theorem in the setting of GHFEs, we

start with the following definition.

Definition 2.4.5 Let α̃ and β̃ be two GHFEs, then

(1) α̃∪̃β̃ = ∪li=1{(max{µσ(i)
α̃ , µ

σ(i)

β̃
},min{νσ(i)

α̃ , ν
σ(i)

β̃
})};

(2) α̃∩̃β̃ = ∪li=1{(min{µσ(i)
α̃ , µ

σ(i)

β̃
},max{νσ(i)

α̃ , ν
σ(i)

β̃
})}.

Theorem 2.4.6 Let α̃, β̃ and γ̃ be three GHFEs , then

(1) α̃∪̃β̃ = β̃∪̃α̃;

(2) α̃∩̃β̃ = β̃∩̃α̃;

(3) α̃c∪̃β̃c = (α̃∩̃β̃)c;

(4) α̃c∩̃β̃c = (α̃∪̃β̃)c;

(5) α̃∪̃(β̃∩̃γ̃) = (α̃∪̃β̃)∩̃(α̃∪̃γ̃);

(6) α̃∩̃(β̃∪̃γ̃) = (α̃∩̃β̃)∪̃(α̃∩̃γ̃).

Proof We prove only (5).

(5) By Definitions 2.1.4 and 2.4.5, we have

α̃∪̃(β̃∩̃γ̃) = ∪li=1{(max{µσ(i)
α̃ ,min{µσ(i)

β̃
, µ

σ(i)
γ̃ },min{νσ(i)

α̃ ,max{νσ(i)

β̃
, ν

σ(i)
γ̃ })}

= ∪li=1

{(
min{max{µσ(i)

α̃ , µ
σ(i)

β̃
},max{µσ(i)

α̃ , µ
σ(i)
γ̃ }},

max{min{νσ(i)
α̃ , ν

σ(i)

β̃
},min{νσ(i)

α̃ , ν
σ(i)
γ̃ }}

)}
= (α̃∪̃β̃)∩̃(α̃∪̃γ̃).

The relationships between subsethood measures and entropy have been stud-

ied by many authors under different environments, such as fuzzy sets, interval-

valued fuzzy sets and interval-valued intuitionistic fuzzy sets. In the following,

we investigate the relationships between generalized hesitant fuzzy subsethood

measures and generalized hesitant fuzzy entropy:
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Theorem 2.4.7 Let α̃ be a GHFE, then E(α̃) = s(α̃∪̃α̃c, α̃∩̃α̃c) is an entropy

for α̃.

Proof (1) Suppose that α̃ = (1, 0) or α̃ = (0, 1), then α̃∪̃α̃c = (1, 0) and

α̃∩̃α̃c = (0, 1). Since α̃∩̃α̃c = (α̃∪̃α̃c)c, we have α̃∪̃α̃c = (1, 0) ⊃ (α̃∪̃α̃c)c and

thus by (2) of Definition 2.4.1, E(α̃) = s(α̃∪̃α̃c, α̃∩̃α̃c) = 0. Suppose that E(α̃) =

s(α̃∪̃α̃c, α̃∩̃α̃c) = 0, that is s(α̃∪̃α̃c, (α̃∪̃α̃c)c) = 0. Then, since α̃∪̃α̃c ⊃ α̃∩̃α̃c, by

(2) of Definition 2.4.1, we obtain α̃∪̃α̃c = (1, 0). Hence α̃ = (1, 0) or α̃ = (0, 1).

(2) Suppose that µ
σ(i)
α̃ = ν

σ(i)
α̃ for i = 1, 2, . . . , lα̃, then α̃∪̃α̃c = α̃∩̃α̃c and thus

by (1) of Definition 2.4.1, E(α̃) = s(α̃∪̃α̃c, α̃∩̃α̃c) = 1. Suppose that E(α̃) =

s(α̃∪̃α̃c, α̃∩̃α̃c) = 1, then from (1) of Definition 2.4.1, we deduce α̃∪̃α̃c = α̃∩̃α̃c,
which implies µ

σ(i)
α̃ = ν

σ(i)
α̃ for i = 1, 2, . . . , lα̃.

(3) Suppose that µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
and ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
, for µ

σ(i)

β̃
≤ ν

σ(i)

β̃
, i = 1, 2, . . . , l,

then µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
≤ ν

σ(i)

β̃
≤ ν

σ(i)
α̃ . By (3) of Definition 2.4.1, s(α̃∪̃α̃c, α̃∩̃α̃c) ≤

s(α̃∪̃α̃c, β̃∩̃β̃c) ≤ s(β̃∪̃β̃c, β̃∩̃β̃c) and thus E(α̃) ≤ E(β̃). With the same reason,

when µ
σ(i)
α̃ ≥ µ

σ(i)

β̃
and ν

σ(i)
α̃ ≤ ν

σ(i)

β̃
, for µ

σ(i)

β̃
≥ ν

σ(i)

β̃
, i = 1, 2, . . . , l, we can prove

E(α̃) ≤ E(β̃).

(4) E(α̃c) = s(α̃c∪̃α̃, α̃c∩̃α̃) = s(α̃∪̃α̃c, α̃∩̃α̃c) = E(α̃).

Remark 2.4.8 Theorem 2.4.7 describes an interesting relationship between the

entropy and subsethood measure for GHFEs. It states that the entropy E(α̃)

expresses the degree to which the supset α̃∪̃α̃c is a subset of its own subset α̃∩̃α̃c.
Evaluating for the proposed subsethood measures Eqs. (2.61) and (2.65), yields

two new entropy measures for GHFEs given by

E1(α̃) = s1(α̃∪̃α̃c, α̃∩̃α̃c)

=

∑l
i=1

(
1−max{µσ(i)

α̃ , ν
σ(i)
α̃ }+ min{µσ(i)

α̃ , ν
σ(i)
α̃ }

)
∑l
i=1

(
1 + max{µσ(i)

α̃ , ν
σ(i)
α̃ } −min{µσ(i)

α̃ , ν
σ(i)
α̃ }

) , (2.66)

E2(α̃) = s2(α̃∪̃α̃c, α̃∩̃α̃c)

=
1

l

l∑
i=1

min
{

1, g
(
φ(max{µσ(i)

α̃ , ν
σ(i)
α̃ } −min{µσ(i)

α̃ , ν
σ(i)
α̃ }+ 1),

ψ(min{µσ(i)
α̃ , ν

σ(i)
α̃ } −max{µσ(i)

α̃ , ν
σ(i)
α̃ }+ 1)

)}
. (2.67)
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Szmit and Kacprzyk [51] defined the concept of cardinality for IFSs. Vlachos

and Sergiadis [57] provided an interpretation of cardinality under a geometrical

framework and presented the concept of average possible cardinality for IFSs. We

extend these concepts in the generalized hesitant fuzzy setting.

Definition 2.4.9 For a GHFE α̃, the following two cardinalities are defined:

• the least cardinality or min-sigma-count, which is given by

min
∑

Count(α̃) =
1

lα̃

lα̃∑
i=1

µ
σ(i)
α̃ (2.68)

• the biggest cardinality or max-sigma-count defined as

max
∑

Count(α̃) =
1

lα̃

lα̃∑
i=1

(
1− νσ(i)

α̃

)
. (2.69)

The cardinality of the GHFE α̃ is defined as the interval

card(α̃) =
[
min

∑
Count(α̃),max

∑
Count(α̃)

]
. (2.70)

Definition 2.4.10 For a GHFE α̃, the average possible cardinality M(α̃) is

defined as

M(α̃) = dh((0, 1), α̃) =
1

2lα̃

lα̃∑
i=1

(µ
σ(i)
α̃ + 1− νσ(i)

α̃ ), (2.71)

where dh(α̃, β̃) is the Hamming distance between α̃ and β̃ given by dh(α̃, β̃) =
1
2l

∑l
i=1(|µσ(i)

α̃ − µσ(i)

β̃
|+ |νσ(i)

α̃ − νσ(i)

β̃
|).

From Eqs. (2.71) and (2.70) it follows thatM(α̃) is the midpoint of the inter-

val [min
∑
Count(α̃),max

∑
Count(α̃)]. It should be point out that Eq. (2.71)

encompasses the notions of least, biggest, and average possible cardinalities.

We are going to generalize the fuzzy entropy theorem in the setting of GHFEs,

by stating the following theorem.
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Theorem 2.4.11 (Generalized hesitant fuzzy entropy theorem) Let α̃ be a GHFE

and M be an average possible cardinality of GHFEs, then

E(α̃) =
M(α̃∩̃α̃c)
M(α̃∪̃α̃c)

(2.72)

is an entropy for α̃.

Proof For a GHFE α̃ and its complement α̃c, it holds that

α̃∪̃α̃c = ∪lα̃i=1{(max{µσ(i)
α̃ , ν

σ(i)
α̃ },min{νσ(i)

α̃ , µ
σ(i)
α̃ })}, (2.73)

α̃∩̃α̃c = ∪lα̃i=1{(min{µσ(i)
α̃ , ν

σ(i)
α̃ },max{νσ(i)

α̃ , µ
σ(i)
α̃ })}. (2.74)

From the definition of average possible cardinality, we obtain that

M(α̃∪̃α̃c) =
1

2lα̃

lα̃∑
i=1

(
1 + max{µσ(i)

α̃ , ν
σ(i)
α̃ } −min{νσ(i)

α̃ , µ
σ(i)
α̃ }

)
, (2.75)

M(α̃∩̃α̃c) =
1

2lα̃

lα̃∑
i=1

(
1 + min{µσ(i)

α̃ , ν
σ(i)
α̃ } −max{νσ(i)

α̃ , µ
σ(i)
α̃ }

)
. (2.76)

Substituting Eqs. (2.75) and (2.76) into Eq. (2.66) yields Eq. (2.72). This

completes the proof.

In the following, we investigate the relationships between generalized hesitant

fuzzy subsethood measure and generalized hesitant similarity measure:

Theorem 2.4.12 Let α̃ and β̃ be two GHFEs, then S(α̃, β̃) = s(α̃, β̃) ∧ s(β̃, α̃)

is a similarity measure of α̃ and β̃.

Proof (1) If α̃ = (0, 1) and β̃ = (1, 0), then α̃ = β̃c ⊂ β̃. By (2) of Definition

2.4.1, we have S(α̃, β̃) = s(α̃, β̃) ∧ s(β̃, α̃) = 0 ∧ s(β̃, α̃) = 0. With the same

reason, when α̃ = (1, 0) and β̃ = (0, 1), we can prove S(α̃, β̃) = 0.

(2) S(α̃, β̃) = 1 ⇔ s(α̃, β̃) = s(β̃, α̃) = 1 ⇔ α̃ = β̃.
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(3) If µ
σ(i)
α̃ ≤ µ

σ(i)

β̃
≤ µ

σ(i)
γ̃ , ν

σ(i)
α̃ ≥ ν

σ(i)

β̃
≥ ν

σ(i)
γ̃ for i = 1, 2, . . . , l, then

α̃ ⊂ β̃ ⊂ γ̃ and thus, by (1) and (3) of Definition 2.4.1, we have

S(α̃, β̃) = s(α̃, β̃) ∧ s(β̃, α̃) = s(β̃, α̃) ≥ s(γ̃, α̃) = 1 ∧ s(γ̃, α̃)

= s(α̃, γ̃) ∧ s(γ̃, α̃) = S(α̃, γ̃), (2.77)

S(α̃, γ̃) = s(α̃, γ̃) ∧ s(γ̃, α̃) = s(γ̃, α̃) ≤ s(γ̃, β̃) = 1 ∧ s(γ̃, β̃)

= s(β̃, γ̃) ∧ s(γ̃, β̃) = S(β̃, γ̃). (2.78)

With the same reason, when µ
σ(i)
α̃ ≥ µ

σ(i)

β̃
≥ µ

σ(i)
γ̃ , ν

σ(i)
α̃ ≤ ν

σ(i)

β̃
≤ ν

σ(i)
γ̃ , i =

1, 2, . . . , l, we can prove S(α̃, β̃) ≥ S(α̃, γ̃) and S(α̃, γ̃) ≤ S(β̃, γ̃).

(4) Obviously, S(α̃, β̃) = S(β̃, α̃).

2.5 Conclusions

In this chapter, the entropy, cross-entropy and similarity measures for GHFEs

were proposed, and several theorems that the entropy, cross-entropy and similar-

ity measures for GHFEs can be transformed by each other were proved. Besides,

two approaches of multiple attribute decision making problems where attribute

weights are unknown and the evaluation values of attributes for each alternative

are given in the form of GHFEs were investigated. To get optimal weight vector

of attributes, the first approach utilized the entropy method which focuses on

the fuzziness of the provided information; while the second one utilized the max-

imizing deviation method which focuses on the deviations among the decision

information. These two approaches utilized the weights of attributes to calculate

closeness degrees of alternatives and to get their ranking. Furthermore, the illus-

trative example demonstrated the practicality and effectiveness of the developed

approaches. The prominent feature of two approaches is that they can provide

a flexible way to facilitate the decision process under generalized hesitant fuzzy

environment and be more applicable than existing ones, because our approaches

can avoid complex computations. Besides, in Section 2.4, we presented a unified

framwork for subsethood, entropy, cardinality and similarity for GHFEs. An ax-
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iomatic skeleton for subsethood was introduced and new subsethood and entropy

measures in the generalized hesitant fuzzy setting were proposed. The notion

of average possible cardinality was presented. Moreover, generalized hesitant

fuzzy version of the entropy and entropy-subsethood theorems were stated and

proved, which generalized the works of Kosko [29] for FSs and Liu and Xiong [36]

for IFSs. Finally, we investigated the relationship between generalized hesitant

fuzzy subsethood and generalized hesitant similarity measures.
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Chapter 3

Interval-valued generalized

hesitant fuzzy sets and their

application in decision making

In this chapter, we extend GHFSs to interval-valued generalized hesitant fuzzy

sets (IVGHFSs). Some basic operations and them are defined, such as union,

intersection and some arithmetic operations on their elements. And their prop-

erties and relationships with IVIFVs are discussed as well. Then we develop a

comparison law to distinguish information of IVGHFEs. A corresponding exten-

sion principle is introduced for further application to multiple attribute decision

making.

3.1 Interval-valued intuitionistic fuzzy sets

As a generalization of the notion of IFSs, Atanassov and Gargov [4] introduced

the notion of interval-valued intuitionistic fuzzy sets in the spirit of interval-valued

fuzzy sets.

Definition 3.1.1 [4] Let X be ordinary non-empty set. An interval-valued in-
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tuitionistic fuzzy set (IVIFS) A on X is defined as

A = {(x, µ̃A(x), ν̃A(x))|x ∈ X}, (3.1)

where µ̃A : X → D[0, 1], ν̃A : X → D[0, 1] are two functions, where D[0, 1] be

the set of all closed subintervals of the unit interval [0, 1], with the condition

sup µ̃A(x) + sup ν̃A(x) ≤ 1 for all x ∈ X.

The intervals µ̃A(x) and ν̃A(x) denote, respectively, the degree of belonging-

ness and the degree of non-belongingness of the element x to A. Then for each

x ∈ X, µ̃A(x) and ν̃A(x) are closed intervals and their lower and upper end points

are denoted by µ̃AL(x), µ̃AU(x), ν̃AL(x) and ν̃AU(x), respectively, and thus we can

replace Eq. (3.1) with

A = {〈x, [µ̃AL(x), µ̃AU(x)], [ν̃AL(x), ν̃AU(x)]〉|x ∈ X}, (3.2)

where 0 ≤ µ̃AU(x) + ν̃AU(x) ≤ 1 for all x ∈ X.

Bustince and Burillo [9] proposed a new operator, so that each point x ∈ X
we take a value p and a value r corresponding to that point. For each x ∈ X, we

take px, rx ∈ [0, 1] and we consider Hpx,rx : IVIFSs(X)→ IFSs(X) given by

Hpx,rx(A) = {〈x, µ̃AL(x) + pxWµ̃A(x), ν̃AL(x) + rxWν̃A(x)〉|x ∈ X}, (3.3)

where Wµ̃A(x) = µ̃AU(x)− µ̃AL(x) and Wν̃A(x) = ν̃AU(x)− ν̃AL(x) is amplitudes

of µ̃A(x) and ν̃A(x), respectively. Evidently, Hpx,rx(A) is an IFS for all IVIFS

A. The most important properties of this operator can be found in [8]. They [9]

presented a theorem for the construction of IVIFSs from an IFS as follows.

Let A be an IFS A and let us consider mappings X → [0, 1] × [0, 1], x →
(λx, ρx), such that if πA(x) 6= 0, λx and ρx satisfy λx ≤ µA(x)

πA(x)
and ρx ≤ νA(x)

πA(x)
.

Theorem 3.1.2 [9] Let ζx, ηx ∈ [0, 1] such that 0 ≤ ζx + ηx ≤ 1. Let Γ :

IFSs(X)→ IVIFSs(X) be a function given by Γ(A) = {〈x, µ̃Γ(A)(x), ν̃Γ(A)(x)〉|x ∈
X} such that
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(1) µ̃Γ(A)L(x) = a+ bµA(x)− λxπA(x) with fixed a, b ∈ R for all IFSs A;

(2) Wµ̃Γ(A)(x) = (ζx + λx)πA(x) for all x ∈ X;

(3) ν̃Γ(A)L(x) = a′ + b′νA(x)− ρxπA(x) with fixed a′, b′ ∈ R for all IFSs A;

(4) Wν̃Γ(A)(x) = (ηx + ρx)πA(x) for all x ∈ X;

(5) If A is a FS, then Γ(A) = A.

Then we have

(a) µ̃Γ(A)L(x) = µA(x)− λxπA(x), µ̃Γ(A)U(x) = µA(x) + ζxπA(x);

(b) ν̃Γ(A)L(x) = νA(x)− ρxπA(x), ν̃Γ(A)U(x) = νA(x) + ηxπA(x)

and conversely.

By means of the Hpx,rx operators, they [9] studied the way of to recover the

IFS A used in the construction of IVIFS Γ(A) with the above theorem.

Theorem 3.1.3 [9] Let A be an IFS and Γ(A) be the IVIFS constructed in the

previous theorem, such that 0 < ζx + λx ≤ 1 and 0 < ηx + ρx ≤ 1 for all x ∈ X.

Then

H λx
ζx+λx

, ρx
ηx+ρx

(Γ(A)) = A. (3.4)

For convenience, Xu [69] called the ordered pair α̃(x) = (µ̃α̃(x), ν̃α̃(x)) an

interval-valued intuitionistic fuzzy value (IVIFV), where µ̃α̃(x), ν̃α̃(x) ⊂ [0, 1]

and sup µ̃α̃(x) + sup ν̃α̃(x) ≤ 1. Atanassov [3] and Atanassov and Gargov [4]

introduced some basic operations on IVIFSs, which not only can ensure that the

operational results are IVIFSs but also are useful in the calculus of variables under

interval-valued intuitionistic fuzzy environment. Motivated by the operations in

[4, 3], Xu [69] and Xu and Chen [72] defined some operational laws of IVIFVs,

which are useful in the remainder of this thesis, as follows:

Definition 3.1.4 [69, 72] Let α̃ = (µ̃α̃, ν̃α̃), β̃ = (µ̃β̃, ν̃β̃) be two IVIFVs and

λ > 0, then

(1) α̃ ∪ β̃ = ([max(µ̃α̃L, µ̃β̃L),max(µ̃α̃U , µ̃β̃U)], [min(ν̃α̃L, ν̃β̃L),min(ν̃α̃U , ν̃β̃U)]);

(2) α̃ ∩ β̃ = ([min(µ̃α̃L, µ̃β̃L),min(µ̃α̃U , µ̃β̃U)], [max(ν̃α̃L, ν̃β̃L),max(ν̃α̃U , ν̃β̃U)]);
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(3) α̃c = ([ν̃α̃L, ν̃α̃U ], [µ̃α̃L, µ̃α̃U ]);

(4) α̃⊕ β̃ = ([µ̃α̃L + µ̃β̃L − µ̃α̃Lµ̃β̃L, µ̃α̃U + µ̃β̃U − µ̃α̃U µ̃β̃U ], [ν̃α̃Lν̃β̃L, ν̃α̃U ν̃β̃U ]);

(5) α̃⊗ β̃ = ([µ̃α̃Lµ̃β̃L, µ̃α̃U µ̃β̃U ], [ν̃α̃L + ν̃β̃L − ν̃α̃Lν̃β̃L, ν̃α̃U + ν̃β̃U − ν̃α̃U ν̃β̃U ]);

(6) λα̃ = ([1− (1− µ̃α̃L)λ, 1− (1− µ̃α̃U)λ], [ν̃λα̃L, ν̃
λ
α̃U ]);

(7) α̃λ = ([µ̃λα̃L, µ̃
λ
α̃U ], [1− (1− ν̃α̃L)λ, 1− (1− ν̃α̃U)λ]).

By the above operations, Xu [69] and Xu and Chen [72], respectively, proposed

the aggregation operators for IVIFVs as follows: For a collection of IVIFVs α̃i =

([µ̃α̃iL, µ̃α̃iU ], [ν̃α̃iL, ν̃α̃iU ]) (i = 1, 2, . . . , n), then

(1) the interval-valued intuitionistic fuzzy averaging (IIFA) operator [69]:

IIFA(α̃1, α̃2, . . . , α̃n) = ⊕ni=1

(
1

n
α̃i

)
=

([
1−

n∏
i=1

(1− µ̃α̃iL)
1
n , 1−

n∏
i=1

(1− µ̃α̃iU)
1
n

]
,

[
n∏
i=1

(ν̃α̃iL)
1
n ,

n∏
i=1

(ν̃α̃iU)
1
n

])
.(3.5)

(2) the interval-valued intuitionistic fuzzy geometric (IIFG) operator [72, 61]:

IIFG(α̃1, α̃2, . . . , α̃n) = ⊗ni=1α̃
1
n
i

=

([
n∏
i=1

(µ̃α̃iL)
1
n ,

n∏
i=1

(µ̃α̃iU)
1
n

]
,

[
1−

n∏
i=1

(1− ν̃α̃iL)
1
n , 1−

n∏
i=1

(1− ν̃α̃iU)
1
n

])
.(3.6)

3.2 Interval-valued generalized hesitant fuzzy sets

When considering the degree of an alternative satisfying a certain attribute, due

to insufficiency in available information, we may have a doubt among several

possible memberships with the form of both IFVs and IVIFVs. In order to

handle this kind of assessment in decision making process, we extend the concept

of HFSs by IVIFSs. Let us consider the following example.

Example 3.2.1 Four experts evaluate an alternative with respect to an attribute

presented by interval-valued fuzzy value, IFV or IVIFV, which are [0.6, 0.8],
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(0.6, 0.3), ([0.65, 0.7], [0.25, 0.3]) and (0.7, 0.2), respectively. By Definition 2.1.3,

those evaluations form a GHFE such that

h = {(0.6, 0.2), (0.6, 0.3), (0.7, 0.2)} ∪ {([0.65, 0.7], [0.25, 0.3])},

where ([0.65, 0.7], [0.25, 0.3]) is an IVIFV.

Then we can conclude that a GHFS is a generalized extension of interval-

valued fuzzy set, IFS and IVIFS by Definition 2.1.3. Without loss of generality, we

consider each membership as an IVIFV. Then by Theorem 3.1.2 (let λ = µ
π
×0.01,

ρ = ν
π
× 0.01, ζ = λ, η = ρ), the GHFE in Example 3.2.1 can be rewritten as

h = {([0.594, 0.606], [0.198, 0.202]), ([0.594, 0.606], [0.297, 0.303]),

([0.693, 0.707], [0.198, 0.202]), ([0.65, 0.7], [0.25, 0.3])}.

However, Definition 2.1.3 emphasizes that possible memberships take the

forms of both crisp and IFV as its elements. All existing literatures involved

in HFSs and GHFSs focused in this case. As shown in Example 3.2.1, from the

necessity of potential applications, we extend HFSs by using IVIFSs to modify

Definition 2.1.2.

Definition 3.2.2 Given a set of N membership functions:

M = {α̃i = (µ̃α̃i , ν̃α̃i)|µ̃α̃i = [µ̃α̃iL, µ̃α̃iU ], ν̃i = [ν̃α̃iL, ν̃α̃iU ] ⊂ [0, 1],

µ̃α̃iU + ν̃α̃iU ≤ 1, i = 1, 2, . . . , N}, (3.7)

the interval-valued generalized hesitant fuzzy set (IVGHFS) associated with M ,

that is h̃M , is defined as follows:

h̃M(x) = ∪α̃i∈M{(µ̃α̃i(x), ν̃α̃i(x))}
= ∪α̃i∈M{([µ̃α̃iL(x), µ̃α̃iU(x)], [ν̃α̃iL(x), ν̃α̃iU(x)])}. (3.8)

Note that GHFSs, IVIFSs and IFSs are special cases of IVGHFSs. In fact,

if µ̃α̃iL = µ̃α̃iU and ν̃α̃iL = ν̃α̃iU for all i = 1, 2, . . . , N , then IVGHFSs reduce to
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GHFSs. If N = 1, then IVGHFSs reduce to IVIFSs. If N = 1, µ̃α̃NL = µ̃α̃NU and

ν̃α̃NL = ν̃α̃NU , then IVGHFSs reduce to IFSs. Thus, IVGHFSs are not only the

extension of GHFSs, but also the generalized representation of IFSs, IVIFSs and

GHFSs.

For convenience, given a x ∈ X, γ is considered as a real number in h̃(x),

α = (µα, να) represents an IFV as well as an interval in h̃(x) and α̃ = (µ̃α̃, ν̃α̃)

represents an IVIFV in h̃(x). Similar to [47, 63], α̃i in an IVGHFS h̃ is referred

to as interval-valued generalized hesitant fuzzy element (IVGHFE). In the rest

of this section, an IVGHFS h̃, represented by its membership function h̃M , is

denoted by Eqs. (3.7) and (3.8) as default. Now, we first extend basic operations

defined by Qjan et al. [47] in the new setting.

3.2.1 Basic operations

For a given IVGHFE h̃ with its elements α̃i = ([µ̃α̃iL, µ̃α̃iU ], [ν̃α̃iL, ν̃α̃iU ]) (i =

1, 2, . . . , N), the upper and lower bounds of h̃ are denoted by

(1) upper bound: h̃+ = maxi=1,2,...,N{1− ν̃α̃i}
= [ maxi=1,2,...,N{1− ν̃α̃iU},maxi=1,2,...,N{1− ν̃α̃iL}];

(2) lower bound: h̃− = mini=1,2,...,N{µ̃α̃i}
= [ mini=1,2,...,N{µ̃α̃iL},mini=1,2,...,N{µ̃α̃iU}].

Obviously, the pair of h̃− and 1− h̃+ define an IVIFS, which form the envelope

of the IVGHFE. We present it in the following definition.

Definition 3.2.3 Given an IVGHFE h̃, we define an IVIFV Aenv(h̃) as the en-

velope of h̃, where Aenv(h̃) can be represented as (µ̃A, ν̃A), with µ̃A = h̃− and

ν̃A = 1− h̃+.

Then according to the notions of upper and lower bounds, the envelope of an

IVGHFE h̃ can be rewritten as

Aenv(h̃) =
(

min
i=1,2,...,N

{µ̃α̃i}, min
i=1,2,...,N

{ν̃α̃i}
)
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=
([

min
i=1,2,...,N

{µ̃α̃iL}, min
i=1,2,...,N

{µ̃α̃iU}
]
,[

min
i=1,2,...,N

{ν̃α̃iL}, min
i=1,2,...,N

{ν̃α̃iU}
])
. (3.9)

Similar to [47, 63], we can define the union, intersection and complement of

IVGHFEs as follows.

Definition 3.2.4 Given three IVGHFEs h̃, h̃1 and h̃2, then

(1) Complement: h̃c = ∪α̃∈h̃{(ν̃α̃, µ̃α̃)} = ∪α̃∈h̃{([ν̃α̃L, ν̃α̃U ], [µ̃α̃L, µ̃α̃U ])};
(2) Union: h̃1 ∪ h̃2 = ∪α̃1∈h̃1,α̃2∈h̃2{(µ̃α̃1 , ν̃α̃1) ∪ (µ̃α̃2 , ν̃α̃2)}

= ∪α̃1∈h̃1,α̃2∈h̃2{([max{µ̃α̃1L, µ̃α̃2L},max{µ̃α̃1U , µ̃α̃2U}],
[min{ν̃α̃1L, ν̃α̃2L},min{ν̃α̃1U , ν̃α̃2U}])};

(3) Intersection: h̃1 ∩ h̃2 = ∪α̃1∈h̃1,α̃2∈h̃2{(µ̃α̃1 , ν̃α̃1) ∩ (µ̃α̃2 , ν̃α̃2)}
= ∪α̃1∈h̃1,α̃2∈h̃2{([min{µ̃α̃1L, µ̃α̃2L},min{µ̃α̃1U , µ̃α̃2U}],

[max{ν̃α̃1L, ν̃α̃2L},max{ν̃α̃1U , ν̃α̃2U}])}.

As can be seen in Definitions 2.1.3 and 3.1.1, we define some useful opera-

tions to deal with IVGHFEs when making decision in interval-valued generalized

hesitant fuzzy information.

Definition 3.2.5 Given three IVGHFEs h̃, h̃1 and h̃2 and λ > 0, then

(1) h̃λ = ∪α̃∈h̃{α̃λ} = ∪α̃∈h̃{([µ̃λα̃L, µ̃λα̃U ], [1− (1− ν̃α̃L)λ, 1− (1− ν̃α̃U)λ])};
(2) λh̃ = ∪α̃∈h̃{λα̃} = ∪α̃∈h̃{([1− (1− µ̃α̃L)λ, 1− (1− µ̃α̃U)λ], [ν̃λα̃L, ν̃

λ
α̃U ])};

(3) h̃1⊕ h̃2 = ∪α̃1∈h̃1,α̃2∈h̃2{α̃1⊕ α̃2} = ∪α̃1∈h̃1,α̃2∈h̃2{([µ̃α̃1L + µ̃α̃2L− µ̃α̃1Lµ̃α̃2L,

µ̃α̃1U + µ̃α̃2U − µ̃α̃1U µ̃α̃2U ], [ν̃α̃1Lν̃α̃2L, ν̃α̃1U ν̃α̃2U ])};
(4) h̃1⊗h̃2 = ∪α̃1∈h̃1,α̃2∈h̃2{α̃1⊗α̃2} = ∪α̃1∈h̃1,α̃2∈h̃2{([µ̃α̃1Lµ̃α̃2L, µ̃α̃1U µ̃α̃2U ], [ν̃α̃1L

+ ν̃α̃2L − ν̃α̃1Lν̃α̃2L, ν̃α̃1U + ν̃α̃2U − ν̃α̃1U ν̃α̃2U ])}.

3.2.2 Properties

In this subsection, we focus on some properties of operations defined hereinbe-

fore. Some relationships among basic operations are introduced in the following

theorem.
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Theorem 3.2.6 Given three IVGHFEs h̃, h̃1 and h̃2 and λ > 0, then

(1) h̃c1 ∪ h̃c2 = (h̃1 ∩ h̃2)c.

(2) h̃c1 ∩ h̃c2 = (h̃1 ∪ h̃2)c.

(3) (h̃c)λ = (λh̃)c.

(4) λh̃c = (h̃λ)c.

(5) h̃c1 ⊕ h̃c2 = (h̃1 ⊗ h̃2)c.

(6) h̃c1 ⊗ h̃c2 = (h̃1 ⊕ h̃2)c.

Proof From Definitions 3.1.4, 3.2.4 and 3.2.5, we have:

(1)

h̃c1 ∪ h̃c2 = ∪α̃1∈h̃1,α̃2∈h̃2{α̃
c
1 ∪ α̃c2}

= ∪α̃1∈h̃1,α̃2∈h̃2 {([max{ν̃α̃1L, ν̃α̃2L},max{ν̃α̃1U , ν̃α̃2U}],
[min{µ̃α̃1L, µ̃α̃2L},min{µ̃α̃1U , µ̃α̃2U}])}

= ∪α̃1∈h̃1,α̃2∈h̃2{(α̃1 ∩ α̃2)c} = (h̃1 ∩ h̃2)c.

(2)

h̃c1 ∩ h̃c2 = ∪α̃1∈h̃1,α̃2∈h̃2{α̃
c
1 ∩ α̃c2}

= ∪α̃1∈h̃1,α̃2∈h̃2 {([min{ν̃α̃1L, ν̃α̃2L},min{ν̃α̃1U , ν̃α̃2U}],
[max{µ̃α̃1L, µ̃α̃2L},max{µ̃α̃1U , µ̃α̃2U}])}

= ∪α̃1∈h̃1,α̃2∈h̃2{(α̃1 ∪ α̃2)c} = (h̃1 ∪ h̃2)c.

(3)

(h̃c)λ = ∪α̃∈h̃{(α̃
c)λ}

= ∪α̃∈h̃{([ν̃
λ
α̃L, ν̃

λ
α̃U ], [1− (1− µ̃α̃L)λ, 1− (1− µ̃α̃U)λ])}

= ∪α̃∈h̃{(λα̃)c} = (λh̃)c.

(4)

λh̃c = ∪α̃∈h̃{λα̃
c}

= ∪α̃∈h̃{([1− (1− ν̃α̃L)λ, 1− (1− ν̃α̃U)λ], [µ̃λα̃L, µ̃
λ
α̃U ])}

= ∪α̃∈h̃{(α̃
λ)c} = (h̃λ)c.
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(5)

h̃c1 ⊕ h̃c2 = ∪α̃1∈h̃1,α̃2∈h̃2{α̃
c
1 ⊕ α̃c2}

= ∪α̃1∈h̃1,α̃2∈h̃2{([ν̃α̃1L + ν̃α̃2L − ν̃α̃1Lν̃α̃2L, ν̃α̃1U + ν̃α̃2U − ν̃α̃1U ν̃α̃2U ],

[µ̃α̃1Lµ̃α̃2L, µ̃α̃1U µ̃α̃2U ])}
= ∪α̃1∈h̃1,α̃2∈h̃2{(α̃1 ⊗ α̃2)c} = (h̃1 ⊗ h̃2)c.

(6)

h̃c1 ⊗ h̃c2 = ∪α̃1∈h̃1,α̃2∈h̃2{α̃
c
1 ⊕ α̃c2}

= ∪α̃1∈h̃1,α̃2∈h̃2{([µ̃α̃1Lµ̃α̃2L, ν̃α̃1U ν̃α̃2U ],

[µ̃α̃1L + µ̃α̃2L − µ̃α̃1Lµ̃α̃2L, µ̃α̃1U + µ̃α̃2U − µ̃α̃1U µ̃α̃2U ])}
= ∪α̃1∈h̃1,α̃2∈h̃2{(α̃1 ⊕ α̃2)c} = (h̃1 ⊕ h̃2)c.

Moreover, the relations of these operational laws are given as:

Theorem 3.2.7 Given three IVGHFEs h̃, h̃1 and h̃2 and λ, λ1, λ2 > 0, then

(1) h̃1 ⊕ h̃2 = h̃2 ⊕ h̃1.

(2) h̃1 ⊗ h̃2 = h̃2 ⊗ h̃1.

(3) λ(h̃1 ⊕ h̃2) = λh̃1 ⊕ λh̃2.

(4) (h̃1 ⊗ h̃2)λ = h̃λ1 ⊗ h̃λ2 .

(5) λ1h̃⊕ λ2h̃ = (λ1 + λ2)h̃.

(6) h̃λ1 ⊗ h̃λ2 = h̃λ1+λ2.

Proof (1) and (2) are straightforward.

(3)

λh̃1 ⊕ λh̃2

= ∪α̃1∈h̃1,α̃2∈h̃2{λα̃1 ⊕ λα̃2}
= ∪α̃1∈h̃1,α̃2∈h̃2{([1− (1− µ̃α̃1L)λ(1− µ̃α̃2L)λ, 1− (1− µ̃α̃1U)λ(1− µ̃α̃2U)λ],

[ν̃λα̃1L
ν̃λα̃2L

, ν̃λα̃1U
ν̃λα̃2U

])}
= ∪α̃1∈h̃1,α̃2∈h̃2{([1− (1− µ̃α̃1L − µ̃α̃2L + µ̃α̃1Lµ̃α̃2L)λ,
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1− (1− µ̃α̃1U − µ̃α̃2U + µ̃α̃1U µ̃α̃2U)λ], [ν̃λα̃1L
ν̃λα̃2L

, ν̃λα̃1U
ν̃λα̃2U

])}
= ∪α̃1∈h̃1,α̃2∈h̃2{λ(α̃1 ⊕ α̃2)}
= λ(h̃1 ⊕ h̃2).

(4)

h̃λ1 ⊗ h̃λ2
= ∪α̃1∈h̃1,α̃2∈h̃2{α̃

λ
1 ⊗ α̃λ2}

= ∪α̃1∈h̃1,α̃2∈h̃2{([µ̃
λ
α̃1L

µ̃λα̃2L
, µ̃λα̃1U

µ̃λα̃2U
],

[1− (1− ν̃α̃1L)λ(1− ν̃α̃2L)λ, 1− (1− ν̃α̃1U)λ(1− ν̃α̃2U)λ])}
= ∪α̃1∈h̃1,α̃2∈h̃2{([µ̃

λ
α̃1L

µ̃λα̃2L
, µ̃λα̃1U

µ̃λα̃2U
], [1− (1− ν̃α̃1L − ν̃α̃2L + ν̃α̃1Lν̃α̃2L)λ,

1− (1− ν̃α̃1U − ν̃α̃2U + ν̃α̃1U ν̃α̃2U)λ])}
= ∪α̃1∈h̃1,α̃2∈h̃2{(α̃1 ⊗ α̃2)λ}
= (h̃1 ⊗ h̃2)λ.

(5)

λ1h̃⊕ λ2h̃

= ∪α̃∈h̃{λ1α̃⊕ λ2α̃}
= ∪α̃∈h̃{([1− (1− µ̃α̃L)λ1(1− µ̃α̃L)λ2 , 1− (1− µ̃α̃U)λ1(1− µ̃α̃U)λ2 ],

[ν̃λ1α̃Lν̃
λ2
α̃L, ν̃

λ1
α̃U ν̃

λ2
α̃U ])}

= ∪α̃∈h̃{([1− (1− µ̃α̃L)λ1+λ2 , 1− (1− µ̃α̃U)λ1+λ2 ], [ν̃λ1+λ2
α̃L , ν̃λ1+λ2

α̃U ])}
= ∪α̃∈h̃{(λ1 + λ2)α̃}
= (λ1 + λ2)h̃.

(6)

h̃λ1 ⊗ h̃λ2

= ∪α̃∈h̃{α̃
λ1 ⊗ α̃λ2}

= ∪α̃∈h̃{([µ̃
λ1
α̃Lµ̃

λ2
α̃L, µ̃

λ1
α̃U µ̃

λ2
α̃U ], [1− (1− ν̃α̃L)λ1(1− ν̃α̃L)λ2 ,
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1− (1− ν̃α̃U)λ1(1− ν̃α̃U)λ2 ])}
= ∪α̃∈h̃{([µ̃

λ1+λ2
α̃L , µ̃λ1+λ2

α̃U ], [1− (1− ν̃α̃L)λ1+λ2 , 1− (1− ν̃α̃U)λ1+λ2 ])}
= ∪α̃∈h̃{α̃

λ1+λ2}
= h̃λ1+λ2 .

Then, we give the further study of the relationship between IVGHFEs and IV-

IFVs, that is, the notion of envelope brings some relationships between IVGHFEs

and IVIFVs.

Theorem 3.2.8 Given three IVGHFEs h̃, h̃1 and h̃2 and λ > 0, then

(1) Aenv(h̃
c) = (Aenv(h̃))c.

(2) Aenv(h̃1 ∪ h̃2) = Aenv(h̃1) ∪ Aenv(h̃2).

(3) Aenv(h̃1 ∩ h̃2) = Aenv(h̃1) ∩ Aenv(h̃2).

(4) Aenv(h̃
λ) = (Aenv(h̃))λ.

(5) Aenv(λh̃) = λ(Aenv(h̃)).

(6) Aenv(h̃1 ⊕ h̃2) = Aenv(h̃1)⊕ Aenv(h̃2).

(7) Aenv(h̃1 ⊗ h̃2) = Aenv(h̃1)⊗ Aenv(h̃2).

Proof We prove only (1), (2), (4) and (6).

(1) From Definitions 3.2.3 and 3.2.4, we have

Aenv(h̃
c) = Aenv

(
∪α̃∈h̃{([µ̃α̃L, µ̃α̃U ], [ν̃α̃L, ν̃α̃U ])c}

)
= Aenv

(
∪α̃∈h̃{([ν̃α̃L, ν̃α̃U ], [µ̃α̃L, µ̃α̃U ])}

)
=

([
min
α̃∈h̃
{ν̃α̃L},min

α̃∈h̃
{ν̃α̃U}

]
,

[
min
α̃∈h̃
{µ̃α̃L},min

α̃∈h̃
{µ̃α̃U}

])

=

([
min
α̃∈h̃
{µ̃α̃L},min

α̃∈h̃
{µ̃α̃U}

]
,

[
min
α̃∈h̃
{ν̃α̃L},min

α̃∈h̃
{ν̃α̃U}

])c
= (Aenv(h̃))c.

(2) From Definitions 3.2.3 and 3.2.4, we have

Aenv(h̃1 ∪ h̃1)
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= Aenv
(
∪α̃1∈h̃1,α̃2∈h̃2 {([max{µ̃α̃1L, µ̃α̃2L},max{µ̃α̃1U , µ̃α̃2U}],

[min{ν̃α̃1L, ν̃α̃2L},min{ν̃α̃1U , ν̃α̃2U}])})

=

([
min

α̃1∈h̃,α̃2∈h̃2
{max{µ̃α̃1L, µ̃α̃2L}}, min

α̃1∈h̃,α̃2∈h̃2
{max{µ̃α̃1U , µ̃α̃2U}}

]
,[

min
α̃1∈h̃,α̃2∈h̃2

{min{ν̃α̃1L, ν̃α̃2L}}, min
α̃1∈h̃,α̃2∈h̃2

{min{ν̃α̃1U , ν̃α̃2U}}
])

=

([
max

{
min
α̃1∈h̃1

{µ̃α̃1L}, min
α̃2∈h̃2

{µ̃α̃2L}
}
,max

{
min
α̃1∈h̃1

{µ̃α̃1L}, min
α̃2∈h̃2

{µ̃α̃2L}
}]

,[
min

{
min
α̃1∈h̃1

{ν̃α̃1L}, min
α̃2∈h̃2

{ν̃α̃2L}
}
,min

{
min
α̃1∈h̃1

{ν̃α̃1L}, min
α̃2∈h̃2

{ν̃α̃2L}
}])

=

([
min
α̃1∈h̃1

{µ̃α̃1L}, min
α̃1∈h̃1

{µ̃α̃1U}
]
,

[
min
α̃1∈h̃1

{ν̃α̃1L}, min
α̃1∈h̃1

{ν̃α̃1U}
])

∪
([

min
α̃2∈h̃2

{µ̃α̃2L}, min
α̃2∈h̃2

{µ̃α̃2U}
]
,

[
min
α̃2∈h̃2

{ν̃α̃2L}, min
α̃2∈h̃2

{ν̃α̃2U}
])

= Aenv(h̃1) ∪ Aenv(h̃2).

(4) From Definitions 3.1.4, 3.2.3 and 3.2.5, we have

Aenv(h̃
λ)

= Aenv
(
∪α̃∈h̃{([µ̃

λ
α̃L, µ̃

λ
α̃U ], [1− (1− ν̃α̃L)λ, 1− (1− ν̃α̃U)λ])}

)
=

([
min
α̃∈h̃
{µ̃λα̃L},min

α̃∈h̃
{µ̃λα̃U}

]
,

[
min
α̃∈h̃
{1− (1− ν̃α̃L)λ},min

α̃∈h̃
{1− (1− ν̃α̃U)λ}

])

=

(min
α̃∈h̃
{µ̃α̃L}

)λ
,

(
min
α̃∈h̃
{µ̃α̃U}

)λ ,
1−

(
1−min

α̃∈h̃
{ν̃α̃L}

)λ
, 1−

(
1−min

α̃∈h̃
{ν̃α̃U}

)λ
=

([
min
α̃∈h̃
{µ̃α̃L},min

α̃∈h̃
{µ̃α̃U}

]
,

[
min
α̃∈h̃
{ν̃α̃L},min

α̃∈h̃
{ν̃α̃U}

])λ
= (Aenv(h̃))λ.

(6) From Definitions 3.1.4, 3.2.3 and 3.2.5, we have

Aenv(h̃1 ⊕ h̃2)
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= Aenv
(
∪α̃1∈h̃1,α̃2∈h̃2

{([µ̃α̃1L + µ̃α̃2L − µ̃α̃1Lµ̃α̃2L, µ̃α̃1U + µ̃α̃2U − µ̃α̃1U µ̃α̃2U ],

[ν̃α̃1Lν̃α̃2L, ν̃α̃1U ν̃α̃2U ])}
)

=

([
min

α̃1∈h̃1,α̃2∈h̃2

{µ̃α̃1L + µ̃α̃2L − µ̃α̃1Lµ̃α̃2L}, min
α̃1∈h̃1,α̃2∈h̃2

{µ̃α̃1U + µ̃α̃2U − µ̃α̃1U µ̃α̃2U}
]
,[

min
α̃1∈h̃1,α̃2∈h̃2

{ν̃α̃1Lν̃α̃2L}, min
α̃1∈h̃1,α̃2∈h̃2

{ν̃α̃1U ν̃α̃2U}
])

=

([
min

α̃1∈h̃1,α̃2∈h̃2

{1− (1− µ̃α̃1L)(1− µ̃α̃2L)}, min
α̃1∈h̃1,α̃2∈h̃2

{1− (1− µ̃α̃1U )(1− µ̃α̃2U )}
]
,[

min
α̃1∈h̃1,α̃2∈h̃2

{ν̃α̃1Lν̃α̃2L}, min
α̃1∈h̃1,α̃2∈h̃2

{ν̃α̃1U ν̃α̃2U}
])

=

([
1−

(
1− min

α̃1∈h̃1

{µ̃α̃1L}
)(

1− min
α̃2∈h̃2

{µ̃α̃2L}
)
, 1−

(
1− min

α̃1∈h̃1

{µ̃α̃1U}
)

×
(
1− min

α̃2∈h̃2

{µ̃α̃2U}
)]

,

[
min
α̃1∈h̃1

{ν̃α̃1L} · min
α̃2∈h̃2

{ν̃α̃2L}, min
α̃1∈h̃1

{ν̃α̃1U} · min
α̃2∈h̃2

{ν̃α̃2U}
])

=

([
min
α̃1∈h̃1

{µ̃α̃1L}, min
α̃1∈h̃1

{µ̃α̃1U}
]
,

[
min
α̃1∈h̃1

{ν̃α̃1L}, min
α̃1∈h̃1

{ν̃α̃1U}
])

⊕
([

min
α̃2∈h̃2

{µ̃α̃2L}, min
α̃2∈h̃2

{µ̃α̃2U}
]
,

[
min
α̃2∈h̃2

{µ̃α̃2L}, min
α̃2∈h̃2

{µ̃α̃2U}
])

= Aenv(h̃1)⊕Aenv(h̃2).

3.2.3 Comparison of IVGHFEs

Qjan et al. [47] defined the score function of a GHFE h, i.e. s(h) = 1
l(h)

∑
α∈hE(α),

where l(h) is the number of elements in h and E(α) is the expect value of element

α in h given by E(α) = 1
2
(µα + 1 − να). However, the definition is unavailable

if some elements in h take the form of IVIFV. To deal with this situation, we

extend the definition to IVGHFEs as follows.

Definition 3.2.9 Given an IVIFV α̃ = ([µ̃α̃L, µ̃α̃U ], [ν̃α̃L, ν̃α̃U ]), the expect value

of α̃ is defined by

E(α̃) =
1

4
(µ̃α̃L + 1− ν̃α̃L + µ̃α̃U + 1− ν̃α̃U), (3.10)

where E(α̃) ∈ [0, 1]. The larger the value of E(α̃), the higher the IVIFV α̃.

Especially, if E(α̃) = 1, then α̃ = ([1, 1], [0, 0]), which is the largest IVIFV; if

E(α̃) = 0, then α̃ = ([0, 0], [1, 1]), which is the smallest IVIFV.
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Note that E(α̃) = 1
2
(µ̃α̃L + 1− ν̃α̃L) if and only if µ̃α̃L = µ̃α̃U and ν̃α̃L = ν̃α̃U ,

in other words, α̃ reduces to an IFV; E(α̃) = µ̃α̃L if and only if µ̃α̃L = µ̃α̃U ,

ν̃α̃L = ν̃α̃U and µ̃α̃L + ν̃α̃L = 1, in other words, α̃ reduces to a fuzzy set. Further,

E(α̃) = S(α̃)
2

+ 0.5, where S(α̃) is the score function [69] of α̃.

Definition 3.2.10 Given an IVGHFE h̃, the score function of h̃, denoted by

s(h̃), is defined by

s(h̃) =
1

l(h̃)

∑
α̃∈h̃

E(α̃), (3.11)

where l(h̃) the number of elements in h̃ and α̃ is an element in h̃ taken the form

of IVIFV.

Definition 3.2.11 Given an IVGHFE h̃, the consistency function of h̃, denoted

by c(h̃), is defined by

c(h̃) =
1

2

(
min
α̃∈h̃
{µ̃α̃L}+ min

α̃∈h̃
{µ̃α̃U}+ min

α̃∈h̃
{ν̃α̃L}+ min

α̃∈h̃
{ν̃α̃U}

)
, (3.12)

where α̃ = ([µ̃α̃L, µ̃α̃U ], [ν̃α̃L, ν̃α̃U ]) is an element in h̃ taken the form of IVIFV.

The score function represents the average of expect values of all elements in h̃,

while the consistency function focus on the degree of consistency of all elements in

h̃. For example, the committee of some experts represent the characteristic of an

alternative by an IVGHFE with respect to an attribute, then the score function

quantizes the average opinion of experts, but the consistency function reflects

how they agree with each other. Based on these two definitions, we introduce the

following method for comparing any two IVGHFEs.

Definition 3.2.12 Given two IVGHFEs h̃1 and h̃2, then

(1) if s(h̃1) < s(h̃2), then h̃1 is small than h̃2, denoted by h̃1 < h̃2;

(2) if s(h̃1) = s(h̃2), then

(a) if c(h̃1) < c(h̃2), then h̃1 is small than h̃2, denoted by h̃1 < h̃2;

(b) if c(h̃1) = c(h̃2), then h̃1 and h̃2 represent the same information, denoted

by h̃1 = h̃2.
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Example 3.2.13 Let h̃1 = {(0.5, 0.4)}, h̃2 = {([0.4, 0.5], [0.3, 0.4])} and h̃3 =

{([0.3, 0.35], [0.4, 0.55]), (0.4, 0.55)} be three IVGHFEs. To compare three IVGFEs,

we firstly construct IVIFVs from IFVs in IVGHFEs h̃1 and h̃3. From Theo-

rem 3.1.2 (let λ = µ
π
× 0.005, ρ = ν

π
× 0.005, ζ = λ, η = ρ), we have h̃1 =

{[0.4975, 0.5025], [0.398, 0.402]} and h̃3 = {([0.3, 0.35], [0.4, 0.55]), ([0.398, 0.402],

[0.5473, 0.5528])}, then we calculate the score of h̃i (i = 1, 2, 3):

s(h̃1) =
1

4
(0.4975 + 1− 0.398 + 0.5025 + 1− 0.402) = 0.55,

s(h̃2) =
1

4
(0.4 + 1− 0.3 + 0.5 + 1− 0.4) = 0.55,

s(h̃3) =
1

2

(
1

4
(0.3 + 1− 0.4 + 0.35 + 1− 0.55)

+
1

4
(0.398 + 1− 0.5473 + 0.402 + 1− 0.5528)

)
= 0.425.

and thus, s(h̃1) = s(h̃2) > s(h̃3), we get h̃1 > h̃3 and h̃2 > h̃3. On the other hand,

we calculate the consistency degrees of h̃1 and h̃2:

c(h̃1) =
1

2
(0.4975 + 0.5025 + 0.398 + 0.402) = 0.9,

c(h̃2) =
1

2
(0.4 + 0.5 + 0.3 + 0.4) = 0.8,

then since c(h̃1) > c(h̃2), we have h̃1 > h̃2. Therefore, h̃1 > h̃2 > h̃3.

3.2.4 Extension principle

As discussed in Subsection 3.2.3, IVGHFSs permit us to represent the situation

in which a group, or even several group, of experts have to make decisions on

a set of alternatives. Whereas we need to develop a function or mechanism to

aggregate evaluations taking the form of IVGHFSs, so as to obtain the overall

satisfaction degree to select the most relevant one. Motivated by [54, 47], we

present an extension principle to export operations on IVIFSs to IVGHFSs as

follows.
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Definition 3.2.14 Let Θ be a function Θ : (D[0, 1]×D[0, 1])N → D[0, 1]×D[0, 1]

and H̃ = {h̃1, h̃2, . . . , h̃N} be a set of IVGHFSs on the reference set X. Then the

extension of Θ on H̃ is defined, for each x ∈ X, by:

ΘH̃(x) = ∪α̃∈h̃1(x)×h̃2(x)×···×h̃N (x){Θ(α̃)}. (3.13)

To deal with aggregation of IVGHFEs according to Definition 3.2.14, we can

employ some aggregation operators on IVIFVs such as the IIFA operator (Eq.

(3.5)) and the IIFG operator (Eq. (3.6)) etc. Let’s clarify it in the following

example.

Example 3.2.15 Let h̃1 = {(0.4, 0.5)}, h̃2 = {([0.3, 0.4], [0.4, 0.45])} and h̃3 =
{([0.3, 0.35], [0.45, 0.55]), (0.35, 0.45)} be three IVGHFEs, then, from Theorem
3.1.2 (let λ = µ

π
× 0.008, ρ = ν

π
× 0.008, ζ = λ, η = ρ), we construct IVIFVs from

IFVs in IVGHFEs h̃1 and h̃3 as follows: h̃1 = {([0.3968, 0.4032], [0.496, 0.504])}
and h̃3 = {([0.3, 0.35], [0.45, 0.55]), ([0.3472, 0.3528], [0.4464, 0.4536])}. Then the
Arithmetic Mean (AM) of them is conducted, associated with the IIFA operator
(Eq. (3.5)), as follows:

AM(h̃1, h̃2, h̃3) = ∪α̃∈h̃1×h̃2×h̃3
{IIFA(α̃)}

= {IIFA(([0.3968, 0.4032], [0.496, 0.504]), ([0.3, 0.4], [0.4, 0.45]), ([0.3, 0.35], [0.45, 0.55]))}

∪{IIFA(([0.3968, 0.4032], [0.496, 0.504]), ([0.3, 0.4], [0.4, 0.45]), ([0.3472, 0.3528], [0.4464,

0.4536]))}

= {([0.3339, 0.3849], [0.4469, 0.4997]), ([0.3492, 0.3858], [0.4457, 0.4686])}.

The Geometric Mean (GM) of them is also conducted, associated with the
IIFG operator (Eq. (3.6)), as follows:

GM(h̃1, h̃2, h̃3) = ∪α̃∈h̃1×h̃2×h̃3
{IIFG(α̃)}

= {IIFG(([0.3968, 0.4032], [0.496, 0.504]), ([0.3, 0.4], [0.4, 0.45]), ([0.3, 0.35], [0.45, 0.55]))}

∪{IIFG(([0.3968, 0.4032], [0.496, 0.504]), ([0.3, 0.4], [0.4, 0.45]), ([0.3472, 0.3528], [0.4464,

0.4536]))}

= {([0.3293, 0.3836], [0.4501, 0.503]), ([0.3457, 0.3846], [0.4489, 0.4698])}.

Furthermore, based on interval-valued intuitionistic fuzzy aggregation oper-

ators such as in [69, 72, 71, 70, 78, 44], we can also develop other versions of
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aggregation operators for aggregating IVGHFEs. For example, if IVGHFEs have

different relative weights, the weighting aggregation operator should be consid-

ered; if the ordering of IVGHFEs is provided, the ordered weighting aggregation

operator should be dealt with.

3.2.5 Distance measure of IVGHFEs

Because that distance and similarity measures can be applied to many areas

such as pattern recognition, cluster analysis, approximate reasoning and decision

making, they have attracted a lot of attention. A lot of distance measures have

been developed for FSs, IFSs, IVIFSs and HFSs as mentioned in introduction, but

there is little research on IVGHFEs. Thus, it is very necessary to develop some

distance measure under interval-valued generalized hesitant fuzzy environment.

We first present this issue by proposing the axioms for distance measure.

Definition 3.2.16 Let h̃1 and h̃2 be two IVGHFEs, then the distance measure

between h̃1 and h̃2 is defined as d(h̃1, h̃2), which satisfies the following properties:

(D1) 0 ≤ d(h̃1, h̃2) ≤ 1;

(D2) d(h̃1, h̃2) = 0 if and only if h̃1 = h̃2;

(D3) d(h̃1, h̃2) = d(h̃2, h̃1).

In most cases of two IVGHFEs h̃1 and h̃2, the numbers of elements of h̃1

and h̃2 may be different, i.e. l(h̃1) 6= l(h̃2), and for convenience, let lh̃ =

max{l(h̃1), l(h̃2)} To operate correctly, we should extend the shorter ones, un-

til both of them have the same length when we compare them. To extend the

shorter one, the best way is to add the same values several times in it. In

fact, we can extend the shorter one by adding any values in it. The selection

of this value mainly depends on the decision makers’ risk preferences. Opti-

mists anticipate desirable outcomes and may add the maximum value, while

pessimists expect unfavorable outcomes and may add the minimum value. For

example, let h̃1 = {([0.4, 0.5], [0.3, 0.4]), ([0.5, 0.6], [0.2.0.3]), ([0.5, 0.6], [0.1, 0.2])},
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h̃2 = {([0.5, 0.6], [0.2, 0.3]), ([0.3, 0.4], [0.4, 0.5])}, then we get l(h̃1) > l(h̃2). To op-

erate correctly, we should extend h̃2 until it has the same length of h̃1. Using the

score function [69] of IVIFVs, the optimist may extend h̃2 as h̃2 = {([0.5, 0.6], [0.2,

0.3]), ([0.5, 0.6], [0.2, 0.3]), ([0.3, 0.4], [0.4, 0.5])}, and the pessimist may extend it

as h̃2 = {([0.5, 0.6], [0.2, 0.3]), ([0.3, 0.4], [0.4, 0.5]), ([0.3, 0.4], [0.4, 0.5])} (If some

elements of IVGHFE are in the form of IFVs, then we use Theorem 3.1.2 to con-

struct to IVIFVs from IFVs). Although the results may be different if we extend

the shorter one by adding different values, it is reasonable because the decision

makers’ risk preferences can directly influence the final decision. In this chapter,

we assume that the decision makers are all pessimistic (other situation can be

studied similarly).

Based on the Hamming distance and the Euclidean distance, we define the

interval-valued generalized hesitant normalized Hamming distance:

divghnh(h̃1, h̃2) =
1

4lh̃

lh̃∑
j=1

(∣∣∣∣µ̃α̃σ(j)1 L
− µ̃

α̃
σ(j)
2 L

∣∣∣∣+ ∣∣∣∣µ̃α̃σ(j)1 U
− µ̃

α̃
σ(j)
2 U

∣∣∣∣
+
∣∣∣∣ν̃α̃σ(j)1 L

− ν̃
α̃
σ(j)
2 L

∣∣∣∣+ ∣∣∣∣ν̃α̃σ(j)1 U
− ν̃

α̃
σ(j)
2 U

∣∣∣∣) (3.14)

and the interval-valued generalized hesitant normalized Euclidean distance:

divghne(h̃1, h̃2) =

[
1

4lh̃

lh̃∑
j=1

(∣∣∣∣µ̃α̃σ(j)1 L
− µ̃

α̃
σ(j)
2 L

∣∣∣∣2 +
∣∣∣∣µ̃α̃σ(j)1 U

− µ̃
α̃
σ(j)
2 U

∣∣∣∣2

+
∣∣∣∣ν̃α̃σ(j)1 L

− ν̃
α̃
σ(j)
2 L

∣∣∣∣2 +
∣∣∣∣ν̃α̃σ(j)1 U

− ν̃
α̃
σ(j)
2 U

∣∣∣∣2
)] 1

2

, (3.15)

where α̃
σ(j)
i =

([
µ̃
α̃
σ(j)
i L

, µ̃
α̃
σ(j)
i U

]
,
[
ν̃
α̃
σ(j)
i L

, ν̃
α̃
σ(j)
i U

])
,i = 1, 2 are the jth largest

values in h̃1 and h̃2, respectively.

Example 3.2.17 Let h̃1 = {([0.7, 0.8], [0.3, 0.45]), ([0.35, .39], [0.4, 0.45]), ([0.5,

0.57], [0.6, 0.65]), ([0.1, 0.3], [0.2, 0.8]), ([0.4, 0.5], [0.7, 0.9])} and h̃2 = {([0.7, 0.9],

[0.3, 0.7]), ([0.5, 0.65], [0.2, 0.4]), ([0.2, 0.3], [0.1, 0.2]), ([0.4, 0.7], [0.5, 0.6]), ([0.35,
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0.45], [0.7, 0.85])} be two IVGHFEs. By definition of the interval-valued gen-

eralized hesitant normalized Hamming distance (Eq.(3.14)), we calculate the

divghnh(h̃1, h̃2):

divghnh(h̃1, h̃2) = 0.194

and we also calculate the divghne(h̃1, h̃2) by definition of the interval-valued gen-

eralized hesitant normalized Euclidean distance (Eq.(3.15)):

divghne(h̃1, h̃2) = 0.2458.

3.3 Decision making based on interval-valued

generalized hesitant fuzzy information

In some practical problems, for example, the presidential election or the blind peer

review of thesis, anonymity is required in order to protect the decision makers’

privacy or avoid influencing each other. In this section, we develop two approaches

for solving multiple attribute decision making with anonymity under interval-

valued generalized hesitant fuzzy information.

3.3.1 Two approaches to multiple attribute decision mak-

ing

Suppose that there are m alternatives Oi (i = 1, 2, . . . ,m) and n attributes xj

(j = 1, 2, . . . , n). An none specific weighting operator has been developed, we

suppose that the weights of attributes are indifferent. If the decision makers

provide several values such as IVIFVs or IFVs for the alternatives Oi under the

attribute xj with anonymity, these values can be considered as IVGHFE h̃ij. In

the case where two decision makers provide the same value, then the value emerges

only once in h̃ij. Suppose that the decision matrix H̃ = (h̃ij)m×n is the interval-

valued generalized hesitant fuzzy decision matrix, where h̃ij (i = 1, 2, . . . ,m;

j = 1, 2, . . . n) are in the form of IVGHFEs.
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Then, we utilize the extension principle, i.e. the AM or GM in Example

3.2.15, to develop an approach to multiple attribute decision making problems

with interval-valued generalized hesitant fuzzy information, which can be de-

scribed as following:

Approach III

Step 1. Construct the decision matrix H̃ = (h̃ij)m×n, where all the arguments

h̃ij (i = 1, 2, . . . ,m; j = 1, 2, . . . n) are IVGHFEs, given by decision makers, for

alternative Oi with respect to the attribute xj.

Step 2. Utilize Theorem 3.1.2 to construct IVIFVs from IFVs in IVGHFEs

h̃ij (i = 1, 2, . . . ,m; j = 1, 2, . . . n).

Step 3. Aggregate all IVGHFEs h̃ij (j = 1, 2, . . . , n) of alternatives Oi (i =

1, 2, . . . ,m) with respect to attributes xj (j = 1, 2, . . . , n) into the overall values

h̃i by using the AM, associated with IIFA operator on IVIFVs, in Example 3.2.15:

h̃i = AM(h̃i1, h̃i2, . . . , h̃in)

= ∪α̃i1∈h̃i1,α̃i2∈h̃i2,...,α̃in∈h̃in{IIFA(α̃i1, α̃i2, . . . , α̃in)}

= ∪α̃i1∈h̃i1,α̃i2∈h̃i2,...,α̃in∈h̃in


1−

n∏
j=1

(1− µ̃α̃ijL)
1
n , 1−

n∏
j=1

(1− µ̃α̃ijU)
1
n

 ,
 n∏
j=1

ν̃
1
n
α̃ijL

,
n∏
j=1

ν̃
1
n
α̃ijU

 , (3.16)

or the GM, associated with IIFG operator on IVIFSs, in Example 3.2.15:

h̃i = GM(h̃i1, h̃i2, . . . , h̃in)

= ∪α̃i1∈h̃i1,α̃i2∈h̃i2,...,α̃in∈h̃in{IIFG(α̃i1, α̃i2, . . . , α̃in)}

= ∪α̃i1∈h̃i1,α̃i2∈h̃i2,...,α̃in∈h̃in


 n∏

j=1

µ̃
1
n
α̃i1L

,
n∏
j=1

µ̃
1
n
α̃i1U

 ,
1−

n∏
j=1

(1− ν̃α̃i1L)
1
n , 1−

n∏
j=1

(1− ν̃α̃i1U)
1
n

 , (3.17)

where α̃ij = ([µ̃α̃ijL, µ̃α̃ijU ], [ν̃α̃ijL, ν̃α̃ijU ]) is an element in h̃ij taken the form of

IVIFV.
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Step 4. Compute the score values s(h̃i) (i = 1, 2, . . . ,m) of h̃i (i = 1, 2, . . . ,m)

by Definition 3.2.10:

s(h̃i) =
1

l(h̃i)

∑
α̃i∈h̃i

E(α̃i)

=
1

4l(h̃i)

∑
α̃i∈h̃i

(µ̃α̃iL + 1− ν̃α̃iL + µ̃α̃iU + 1− ν̃α̃iU), (3.18)

where l(h̃i) is the number of elements in h̃i and α̃i = ([µ̃α̃iL, µ̃α̃iU ], [ν̃α̃iL, ν̃α̃iU ]) is an

element in h̃i taken the form of IVIFV. If there is no difference between two score

values s(h̃i) and s(h̃j), then we need to calculate the consistency degrees c(h̃i)

and c(h̃j) of the alternatives Oi and Oj (i, j = 1, 2, . . . ,m, i 6= j), respectively, by

Definition 3.2.11:

c(h̃i) =
1

2

(
min
α̃i∈h̃i
{µ̃α̃iL}+ min

α̃i∈h̃i
{µ̃α̃iU}+ min

α̃i∈h̃i
{ν̃α̃iL}+ min

α̃i∈h̃i
{ν̃α̃iU}

)
. (3.19)

Step 5. Rank the alternatives Oi (i = 1, 2, . . . ,m) according to Definition

3.2.12 and then select the most desirable alternative(s).

Step 6. End.

In the situations where the information about attribute weights is completely

known, that is, the weight vector w = (w1, w2, . . . , wn)T of the attributes xj

(i = 1, 2, . . . , n) can be completely determined in advance, then we can con-

struct the weighted interval-valued generalized hesitant fuzzy decision matrix

H̃∗ = (h̃∗ij)m×n, where h̃∗ij = wjh̃ij = ∪α̃ij∈h̃ij{wjα̃ij} = ∪α̃ij∈h̃ij{([1 − (1 −
µ̃α̃ijL)wj , 1−(1−µ̃α̃ijU)wj ], [ν̃

wj
α̃ijL

, ν̃
wj
α̃ijU

])} is the weighted IVGHFE, i = 1, 2, . . . ,m;

j = 1, 2, . . . , n, and wj is weight of the attribute xj such that wj > 0 and∑n
j=1 wj = 1.

The positive ideal solution and negative ideal solution can be denoted as h̃+ =

{([1, 1], [0, 0])} and h̃− = {([0, 0], [1, 1])}, respectively, within the interval-valued

generalized hesitant fuzzy environment. The separation between alternatives can

be usually measured by Hamming distance or Euclidean distance. The separation

degrees, S+(Oi) and S−(Oi), of each alternative Oi (i = 1, 2, . . . ,m) to the PIS

h̃+ and NIS h̃−, respectively, are derived from Eqs. (3.14) and (3.15):
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• Separation degree based on the interval-valued generalized hesitant normalized

Hamming distance divghnh:

S+
divghnh

(Oi) =
1

n

n∑
j=1

divghnh(h̃
∗
ij, h̃

+)

=
1

n

n∑
j=1

[
1

4l(h̃∗ij)

l(h̃∗ij)∑
k=1

(
(1− µ̃

α̃
σ(k)
ij L

)wj + (1− µ̃
α̃
σ(k)
ij U

)wj

+ν̃
wj

α̃
σ(k)
ij L

+ ν̃
wj

α̃
σ(k)
ij U

) ]
, (3.20)

S−divghnh(Oi) =
1

n

n∑
j=1

divghnh(h̃
∗
ij, h̃

−)

=
1

n

n∑
j=1

[
1

4l(h̃∗ij)

l(h̃∗ij)∑
k=1

(
1− (1− µ̃

α̃
σ(k)
ij L

)wj + 1− (1− µ̃
α̃
σ(k)
ij U

)wj

+1− ν̃wj
α̃
σ(k)
ij L

+ 1− ν̃wj
α̃
σ(k)
ij U

) ]
. (3.21)

• Separation degree based on the interval-valued generalized hesitant normalized

Euclidean distance divghne:

S+
divghne

(Oi) =
1

n

n∑
j=1

divghne(h̃
∗
ij, h̃

+)

=
1

n

n∑
j=1

[
1

4l(h̃∗ij)

l(h̃∗ij)∑
k=1

(
(1− µ̃

α̃
σ(k)
ij L

)2wj + (1− µ̃
α̃
σ(k)
ij U

)2wj

+ν̃
2wj

α̃
σ(k)
ij L

+ ν̃
2wj

α̃
σ(k)
ij U

) ] 1
2

, (3.22)

S−divghne(Oi) =
1

n

n∑
j=1

divghne(h̃
∗
ij, h̃

−)

=
1

n

n∑
j=1

[
1

4l(h̃∗ij)

l(h̃∗ij)∑
k=1

(
(1− (1− µ̃

α̃
σ(k)
ij L

)wj)2 + (1− (1− µ̃
α̃
σ(k)
ij U

)wj)2
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+(1− ν̃wj
α̃
σ(k)
ij L

)2 + (1− ν̃wj
α̃
σ(k)
ij U

)2
) ] 1

2

. (3.23)

Then the closeness coefficient C+(Oi) of an alternative Oi with respect to PIS

h̃+ is defined as the following:

C+(Oi) =
S−(Oi)

S+(Oi) + S−(Oi)
, i = 1, 2, . . . ,m. (3.24)

The bigger the closeness coefficient C+(Oi), the better the alternative Oi will

be, as the alternative Oi is closer to the PIS h̃+. Therefore, the alternatives Oi

(i = 1, 2, . . . ,m) can be ranked according to the closeness coefficients so that the

best alternative can be selected.

Approach IV

Step 1. For this step, see Approach III.

Step 2. For this step, see Approach III.

Step 3. Calculate the weighted interval-valued generalized hesitant fuzzy

decision matrix H̃∗ = (h̃∗ij)m×n, where h̃∗ij = ∪α̃ij∈h̃ij{([1− (1− µ̃α̃ijL)wj , 1− (1−
µ̃α̃ijU)wj ], [ν̃

wj
α̃ijL

, ν̃
wj
α̃ijU

])} is the weighted IVGHFE, i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

and wj is weight of the attribute xj such that wj > 0 and
∑n
j=1wj = 1.

Step 4. Utilize Eqs. (3.20)-(3.23) to calculate the separation degrees S+(Oi)

and S−(Oi) of each alternative Oi (i = 1, 2, . . . ,m) from PIS h̃+ = {([1, 1], [0, 0])}
and NIS h̃− = {([0, 0], [1, 1])}, respectively.

Step 5. Utilize Eq. (3.24) to calculate the closeness coefficient C+(Oi) of

each alternative Oi (i = 1, 2, . . . ,m) to the PIS h̃+.

Step 6. Rank the alternatives Oi (i = 1, 2, . . . ,m) according to the closeness

coefficient to the PIS h̃+ and then select the most desirable one(s).

Step 7. End.

3.3.2 Illustrative Examples

Example 3.3.1 Let us suppose there is an investment company, which wants to

invest a sum of money in the best option (adapted from [25]). There is a panel
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with four possible alternatives to invest the money: (1) O1 is a car company; (2)

O2 is a food company; (3) O3 is a computer company; (4) O4 is an arms company.

The investment company must take a decision according to the following three

attributes: (1) x1 is the market share analysis; (2) x2 is the market growth

analysis; (3) x3 is the benefit analysis. In order to avoid influence each other,

the decision makers are required to evaluate the four possible alternatives Oi

(i = 1, 2, 3, 4), by using the IFVs or IVIFVs, under the above three attributes

in anonymity, then the interval-valued generalized hesitant fuzzy decision matrix

H̃ = (h̃ij)4×3 is constructed as shown in Table 3.1, where h̃ij (i = 1, 2, 3, 4; j =

1, 2, 3) are in the form of IVGHFEs.

Table 3.1: Interval-valued generalized hesitant fuzzy decision matrix H̃

x1

O1 {([0.5, 0.6], [0.2, 0.3]), (0.3, 0.6), (0.7, 0.2)}
O2 {([0.3, 0.5], [0.4, 0.5]), ([0.6, 0.7], [0.1, 0.2]), (0.5, 0.4)}
O3 {([0.6, 0.7], [0.2, 0.3]), (0.5, 0.4), (0.6, 0.3)}
O4 {([0.5, 0.7], [0.1, 0.2]), ([0.5, 0.6], [0.2, 0.3]), (0.5, 0.4)}

x2

O1 {([0.3, 0.4], [0.4, 0.6]), ([0, 4, 0.5], [0.3, 0.4]), (0.6, 0.3)}
O2 {([0.1, 0.3], [0.2, 0.4]), (0.4, 0.5), (0.7, 0.2)}
O3 {([0.3, 0.4], [0.4, 0.5]), ([0.5, 0.6], [0.1, 0.3]), (0.6, 0.3)}
O4 {([0.2, 0.4], [0.5, 0.6]), (0.4, 0.5), (0.3, 0.6)}

x3

O1 {([0.4, 0.5], [0.3, 0.5]), ([0.6, 0.7], [0.1, 0.2]), (0.5, 0.3)}
O2 {([0.7, 0.8], [0.1, 0.2]), ([0.1, 0.2], [0.7, 0.8]), (0.3, 0.4)}
O3 {([0.5, 0.8], [0.1, 0.2]), (0.5, 0.2), (0.8, 0.1)}
O4 {([0.4, 0.6], [0.2, 0.3]), (0.6, 0.3), (0.7, 0.2)}

Then, we utilize the Approach III to get the most desirable alternative(s),

which involves the following steps:
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Step 1. Utilize Theorem 3.1.2 (here we take λ = µ
π
× 0.008, ρ = ν

π
× 0.008,

ζ = λ, η = ρ) to construct IVIFVs from IFVs in IVGHFEs h̃ij (i = 1, 2, 3, 4; j =

1, 2, 3) and then the constructed interval-valued generalized hesitant fuzzy deci-

sion matrix H̃0 is shown in Table 3.2.

Table 3.2: Constructed interval-valued generalized hesitant fuzzy decision matrix

H̃0

x1

O1 {([0.5, 0.6], [0.2, 0.3]), ([0.2976, 0.3024], [0.5952, 0.6048]), ([0.6944, 0.7056], [0.1984, 0.2016])}
O2 {([0.3, 0.5], [0.4, 0.5]), ([0.6, 0.7], [0.1, 0.2]), ([0.496, 0.504], [0.3968, 0.4032])}
O3 {([0.6, 0.7], [0.2, 0.3]), ([0.496, 0.504], [0.3968, 0.4032]), ([0.5952, 0.6048], [0.2976, 0.3024])}
O4 {([0.5, 0.7], [0.1, 0.2]), ([0.5, 0.6], [0.2, 0.3]), ([0.496, 0.504], [0.3968, 0.4032])}

x2

O1 {([0.3, 0.4], [0.4, 0.6]), ([0, 4, 0.5], [0.3, 0.4]), ([0.5952, 0.6048], [0.2976, 0.3024])}
O2 {([0.1, 0.3], [0.2, 0.4]), ([0.3968, 0.4032], [0.496, 0.504]), ([0.6944, 0.7056], [0.1984, 0.2016])}
O3 {([0.3, 0.4], [0.4, 0.5]), ([0.5, 0.6], [0.1, 0.3]), ([0.5952, 0.6048], [0.2976, 0.3024])}
O4 {([0.2, 0.4], [0.5, 0.6]), ([0.3968, 0.4032], [0.496, 0.504]), ([0.2976, 0.3024], [0.5952, 0.6048])}

x3

O1 {([0.4, 0.5], [0.3, 0.5]), ([0.6, 0.7], [0.1, 0.2]), ([0.496, 0.504], [0.2976, 0.3024])}
O2 {([0.7, 0.8], [0.1, 0.2]), ([0.1, 0.2], [0.7, 0.8]), ([0.2976, 0.3024], [0.3968, 0.4032])}
O3 {([0.5, 0.8], [0.1, 0.2]), ([0.496, 0.504], [0.1984, 0.2016]), ([0.7936, 0.8064], [0.0992, 0.1008])}
O4 {([0.4, 0.6], [0.2, 0.3]), ([0.5952, 0.6048], [0.2976, 0.3024]), ([0.6944, 0.7056], [0.1984, 0.2016])}

Step 2. Aggregate all IVGHFEs h̃ij of alternatives Oi (i = 1, 2, 3, 4) with

respect to attributes xj (j = 1, 2, 3) into the overall values h̃i by Eq. (3.16):

h̃1 =
{

([0.4056, 0.5068], [0.2884, 0.4481]), ([0.4808, 0.5840], [0.2000, 0.3302]),

([0.4392, 0.5018], [0.2877, 0.3790]), ([0.4354, 0.5358], [0.2621, 0.3915]),

([0.5068, 0.6085], [0.1817, 0.2884]), ([0.4673, 0.5371], [0.2614, 0.3311]),

([0.5048, 0.5708], [0.2614, 0.3566]), ([0.5674, 0.6380], [0.1812, 0.2628]),

([0.5328, 0.5720], [0.2607, 0.3016]), ([0.3343, 0.4063], [0.4149, 0.5661]),

([0.4185, 0.4992], [0.2877, 0.4171]), ([0.3719, 0.4079], [0.4138, 0.4788]),

([0.3676, 0.4413], [0.3770, 0.4946]), ([0.4476, 0.5288], [0.2614, 0.3644]),
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([0.4033, 0.4428], [0.3760, 0.4182]), ([0.4454, 0.4834], [0.3760, 0.4505]),

([0.5155, 0.5643], [0.2607, 0.3320]), ([0.4767, 0.4848], [0.3750, 0.3810]),

([0.4956, 0.5547], [0.2877, 0.3925]), ([0.5593, 0.6244], [0.1995, 0.2892]),

([0.5241, 0.5559], [0.2869, 0.3320]), ([0.5208, 0.5809], [0.2614, 0.3429]),

([0.5814, 0.6465], [0.1812, 0.2527]), ([0.5479, 0.5820], [0.2607, 0.2900]),

([0.5797, 0.6125], [0.2607, 0.3124]), ([0.6329, 0.6732], [0.1807, 0.2302]),

([0.6035, 0.6136], [0.2600, 0.2642])
}
,

h̃2 =
{

([0.4261, 0.5879], [0.2000, 0.3420]), ([0.1723, 0.3458], [0.3826, 0.5429]),

([0.2380, 0.3750], [0.3166, 0.4320]), ([0.4978, 0.6092], [0.2707, 0.3694]),

([0.2757, 0.3797], [0.5179, 0.5864]), ([0.3331, 0.4073], [0.4286, 0.4666]),

([0.5996, 0.6912], [0.1995, 0.2722]), ([0.4226, 0.5098], [0.3816, 0.4320]),

([0.4684, 0.5317], [0.3158, 0.3438]), ([0.5238, 0.6524], [0.1260, 0.2520]),

([0.3132, 0.4482], [0.2410, 0.4000]), ([0.3676, 0.4728], [0.1995, 0.3183]),

([0.5832, 0.6704], [0.1705, 0.2722]), ([0.3989, 0.4768], [0.3262, 0.4320]),

([0.4466, 0.5001], [0.2700, 0.3438]), ([0.6678, 0.7396], [0.1257, 0.2005]),

([0.5208, 0.5866], [0.2404, 0.3183]), ([0.5588, 0.6050], [0.1989, 0.2533]),

([0.4856, 0.5890], [0.1995, 0.3183]), ([0.2582, 0.3475], [0.3816, 0.5053]),

([0.3170, 0.3767], [0.3158, 0.4021]), ([0.5499, 0.6103], [0.2700, 0.3438]),

([0.3508, 0.3813], [0.5165, 0.5458]), ([0.4023, 0.4089], [0.4274, 0.4343]),

([0.6412, 0.6920], [0.1989, 0.2533]), ([0.4825, 0.5112], [0.3805, 0.4021]),

([0.5235, 0.5330], [0.3149, 0.3200])
}
,

h̃3 =
{

([0.4808, 0.6698], [0.2000, 0.3107]), ([0.4794, 0.5531], [0.2513, 0.3115]),

([0.6134, 0.6734], [0.1995, 0.2473]), ([0.5358, 0.7116], [0.1260, 0.2621]),

([0.5346, 0.6096], [0.1583, 0.2628]), ([0.6544, 0.7147], [0.1257, 0.2086]),
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([0.5674, 0.7127], [0.1812, 0.2628]), ([0.5662, 0.6111], [0.2277, 0.2635]),

([0.6779, 0.7158], [0.1807, 0.2091]), ([0.4392, 0.6096], [0.2513, 0.3644]),

([0.4377, 0.4715], [0.3158, 0.3654]), ([0.5824, 0.6138], [0.2506, 0.2900]),

([0.4673, 0.6326], [0.2283, 0.3183]), ([0.4658, 0.5027], [0.2869, 0.3192]),

([0.6033, 0.6365], [0.2277, 0.2533]), ([0.5328, 0.6603], [0.2277, 0.2900]),

([0.5315, 0.5402], [0.2861, 0.2908]), ([0.6521, 0.6640], [0.2271, 0.2308]),

([0.4787, 0.6380], [0.2283, 0.3311]), ([0.4773, 0.5101], [0.2869, 0.3320]),

([0.6118, 0.6419], [0.2277, 0.2635]), ([0.5048, 0.6594], [0.2075, 0.2892]),

([0.5035, 0.5389], [0.2607, 0.2900]), ([0.6313, 0.6631], [0.2069, 0.2302]),

([0.5657, 0.6851], [0.2069, 0.2635]), ([0.5645, 0.5737], [0.2600, 0.2642]),

([0.6766, 0.6885], [0.2063, 0.2097])
}
,

h̃4 =
{

([0.3786, 0.5840], [0.2154, 0.3302]), ([0.4550, 0.5857], [0.2460, 0.3311]),

([0.5037, 0.6244], [0.2149, 0.2892]), ([0.4344, 0.5847], [0.2149, 0.3115]),

([0.5039, 0.5864], [0.2453, 0.3124]), ([0.5483, 0.6251], [0.2143, 0.2729]),

([0.4049, 0.5625], [0.2283, 0.3311]), ([0.4781, 0.5643], [0.2607, 0.3320]),

([0.5248, 0.6050], [0.2277, 0.2900]), ([0.4056, 0.5421], [0.2520, 0.3780]),

([0.4787, 0.5440], [0.2877, 0.3790]), ([0.5253, 0.5866], [0.2513, 0.3311]),

([0.4354, 0.5691], [0.2289, 0.3302]), ([0.5048, 0.5708], [0.2614, 0.3311]),

([0.5491, 0.6110], [0.2283, 0.2892]), ([0.5048, 0.6016], [0.2283, 0.3008]),

([0.5657, 0.6032], [0.2607, 0.3016]), ([0.6045, 0.6403], [0.2277, 0.2635]),

([0.4040, 0.5081], [0.3166, 0.4171]), ([0.4773, 0.5101], [0.3615, 0.4182]),

([0.5241, 0.5559], [0.3158, 0.3654]), ([0.4339, 0.5371], [0.2877, 0.3644]),

([0.5035, 0.5389], [0.3284, 0.3654]), ([0.5479, 0.5820], [0.2869, 0.3192]),

([0.5035, 0.5720], [0.2869, 0.3320]), ([0.5645, 0.5737], [0.3276, 0.3328]),

([0.6035, 0.6136], [0.2861, 0.2908])
}
.
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Step 3. Compute the score values s(h̃i) (i = 1, 2, 3, 4) of overall values h̃i

(i = 1, 2, 3, 4) by Eq. (3.18), the score values of alternatives Oi (i = 1, 2, 3, 4) are

obtained as follows:

s(h̃1) = 0.5993, s(h̃2) = 0.5726, s(h̃3) = 0.6682, s(h̃4) = 0.6199.

Step 4. Rank the alternatives Oi (i = 1, 2, 3, 4) in accordance with the score

values s(h̃i) (i = 1, 2, 3, 4) of the overall interval-valued generalized hesitant fuzzy

preference values: O3 � O4 � O1 � O2, where the symbol “�” means “superior

to”, and thus the most desirable investment alternative is O3.

Similarly, if Eq. (3.17) (i.e. the GM associated with IIFG operator) is utilized

in Step 2, then the overall performance value h̃i corresponding to the alternative

Oi (i = 1, 2, 3, 4) can be calculated:

h̃1 =
{

([0.3915, 0.4932], [0.3048, 0.4808]), ([0.4481, 0.5518], [0.2440, 0.3927]),

([0.4206, 0.4946], [0.3040, 0.4198]), ([0.4309, 0.5313], [0.2681, 0.4056]),

([0.4932, 0.5944], [0.2042, 0.3048]), ([0.4629, 0.5327], [0.2673, 0.3358]),

([0.4919, 0.5661], [0.2673, 0.3750]), ([0.5631, 0.6333], [0.2033, 0.2690]),

([0.5285, 0.5676], [0.2665, 0.3016]), ([0.3293, 0.3925], [0.4460, 0.5708]),

([0.3770, 0.4391], [0.3976, 0.4981]), ([0.3538, 0.3936], [0.4454, 0.5205]),

([0.3625, 0.4228], [0.4168, 0.5087]), ([0.4149, 0.4730], [0.3658, 0.4254]),

([0.3894, 0.4240], [0.4161, 0.4511]), ([0.4138, 0.4505], [0.4161, 0.4834]),

([0.4737, 0.5040], [0.3651, 0.3958]), ([0.4446, 0.4517], [0.4155, 0.4228]),

([0.4368, 0.5206], [0.3043, 0.4575]), ([0.5000, 0.5824], [0.2435, 0.3655]),

([0.4692, 0.5220], [0.3035, 0.3938]), ([0.4807, 0.5608], [0.2677, 0.3790]),

([0.5503, 0.6274], [0.2037, 0.2736]), ([0.5165, 0.5623], [0.2668, 0.3061]),

([0.5488, 0.5976], [0.2668, 0.3470]), ([0.6283, 0.6685], [0.2027, 0.2362]),

([0.5896, 0.5991], [0.2660, 0.2703])
}
,
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h̃2 =
{

([0.2759, 0.4932], [0.2440, 0.3786]), ([0.1442, 0.3107], [0.4759, 0.6085]),

([0.2075, 0.3566], [0.3384, 0.4364]), ([0.4368, 0.5443], [0.3520, 0.4168]),

([0.2283, 0.3429], [0.5507, 0.6326]), ([0.3284, 0.3936], [0.4329, 0.4710]),

([0.5264, 0.6560], [0.2435, 0.3165]), ([0.2752, 0.4132], [0.4755, 0.5694]),

([0.3958, 0.4743], [0.3380, 0.3801]), ([0.3476, 0.5518], [0.1347, 0.2732]),

([0.1817, 0.3476], [0.4000, 0.5421]), ([0.2614, 0.3990], [0.2427, 0.3408]),

([0.5503, 0.6089], [0.2582, 0.3178]), ([0.2877, 0.3836], [0.4856, 0.5703]),

([0.4138, 0.4403], [0.3508, 0.3813]), ([0.6632, 0.7338], [0.1341, 0.2005]),

([0.3467, 0.4623], [0.3996, 0.4964]), ([0.4987, 0.5306], [0.2422, 0.2749]),

([0.3262, 0.4946], [0.2427, 0.3408]), ([0.1705, 0.3115], [0.4749, 0.5847]),

([0.2453, 0.3576], [0.3373, 0.4021]), ([0.5165, 0.5458], [0.3508, 0.3813]),

([0.2700, 0.3438], [0.5499, 0.6103]), ([0.3884, 0.3946], [0.4319, 0.4389]),

([0.6224, 0.6577], [0.2422, 0.2749]), ([0.3254, 0.4143], [0.4746, 0.5432]),

([0.4680, 0.4755], [0.3368, 0.3424])
}
,

h̃3 =
{

([0.4481, 0.6073], [0.2440, 0.3458]), ([0.4469, 0.5206], [0.2727, 0.3462]),

([0.5227, 0.6089], [0.2438, 0.3198]), ([0.5313, 0.6952], [0.1347, 0.2681]),

([0.5299, 0.5960], [0.1674, 0.2686]), ([0.6198, 0.6971], [0.1344, 0.2391]),

([0.5631, 0.6971], [0.2033, 0.2690]), ([0.5616, 0.5976], [0.2334, 0.2695]),

([0.6569, 0.6989], [0.2030, 0.2399]), ([0.4206, 0.5443], [0.3120, 0.4241]),

([0.4195, 0.4666], [0.3380, 0.4245]), ([0.4906, 0.5458], [0.3117, 0.4012]),

([0.4629, 0.5864], [0.2757, 0.3408]), ([0.4617, 0.5027], [0.3031, 0.3412]),

([0.5400, 0.5879], [0.2755, 0.3146]), ([0.5285, 0.6248], [0.2748, 0.3068]),

([0.5271, 0.5356], [0.3023, 0.3073]), ([0.6165, 0.6264], [0.2746, 0.2793]),

([0.4469, 0.5784], [0.2761, 0.3934]), ([0.4457, 0.4959], [0.3035, 0.3938]),

([0.5213, 0.5800], [0.2759, 0.3693]), ([0.4919, 0.6231], [0.2380, 0.3056]),
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([0.4906, 0.5342], [0.2668, 0.3061]), ([0.5738, 0.6248], [0.2377, 0.2780]),

([0.5616, 0.6639], [0.2371, 0.2698]), ([0.5601, 0.5691], [0.2660, 0.2703]),

([0.6551, 0.6657], [0.2369, 0.2408])
}
,

h̃4 =
{

([0.3420, 0.5518], [0.2886, 0.3927]), ([0.3904, 0.5533], [0.3188, 0.3934]),

([0.4110, 0.5824], [0.2881, 0.3655]), ([0.4297, 0.5533], [0.2867, 0.3475]),

([0.4906, 0.5547], [0.3170, 0.3483]), ([0.5165, 0.5840], [0.2863, 0.3183]),

([0.3904, 0.5027], [0.3370, 0.3951]), ([0.4457, 0.5040], [0.3651, 0.3958]),

([0.4692, 0.5306], [0.3365, 0.3680]), ([0.3915, 0.5241], [0.2732, 0.4191]),

([0.4469, 0.5255], [0.3040, 0.4198]), ([0.4705, 0.5533], [0.2727, 0.3931]),

([0.4309, 0.5646], [0.2348, 0.3351]), ([0.4919, 0.5661], [0.2673, 0.3358]),

([0.5179, 0.5960], [0.2343, 0.3053]), ([0.4919, 0.6016], [0.2340, 0.3008]),

([0.5616, 0.6032], [0.2665, 0.3016]), ([0.5912, 0.6350], [0.2334, 0.2695]),

([0.3904, 0.4946], [0.3384, 0.4492]), ([0.4457, 0.4959], [0.3665, 0.4498]),

([0.4692, 0.5220], [0.3380, 0.4245]), ([0.4297, 0.5327], [0.3036, 0.3695]),

([0.4906, 0.5342], [0.3331, 0.3702]), ([0.5165, 0.5623], [0.3031, 0.3412]),

([0.4906, 0.5676], [0.3028, 0.3370]), ([0.5601, 0.5691], [0.3324, 0.3378]),

([0.5896, 0.5991], [0.3023, 0.3073])
}
.

Then, the score value s(h̃i) of overall values h̃i (i = 1, 2, 3, 4) can be obtained:

s(h̃1) = 0.5716, s(h̃2) = 0.5100, s(h̃3) = 0.6370, s(h̃4) = 0.5905.

Then s(h̃3) > s(h̃4) > s(h̃1) > s(h̃2) and so the final ranking is O3 � O4 �
O1 � O2. Thus the best alternative is also O3.

Example 3.3.2 Let us consider a factory which intends to select a new site for

new buildings. Four alternatives Oi (i = 1, 2, 3, 4) are available, and the decision

makers consider three attribute to decide which site to choose: (1) x1 is the price

analysis; (2) x2 is the location analysis; (3) x3 is the environment analysis. The
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weight vector of the attributes xj (j = 1, 2, 3) is w = (0.5, 0.3, 0.2)T . In order to

avoid influence each other, the decision makers are required to evaluate the four

possible alternatives Oi (i = 1, 2, 3, 4), by using the IFVs or IVIFVs, under the

above three attributes in anonymity, then the interval-valued generalized hesitant

fuzzy decision matrix H̃ = (h̃ij)4×3 is constructed as shown in Table 3.3, where

h̃ij (i = 1, 2, 3, 4; j = 1, 2, 3) are in the form of IVGHFEs.

Table 3.3: Interval-valued generalized hesitant fuzzy decision matrix H̃

x1

O1 {([0.4, 0.5], [0.3, 0.4]), ([0.3, 0.4], [0.5, 0.6]), (0.6, 0.3)}
O2 {([0.4, 0.5], [0.3, 0.4]), ([0.6, 0.7], [0.1, 0.2]), (0.7, 0.2)}
O3 {([0.6, 0.7], [0.1, 0.2]), (0.5, 0.4), (0.6, 0.3)}
O4 {([0.5, 0.6], [0.2, 0.3]), ([0.5, 0.6], [0.3, 0.4]), (0.5, 0.4)}

x2

O1 {([0.5, 0.6], [0.3, 0.4]), ([0, 6, 0.7], [0.1, 0.2]), (0.7, 0.2)}
O2 {([0.3, 0.4], [0.2, 0.3]), (0.5, 0.4), (0.8, 0.1)}
O3 {([0.4, 0.5], [0.3, 0.4]), ([0.5, 0.6], [0.1, 0.2]), (0.6, 0.3)}
O4 {([0.3, 0.4], [0.4, 0.5]), (0.5, 0.4), (0.3, 0.6)}

x3

O1 {([0.5, 0.6], [0.1, 0.2]), ([0.7, 0.8], [0.1, 0.2]), (0.5, 0.4)}
O2 {([0.7, 0.8], [0.1, 0.2]), ([0.5, 0.6], [0.3, 0.4]), (0.2, 0.7)}
O3 {([0.5, 0.8], [0.1, 0.2]), (0.5, 0.4), (0.8, 0.1)}
O4 {([0.4, 0.5], [0.3, 0.4]), (0.6, 0.3), (0.8, 0.1)}

Then, we utilize the Approach IV to get the most desirable alternative(s),

which involves the following steps:

Step 1. Utilize Theorem 3.1.2 (let λ = µ
π
× 0.008, ρ = ν

π
× 0.008, ζ = λ,

η = ρ) to construct IVIFVs from IFVs in IVGHFEs h̃ij (i = 1, 2, 3, 4; j = 1, 2, 3)

and then transform the interval-valued generalized hesitant fuzzy decision matrix
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H̃ into the constructed interval-valued generalized hesitant fuzzy decision matrix

H̃0 (see Table 3.4).

Table 3.4: Constructed interval-valued generalized hesitant fuzzy decision matrix

H̃0

x1

O1 {([0.4, 0.5], [0.3, 0.4]), ([0.3, 0.4], [0.5, 0.6]), ([0.5952, 0.6048], [0.2976, 0.3024])}
O2 {([0.4, 0.5], [0.3, 0.4]), ([0.6, 0.7], [0.1, 0.2]), ([0.6944, 0.7056], [0.1984, 0.2016])}
O3 {([0.6, 0.7], [0.1, 0.2]), ([0.496, 0.504], [0.3968, 0.4032]), ([0.5952, 0.6048], [0.2976, 0.3024])}
O4 {([0.5, 0.6], [0.2, 0.3]), ([0.5, 0.6], [0.3, 0.4]), ([0.496, 0.504], [0.3968, 0.4032])}

x2

O1 {([0.5, 0.6], [0.3, 0.4]), ([0, 6, 0.7], [0.1, 0.2]), ([0.6944, 0.7056], [0.1984, 0.2016])}
O2 {([0.3, 0.4], [0.2, 0.3]), ([0.496, 0.504], [0.3968, 0.4032]), ([0.7936, 0.8064], [0.0992, 0.1008])}
O3 {([0.4, 0.5], [0.3, 0.4]), ([0.5, 0.6], [0.1, 0.2]), ([0.5952, 0.6048], [0.2976, 0.3024])}
O4 {([0.3, 0.4], [0.4, 0.5]), ([0.496, 0.504], [0.3968, 0.4032]), ([0.2976, 0.3024], [0.5952, 0.6048])}

x3

O1 {([0.5, 0.6], [0.1, 0.2]), ([0.7, 0.8], [0.1, 0.2]), ([0.496, 0.504], [0.3968, 0.4032])}
O2 {([0.7, 0.8], [0.1, 0.2]), ([0.5, 0.6], [0.3, 0.4]), ([0.1984, 0.2016], [0.6944, 0.7056])}
O3 {([0.5, 0.8], [0.1, 0.2]), ([0.496, 0.504], [0.3968, 0.4032]), ([0.7936, 0.8064], [0.0992, 0.1008])}
O4 {([0.4, 0.5], [0.3, 0.4]), ([0.5952, 0.6048], [0.2976, 0.3024]), ([0.7936, 0.8064], [0.0992, 0.1008])}

Step 2. Utilize Definition 3.2.5 (let w = (0.5, 0.3, 0.2)T be the weight vec-

tor of attributes xj (j = 1, 2, 3)) to obtain the weighted IVGHFEs h̃∗ij = wjh̃ij of

IVGHFEs h̃ij (i = 1, 2, 3, 4; j = 1, 2, 3) in H̃0 and then construct the weighted con-

structed interval-valued generalized hesitant fuzzy decision matrix H̃∗ = (h̃∗ij)4×3

(see Table 3.5).

Step 3. Utilize Eqs. (3.20) and (3.21) to calculate the separation de-

grees S+(Oi) and S−(Oi) of each alternative Oi (i = 1, 2, 3, 4) from PIS h̃+ =

{([1, 1], [0, 0])} and NIS h̃− = {([0, 0], [1, 1])}, respectively:

S+(O1) = 0.7133, S+(O2) = 0.6947, S+(O3) = 0.6884, S+(O4) = 0.7461,

S−(O1) = 0.2867, S−(O2) = 0.3053, S−(O3) = 0.3116, S−(O4) = 0.2539.

Step 4. Calculate the closeness coefficient C+(Oi) of each alternative Oi

(i = 1, 2, 3, 4) to the PIS h̃+ by Eq. (3.24):

C+(O1) = 0.2867, C+(O2) = 0.3053, C+(O3) = 0.3116, C+(O4) = 0.2539.
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Table 3.5: Weighted constructed interval-valued generalized hesitant fuzzy deci-

sion matrix H̃∗

x1

O1 {([0.2254, 0.2929], [0.5477, 0.6325]), ([0.1633, 0.2254], [0.7071, 0.7746]), ([0.3638, 0.3714], [0.5455, 0.5499])}
O2 {([0.2254, 0.2929], [0.5477, 0.6325]), ([0.3675, 0.4523], [0.3162, 0.4472]), ([0.4472, 0.4574], [0.4454, 0.4490])}
O3 {([0.3675, 0.4523], [0.3162, 0.4472]), ([0.2901, 0.2957], [0.6299, 0.6350]), ([0.3638, 0.3714], [0.5455, 0.5499])}
O4 {([0.2929, 0.3675], [0.4472, 0.5477]), ([0.2929, 0.3675], [0.5477, 0.6325]), ([0.2901, 0.2957], [0.6299, 0.6350])}

x2

O1 {([0.1877, 0.2403], [0.6968, 0.7597]), ([0, 2403, 0.3032], [0.5012, 0.6170]), ([0.2993, 0.3071], [0.6155, 0.6185])}
O2 {([0.1015, 0.1421], [0.6170, 0.6968]), ([0.1858, 0.1897], [0.7578, 0.7615]), ([0.3771, 0.3890], [0.5000, 0.5024])}
O3 {([0.1421, 0.1877], [0.6968, 0.7597]), ([0.1877, 0.2403], [0.5012, 0.6170]), ([0.2376, 0.2431], [0.6952, 0.6985])}
O4 {([0.1015, 0.1421], [0.7597, 0.8123]), ([0.1858, 0.1897], [0.7578, 0.7615]), ([0.1006, 0.1024], [0.8559, 0.8600])}

x3

O1 {([0.1294, 0.1674], [0.6310, 0.7248]), ([0.2140, 0.2752], [0.6310, 0.7248]), ([0.1281, 0.1308], [0.8312, 0.8339])}
O2 {([0.2140, 0.2752], [0.6310, 0.7248]), ([0.1294, 0.1674], [0.7860, 0.8326]), ([0.0433, 0.0440], [0.9297, 0.9326])}
O3 {([0.1294, 0.2752], [0.6310, 0.7248]), ([0.1281, 0.1308], [0.8312, 0.8339]), ([0.2706, 0.2799], [0.6299, 0.6320])}
O4 {([0.0971, 0.1294], [0.7860, 0.8326]), ([0.1655, 0.1695], [0.7847, 0.7873]), ([0.2706, 0.2799], [0.6299, 0.6320])}

Step 5. Rank the alternatives Oi (i = 1, 2, 3, 4) in accordance with the

closeness coefficient C+(Oi) to the PIS h̃+: O3 � O2 � O1 � O4, and thus the

most desirable alternative is O3.

Similarly, if Eqs. (3.22) and (3.23) are utilized in Step 3, then the separation

degrees S+(Oi) and S−(Oi) of each alternative Oi (i = 1, 2, 3, 4) from PIS h̃+ and

NIS h̃−, respectively, can be calculated:

S+(O1) = 0.7187, S+(O2) = 0.7049, S+(O3) = 0.6954, S+(O4) = 0.7496,

S−(O1) = 0.3002, S−(O2) = 0.3285, S−(O3) = 0.3267, S−(O4) = 0.2641,

and the closeness coefficient C+(Oi) of each alternative Oi (i = 1, 2, 3, 4) to the

PIS h̃+ can be obtained:

C+(O1) = 0.2946, C+(O2) = 0.3179, C+(O3) = 0.3197, C+(O4) = 0.2605.

Then C+(O3) > C+(O2) > C+(O1) > C+(O4) and so the final ranking is

O3 � O2 � O1 � O4. Thus the best alternative is also O3.
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3.4 Conclusions

In this chapter, we both generalized HFS [54, 56] and extended GHFS [47] us-

ing IVIFSs in group decision making framework. Firstly, the basic concept of

IVGHFS was proposed. The IVGHFS is fit for the situation when decision makers

have a hesitation among several interval-valued memberships with uncertainties.

Then, we discussed the relationships between IVGHFSs and other types of FSs

such as GHFSs, IVIFSs and IFSs. The envelop and basic operations of IVGHFEs

were defined and then some relationships and operational laws among those op-

erations were also discussed. In order to apply these IVHGFEs to group decision

making, we proposed the extension principle which enables us to employ aggre-

gation operators of IVIFSs to aggregate IVGHFEs. Finally, the effectiveness and

applicability of the proposed approaches to solve multiple attribute decision mak-

ing problem was illustrated with two practical examples. The examples showed

the less aggregation time and the flexibility of expressing decision makers’ opinion

of IVGHFEs.

As future work, we consider the study of proper aggregation operators in

interval-valued generalized hesitant fuzzy setting, and apply these operators in

many actual fields such as decision making, pattern recognition, medical diagnosis

and clustering analysis.
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