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음악 및 악보 인식을 통한 음악학습 보조 시스템의 설계 

 

아흐메드 위스누 물야디 

 

부경대학교 대학원 정보시스템협동과정 

 

요약 

 

악기 연주를 마스터하는 과정에서 연습은 가장 중요한 단계이다. 이 단계에서, 

미숙한 학습 초보자들에게는 어려움이 있을 수 있다. 예를 들어, 학습자는 음정과 

박자를 정확하게 잡을 수 있도록 노력해야 하기 때문이다.   이러한 문제를 

해결하기 위해 다음과 같은 특징을 갖는 음악학습 보조기를 디자인 하였다. 

 

그 체계의 두가지 주요한 업무에는 음악 점수 인식과 음악 전사가 있다. 음악 

점수 인식 업무에서는 분절된 음악 기호 이미지로부터 HOG 의 특징들을 추출하게 

된다. 기호들을 인식하기 위하여 이 시스템은 SVM 분류자를 만들어내고, 피아노 

초보자 음악 점수를 고려하게 되면 분류자의 평균 성적의 정확도는 96.02%로 

나타나게 된다.  

 

음악 전사 작업에서 제안된 방법으로는 박자를 추적하기 위한 음악의 파형의 

채도 이미지를 사용하는 것이다. 채도 이미지는 소리의 신호를 어떠한 옥타브 

형태의 12 단계의 반음들로 분류하기 위하여 유용한 음악적 정보를 획득할 수 

있다. 그러한 특징들의 집합을 고려해보면 HMM 모델은 Baum-Welch 방법을 

사용하여 고안되었다. 그리고 안내 시스템은 실시간으로 현재 상태를 추정하기 

위하여 단기간의 연속된 채도 이미지에서 Viterbi 알고리즘을 운영한다. 그 결과는 

음악 점수의 측정 결과와 비교되기도 한다. 그러므로, 실시간 박자 추적과 점수 

측정은 가능해지게 되며 음악적인 보조 시스템이 실현 가능해질 수 있다.  



 

 

 

- vi- 

 

Design of Music Learning Assistant Based on Music and Score Recognition 

 

 
Ahmad Wisnu Mulyadi 

 

 

Interdisciplinary Programs of Information Systems, Graduate School 

Pukyong National University 

 

Abstract 

 
In the journey of mastering musical instruments, practice is the most important step. In this 

phase, an unskilled beginning learner might be having difficulties. For example, they struggles 

to play the musical notes and catch the tempo accurately. Practicing musical instruments could 

be more effective if there is a music learning assistant that listens and gives feedback to the 

learner. To solve this problem, this paper proposes a design of music learning assistant that 

follows music scores while listening to the performance. 

 

There are two main tasks of the system, music score recognition and music transcription. In the 

music score recognition task, the proposed method extract the histogram of oriented gradients 

(HOG) features from segmented music symbols image. In order to recognize the symbols, the 

system employ Support Vector Machine (SVM) Classifier. Given beginner piano music score, 

the classifier average performance accuracy is 96,02 %. 

 

In music transcription task, the proposed method uses chroma features of the waveform music 

to track the pitches. Chroma features captures musical info useful for classifying the audio signal 

into 12 semitones of any octave. Given a collection of such features, a Continuous Hidden 

Markov Model (HMM) has been designed using the Baum-Welch method. The guiding system 

runs Viterbi algorithm on short term sequence of chroma features to estimate the current note 

in real time. The result is compared to the reading of the music score. Realtime pitch tracking 

and score reading is possible and musical assistance is feasible. 
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Chapter 1 

Introduction 

 

1.1. Background 

 

Learning musical instrument benefit the learner in aspects in their life. There are 

researches that study about relation between musical instrument learning and their 

achievements [10]. In their finding, they stated that the process of learning can be 

deeply impact by music making, with cognitive and affective components working 

(Raimer, 2004).  

In the journey of mastering the musical instruments, practice is the most important 

activity. Unskilled beginning learner might be having difficulties in this phase. While 

looking at music scores sheets, the performer struggle to play individual notes correctly 

as well as keep tempo accurately. Besides that, in order to master the whole music score, 

the performer tends to repeat some sections in the music. Based on the difficulties faced 

by the beginner learner, musical instruments practice activities would be more effective 

if there is some music learning assistant that guide and give feedback to the performer.  

Realize of this facts, developing the musical instruments learning assistant is 

needed. In this case, music learning assistant should have score-following feature. 

Score-following feature able to track performer’s practice of their musical instrument 

and find current performance position in the music score. Score following consists of 
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two steps, transcription and matching. In the transcription step, audio signal of 

performance is analyzed into a sequence of events. In the matching step, we find the 

best alignment of events sequence in the transcription and its score [16]. Figure 1.1. 

below illustrate music learning assistant that provide score-following features. As 

shown in Figure 1, in music practice there are two component of interests. There are 

music score and music signal. So that in order to develop music learning assistant which 

have a score-following feature, the design consists of several steps. That are music 

score recognition music signal transcription, and alignment. 

 
 

Figure 1.1. Music score-following workflow 

 

In music score recognition process, the system means to extract music score events 
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using image processing. On the other side, in music signal transcription process, the 

system intends to analyze music signal into sequence of meaningful events such as 

pitches. After two processes above are performed, then matching or alignment step is 

required. In the matching step, we find the best alignment of events sequence in the 

transcription and its score. In this resarch in order to perform music score following, 

we employ audio-visual analysist. 

In visual analysist part, given music score recognition, we tried to recognize the 

music symbol and generate MIDI file from it. This MIDI file will be used as ground 

truth in the alignment step. Using popular pattern recognition in the field of optical 

music recognition, we employ Support Vectorm Machine (SVM). 

In audio analysist part, in order to be able recognize the music in the music score 

following feature, time series model come to the rescue. One of the well known model 

is Hidden Markov Model (HMM). By using stochastic approach, HMM already proved 

in the speech recognition field so that it becoming popular also in the music recognition 

field [5,15,16,19]. 

With this motivation, in this thesis we tried to employ two popular pattern 

recognition method, SVM and HMM in order to design robust music score following 

feature in the music learning assistant.  
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1.2. Problem Statements  

 

In this research, problems that highlighted in order to design the music learning 

assistant are stated as follow :  

1. How to design robust music learning assistant using audio-visual analysist ? 

2. In visual analysist part, how well is the performance of SVM in recognizing 

the music score? 

3. In audio analysist part, how well is the performance of HMM in tracking the 

pitches given music signal? 

 

1.3 Related Works 

 

Researches about score following approach were started based on MIDI 

instruments that use technique based on classical approximate string matching and 

heuristics technique [15,22]. Using stochastic approach, then researchers develop 

score-following using HMM first started by Raphael which states emit the expected 

sound features [15,20]. Using HMM, each note in the score is modeled by a sequence 

of states [5,15,16]. 

In the context of real time or online decoding using HMM, there is implementation 

that employ Viterbi decoding using two buffers : L length of audio input buffer and 

observation buffer as introduced in [6]. Their research result show that the real-time 

system can be as good as the offline system. 
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In music score recognition part, [17,18] cover optical music recognition which 

consists of image pre-processing, music symbol recognition, musical notation 

reconstruction and final representation construction. In the music symbol recognition 

there are various methods published to date. One of popular method exhibiting best 

performance among others is SVM to classify the musical symbol [17,18]. 

 

1.4. Research Objective 

 

Aim of this research is to design and develop music learning assistant that will 

guide and give feedback to the performer in musical instruments practice in real time. 

This is done by applying music score following feature to trancript the music signal, 

music score recognition and alignment of those.  

 

1.5. Outline 

 

Chapter 1, this chapter cover introduction of the research. Then, we will cover 

Hidden Markov Modeling theory in Chapter 2. Using Hidden Markov Modeling, we 

try to propose method in order to develop music learning assistant as we will describe 

in Chapter 3. After implement the proposed method, then we analyze and presents the 

results in Chapter 4. Finnaly, Chapter 5 concludes the research, brief discussion and 

future directions. 
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Chapter 2 

Hidden Markov Model 

 

A system is considered described as being in one of N distinct states  S1,S2,..SN 

at time t 1,2...T. In case of a first order Markov chain, the state transition probabilites 

does not depend on the whole history of the process, instead only the preceding state is 

taken into account [14,19]. Given time t and states q, first order markov chain can be 

defined as  

 𝑷(𝒒𝒕 = 𝑺𝒋 |𝒒𝒕−𝟏 = 𝑺𝒊, 𝒒𝒕−𝟐 = 𝑺𝒌, … ) = 𝑷 (𝒒𝒕 = 𝑺𝒋 | 𝒒𝒕−𝟏 = 𝑺𝒊) (2.1) 

Where P is the probability and i,j,k are states indexes. 

In above right hand side of above equation is independent of time, thereby leading 

to the state transitions probabilits aij that 

 𝒂𝒊𝒋 =  𝑷 (𝒒𝒕 = 𝑺𝒋 | 𝒒𝒕−𝟏 = 𝑺𝒊), 𝟏 ≤ 𝒊, 𝒋 ≤ 𝑵 (2.2) 

with stochastic constraints   

 𝒂𝒊𝒋 ≥ 𝟎  ∀𝒊, 𝒋 (2.3) 

 ∑ 𝒂𝒊𝒋 = 𝟏𝑵
𝒋=𝟏   

The probability to start in a state we denote the initial state probabilites as follow : 

 𝝅 =  𝑷 (𝒒𝟏 = 𝑺𝒊 ), 𝟏 ≤ 𝒊 ≤ 𝑵 (2.4) 

That also have stochastic constraints 

 ∑ 𝝅𝒊 = 𝟏𝑵
𝒊=𝟏  (2.5) 
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Equations above is defined for the discrete-time Markov model which cannot be 

applicable to all problems of interest. Therefore, the Hidden Markov Model (HMM) is 

introduced. This extensions implies that every state will be probabilistic and not 

deterministic. This means that every state generates an observation at time t, ot, 

according to a probabilistic function bj(Ot) for each state j as defined below  

 

 𝒃𝒋(𝒐𝒕) =  𝑷 (𝒐𝒕 | 𝒒𝒕 = 𝑺𝒋), 𝟏 ≤ 𝒋 ≤ 𝑵 (2.6) 

 

According to [19], an HMM is characterized by : 

1. N number of hidden states in the model.  Altough the states are hidden, for many 

practical applications there is often some physical significance attached to the states 

or to sets of states of the model. Individual states defined as 𝑺 = {𝑺𝟏, 𝑺𝟐 … , 𝑺𝑵} 

and the state at time t as qt. 

2. M number of distinct observation symbol per state. The observation symbols 

correspond to the physical output of the system being modeled. Individual symbols 

defined as 𝑽 = {𝒗𝟏, 𝒗𝟐 … , 𝒗𝑴}.  

3. 𝑨 = {𝒂𝒊𝒋} denoted as state transition probability from Si to Sj as described in follow 

equation : 

 𝒂𝒊𝒋 =  𝑷 (𝒒𝒕 = 𝑺𝒋 | 𝒒𝒕−𝟏 = 𝑺𝒊)  

4. 𝑩 = {𝒃𝒋(𝒌)} denoted as the observation symbol probability distribution that will 

emit ot in state j as described in follow equation : 

 𝒃𝒋(𝒐𝒕) =  𝑷 (𝒐𝒕 | 𝒒𝒕 = 𝑺𝒋) 
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5. 𝝅 = {𝝅𝒊} denoted as the initial state probability which is probability of being 𝑺𝒊 

in the initial state as follow : 

 𝝅 =  𝑷 (𝒒𝟏 = 𝑺𝒊 )  

The complete model parameter notation commonly written as 𝝀 = (𝑨, 𝑩, 𝝅). 

 

2.1. Three Problems for Hidden Markov Models 

 

There are three basic problems that the model can be applied in real-world 

applications [14,19]. 

Problem 1: Evaluation Problem  

Given a model 𝝀 and a sequence of observations 𝑶 = 𝑶𝟏𝑶𝟐 … 𝑶𝑻, we compute the 

𝑷(𝑶 | 𝝀). 

Problem 2: Decoding Problem 

Given a model 𝝀 and a sequence of observations 𝑶 = 𝑶𝟏𝑶𝟐 … 𝑶𝑻, we compute the 

most likely or optimal state sequence 𝑸 = 𝑸𝟏𝑸𝟐 … 𝑸𝑻. 

Problem 3: Training Problem 

In this problem, we attempt to optimize the model parameter 𝝀 = (𝐀, 𝐁, 𝛑) so as to 

best describe how a given observation sequence comes about and to maximze 𝑷(𝑶 | 𝝀). 

 

 

2.1.1. Evaluation Problem 
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In this evaluation problem, we want to calculate 𝑷(𝑶 | 𝝀)  which is the 

probability of observation 𝑶 = 𝑶𝟏𝑶𝟐 … 𝑶𝑻  given the model 𝝀 . To calculate 

𝑷(𝑶 | 𝝀), the efficient procedure is required. Such procedure exists and is called 

forard-backward procedure. 

 

Forward Algorithm 

Consider the forward variable 𝜶𝒕(𝒊) defined as 

 

 𝜶𝒕(𝒊) =  𝑷 (𝑶𝟏𝑶𝟐 … 𝑶𝒕, 𝒒𝒕 = 𝑺𝒊|𝝀) (2.7) 

 

Equation 2.8 describe that 𝜶𝒕(𝒊) is probability of partial observation sequence 

𝑶𝟏𝑶𝟐 … 𝑶𝑻 (until time t) when being in states Si at time t given model. Figure 2.1. 

shown diagram of Forward lattice. 
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Figure 2.1. Forward Lattice diagram 

𝑷(𝑶 | 𝝀) ucan be calculate using Forward Algorithm as follows : 
 Initialization 
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 𝜶𝟏(𝒊) =  𝝅𝒊𝒃𝒊(𝑶𝟏),  𝟏 ≤ 𝒊 ≤ 𝑵  (2.8) 

 Induction 

 𝜶𝒕+𝟏(𝒋) =  [∑ 𝜶𝒕(𝒋)𝒂𝒊𝒋
𝑵
𝒊=𝟏 ]𝒃𝒋(𝑶𝒕+𝟏), 𝟏 ≤ 𝒕 ≤ 𝑻 − 𝟏  (2.9) 

  𝟏 ≤ 𝒋 ≤ 𝑵 

 Termination 

 𝑷(𝑶|𝝀) = ∑ 𝜶𝑻(𝒊)𝑵
𝒊=𝟏   (2.10) 

 

Backward Algorithm 

Similiar to forward algorithm, if we use backwards recursion in time then we can 

using backward algorithm as illustrated in Figure 2.2. Consider the backward 

variable 𝜷𝒕(𝒊) defined as 

 

 𝜷𝒕(𝒊) =  𝑷 (𝑶𝒕+𝟏𝑶𝒕+𝟐 … 𝑶𝑻 |𝒒𝒕 = 𝑺𝒊, 𝝀) (2.11) 

 

The backward algorithm is defined as follows : 

 Initialization 

 𝜷𝑻(𝒊) =  𝟏,  𝟏 ≤ 𝒊 ≤ 𝑵  (2.12) 

 Induction 

 𝜷𝒕(𝒋) =  ∑ 𝜷𝒕+𝟏(𝒊)𝒂𝒊𝒋𝒃𝒋(𝑶𝒕+𝟏)𝑵
𝒋=𝟏 , 𝟏 ≤ 𝒋 ≤ 𝑵  (2.13) 
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Figure 2.2. Backward Lattice diagram 

 

 

2.1.2. Decoding Problem 

 

In this problem, using the model, we mean to find the single best state sequence 

𝑸 = {𝒒𝟏𝒒𝟐 … 𝒒𝑻} to given observation sequence 𝑶 = {𝑶𝟏𝑶𝟐 … 𝑶𝑻} as shown in 

Figure 2.3. The thick lines represents the path from the best state in time t to another 

best state in time t+1. 

A formal technique for finding single best state sequence based on dynamic 

programming methods is exists and called the Viterbi algorithm.  
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Figure 2.3. Viterbi lattice diagram 

Consider 

 

 𝜹𝒕(𝒊) =  𝐦𝐚𝐱
𝒒𝟏,𝒒𝟐…𝒒𝒕−𝟏

𝑷(𝒒𝟏𝒒𝟐 … 𝒒𝒕−𝟏, 𝒒𝒕 = 𝑺𝒊, 𝒐𝟏𝒐𝟐 … 𝒐𝒕|𝝀) (2.14) 

 

is the maximum probability along a single path that ends in state Si  at time t, given 

the model 𝝀. By using induction, 𝜹𝒕+𝟏(𝒊) can be define as 

 

 𝜹𝒕+𝟏(𝒊) =  𝒃𝒋(𝑶𝒕+𝟏) 𝐦𝐚𝐱
𝟏 ≤ 𝒊 ≤𝑵

 [𝜹𝒕(𝒊)𝒂𝒊𝒋] (2.15) 

 

To retrieve the state sequence, it is required to keep track of the argument that 

maximizes equation (2.16) in the variable 𝝍𝒕(𝒋), for each t and j.  

The complete Viterbi algorithm is describe as follow : 

 Initialization 

 𝜹𝟏(𝒊) =  𝝅𝒊𝒃𝒊(𝑶𝟏),  𝟏 ≤ 𝒊 ≤ 𝑵  (2.16) 

 𝝍𝟏(𝒊) =  𝟎,  𝟏 ≤ 𝒊 ≤ 𝑵  (2.17) 

 Induction 

 𝜹𝒕(𝒋) =  𝒃𝒋(𝑶𝒕) 𝐦𝐚𝐱
𝟏 ≤ 𝒊 ≤𝑵

 [𝜹𝒕−𝟏(𝒊)𝒂𝒊𝒋], 𝟏 ≤ 𝒋 ≤ 𝑵  (2.19) 

 𝝍𝒕(𝒋) = 𝒂𝒓𝒈 𝐦𝐚𝐱
𝟏 ≤ 𝒊 ≤𝑵

 [𝜹𝒕−𝟏(𝒊)𝒂𝒊𝒋],  𝟏 ≤ 𝒋 ≤ 𝑵  (2.19) 
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 Termination 

 𝑷(𝑶, 𝒒∗|𝝀) = 𝐦𝐚𝐱
𝟏 ≤ 𝒊 ≤𝑵

 [𝜹𝑻(𝒊)]  (2.20) 

 𝒒𝑻
∗ = 𝒂𝒓𝒈 𝐦𝐚𝐱

𝟏 ≤ 𝒊 ≤𝑵
 [𝜹𝑻(𝒊)]  (2.21) 

 Path Backtraking 

 𝒒𝒕
∗ = 𝝍𝒕+𝟏(𝒒𝒕+𝟏

∗ ),  𝒕 = 𝑻 − 𝟏, 𝑻 − 𝟐, … , 𝟏  (2.22) 

As the result, we obtain 𝒒𝑻
∗  as an array that keep the best states sequence. 

 

2.1.3. Training Problem 

 

This third problem is the concerned with the estimation of the model 𝝀 =

(𝐀, 𝐁, 𝛑) that can be defined as 

 

 𝝀∗ =  𝒂𝒓𝒈 𝐦𝐚𝐱
𝟏 ≤ 𝒊 ≤𝑵

 [𝑷(𝑶|𝝀)] (2.23) 

 

Above 𝝀∗  is denoted as the maximum probability of observation sequence 

given model. This problem is the most difficult among other problems in HMM, as 

there is no known way to analytically find the model that maximize the probability 

of the observation sequence. However, the model can be choosen to locally 

maximize the likelihood  𝑷(𝑶|𝝀)  using an iterative procedure such as Baum–

Welch method or using gradient techniques [19]. There are some advantages using 

Baum-Welch method as follow [14]: 

 Baum-Welch is numerically stable with an increasing likelihood in every 

iteration 
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 Baum-Welch converges to a local optima 

 Baum-Welch has linear convergence 

Considering that facts, we will described the Baum-Welch method furthermore. 

In order to describe the procedure for reestimation, we define probability of 

being in sate Si at time t and state Sj at time t+1, given observation O and model, 

denote by 𝝃𝒕(𝒊, 𝒋).  

 

 𝝃𝒕(𝒊, 𝒋) =  𝑷(𝒒𝒕 =  𝑺𝒊, 𝒒𝒕+𝟏 =  𝑺𝒋|𝑶, 𝝀)  (2.24) 

 

For more clear description, see Figure 2.4 below. 
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. 

.  
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State j

t+2

a1i

a2i
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aj3
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αt(i) βt+1(j) 

aijbj(ot+1) 

 

Figure 2.4. Xi lattice diagram 
 

Using forward variables, backward variables, transition probability matrix and 
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observation probability matrix , we can write 𝝃𝒕(𝒊, 𝒋) as follow :  

 

𝝃𝒕(𝒊, 𝒋) =  
𝑷(𝒒𝒕 =  𝑺𝒊, 𝒒𝒕+𝟏 =  𝑺𝒋, 𝑶|𝝀)

𝑷(𝑶|𝝀)
 (2.25) 

 =  
𝜶𝒕(𝒊)𝒂𝒊𝒋𝒃𝒋(𝑶𝒕+𝟏)𝜷𝒕+𝟏(𝒋)

𝑷(𝑶|𝝀)
 (2.26) 

 =  
𝜶𝒕(𝒊)𝒂𝒊𝒋𝒃𝒋(𝑶𝒕+𝟏)𝜷𝒕+𝟏(𝒋)

∑ ∑ 𝜶𝒕(𝒊)𝒂𝒊𝒋𝒃𝒋(𝑶𝒕+𝟏)𝜷𝒕+𝟏(𝒋)𝑵
𝒋=𝟏

𝑵
𝒊=𝟏

 (2.27) 

 

The probability of being in state i at time t, given the entire observation sequance 

O and the model 𝝀 is defined as 𝜸𝒕(𝒊). The relation between 𝜸𝒕(𝒊) and 𝝃𝒕(𝒊, 𝒋) can 

be found as follow 

 

𝜸𝒕(𝒊) =  𝑷(𝒒𝒕 =  𝑺𝒊|𝑶, 𝝀)  

 =  ∑ 𝑷(𝒒𝒕 =  𝑺𝒊, 𝒒𝒕+𝟏 =  𝑺𝒋|𝑶, 𝝀)𝑵
𝒋=𝟏   

 =  ∑ 𝝃𝒕(𝒊, 𝒋)𝑵
𝒋=𝟏  (2.28) 

 

Then we can calculate reestimation for model parameter 𝝀 = (𝐀, 𝐁, 𝛑) : 

𝝅̂𝒊 =  𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 (𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒊𝒎𝒆𝒔)𝒊𝒏 𝒔𝒕𝒂𝒕𝒆 𝑺𝒊 𝒂𝒕 𝒕𝒊𝒎𝒆 𝒕 = 𝟏  

 = 𝜸𝟏(𝒊)   

 =
𝜶𝟏(𝒊)𝜷𝟏(𝒋)

∑ 𝜶𝑻(𝒊)𝑵
𝒊=𝟏

 (2.29) 

 

 

𝒂̂𝒊𝒋 =  
𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏𝒔 𝒇𝒓𝒐𝒎 𝒔𝒕𝒂𝒕𝒆 𝒊 𝒕𝒐 𝒔𝒕𝒂𝒕𝒆 𝒋

𝒆𝒙𝒑𝒆𝒄𝒆𝒅 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏𝒔 𝒇𝒓𝒐𝒎 𝒔𝒕𝒂𝒕𝒆 𝒊
   

 =
∑ 𝝃𝒕(𝒊,𝒋)𝑻−𝟏

𝒕=𝟏

∑ 𝜸𝒕(𝒊)𝑻−𝟏
𝒕=𝟏

 (2.30) 

 

𝒃̂𝒋(𝒌) =  
𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏𝒔 𝒊𝒏 𝒔𝒕𝒂𝒕𝒆 𝒋 𝒂𝒏𝒅 𝒐𝒃𝒔𝒆𝒓𝒗𝒊𝒏𝒈 𝒔𝒚𝒎𝒃𝒐𝒍 𝒗𝒌

𝒆𝒙𝒑𝒆𝒄𝒆𝒅 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒊𝒎𝒆𝒔 𝒊𝒏 𝒔𝒕𝒂𝒕𝒆 𝒋
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 =
   𝜸𝒕(𝒊)

𝒔.𝒕.  𝑶𝒕=𝑽𝒌

∑𝑻
𝒕=𝟏

∑ 𝜸𝒕(𝒊)𝑻
𝒕=𝟏

 (2.31) 

 

2.2. HMM Scaling 

 

Based on previous explanation about three problems of HMM, the computation 

will require sequential multiplication of probabilities which have a value less than one. 

This means that 𝜶𝑡(𝒊) or 𝜷𝑡(𝒊) tends to be zero exponentially as the time (t) grow 

large. To overcome this underflow computation problem, we use scaling procedure as 

described in [14,19]. 

Consider the computation of 𝜶𝑡(𝒊) in forward algorithm which mentioned in       

Eq (2.9) and Eq (2.10) as follow : 

 

 𝜶𝟏(𝒊) =  𝝅𝒊𝒃𝒊(𝑶𝟏),  𝟏 ≤ 𝒊 ≤ 𝑵   

 𝜶𝒕+𝟏(𝒋) =  [∑ 𝜶𝒕(𝒋)𝒂𝒊𝒋
𝑵
𝒊=𝟏 ]𝒃𝒋(𝑶𝒕+𝟏), 𝟏 ≤ 𝒕 ≤ 𝑻 − 𝟏   

 

For each t, we first compute 𝜶𝑡(𝒊)  according to induction formula and then 

multiply it by a scaling coefficient 𝒄𝒕 which 

 

 𝒄𝒕 =
1

∑ 𝜶𝒕(𝑖)𝑁
𝑖=1

 (2.32) 

 

Using above scaling coefficient 𝒄𝒕, we can write scaled alpha 𝜶̂𝑡(𝒊) as below 

 

  𝜶̂𝑡(𝒊) = 𝒄𝒕𝜶𝑡(𝒊) (2.33) 

From above equation, it can be said that each 𝜶𝑡(𝒊) is effectively scaled by the 
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sum over all states of 𝜶𝑡(𝒊). Forward algorithm using scaling procedure is modified as 

follow 

 Initialization 

 𝜶𝟏(𝒊) =  𝝅𝒊𝒃𝒊(𝑶𝟏),  𝟏 ≤ 𝒊 ≤ 𝑵  (2.34) 

 𝒄𝟏 =
1

∑ 𝜶𝟏(𝑖)𝑁
𝑖=1

   (2.35) 

 𝜶̂𝟏(𝒊) =  𝒄𝟏𝜶𝟏(𝒊),  𝟏 ≤ 𝒊 ≤ 𝑵  (2.36) 

 Induction 

 𝜶̃𝒕+𝟏(𝒋) =  [∑ 𝜶̂𝒕(𝒋)𝒂𝒊𝒋
𝑵
𝒊=𝟏 ]𝒃𝒋(𝑶𝒕+𝟏), 𝟏 ≤ 𝒕 ≤ 𝑻 − 𝟏  (2.37) 

  𝟏 ≤ 𝒋 ≤ 𝑵 

 𝒄𝒕 =
1

∑ 𝜶̃𝑡(𝑖)𝑁
𝑖=1

   (2.38) 

 𝜶̂𝐭(𝒊) =  𝒄𝒕𝜶̃𝐭(𝒊),  𝟏 ≤ 𝒊 ≤ 𝑵  (2.39) 

 Termination 

 log 𝑷(𝑶|𝝀) = − ∑ log 𝒄𝒕
𝑻
𝒕=𝟏   (2.40) 

Next we need to compute the 𝜷𝑡(𝒊) using same scale coefficients as 𝜶̂𝑡(𝒊) for 

each time t. So that, scaled beta 𝜷̂𝑡(𝒊) can be written as  

 𝜷̂𝑡(𝒊) = 𝒄𝒕𝜷𝑡(𝒊) (2.41) 

The backward algorithm using scaling coefficient is defined as follows : 

 Initialization 

 𝜷𝑻(𝒊) =  𝟏,  𝟏 ≤ 𝒊 ≤ 𝑵  (2.42) 

 𝜷̂𝑻(𝒊) =  𝒄𝑻𝜷𝑻(𝒊),  𝟏 ≤ 𝒊 ≤ 𝑵  (2.43) 

 Induction 
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 𝜷̃𝒕(𝒋) =  ∑ 𝜷̂𝒕+𝟏(𝒊)𝒂𝒊𝒋𝒃𝒋(𝑶𝒕+𝟏)𝑵
𝒋=𝟏 , 𝟏 ≤ 𝒋 ≤ 𝑵  (2.44) 

 𝜷̂𝒕(𝒊) =  𝒄𝑻𝜷̃𝒕(𝒊), 𝟏 ≤ 𝒊 ≤ 𝑵  (2.45) 

 

2.3. Continuous Observation Densities in HMM 

 

For some applications, the observations are continuous signals (or vector) 

including audio or music signal. Hence it would benefit to use continuous observation 

densities HMM as mentioned in [19].  

Using continuous observation densities in HMM, we define each states as finite k 

mixtures of Gaussian densitify function 𝓝 as follow : 

 𝒃𝒋(𝑶) = ∑ 𝒄𝒋𝒌𝓝(𝑶; 𝝁𝒋𝒌, 𝚺𝒋𝒌)𝑲
𝒌=𝟏  (2.46) 

Where 𝑶 is the observation vector being modeled, 𝒄𝒋𝒌 is mixture coefficient for 

kth mixture in state j. Each Gaussian density for the kth mixture is defined by mean 

𝝁𝒋𝒌 and covariance matrix 𝚺𝒋𝒌.  

The coefficient mixture satisfy the stochastic constraint : 

 ∑ 𝒄𝒋𝒌 = 𝟏,𝑲
𝒌=𝟏  𝟏 ≤ 𝒋 ≤ 𝑵 (2.47a) 

 𝒄𝒋𝒌 ≥ 𝟎, 𝟏 ≤ 𝒋 ≤ 𝑵, 𝟏 ≤ 𝒌 ≤ 𝑲 (2.47b) 

In relation with training problem, there will be modification in reestimation step 

for the mixtures as follow  

 

 𝜸𝒕(𝒋, 𝒌) = [
𝜶𝒕(𝒋)𝜷𝒕(𝒋)

∑ 𝜶𝒕(j)𝜷𝒕(𝒋)𝑵
𝒋=𝟏

] [
𝒄𝒋𝒌𝓝(𝒐𝒕;𝝁𝒋𝒌,𝚺𝒋𝒌)

∑ 𝒄𝒋𝒌𝓝(𝒐𝒕;𝝁𝒋𝒌,𝚺𝒋𝒌)𝑲
𝒌=𝟏

] (2.48) 
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 𝒄̅𝒋𝒌 =
∑ 𝜸𝒕(𝒋,𝒌)𝑻

𝒕=𝟏

∑ ∑ 𝜸𝒕(𝒋,𝒌)𝑲
𝒌=𝟏

𝑻
𝒕=𝟏

 (2.49) 

 𝝁̅𝒋𝒌 =
∑ 𝜸𝒕(𝒋,𝒌)𝒐𝒕

𝑻
𝒕=𝟏

∑ 𝜸𝒕(𝒋,𝒌)𝑻
𝒕=𝟏

 (2.50) 

 𝚺̅𝒋𝒌 =
∑ 𝜸𝒕(𝒋,𝒌)(𝒐𝒕−𝝁𝒋𝒌)(𝒐𝒕−𝝁𝒋𝒌)′𝑻

𝒕=𝟏

∑ 𝜸𝒕(𝒋,𝒌)𝑻
𝒕=𝟏

 (2.51) 
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Chapter 3 

Proposed Method 

 

3.1. Overview 
 

In order to develop music learning assitant that have music score following 

features, we propose design of music learning assistant which employ two popular 

pattern recognition. There are Hidden Markov Model (HMM) for music signal 

transcription and Support Vector Machine (SVM) for music score recognition as shown 

in Figure 3.1. belows 

 
Figure 3.1. Proposed method workflow 

  

There will be two type of features that used in this research. The first one is music 

signal feature extraction. In this type, given music recording, we extract pitch class 

profiles or chroma vectors out of it. This is done by apply pitch class profiles extraction 
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calculation described in next sub section. Then we use this features in order to train the 

HMM. We expect that the trained model can recognize pitch given another musical 

performance in the testing step. 

Another features are obtained by apply image processing given music score. Here, 

Histogram of Oriented Gradients (HOG) features is extracted from each segmented 

music symbol of music score. Given HOG features of each music symbol then we train 

SVM classifier. The trained SVM classifier will be use to recognize another music 

score in the testing step.  

 

3.2 Music Score Feature Extraction 

3.2.1. HOG Features 

 

The features to be extracted from the segmented musical symbol image is 

histogram of oriented gradients. The HOG is defines an occurrences counting of 

gradient orientation in part of an image [26]. HOG divides image into cells and 

computes the histogram of gradient directions or edge directions therein [26,27]. 

 

       

Figure 3.2. (a) Music symbol image and its  
(b) HOG features with 2 x 2 cell size, 

(c) 4 x 4 cell size, and (d) amplification of particular cell 
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Given segmented music symbol image, we extract HOG features with different size 

in Figure 3.2. Smaller cell size tends to have more spatial information but will increase 

the number of dimension, and vise versa. In this research, we use 2x2 cell size since it 

provides more spatial information and more accurate recognition rate. The HOG 

features extraction was done by applying method provided in [27].  

 

3.3. Music Signal Feature Extraction 

3.3.1. Chroma Features  

 

In Western music notation, the 12 pitches attributes are given by the set 

{C,C#,D,...,B} which repeat in the same sequence in the next octave [12,24] as shown 

in Figure 3.3. In Figure 3.3., the distance between two adjacent notes is known as a 

halfstep. The distance we perceive as a halfstep is always the same. 

C D

G# / Ab F#/ Gb

C#/ Db

G

F

E

D# / EbB

A#/ Bb

A

 
Figure 3.3. 12 Semitones circle in Western music notation 
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For instance, the interval between A and Bb
 sounds like the same distance as the 

interval between E and F. Because of the way we perceive octaves in an exponentially 

doubling way, the frequency interval between halfsteps is not constant. Given a note 

that corresponds to frequency 𝒇𝒎𝒊𝒏 , number of halfstep in octave 𝒃 , the note 𝒌 

halfsteps above this note is at a frequency 𝒇𝒌 can be calculate by equation 

 𝒇𝒌 =  𝒇𝒎𝒊𝒏𝟐𝒎/𝒃 (3.1) 

Using discrete Fourier transform then we define also frequency 𝒇𝒌 as follow 

 𝒇𝒌 =  
𝒌 

𝑵
  𝒇𝒔  (3.2) 

Given frequency 𝒇𝒌, number of halfstep in octave 𝒃 the desired bin number can 

be calculated from the frequency using equation 3.3 [4]. Equation above come in handy 

when extract chroma features using log-frequency bin. 

  𝒌 =  𝑏 𝑙𝑜𝑔2(
𝒇𝒌

𝒇𝒎𝒊𝒏
) (3.3) 

In relation with octaves, two pitces can be perceived by human as similiar in “color” 

if they differ by one or several octaves as mentioned in [12]. Introduced by Shepard, 

human auditory system’s perception of pitch was better represented as a helix than as 

a one-dimensional line as shown in Figure 3.4. pitch helix. The vertical dimension is 

tone height while angular dimension is chroma. As the pitch of musical note increases 

from C to C’ in upper octave, its locus moves along the helix. It will rotating 

chromatically through all of the pitch classes before it returns to the initial pitch class 

C’ above one octave or cycle from the starting point C (shown as thick lines in Figure 

3.4.).  
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Figure 3.4. Shepard’s Helix of pitch perception 

 

 

Pitch Class Profiles or also commonly known as Chroma features (or Chromagram 

if it already represented visually), is representation of  music audio that the entire 

spectrum is projected onto 12 bins that is 12 distinct semitones of chromatic scale 

[6,7,22]. In [23], chroma features calculation is described as shown in Figure 3.5. 

SpectrogramAudio

STFT
Log Frequency
Spectrogram

Log Frequency 
Filterbank

Chroma Vectors

Folding

  

Figure 3.5. Chroma features extraction workflow 

 

 

The most popular tool for describing the time-varying energy across different 

frequency bands is the Short-Time Fourier Transform (STFT) [11]. STFT can be 

visualized its magnitude that well known as spectrogram.  

 

Given music recording 𝑿[𝒏] can be converted to a STFT representation using  
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 𝑿𝑺𝑻𝑭𝑻[𝒌, 𝒏] =  ∑ 𝒙[𝒏 − 𝒎]. 𝒘[𝒎]. 𝒆−𝒋𝟐𝝅𝒌𝒎/𝑵𝑵−𝟏
𝒎=𝟎  (3.4) 

where 𝒌 index the frequency axis with 𝟎 ≤ 𝒌 ≤ 𝑵 − 𝟏, 𝒏 is the short-time window 

center, and 𝒘[𝒎] is an 𝑁-point Hanning window. Frequency to pitch mapping is 

achieved using the logarithmic characteristic of the equal temperament scale.  

Where 𝒃 is the number of bins per octave, 𝒇𝒎𝒊𝒏 is the reference frequency, 𝒇𝒔 is 

the sampling rate, then STFT bins 𝒌  are mapped to PCP bins 𝒑  derived from 

equation 3.2, 3.3 as below 

 𝒑(𝒌) =  ⌊𝒃 𝑙𝑜𝑔2 (
𝒌

𝑵
.

𝒇𝒔

𝒇𝒎𝒊𝒏
)⌋ 𝑚𝑜𝑑 𝒃 (3.5) 

For each time slice, we calculate the value of each PCP element by summing the 

magnitude of all frequency bins that correspond to a particular pitch class i.e. for 𝒑 =

𝟎, 𝟏, … , 𝒃 − 𝟏 using follow folding equation 

 𝑷𝑪𝑷[𝒑] =  ∑ |𝑿[𝒌]|𝟐
𝒌:𝒑(𝒌)=𝒑  (3.6) 

 

3.3.2. Onset Detection 

 

Events detection in musical audio signal or recording needs clear distinctions since 

its different applications have its different needs. Relate to these events in musical 

signals, there are concepts of transients, onsets and attacks [2] [9] as shown in Figure 

3.6. 
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Figure 3.6. Music events in single note (a) wavelet and its (b) envelope 

 

According to [2] music events in above illustrations, we can distinguish each 

concepts as follow : 

 Attack 

Attack of the note is time interval during which the amplitude envelope increases, 

shown as blue lines in Figure 3.6.(b). 

 Transients 

Transients are short intervals during which the signal evolves quickly in some 

nontrivial or relatively unpredictable way. Release or offset of a sustained sound 

can also be considered as a transient period. 

 Onset 

The onset of the note is a single instant chosen to mark the temporally extended 

transient. In most cases, it will coincide with the start of the transient, shown as 

red circle in Figure 3.6.(b). 

Transient

Decay
Onset

Attack
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In this design of music score following, we concern about onset detection. Onset 

can be defined as the start of a signal event or a very moment where the start of an 

abrupt change in amplitude in a signal occurs [9]. Spectral difference or spectral flux is 

choosed as detection function since its ability to detect a change in pitch as well as a 

change ini energy that would be the best first estimate of any onset detection function 

for general purpose beat detection [9]. 

Spectral difference can be calculated by using following equation : 

 𝑺𝑫(𝒏) =  
𝟏

𝑵
∑ {𝑯(|𝑿𝒌(𝒏)| − |𝑿𝒌(𝒏 − 𝟏)|)}𝟐

𝑵

𝟐
−𝟏

𝒌=
𝑵

𝟐

 (3.7) 

Where H(x) is zero for negative arguments and equal tot the resultfor positive 

arguments. This is calculated by H(x) = (x + |x|)/2 in order to emphasize an increase in 

spectral content and is intended to emphasize onsets rather than offsets [9] [2]. 

 

3.4. Optical Music Recognition (OMR) 
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notation 
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Figure 3.7. Typical architecture of an OMR processing system [17] 

OMR processing system can be divided into three principal modules as shown in 

Figure 3.7. In above illustration an OMR processing system that explained by [17] is 

consists of 

 Image pre-processing 

In this models, given image of music sheet, there are several techniquest 

e.g. binarization, noise removal, blurring, deskewing, etc to make the 

recognition process more robust and efficient. 

 Music symbol recognition 

There are three stages in this modules. Staff line detection and removal is 

performed in order to obtain an image containing only the musical 

symbols. In this part, staff lines spacing and thickness also provide the 

basic scale for relative size comparisons. After the removal of staff line, 

then the system can perform symbol primitives segmentation and 

classification. 

 Musical notation reconstruction 

In this step, symbols primitives are merged in order to form musical 

symbols. Graphical and syntactic rules are used to introduce context 

information to validate and solve ambiguitites from the previous module 

of music symbol recognition. Detected symbols are interpreted and 

assigned a musical meaning. 
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 Final representation construction 

In this final step, a format of musical description is created with the 

information produced previously. 

In relation of music symbol recognition, [17] describe set of music notation as 

presented in Table 3.1. below 

Table 3.1. Set of music notation [17] [25] 

Symbols Description 

 

Staff 
An arrangement of parallel lines, together with the spaces 

between them 

 

 
 

Clef 
The first symbols that appear at the begining of every 

music staff and tell us which note is found on each line or 

space 

 

 
 

Sharp, Flat and Natural 
The signs that are placed before the note to designate 

changes in sounding pitch 

 

 

Beams 
Used to connect notes in notegroups; demonstrate the 

metrical and the rhythmic divisions 

 

 

Accent and Staccatissimo 
Symbols for special or exaggerated stress upon any beat, 

or portion of a beat 

 

 

 

Crochet, Quaver and Minim 
The Crochet (closed notehead) and Minim (open 

notehead) symbols indicate a pitch and the relative time 

duration of the musical sound. Flags (Quaver) are 

employed to indicate the relative time values of the notes 

with closed noteheads 

    

Quarter, Eighth, Sixteenth and thirty-second rests 
Indicate the exact duration of silence in the music; each 

note value has its corresponding rest sign; the written 
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position of a rest between two barlines is determined by 

its location in the meter 

 

 

Ties and Slurs 

Ties are a notational device used to prolong the time 

value of a written note into the following beat. The tie 

appears to be identical to slur, however, while tie almost 

touches the notehead centre, the slur is set somewhat 

above or below the notehead. Ties are normally employed 

to join the time value of two notes of identical pitch;  

Slurs affect note-group note-groups as entities indicating 

that the two notes are to be played in one physical stroke, 

without a break between them 

 

3.5. SVM Classifier 

 

SVM is classification method that constructs hyper-plane in high order space 

which can be used as classification plane [26]. SVM is kernel-based classifier. And 

popular kernels are are linear, polynomial, RBF and sigmoid kernels [26].  

SVM classified based on kernel. Among others, popular kernels are linear, 

polynomial, Radial Basis Function (RBF) and sigmoid kernels [9]. Given features 𝑥, 

kernel 𝐾 can be defined as dot product of features 𝜙(𝑥𝑎)  with other 𝜙(𝑥𝑏) [30], 

thus : 

𝐾(𝑥𝑎 , 𝑥𝑏) =  𝜙(𝑥𝑎). 𝜙(𝑥𝑏) 

 

Using above kernel function, the classifier function 𝑓(𝑥) can be notated as : 

𝑓(𝑥) =  𝑠𝑔𝑛(∑ 𝛼𝑖𝑦𝑖
𝑖

(𝐾(𝑥𝑖 , 𝑥)) + 𝑏) 

with 𝛼𝑖 is the vector of l non-negative Lagrange multipliers to be determined, 𝑦𝑖 are 
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values of support vector and b as bias. 

In our case, we employ SVM classifier to recognize music symbols. There are 

number of musical symbol classes such as accidental, bar, braces, clef, digits, dot, note 

and rest. Given a set of extracted HOG features for the music symbols as traning data, 

we train SVM classifier using a toolbox provided by MatLab [27]. 

 

3.6. HMM Training  

 

In order to do pitch recognition in transcription step, given music scales recording, 

we employ a continuous HMM that have 13 states, 12 states for notes events or pitches 

and 1 state for silences. Then we trained the HMM using Baum-Welch iterative 

algorithm as each itteration will guaranteed to increase the likelihood. K-Means 

clustering method is employed as initialization of Baum-Welch training.  

 

3.7. Viterbi Decoding 

 

After the HMM has been trained using Baum-Welch algorithm, then we employ 

Viterbi algorithm as online decoding algorithm to do pitch recognition. Viterbi 

algorithm is the most popular technique for finding the optimal path along an HMM 

[15]. Viterbi algorithm purpose is to find the single best state sequence that most likely 

produced the observations [5,19]. 
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Using trained HMM parameter 𝝀 the system tried to find the single most likely 

pitches sequence 𝒒 = (𝒒𝟏, 𝒒𝟐, … , 𝒒𝑻)  given chroma features as observation 𝑶 =

(𝒐𝟏, 𝒐𝟐, … , 𝒐𝒕). In this case we defines  

 

𝜹𝒕(𝒊) = 𝐦𝐚𝐱
𝒒𝟏,𝒒𝟐…,𝒒𝒕−𝟏

𝑷(𝒒𝟏 𝒒𝟐 … 𝒒𝒕 = 𝑺𝒊,   𝒐𝟏 𝒐𝟐 … 𝒐𝒕 |𝝀) 

 

as the highest probability along a single path that ends in state 𝑺𝒊 at time 𝑡 given 

model parameter 𝝀 [19]. By using induction, we can calculate the probability at time 

𝑡 + 1 as 

𝜹𝒕+𝟏(𝒊) = [𝐦𝐚𝐱 𝜹𝒕(𝒊)𝒂𝒊𝒋] . 𝒃𝒋(𝑶𝒕+𝟏)  

 

Figure 3.8. illustrate the workflow of online decoding using modified viterbi 

decoder. In term of online decoding system there will be no access to future information 

also to the entire signal. To be able to handle this situation, we will use observation 

buffer that keep L frames of the chroma features. Then the decoding algorithm will 

decode the buffer as illustrate in figure In the decoding step for each buffer decoding 

𝜹𝒕(𝒊) will be reuse previous buffer calculations 𝜹𝒕−𝟏(𝒊) (except for the first buffer 

that will be calculated as initialization 𝜹𝟏(𝒊)) that called as modified Viterbi decodier 

in [6]. Regarding the decoding result of each observation in the buffer we employ 

voting system so that each buffer has only one decoding result which is the pitch 
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estimation. 
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Figure 3.8. Viterbi Decoding the workflow [6] 

 

Chapter 4 

Experimental Result 

 

4.1. Music Score Recognition 

 

In order to recognize the music symbols, we use music symbols training data 

described in Table 4.1. Music symbols in the training data are obtained from beginner 

piano music score which are already processed through line staff removal, gap stitching 

and segmentation. The system then extract HOG features out of it and use them as 

training data for SVM classifier training.  

 

Table 4.1. Music symbols training data 

Classes  Sub Classes  

Number 

of Music 

Symbol 

Accidental Flat 61 

Natural 15 

Sharp 52 

Bar - 38 

Brace - 52 

Clef Clef F 36 

Clef G 58 

Digit Digit 0 16 

Digit 1 34 

Digit 2 23 

Digit 3 15 

Digit 4 26 

Digit 5 14 

Digit 6 16 
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Digit 7 12 

Digit 8 42 

Digit 9 9 

Dot - 71 

Dynamic Dynamic MF 3 

Dynamic MP 2 

Dynamic P 1 

Note Crotchet 109 

Crotchet Reverse 284 

Minim 28 

Minim Reverse 72 

Quaver 38 

Quaver Reverse 23 

Semibreve 66 

Rest Crotchet 26 

Minim 52 

Quaver 17 

Semiquaver 3 

Timesignature Timesignature 34 7 

Timesignature 44 10 

 

Given HOG features, the trained SVM classifier is used to recognize the music 

symbols given music score. The result of recognition shown in Table 4.2. below : 

 

Table 4.2. Music symbols recognition result 

Music Score Name 
Number of 

Symbol 

Correctly 

Recognized 

Accuracy 

(%) 

London Bridge is Falling Down 64 64 100 

Twinkle Twinkle Little Stars 90 84 93.33 

Peter Peter Piano 76 76 100 

Au Clair De la Lune 99 98 98.99 

Mary Had a Little Lamb 90 79 87.78 
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Given simple music score images, system able to perform good recognition with 

accuracy more than 85% with average accuracy 96,02%. Albeit, There are some 

misclassification cases that SVM fail to recognize the music symbols correctly as 

shown in Figure 4.1. below : 

 

 

Recognized as : Digit 1 Note Crotchet Digit 1 Note Minim 

Ground Truth  : TimeSignature44 Note Minim Note Crotchet NoteCrotchet 
  

Figure 4.1. Music symbols missclassification cases  

 

 

 

 

Figure 4.2. (a) A music score and (b) the MIDI from the score 

 

Given a simple music score in Figure 4.2.(a), system recognize all notes correctly. 

Then, we define construct reconstruction matrix and convert it into a MIDI file using 



 

 

 

- 37- 

 

method provided in [12] as shown Figure 4.2.(b). 

 

 

4.2. Music Signal Recognition 

4.2.1. Chroma Features 

 

By using pitch class profiles extraction defined in 3.2. Music Feature Extraction 

before, we can obtain chromagram. Consider a music scales recoding in Figure 4.3.(a) 

below, we apply 2048 window size STFT calculation to make spectrogram in Figure 

4.3.(b).  

 

 

 

 

 

 

 

Figure 4.3. (a) Music scales recording and (b) its spectrogram 
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Figure 4.4. C Matrix 

 
Figure 4.5. Chromagram 

 

In order to obtain chromagram, then we multiply above spectrogram with C Matrix 

(Figure 4.4.). C Matrix is log frequency filter bank that have size : 12 semitones x 

number of frequency bin. After that, we can visualize 12 dimensional chroma features 

as chromagram in Figure 4.5 below  

In above chromagram, it is clear enough by naked eyes to see 12 semitones in one 

octave. To see more chroma vector clearly, we also apply Principle Component 

Analysis (PCA) that only keep two components of chroma vectors as shown in Figure 

4.6 below. At this point, we can use this features to train the HMM in order to recognize 

each pitch. HMM Training will be described later in this chapter. 
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Figure 4.6. 2D PCA of Chroma vectors 
 

 

4.2.2. Onset Detection 

 

To identify musical events in music recording, we detect the onset using spectral 

flux. Spectral flux able to find onset by identify changes ini energy that would be the 

best first estimate of any onset detection function as shown in Figure 4.7. below 
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Figure 4.7. (a) Music scales recording and its (b) onset estimation 

 

4.2.3. Training 

 

In order to recognize the pitch, we train the continuous HMM with 13 states. Each 

states represent the tones including the silence. The training step is done by Baum-

Welch algorithm. After hundred of itteration, the model tends to be able to recognize 

each tone in the chroma vectors as shown in Figure 4.8 below  

 
Figure 4.8. Chroma vectors with ellipse as states of HMM 
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In Figure 4.8., each ellipse represent the states which are gaussian distribution. 

Note that the chroma vector in the center part were the silence that also recognized by 

the HMM. Albeit more gaussian mixture will resulting more accurate model of a pitch 

given chroma features, a gaussian for each state is enough to recognize the pitch as 

shown in Figure 4.8. This training result then can be used to recognize the pitch of 

another music recording as will be describe in next sub section.  

 

4.2.4. Decoding 

 

This step is mean to test the trained HMM wether it can recognize the pitch 

accurately or not. Decoding step is done by empolying the Viterbi decoding algorithm 

using trained HMM before. 

 

 

Figure 4.9. (a) Chromagram and (b) Viterbi decoding result of music scale 

performance 
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Here we use 5 length of frames as buffer to be decode. Given the music 

performance, we extract the chroma features out of it then apply Viterbi decoding 

algorithm. Chromagram and its decoding result is shown in Figure 4.9. and Figure 4.10. 

In Figure 4.9. (b), Y axis represent the states of HMM. It is clearly to say that HMM 

able to recognize and tracks the pitch accurately. 

 

 

 

Figure 4.10. (a) Chromagram and (b) Viterbi decoding result of  

“London Bridge is Falling Down” music performance 
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Chapter 5 

Conclusions 

 

5.1. Summary 

 

This research aim to design music learning assistant which have music score 

following features using audio-visual analysist. It consists of SVM and HMM. The 

SVM classifier recognizes music symbol in the simple music score. While, the HMM 

tracks the pitches given a music audio. If both of them are integrated with a proper 

synchronization, the system will be able to give feedback according to learner 

performance 

 

5.2. Future Directions 

 

More data to be trained in training steps tends to obtain more accurate HMM. Thus, 

if there are more data from multiple instruments the HMM can be expect to recognize 

pitch from many instruments. In future research, it is necessary to provide multiple 

instruments as data training in order to design more robust music score following. 
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