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‘Woorthak Baek

Department of Physics, Graduate School,

Pukyong National University

Abstract

In this paper, we have studied seismic network. Abe and Suzuki
investigate novel seismic network from a singular seismic time series
by considering cell resolution and temporal causality. But their
approach to construct network does not express the meaning of
aftershock. Because, an aftershock is a smaller earthquake to occur
after a previous large one. Therefore, we suggest new method to
construct seismic network using relationship between aftershock and
main earthquake. With the new method, we have examined some
topological properties of the earthquake such as the mean degree, the
characteristic path length, the clustering coefficient, the global efficiency, the
hierarchy, and probability distribution. And the our results compare with
Abe and Suzuki's method

We have simulated dynamical phase transitions in a Boolean
network with initial random connections. The nature of the phase

transition 1s found numerically and analytically in two connecting



probability density function. By using the noise intensity, we show
that a critical value exists for the noise intensity. In addition, we find
that the critical exponent of our simulation 1s similar to the
theoretical result 1/2.

Lastly, we have studied the non-Markovian Caldeira - Leggett
master equation for the Brownian motion of a free particle. The
Fokker - Planck equation with the effective potential in the long time
limit contains the Markovian Klein - Kramers equation with the
diffusion energy. We mainly analyze the quantum Brownian motion
with the harmonic oscillation in the one-dimensional quantum space.
By using the Wigner function technique from the non—-Markovian
Caldeira-Leggett equation, we calculate the velocity distribution
function with the diffusion energy and the correlational function.
Since such three correlational functions are considered as the
exponential, Gaussian, and complementary error functions. The
quantum force can be analyzed from the velocity distribution function.
Particularly, the quantum force is found to be proportional to the

angular frequency w? in the quantum limit and the steady regime,

while the classical force is proportional to the temperature T'/? in

the classical limit.
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I Introduction

Most scientists have dreamed that they can uncover the
important principles or clearly describe some phenomenon. But there
are many sclentific phenomena which we couldn’t cognize exactly
before. For example, economic activity, social interaction, World Wild
Web, ecosystem etc, it seems that they behave irregular. And
dynamics of above examples are so sensitive to the initial conditions
that it is very difficult to predict. These some special properties are
the feature of a complex system. Although, there is no absolute
definition of what complex system means, some agreements among
researchers are widespread. First, the system is basically composed of
many components, which are interacting time-dependently. The
behavior of individual agents is affected by information coming from
the system or other agents. Therefore, it is unlikely that there is a
typical agent. Second, the presence of feedback implies that the
system 1is remembering its past and responding to it in a non-trivial
way. ‘Third, each agent adapts behavior toward improving
performance. Fourth, if the entire agent population evolves, the
system is driven by an ecology of agents who interact and adapt
under the influence of feedback. Then, the system is typically far
from equilibrium and hence exhibits extreme behaviors. They called
this phenomena emergency. One of the methods to analysis complex

system is the network approach which means that the ingredient of



complex system 1s regarded one vertex and the interaction is
considered some edge to connect each vertexes.

Our purpose in this thesis is to study some complex phenomena.
Firstly, we suggest new methode to construct seismic network. Research
of complex systems has recently been applied to new methods and
techniques of studying the intermittent nature of turbulence [1,2],
various financial time series [3,4], wavelet transform approaches [5,6],
growing and non-growing networks [7,8] and seismic phenomena [9],
amongst others. In Particular, over the last two decades, the
remarkable potential of complex networks to simulate and analyze the
dynamical behavior of complex systems has gradually been an
increasing trend in new fields of research in the social, natural,
engineering, and medical sciences. In network theory, small-world and
scale-free network models [10,11] have been studied widely in various
applications of these scientific fields. These two network models have
played a crucial role in understanding complex phenomena [12-14]. Of
the many systems of current interest, the degree distribution for
scale—free networks is interesting, because it follows a power law,
and it decays faster than exponentially for random networks.

The network by new method compares with Abe and Suzuki’s one. For
comparison, we have constructed earthquake networks in two ways and
examined some topological properties such as the mean degree, the
characteristic path length, the clustering coefficient, the global efficiency, the

hierarchy, and probability distribution.



Secondly, we have performed analysis of dynamical phase
transitions in a Boolean neural network. Boolean neural networks have been
described an genetic models for the dynamics of complex systems of
Interaction entities, such as social and economic networks, neural networks,
and gene or protein interaction networks [36]. Kauffman [37] as a model for
gene regulation was introduced and studied the simplest and most widely
neural network models. Derrida and Pomeau [38] have performed calculations
of random automata model by using a Boolean function. Their work has
given annealed approximation and quantitative predictions for distances
between iterated configurations. Boolean networks have been used to describe
wide variety complex system. We have shown that there is a critical value

of noise intensity on neural network with connection distribution ¢;;. Also,

we find that the critical exponent of our simulation is similar to the
theoretical result 1/2.

Lastly, we have studied the quantum Brownian motion with the
harmonic oscillation in the one-dimensional quantum space. The quantum
Brownian motion has been one crucial subject among problems of statistical
mechanics [61,62,63] for decades. The vast published works on quantum
Brownian motion are treated with microscopic models in which the coupling
of the Browmnian particle is linear and nonlinear in the bosonic bath. The
nonlinear case of a coupling system corresponds to a situation in which
damping diffusion are spatially inhomogeneous, and such nonlinearity might
have both classical and quantum consequences.  We have investigated a
non-Markovian Caldeira—Leggett master equation for the Brownian motion.

We calculate the velocity distribution function with the diffusion energy and



the correlation functions, that 1is, the exponential, Gaussian, and
complementary error functions are treated, and the statistical quantities such
as the average energy, the velocity fluctuation, and the quantum and classical
forces are calculated and analyzed from the velocity distribution function.

In chapter 1, we shall study theoretical background. For
seismic network, we configure new method of seismic network, and
introduce some network properties, For Boolean Neural network, we
derive the probability density function, then show there exist phase
transition. Also we shall show that the Markovian assumption for
Brownian motion is not physical reality. So by using Non-Markove
approach, we analysis quantum Brownian motion.

In chapter II, we compare some network properties with Abe's
method and our new method. And we simulate the Boolean neural
network, so we find that the critical exponent is about 1/2 under
existence of phase transition. For Brownian motion, we calculate
some physical properties with three correlation function under
classical and quantum limit.

In conclusion, we summarize the results of our simulation and

calculation. Our plans of further study are mentioned as well.



II ‘Theoretical Background

1 Seismic Network

Seismicity i1s a phenomenon of dynamical behavior in complex
seismic time series [15-19], similar to a tsunami wave train. A
shallow earthquake is well known to construct and analyze the
distribution in the relevant area that leads to many aftershocks
[20-23]. Two celebrated empirical law, that is, the Gutenberg—Richter
law and the Omori law [17,18], have used to measure the number of
aftershocks and analyzed the computational simulation of earthquakes
by a theoretical formula. Abe and Suzuki [24] have analyzed the
spatio—temporal properties of seismicity from the viewpoint of the
Tsallis entropy under appropriate constraints. They have found the
spatial distance and the time interval(between two successive
earthquakes) by using g-exponetial distributions, which are
characteristics of the nonextensive statistical mechanics [22]. In
particular, the correlation function has been a main issue in
theoretical and numerical investigations of aftershock phenomena.
Several theoretical formulae have been used to carry out the
computational simulation of earthquakes.

Futhermore, network theory is a topologically and dynamically
useful tool for investigating and analyzing a seismic system, which

can be simplified into processes for storing and transmitting energy



via the crust. Abe and Suzuki [9] have discussed a novel method,
which uses the concept of complex networks, and small-world and
scale—free networks for seismic complexity. Abe and Suzuki also
introduced a complex-network approach [25] to the seismicity. and
they showed that earthquake network behaves like a complex

network.

1.1 New Method

It is first time suggested to construct complex network from seismic
data by Abe and Suzuki [9] However, their proposal for constructing
complex network using single time series does not express the meaning of
aftershock. According to the wikipedea [26], doopedia [27] and The Korea
Economic Daily [28] once a main shock of earthquake occurs , an aftershock
1s a smaller earthquake that it occurs after a previous large earthquake, in
the same area . If an aftershock is larger than the main shock, the
aftershock is role of the main shock and the original main shock is
redesignated as a foreshock. Aftershocks are formed as the crust around the
displaced fault plane adjusts to the effects of the main shock. Therefore, we
suggest new method to construct complex network using property of
aftershock.

An earthquake network is constructed by segmenting the whole region
mto three—dimensional cubic cells and making a link between consecutive

events. Each cubic cell is regarded as node of a network, and the network



constructed in that manner is basically directed, but we transform it into an
undirected one because we focus on the topology of the network.

The procedure is as follows:

A. (by Abe and Suzuki) [9]

(1) Segment the whole region into N-by-N-by-L cubic cells, each of
which has the same size.

(2) Link two earthquakes occurring consecutively.

(3) If two consecutive events belong to the same cubic cell, their link is
disregarded.

(4) If two directed links form between two cubic cells, the number of links
is counted as one.

(5) By considering each cubic cell as a node, we regard the links made by
all events belonging to the cubic cell with others in another cubic cell
as links of a network.

B. (by Baek) [98]

(1) same as (1) of A.

(2) If the magnitude of second earthquake is smaller than the first one,
link two earthquakes.

(3) If the magnitude of third earthquake is smaller than the second one,
link first earthquake and third one. In this manner, smaller earthquakes
as role of aftershock are linked main shock.

(4) Otherwise, that is, the magnitude of third earthquake is bigger than the
second one, the third one is another new main shock.

(5) same as (3), (4) and (5) of A.



For example, there are successive time series of seismic data (see
Table. 1), on Fig. 1, we have shown two complex networks by the manner

of A and B.

OCClt,lil;Il;El’lce magnitude latitude longitude
1 3.2 3 3
9 ) 1 B
3 1.8 3 6
4 1.0 5 3
5 0.9 1 2
& 2.5 4 6
7 2.0 3 6
8 1.2 4 7
9 4.0 6 2
10 2.0 3 3
11 1.5 6 4
12 1.1 7 1

Table. 1: An example of seismic data. Seismic data basically consists of the
occurrence time, magnitude, and focus of each earthquake. Depth is omitted
for simple comparison.
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Fig. 1: Baek's method compares with Abe and Suzuki's method. The left one
1s constructed by Abe and Suzuki’s method. Each node linked in order. On
the other hand, the right network is constructed by Baek’'s method. It is
applied the relationship between main shock and aftershock.



1.2 ‘Topological Properties

There are some important ingredients of complex networks. They are
different from ingredients of random networks. We have calculated some
fundamental network metrics such as the mean degree, the characteristic path
length, the clustering coefficient, the global efficiency, the hierarchy, and
probability distribution.

First of all, the mean degree is defined as

N

1
S = WZI@; (1

i

where k; is the degree of ith node. Degree is the number of connected

link. NV is the total number of nodes. The random network is that it
constructed by randomizing the seismic network under fixed links and nodes.

We introduce the characteristic path length L [30] given by

. 1
L = NAN—=1) Z d; )

LJEN

where dij 1s the number of links in the shortest path between ¢th and jth

nodes. The characteristic path length is the average of the shortest paths
each node and the other nodes in the network. Generally, most complex

networks or real networks have a very short average path length.

10



To examine the cliquishness of seismic networks, we can calculate the

mean clustering coefficient [30] as

C= <c¢c> = WENQ 3)
2e,
‘T 1) )

where e, denotes the number of links among k; neighbors of a node 7. This

quantity shows tendency of two nodes of the subgraph being connected to
each other. Where a subgraph is a set of directly linked nodes(that is,

di; = 1). For complex network, the clustering coefficient is a large value

compare to random network.

The global efficiency [31] is defined by

|
By = o
slob = N(N—=1)

(3

1
— 5
?éJZEG dij ( )

This is just a harmonic mean of distance between two nodes. In network
theory, the efficiency of a network is a property of how efficiently it

exchanges information.

11



Fig. 7. A fully connected cluster of four nodes. This figure shows three
steps to construct completely hierarchical. In this case, the hierarchy
coefficient 8= 1.

12



Generally, we can find that there is hierarchy frame in a complex
network. In this case, the clustering coefficient of node ¢ with degree k

follows the scaling law.

Clk)~k " (6)

where the scaling exponent [ is a hierarchy coefficient [32]. If a network
has completely hierarchical structure(see Fig. 7), the hierarchy coefficient
g=1.

Lastly, from our method for constructing network, a newly created node
of the growing seismic network is linked with preferential attachment
probability 11 (k;).

k) = — N

A network generated with this rule characterized by power-law connectivity
distribution. The probability distribution function of degrees is represented in
terms of

Pk) ~k 7 )

where 7 is the degree exponent. The network with above mentioned feature

of Eq. (7) and (8) is called the scale free network[11]. Theoretically, they call

13



the network ultrasmall where the degree exponent v of the scale free
network is in the range of 2 to 3 [33,34]. A scale free network governed
the rule Eq. (8) is in contrast to the random graph, the degree distribution of

which in Poissonian [11].

2 Neural Network

Boolean networks have been used to describe various models in
complex systems such as neural networks with associative memory [39,40],
spin glasses [41-44], dynamics of evolution [4546], and cellular automata
[4748]. Tt is well known that a typical Boolean network consists of a set of
binary elements which are connected among them to indicate a net, and he
uses of common tools which have revealed a robust parallel between Boolean
networks and dynamical systems. Historically, neural networks have
approximated universal and nonlinear functions with arbitrary accuracy [49].
This approximate method is an important advance for neural networks,
because of the huge number of possible nonlinear patterns for real world
problems. Neural networks have been described to be effective in modeling
and forecasting nonlinear time series with noise [50]l. Until now, many
scientists [51] have made the comparison between the neural network and
the traditional method in time series modelling and forecasting performances.

Futhermore, over the last two decades, the remarkable potential of

complex networks to simulate and analyze the dynamical behavior of complex

14



systems has gradually been an increasing trend in new fields of research in
the social, natural, engineering, and medical sciences.

Until now, several papers have analyzed the non—equilibrium dynamics
of deterministic Boolean neural networks [5253] and suggested the existence
of a variety of possible collective behaviors such as synchronized oscillations
or chaos [54,55]. The influence of noise on the dynamics of Boolean networks
has been analyzed in several published papers [56,57] as well. Scientists who
have researched on neural networks have been interested in considering the
changes in the dynamical properties of a deterministic system in the presence
of noise. Following this motivation, we study random network models
exhibiting self-organization and analyze its tolerance to the effect of noise.
We mainly show from two connections (of probability density function) and
one random network that the system undergoes a dynamical phase transition

as its amount of randomness is increased.

2.1 Boolean Neural Network

Consider a neural network composed of N elements, each of which can
only take the values o, = +1 or o, = —1. Every o; is randomly
comected to any L elements, of the network, which define its set of
linkages. The parameter L is the connectivity of the network, and each
linkage is weighted by an independent random variable. The NL connections

of a network and its corresponding weights remain fixed throughout the

15



evolution of the system In our model, the input functions [58] at discrete

time step ¢ 1s represented in terms of
L
Ie,y - CiL;O-il(t)’ - UiL(t)) = Sign{z%oix(t)} )
j=1 "7

Here 0;(t) is connected to any L elements having its set of linkages {07;/(75)}

for j = 1, -+, L, and each linkage Ui,(t) is weighted by an independent

random variable ¢;;. The mput function takes the same value as the majority
of the linkages, if it corresponds to the majority rule.

Using Eq. (9), we introduce a stochastic evolution rule for o,(t+1)

with a noise intensity 7 such that

O'i(t—i_l) o I(Cﬂ’ Tty ciL;O-il(t>’ ) UiL<t)) with 1—+ (10)

O'i(t—i_l) = _I(Cip Ty CiL;O-qjl(t)’ Tty UiL(t)) with v (11

In above equation, we can select randomly a varying noise intensity -y
between 0 and 1/2. In the case with v=0, a neural network system at time

t+1 will converge to an ordered state in which all the o; (t+1) are equal

Next, we consider that the neural network system undergoes a
dynamical phase transition from an ordered to a disordered state as the noise
mtensity v 1s increased. In order to define the order parameter adequately
described the degree of alignment of the elements of the network, we

mtroduce a statistical quantity as

16



N

olt) = %2@@) 12)

i=1

where lo(t)l—> 1 for an ordered system in which all elements take the same
value, while lo(t)—> 0 for a disordered system
For systems where the time-average of lo(t)l converges, an order

parameter @ is defined as

b = Z] o (t)] (13)

where t, can take any arbitrary finite time without changing ®. If the state

is fully ordered, then =1 |, and =0 for a fully disordered state.

2.2 Dynamical Phase Transition

Huepe and Aldana [59] have shown that, under very general conditions,
the neural network model in Eq. (10) and Eq. (11) undergoes a dynamical
second order phase transitions. And, if the probability density of the
connection weights is a non-symmetric, but otherwise arbitrary function, and
if the linkages of the network are chosen randomly, then there exists a

critical value A, of the noise in the vicinity of the phase transition.

In order to calculate the exact analytic expression of the order

17



parameter @ that relates the noise intensity control parameter 7. Let us
define #(t) as the probability that at time ¢ any arbitrary node o, acquires

the value +1

.1 Y ot)+1
o) = {LHOIOWZ%T (14)

If the state is fully ordered, then ¢(t)=0 or 1, and ¢(t)=1/2 for a fully
disordered state.

The products 07;]»‘77:,(” can be considered a independent random variable,

when the linkages of every node are assigned in a sufficiently random way.

Therefore, if we denote by Py (z) and P @ (z) the probability density

L
function associated to s; = Ecijaiv(t) and to the product c;0; respectively,
7:1 N J “ J

then

The probahility ¢(t) of having the input function I=+1 at time t can be

computed as
o) = [ PG a16)
0

Using Eq. (10) the probability ¢(t+1) of having o;(t+1)=+1 in terms of

18



gt) and v
pt+1) = gW)1—1] + [1—g@)ly 17

Now, we should find the relation between ¢(t) and ¢(t). For this, Eq. (15)

acquires the form
JBS(t)O\) N [Pm(t)o\)]L (18)

when P(\) is the Fourier transform of P(z).

Since the connection weights c¢;; are distributed according to the

J
probahility function P.(z), and the varables o,(t) evaluate to +1 with
probability ¢(t), the probability density function of the products g is

given by

P @) = ¢t)P(z) + [1—9¢®)]P.(~2) 19)

Py = [E0) + (BO)=EW)e)]” (20)

where the P~ is the complex conjugation. Substituting ¢(t) = [o(t)+1]/2,

we get

19



5 T o(t) 1)

) — = iIm(P,) (22)

Now from Eq. (21) and Eq. (22) we have

P = 3 (H[e(?)

m

M in(P)]" (23)

The inverse Fourier transform of Eq. (23) is

Pt = 3 () [P

L) "o W o )l

(24)
Using Eq. (16) and Eq. (24), we have
L
gt) = Y a,lo@)" (25)
m=0

where the a,, are constant coefficients that depend only on 130 (A\) and are

20



given by

M n(P)]" e M arde

- S

_mtl é)/m %[Rg(ﬁc)

27 .

m

d\ (26)

C,

()

Note that a,, =0 for all even values of m =2 and a, =1/2 [59].
We have shown that ¢(t) is a polynomial of degree L in o(t). Thus
Eq. (17) becomes
olt+1) = 2(1—27)(a10(t)+a3[0(t)]3+---+aL[U(t)]L) 270
In the limit t—o0, o(t) will asymptotically approach a fixed point o
o = 2(1—27)(&10—1-@303 +---+aLUL) (28)

Discarding the solution 0 =0 and solving Eq. (28) for 7, we have

a, —1/2+az0* +-+a,0" !
v = (29)

2 (a1 + a302 +- -+ aLoLfl

and in the vicinity of the phase transition o = 0. From Eq. (28) we have

21



By dividing the polynomials of Eq. (29) and neglecting the terms of order o

and higher we obtain
Y%= 50 (31)

From Eq. (26) ay <0, therefore if v<+. Eq. (31) implies that real non-zero
solutions for o in Eq. (28) only exist. For 7>, the solutions of Eq. (31)

are imaginary and therefore o =0 is the only acceptable solution of Eq. (28).
In the last analysis, the explicit behavior of the order parameter @ = lol

near the transition will be

= [Cly—9 N forvy < 7 (32)
and

=0 for v > 7, (33)

3 Brownian Motion

Recently, the type of inhomogeneity has been rigorously investigated in

classical Brownian motion and other classical diffusive systems [64,65].

22



Applications have included Brownian motion in diffusion gradient [66,67],
noisy electrical circuits [68], and thermophoresis [69]. The diffusion in
mhomogeneous and disordered media has been one of the developing
problems in the theory of random walks and Brownian motion [70,71,72].
There is a considerable interest in the studies of various forms of anomalous
diffusion and nonergodicity nowadays.

The application of the Lindblad formalism can be really found in
quantum optics in which the environment is represented by a quantized
radiation field while the Brownian particle is considered to an atom or a
molecule. In the experimental apparatus, the decoherence process that is the
destruction of the superposition states by the presence of environment can be
controlled [73,74]. Recently, we should not attribute fundamental significance
to the Lindblad master equation, and the Lindblad theory is not appliable in
the problems of condensed matter physics at low temperatures for which
neither the Born approximation is valid or the Markov assumption holds [75].
The recent controversies have pointed out the inadequacy of the Lindblad
approach to fathoming the true physical fields of open quantum systems
[76,77].

Furthermore, the Markovian quantum master equation can be classified
as two sorts of Caldeira—Leggett equations [78-82]. Firstly, the Markovian
Calderea-Leggett equation [79] holds valid at high temperatures for any
friction constant. Such Markovian Caldeira—Leggett equations may give rise
to unphysical results, for they are not of the Lindblad form [83,34,85],
although the high—temperature Caldeira-Leggett equation ha been employed
for looking at the decoherence phenomenon [7879]. Tt has been claimed that

23



Markovian Caldeira—Leggett equations camnot be considered as a bona fide
description of quantum Brownian motion [75,85]. Secondly, the Markovian
Caldeira-Leggett equation [80] holds for any temperature and very weak
damping. The non—Markovian master equation has an applicability range for
this class of non-Lindhlad quantum master equations.

The purpose of this work is to study the quantum Brownian motion
with the harmonic oscillation in the one-dimensional quantum space. We
calculate the velocity distribution function with the diffusion energy and the
correlation functions, that is, the exponential, Gaussian, and complementary
error functions are treated, and the statistical quantities such as the average
energy, the velocity fluctuation, and the quantum and classical forces are
calculated and analyzed from the velocity distribution function. Our numerical
result can be compared to the strength of the quantum thermal force

measured the trapped ions[&6].

3.1 Markovian Assumption

The Brownian motion had been mathematically studied by Einstein [87]
and Langevin [&] on the basis of the concept of probability. In 1905,
Einstein had built up a theoretical model in which the envicronment acts on
the Brownian particle in a probabilistic fashion. Acoording to him, the
random motion of a free Brownian particle could be described by the

diffusion equation for the probahility distribution function F(z,t).
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0 Flz,t) _ 0 2F(x,t)
ot - pf i (3

where D is called diffusion constant with dimensions of [length? X time '],
In other to derive the diffusion equation Eq. (34), Einstein posited the motion
of the Brownian particle as a translation transformation from the point

x,=x+Az at t, =t to the point z, =2 at t, =t+At. That movement

evolves through the following integral equation

Flot+At) = /jO Fla+ Az, t)é(Azx)d(Ax) (35)

where the ¢(Az) is a time-independent function with normalization condition.
Markovianity property in the integral equation Eq. (35) is important
assumption underpinning the theory of Brownian motion.

Einstein [87,8990] derived the following expression for the diffusion

constant
D= 2= (36)

where kjy is the Boltzmann constant, and 7, [ are the temperature and the

frictional constant. m 1s a mass of the Brownian particle. The solution to Eq.

(35) reads
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—mpBz”
_ mp3 kT
Flo,t) = \ drk, Tt © (37)

The position fluctuation of the free Brownian particle is then represented by

the following Einstein's root mean square displacement

X(t) = t (38)

the instantaneous velocity

_dx | kT
Vt) = = = Vomp (39)

blows up at short time ¢ — 0. In other words, the displacement fluctuation is
not a differentiable quantity at ¢t=0 hence the concept of instantaneous
velocity of a non-inertial free particle cannot exist in the Einstein picture of
Brownian motion.

On the other hand, Langevin [83] set out to address the problem of
Brownian motion by focusing on the concept of random variable X = X(t)
whose time evolution is given by a stochastic differential equation. According
to that approach, a free Brownian particle with position X(t), mass m is

described by the following Langevin equation
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dt? dX

where the term md®X(t)/dt* denotes an inertial force offsetting a
conservative force, F,=—dV(X)/dX, derived from the Brownian particle’s
potential energy V= V(X), and two kinds of environmental forces: a linearly
velocity—dependent dissipative force, F, =—fmdX/dt, and a fluctuating force,
L(t)=bw(t), that is, Langevin's force.

The Langevin equation Eq. (40), for the inertial free particle, V=0,
may be written in terms of the stochastic momentum P(t) =mdX(t)/dt as

dP(t)

= —BP(t) + bw(t) (41

whose formal solution is the following

Pt) = PO + b / B (5 )ds 42)
0

The mean square momentum then reads

t pt ,
<Pt)> = <PX0)>e P 4 pRe ¥ / / Pt < G (s') > dsds’
0 0

(43)
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Substitution Markovian property

<U(s)W(s')> = 6(s—s) (44)

And assuming that the energy equipartition is valid in the steady regime,

< P*(c0) > =mk,T, then we obtain the fluctuation-dissipation

b = \/2Bmk,T (46)

For initial condition, < P*0)>=<P(0)>=0, and <¥(t)>=0, the root

mean square momentum P(t) = \/< P¥(t) >—< P(t)>? is obtained

P(t) = \mk,T(1 — ¢ 2*) “47)

Eq. (47) is nondifferentiable at t—0, so implying that the stochastic
differntial equation Eq. (41), or the Langevin equation Eq. (40), is devoid of
any mathematical significance because the force dP(t)/dt, or the acceleration

d*X(t)/dt* | cannot exist.
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3.2 Non Markovian Brownian Motion

The stochastic differential equations I phase space Eq. (40) give rise to

the following Kolmogorov equation in phase space

0 Flz,p.t)

CPU — KEp) )

for the marginal probability distribution function
F(xapat) E / Fxm(xapa¢at)d¢ (49)

where F ng(x, p,at)  expressed in  terms of the possible values
z={z;t)}, p={p,t)}, and ¥ ={¢;(t)}, with i =1, distributed about the
sharp values 2, p’, and ¢ of X(t), P(t) and ¥(t), respectively.

The Kolmogorov equation Eq. (48) reduces to the Fokker-Planck

equation[91],
OF P OF o |0V, wt) 0 °F
St Twmas T sl e T THUSS @0

where the potential energy V(z) present in the effective potential V. T (1),

Vo (a,t) = Viz) — ab<wl(t)> (51)

e
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and b<W¥(t) > being the average of the Langevin random force L(t) =0b¥(t)
b<wl(t)> = b / WF, ()i )

The time dependent diffusion coefficient D, (t) is given by
D,(t) = pmE () (53)
where € (t) is the time-dependent diffusion energy
Et) = €Ck) 1)

The correlation function C(t) is defined as

’ 1 t+e t+e , 5 : ,
C(t) = lim— / <wt)w(t")> dt'dt (55)
t t

€E—0 €
and € is the time-independent diffusion energy

b2
€ = 5m (56)

For long times t—co, if the correlation function Eq. (54) displays the

following steady behavior
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limc@t) = 1 (57)

t—0

then the fluctuations i1s Markovian whereby the Brownian particle’s diffusion

energy Eq. (54) becomes stationary

lim€ ) = €(0) = € (%)

t—0

Accordingly, the particle-environment interaction is said to be non—-Markovian
in the non-steady, range 0 <t < oo, The non-Markovian character is also

manifest if C(t) does feature the following asymptotic behavior

limC(t) = C'(t) (59)

t—o0

In that case the stochastic process remains ever non-Markovian.

If a non-Markovian correlation function C(¢) is given by

Ct) = 1—e ™ (60)

where the correlation time t. explicitly represents the non—-Markovianity
parameter of the Brownian motion. At short times t—0, Eq. (60) approaches
C(t) ~t/t. so implying that t,>0, since the Markovian limit ¢,—0 would

lead to the unphysical result, D, (t)—>c0. On the other hand, Eq. (60) in the
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overcorrelated case t—c0 predicts no diffusion phenomenon for all time ¢,
C(t)=0. Accordingly, the correlation time t. is to be held within the range
0<t. <o,

Let us consider an environment in thermodynamic equation at

temperature T and characterized by the thermal energy kg1 then the

Brownian particle diffusion energy € is identified with the reservoir’s

thermal energy kg7,
& =t-T 61)
For convenience we could define the random variable W(t) as
U(t)=d(t)—<D(t) >, then we obtain the following statistical property
[92,93]
<¥(t)> =0 (62)

then the non—Markovian Fokker-Planck equation (50) reads

2
+ ﬁp] + BmkyTC(t) i ]; (63)
ap

oF _£8F+ 8[8V(x)
ot m ox op 0w

Eq. (63) is the non-Markovian Klein—Kramers equation[91].
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3.3 Non Markovian Quantum Brownan Motion

We now wish to quantize the non-Markovian Klein—Kramers equation
(63) for a Brownian particle immersed in a generic non—-Gaussian
environment by means of the dynamical quantization process [6594]. First,

we introduce the following Fourier transform
1 — i,
X(x,nt) = g/ Flz,p,t)e™dp 64

where the exponential €”” is dimensionless term. Inserting Eq. (64), (54), and

B6=2v into Eq. (50), we obtain the classical equatoion of motion in space

(,m)

oV .. (z,t :
ox _ _ 0Velet) oy i 9K T 09X o ed)cenix
ot ox m dxadn on

(65)
The stochastic dynamics Eq. (30) is said to be quantized by introducing into

the equation of motion Eq. (65) the quantization conditions through the

change of variables (z,m)—(z,,x,) given by

x, =+ = (66a)

and
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(66b)

where the transformation parameter 7 is Planck’s constant. The geometric

meaning of the quantization condition Eq. (66) has to do with the existence

of a minimal distance between the points z; and ,, ie., |z,
virtue of the quantum nature of space.
Making use of the relations
0 _ 9@ N AT 9 | A M0
on 7 e, an dx, 2\ dz, d x,
0 0
0 _f &G 0 r Ty 0 L 0 i 0
Jx dx Jdx, dx Jdwx, Jxy d xy

—xz,|=Inhl, by

and the Gaussian approximation, ie., 1z, —x2|3 < 1, in the quantum context

3 0 Vi, t)
ox

3 ,— i
ot = [Vifjat) = Vijat)]p -
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which describes the quantum Brownian motion of a particle moving in the

effective potentials
VO (z,t) = Viz) — o,/ IymE,(e0) < wt) > (69)

Eq. (68) complies with quantum fluctuation—dissipation relationship given by

the quantum diffusion coefficient
Dﬁ(t> > 2W€ii(t> (70)

Let us assume that the environment can be devised as a heat bath
comprising of a set of N quantum harmonic oscillators having the same
oscillation frequency w in thermal equilibrium at temperature T. The

quantum diffusion energy €, is to be identified with the medium’s internal

energy U per particle

€,(0) = (71)
The internal energy U of this system is given by U=N E, where
E=(wh/2)coth (wh/ 2k;T) is the mean energy of such oscillators[95].

Accordingly, the quantum diffusion energy of a Brownian particle immersed

i such oscillators heat bath reads
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h
€,(0) = CL)Tcoth

wh
2k,T

(72)

The non-Markovian master equation (63), with Eq. (72), and C(t) =1,

becomes the Markovian Caldeira—Leggett equation

L 0p B B R 0% 0 2p
ih ot [V(xl,t) V(xQ,t)]p 2 ax% 3:63
. B dre "TAE DI\ wh R
z/’w(xl xQ)( 1 Ety ) irymwcoth 2%, T (xl xQ) 1)
(73)

Because non-Marlivian quantum master equation (68) contains the Markovian
Caldeira-Leggett equation (73) as special case, we can call it the
non-Markovian Caldeira-Leggett equation.

If there are no external potential, ie, V(z;)=V(z,)=0, the

non-Markovian quantum master equation (68) reads

ap n? [ 8%p 8%p ap ap
- = D —2 —2 _’Lﬁ’)/(l'l - fL'Q) — —
ot 2m o ox 8581 8:1;2
1 2
2iym €,
- —— ), — x) (74)

In the Wigner representation of quantum phenomena [96] Eq. (74) changes

mto the following dynamics in quantum phase space
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oW _  p oW 8 a°W
ot m ox - 276ppW+ QWSH’C&) 6p2 ®

where W= Wiz,p,t) is the Wigener function [96] as the Fourier transform

1

o P
W(xapat) = ﬁ/ﬁ p(xpxgat)e g d(SL‘l—SL‘2> (76)

This is a sort of quantum Fokker-Planck equation. We perform the integral
transformation  Wip,t) = / W(z,p,t)dr on FEq. (75) and obtain the

quantum Rayleigh equation in momentum space [80,97]

oWlip,t) oWip,t) ) 0” Wip,t)
Wt) _ _ p OWpt) |y 8 Ly ) 4 gm0t 2B
at m ox ap ap

(77)

To solve Eq. (77), the quantum Brownian particle starts with the
environment as the initial velocity v, =0, at the initial position z, =0. The

time—dependent solution to Eq. (77) is calculated as

2

- } (78)

— 71 exr -
Wiu.t) = NZETI0) p[ 1A(t)

where
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c)1—e ) (79)

and t, = 1/28 denotes a relaxation time. From the probahility distribution
Wiu,t), we can calculate the average energy, the momentum fluctuation, and
the quantum force in the three cases of the correlation function.

The average energy is given by

o)i—e ") (80)

Ault) = [<u?> — <u>2?]Y?
h h et
= [%cath 2kwT C’(t)(l—e t/t’)} (81)
B

We summarize the result of the average energy £ and the velocity
fluctuation Au(t) in Table 3 for the correlation function in the three forms.

The following quantum force is also calculated as

d
EI = mﬁAu(t)
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1

2

hw
2k,T

mhw

12 (1= o) e+t e o)
5 coth

[ i—e )]

(82)

Furthermore, in the steady regime t—co, we find that the velocity fluctuation

becomes simply

hw
% COth

hw
2k,T

1/2
Auleo) = c<oo>] ()

from Eq. (8D).
h
In the quantum limit k7' < hw as COth(kaT ~ 1, the force Fé s
B
given by
—t/t T it
L1 [mhw V21— "o dt+t e O)
F = 5[ 2 } EYANEY (84)
lo)(1—e "]

Moreover, it follows from Eq. (82) that in the classical limit kz7> hw, as

il 2k, T
coth kaT ~ ﬁl; , the force E’ 1s given by
B
s L[k (1= "M)act)/de+1t e ) ©
R [cwl—e )]

Consequently, we can calculate and analyze the average energy, velocity
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fluctuation, and the force from the three correlation function as the

exponential, Gaussian, and complementary error functions.
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Il Numerical results and Calculation

1 Comparison between Abe’s and New Method

We have constructed and analyzed the seismic data collected from
Southern California. The data sources are USCS [29] that the time intervals
are between 20 May 2001 and 19 May 2010. And the seismic data were
measured over the region with latitudes of 32° N ~ 37° N and longitudes of
115° W ~120° W on California. The maximal magnitude is 7.2, and maximal
depth is 797km. The total numbers of events are 147193. Two different
seismic networks are configured by using the prior've written method.

We have formed 11 networks with various cubic cell scale from
(1°/10)>(1°/10) < (10km) to (1°/20) > (1°/20)*(20km). In the case of
(1°/10)x(1°/10) X (10km), the cell have the sizes which are given as
about 10km <X10kmX10km, and the number of cells are 50-by—50-by-80.
Due to the difference of method to construct network, the number of nodes

and links are different too. On Fig. 2 we compare the links versus the nodes.
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Fig. 20 Links versus nodes. Due to the difference of method to construct
network, Abe and Suzuki’s network have more links.
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On Fig. 3, the mean degree of seismic network compared with random
network. It showed that the nodes of the seismic network are more
assoclated than in case of the random network. Fig. 4 shows our results that
the average shortest path length of the seismic network is smaller than
nracom network. The circle and the star denote the Baek’'s network and the
Abe and Suzuki's network, respectively. Fig. 5 shows the clustering
coefficient as a function of cell width. And On Fig. 6, the global efficiency

of two seismic networks compare to two random networks.
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Fig. 3: Mean degree versus the cell width, where the blue circle(hy Baek)
and star(by Abe and Suzuki) denote the earthquake network, otherwise, the
red one denotes random network.
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Fig. 4: Characteristic path length. The results show that the average shortest
path length of the seismic network is smaller than random network.

45



0.7

= Baek
0Ee & 2 Brand i
* +*  Ahe
* #  Arand
05} g !
= *
e % 4
] *
£ 04 @ 1
[
18]
203 ¢ a ]
o
=02 o 1o} i
[
01 .
*
E-gLaE. 0 W N P

1711 113 115 117 1119
wildth of cell{Deq)

Fig. 5 Clustering coefficient as a function of the cell width. Both the Abe
and Baek' network, the clustering coefficient is larger than random network.
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Fig. 6: Global efficiency as a function of the cell width. Both the Abe and
Baek' network, the global efficiency is larger than that of random network.
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Above mentioned Clustering coefficient and Global efficiency is large
value in the case of Abe and Suzuki’s network compare to Baek’s network.
It is due to that there are more links in Abe and Suzuki's network than
Baek's network. Fach case of Abe and Baek, the number of links in various

scale network are given in Table. 2.

size | node | link(Abe) | link(Baek)
1°/10 2616 50465 32863
1°/11 2963 53604 34501
1e/12 3309 57832 36735
1°/13 3660 61386 38557
1°/14 4041 64690 40156
1°/15 4350 67578 41154
1°/16 4691 70811 43245
1°/17 5063 72824 44186
1°/18 5408 75902 45764
1°/19 5783 77580 46499
1°/20 6127 80398 47955

Table. 20 Links and nodes with various scale cubic cell. The smaller size of
cell, nodes and links increase both case of Abe and Baek.
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Fig. 8 shows the log-log plot of clustering coefficient as a function of
degree k. (a), (b) are the case of the cell size (1°/15)x(1°/15) < (10km),
and (c), (d) are the case of the cell size (1°/20)><(1°/20)>(10km). (a),
(c) and (b), (d) are constructed by Abe’s and Baek’s method respectively. In
this simulation, hierarchy coefficient 3 are about 0.81, 0.85, 0.74, and 0.80
for (a), (b), (c), and (d) respectively.

On Fig. 9, we have shown the log-log plots of the degree
distribution. (a), (b) are the case of the cell size (1°/15)>(1°/15)><(10km),
and (¢), (d) are the case of the cell size (1°/20)x(1°/20)x(10km). (a), (c)
and (h), (d) are constructed by Abe’s and Baek’s method respectively. In
this simulation, degree exponent v are about 1.37, 1.53, 1.36, and 1.60 for

(@), (b), (c), and (d) respectively.
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Fig. 8: The log-log plots of the clustering coefficient with degree
k of the networks with the cell size (a), (b)
(1°/15)x(1°/15) < (10km), and (c), (d) (1°/20)x(1°/20)x(10km). (a),
(c) and (b), (d) are constructed by Abe’s and Baek’s method respectively.
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Fig. 9: The log-log plots of the probability distribution function
with degree k of the networks with the cell size (a), (b)
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We have suggested new method to construct seismic network. The
network by new method compares with Abe and Suzuki’'s one. For
comparison, we have constructed earthquake networks in two ways and
examined some topological properties such as the mean degree, the
characteristic path length, the clustering coefficient, the global efficiency, the
hierarchy, and probability distribution. From the results of our simulation, we
conclude that seismic network is scale free network, and has hierarchical
structure.

We could not be sure what is the right way to construct seismic
network. Our new method is just ancther proposal. However, in that our new
method expresses the meaning of aftershock, it seems that Baek’s method is
more advanced way of constructing seismic network. In order to verify the
our suggestion, a further work is strongly needed. Tt is our expectation that
the formalism of our analysis can be extended to both discrimination and the
characterization of various earthquakes in other nations, as has similarly been

done for complex systems

2 Cntical Values of Neural Network

In this work, the N elements of our neural network can be extended

to a larger number, but we only restrict ourselves to the cases for which the

computer simulations are carried out for N = 5x10® elements. From

random initial conditions, we simulate numerically the evolution of lthe model
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for a neural network with N = 5x10° elements and three kinds of

connectivities L = 7, 9, 11. Next, the order parameter @ is obtained by

integration lo(t)] from ¢, = 1x10° until t = 1x10".
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Fig. 100 Values of order parameter @ for connection weights ¢; following

that the probahility density function is equal to 1 if 0<x <1 and O
otherwise. The numeric results only differ at 7. = 0.240, 0.264 and 0.285,

Here squares, triangles, and circles denote values of @ for L = 7, 9 and 11,
respectively.
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Fig. 11: Plot of the order parameter @ as a function of the noise intensity ~
for a neural network system in which ¢; = 1 for all weights. The phase

transitions occur at v, Where squares, triangles, and circles denote values of
@ for L = 7, 9 and 11, respectively.
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In Fig. 10, we calculate the results for the case of a network with fixed
connection weights ¢;; following that the probability density function P, () is
equal to 1 if 0< = <1 and 0 otherwise. The phase transitions occur only
at 7, =0.240, 0.264 and 0.285 for L = 7,9 and 11 respectively. The
numerical results presented on Fig. 3.2 show the bifurcation diagram of @ as
a function of the noise intensity 7 for the case with ¢; = 1, in which all
connection weights are equal. As the input function then becomes the

majority rule, the system undergoes apparently a phase transition with

~, = 0.283, 0.299 and 0.325 for L = 7, 9 and 11. For v<+,, all elements
in the system will tend to align either to +1 or —1

Next, we also study that there is a second order phase transition with
D~ (70—7)“3 for v<~, where B is the critical exponent. On Fig. 12 and Fig.
13, the numerical results of ¢ as a function of v, —7 are presented. In The

case of ¢;=1, the results of our simulation for the critical exponent are
0.5345, 0.4959 and 0.5417 for L=17, 9 and 11. and in the case of uniform
distribution, the critical exponent are 0.5169, 0.4894 and 0.4866 for L=17, 9

and 11,
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Fig. 12 Log plot of the order parameter @ as a function of the distance to

the critical noise value 7. —7v with equal connection weights c¢;; =1. The

slope of the line is the critical exponent 3 for L= 7(circle), 9(triangle) and
11 (square).
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Fig. 13: Log plot of the order parameter @ as a function of the distance to
the critical noise value 7y, —~ with uniformly distributed connection weights

¢;j. The slope of the line is the critical exponent B for L= T7(circle), 9
(triangle) and 11(square).
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We have simulated and analyzed dynamical phase transitions in a
Boolean neural network initial random cormnections. Due to the presence of
noise and to the randomness with the initial assignment of the linkages, the
statistical properties in the dynamics of the neural network do not change if
the connection weights or the linkages are either time-independent or it they
are randomly re-assigned at every time step. And we have shown the
critical exponent is same as theoretical result 1/2. Through Boolean
networks, it means that the annealed and quenched dynamics are equivalent
for our model presented in this work.

Until present, there exist a number of reasons to use the neural
network for time series simulation and analysis. If an function has relation
between the inputs and outputs for any forecasting model, then it is very
mportant to identify accurately this function. All these features have made
neural networks useful for time series modelling and forecasting[60] in real
world problems. In the future, we will extend our model to scale—free

networks of other scientific fields.

3 Forces Under Quantum and Classical Limit

In Table 3, we summarize the numerical result of the quantum force

average energy E and the velocity fluctuation Au(t) in three correlation
functions. The quantum force Fql and classical force F({ are summarized in

Table 4.
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In the quantum limit and the steady regime, Au(co) ~ w"? for the

three correlation functions, but the third case of the complementary error
function is satisfied only for t ~ > from Eq. (83).

From Eq. (84), we find that the force is proportional to the angular

/2

frequency w? in the quantum limit. In the quantum limit kpT'< hw and the

1/2 for

short time limit, we find that tha force Fql 1s proportional to w
tt, ~ 1, independent of ¢, in the correlation function having the exponential.
In the correlation function having the Gaussian function, the force is
proportional to w"/? for t ~ tt,., whie that in the complementary error

function is the same for t ~ () >
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Ct) = 1—e

%mm(ZZ:T)u—e*W)u—e*t/t') [%coth(ZZ:T)(l—et/t")(l—et/t’)]lm
Ct) = 1— e How

%coth( ZZ:T)Q—e**/“)u—e*f/“) [%coth( ZZT)u—e*/tf)u—et/t')]m

Ct) = erfc(tl/Q/tc) :

/2

[ 12 )[1fw/ztl/z/t(,)f1](176*”%) [%a)th(

fw 1/241/2 -1 —t/t, !
4 (m )[Hw/t//t(.) J(1—e >]

2%k, T

Table. 3: Calculations of the average energy E and the velocity fluctuation
Au(t) in the three correlation functions.
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In the classical limit kz1T > hw, the quantum force Fql is reduced to the
classical thermal force F' from Eq. (85). In the classical and the short time
limits, the force F({ 1s proportional to T'"/? for in the correlation function
having the exponential function. In the correlation function having the
Gaussian function, the force is proportional to T"/? for t ~ tzt,, independent
of ¢, while that mn the complementary error function is the same for

t o~ @tt)2
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Table. 4: Calculations of the classical force F' (in the short time limit) and
the quantum force Fql in the three correlation functions.
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We have investigated a non-Markovian Caldeira—Leggett master
equation for the Brownian motion. We have analyzed the quantum Browian
motion of a free particle with the harmonic oscillation in the one-dimensional
quantum space. After we treat the three correlation functions as the
exponential, Gaussian, and complementary error functions, we analyze the
average energy, velocity fluctuation, and the quantum and classical forces
from the velocity distribution function. Particularly, in the steady regime and
the classical limit, we find that the average energy from Eq. (14) is
approximately kBT/ 2 in all three correlation function. The force is

proportional to T"/? in the classical limit and the short time limit. We also

i in the

find that the force is proportional to the angular frequency w
quantum limit.

We hope that further detailed analytical and numerical investigations of
the quantum Brownian motion and other stochastic motions will be presented
elsewhere. In the future, out estimated result should be demonstrated to be in

an agreement with other experiments, and our result will be also compared

to other findings.
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IV Conclusion

Through these works, we have confirmed that the seismicity
and neural network have the feature of complex network. And we
have analyzed dynamics in Brownian motion that the force in
quantum limit is different from classical limit.

Firstly, We have suggested new method constructing seismic network.
The network by the new method compares with Abe and Suzuki's one. For
comparison, we have constructed earthquake networks in two ways and
examined some topological properties. From the results of our simulation, we
conclude that seismic network is scale free network, and has hierarchical
structure.

We still could not be sure what is the right way to construct seismic
network. Our new method is just only another proposal. But it seems that
Baek's method is more advanced way of constructing seismic network in
that our new method expresses the meaning of aftershock. In order to verify
the our suggestion, a further work is strongly needed. We sincerely expect
that the formalism of our analysis can be extended to both discrimination
and the characterization of various earthquakes in other nations, as similarly
been done for complex systems

Secondly, we have performed the simulation and analysis of dynamical
phase transitions in a Boolean neural network initial random connections. Due
to the presence of noise and the randormness with the initial assignment of

the linkages, the statistical properties in the dynamics of the neural network
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do not change if the connection weights or the linkages are either
time-independent or randomly re—assigned at every time step. And we have
shown the critical exponent is the same as theoretical result 1/2. Through
Boolean networks, it means that the annealed and quenched dynamics are
equivalent for our model presented in this work.

Lastly, we have investigated a non-Markovian Caldeira—Leggett
master equation for the Brownian motion. We have analyzed the quantum
Browian motion of a free particle with the harmonic oscillation in the
one—dimensional quantum space. After we treat the three correlation functions
as the exponential, Gaussian, and complementary error functions, we analyze
the average energy, velocity fluctuation, and the quantum and classical forces
from the velocity distribution function. Particularly, in the steady regime and
the classical limit, we find that the average energy from Eq. (14) is
approximately kBT/ 2 in all three correlation function. The force is

proportional to T2 i the classical limit and the short time limit. We also

1/2 n the

find that the force is proportional to the angular frequency w
quantum limit.

In the future, we will study dynamics of seismic network that is
reconstructed in succession by Omori's law [18]. Also we are performing

more simulations with various situation, that is, neural network with scale

free condition, input function under governed some different rule, and so on.
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Summary (In Korean)
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