

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

by

Sandi Rahmadika

Department of Information Systems (Interdiciplinary Program)

The Graduate School

Pukyong National University

February 2016

Thesis for the Degree of Master of Engineering

Providing Data Integrity for Container

Dwelling Time in the Seaport

[UCI]I804:21031-000002231295

by

Sandi Rahmadika

Department of Information Systems (Interdiciplinary Program)

The Graduate School

Pukyong National University

February 2016

Thesis for the Degree of Master of Engineering

Providing Data Integrity for Container

Dwelling Time in the Seaport

항구에서의 컨테이너 체류 시간에

대한 데이터 무결성 제공

Thesis for the Degree of Master of Engineering

Providing Data Integrity for Container

Dwelling Time in the Seaport

항구에서의 컨테이너 체류 시간에

대한 데이터 무결성 제공

Advisor: Prof. Kyung-Hyune Rhee

by

Sandi Rahmadika

 A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Engineering

in the Department of Information Systems (Interdisplinary Program)

The Graduate School,

Pukyong National University

February 2016

Providing Data Integrity for Container

 Dwelling Time in the Seaport

A thesis

By

Sandi Rahmadika

Approved by:

(Chairman) Man-Gon Park

(Member) Hilwadi Hindersah (Member) Kyung-Hyune Rhee

26 February 2016

i

Contents

Contents ... i

List of Figures ... ii

List of Tables .. iii

Chapter 1. Introduction .. 1

1.1 Background ... 1

1.2 Related Work .. 2

1.3 Thesis Objective .. 3

1.4 Scope ... 3

1.5 Thesis Outline ... 4

Chapter 2. Preliminaries ... 4

2.1 Digital Signature ... 5

2.1.1 Principles of Digital Signatures ... 5

2.1.2 Basic Digital Signature Protocol .. 6

2.2 Security Services ... 7

2.3 The RSA Cryptosystem .. 8

2.3.1 Encryption and Decryption .. 9

2.3.2 Key Generation of RSA Algorithm ... 9

2.4 The RSA Signature Scheme .. 10

2.5 Hash Function ... 12

2.5.1 Basic Protocol for Digital Signatures with a Hash Function 13

2.5.2 Principal Input-Output of Hash Function .. 14

2.6 The Secure Hash Algorithm SHA-2 ... 15

2.6.1 Preprocessing ... 17

2.6.2 Hash Computation ... 17

2.7 Cloud Computing and Storage .. 19

2.7.1 The SPI Framework for Cloud Computing .. 19

2.7.2 The Cloud Service Delivery Model ... 19

2.8 Container Dwelling Time .. 21

ii

Chapter 3. System Requirements and Design ... 22

3.1 Data Access Architecture in the Cloud ... 22

3.2 The Impact Falsification of Dwelling Time .. 23

3.3 The Signed and Verification Process .. 24

3.3.1 Signed Process ... 24

3.3.2 Verification Process ... 25

3.3.3 Concept Digital Signature to Provide Data Integrity 26

3.4 Authorized and Unauthorized Person ... 27

3.4.1 The Authorized Person .. 27

3.4.2 Symbol and Notation between Authorized Person 28

3.4.3 The Unauthorized Person ... 30

3.5 Overall Flowchart of the Proposed System ... 30

3.6 Android Application for Dwelling Time Prediction 32

Chapter 4. System Implementation and Analysis ... 33

4.1 Overall System and Application ... 33

4.2 Container Import Dwelling Time Prediction .. 33

4.3 Digital Signature Implementation ... 34

4.3.1 User Interface of RSA Key .. 34

4.3.2 Signed the Dwelling Time Data ... 37

4.3.3 Verifying the Dwelling Time Data .. 38

4.4 System Database ... 39

4.5 Android Apps Amount of Equipment ... 40

4.6 Experimental Result .. 40
.

Chapter 5. Conclusion and Future Work .. 49

5.1 Conclusion .. 49

5.2 Future Work .. 49

References .. 50

i

List of Figure

Figure 2.1 Principle of Digital Signatures .. 6

Figure 2.2 Generic Digital Signature Protocol ... 7

Figure 2.3 RSA Key Generation ... 10

Figure 2.4 The RSA Signature Scheme .. 11

Figure 2.5 RSA Signature Algorithm ... 12

Figure 2.6 Signing of Long Messages with a Hash Function 13

Figure 2.7 Basic Protocol for Digital Signatures with a Hash Function 13

Figure 2.8 Principal Input-Output Behavior of Hash Function 14

Figure 2.9 The Three Security Properties of Hash Function 15

Figure 2.10 One iteration in a SHA-2 family compression function 16

Figure 2.11 Padding of a Message in SHA-1 ... 17

Figure 2.12 Eighty-round compression function of SHA-1 18

Figure 2.13 SPI Services Model ... 19

Figure 2.14 Cloud Services Delivery Model .. 20

Figure 3.1 Data Access Architecture in the Cloud ... 22

Figure 3.2 Signed Dwelling Time Data Process ... 24

Figure 3.3 Verification for Dwelling Time Data Process 25

Figure 3.4 Digital Signature in Cloud... 26

Figure 3.5 Comparing the Result of Hash Value .. 27

Figure 3.6 Structure of the Officer in the System ... 28

Figure 3.7 Communication between Authorized Person 29

Figure 3.8 Flowchart of the Overall System ... 31

Figure 4.1 Main Menu of Digital Signature Application 33

Figure 4.2 Menu of Container Dwelling Time Prediction 34

Figure 4.3 User Interface of RSA Algorithm ... 35

Figure 4.4 User Interface of Signed Process .. 37

Figure 4.5 Verifying Dwelling Time Data ... 39

Figure 4.6 System Database Using MySQL ... 39

Figure 4.7 Android Apps Amount of Equipment ... 40

ii

Figure 4.8 Amount of Equipment ... 41

Figure 4.9 Dwelling Time Prediction ... 41

Figure 4.10 RSA Keys .. 43

Figure 4.11 Signing the Dwelling Time Data ... 44

Figure 4.12 Information in Database .. 44

Figure 4.13 Dwelling Time Data in Cloud ... 45

Figure 4.14 Verify the Dwelling Time Data ... 45

Figure 4.15 Indicator If Data Is Valid .. 46

Figure 4.16 The Original of Dwelling Time Data .. 46

Figure 4.17 The Attacker Change the Data .. 46

Figure 4.18 Message Digest Value With the Data Changed 47

Figure 4.19 Indicatior When the Data Has Been Changed 47

iii

List of Tables

Table 2.1 The MD4 Family of Hash Function .. 16

Table 3.1 The Impact Falsification of Dwelling Time 23

Table 4.1 Different Key Size .. 35

iv

항구에서의 컨테이너 체류 시간에 대한 데이터 무결성 제공

산디 라흐마디카

부경대학교 대학원 정보시스템협동과정

요약

데이터 무결성은 정보보호에서 기본적인 요소로서 데이터 생성부터 수용까지의

과정에서 데이터가 변경되지 않았다는 것을 보장해준다. 본 연구에서 다뤄진

항구에서의 컨테이너 체류 시간은 항구에서 컨테이너가 머무른 시간에 대한 정보와

관련된 것이다. 컨테이너 체류 시간에 대한 데이터가 데이터 생성자로부터 클라우드에

저장될 때까지 고의적인 공격이나 어떤 실수에 의해서 변경된 것을 검증할 수 있는

기술로 데이터 무결성을 고려할 수 있다. 체류 시간 데이터에 대한 데이터 무결성을

제공하기 위해 SHA-256 해시 알고리즘을 사용한 디지털 서명 방식을 사용하였다.

디지털 서명 기법으로는 공개키 알고리즘인 RSA 알고리즘을 사용하였고 사용된 키는

1,024 비트, 2,048 비트, 3,072 비트 중 선택하여 사용할 수 있다. 시뮬레이션을 통하여

구현한 방법이 체류 시간에 대한 완전한 무결성을 제공해줌을 보였다.

1

Chapter 1. Introduction

1.1 Background

Data integrity refers to maintaining and assuring the accuracy and consistency of

data over its entire life-cycle [1] and a critical aspect to the design, implementation and

usage of any system which stores, processes or retrieves data [2]. Data integrity is a

fundamental component of information security and as a process data integrity verifies

the data has remained unaltered in transit from creation to reception. Data integrity is the

opposite of data corruption, which is a form of data loss [3]. The overall intent of any data

integrity technique is the same, ensure the data is recorded exactly as intended (such as a

database correctly rejecting mutually exclusive possibilities) and upon later retrieval,

ensure the data is the same as it was when it was originally recorded. In short, data

integrity aims to prevent unintentional changes to information. Any unintended changes

to data as the result of a storage, retrieval or processing operation, including malicious

intent, unexpected hardware failure and human error are failure of data integrity [1]- [2].

The sharing of dwelling time prediction and equipment optimization data in cloud

computing provides many advantages for user like time efficiency, ease in

communicating, cost effective and many others but the security issues to keep the data

from being stolen or changed by the attacker is one of the considerations in the cloud [4].

As cloud computing is being widely adopted, data security is becoming one of the major

concerns of data owners. Data integrity is an important factor in almost any data and

computation related context. It is not only one of the qualities of service but also an

important part of data security and privacy [5]. In this research using the seaport data

from our previous research about dwelling time prediction and equipment optimization

in JICT seaport, Indonesia [6].

Data exchange in the cloud must be completely safe and secure to avoid the

unauthorized user (attacker) to change the data. The data received by officer is very

important and vital therefore the data from an authorized sender should be original

without any data changes made by the attacker. The data needs to be maintained its

integrity because it will affect the performance of the seaport. In this research, digital

signature with the hashing algorithm (SHA-1) which will be encrypted and decrypted

2

using the keys from RSA algorithm are proposed in this research to verify data received

and to ensure the data is still original from the sender without any modification from

attacker during stored in the cloud.

1.2 Related Work

In this section, we briefly explain about several studies and works which related to

the thesis. Dwelling time prediction and equipment optimization data can be created,

gathered and managed by authorized officer and by using digital signature to sign and

verify data. A VLSI implementation of the digital signature scheme is proposed by P.

Kitsos, N. Sklavos and O. Koufopavlou for efficient usage in any cryptographic protocol.

The architecture is based on Secure Hash Algorithm. The whole desing was captured by

using VHDL language and a FPGA device was used for the hardware implementation of

the architecture. The proposed VLSI implementation of digital signature scheme achieves

a data throughput up to 32 Kbit/sec [7]. Don Jomar, Corazon Gracia, Chaves Enrico and

friends using digital signature based on data encryption standard integrating HMAC and

implemented in multi cast messenger application to provide data integrity verification and

messages non-repudiation of the symmetric cryptosystem [8].

In this thesis we use a pairing key from RSA algorithm to encrypt and decrypt

messages digest from the hashing result. Thangavel M., Varalakshmi P., Muralli Mukund

and friends in 2014 proposed enhanced and secure RSA key generation scheme

(ESRKGS) and the public component n is the product of two large prime numbers but the

values of encryption (E) and decryption (D) keys are based on the product of four large

prime numbers (N) making the system highly secured. With the existing factorization

techniques, it is possible only to find the primes p and q. A comparison was done between

the traditional RSA scheme a recent RSA modified scheme and the author scheme to

show that the proposed technique is efficient [9]. Digital signature using RSA algorithm

is also proposed by Chang Lin and Chen Chang in 2006 which is digital signature schemes

with fault tolerance make possible for error detections and corrections during the

processes of data computations and transmissions, the author improved Zhang’s and Lee

and Tsai’s schemes to overcome the security flaw, the improved scheme also meets all

requirements for digital signature with fault tolerance [10].

3

In this thesis, our contribution is implementation the digital signature using Secure

Hash Algorithm-1 (SHA-1) to ensure the data integrity of dwelling time prediction and

equipment optimization in the seaport. The secret and public key are obtained from RSA

algorithm.

1.3 Thesis Objective

This research aims to develop a user interface using digital signature to ensure the

data integrity in the seaport (that is nobody changes the data) and to avoid the fake

dwelling time and equipment optimization data. Dwelling time prediction and equipment

optimization data are obtained from the author’s other research [6]. The data should be

maintained its integrity in order not to be changed by the attacker with a different

motivation. There are several main objectives in this research by using digital signature

to protect the integrity of data in the seaport which are:

1. Signing process. Make a signed and attached to the data before send to the cloud.

The signing is used by authorized recipient to comparing the hash value with the data

decryption.

2. Verify process. This process can be used to guarantee the integrity of the data by

checking and comparing the hash value with the data decryption. If the decryption

result is equal to the value of signing it means there are no changes in the data (still

intact). Otherwise, if the hash value is not equal it means the data has been changed.

3. The result of digital signature can be considered for officers to apply it directly in the

seaport. If the data integrity is still intact then the officer can use that data to be

applied at the seaport. Otherwise, if it is proven that the data has been changed, then

the officer must be able to take precaution steps.

1.4 Scope

Digital signature has been widely used for secure and protect the data over the

Internet such as cloud. In this thesis, we use Secure Hash Algorithm-256 (SHA-256) to

compress a message of the data in the seaport. RSA algorithm is used in this thesis to

produce a pair of key, namely public and secret key which are used to encrypt and decrypt

a message digest. Secret key is used by the sender to encrypt the message digest of a data

before sending to the cloud storage. Public key is used by the recipient for decrypting the

4

message digest and the recipient gets the value and checking the integrity of that data by

comparing signing value with the decrypted value.

Container dwelling time (CDT) data in the seaport is used in this thesis and CDT

gives detailed information about the length of time which the container stayed in the

seaport. RSA scheme with the hashing algorithm (SHA-256) are used in this thesis to

verify the received data is the original one from the sender without any modification from

attacker during stored in the cloud storage.

1.5 Thesis Outline

The thesis has been divided into five chapters which are:

Chapter I, Introduction: introduction consists of thesis background, related work, thesis

objective, scope and thesis outlines.

Chapter II, Preliminary: literature review explains the theoretical supports and methods.

It includes explanation about digital signature with hash value, and RSA algorithm. In

this session also explained about basic cloud and android application which are used in

the research.

Chapter III, System Requirements and Design: In this chapter contains model system

of digital signatures and explained process using flowchart systems. Symbol and notation

explained briefly and diagram whole system also explained in this chapter.

Chapter IV, System Implementation and Analysis: Explained detail implemented

digital signature, user interface all of program like user interface for RSA Key. In this

chapter also give example original data and data that has been changed by the attacker

with different value of message digest.

Chapter V, Conclusion and Future Work: this chapter contains conclusions and

additional features that is required.

Chapter 2

5

Chapter 2. Preliminaries

2.1 Digital Signature

Digital signature are one of the most important cryptographic tools and widely used

today. Applications for digital signatures range from digital certificates for secure e-

commerce to legal signing of contracts and secure software updates. Together with key

establishment over insecure channels, they form the most important instances for public

key cryptography [11]. Digital signature shares some functionality with handwritten

signatures. In particular, they provide a method to assure that a message is authentic to

one user, i.e., it in fact originates from the person who claims to have generated the

message. However, they actually provide much more functionality [12] [11].

2.1.1 Principles of Digital Signatures

The property of proving that a certain person generated a messages is obviously

also very important outside the digital domain. In the real, “analog” world, this is achieved

by handwritten signatures on paper. For instance, if we sign a contract or sign a check,

the receiver can prove to a judge that we actually signed the message [1]. Digital signature

can also be used to testify (or certify) that a public key belongs to a particular person.

This is done by signing the combination of the key and the information about its owner

by a trusted key. The digital signature by a third party (owner of the trusted key), the

public key and information about the owner of the public key are often called certifies [7].

Digital signatures are based on public key cryptography, also known as asymmetric

cryptography. Using a public key algorithm such as RSA, one can generate two keys that

are mathematically linked: one private and one public. To create a digital signature,

signing software (such as an email program) creates a one-way hash of the electronic data

to be signed. The private key is then used to encrypt the hash.

As with conventional hand-written signatures, only the person who creates a digital

message must be capable of generating a valid signature. In order to achieve this with

cryptographic primitives, we have to apply public-key cryptography. The basic idea is

that the person who signs the message uses a private key, and the receiving party uses the

matching public key [13].

6

The principle of digital signature scheme is shown in Fig. 2.1.

Figure 2.1 Principle of digital signatures [1]

The process starts with Bob signing the message x. The signature algorithm is a

function of Bob’s private key, Kpr. Hence, assuming he in fact keeps his private key, only

Bob can sign a message x on his behalf. In order to relate a signature to the message, x is

also an input to the signature algorithm. After signing the message, the signature s is

appended to the message x and the pair (x, s) is sent to Alice. It is important to note that

a digital signature by itself is of no use unless it is accompanied by the message. A digital

signature without the message is the equivalent of a handwritten signature on a strip of

paper without the contract or a check that is supposed to be signed.

2.1.2 Basic Digital Signature Protocol

The digital signature itself is merely a (large) integer value, for instance, a string of

2048 bits. The signature is only useful to Alice if she has means to verify whether the

signature is valid or not [13]. For this, a verification function is needed which takes both

x and the signature s as inputs. In order to link the signature to Bob, the function also

requires his public key. Even though the verification function has long inputs, its only

output is the binary statement “true” or “false”. If x was actually signed with the private

key that belongs to the public verification key, the output is true, otherwise it is false [1]

[13].

7

From these general observations we can easily develop a generic digital signature

protocol as shown in Figure 2.2.

Figure 2.2. Generic digital signature protocol

 From this set-up, the core property of digital signatures follows: A signed message

can unambiguously be traced back to its originator since a valid signature can only be

computed with the unique signer’s private key. Only the signer has the ability to generate

a signature on his behalf. Hence, we can prove that the signing party has actually

generated the message [1].

2.2 Security Services

The act of ensuring data is not lost when critical issues arise. Since most information

is stored on computers in our modern era, information assurance is typically dealt with

by IT security specialists. One of the most common methods of providing information

assurance is to have an off-site backup of the data in case one of the mentioned issues

arise [2]. There are existing many security services, but the most important ones which

are desirable in many applications are as follows:

1. Confidentiality: Information is kept secret from all but authorized parties.

2. Integrity: Messages have not been modified in transit.

3. Message Authentication: The sender of a messages is authentic. An alternative term

is data origin authentication.

4. Nonrepudiation: The sender of a message cannot deny the creation of the message.

Different application call for different sets of security services. For instance, for

private e-mail the first three functions are desirable, whereas a corporate e-mail

8

system might also require nonrepudiation. As another example, if we want to secure

software updates for a cell phone, the chief objectives might be integrity and message

authentication because the manufacturer primarily wants to assure that only original

updates are loaded into the handheld device.

5. Identification/entity authentication: Establish and verify the identity of an entity,

e.g., a person, a computer or a credit card.

6. Access control: Restrict access to the resources to privileged entities.

7. Auditing: Provide evidence about security relevant activities [1].

Which security services are desired in a given system is heavily applicationspecific.

For instance, anonymity might make no sense for an e-mail system since e-mails are

supposed to have a clearly identifiable sender. On the other hand, carto-car

communication systems for collision have a strong need to keep cars and drivers

anonymous in order to avoid tracking. As a further example, in order to secure an

operating system, access control to certain parts of a computer system is often of

paramount importance. Most but not all of these advanced services can be achieved with

the crypto algorithms from this book. However, in some cases noncryptographic

approaches need to be taken. For instance, availability is often achieved by using

redundancy, e.g., running redundant computing or storage systems in parallel. Such

solutions are only indirectly, if at all, related to cryptography [1].

2.3 The RSA Cryptosystem

The RSA crypto scheme, sometimes referred to as the Rivest–Shamir–Adleman

algorithm, is currently the most widely used asymmetric cryptographic scheme, even

though elliptic curves and discrete logarithm schemes are gaining ground. RSA was

patented in the USA (but not in the rest of the world) until 2000 [10]. However, it should

be noted that RSA encryption is not meant to replace symmetric ciphers because it is

several times slower than ciphers such as AES. This is because of the many computations

involved in performing RSA [9]. RSA is one of the first practical public-key

cryptosystems and is widely used for secure data transmission. In such a cryptosystem,

the encryption key is public and differs from the decryption key which is kept secret. In

RSA, this symmetry is based on practical difficulty of factoring the product of two large

prime numbers, the factoring problem.

9

2.3.1 Encryption and Decryption

The RSA encryption and decryption is done in the integer ring Zn and modular

computations play a central role. RSA encrypts plaintexts x, then consider the bit string

representing x to be an element in Zn = {0,1, . . . ,n−1}. As a consequence the binary value

of the plaintext x must be less than n. Encryption with the public key and decryption with

the private key are as shown below:

 RSA Encryption given the public key (n, e) = kpub and the plaintext x, the encryption

function is:

y = ekpub (x) ≡ xe mod n (2.1)

where x, y ∈ Zn

 RSA Decryption given the private key d = kpr and the ciphertext y, then:

x = dkpr (y) ≡ yd mod n (2.2)

where x, y ∈ Zn

In practice, x, y, n and d are very long numbers, usually 1024 bit long or more. The

value e is sometimes referred to as encryption exponent or public exponent, and the

private key d is sometimes called decryption exponent or private exponent. If Alice wants

to send an encrypted message to Bob, Alice needs to have his public key (n,e), and Bob

decrypts with his private key d [1].

2.3.2 Key Generation of RSA Algorithm

A distinctive feature of all asymmetric schemes is that there is a set-up phase

during which the public and private key are computed. Depending on the public-key

scheme, key generation can be quite complex. As a remark, we note that key generation

is usually not an issue for block or stream ciphers. Here are the steps involved in

computing the public and private-key for an RSA cryptosystem is shown in Figure 2.3. A

user of RSA creates and then publishes a public key based on two large prime numbers,

along with an auxiliary value. The prime numbers must be kept secret. Anyone can use

the public key to encrypt a message, but with currently published methods, if the public

key is large enough, only someone with knowledge of the prime numbers can feasibly

decode the message.

10

Figure 2.3. RSA key generation [13]

State a few requirements for the RSA cryptosystem:

1. Since an attacker has access to the public key, it must be computationally infeasible to

determine the private key d given the public key values e and n.

2. Since x is only unique up to the size the modulus n, we cannot encrypt more than l bits

with one RSA encryption, where l is the bit length of n.

3. It should be relatively easy to calculate xe mod n, i.e., to encrypt, and yd mod n, i.e., to

decrypt. This means we need a method for fast exponentiation with very long numbers.

4. For a given n, there should be many private key/public key pairs, otherwise an attacker

might be able to perform a brute-force attack. (It turns out that this requirements is

easy to satisfy) [1].

2.4 The RSA Signature Scheme

The RSA signature scheme is based on RSA encryption. Its security relies on the

difficulty of factoring a product of two large primes (the integer factorization problem).

Since its first description in 1978, the RSA signature scheme has emerged as the most

widely used digital signatures scheme in practice [14]. Suppose Bob wants to send a

signed message x to Alice. He generates the same RSA keys that were used for RSA

encryption. At the end of the setup he has the following parameters:

 Bob’s private key: kpr = (d)

 Bob’s public key: kpub = (n, e)

11

Figure 2.4. The RSA signature scheme

As can be seen from the protocol, Bob computes the signature s for a message x

by RSA-encrypting x with his private key kpr. Bob is the only party who can apply kpr,

and hence the ownership of kpr authenticates him as the author of the signed message.

Bob appends the signature s to the message x and sends both to Alice. Alice receives the

signed message and RSA-decrypts s using Bob’s public key kpub, yielding x. If x and x’

match, Alice knows two important things: First, the author of the message was in

possession of Bob’s secret key, and if only Bob has had access to the key, it was in fact

Bob who signed the message. This is called message authentication. Second, the message

has not been changed in transit, so that message integrity is given. We recall from the

previous section that these are two of the fundamental security services which are often

needed in practice [14].

 For example, suppose Bob wants to send a signed message (x = 4) to Alice. The

first steps are exactly the same as it is done for an RSA encryption: Bob computes his

RSA parameters and sends the public key to Alice. In contrast to the encryption scheme,

now the private key is used for signing while the public key is needed to verify the

signature [1]. RSA involves a public key and a private key. The public key can be known

by everyone and is used for encrypting messages. Messages encrypted with the public

key can only be decrypted in a reasonable amount of time using the private key. The

public key consists of the modulus n and the public (or encryption) exponent e. The

private key consists of the modulus n and the private (or decryption) exponent d, which

must be kept secret. p, q, and ϕ(n) must also be kept secret because they can be used to

calculate d.

12

Figure 2.5. RSA signature algorithm

 Alice can conclude from the valid signature that Bob generated the message and

that it was not altered in transit, i.e., message authentication and message integrity are

given. On the other side of the communication channel, RSA encryption requires the use

of the private key by the receiver, while the digital signature scheme applies the public

key for verification [1] [13].

2.5 Hash Function

Hash functions are an important cryptographic primitives and are widely used in

protocols. They compute a digest of a message which is a short, fixed-length bitstring.

For a particular message, the message digest, or hash value, can be seen as the fingerprint

of a message, i.e., a unique representation of a message. Hash functions are also widely

used for other cryptographic applications, e.g., for storing of password hashes or key

derivation [14]. A hash function is any function that can be used to map digital data of

arbitrary size to digital data of fixed size. The values returned by a hash function are

called hash values, hash codes,hash sums, or simply hashes. One use is a data structure

called a hash table, widely used in computer software for rapid data lookup. Hash

functions accelerate table or database lookup by detecting duplicated records in a large

file [15].

 Hence, for performance as well as for security reasons we would like to have one

short signature for a message arbitrary length. The solution to this problem is hash

function. If we had a hash function that somehow computes a fingerprint of the message

x, we could perform the signature operation as shown in Figure 2.6 [14].

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Hash_table

13

Figure 2.6. Signing of long messages with a hash function

 Assuming we possess such a hash function and to describe how a basic protocol

for a digital signature scheme with a hash function. Bob wants to send a digitally signed

messaged to Alice.

2.5.1 Basic Protocol for Digital Signatures with a Hash Function

Assuming we possess such a hash function, and describe a basic protocol for a

digital signature scheme with a hash function. Bob wants to send a digitally signed

message to Alice as we can see in Figure 2.7.

Figure 2.7 Basic Protocol for Digital Signatures with a Hash Function [1]

Bob computes the hash of the message x and signs the hash value z with his private

key kpr,B. On the receiving side, Alice computes the hash value z_ of the received message

x. She verifies the signature s with Bob’s public key kpub,B. We note that both the signature

generation and the verification operate on the hash value z rather than on the message

itself. Hence, the hash value represents the message. The hash is sometimes referred to as

the message digest or the fingerprint of the message [1] [14].

14

2.5.2 Principal Input-Output of Hash Function

Every data have a different message digest and if we want to be able to apply a hash

function to messages x of any size, and it is thus desirable that the function h is

computationally efficient. Even if we hash large messages in the range of, say, hundreds

of megabytes, it should be relatively fast to compute. Another desirable property is that

the output of a hash function is of fixed length and independent of the input length.

Practical hash functions have output lengths between 128–512 bits. Finally, the computed

fingerprint should be highly sensitive to all input bits. That means even if we make minor

modifications to the input x, the fingerprint should look very different. This behavior is

similar to that of block ciphers. The properties which we just described are symbolized in

Figure 2.8.

Figure 2.8 Principal input-output behavior of hash function [1]

As is often the case in cryptography, things can be tricky and there are attacks which

use weaknesses of hash function. It turns out that there are three central properties which

hash function need to possess in order to be secure:

1. Pre-image resistance (or one-wayness)

2. Second pre-image resistance (or weak collision resistance)

3. Collision resistance (or strong collision resistance)

These three properties are visualized in Figure 2.9. They are divided in the

following.

15

Figure 2.9 The three security properties of hash function

Properties of hash function:

1. Arbitrary message size h(x) can be applied to message x of any size.

2. Fixed output length h(x) produces a hash value z of fixed length.

3. Efficiency h(x) is relatively easy to compute.

4. Pre-image resistance for a given output z, it is impossible to find any input x such

that h(x) = z, h(x) is one way.

5. Second pre-image resistance given x1 and thus h(x1), it is computationally infeasible

to find x2 such that h(x1) = h(x2)

6. Collision resistance It is computationally infeasible to find any pairs x1 ≠ x2 such that

h(x1) = h(x2).

2.6 The Secure Hash Algorithm SHA-2

The Secure Hash Algorithm (SHA-2) is a set of cryptographic hash functions

designed by the NSA. SHA stands for Secure Hash Algorithms. Cryptographic hash

functions are mathematical operations run on digital data; by comparing the computed

“hash” (the output from execution of the algorithm) to a known and expected hash value,

a person can determine the data’s integrity. For example, computing the hash of a

downloaded file and comparing the result to a previously published hash result can show

whether the download has been modified or tampered with. A key aspect of cryptographic

hash functions is their collision resistance: nobody should be able to find two different

input values that result in the same hash output. SHA-2 includes significant changes from

its predecessor, SHA-1. The SHA-2 family consists of six hash functions with digests

(hash values) that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-

512, SHA-512/224, SHA-512/256.

16

Figure 2.10 One iteration in a SHA-2 family compression function

Dedicated hash functions are algorithms that have been custom designed. A large

number of such constructions have been proposed over the last two decades. In practice,

by far the most popular ones have been the hash functions of what is called the MD4

family. MD5, the SHA family and RIPEMD are all based on the principles of MD4. MD4

is a message digest algorithm developed by Ronald Rivest. MD4 was an innovative idea

because it was especially designed to allow very efficient software implementation.

Table 2.1 The MD4 family of hash function

Algorithm
Output Input No. of Collisions

[bit] [bit] rounds found

MD5 128 512 64 yes

SHA-1 160 512 80 not yet

SHA-2

SHA-224 224 512 64 no

SHA-256 256 512 64 no

SHA-384 384 1024 80 no

SHA-512 512 1024 80 no

In 2004, collision-finding attacks against MD5 and SHA-0 where announced by

Xiaoyun Wang. One year later it was claimed that the attack could be extended to SHA-

1 and it was claimed that a collision search would take 263 steps, which is considerably

less than the 280 achieved by the birthday attack. Table 11.2 gives an overview of the main

parameters of the MD4 family. A further modification, SHA-224 was introduced in 2004

in order to fit the security level of 3DES. These four hash functions are often referred to

as SHA-2.

17

2.6.1 Preprocessing

Before the actual hash computation, the message x has to be padded to fit a size of

a multiple of 512 bit. For the internal processing, the padded message must then be

divided into blocks. Also, the initial value H0 is set to a predefined constant. Padding

means that we assume have a message x with a length of l bit. To obtain an overall

message size and the binary 64-bit representation of l. in Figure 2.11 illustrates the

padding of a message x and consequently, the number of required zeros k is given by:

k ≡ 512−64−1−l

 = 448−(l+1) mod 512.

Figure 2.11 Padding of a message in SHA-1

2.6.2 Hash Computation

Each message block xi is proposed in four stages with 20 rounds each as shown

in Figure 2.12. The algorithm uses:

 A message schedule which computes a 32-bit word W0... W79 for each of the 80

rounds. The words Wj are derived from the 512-bit message block as follows:

 Five working register of size of 32 bits A, B, C, D, E

 A hash value Hi consisting of five 32-bit words Hi
(0), Hi

(1)
, Hi

(2)
, Hi

(3)
, Hi

(4)
. In the

beginning, the hash value holds the initial value H0, which is replaced by a new

hash value after the processing of each single message block.

Hash functions are related to (and often confused with) checksums, check digits,

fingerprints, randomization functions, error-correcting codes, and ciphers. Although these

concepts overlap to some extent, each has its own uses and requirements and is designed

and optimized differently.

18

Figure 2.12 Eighty-round compression function of Hash Function

The four SHA-1 stages have a similar structure but use different internal functions

ft and constants Kt , where 1 ≤ t ≤ 4. Each stage is composed of 20 rounds, where parts of

the message block are processed by the function ft together with some stage-dependent

constant Kt . The output after 80 rounds is added to the input value Hi−1 modulo 232 in

word-wise fashion. Typically, the domain of a hash function (the set of possible keys) is

larger than its range (the number of different table indexes), and so it will map several

different keys to the same index. Therefore, each slot of a hash table is associated with

(implicitly or explicitly) a set of records, rather than a single record. For this reason, each

slot of a hash table is often called a bucket, and hash values are also called bucket indices.

19

2.7 Cloud Computing and Storage

Cloud computing has recently emerged as one of the buzzwords in the ICT industry.

Numerous IT vendors are promising to offer computation, storage and application hosting

services and to provide coverage in several continents, offering service-level agreements

(SLA)-backed performance and uptime promises for their services. While these “clouds”

are the natural evolution of traditional data centers, they are distinguished by exposing

resources (computation, data/storage and applications) as standards-based web services

and following “utility” pricing model where customers are charged based on their

utilization of computational resources, storage and transfer of data [16].

2.7.1 The SPI Framework for Cloud Computing

A commonly agreed upon framework for describing cloud computing services goes

by the acronym “SPI.” This acronym stands for the three major services provided through

the cloud: software-as-a-service (SaaS), platform-as-a-service (PaaS), and infrastructure-

as-a-service (IaaS).

Figure 2.13 SPI service model [17]

2.7.2 The Cloud Service Delivery Model

A cloud service delivery model is commonly referred to as an SPI and falls into

three generally accepted services as shown in Figure 2.14. The cloud as a utility can be

defined as “on demand delivery of infrastructure, applications, and business process in a

security-rich, shared, scalable and based computer environment over the internet for a fee”

[16].

20

Figure 2.14 Cloud services delivery model [17]

Definition of cloud computing is based on five attributes: shared resources, massive

scalability, elasticity, pay as you go, and self-provisioning of resources [17].

 Shared resources: unlike previous models, which assumed dedicated resources (i.e.,

computing facilities dedicated to a single user or owner), cloud computing is based

on a business model in which resources are shared (i.e., multiple users use the same

resource).

 Massive scalability: Although organizations might have hundreds or thousands of

systems, cloud computing provides the ability to scale to tens of thousands of systems,

as well as the ability to massively scale bandwidth and storage.

 Elasticity: User can rapidly increase and decrease their computing resources as

needed, as well as release resources for other user when they are no longer required.

 Pay as you go: User pay for only the resources they actually use and for only the time

they require them.

 Self-provisioning of resources: Users self-provisions resources, such as additional

systems (processing capability, software, and storage).

Cloud storage is a model of data storage where the digital data is stored in logical

pools, the physical storage spans multiple servers (and often locations), and the physical

environment is typically owned and managed by a hosting company. These cloud storage

providers are responsible for keeping the data available and accessible, and the physical

environment protected and running. People and organizations buy or lease storage

capacity from the providers to store user, organization, or application data.

21

2.8 Container Dwelling Time

Seaport is part of the development of a region or country as a main gateway for

exports and imports between countries and islands, therefore the port system should be

structured properly including management of container dwell time. Prediction of

container dwell time is required because it deals directly with consumer satisfaction, the

longer a container remains in the port, the more expensive costs are charged to the

costumers. CDT values are obtained from three processes, namely stevedoring,

cargodoring and receiving [6]. Stevedoring process is characterized by the cargo

container ship docked at the pier, then the container is removed using quay crane one by

one to be placed on the truck and after that the truck is taken to warehouse. Corgodoring

is a second process to obtain value of CDT and it is a process that requires the longest

time duration than the others because the container is checked by officers for purposes

such as country of origin, the contents of container, administration etc. Receiving is a port

activity when the containers are transported out of the port and payment is done for

several administrative to the port operator. Duration for this process is relatively short

compared to the other processes [6].

Jakarta International Container Terminal (JICT) is the largest container terminal

service in Indonesia (covers 100 hectares) and handles more than 2.2 million TEUs

(twenty equivalent units) per year. Data from January 2011 to November 2012 showed

that the average dwell time is 5.3 days whereas maximum dwell time for all of container

is three days. Predicted results are expected to help officer to take several steps to prevent

container from exceeding the maximum time (3 days). The output from prediction is

“days” which means how long a container takes when stacked in terminal [18].

The sharing of dwelling time prediction and equipment optimization data in cloud

computing provides many advantages for user like time efficiency, ease in

communicating, cost effective and many others but the security issues to keep the data

from being stolen or changed by the attacker is one of the considerations in the cloud [4].

As cloud computing is being widely adopted, data security is becoming one of the major

concerns of data owners. Data integrity is an important factor in almost any data and

computation related context. It is not only one of the qualities of service but also an

important part of data security and privacy [5].

Chapter 3. System Requirements and Design

3.1 Data Access Architecture in the Cloud

In this approach, we assumed that the seaport has a storage in the cloud. For every

dwelling time and equipment optimization data are stored in the cloud. Dwelling time and

equipment optimization data can be accessed, edit, download and upload via the cloud by

authorized person. The unauthorized person could have come from anywhere like from

outsider and insider who may have different motivations to change the data. If data

already changed by the attacker, it will make some serious problems in the seaport system.

The goal of digital signature concept in the seaport is to ensure the data integrity of

dwelling time prediction and equipment optimization result and to make sure nobody

change the data, and to avoid the fake dwelling time.

Download

Upload Data Download Data

Upload

A
ce

ss

C
ha

n
ge

 D
at

a

Authorized Sender Authorized Recipient

Unauthorized Persons

A
ce

ss

D
at

ab
as

e

Figure 3.1 Data access architecture in the cloud

 In figure 3.1 there are online communication and data exchange in the cloud

storage between authorized sender and authorized recipient. In this thesis, authorized

sender is capable to sign and upload the dwelling time data in google drive as a cloud

storage. Dwelling time prediction provides detailed information about the length of time

where the container stayed in the seaport.

23

3.2 The Impact Falsification of Dwelling Time

There are many motivations from unauthorized person to changes the dwelling

time data. For the example the actual prediction time of dwelling time is 6 days, then the

attacker changes the dwelling time data in the cloud storage becomes 8 days (longer) or

4 days (shorter). The dwelling time data changes by the unauthorized person gives several

impact in the seaport such as the more expensive cost, administrative complexity and time

efficiency. The longer dwelling time the more expensive cost will be paid by consumers.

Disproportionate number of equipment and containers will affect to the seaport

performance. In general, impact of falsification dwelling time is system in the seaport

would not be efficient because the data changes by the attacker as shown in table 3.1.

Table 3.1 the impact falsification of dwelling time

8 days

(Longer than actual time)

4 days

(Less than actual time)

a. The Seaport will spend more costs

for equipment operation to handle

a number of container.

b. The longer dwelling time the more

expensive cost to be paid by

consumers.

c. There will be a lot of equipment

that is not used in the field, etc.

a. The process will be longer than it

should be because of inadequate

equipment.

b. Disproportionate number of

equipment and containers will

affect to seaport performance.

c. System in the field would not be

efficient, etc.

The goal of digital signature concept in the seaport is to provide data integrity of

dwelling time in the seaport, to ensure nobody change the data and to prevent the

falsification of dwelling time data. The integrity of data is so important to keep the

original data from the authorized sender and recipient. If the attacker change the dwelling

time data to longer or shorter than normal time, it causes some harm to the company or

the customer. Therefore, the dwelling time data needs to be maintained originality that

really comes from an authorized sender without any changes during the processing from

outsider and insider who may have different motivations to change the dwelling time data

[6].

24

3.3 The Signed and Verification Process

A digital signature is the term used for marking or signing an electronic document,

by a process meant to be analogous to paper signatures, but which makes use of a

technology known as public-key cryptography. Additional security properties are

required of signatures in the electronic world. This is because the probability of disputes

rises dramatically for electronic transactions without face-to-face meetings, and in the

presence of potentially undetectable modifications to electronic documents.

3.3.1 Signed Process

One of the main differences between a digital signature and a written signature is

that the user does not "see" what he signs. The user application presents a hash code to

be signed by the digital signing algorithm using the private key. An attacker who gains

control of the user's PC can possibly replace the user application with a foreign substitute,

in effect replacing the user's own communications with those of the attacker. This could

allow a malicious application to trick a user into signing any document by displaying the

user's original on-screen, but presenting the attacker's own documents to the signing

application. The general idea is to provide some means for both the user application and

signing application to verify each other's integrity. For example, the signing application

may require all requests to come from digitally signed binaries.

Figure 3.2 Signed dwelling time data process

Secure Hash
Algorithm
(SHA-256)

Signature
1001001001

Encrypt
Using Private

key RSA

Data

Data & E(Sgn)

 E(Sgn)
 001010100

25

 Signing process based on Figure 3.2 is begins by taking the hash value of the data

using secure hash algorithm-1 to produce a message digest. The value of message digest

will be totally different although the dwelling time data are almost identical for each other.

A pair of key (secret and public key) is derive from RSA algorithm and used to encrypt

the message digest. A secret key from RSA is used to encrypt the message digest which

is every message digest has a fixed length and different for each data. In the signing

process a digital signature will be attached in the dwelling time data then the signature

and data will be upload to the cloud.

3.3.2 Verification Process

The verification process carried out by the authorized recipient in a way to decrypt

the message using the public key from RSA algorithm and then compare with the value

of signing that has been attached by the sender. Based on Figure 3.3 if decryption result

equal to the value of signing, it means there are no changes in data (dwelling time data

still intact), the otherwise if the value is not equal means the data has been changed by

the attacker.

Figure 3.3 Verification for dwelling time data process

Creating and verifying signatures uses the public/private key pair in an operation

different from encryption and decryption. A signature is created using the private key of

the signer. The signature is verified using the corresponding public key. A common use

of digital signatures is to sign use net postings or email messages. In such situations it is

undesirable to compress the document while signing it. When digital signatures is invalid

then the officer can able to make several step like, contact the sender and let them know

that there is a problem with the signature, and inform the system administrator in charge

 E(Sgn)
 001010100

Decrypt
Using Public

key RSA

 Ver_Sgn
1001001001

SHA-
256

 Signature
1001001001

Data & E(Sgn)

Is it equal?

==

26

of seaport’s security infrastructure. A trustworthy signature is valid, on the user account,

on the computer that states it as valid. If the signature were opened on another computer,

or another account, the signature may appear as invalid because that account may not trust

the certificate issuer. Also, for a signature to be valid, the cryptographic integrity of the

signature must be intact. This means that the signed content was not tampered with, and

the signing certificate is not expired or revoked.

3.3.3 Concept Digital Signature to Provide Data Integrity in Cloud Storage

A digital signature is created by a series of mathematical processes that transform

data (e.g., a Word document, PDF, or text file) into a uniquely coded “message digest.”

The sender encrypts the message digest then attaches it to or embeds it in a file, and sends

the package to the intended recipient. Once the package is received and the message digest

is decrypted, a determination of integrity can be made.

M

H E

M

S
Kpr

M

S

H

D

Kpu
Equal ?

E(Kpr, H(m))

Figure 3.4 Digital signature in cloud

 𝑆 = 𝐸 (𝐾𝑝𝑟, 𝐻(𝑀)) (3.1)

Then for verification,

 ℎ = 𝐷 (𝐾𝑝𝑢𝑏, 𝑆) (3.2)

where:

S : Signature

E : Encryption

D : Decryption

H : Hash value

h : Message digest

Kpr : Secret key the sender

Kpub : Public key the sender

27

Figure 3.5 Comparing the result of hash value

Based on Figure 3.4 and Figure 3.5 for the signing process, user signed a dwelling

time message by encrypting value of message digest with own private key and after that

the signature will be attached in the dwelling time data. It means there are 2 types data

that will be upload to the cloud storage, dwelling time data and signature. If the digital

signature matches the identity of the sender one can be reasonably assured that it was sent

by the individual associated with the digital signature (at worst the actual sender had

access to the digital identity of the supposed sender). If the message digest received

matches the message digest as calculated by the recipient the document has not been

altered after it was digitally signed.

3.4 Authorized and Unauthorized Person

3.4.1 The Authorized Person

The people who are categorized as authorized officers in the seaport is the people

who assigned to control and supervise the performance of the seaport. The authorized

officers communicate with each other via phone or online to give information on the

amount of equipment that is ready for operation. Then the other officer will be made an

analysis for dwelling time prediction is based on the amount of equipment available in

the field. In general there are three groups of officer, namely Officer 1, Officer 2 and Field

Officer. Each officer communicates via different way, for example using Android apps

for communication between field officer and officer 1. After the officer obtain the result

of dwelling time prediction, then the data should be signed before uploaded to the cloud

and sent to an authorized recipient. Structure of the officer in this system more details can

be seen in Figure 3.6.

28

Dwelling Time Download Data

Officer 1 Officer 2

Quaycrane RTG Torklift Truck

Field Officer

Figure 3.6 Structure of the officer in the system

Based on Figure 3.6 there are three group of officer that assumed in the system,

namely field officer, officer 1, officer 2. Each group consisting of two or more people and

have a different task, the following details:

a. Field officer: This group is a field officer in charge to control and report the amount

of equipment which are available at the time. Officer 1 can directly communication

via android application.

b. Officer 1: This officer works in the office and work with using a computer to predict

the dwelling time is based on the amount of equipment that has been reported by the

Officer 1.

c. Officer 2: Tasked to analyze and provide precautions dwelling time is based on

reports from Officer 1. Officer 2 communicates directly with the Officer 1 instance

ordered additional equipment so that dwelling time can be avoided.

3.4.2 Symbol and Notation between Authorized Person

There are several communication and data exchange between authorized officers

in the seaport which are related to dwelling time prediction. Based on Figure 3.7 has been

described in detail every process that will be happened between the officers. In the process

also using database to keep some of data like information about public key, ship ID, the

value of message digest etc.

29

Picture 3.7 Communication between Authorized Persons

Where,

IDs : Ship ID

Eq1 : ∑ Equipment in stevedoring

Eq2 : ∑ Equipment in corgodoring

Eq3 : ∑ Equipment in receiving

DTi : Dwelling time prediction data

DTdr : Decrypted the signature

Sgn : The signatures

Puk : Public key

UI : User interface application

After the field officer report a number of equipment which available in the field

then officer 1 will predict dwelling time using user interface application based on report

by officer field officer. Officer 1 will input some data like ID, number of crane, quaycrane,

truck, top loader and etc. Based on Figure 3.7, after using UI application there are some

output like IDs, DTi, MD, and Puk then the output for IDs and DTi will be send to the

cloud then for message digest and public key will send to database. Dwelling time

prediction data can be accessed by authorized persons and can be downloaded directly,

while the message digest of data will be stored in a database and used to complete the

verification process that compares the data encrypted by the data contained in the database.

User interface application in this research is a computer based desktop application that

are various menus and options such as dwelling time prediction and digital signature

applications. Dwelling time prediction is the other research conducted by the authors

aimed to determine the length of the existence of containers at the seaport and the case

study in JICT, Tanjung Priok, Indonesia.

Field Officer

Officer 1 Officer 2

UI
DTi

IDs, Sgn, Puk

Cloud

Database
UI

IDs, DTi

Sgn

DTi
IDs

Eq1, Eq2, Eq3

Sgn = Sgndr ?

Comparing
IDs, Sgn, Puk

30

3.4.3 The Unauthorized Person

The unauthorized person is also called as the attacker is an unwanted party within

the system that can lead to problems such as changing the dwelling time data so that the

system will be chaotic and causes many losses to seaport and consumers. The attacker in

this system are categorized into two groups, insider and outsider with different motivation.

The following details:

a. Insider attacker: This attacker comes from internal officers in the seaport that is

not part of the authorized officer (officer 1, 2 and 3). In the seaports there are many

kind of officers with different tasks, for the all officer except officer 1, 2 and 3 who

are trying to change the dwelling time data are categorized as the attacker. An insider

attack is one of the biggest threats faced by modern enterprises, where even a good

working culture might not be sufficient to prevent it. Companies implement

sophisticated technology to monitor their employees but it’s not always easy for them

to distinguish between an insider and an outside attack.

b. Outsider attacker: The outsider attacker can be anyone other than the seaport

officer who want to disrupt the seaport system with some different motivation like

revenge, resentful and etc, but the all motivations will give serious impact for the

seaport. In this system should understand that attackers are people too, who differ in

resources, motivation, ability and risk propensity. There are a number of insider

attackers who are merely pawns for another inside or outside mastermind. He or she

is usually persuaded or trained to perpetrate or facilitate the attack, alone or in

collusion with other agents, motivated by the expectation of personal gain.

3.5 Overall Flowchart of the Proposed System

The data exchange process is initiated by the sender who uploads the data into the

user interface in a program that will be built. The data will be signed and upload to

database, then the authorized recipient will be downloaded and verify the dwelling time

data by comparing message digest encrypted and message digest in database. The

overview of the system sequentially shown in Figure 3.8.

31

Start

The sender
upload the data

doc, pdf, jpg, png
and many others

Using Hash Function
Secure Hash Algorithm

(SHA-256)

 Message Digest
(1001000100 .)

Encrypt using sender s
private key (obtain from

RSA Algorithm)

A

Get the value of
Signature

Send the data and
signature to recipient

A

Recipient download the
data (doc, pdf, png, etc)

Decrypt the message
using public key (RSA)

Get the Hash
value as a output

Data
Approved

Data has been changed
(contact the sender)

End

Compare the hash
value. Is it equal?

Yes

No

Figure 3.8 Flowchart of the Overall System

To verify the data, the authorized recipient must download the data in the cloud,

then using a RSA public key that data will be decrypted and the recipient will obtain a

hash value as an output and the value will be compared with the signed value. Dwelling

time data received by the recipient is original if the decryption result is equal to the signed

value. The original message digest can be obtained from database. If the authorized

recipient finds a match message digest value between decrypted and value from database

then it can be said the data has not been changed by anyone it means the data still original

from the sender. The otherwise is the value is not match, it means the data has been

changed by attacker.

32

3.6 Android Application for Dwelling Time Prediction

Communication between field officers and officer 1 is used an android application

that provides information of dwelling time which is based on the amount of equipment in

the seaports at one time. Android is mobile operating system (OS) based on the Linux

kernel and currently developed by Google. Android is popular with technology

companies which require a ready-made, low-cost and customizable operating system for

high-tech devices. Android’s open nature has encouraged a large community of

developers and enthusiast to use the open-source code as a foundation for community-

driven projects, which add new features for advanced users or bring Android to devices

which were officially released running other operating system. Android’s source code is

released by Google under open source licenses, although most Android devices ultimately

ship with a combination of open source and proprietary software.

 The Field officer using the dwelling time application (Android) as an input

calculate or estimate amount of equipment available at the port such as the number of

trucks, rubber tyred gantry, torklift and toploader for each process like stevedoring,

corgodoring and receiving which is the operational standards in every seaport in the world.

In the application there are several important information like ship ID, number of crane,

truck, top loader which are should be secret information, it means only authorized person

knows that information. Via the applications, field officer also can send the data into

database that means every authorized user can accesses all of the related information in

database. Some of data is important to keep in database, it will help the officer to avoid

manually to input the data and it reduces the mistakes made by the attacker.

The predicted dwelling time data can be accessed by authorized persons and can be

downloaded directly, while the message digest of data will be stored in a database and

used to complete the verification process that compares the data encrypted by the data

contained in the database. All of that information will be stored and keep in the cloud

storage by field officer and can be loaded anytime by the authorized officer. The

information will be used by officer 1 from the cloud storage and used as basic information

for signing and verifying data and that data also will be uploaded to the cloud which is

same storage with android apps.

Chapter 4. System Implementation and Analysis

4.1 Overall System and Application

Concept of digital signature for the data integrity of the dwelling time data is

implemented into a java-based application that will be used by the authorized officer to

process, edit, create, upload and download the dwelling time data. Authorized officer uses

the same application, which includes a process of digital signature. In the application

there are four menus with functions and information, namely ‘About”, “Dwelling Time”,

“Digital Signature” and “Exit” as shown in Figure 4.1, but the main menu in this thesis is

“Digital Signature” menu.

Figure 4.1 Main menu of digital signature application

 The following is an explanation for each menu as shown in Figure 4.1. “About”

describes a general overview of the application where the dwelling time and digital

signature are interconnected in the seaport system. This menu also contains the

information that is considered as important ones.

4.2 Container Import Dwelling Time Prediction

Container import dwelling time application is not the main focus in this study

because the dwelling time prediction is done from other work [6], it means there is no

detailed explanation about how to get the predicted results based on the amount of

equipment available in the seaport. This menu application is used by the authorized

34

officer (officer 1) based on reports from the field officer and the appearance of the menu

shown in Figure 4.2. There are some different amount of equipment for each process such

as stevedoring, corgodoring and receiving and also there is a Ship ID which is the identity

of a ship carrying a number of containers.

Figure 4.2 Menu of container dwelling time prediction

 In this research, the data output of container dwelling time prediction is

subsequently used for signing using digital signature concept and then uploaded to the

cloud by officer 1.

4.3 Digital Signature Implementation

Digital signature application is the main focus in this research. Data of dwelling

time prediction is used by the authorized officer, and it is uploaded and downloaded in

the cloud but the data should be signed to keep the originality of the data. In the digital

signature process. We need a pair of key, public key and secret key which is derived from

the RSA algorithm.

4.3.1 User Interface of RSA Key

RSA algorithm is used to derive a pair of key, secret key and public key. Secret

key is used by officer 1 to encrypt a message digest of dwelling time data. The encrypted

file is not the value of original message but the value of message digest of dwelling time

35

data. A value of message digest is derived from using hash value which has a fixed length

for every message. RSA algorithm in this thesis uses three kinds of key-length, 1024 bits,

2048 bits and 3072 bits. Based on Figure 4.3 there are two windows to provide the key,

the first one is for a secret key and the other one is for a public key. Secret key is used by

officer 1 to encrypt the message digest of dwelling time data.

Figure 4.3 User interface of RSA algorithm

 The key size used in particular application of cryptography depends on the

necessary security level of the applications and the actual key size also depends on what

cryptographic algorithm is being used. In most cryptographic functions, the key length

is an important security parameter. The used RSA key (public and secret) should be

random, it means the key will not be the same as the key used previously or afterwards.

The following is a key length of 1024 bits (random key) in hexadecimal notation.

Table 4.1 Different Key Size

Key Size Secret Key Public Key

1024 bits

b0b6b19491e5cf93872296fde

034b96602e0baa3c92a819fa0

659c6234e7c259bf51749fc92

044352b94f283367634346eea

1aa06e55c2192f5b5aef79bf4

2b7

75e69bcd0f7d56df333153bc66bf

692f43ddbbb75fd731146b769a81

c6079de2fd1eba355b8f02a6308d

a3311796dfa5e3b01a1377993cab

9db9e8b0960b55673a6706f289c0

f00eed5b56cb090bd792a1df6752

70a8e7bbacbd968c1436282a589b

42138f56b7eedae878c8cd6b2a65

be1d7db8b2ff7e61ade77f23b924

e6f7

36

Table 4. 1 (Continued)

Key Size Secret Key Public Key

2048 bits

d4dc0eaa36a0cc355eaa2229e

9a28a789cd7a4995b560dba8e

c072bc48d02013ccc8574f137

22303f230001bbfc2ebcb256f

0388270e4a46f42485f45ec9d

ed45f7e9bdb3665955f933f86

932683594c5cf9b46a30660d0

0860d5ee171fbad165c0265e3

1505c8d5f8c1b40cc9cc58348

db314dd4ea9e7ac7e08efc19f

a695ef

106904fd2e2de3b00ca227be3e2e4e

2aceb919464db23d404bd069f2e464

7fc49c3477254320e31d7c11cfb7f7

33369006186f625bf52068b9369518

ef7fd0056d125831c500117d5f17dc

86fb16538d08f54d4b5eff76882b12

d6e1bc37687249346c5493b47e9966

11629b3a2b23d5831a30f4b02db341

3160961a6fc586586836746fefce93

287f637bb783a86c5c39ad95fd58df

a0972a024d7a04ef88ac27a366eb36

04a63a003d80c5716c8d511b867c79

4655208c3231d4d7e65b0fb7da9e11

5b17057f3c9cfd1e2c8afff85806b6

ce47a19d0f9e57cc4c6e28cbd16c26

f2b6a3370526eeae4149b898390de6

6f368356b4069183fb7dc187193edb

4b

3072 bits

eb4cdace055ccaa621c5bb897

6a83a7f838233d470779d346a

076f8086f30044e740f46fb2a

92bdb6065e3499206dffe0252

fcac535f42799473cc1fbff59

815012f628e558285c654eee0

2889ba08cd13611c280334769

458f8bc2da4485c4b6f488a0e

60921371eb4f51b0c2ea4f229

37430493b4e5dbbac123ff21c

c6ee03e252a3d8889145fb8b2

a552c91841b7c8cc3205d5a96

39bcac6d3d6f143c97940f576

4e707a6642777f6e95200f9a9

8a2e7eb75615e0173fd8be626

6b665f5af

1ea373b046f8c5fdb8479d7f2afc1f

3ec16a64e97806621df438410cad7b

e41d9ba6aa934912a61286e2fbf8c4

2033f202373c122337410d1d180f55

5b7d8858e79abdd8cb725dd10e8179

dac3ede20ea6362ad625eb79af0b59

2adc1a74c895a1c945f1edfab617b1

8e0e6c29b0c99be66017194c7d21b3

f8591636e6842f3875f4a1ace46cb7

35b253c35ce60f4328343c50fbccfb

6f683c5c88b1a86ca0ec63e6498a16

1d687f72406e3b42cb5015484dcc8d

83e3d859de9dd1f64b172989e7a46f

845ad08e2a38a72a4be9bd1c7cb83b

a2d0ff8dd9d5d60938cdb5a55418b2

0cc652affed68ec44ccab3be98320d

279caf60cab3c29ca7a4e85b167266

287de6ac57493cd34c84598fcc2790

59a152cb7cedafbea1f6219ffa55d3

281451af96f69ab3a9977775bebcae

4c0ed16e56c5abb5cffcb1a5aad002

d614546391408c52e7c7039c86dddc

e1de565508d905103b068f301f8fec

8d8b460a363cb83e432b45c9c5fc92

32e440b9ff8c2fd29e4737b0bc79e7

39c987bb4e247a3dbf

37

4.3.2 Signed the Dwelling Time Data

Dwelling time prediction process provides an output in the form of long existence

of containers in the seaport as shown in the Figure 4.2 and the format for this data is “*txt”

(notepad). Signing and verifying process is always related to RSA keys because the

process uses the public and the secret key to encrypt and decrypt the dwelling time data.

In the Signed the data form, there is a “Ship ID” which gives the information of a ship

carrying a number of containers. Data of Ship ID will be stored in the cloud that will

provide information on the number of containers and can be used anytime.

Figure 4.4 User interface of signed process

From the Figure 4.4, there are two windows namely “Message Digest” and “The

Signatures”. Message digest is a cryptographic hash function containing a string of digits

created by a one-way hashing formula. Message digest is designed to protect the integrity

of data to detect changes and alterations to any part of messages. Message digest values

represent specific files containing the protected work. One message digest is assigned to

particular data content. If there are any changes deliberately or accidentally, it prompts

the owner to identify the modifications by checking the hash value of the dwelling time

data.

Message digest is encrypted with private/secret keys to create a digital signature.

This result is a type of validation assurance that the appropriate user is accesses to the

protected information. Message digest protects one-way hash algorithms taking random

38

data and transmitting a set length hash value. To begin the process a message digest is

initialized. Then the data is processed through the message digest by using updates. Final

operations include padding, during which the message digest completes the hash

computation and resets itself. However, the digest can be reset at any time during the

process.

Message digest in this research represent the value of dwelling time data after

using the hash algorithm whereas the signatures is encrypted value of message digest

using secret key officer 1. Message digest and the signature is not same even comes from

the same data source (dwelling time data). After the officer 1 input some data like Ship

ID and get message digest value and the signatures value, then the officer will be able to

save that data in database. All of information about ship id, amount of container, value of

message digest can be stored in database so the officer can use to verifying process by

access in database. Value of message digest and signatures can be save in the local hard

drive by click the icon button as shown in Figure 4.4.

4.3.3 Verifying the Dwelling Time Data

The verification process carried out by the authorized recipient in a way to decrypt

the message using the public key from RSA algorithm and then compare with the value

of signing that has been attached by the sender, if decryption result equal to the value of

signing, it means there are no changes in data (dwelling time data still intact), the

otherwise if the value is not equal means the data has been changed by the attacker. Based

on Figure 4.5 there are two kinds of value, “Decrypt Signature” and “Get from Database”.

Those value should be same to indicate the dwelling time data still original it means there

is no changes in the data.

39

Figure 4.5 Verifying dwelling time data

Decrypt signature value obtained from the decryption by using the public key by

authorized officer (officer 2). Once the data is downloaded by the officer 2 then decrypt

the data by using public key to obtain the hash value of the data decrypt result. After get

the decrypt signature value then the officer comparing with the hash value from database

which is the original hash value from the sender (officer 1). If the value is same then there

is no change in the data, otherwise if its value is not same then the data has been modified

by the attacker.

4.4 System Database

Database in this research containing some information like ship id, public key,

message digest, date created and other as shown by Figure 4.6. MySQL is the most

popular open source SQL database management system and applied in this research.

Figure 4.6 System database using MySQL

 Based on Figure 4.6 there are some tables in database like ship id, public key,

message digest and other. Ship id gives information about amount of container

transported by ship. Every ship has different id and also different number of container.

Public key also important stored to database because with this public key officer 2 can

decrypt the message digest of dwelling time data. Message digest in database is the

original value of message digest from dwelling time data, this value will be compare with

decrypt value by officer 2. If the value of message digest from database is same with

value of message digest from decrypt, it means the data still original (there is no changes

in the data). A relational database stores data in separate tables rather than putting all the

data in one big storeroom. The database structures are organized into physical files

40

optimized for speed. The logical model, with objects such as databases, tables, views,

rows and columns, offers a flexible programming environment.

4.5 Android Apps Amount of Equipment

Communication between field officer and officer 1 is using Android apps as

shown in Figure 4.7. This application is using by field officer to give information how

many equipment in the seaport that is ready to use for operation. Field officer always

check manually amount of equipment in the seaport and report to officer 1 and send the

result to database by using this application.

Figure 4.7 Android apps amount of Equipment

4.6 Experimental Result

In this session briefly explained the whole of process and result with changes and

original data to easily understand the different message digest value if data changed by

the attacker. In this experiment using the default data like amount of equipment to predict

the dwelling time data. For the result of dwelling time data also using a default data

because the main point in this research is to detect the data has been changed or still

original from the authorized sender.

41

For example case, the information is following:

 Ship ID : JICT001

 Amount of Container : 150 TEUs

1. The first step is field officer reports to officer 1 about the amount of equipment in

the field by using android apps as shown in Figure 4.8. Field officer input one by one

equipment for each process in the seaport (stevedoring, corgodoring and receiving).

The amount of equipment in the field is not always same at the time, it means the

amount of equipment always changes caused some factors. Then, the information

will be send to database by field officer.

Figure 4.8 Amount of equipment

2. Based on report result by field officer, then officer 1 predicts the dwelling time data

by simply input “the ship id” in the applications then officer 1 gets all of kind amount

of equipment information from database as shown in Figure 4.9.

42

Figure 4.9 Dwelling time prediction

3. The dwelling time data in notepad (.txt) format. After the officer save in hard drive

computers, then the officer 1 should signed the data first then save the information

to database before send to cloud. To signing the dwelling time data, officer 1

should make a pair of key from RSA algorithm. In this case, officer 1 choose 3072

bits key size as shown in Figure 4.10. There are many variations for key size in

this research like 1024 bits, 2048 bits and 3072 bits. The longer key size the harder

attacker to decrypt and attack the message. After make a pair of key, then the

officer can also save the key to computer hard drive.

Figure 4.10 RSA Keys

43

Secret key:

ba2a46e5674372953d3342268aef4341137aec3f9a1bb4cc1d398dd84371f1493f8ffe

efb52b9003841c00fee72e4eabc36add82b730dafa2bb9b1af8d248ee815dbcfa4958c

ccb7824d16eea4489cbd928a1384b637a6cf45daeed14c0e45409eddab129dd752c230

d6e8d9725e9559b61f612b2f19f06b74dd816d70ef8fc5e298869057e19c6ee340d7bf

6f5cc12c1c672f2f118185d2821526d52a2630a0f48fd058c608d6477668e55e9c0e86

7d3bf324b7f93f9b6a190da7d08bfd2387

Public Key:

419645827dcf827263f97826ab9dc5c80ff09a0c1e50a610b0fa53357a82fc98540bf1

32c1c336b1125c04609c1a40b6ce195fa30fe61b2be61a061e8f4604512c95ce4082d2

8ee0eab1f9d2a2763dce27dfc8c13257444fc1f4d81605bc8551f66b7ad6fc7de45dff

c349082c4f4a7d1640c7f36e84ad261adf5a6cea73b3254d34c8b84614fb5db9e23fe1

0e83fc266ea7cededb22d515a9829a7a7415b5b1ec4ad18e1139140a82844246624219

8fd49fcd95470909f331dee318f279a9b03fb71eae8e8a5ed04d4d8d0914385bded155

b85fc6523643e5b672cd2d47630effa7305248ff6b0a6e17b2035492c20bc4f2fdb45d

44c3125cb57b4bc2773d325356ffb49da1e8cbd9d449fbf29544e8df4cbb7e0c1603d5

f2874ce391a991dcbf383f6bda65b27152c79291e4315ada14afda4f72a0f0b44c1483

073c22855a925d064caeb0b1dbd5c8123435688ef7c9c706147913104161ecd12565bc

94d79092d70c6cd0d85169c6ef98ff8092464ac0d2ded9f666190fa7b13857c4d4ef

4. Signing process by officer 1 by input ship id and upload the dwelling time data and

then send the public key and message digest to database as shown in Figure 4.10 and

Figure 4.11. The data is important to save in database because by input the ship ID the

officer can get the all kind of information such as public key, value of message digest,

the signatures, date created etc. The value of message digest will be totally different

although the dwelling time data are almost identical for each other. A pair of key

(secret and public key) is derive from RSA algorithm and used to encrypt the message

digest. A secret key from RSA is used to encrypt the message digest which is every

message digest has a fixed length and different for each data. In the signing process a

digital signature will be attached in the dwelling time data then the signature and data

will be upload to the cloud.

44

Figure 4.10 Signed the dwelling time data

Figure 4.11 Information in database

Value of Signature:

439e39ad15eed21ea2b4b1ddd5f7ef9ffa336f27

Value of Encrypted Signature:

83475bf05f6b1435cdc343e01285e759445b347f9fb4073a2f4eff6ae818fb1210d096

eba25608a0f14e2f91d314dd2a8d089202307c46f0a8136623a76fff1e8dd731a4e3a6

fc602b8f79b6d9b4fd2bacc7f0acb560b548a021bebc53bcb7fe8b075843be899edf6e

666cb2545292b2563f237c394241621a60aca176aa405d25735486d5b2a88352d82f18

45

e307c3858cda8752fec34c5fff3fd1d2030dbd8adf3a477d277eef66cd2658b6572742

f9276d3d193a5aa5c92b3c0858d999e546d45ac7501c7355ba2c63de335d8f880ba180

265a943a82e39c503e1002d308398711647c6466ed0508ef5aa6c60633c5c858cd3d68

2bf9ef24d97dcfe88b2adf6190ac295a0583ea13d32f8a07e6b082d2b7d3e79a6afbbb

b7393dfec1d98496682ffb4f9412c642fd0580765d16e37f7a99afbb375f457d93f9b0

62afe0069e6a93b8ef6c65cd1fbcad193ced22a2182cb238b6103ac81a84760c57fbf9

2e937cff495817ffb1af2fcd6d1426f0add11b260c9a1c06199e2ae29808f478667e

5. Dwelling time data will be upload to the cloud. In this research, using google drive as

cloud as shown in Figure 4.12. In this cloud, the attacker possible to change the

dwelling time data, and in this case digital signature will be necessary to protect

originality of the data.

Figure 4.12 Dwelling time data in Cloud

6. After officer 1 upload the dwelling time data in the cloud, then officer 2 can download

anytime to verify that data still original from the authorized sender. Officer 2 can

verify the data by input ship id and upload the dwelling time data that already

downloaded, then when decrypted is done the officer will get the value of message

digest. The value will be compare with value from database, if the value is same then

the data is still original, but the otherwise if the value is not same, it means the data

has been changed by attacker.

46

Figure 4.13 Verify the dwelling time data

 After the officer 2 get the decrypt signature result of decrypt from dwelling time

data, then the officer compare with value from database. The message digest value from

database represented the original value (data original) of dwelling time data before the

attacker change the data. There is an indicator to show the data is valid or not by click in

“check integrity” button as shown in Figure 4.14. By using this indicator, the officer 2

can easily decide the data is still valid or not.

Figure 4.14 Indicator if data is valid

7. In the case if the attacker change the dwelling time data. For the example the original

dwelling time prediction is 7 days, 5 hours and 25 minutes, then the attacker changes

the data in the cloud storage becomes 3 days, 0 hours, 0 minutes as shown in Figure

4.16. If the officer 2 verify the data changed, the officer 2 will find out that “the

verified signature” is not same with “value from database”, it means the data has

been changed by the attacker as shown in Figure 4.17.

47

Figure 4.15 The original of dwelling time data

Figure 4.16 The attacker change the data

Figure 4.17 Message digest value with the data changed

48

 Figures above explained if the attacker change the data. The original data is show

in Figure 4.15 then the attacker change the data as shown in Figure 4.16. The attacker can

change anything and give the wrong information to officer 2.

Comparing message digest of dwelling time data:

Decrypt Signature (the changed data):

439e39ad15eed21ea2b4b1ddd5f7ef9ffa336f27

Get from database:

68b4b342a53262e93f276743c21980cab5b0586

 The officer 2 can see the value of message digest from decrypt signature and value

from database. When the value of message digest is not same then there is an indicator as

shown in Figure 4.18.

Figure 4.18 Indicator when the data has been changed

 If the value from decrypt the signature and value from database is not same, it

means the data has been changed by the attacker. Even the attacker changed only one bit,

the value of message digest will totally changes. The value of message digest is not same

to every kind of data, no matter how similar for each data, the value of message digest

will totally different to each other. Message digest has a fixed length, even when the

officer 1 using different key size like 1024 bits, 2048 bits and 3072 bits, the length of

message digest will not change. At this point, if the officer 2 find that data already

changed by attacker, then the officer can make some step to prevent apply that data in

real situation. The officer can make a contact to authorized sender (original sender) to

confirm manually the data. In this research is assumed that every officer using same

desktop application because there are directly communication between officer.

49

Chapter 5. Conclusion and Future Work

5.1 Conclusion

Digital signature with using hashing algorithm SHA-256 is implemented to provide data

integrity of dwelling time data by signed and verified the dwelling time data. The key is

obtained from RSA algorithm and used to encrypt and decrypt the message digest from

dwelling time data are 1.024 bits, 2.048 bits and 3.072 bits. Based on experimental results,

digital signatures with SHA-256 can be used to detect the dwelling time data still original

from the sender or not. Even the data only changed one character, the message digest

totally changed. The officer can see easily comparing message digest decrypted with

message digest from database by input ship id then the result will show up via indicator

which is give information the data has been changed by attacker or still original from the

authorized sender. The key size from RSA algorithm is not affect with the length of

message digest because characteristic of message digest is has a fixed length. This apps

also works for any format data like doc, pdf, *jpg, *png, mp3, mp4 and etc. We have

successfully developed digital signature applied to provide data integrity of dwelling time

data in the cloud storage.

5.2 Future Work

Digital signatures to provide data integrity is a fundamental component of information

security which is verified the data has remained unaltered in transit from creation to

reception. Related in this research, hopefully future research can provide many types of

data like video, mp3 and other format. The future design for user interface also hopefully

more secure and privacy via authorized officer like gives username and password to

authenticity before use the program.

50

References

[1] C. Paar dan J. Perlz, Understanding Cryptography, Berlin: Springer, 2010.

[2] N. Ferguson, Cryptography Engineering: Design, Principles and Practical Applications,

Indianapolis: Wiley Publishing, Inc, 2010.

[3] T. B. Idalino, L. Moura, F. R. Custodio dan D. Panario, “Locating Modifications in Signed

Data for Partial Data Integrity,” Information Processign Letters, vol. 115, no. 10, pp. 731-

737, 2015.

[4] C. Liu , C. Yang , X. Zhang dan J. Chen , “External Integrity Verification for Outsourced

Big Data in Cloud and IoT: A Big Picture,” Future Generation Computer Systems, vol. 49,

pp. 58-67, 2015.

[5] K. Liang , M. H. Au, J. K. Liu, W. Susilo, D. S. Wong, G. Yang dan A. Yang, “A secure

and efficient Ciphertext-Policy Attribute-Based Proxy Re-Encryption for cloud data

sharing,” Future Generation Computer Systems, vol. 52, pp. 95-108, 2015.

[6] S. Rahmadika, “Using Naive Bayes Algorithms to Predict Container Dwell Time: Case

Study JICT, Indonesia,” dalam KMMS Spring, Conference, Andong, South Korea, 2015.

[7] P. Kitsos, N. Sklavos dan O. Koufopavlou, “An Efficient Implementation of the Digital

Signature Algorithm,” Greece, 2002.

[8] D. J. Hombrebueno, G. C. Sicat, J. Niguidula, E. Chavez dan A. Hernandez, “Symmetric

Cryptosystem Based on Data Encryption Standard Integrating HMAC and Digital Signature

Scheme Implemented in Multi-Cast Messenger Application,” dalam International

Conference on Computer and Electrical Engineering, Manila, 2009.

[9] M. Thangavel, P. Varalakshmi, M. Murali dan K. Nithya, “An Enhanced and Secured RSA

Key Generation Scheme (ESRKGS),” Journal of Information Security and Applications,

vol. 20, pp. 3-10, 2015.

[10] I. C. Lin dan C. C. Chang, “Security Enchancement for Digital Signature Schemes with

Fault Tolerance in RSA,” Information Sciences, vol. 177, no. 19, pp. 4031-4039, 2007.

51

[11] A. J. Menezes, P. C. V. Oorschot dan S. A. Vanstone, Handbook of Applied Cryptography,

CRC-Press 1996: USA, 1996.

[12] R. Burton, Handbook of Financial Cryptography and Security, Australia: Boca Raton:

Chapman & Hall/CRC, 2010.

[13] B. A. Forouzan dan D. A. College, Cryptography and Network Security, India: McGraw-

Hill Higher Education, 2008.

[14] H. Delfs dan H. Knebl, Introduction to Cryptography, Berlin: Springer-Verlag Berlin

Heidelberg, 2007.

[15] G. Pereira, C. Puodzious dan P. Barreto, “Shorter hash-based signatures,” The Journal of

Systems and Software, pp. 1-6, 2015.

[16] R. Buyya, J. Broberg dan A. Goscinski, Cloud Computing Principles and Paradigms, New

Jersey: John Wiley & Sons, Inc, 2011.

[17] T. Mather, S. Kumaraswamy dan S. Latif, Cloud Security and Privacy, United States of

America: O'Reilly Media, Inc., 2009.

[18] M. Filip, “The Issue of Dwell Time Charges to Optimize Container Terminal Capacity,”

dalam IAME Annual Conference, 2005.

[19] S. Hashimi, S. Komatineni dan D. Maclean, Pro Android 2, India: Apress; 2009 edition

(June 23, 2009), 2009.

[20] R. Meier, Professional Android Application Development, Indianapolis, Indiana: Wiley

Publishing, Inc, 2009.

52

Acknowledgements

Immeasurable appreciation and deepest gratitude for the help and support are extended to

the following who in one way or another have contributed in making this thesis possible.

The final outcome of this thesis required a lot of guidance and assistance from many

people and I am extremely fortunate to have got this all along the completion of my thesis.

Whatever I have done is only due to such guidance and I would not forget to thank them.

First, I am deeply indebted to my supervisor Prof. Kyung-Hyune Rhee for his guidance,

motivation, patience and encouragement to look my research and my work in different

ways and for opening my mind. I learned a lot about this topic and also many other things

while staying in LISIA Lab and your support was essential to my success here.

I heartily to thank Prof. Man-Gon Park, Chairman, for assistance and words of

encouragement, also for his time and effort in checking this thesis. I am extremely grateful

to Professor for providing such a nice support and guidance though he had busy schedule

managing the academic affairs. I also would like to thank Prof. Bong-Kee Sin, Prof.

Chang-So Kim and Dr. Hilwadi Hindersah for useful knowledge and information

during lectures, also providing indispensable advice and support on different aspects.

Many of my experimental work will not be completed without the help of Dr. Park, Bayu,

Lewis and all of LISIA members. Thank you for all kinds of your support for me.

I devoted all of my works to my father, mother, older brother and younger sister who

always love me and pray for my well-being. They always give me spirit and motivation

when I’m tired by only hearing their voice on the phone. Things that are not to be

forgotten are they never ceases to remind me to pray and thanks to Allah SWT. And to

all my families and relatives who care for me wherever you are, thank you. I love you.

For all 14 members of double degree programs ITB-PKNU, I love you all, we are like

brothers and sisters. Sometimes we did a stupid things, laughed, sad, and happy together.

Last but not least, thanks to all Indonesian students in PKNU who always give me a

helping hand. I’ve got awesome experiences from you guys. Also to any person or

institution whose name I could not mention here, thank you for our kind of support.

53

Appendix

A. Access to Database

/*

 @author Sandi Rahmadika

 @LISIA

 */

package Sandi_Thesis;

/**

 * @author Sandi Rahmadika

 */

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.Date;

public class AFDatabase_access {

private Connection connect = null;

private PreparedStatement preparedStatement = null;

private ResultSet resultSet = null;

public void insert_database(String ship_id, String public_key, String

message_digest, String user) throws Exception {

 try {

 // This will load the MySQL driver, each DB has its own driver

 Class.forName("com.mysql.jdbc.Driver");

 // Setup the connection with the DB

 connect = DriverManager

 .getConnection("jdbc:mysql://127.0.0.1/dwellingtimedb?"

 + "user=root&password=");

 preparedStatement = connect

 .prepareStatement("insert into dwellingtimedb.tb_datadwellingtime

values (?, ?, ?, ? , ?)");

 // "myuser, webpage, datum, summery, COMMENTS from feedback.comments");

 // Parameters start with 1

 preparedStatement.setString(1, ship_id);

 preparedStatement.setString(2, public_key);

 preparedStatement.setString(3, message_digest);

 preparedStatement.setString(4, user);

 preparedStatement.setDate(5, new java.sql.Date(2015, 12, 11));

 preparedStatement.executeUpdate();

 }

 catch (Exception e) {

 throw e;

 } finally {

 if (connect != null) {

 connect.close();

 }}}

public String[] retrieve_database(String ship_id) throws Exception {

 String[] result = new String[2];

 try {

 // This will load the MySQL driver, each DB has its own driver

54

 Class.forName("com.mysql.jdbc.Driver");

 // Setup the connection with the DB

 connect = DriverManager

 .getConnection("jdbc:mysql://127.0.0.1/dwellingtimedb?"

 + "user=root&password=");

 preparedStatement = connect

 .prepareStatement("select public_key, message_digest from

dwellingtimedb.tb_datadwellingtime where ship_id=?");

 // "myuser, webpage, datum, summery, COMMENTS from feedback.comments");

 // Parameters start with 1

 preparedStatement.setString(1, ship_id);

 resultSet = preparedStatement.executeQuery();

 while (resultSet.next()) {

 result[0] = resultSet.getString("public_key");

 result[1] = resultSet.getString("message_digest");

 System.out.println(result[0]); }

 return result;

 }

 catch (Exception e) {

 throw e;

 } finally {

 if (connect != null) {

 connect.close();

 }

 }}}

B. Main Menu Operation

package Sandi_Thesis;

import java.awt.Color;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.PrintWriter;

import java.math.BigInteger;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.swing.JFileChooser;

import javax.swing.JOptionPane;

import javax.swing.JProgressBar;

import javax.swing.UIManager;

import javax.swing.UnsupportedLookAndFeelException;

import javax.swing.filechooser.FileNameExtensionFilter;

public class ACDigital_Signature extends javax.swing.JFrame {

 static int bitleg;

 static BigInteger ciphertext;

 static ADRSA_KeyAlgorithm rsa;

 public ACDigital_Signature() {

 initComponents();

 barComplete.setStringPainted(true);

 barComplete.setForeground(Color.blue);

55

 bitleg = Integer.parseInt((String) jComboBox1.getSelectedItem());

 rsa = new ADRSA_KeyAlgorithm();

 rsa.KeyRSA(bitleg);

 this.setLocation(300, 50);

 this.setResizable(false);

 }

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

 }

 private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 barComplete.setValue(0);

 String filename = signed_searchData.getText();

 filename = filename.replace('\\', '/');

 if ("".equals(filename)) {

 barComplete.setIndeterminate(true);

 JOptionPane.showMessageDialog(null, "Please Input the Data",

"Announcement", JOptionPane.ERROR_MESSAGE);

 barComplete.setMaximum(200);

 barComplete.setValue(0);

 barComplete.setIndeterminate(false);

 } else {

 AEHashFunction_SHA2 sha1 = new AEHashFunction_SHA2();

 try {

 barComplete.setIndeterminate(true);

 BigInteger sh1 = new

BigInteger(sha1.md(filename).abs().toString());

 signed_messageDigest.setText(sh1.toString());

 BigInteger sha1t = new

BigInteger(signed_messageDigest.getText());

 signed_signatures.setText(rsa.encrypt(sha1t).toString());

 jButton8.setEnabled(true);

 barComplete.setMaximum(200);

 barComplete.setValue(200);

 barComplete.setIndeterminate(false);

 JOptionPane.showMessageDialog(null, "The Signature successfully

created!");

 } catch (Exception ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

 }

 }

 private void searchData_SignedActionPerformed(java.awt.event.ActionEvent

evt) {

 // TODO add your handling code here:

 barComplete.setValue(0);

 JFileChooser chooser = new JFileChooser();

 FileNameExtensionFilter filter = new FileNameExtensionFilter("txt",

"doc", "docx", "pdf", "jpg", "png");

56

 chooser.setFileFilter(filter);

 int returnVal;

 returnVal = chooser.showOpenDialog(null);

 if (returnVal == JFileChooser.APPROVE_OPTION) {

 File file = chooser.getSelectedFile();

 String attach = file.toString();

 signed_searchData.setText(attach);

 }

 }

 private void signed_searchDataActionPerformed(java.awt.event.ActionEvent

evt) {

 // TODO add your handling code here:

 }

 private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {

 }

 private void jButton6ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 BigInteger bigInteger = new BigInteger(RSA_secretkey.getText());

 try {

 OutputWrite(getSaveLocation(), bigInteger, "Keyprivate.txt");

 } catch (FileNotFoundException ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

 }

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 barComplete.setIndeterminate(true);

 barComplete.setIndeterminate(false);

 }

 private void jComboBox1ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 bitleg = Integer.parseInt((String) jComboBox1.getSelectedItem());

 barComplete.setValue(0);

 }

 private void btnCheckIntegrityActionPerformed(java.awt.event.ActionEvent

evt) {

 // TODO add your handling code here:

 barComplete.setValue(0);

 String filename = verified_searchData.getText();

 filename = filename.replace('\\', '/');

 if ("".equals(filename)) {

 barComplete.setIndeterminate(true);

 JOptionPane.showMessageDialog(null, "Please Input the Data ",

"Notice", JOptionPane.ERROR_MESSAGE);

 barComplete.setMaximum(200);

 barComplete.setValue(0);

 barComplete.setIndeterminate(false);

 } else {

 AEHashFunction_SHA2 sha1 = new AEHashFunction_SHA2();

 try {

57

 barComplete.setIndeterminate(true);

 // jTextArea5.setText(sha1.md(filename).abs() + "");

 // BigInteger dsrsa = new BigInteger(jTextArea4.getText());

 // jTextArea6.setText(rsa.decrypt(dsrsa).toString());

 barComplete.setMaximum(200);

 barComplete.setValue(200);

 barComplete.setIndeterminate(false);

 if

(verified_database.getText().equals(verified_decrypt.getText())) {

 JOptionPane.showMessageDialog(null, "Data is Valid

(Guarantee for Integrity)", "Notice", JOptionPane.INFORMATION_MESSAGE);

 } else {

 JOptionPane.showMessageDialog(null, "Data has been

changed!!!", "Notice", JOptionPane.ERROR_MESSAGE);

 }

 } catch (Exception ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

 }

 }

 private void searchData_verifiedActionPerformed(java.awt.event.ActionEvent

evt) {

 // TODO add your handling code here:

 barComplete.setValue(0);

 JFileChooser chooser = new JFileChooser();

 FileNameExtensionFilter filter = new FileNameExtensionFilter("pdf",

"doc", "docx", "jpg", "png", "txt");

 chooser.setFileFilter(filter);

 int returnVal = chooser.showOpenDialog(null);

 if (returnVal == JFileChooser.APPROVE_OPTION) {

 File file = chooser.getSelectedFile();

 String attach = file.toString();

 verified_searchData.setText(attach);

 }

 }

 private void verified_searchDataActionPerformed(java.awt.event.ActionEvent

evt) {

 // TODO add your handling code here:

 }

 private void jButton9ActionPerformed(java.awt.event.ActionEvent evt) {

 JOptionPane.showMessageDialog(null, "Successfully Sent to Database",

"Notice", JOptionPane.INFORMATION_MESSAGE);

 AFDatabase_access d = new AFDatabase_access();

 try {

 String ship_id = shipID.getText();

 String public_key = RSA_publickey.getText();

 String message_digest = signed_messageDigest.getText();

 String user = "Officer 1";

 d.insert_database(ship_id, public_key, message_digest, user);

 //String[] data = d.retrieve_database(ship_id);

58

 } catch (Exception ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

 }

 private void jButton12ActionPerformed(java.awt.event.ActionEvent evt) {

 AFDatabase_access d = new AFDatabase_access();

 try {

 String ship_id = shipID.getText();

 String[] data = d.retrieve_database(ship_id);

 verified_database.setText(data[1]);

 } catch (Exception ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

 }

 private void jButton13ActionPerformed(java.awt.event.ActionEvent evt) {

 BigInteger bigInteger = new BigInteger(signed_messageDigest.getText());

 try {

 OutputWrite(getSaveLocation(), bigInteger, "DigitalSignature.txt");

 } catch (FileNotFoundException ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

 private void btnBackActionPerformed(java.awt.event.ActionEvent evt) {

 AAMain_Menu movequickly = new AAMain_Menu();

 movequickly.setVisible(true);

 this.dispose();

 }

 private void btnDecrypt_signatureActionPerformed(java.awt.event.ActionEvent

evt) {

 BigInteger dsrsa = new BigInteger(signed_signatures.getText());

 verified_decrypt.setText(rsa.decrypt(dsrsa).toString());

 }

 public static void main(String args[]) throws

UnsupportedLookAndFeelException {

 try {

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

 } catch (ClassNotFoundException | InstantiationException |

IllegalAccessException | UnsupportedLookAndFeelException e) {

 e.printStackTrace();

 }

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new ACDigital_Signature().setVisible(true);

 }

 });

 bitleg = Integer.parseInt((String) jComboBox1.getSelectedItem());

59

 rsa = new ADRSA_KeyAlgorithm();

 rsa.KeyRSA(bitleg);

 this.setLocation(300, 50);

 this.setResizable(false);

 }

 public void OutputWrite(File saveLocation, BigInteger EncryptCodes, String

name)

 throws FileNotFoundException {

 PrintWriter file

 = new PrintWriter(new FileOutputStream(new File(saveLocation,

name)));

 file.println(EncryptCodes);

 file.close();

 }

 private File getSaveLocation() {

 JFileChooser chooser = new JFileChooser();

 chooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

 int result = chooser.showSaveDialog(this);

 if (result == chooser.APPROVE_OPTION) {

 return chooser.getSelectedFile();

 } else {

 return null;

 } }

private void jButton8ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 BigInteger bigInteger = new BigInteger(signed_signatures.getText());

 try {

 OutputWrite(getSaveLocation(), bigInteger, "DigitalSignature.txt");

 } catch (FileNotFoundException ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

 }

private void searchData_SignedActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 barComplete.setValue(0);

 JFileChooser chooser = new JFileChooser();

 FileNameExtensionFilter filter = new FileNameExtensionFilter("txt",

"doc", "docx", "pdf", "jpg", "png");

 chooser.setFileFilter(filter);

 int returnVal;

 returnVal = chooser.showOpenDialog(null);

 if (returnVal == JFileChooser.APPROVE_OPTION) {

 File file = chooser.getSelectedFile();

 String attach = file.toString();

 signed_searchData.setText(attach);

 }

 }

 private void signed_searchDataActionPerformed(java.awt.event.ActionEvent

evt) {

 // TODO add your handling code here:

 }

60

 private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {

 }

 private void jButton6ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 BigInteger bigInteger = new BigInteger(RSA_secretkey.getText());

 try {

 OutputWrite(getSaveLocation(), bigInteger, "Keyprivate.txt");

 } catch (FileNotFoundException ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

 }

 barComplete.setIndeterminate(false);

 }

private void jComboBox1ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 bitleg = Integer.parseInt((String) jComboBox1.getSelectedItem());

 barComplete.setValue(0);

 }

private void btnCheckIntegrityActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 barComplete.setValue(0);

 String filename = verified_searchData.getText();

 filename = filename.replace('\\', '/');

 if ("".equals(filename)) {

 barComplete.setIndeterminate(true);

 JOptionPane.showMessageDialog(null, "Please Input the Data ",

"Notice", JOptionPane.ERROR_MESSAGE);

 barComplete.setMaximum(200);

 barComplete.setValue(0);

 barComplete.setIndeterminate(false);

 } else {

 AEHashFunction_SHA2 sha1 = new AEHashFunction_SHA2();

 try {

 barComplete.setIndeterminate(true);

 // jTextArea5.setText(sha1.md(filename).abs() + "");

 // BigInteger dsrsa = new BigInteger(jTextArea4.getText());

 // jTextArea6.setText(rsa.decrypt(dsrsa).toString());

 barComplete.setMaximum(200);

 barComplete.setValue(200);

 barComplete.setIndeterminate(false);

 if

(verified_database.getText().equals(verified_decrypt.getText())) {

 JOptionPane.showMessageDialog(null, "Data is Valid

(Guarantee for Integrity)", "Notice", JOptionPane.INFORMATION_MESSAGE);

 } else {

 JOptionPane.showMessageDialog(null, "Data has been

changed!!!", "Notice", JOptionPane.ERROR_MESSAGE);

 }

} catch (Exception ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

private void searchData_verifiedActionPerformed(java.awt.event.ActionEvent evt)

{

61

 // TODO add your handling code here:

 barComplete.setValue(0);

 JFileChooser chooser = new JFileChooser();

 FileNameExtensionFilter filter = new FileNameExtensionFilter("pdf",

"doc", "docx", "jpg", "png", "txt");

 chooser.setFileFilter(filter);

 int returnVal = chooser.showOpenDialog(null);

 if (returnVal == JFileChooser.APPROVE_OPTION) {

 File file = chooser.getSelectedFile();

 String attach = file.toString();

 verified_searchData.setText(attach);

 }

private void verified_searchDataActionPerformed(java.awt.event.ActionEvent evt)

{

 // TODO add your handling code here:

 }

 private void jButton9ActionPerformed(java.awt.event.ActionEvent evt) {

 JOptionPane.showMessageDialog(null, "Successfully Sent to Database",

"Notice", JOptionPane.INFORMATION_MESSAGE);

 AFDatabase_access d = new AFDatabase_access();

 try {

 String ship_id = shipID.getText();

 String public_key = RSA_publickey.getText();

 String message_digest = signed_messageDigest.getText();

 String user = "Officer 1";

 d.insert_database(ship_id, public_key, message_digest, user);

 //String[] data = d.retrieve_database(ship_id);

 } catch (Exception ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

private void jButton12ActionPerformed(java.awt.event.ActionEvent evt) {

 AFDatabase_access d = new AFDatabase_access();

 try {

 String ship_id = shipID.getText();

 String[] data = d.retrieve_database(ship_id);

 verified_database.setText(data[1]);

 } catch (Exception ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

private void jButton13ActionPerformed(java.awt.event.ActionEvent evt) {

 BigInteger bigInteger = new BigInteger(signed_messageDigest.getText());

 try {

 OutputWrite(getSaveLocation(), bigInteger, "DigitalSignature.txt");

 } catch (FileNotFoundException ex) {

Logger.getLogger(ACDigital_Signature.class.getName()).log(Level.SEVERE, null,

ex);

 }

private void btnBackActionPerformed(java.awt.event.ActionEvent evt) {

 AAMain_Menu movequickly = new AAMain_Menu();

 movequickly.setVisible(true);

 this.dispose();

62

 }

 private void btnDecrypt_signatureActionPerformed(java.awt.event.ActionEvent

evt) {

 BigInteger dsrsa = new BigInteger(signed_signatures.getText());

 verified_decrypt.setText(rsa.decrypt(dsrsa).toString());

 }

 public static void main(String args[]) throws

UnsupportedLookAndFeelException {

 try {

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

 } catch (ClassNotFoundException | InstantiationException |

IllegalAccessException | UnsupportedLookAndFeelException e) {

 e.printStackTrace();

 }

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new ACDigital_Signature().setVisible(true);

 }

 });

C. Hash Function SHA-256 and RSA Keys

package Sandi_Thesis;

import java.io.BufferedInputStream;

import java.io.FileInputStream;

import java.math.BigInteger;

import java.security.DigestInputStream;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import static sun.security.krb5.Confounder.bytes;

public class AEHashFunction_SHA2 {

 private static byte[] bytes;

 private static int BUFFER_SIZE = 32 * 1024;

 public static void main(String[] args) throws Exception {

 }

 public BigInteger md(String f) throws Exception {

 BufferedInputStream file = new BufferedInputStream(new FileInputStream(f));

 MessageDigest md = MessageDigest.getInstance("SHA-256");

 // md.update(f.getBytes());

 // return bytesToHex(md.digest());

 DigestInputStream in = new DigestInputStream(file, md);

 int i;

 byte[] buffer = new byte[BUFFER_SIZE];

 do {

 i = in.read(buffer, 0, BUFFER_SIZE);

 } while (i == BUFFER_SIZE);

 md = in.getMessageDigest();

 in.close();

 return new BigInteger(md.digest());

63

}};

-
package Sandi_Thesis;

//package atnf.atoms.mon.util;

import java.math.BigInteger;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

public class ADRSA_KeyAlgorithm {

 private BigInteger n, d, e;

 public BigInteger getN() {

 return n;

 }

 public void setN(BigInteger n) {

 this.n = n;

 }

 public BigInteger getD() {

 return d;

 }

 public void setD(BigInteger d) {

 this.d = d;

 }

 public BigInteger getE() {

 return e;

 }

 public void setE(BigInteger e) {

 this.e = e;

 }

 /**

 * Create an instance that can encrypt using someone elses public key.

 */

 public ADRSA_KeyAlgorithm(BigInteger newn, BigInteger newe) {

 n = newn;

 e = newe; }

 /**

 * Create an instance that can both encrypt and decrypt.

 */

 public ADRSA_KeyAlgorithm() {

 }

 public void KeyRSA(int bits){

 SecureRandom r = new SecureRandom();

 BigInteger p = new BigInteger(bits / 2, 100, r);

 BigInteger q = new BigInteger(bits / 2, 100, r);

 n = p.multiply(q);

 BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q

 .subtract(BigInteger.ONE));

 boolean found = false;

 do {

 e = new BigInteger(bits / 2, 50, r);

 if (m.gcd(e).equals(BigInteger.ONE) && e.compareTo(m) < 0) {

 found = true;

 }

 } while (!found);

 d = e.modInverse(m);

 }

64

 /**

 * Encrypt the given plaintext message.

 */

 public synchronized String encrypt(String message) {

 return (new BigInteger(message.getBytes())).modPow(d, n).toString();

 }

 /**

 * Encrypt the given plaintext message.

 */

 public synchronized BigInteger encrypt(BigInteger message) {

 return message.modPow(d, n);

 }

 /**

 * Decrypt the given ciphertext message.

 */

 public synchronized String decrypt(String message) {

 return new String((new BigInteger(message)).modPow(e,

n).toByteArray());

 }

 /**

 * Decrypt the given ciphertext message.

 */

 public synchronized BigInteger decrypt(BigInteger message) {

 return message.modPow(e, n);

 }

 /**

 * Trivial test program.

 */

 public static void main(String[] args) throws Exception {

 }

 void setN(int bitleg) {

 throw new UnsupportedOperationException("Not supported yet."); //To

change body of generated methods, choose Tools | Templates.

 }

	Chapter 1. Introduction
	1.1 Background
	1.2 Related Work
	1.3 Thesis Objective
	1.4 Scope
	1.5 Thesis Outline

	Chapter 2. Preliminaries
	2.1 Digital Signature
	2.1.1 Principles of Digital Signatures
	2.1.2 Basic Digital Signature Protocol

	2.2 Security Services
	2.3 The RSA Cryptosystem
	2.3.1 Encryption and Decryption
	2.3.2 Key Generation of RSA Algorithm

	2.4 The RSA Signature Scheme
	2.5 Hash Function
	2.5.1 Basic Protocol for Digital Signatures with a Hash Function
	2.5.2 Principal Input-Output of Hash Function

	2.6 The Secure Hash Algorithm SHA-2
	2.6.1 Preprocessing
	2.6.2 Hash Computation

	2.7 Cloud Computing and Storage
	2.7.1 The SPI Framework for Cloud Computing
	2.7.2 The Cloud Service Delivery Model

	2.8 Container Dwelling Time

	Chapter 3. System Requirements and Design
	3.1 Data Access Architecture in the Cloud
	3.2 The Impact Falsification of Dwelling Time
	3.3 The Signed and Verification Process
	3.3.1 Signed Process
	3.3.2 Verification Process
	3.3.3 Concept Digital Signature to Provide Data Integrity

	3.4 Authorized and Unauthorized Person
	3.4.1 The Authorized Person
	3.4.2 Symbol and Notation between Authorized Person
	3.4.3 The Unauthorized Person

	3.5 Overall Flowchart of the Proposed System
	3.6 Android Application for Dwelling Time Prediction

	Chapter 4. System Implementation and Analysis
	4.1 Overall System and Application
	4.2 Container Import Dwelling Time Prediction
	4.3 Digital Signature Implementation
	4.3.1 User Interface of RSA Key
	4.3.2 Signed the Dwelling Time Data
	4.3.3 Verifying the Dwelling Time Data

	4.4 System Database
	4.5 Android Apps Amount of Equipment
	4.6 Experimental Result

	Chapter 5. Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	References

<startpage>13
Chapter 1. Introduction 1
 1.1 Background 1
 1.2 Related Work 2
 1.3 Thesis Objective 3
 1.4 Scope 3
 1.5 Thesis Outline 4
Chapter 2. Preliminaries 4
 2.1 Digital Signature 5
 2.1.1 Principles of Digital Signatures 5
 2.1.2 Basic Digital Signature Protocol 6
 2.2 Security Services 7
 2.3 The RSA Cryptosystem 8
 2.3.1 Encryption and Decryption 9
 2.3.2 Key Generation of RSA Algorithm 9
 2.4 The RSA Signature Scheme 10
 2.5 Hash Function 12
 2.5.1 Basic Protocol for Digital Signatures with a Hash Function 13
 2.5.2 Principal Input-Output of Hash Function 14
 2.6 The Secure Hash Algorithm SHA-2 15
 2.6.1 Preprocessing 17
 2.6.2 Hash Computation 17
 2.7 Cloud Computing and Storage 19
 2.7.1 The SPI Framework for Cloud Computing 19
 2.7.2 The Cloud Service Delivery Model 19
 2.8 Container Dwelling Time 21
Chapter 3. System Requirements and Design 22
 3.1 Data Access Architecture in the Cloud 22
 3.2 The Impact Falsification of Dwelling Time 23
 3.3 The Signed and Verification Process 24
 3.3.1 Signed Process 24
 3.3.2 Verification Process 25
 3.3.3 Concept Digital Signature to Provide Data Integrity 26
 3.4 Authorized and Unauthorized Person 27
 3.4.1 The Authorized Person 27
 3.4.2 Symbol and Notation between Authorized Person 28
 3.4.3 The Unauthorized Person 30
 3.5 Overall Flowchart of the Proposed System 30
 3.6 Android Application for Dwelling Time Prediction 32
Chapter 4. System Implementation and Analysis 33
 4.1 Overall System and Application 33
 4.2 Container Import Dwelling Time Prediction 33
 4.3 Digital Signature Implementation 34
 4.3.1 User Interface of RSA Key 34
 4.3.2 Signed the Dwelling Time Data 37
 4.3.3 Verifying the Dwelling Time Data 38
 4.4 System Database 39
 4.5 Android Apps Amount of Equipment 40
 4.6 Experimental Result 40
Chapter 5. Conclusion and Future Work 49
 5.1 Conclusion 49
 5.2 Future Work 49
References 50
</body>

