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ABSTRACT

In recent years, research on complex systems are actively conducted across

several disciplines including physics, biology, earth science, economy, and social

science, etc. A complex system is made up of numerous components with complex

interactions among them, which results in a macroscopic phenomenon of the whole

system more than the sum of the parts. In order to understand the complex system

as holistic perspectives, researchers usually take a network or graph theory. The

network is a set constituted of nodes and their links, and use the adjacency matrix to

descript the links of nodes.

Network theory in discrete mathematics has acted as a wonderful language

to express a complex system since the 1960s. Starting from the study of random

network by Erdös and Rény (ER) in 1961, Watts and Strogatz (WS) clarified the

actor network, C. elegans network, and electrical power network have small-worldness

using clustering coefficient in 1998. Also, Barabási and Albert (BA) investigated the

scale-free properties of complex networks in 1999. Thereafter, researches on complex

networks have evolved explosively by a variety of methods and data.

In this paper, we construct several networks in biology, earth science,

economics, and social science in various methods. Analyzing the network properties

in multiple ways, we derived the dynamics of network properties.
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First, we investigate the interacting amino acids in protein structures as an

example of biological system. It is shown from our result that protein networks have

a small-world feature regardless of their structural class ( ,  ,   , and ).

Also, proteins are particularly found to have the positive assortative coefficient that

applied to the topological property described as a tendency of connectivity of

high-degree nodes. The modularity of the proteins in our case is significantly large as

an increasing function of the number of amino acids in each protein.

Second, we study the seismic network of California in USA as an example

of geological system. We performed the computer simulation from seismic time series

data taken in southern California. After simulating a seismic network against spatial

shifts and scales in a volume, we treat the feature of the topological properties more

briefly via various statistical quantities such as the probability distribution of degree,

characteristic path length, mean clustering coefficient, small-worldness, cost efficiency,

global efficiency, modularity, and assortative coefficient.

Third, we study the seismic network more profound using Japan earthquake

time series. Seismic network is investigated by considering the volume resolution and

the temporal causality. A computer simulation of seismic networks is performed from

seismic time series data taken in Japan. For our case, the universal and irregular

properties of statistical quantities in seismic network do not find unambiguously, but

it may be inferred that these topological properties improve by implementing the

method and its technique from registered data of seismic networks.

Forth, we investigate the visibility network in a time series of the KOSPI

and the KOSDAQ indices converting by the visibility algorithm. As a data, we

extract the indices from the KOSPI and KOSDAQ that are exchanged on the Korean

stock market during a period 1996 2014.– The KOSPI and the KOSDAQ by adopting

the visibility algorithm is proportional to a power law rather than the Poisson

distribution. We mainly simulate and analyze the network metrics from the nodes and

its links in the financial networks. The universal and irregular properties of statistical

quantities in financial network do not find unambiguously, but it may be inferred that

these topological properties improve by implementing the statistical method and its

technique from registered data of financial networks.
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Lastly, we study the microscopic community structure of the Korean

meteorological society in the author network. Through oscillator networks, we

simulate and analyze the averaged communicability functions such as the 
 ,


 , 

 , and 
 . After constructing networks triggered an equally contributed

weight between the first author and other authors in one published paper, we mainly

treat these structures of communicability from these averaged communicability

functions. The function 
 has a commutative relation stronger than the other three,

and our results support the development of the adaptability and the stability of social

organization for an individual.

Keywords: Protein, Amino acid, Biological network, Seismic network, Visibility graph,

KOSPI, KOSDAQ, Communicability function, Oscillator network, Community

structure, Complex network, Small-worldness, Scale-free network, Dynamics of

network property, Degree distribution, Characteristic path length, Clustering coefficient,

Efficiency, Assortative coefficient, Modularity
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I. INTRODUCTION

1. BIOLOGICAL SYSTEM: Protein Contact Network of Amino Acid

In past two decades, many researches have been provoked considerable

interest in complex systems. Network has emerged as a crucial framework in

biological networks, when researchers study and analyze an open and novel problem

in complex systems [1-7]. The most important properties of biological networks are

the structural and topological ones involving interacting amino acids. Biological

systems have been simulated and analyzed in networks such as the protein-protein

interaction network [8], metabolic pathways network [9,10], gene regulatory network

[11], and protein as a network of amino acids [12-15].

There have been many researches involving studying proteins as networks.

In the biological network, when we consider that cellular networks are governed by

universal laws and offer a new conceptual framework, the degree distribution follows

a Poisson distribution or a power-law distribution. The degree distribution in random

network follows a Poisson distribution, which indicates that most nodes have roughly

the same number of links, approximately equal to the network’s average degree [16].

In contrast, a scale-free network has a power-law degree distribution, ∼ 
  ,

with a scaling exponent . In the case of     , a few hubs bind numerous

small nodes and the hubs may play a crucial role in the network. Recent published

papers have claimed that the protein-protein interaction networks have the

characteristics of a scale-free network [17-20]. In scale-free networks, most proteins

can be involved in only on a few interactions, while a small set of hubs relate to

dozens of interactions.

There have been several published works concerning proteins in biological

networks. Vendruscolo et al. [13] showed that protein structures have a small-world

network. They also identified that the key residues in the ensemble structures play

the key role of hubs in the network of interactions to stabilize the structure of the

transition state. In the short-range and long-range interaction networks in protein
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structures, Greene and Higman [14] calculated that the long-range interaction network

is not a small world. They also showed that its degree distribution has a scale-free

behavior indicative of a single-scale system. Atilgan et al. [15] investigated the

topological properties of the network in the core and surface of globular protein size;

the cores have the same local packing arrangements. Through example of a binding

protein, they refined how the small-world network is useful in the efficient and eff

ective dissipation of energy generated upon binding.

In this work, the network analysis of protein structures is treated to

understand and assess the possible relevance of various parameters. We study the

robustness of the topological properties of a biological network with various

parameters. We treat the structural classi cation across four major groups (e.g.,fi  ,  ,

 ,  groups.) as enumerated in the Structural Classi cation of Proteinsfi

(SCOP) [21]. We mainly estimate global network metrics such as the averaged

shortest path length, averaged clustering coefficient, local efficiency, global efficiency,

assortative coefficient, and modularity. These parameters constitute the structural

framework of proteins and provide the features of protein networks.
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2. GEOLOGICAL SYSTEM: Seismec Network of California in USA

Recently, the complex system [1-3,22] has recently been applied to research

new methods and high techniques in various scientific fields such as the intermittent

nature of turbulence [23-25], the various financial time series [26,27], the wavelet

transform approaches [28,29], the growing and non-growing networks [30,31], and the

seismic phenomena [32], and so on. For the last two decades, the remarkable

potential of complex networks to simulate and analyze the dynamical behavior of

complex systems has gradually been an increasing trend in new fields of research in

the social, natural, engineering, and medical sciences. In network theory, the

small-world and scale-free network models [33] have been studied widely in various

applications of the scientific fields. The two network models have played a crucial

role in complex phenomena [34-36]. Of the many systems of current interest, the

degree distribution for scale-free networks, is interesting because it follows the power

law and for random networks it decays faster than exponentially. In a biological

network, recent published papers have claimed that the protein-protein interaction

networks have the characteristics of a scale-free network [36-39]. In scale-free

networks, most proteins can deliberate only on a few interactions, while a small set

of hubs relate to dozens of interactions.

Seismicity is a phenomenon of the dynamical behaviors in complex seismic

time series [38-41], similar to a tsunami wave train. The shallow earthquake is well

known to reorganize and analyze the distribution in the relevant area that leads to

many aftershocks [38,42-46]. Furthermore, network theory is a topologically and

dynamically useful tool for investigating and analyzing a seismic system, which can

be simplified as processes for storing and transmitting energy via the crust. Abe and

Suzuki [30,31] have discussed the novel method, which uses the concept of complex

networks, and small-world and scale-free networks, for seismic complexity. Abe and

Suzuki also introduced a complex-network approach [47] to the seismicity, and they

showed that the earthquake network behaves like a complex network. Peixoto and

Prado applied the complex network approach to a self-organized criticality model.

They showed that a scale-free network was, in fact, realized by the model under
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certain conditions in the oceanic problems [35,36]. Recently, Baek et al. studied the

seismic network by considering the cell resolution and the temporal causality based

on seismic activity data for the Korean peninsula [39]. They mainly estimated and

analyzed several global network metrics.

In this work, we study the topological robustness of the seismic network

against the spatial shift and the scale in a volume (equal to cubic cell) which is

located on a tectonic plate without boundaries. We mainly estimate the global

network metrics such as the probability distribution of degree, characteristic path

length, mean clustering coefficient, small-worldness, cost efficiency, global efficiency,

modularity, and assortative coefficiency from the seismic data of southern California

of USA.
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3. GEOLOGICAL SYSTEM: Seismic Network of Japan

Complex system has recently been applied to research new methods and

high techniques [48-51] in various scientific fields such as the intermittent nature of

turbulence [23,25], the various financial time series [26,27], the wavelet transform

approaches [28,29], the growing and non-growing networks [30,31], and the seismic

phenomena [32], and so on. For the last two decades, the remarkable potential of

complex networks to simulate and analyze the dynamical behavior of complex

systems has gradually been an increasing trend in new fields of research in the

social, natural, engineering, and medical sciences. The seismic phenomena in the

network systems have performed diverse functions and also provided structural basis

in the crust of earth. Characteristically, the network metrics of the seismicity may be

supported to understand possible relevance of various seismic phenomena. The

universal and irregular properties of statistical quantities in seismic network do not

find unambiguously as yet, and this is an open problem that comes to a settlement.

In network theory, the small-world and scale-free network models [37] have been

studied widely in various applications of the scientific fields. The two network

models have played a crucial role in complex phenomena. For the many systems of

current interest, the degree distribution for scale-free network, is interesting because it

follows the power law and for random networks it decays faster than exponentially.

In a biological network, recent published papers have claimed that the protein-protein

interaction networks have the characteristics of a scale-free network [38,39]. In

scale-free networks, most proteins can deliberate only on a few interactions, while a

small set of hubs relate to dozens of interactions.

Seismicity is a phenomenon of the dynamical behaviors in complex seismic

time series [40,41], similar to a tsunami wave train. The shallow earthquake is well

known to reorganize and analyze the distribution in the relevant area that leads to

many aftershocks [38,43-46]. Furthermore, network theory is a topologically and

dynamically useful tool for investigating and analyzing a seismic system, which can

be simplified as processes for storing and transmitting energy via the crust.

Several authors [47,52,53] have tested the validity of seismic model by
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simulating specific configurations that are analytic methods to complex networks. That

is, Abe and Suzuki have discussed and analyzed the method, which uses the concept

of small-world and scale-free networks for seismic complexity. Abe and Suzuki also

introduced a complex-network approach [47] to the seismicity, and they showed that

the earthquake network behaves like a complex network. Peixoto and Prado [54,55]

applied the complex network approach to a self-organized criticality model. They

showed that a scale-free network was, in fact, realized by the model under certain

conditions in the oceanic problems. Recently, Baek et al. [53] studied the seismic

network by considering the cell resolution and the temporal causality based on

seismic activity data for the Korean peninsula [53]. They mainly estimated and

analyzed several global network metrics. The detection of statistical quantities within

seismic networks is an open subject of great interest for the unknown dynamics

governing seismicity as yet.

In this work, we study the topological robustness of the seismic network

against the spatial shift and the scale in a cubic cell which is located on a tectonic

plate without boundaries. We mainly estimate the global network metrics such as the

probability distribution of degree, characteristic path length, mean clustering

coefficient, small-worldness, cost efficiency, global efficiency, modularity, and

assortativity, from the seismic data of Japan.
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4. ECONOMIC SYSTEM: Visibility Network of Korea Stock Market

In the past time, complex systems are usually distinct from the interacting

and structural systems described by the periodic lattices in Euclidean space in many

aspects. Scientists have recognized that the graph or network for complex systems

has an intriguing structure and its peculiar property. Complex system has recently

been applied to research new methods and high techniques [1,56-58] in various

scientific fields such as the intermittent nature of turbulence [23-25], the various

financial time series [26,27], the wavelet transform approaches [28,29], the growing

and non-growing networks [30,31], and the seismic phenomena [32], the

protein-protein interactions [37], and so on. The remarkable potential of complex

networks to simulate and analyze the dynamical behavior of complex systems has

been diffusively and rapidly an increasing trend in fields of research such as the

social, natural, engineering, and medical sciences. For resent ten years, the visibility

graph has provided a tool in time series analysis of diverse properties and structures

mapping into in a network system. This network has inherited several properties and

structures of time series and its investigation has revealed nontrivial information about

the data of time series. Characteristically, the network metrics are able to be

supported to understand and analyze the possible relevance of various natural

phenomena.

In network theory, the small-world and scale-free network models have been

studied widely in various applications of the scientific fields. The two network

models have played a crucial role in complex phenomena. Of the many systems of

current interest, the degree distribution for scale-free networks, is interesting because

it follows the power law and for random networks it decays faster than

exponentially.

In recent years, the current economic crisis calls for a deeper understanding

of the dynamics of economic activities on the global economic network [59]. The

studies in this field can be classified into two types based on how the network is

constructed. The studies of the first type deal with many time series to form a

complex network with each node standing for a time series and the weight of a link
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between two nodes characterized by the correlation coefficient of the two time series

[60-62] or by the distance between the two time series [63,64].

Concerning the studies of the second type, different mapping methods have been

proposed to convert time series into different kinds of networks, including cycle

networks based on the local extrema and their distance in the phase space [65,66],

segment correlation networks [67,68], nearest neighbor networks [69], n-tuple

networks based on the fluctuation patterns [70,71], the visibility of nodes [72], space

state networks based on conformational fluctuations [73], and bin transition networks

[74], and recurrence networks. The visibility algorithm has been diversely used to

investigate stock market indices [75], human strive intervals [76], occurrence of

hurricanes in the United States [77], foreign exchange rates [78], and energy

dissipation rates in three-dimensional fully developed turbulence.



- 9 -

5. SOCIAL SYSTEM: Communicability Network for Authors of

Korean Meteorological Society

Network science has emerged and been utilized as one of the important

frameworks when each researcher studies complex systems [1-3,5,58,79,80]. An

important property of networks is the existence of modules or communities, and the

communicability between a pair of nodes in a network is concerned with the shortest

path connecting both nodes. Estrada et. al. [81] proposed a generalization of the

communicability by elucidating both for the shortest paths communicating between

two nodes and for all the other walks travelling between two distances. The

communicability detection allows one to determine potentially the unaware and hidden

relationships between nodes and also allows one to reduce a large complex network

into smaller and smaller groups. Presently, the community detection within networks

is an open subject of great interest. Complex networks are also ubiquitous in many

biological, ecological, technological, informational, and infrastructural systems

[4,41,82-86]. It is clear that the atomic, oscillating, and social systems display

network-like structures using the tools of statistical mechanics. These methods and

techniques were contributed to shed light on the structure and dynamics of social,

economic, biological, technological, and medical systems [87-89]. It is actually

recognized that the analogy functions that describe the properties depend mainly on

the structural properties of the system in networks as well.

Recently, an important issue in regards to networks has recently been the

cascade effect in both the ecological network and the multiplex network. The former

propagates well beyond the nearest neighbors of the extinguished species [90-92] with

protein protein interactions. The latter describes the fact that multiplex structures with–

different strength of coevolution respond differently to the cascade process,

exemplifying the dynamical signature that coevolution can imprint [93].

In this paper, we study the community structure of the Korean meteorological society

in the author network. The data we used are the published papers of 1,943 authors

from the Korean meteorological society publications in the author network, from

March 2008 to November 2013. We simulate and analyze four other kinds of

averaged communicability indices such as 
 , 

 , 
 , and 

 .
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II. METHODOLOGY

1. General Network Properties

Since the degree  of a node  is the number of nodes to which it is

directly connected, the average degree  of a network with  nodes is de ned asfi

  


  



. (1)

The averaged shortest path length(characteristic path length) is defined as

  


  

  


  



 , (2)

where  is the shortest path length between nodes  and  . We consider that

diameter of the network is the largest of all the shortest path lengths. If the averaged

shortest path length or the diameter is proportional to log , it can be ascertained

that the properties of a network satisfy the small-worldness. Furthermore, a network

has a small averaged clustering coefficient and having degree distribution of a

power-law form is known as the scale-free network [94].

The global clustering coefficient  is defined as the transitivity ratio, i.e.,

the fraction of the closed triplets to whole triplets. That is

 no of triplet
no of closed triplet

no of triplet
×no of triangle

. (3)

In another view point, the averaged clustering coefficient  is calculated as
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  


  



. (4)

Here, the clustering coefficient  for a node  is de ned as the fraction of linksfi

that exist among its nearest neighbor nodes to the maximum number of possible links

among them. That is

  
no of linked nearest neighbours

(5)

A network is a small-world network if it has a large value of the averaged

clustering coefficient and if its averaged shortest path length scales log [86]. As

another method for measuring the small-worldness, we can compute the

small-worldness  using the Eqs. (2) and (3), or Eqs. (2) and (4) as

 


, (6)

where  and  are, respectively, the mean clustering coefficient and the

characteristic path length of a random network constructed by randomizing the

empirical network under fixed links and nodes. The value in Eq. (6) is greater than

unity for a small-world network.

On the other hand, the global efficiency of networks is defined as follows.

We introduce the global efficiency  [95] as

  


  

  


   






. (7)

In contrast that the characteristic path length is the averaged shortest path

length in Eq. (2), the global efficiency is averaged reciprocal of the shortest path

length. Thus if there are many pairs that their shortest path lengths are large, the

efficiency is small.
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As we consider a network for the neighbors of node  , the local efficiency

  becomes the averaged value of the global efficiencies of the nearest neighbors of

node  as

   


  



 . (8)

Also, the cost efficiency is defined as

 possible

total
, (9)

where total and possible are the total number of edges (links) and the number of

all possible edges, i.e., possible    for  nodes network, respectively.

Now, the assortative coefficient is the Pearson correlation coefficient of the

degrees at either end of a link measures the tendency of degree correlation. The

assortative coefficient  is defined [96] as

  





  




  



 , (10)

where     
  



 . The index  and  are the degrees of nodes,  and

 are the remaining degree distributions,  is the joint distribution of the remaining

degrees of the two nodes at either end of a randomly chosen link, and 
 is the

variance of the distribution  . The assortative coefficient presents the tendency of

connectivity of high-degree nodes. This means the correlation coefficient of remaining

degree distributions that take a value between -1 and 1. The assortative coefficient is

negative in general networks if a high degree node tends to connect low degree

nodes.
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Lastly, modularity is a value of a community structure that is the number

of edges falling within groups minus the expected number in an equivalent network

with edges placed at random [97]. This is represented in terms of

 


  




  



 
  , (11)

where     if the node  exists in a group, and    if the node  does not

exist in another group. The quantity  is the number of edges between vertices 

and  it will normally be 0 or 1, although the larger values are possible in networks

where the multiple edges are allowed. The expected number of edges between  and

 if the edges are placed at random is , where  and  are the degrees of

the vertices, and is the total number of edges in the network.

From Eqs. (1) - (11), we simulate and analyze the topological measures of

a complex network in next section. These mathematical techniques can be employed

in the empirical investigation of diverse models.

2. Protein Contact Network in Biological System

In this section, we introduce the topological properties of networks in the

structural classification of proteins. First of all, we explain two coarse-grained models

of protein structure controls that are manipulated in our studies as follows: we model

the native-state protein structure as a network consisting of its constituent amino

acids and their non-covalent interactions. The Protein Contact Network (PCN) is a

graph-theoretical representation of protein structure, in which each amino acid is a

node and the spatial proximity of any two amino acids is a link between them. Any

two amino acids are considered to be in a spatial contact if the distance between

their atoms was less than or equal to the value of 8Ǻ selected in our case. We may

select these distances to be less than or equal to 5Ǻ, 6Ǻ, or 7Ǻ arbitrarily [13-15]

in other future researches [98]. The choice of distances can be based on the range at
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which non-covalent interactions are effectively responsible for the polypeptide chain to

fold into its native state.

3. Seismic Network in Geological System

We mainly consider the theoretical background of the various global

network metrics. First of all, in order to construct a seismic network, we consider a

network by segmenting the whole region into three-dimensional cells (cubes) and

making a link between consecutive events. Each cell is regarded as node of a

network, and the network constructed in that manner is basically directed, but we

transform it into an undirected one because we focus on the topology of the

network. The procedure is as follows:

( ) Segment the whole region into cubic cells, each of which has the same size.Ⅰ

( ) Link two earthquakes occurring consecutively.Ⅱ

( ) If two consecutive events belong to the same cell, their link is disregarded.Ⅲ

( ) If two directed links form between two cells, the number of links is countedⅣ

as one [32].

( ) By considering each cell as a node, we regard the links made by all eventsⅤ

belonging to the cell with others in another cell as links of a network.

4. Visibility Network in Economic System

In this work, we study to which extent the method and its technique of

visibility graph theory are useful as a way to characterize time series of the KOSPI

and the KODAQ in Korean financial markets. We mainly estimate the important

global network metrics such as the global efficiency, the modularity, the assortativity,

and so on, and we perform the numerical calculation and its analysis.

In financial networks, we construct the visibility network according to the following
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prescriptions: (1) We firstly connect each node seeing at least its nearest neighbors

(left and right). (2) There is no direction defined in the links as the way that the

algorithm is built up. (3) Lastly, under affine transformations of the series data, the

visibility criterion is invariant under rescaling of both horizontal and vertical axes,

and under horizontal and vertical translations. In a financial market, we recall the

visibility criteria [72] as follows: two arbitrary data values of a stock market index

 and   will have visibility, and consequently will become two connected

nodes of the associated graph, if any other data   placed between them fulfills.

That is, the relation is given by

  

  
 

  
. (12)

It is well known that the visibility graph of a time series remains invariant

under several transformation of the time series. The original time series with visibility

links present as the translation of the data, the vertical rescaling, the horizontal

rescaling, and the addition of a linear trend to the data. Hence, the visibility graphs

for all these cases remain invariant.

5. Network Communicability in Social System

In this section, we mainly consider the theoretical methods of microscopic

communicability in networks. First of all, let us introduce the concept of

communicability in networks by describing a community structure. The

communicability structure can invoke the concept of walks in networks. A walk of

length  is a sequence of nodes  ,  , ...,  such there is a link from   to

 for each       [99]. Using the concept of walk we can define the

communicability between two nodes. That is, the communicability between the nodes

 and  in a network is the weighted sum of all walks starting at node  and
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ending at node , in which the weighting scheme gives more weight to the shortest

walks than to the longer ones. The communicability function [80] is represented in

terms of

  
  

∞


. (13)

Here,  is the adjacency matrix, which has unity if the nodes  and  are linked

to each other, but has zero otherwise. The adjacency matrix   gives the number

of walks of length  starting at the node  and ending at the node  [100,101].

The two novel communicability functions are calculated as


  

  

∞



 
  (14)

and


  

  

∞


  

  

∞

    
  , (15)

where  is a matrix function that can be defined using the following Taylor series

[102]. The communicability function  is obtained by using the weighted adjacency

matrix   ×  . Centrality measures were originally introduced in social

sciences [103,104] and are now widely used in the whole field of complex network

analysis [83].

First of all, let us consider every node as one oscillator of mass  and every link

as a spring with the spring constant  connecting two oscillators. The oscillator

network is submerged into a thermal bath at the temperature  , and then the

oscillators in the complex network oscillate under thermal disturbances. We introduce

a Hamiltonian of the oscillator network such as
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 
  

 











 









 



   
 , (16)

where  is the number of links that are connected to the node  and  is a

constant satisfying ≥ max . The first term of the right-handed side takes two

terms as both the kinetic energy of the oscillator  and a counter term that offsets

the movement of the network as a whole by tying the network to the fat. The

second term of the right-handed side is the potential energy of the springs connecting

the oscillators, because − is the extension or the contraction of the spring

connecting the nodes  and  .

Instead of the Hamiltonian  in Eq. (16), let us next reconsider the Hamiltonian

of the oscillator network in the form

 
  













 



   
 . (17)

Because the Hamiltonian  lacks the springs that tie the whole network to the flat,

this network can undesirably move as a whole. Next, we can expand Eq. (17) as

 
  
















 



 


  













 



 , (18)

where  denotes an element of the network Laplacian  . This is often used in

analyzing diffusion phenomena on complex networks.

In the network of classical oscillators, we consider the Hamiltonian of the form as
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 



  




 




 








  , (19)

where       
 and  is the identity matrix. After arranging several

processes, we can derive the communicability function as


   (20)

with the identification    . A correlation between two node displacements in a

network is represented in terms of

 

     . (21)

This represents a correlation between the node displacements in a network due to

small thermal oscillations [105,106]. From the fact that the Laplacian matrix of a

connected network has a non-degenerate zero eigenvalue, we can calculate another

correlation function as


 


  , (22)

where   is the Moore Penrose generalized inverse of the Laplacian.–

In a network of quantum oscillators, we start by considering the

quantum-mechanical counterpart of the Hamiltonian  . With the use of several

operators, we can recast the Hamiltonian in Eq. (16) into the form

 
  



 
  




 




  

 . (23)

We use the boson creation and annihilation operators defined by
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
 

  

 and  

  

, where

  , and the commutation relation is given by  
   . After

arranging several equations, we can see that


  exp

  (24)

The diagonal thermal Green’s function is given in the framework of quantum

mechanics, and we can compute the off-diagonal thermal Green’s function as


  exp 




exp


. (25)

Note that the constant  affects only the proportionality constant through

Ω  ω in Eq. (25). This means that when the temperature tends to infinity or

→ , there is absolutely no communicability between any pair of nodes. That is,


→  . If we consider the case when the temperature tends to zero or

→∞ , then there is an infinite communicability between every pair of nodes, i.e.,


 →∞∞ . Furthermore, the communicability function gives


    , (26)

where the same quantum-mechanical calculation by using the Hamiltonian  in Eq.

(17) gives


 




exp


. (27)

From Eqs. (26) and (27), the communicability function 
 gives 

   upon

setting    [80]. Lastly, we simulate and analyze the averaged
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communicability function [80] for a given node defined as

 






. (28)

Consequently, from Eqs. (19) and (21), the communicability functions 
 and 



become the types of the thermal Green’s function of classical harmonic oscillators in

networks of the community structure. The communicability functions 
 and


 also become the types of the thermal Green’s function in quantum harmonic

oscillators from Eqs. (24) and (26). We will make use of communicability functions

to compute the measures of a community structure, and these mathematical techniques

will lead us to more general results. In the subsequent section, we will simulate and

analyze four other kinds of averaged communicability functions such as 
 , 

 ,


 , and 

 .
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III. RESULTS OF NETWORK PROPERTIES

IN SCIENTIFIC PHENOMENA

1. BIOLOGICAL SYSTEM: Protein Contact Network of Amino Acid

We introduce the native-state protein structure as a network consisting of its

constituent amino-acids and their interactions in the Structural Classi cation offi

Proteins [21]. The C atom of an amino acid has been used as a node and two such

nodes are said to be linked if they are less than or equal to a threshold distance

apart from each other [13,15], here we use 8Å as this threshold distance. It is

well-known that proteins are composed predominantly of  helices and of  sheets.

The   proteins mainly have anti-parallel  sheets, whereas  proteins consist

of mainly parallel sheets. We will treat the four structural classes of proteins asβ  ,

 ,  , and  in this paper. The structural classification across the four groups

is enumerated in the Structural Classification of Proteins. The proteins that we

consider consist of 2,879 ’s, 2,786 ’s, 3,491  ’s, and 3,456  ’s. The

number of residues of each protein is from 27 to 10,432. The structural data is

extracted from the Protein Data Bank (PDB) [107].
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Fig. 1.1: Degree distributions of the  (circle),  (triangle),  (square), and

 (diamond) groups. These functional forms have a uni-modal Poisson-like

distribution.
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Fig. 1.2: Averaged shortest path length  as a function of the number of nodes 

plot for each group with logarithmic scales. Here the circle, triangle, square, and

diamond designate the  ,  ,   , and  groups, respectively.

(a) (b)

Fig. 1.3: (a) Local clustering coefficient  for each group scale logarithmically with

 . (b) Global clustering coefficient  for each group scaled logarithmically with  .

Here the circle, triangle, square, and diamond designate the  ,  ,  , and 

groups, respectively.
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The distribution of the degrees is an important property which characterizes

network topology. The degree distribution of a random network is presented by a

Poisson distribution. Figure 1.1 shows the degree distributions of  ,  ,  , and

 protein networks. These distributions are caused by the functional structure of

the protein. The average degrees of the  ,  ,   , and  groups are calculated

as 9.23±0.81, 9.79±0.80, 9.62±0.72, and 10.06±0.65, respectively. The shape of these

distributions is a bell-shaped Poisson form [14].

We calculate the averaged shortest path length  and its random graph for the

observed proteins. Figure 1.2 shows the averaged shortest path length  of four

protein networks and of these random controls with logarithmic scales. We find that

log is approximately proportional to log for four protein groups. It is furthermore

ascertained from the random controls that the characteristic path length  is

proportional to log . In this case we cannot represent that small-worldness as the

characteristic path length has a large value.

We investigate the local and global clustering coefficients of the networks.

Figures 1.3(a) and 1.3(b) show that the clustering coefficients  and  of the

proteins are larger values that those of the random controls. Since an averaged

clustering coefficient characterizes the local organization, the  and  are expected

to fall with increasing size [108] for both random controls. It is shown [15] that the

 remains almost the same in the core of the protein regardless of size. A similar

result [20] is shown for the metabolic networks of 43 distinct organisms. This

property is suggestive of potential modularity in the topology of protein networks.

The averaged local and global clustering coefficients are, respectively, 0.554±0.028

and 0.503±0.023 in the protein networks, while those for the random controls have

values of 0.036±0.033. The Kolmogorov-Smirnov test [109] shows that the differences

between  and  for the four gropes of proteins and random controls are

statistically significant. Thus, the protein networks have significantly larger clustering

coefficients rather than their random counterparts, and are found to make up

small-world networks.
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Fig. 1.4: Assortative coefficient  of the four protein groups as a function of  .

Here the circle, triangle, square, and diamond designate the  ,  ,  , and 

groups, respectively.

Fig. 1.5: Modularity  as a function of  . Here the circle, triangle, square, and

diamond designate the  ,  ,   , and  groups, respectively.
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(a) (b)

Fig. 1.6: (a) Global efficiency  and (b) local efficiency  for the four gropes of

proteins and random controls. Here the circle, triangle, square, and diamond designate

the  ,  ,  , and  groups, respectively.

Figure 1.4 shows the assortative coefficient of the four protein groups. Our

assortative coefficient has positive values in the complex network. The averaged

values of our proteins are approximately 0.361±0.082. Figure 1.5 shows that the

modularity  increases as  increases. The values of the four groups are distinct

from the random networks. In the random network, the modularity is almost constant

as  increases. However, the modularity of the proteins is significantly large as an

increasing function of  . The averaged values for the four protein groups and

random controls are 0.726±0.097 and 0.296±0.014, respectively.

As shown in Figure 1.6, the averaged values as a function of  for the

global and local efficiencies of each protein group are 0.235±0.084 and 0.763±0.014,

respectively. On the other hand, the averaged values for the global and local

efficiencies of random controls are 0.382±0.062 and 0.545±0.187, respectively. Thus

we confirm that the local efficiencies are significantly large but the global efficiencies

are significantly small based on the Kolmogorov-Smirnov test.
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2. GEOLOGICAL SYSTEM: Seismic Network of California in USA

To discuss the earthquake networks based on the five years seismic data

taken in southern California of the USA, the data source is the Advanced National

Seismic System (http://www.ncedc.org/anss/catalog-search.html). The time interval is

between 00:36:42 on the 1st of January 2006 and 23:55:30 in the 31th of December

2010. The region covered is 32°N - 42°N latitude and 114°W - 124°W longitude to

the depth of 100 km . Because we exclude artificial quarry blasts from the data, the

data for the total numbers of events is 245,010 and contains only events with a

magnitude larger than zero.

We construct an earthquake network by segmenting the whole region into

three-dimensional cells and making a link between consecutive events. Each cell is

regarded as node of a network, and the network constructed in that manner is

basically directed, but we transform it into an undirected one because we focus on

the topology of the network. The procedure is as follows: (1) we segment the whole

region into cubic cells, each of which has the same size. (2) Link two earthquakes

occurring consecutively. (3) If two consecutive events belong to the same cell, their

link is disregarded. (4) If two directed links form between two cells, the number of

links is counted as one. (5) By considering each cell as a node, we regard the links

made by all events belonging to the cell with others in another cell as links of a

network.

In order to examine the robustness of a network topology against spatial

shifts and scales in volume, we simulate and analyze the regions between 3 km and

100km . We select several cell widths in Table 2.1, and the numerical computations

for statistical quantities are typically performed from seismic time series data taken in

southern California of USA. Moreover, the characteristic path length, mean clustering

coefficient, global efficiency, modularity, and assortative coefficient for both our

data’s network and a random network is in fact compared and analyzed.
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Table 2.1: Numerical computation of statistical quantities performed from seismic time

series data taken in southern California of USA. Here,  , ,  ,  ,

and  denote the characteristic path length, mean clustering coefficient, global

efficiency, modularity, and assortative coefficient of a random network, respectively,

and  denotes a number of nodes.

cell
width
(km )

              

3 32,629 0.0003 10.415 3.142 4.694 0.259 0.0003 71.321 0.331 0.218 0.284 0.269 0.136 0.0002

6 13,964 0.0012 16.933 2.726 3.683 0.452 0.0013 38.746 0.384 0.279 0.196 0.211 0.136 0.0008

12 4,794 0.0061 29.226 2.447 2.836 0.635 0.0062 23.162 0.428 0.364 0.127 0.168 0.243 0.0041

24 1,248 0.039 48.524 2.124 2.107 0.765 0.039 8.743 0.492 0.495 0.082 0.127 0.374 0.0007

48 341 0.171 57.977 1.858 1.83 0.827 0.17 3.145 0.581 0.585 0.079 0.101 0.451 0.0014

96 95 0.45 42.295 1.551 1.55 0.852 0.45 1.617 0.725 0.725 0.068 0.086 0.412 -0.027

Fig. 2.1: Degree distribution as a function of degree . The distribution follows a

power-law with the slope is 1.35.–
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Fig. 2.2: Characteristic path length as a function of cell width, where the circle

denotes the empirical data and the cross the random network. The slope (blue line)

is 0.42.–

Fig. 2.3: Mean clustering coefficient as a function of cell width, where the circle

denotes the empirical data and the cross the random network. The slope (blue line)

is 0.07.
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Fig. 2.4: Small-worldness as a function of cell width.

Fig. 2.5: Cost efficiency as a function of cell width, where the circle denotes

empirical data and the cross the random network, and the value of slope (blue line)

is 1.75.
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Fig. 2.6: Global efficiency as a function of cell width, where the circle denotes

empirical data and the cross the random network, where the slope (blue line) is

+0.28.

Fig. 2.7: Modularity as a function of cell width, where the circle denotes empirical

data and the cross the random network.
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Fig. 2.8: Assortativity as a function of cell width, where the circle denotes our data

and the cross the random network.

We typically perform the numerical computations for eight statistical

quantities given by Eqs. (1) - (11). Figure 2.1 is the plot of the number of degree

distribution versus as a function of cell width, and the line has a slope of -1.35.

Figure 2.2 shows the characteristic path length that the two slopes for our data and

random network approaches to -0.42 as the cell width goes to 100km . As shown in

Figure 2.3, the mean clustering coefficient for our data and random network are

increased as the cell width is increased, and the value of mean clustering coefficient

for our data approaches to 0.07. The small-worldness value for our data is decreased

as the cell width is increased in Figure 2.4. The slope of cost efficiency for our data

has +1.75 as the cell width goes to 100km in Figure 2.5. As shown in Figure 2.6,

the slope of global efficiency for our data and random network has the same value

of +0.28 in the cases of the cell width larger than 30km . Figure 2.7 is the plot of

the modularity  as a function of cell width, and the functional form of empirical

data and random network has the similar linear decay. Figure 2.8 is the plot of the

assortativity , and the assortativity for empirical data has its values between -0.1

and -0.5, while that for random network approaches to zero. This means that the

seismic network of California is anti-assortative with its mere statistical significance.
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3. GEOLOGICAL SYSTEM: Seismic Network of Japan

To discuss the earthquake networks based on the seismic data taken in

Japan, the data source is the Japan Meteorological Agency

(http://www.jma.go.jp/jma/indexe.html). The time interval is between the 5th of March

2003 and the 31th of December 2012. The region covered is 17.95°N-49.30°N

latitude and 120.05°W-156.05°W longitude to the depth of 671km . Because we

exclude artificial quarry blasts from the data, the data for the total numbers of events

is 1,471,803 and contains only events with a magnitude larger than zero.

We summarize the statistical quantities performed from the seismic network

of Japan at the five cell widths regions between 5km and 80km in Table 3.1, and

both our data’s network and a random network can be in fact compared and

analyzed.

Table 3.1: Numerical computation of statistical quantities performed from seismic time

series data taken in Japan. Here, Lran , Cran, Eran , Qran , and rrandenote the

characteristic path length, mean clustering coefficient, global efficiency, modularity,

and assortative coefficient of a random network, respectively, and N denotes a

number of nodes. Here, we treat these statistical quantities at the five cell widths

(5km , 10km , 20km , 40km , and 80km ).

cell
width
(km )

              

5 216,357 5.38E-05 11.64 3.62 5.28 0.083 5.59E-05 2171.99 0.285 0.193 -0.081 -7.16E-04 0.280 0.253

10 82,831 3.21E-04 26.58 3.10 3.79 0.201 3.28E-04 746.37 0.333 0.269 -0.144 2.01E-04 0.160 0.167

20 24,904 0.0025 62.61 2.72 2.85 0.461 0.0025 191.39 0.382 0.359 -0.240 -8.03E-05 0.089 0.113

40 6,624 0.0167 110.61 2.42 2.14 0.751 0.0167 39.71 0.435 0.483 -0.376 -1.56E-03 0.066 0.085

80 1,663 0.0606 100.80 2.15 1.94 0.879 0.0608 13.08 0.495 0.530 -0.502 2.18E-03 0.091 0.084
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Fig. 3.1: Degree distribution as a function of degree . The distribution follows a

power-law with the scaling exponent -1.16.

Fig. 3.2: Plot of the mean degree as a function of cell width, where the slope (black

line) is +3.31 (-0.56) in the cell width smaller (larger) than 33 (54) km .
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Fig. 3.3: Characteristic path length versus as a function of cell width, where the

circle denotes our data and the triangle the random network, and the slope (black

line) is -0.18.

Fig. 3.4: Mean clustering coefficient as a function of cell width, where the circle

denotes our data and the triangle the random network. The slope is 0.025 for the

cell width smaller than 25km , and the slope is 0.001 for that larger than 55km . The

phase transition appears between 25km and 55km .
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Fig. 3.5: Small-worldness as a function of cell width for our data, and the slope

(black line) is -1.92.

Fig. 3.6: Cost efficiency as a function of cell width. The slope for our data have

2.87 (1.25) for cell widths smaller (larger) than 28 km. Here, we have a phase

transition at cell width 28 km .



- 37 -

Fig. 3.7: Global efficiency as a function of cell width, where the circle denotes our

data and the triangle the random network, where the slope (black line) is 0.19.

Fig. 3.8: Plot of the assortativity as a function of cell width, where the circle

denotes our data and the triangle the random network.
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Fig. 3.9: Modularity as a function of cell width, and the circle denotes our data and

the triangle the random network. Here we have a phase transition at cell width 33

km , and the slope has -0.71 (0.44) for cell widths smaller (larger) than 125km .

We typically perform the numerical computations for eight statistical

quantities given by Eqs. (1) - (11). Figure 3.1 is the plot of degree distribution

having the scale-free network as a function of cell width, and the line has a slope of

-1.16. Figure 3.2 plots the mean degree as a function of cell width. The slope is

+3.31 in the cell width smaller than 33km, and the slope is -0.56 in the cell width

larger than 54km .

Figure 3.3 shows the characteristic path length that the two slopes for our

data and random network approaches to -0.39 as the cell width goes to 100km . As

shown in Figure 3.4, the mean clustering coefficient has almost linear slope for the

cell widths smaller than 25km and larger than 55km . It may be inferred that there

exists one phase transition for the cell widths between 25km and 55km .

The small-worldness value for our data is decreased as the cell width is

increased in Figure 3.5, and its slope has -1.92 as the cell width goes to 102 km.

The values decrease monotonously from 2,272 to 9.97. Since the values are much
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larger than 1, it satisfies the small-worldness property. In Figure 3.6, there is one

phase transition for the cost efficiency at cell width 28km approximately. The slopes

for our data have 2.87 for cell widths smaller than 28km and 1.25 for cell widths

larger than 28km , respectively. As shown in Figure 3.7, the slope of the global

efficiency for our data has 0.19, not similar to the random controls.

Figure 3.8 is the plot of the assortativity r as a function of cell width, and

the modularity has its values between -0.082 and -0.502, while that for random

network approaches to zero. Since the values for the assortativity are smaller than

zero, we suggest that the seismic network of Japan is not assortative, i.e., the rich

nodes have a tendency to be connected to the poors. Figure 3.9 is the plot of the

modularity Q as a function of cell width, and we particularly have a phase transition

at cell width 33km , similar to the cost efficiency.
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4. ECONOMIC SYSTEM: Visibility Network of Korea Stock Market

To discuss economic networks based on financial data, we use the KOSPI

and KOSDAQ of the Korean financial market. We extract the price of all stocks

from the KOSPI and KOSDAQ that were exchanged on the Korean stock market

during a period 1996 2014. We typically perform the numerical computations for–

the global efficiency, the assortative coefficient, and the modularity given by Eqs. (7),

(10), and (11).

Table 4.1 summarizes the values of eight statistical quantities for the KOSPI

and KOSDAQ.
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Table 4.1: Numerical computation of statistical quantities performed from (a) the

KOSPI and (b) the KOSDAQ. Here, the  ,  ,   ,  ,  ,   ,  ,

 ,  and  denote, the average values of the characteristic path length,

global clustering coefficient, small-worldness, global efficiency, modularity, and

assortativity in financial networks, and their random control, respectively.

(a) KOSPI

  
Slope of
degree

distribution
            

1000 20.238 -1.337 3.770 2.632 0.657 0.021 22.056 0.301 0.401 0.560 0.203 0.227 -0.007

1500 18.816 -1.458 4.292 2.790 0.666 0.012 34.805 0.264 0.374 0.657 0.217 0.252 0.001

2000 19.343 -1.536 4.467 2.851 0.663 0.009 43.312 0.252 0.365 0.723 0.211 0.226 0.004

2500 21.458 -1.483 4.353 2.846 0.657 0.008 49.082 0.256 0.364 0.671 0.202 0.212 -0.003

3000 22.844 -1.486 4.355 2.854 0.657 0.007 58.276 0.259 0.362 0.655 0.192 0.195 -0.003

3500 22.480 -1.551 4.657 2.904 0.653 0.006 65.003 0.242 0.355 0.680 0.193 0.218 -0.002

4000 22.171 -1.592 4.894 2.952 0.655 0.005 72.954 0.231 0.349 0.725 0.192 0.209 -0.006

4500 20.850 -1.645 5.261 3.043 0.662 0.004 84.821 0.217 0.339 0.744 0.190 0.240 -0.015

4650 20.502 -1.656 5.301 3.072 0.664 0.004 88.321 0.214 0.336 0.741 0.194 0.247 0.003

(b) KOSDAQ

  
Slope of
degree

distribution
            

1000 29.478 -1.124 3.461 2.377 0.617 0.029 14.164 0.343 0.446 0.429 0.163 -0.180 0.005

1500 29.034 -1.249 3.819 2.539 0.617 0.018 21.981 0.304 0.416 0.601 0.164 -0.171 0.004

2000 28.429 -1.337 3.902 2.643 0.624 0.014 29.514 0.294 0.397 0.621 0.171 -0.196 -0.007

2500 34.590 -1.302 3.830 2.597 0.607 0.013 29.517 0.299 0.405 0.557 0.153 -0.188 0.005

3000 33.918 -1.336 3.900 2.662 0.611 0.011 36.325 0.292 0.393 0.581 0.156 -0.172 -0.006

3500 32.689 -1.397 3.994 2.720 0.613 0.009 44.325 0.283 0.382 0.615 0.160 -0.145 0.004

4000 31.971 -1.410 3.983 2.761 0.616 0.007 54.325 0.282 0.375 0.609 0.162 -0.144 0.001

4500 31.785 -1.416 3.974 2.788 0.617 0.006 62.197 0.281 0.371 0.607 0.162 -0.143 -0.001

4650 31.660 -1.421 3.993 2.796 0.618 0.006 63.768 0.280 0.369 0.605 0.164 -0.145 0.005
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Fig. 4.1: Degree distribution of the KOSPI data (top) and the triangle the KOSDAQ

data (down) versus as a function of . The distributions follow a power-law with the

scaling exponents -1.656 and -1.421.
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Fig. 4.2: Global efficiency as a function of the node, where the circle denotes the

KOSPI data and the triangle the KOSDAQ data.

Fig. 4.3: Modularity as a function of the node, where the circle denotes the KOSPI

data and the triangle the KOSDAQ data.
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Fig. 4.4: Assortative coefficient as a function of the node, where the circle denotes

the KOSPI data and the triangle the KOSDAQ data.

Figure 4.1 is a plot of degree distribution of the KOSPI and the KOSDAQ.

The degree distribution of the KOSPI shows a power law with the scaling exponent

-1.656 while that of the KOSDAQ shows a power law with the scaling exponent

-1.421. These are the slopes of the degree distribution when the node is    .

In Figure 4.2, we show the global efficiency of the KOSPI and the KOSDAQ. The

value of the KOSPI decreases monotonously from 0.301 to 0.214 while the value of

the KOSDAQ decreases monotonously from 0.343 to 0.280. Figure 4.3 is a plot of

the modularity as a function of the node. The value of the KOSPI increases

monotonously from 0.195 to 0.247 while the value of the KOSDAQ increases

monotonously from 0.560 to 0.744. In Figure 4.4, we show the plot of the

assortative coefficient of the KOSPI and the KOSDAQ as a function of the node.

Similar to the modularity, the value of the KOSPI increases monotonously from

0.195 to 0.247 while the value of the KOSDAQ increases monotonously from -0.180

to -0.143. Hence, we show that the KOSPI is more assortative than the KOSDAQ.
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5. SOCIAL SYSTEM: Communicability Network for Authors of

Korean Meteorological Society

We deal with the 2,508 proceeding papers and 1,943 authors (these are the

nodes of the network) in conferences of the Korean meteorological society from

March 2008 and November 2013.

We implement the computer-simulation of the four communicability functions

from Eqs. (14), (15), (22), and (26).

Table 5.1: Values of the averaged communicability functions and the weight of

community ( ), where these are normalized values divided by the maximum value

of each factors for the 200-th, 400-th, ..., and 1,800-th authors, respectively.

Sequent order
of author

 
 

 
 



200 0.0374 0.085 0.070 0.997 0.115

400 0.098 0.001 0.030 0.967 0.055

600 0.017 0.005 0.020 0.925 0.037

800 0.018 0.007 0.015 0.838 0.016

1000 0.010 0.002 0.010 0.757 0.021

1200 0.031 0.002 0.008 0.612 0.014

1400 0.006 0.001 0.005 0.518 0.011

1600 0.006 0 0.004 0.451 0.006

1800 0.003 0 0.004 0.423 0.008
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Fig. 5.1: Color map diagram of relative communicability function matrices 
 (top)

and 
 (down) for major 500 members of the author network.
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Fig. 5.2: Values of averaged communicability functions, 
 , 

 , 
 , and


 for four beta values. Here, note that 

 increases as the other indices

decrease.

Table 5.1 summarizes the values of the averaged communicability functions

and the weight of community for 200-th, 400-th, ..., and 1,800-th authors,

respectively. These values are normalized values divided by the maximum value of

each factors. The value of 
 for two authors, 1,600-th, and 1,800-th authors,

approaches to zero. We find that the 
 have relatively hight values compared to

the other communicabilities for each author.

Figure 5.1 shows the color-map diagram of the communicability function

matrices 
 and 

 for major 500 members of 1,943 authors for the Korean
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meteorological society publications, among four communicability functions [25]. If two

members are highly correlated, the representation approaches the color red. If they

are weakly correlated, the representation approaches dark blue.

From Eq. (28), we can simulate four averaged communicability functions.

Figure 5.2 is the plot of the averaged communicability functions for 1,943 members

of the author network for four beta values. We assume that the weight of the

community for the primary author is twice of the other authors. For instance, if a

paper is made by  authors, then the weight of the primary author is

   and that of the other authors are    . Then, sum

of all weight of community is exactly  for the paper. We treat the values of the

averaged communicability functions such as the 
 , 

 , 
 , and 

 . It is

actually known that the 
 increases as the other functions decrease, and here we

calculate 
 instead. We now speculate that the phase transition among these

functions may exist near the 200-th authors. Next time, we aim to find it through

networks of other societies.
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IV. CONCLUSION

Complex network theory is developed dramatically in past decades. The

main concern is translated to the non-equilibrium, dynamics, evolution, etc. We have

studied the dynamics of network properties with several statistical quantities in some

scientific phenomena.

First, we have studied the protein contact network of amino acid in

biological system. General measures of network, i.e., characteristic path length,

clustering coefficient, efficiency, modularity, and assortativity, reflected the topological

characteristics of biological networks, different from the random controls in biological

structures. We examined introduce four major protein groups ( ,  ,  , and

 ) enumerated in the Structural Classification of Proteins to characterize the

networks in this work. Our results showed that protein structures have small-world

networks regardless of their structural classification across four major groups [111].

Particularly, the average values for the distribution of local and global clustering

coefficients are, respectively, 0.554±0.028 and 0.503±0.023 in the protein networks.

The average degrees of the  ,  ,   , and  groups are calculated to have

similar values near 10. The specific restrictions are responsible for the emergence of

different classes of networks with characteristic degree distributions [112]. It was

observed that the preferential attachment to vertices in many real scale-free networks

can be hindered by factors like ageing of the vertices (e.g. actor networks) [113,114],

cost of adding links to the vertices, or the limited capacity of a vertex (e.g. airports

network) [115,116]. Specifically the averaged local and global clustering coefficients

have values near 0.5 in the protein networks, while the random controls have the

same values as 0.036. The averaged value of modularity for the four protein groups

is larger than that of the random controls. We also found that averaged value for

global efficiency smaller than that of random controls, while the averaged value of

local efficiency is larger than that of random controls. It has been recognized that

the results obtained from biological networks were related to the small-world or

scale-free networks between degrees, but we found that the small-world structure

existed in protein networks. Our findings support the idea that the recent network
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approaches to biological networks is very reliable. In the future, the formalism of our

analysis will be useful as it can be extended to both the discrimination and the

characterization of various bio-networks.

Second, we have examined the topological properties of the earthquake

network in geological system by using the seismic data from southern California in

the USA. Our estimated metrics were found by using network theory, and we

ascertained that there is no hierarchy structure in the seismic network. In present, our

result is one trial for several statistical quantities of the seismic network unstudied.

The universal and irregular properties of seismic network are not found, but it may

be in future anticipated to deduce these properties as many researchers simulate and

analyze several methods and high techniques in scientific fields of seismic networks

[117-119], different from the small-world network and the scale-free network. We

believe that the idea by which this result is obtained may be a useful starting point

for a new approach to understanding the topological properties of network theory in

the seismology. Our findings support the finding that a recent network approach to

seismic analysis is very reliable in three-dimensional cells. Our hope is that our

analysis will be extended to both the discrimination and the characterization of

various earthquakes in other nations.

Third, we have treated the seismic network in geological system by

considering the volume resolution and the temporal causality. We have examined the

topological properties of the earthquake network by using the seismic data from

Japan. Our estimated metrics are found by using the network theory, and we

ascertain that there is no hierarchy structure in the seismic network. Furthermore, the

statistical quantities in network theory turn out that these scaling exponents have not

invariant or universal properties as yet from our result. In present, our result is one

trial for several statistical quantities of the Japanese seismic network studied and

analyzed, and we particularly have a phase transition for the cost efficiency and the

modularity. Interestingly, the mean clustering coefficient tends to increase as the cell

width goes to 100km . We had the values between 0.85 and 0.90 in the cell-widths

between 60km and 100km for our data, while Abe and Suzuki [120] amazingly

discovered the universal ∼ scaling with respect to dimensionless cell-size in



- 51 -

the three-dimensional networks of California and Japan. The universal and irregular

properties of seismic network are not found as yet from our data, but it may be in

future anticipated to deduce these properties as many researchers simulate and analyze

several methods and high techniques in scientific fields of seismic networks

[117,119-121], different from the small-world network and the scale-free network. We

believe that the general idea by which this result is obtained may be the point of a

subject for a new approach to understanding and developing the topological properties

of network theory in the seismology field. Our findings supports that a recent

network approach to seismic analysis is very useful and reliable in three-dimensional

cells. It is anticipated that our analysis will be extended to both the discrimination

and the characterization of various earthquakes in other Continents.

Forth, we investigate the network metrics in a time series of the KOSPI

and the KOSDAQ indices converting by the visibility algorithm as an economic

system. The KOSPI and the KOSDAQ by adopting the visibility algorithm is

proportional to a power law rather than the Poisson distribution. We mainly simulate

and analyze the network metrics from the nodes and its links in the financial

networks. The increases of the assortative coefficient and the modularity would

particularly be targets comparable to other statistical quantities in future. The

universal and irregular properties of statistical quantities in financial network do not

find unambiguously, but it may be inferred that these topological properties improve

by implementing the statistical method and its technique from registered data of

financial networks. We cannot find the statistical quantities behave regularly and

phase-transitionally with the node in the visibility algorithm [122,123] of Korean

financial markets, but the increases of the assortative coefficient and the modularity

would particularly may become attractable targets compared to statistical quantities of

other different fields in future. We believe that the general idea by which this result

is obtained may be the point of a subject for a new approach to understanding and

developing the topological properties of network theory in financial markets. Our

findings support that a recent network approach to our analysis is very useful and

reliable in financial markets. It is anticipated that our analysis will be extended to

both the discrimination and the characterization of various markets in other nations.
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Lastly, we have studied the community structure of Korean meteorology

fields in the 1,943 author networks of all Korean meteorological society proceedings

in conferences from March 2008 to November 2013 as a social system. We mainly

implemented the computer-simulation of the four communicability functions. To

compare the four averaged communicability functions, it was shown that the 


constructs a stronger community structure rather than the other three. The function


 finds the community structure weaker than the other three as well. We can

make use of the four averaged communicability functions to compute the measures of

a community structure, and it is hoped that our method and technique will lead us to

more general results in the future. It is not trustworthy now, but we anticipate that

the phase transition among the averaged communicability functions may exist at one

value near 200-th authors. Our results cannot yet be compared to that of other social

networks, but we hope to compare to our results to other successful results in social

networks that have been prominently produced and published. Next time, we hope to

discuss the phase transition of the averaged communicability functions, with network

systems of other societies. In the future, we will apply the community structure to

the cases of different contributed weight between authors. Therefore, further work is

needed for the case with societies of more than the author and citation networks

[124-126]. The formalism of our analysis can be extended to both the discrimination

and the characterization of communicability functions in other various societies.
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