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Chapter 1

Introduction and Preliminaries

1.1 Motivation

Sometimes in engineering and economic problems, we do not exactly know

input data. Robust convex optimization problems are to solve convex op-

timization problems with data uncertainty (incomplete data) by using the

worst-case approach. Here, uncertainty means that input parameter of these

problems are not known exactly at the time when solution has to be deter-

mined [8]. Generally, there are two main approaches to deal with constrained

optimization with uncertainty: robust programming approach and stochastic

programming approach; in robust programming one seeks for a solution which

simultaneously satisfies all possible realizations of the constraints, and the

stochastic programming approach works with the probabilistic distribution of

uncertainty and the constraints are required to be satisfied up to prescribed

level of probability [32]. So, sometimes it is convenient to use the robust

approach for dealing with optimization problems with data uncertainty.

Many researchers [5, 43, 44, 54, 67] have investigated duality theory for

linear or convex optimization problems under uncertainty with the worst-case

approach (the robust approach).

The study of convex programs that are affected by data uncertainty [5, 7,

8, 9, 10, 44, 51] is becoming increasingly important in optimization. Recently,
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the duality theory for convex programs under uncertainty via the robust

approach (the worst-case approach) have been studied in [5, 44, 45, 51]. It

was shown that the value of the robust counterpart of primal problem is

equal to the value of the optimistic counterpart of the dual primal (“primal

worst equals dual best”) [5, 44, 45].

In [4, 14, 18, 27, 28, 52, 55], many authors have treated fractional opti-

mization problems in the absence of data uncertainty. Very recently, Jeyaku-

mar and Li [42] have established a duality theory for fractional optimization

problem in the face of data uncertainty via robust optimization.

The solution of the dual problem provides a lower bound to the solution of

the primal problem. However, usually, the optimal value of the primal prob-

lem is different from the optimal value of the dual problem. The difference

of the optimal values of the primal and dual problem is called the duality

gap. There are a lot of dual problems, such as Lagrangian dual problem,

Wolfe dual problem, Fenchel dual problem, the surrogate dual problem, etc..

Using of Lagrangian relaxation is effective to solve large-scale linear problem,

as well as convex and nonconvex problems. On the other hand, surrogate

dual problems are less known than Lagrangian dual problems. Neverthe-

less, surrogate dual problems have virtues, that is, surrogate duality gaps are

equal to or less than Lagrangian duality gaps [26]. Surrogate dual problem

is the primal problem with many constraints that is converted into a single

constraint problem. Recently, many authors [25, 26, 57, 60, 61, 66, 67] have

investigated surrogate duality for quasiconvex optimization problem. Surro-

gate duality is used not only in quasiconvex optimization problem but also

in integer programming and the knapsack problem [19, 25, 26, 57, 60, 61]. In
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particular, Suzuki, Kuroiwa and Lee [67] proved a surrogate duality theorem

for an optimization problem involving a quasiconvex objective function and

finitely many convex constraint functions with data uncertainty and a sur-

rogate duality theorem for a semidefinite optimization problem involving a

quasiconvex objective function and a constraint set defined by a linear matrix

inequality with data uncertainty.

On the other hand, duality theory for semi-infinite optimization problem

have been extensively studied [20, 22, 23]. In particular, Goberna, Jeyaku-

mar, G. Li and López [22] gave robust duality by establishing strong duality

between the robust counterpart of an uncertain semi-infinite linear program

and the optimistic counterpart of its uncertain Lagrangian dual.

The well-known Farkas’ lemma provides a dual characterization of the

containment of a polyhedral convex set in a closed half space. The general-

izations of dual characterizations of set containments have been studied in

[21, 24, 34, 37, 38, 40]. Such dual characterizations of containments have

important and strong applications in optimization problems, for example,

strong duality and optimality criteria.

Recently, many authors [1, 2, 30, 36, 47] have investigated SOS-convex

polynomials and their applications. The class of SOS-convex polynomials in-

cludes separable convex polynomials and convex quadratic functions as their

special cases. The important feature of the SOS-convexity, which distin-

guishes from the convexity of polynomials, is that one can numerically check

whether a polynomial is SOS-convex or not by solving a related semidefinite

optimization (feasibility) problem which can be solved efficiently via interior
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point methods [50]. In particular, the gap between SOS-convex polynomi-

als and convex polynomials is completely characterized in [2]. Moreover,

Lasserre [49] proved that under the Slater condition, SOS-convex optimiza-

tion problems such as minimization of a SOS-convex polynomial subject to

SOS-convex inequality constraints enjoys an exact SDP relaxation in the

sense that the optimal value of the given SOS-convex optimization prob-

lem and its sum of squares relaxation problem are equal and the relaxation

problem attains its optimal solution.

In particular, the exact semidefinite optimization problem relaxation or

strong duality involving dual semidefinite programs is a highly desirable prop-

erty because semidefinite optimization problem can be efficiently solved (e.g.

using interior point methods) [3, 13, 30, 36]. Recently, Jeyakumar and Li [41]

established exact SDP relaxations for classes of nonlinear semidefinite opti-

mization problems with SOS-convex polynomials. Very recently, Jeyakuma

et al. [46] established sums-of-squares polynomial representations charac-

terizing robust solutions and exact SDP-relaxations of robust SOS-convex

polynomial optimization problems under various commonly used uncertainty

sets.

Optimization problems in the face of data uncertainty have been treated

by the worst case approach or the stochastic approach. The worst case

approach for optimization problems, which has emerged as a powerful deter-

ministic approach for studying optimization problems with data uncertainty,

associates an uncertain optimization problem with its robust counterpart.
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Now, to explain the worst case approach for optimization problems, we con-

sider the case of linear optimization problem:

(LP) min cTx

s.t. aTi x <= bi, i = 1, . . . ,m,

where ai, c, x ∈ Rn and bi ∈ R, i = 1, . . . ,m.

The linear optimization problem (LP) in the face of data uncertainty in

the objective and constraint function can be captured by the problem

(ULP) min cTx

s.t. aTi x <= bi, i = 1, . . . ,m,

where (ai, bi) is an uncertain parameter which belongs to the set Ui ⊂ Rn×R,

i = 1, . . . ,m.

For the worst case of (ULP), the robust counterpart of (ULP) is given as

follows [7];

(RULP) min cTx

s.t. aTi x <= bi, ∀(ai, bi) ∈ Ui, i = 1, . . . ,m,

or the same optimization problem

(RULP) min
{
t | cTx <= t, aTi x <= bi, ∀(ai, bi) ∈ Ui, i = 1, . . . ,m

}
.

In stochastic optimization, the uncertain parameters are assumed to be

random variables. The stochastic programming approach works with the

probabilistic distribution of uncertainty and the constraints are required to
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be satisfied up to the prescribed level of probability [32]. Now, we consider

the stochastic model of (LP):

(SLP) min cTx

s.t. Prob(aTi x <= bi) >= η, i = 1, . . . ,m,

where (ai, bi), i = 1, . . . .m, are random variables on some probability space

and η ∈ [0.1] .

The robust optimization is associated with the choice of the uncertain set

U . There are various uncertain sets such as box (or interval), scenario data,

ellipsoidal, polyhedral uncertain set, etc..

In this thesis, we consider optimization problems with data uncertainty

which belongs to the interval uncertain sets.

1.2 Outline of the thesis

This thesis consists of three main parts. In the first part presented by

Chapter 2, approximate solutions for a robust convex optimization problem

in the face of data uncertainty are considered. Using the robust optimization

approach (the worst-case approach), we establish an optimality theorem and

duality theorems for approximate solutions for the robust convex optimiza-

tion problem. Also, we extend the approximate optimality theorems and the

approximate duality theorems for convex optimization problems to fractional

optimization problems with data uncertainty. Moreover, we give an example

illustrating the duality theorems.
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In Chapter 3, a semi-infinite optimization problem involving a quasicon-

vex objective function and infinitely many convex constraint functions with

data uncertainty are considered. A surrogate duality theorem for the semi-

infinite optimization problem is given under a closed and convex cone con-

straint qualification. Moreover, we extend the surrogate duality theorem for

the semi-infinite optimization problem to fractional semi-infinite optimiza-

tion problem with data uncertainty. Also, we induce characterizations of the

robust moment cone of Goberna et al. [22] by our results. Using a closed and

convex cone constraint qualification, we present surrogate duality theorems

for robust linear semi-infinite optimization problems. Moreover, we give an

example illustrating the duality theorems.

In the last part given by Chapter 4, we consider the tractable contain-

ments of a convex semi-algebraic set, defined by a SOS-concave matrix poly-

nomial constraint, in a non-convex semi-algebraic set, defined by difference

between a SOS-convex and a support function. Moreover, using our set con-

tainment characterizations, we derive a zero duality gap result for robust

SOS-convex polynomial optimization problem (RP), where the dual problem

(D)sos can be represented by a sum of squares relaxation problem and other

dual problem (SDP) and its dual problem (SDD) can be represented by a

semidefinite program and which can be easily solved by interior-point meth-

ods. Also, we present the relations of the optimal solution of (RP) and the

optimal solution of (SDD), and the optimal solution of (D)sos and (SDP).

Finally, we illustrate our results through a simple numerical example.
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1.3 Preliminaries

Let us first recall some notations and preliminary results which will be

used throughout this thesis. Rn denotes the n-dimensional Euclidean space.

The nonnegative orthant of Rn is defined by Rn
+ := {(x1, · · · , xn) ∈ Rn : xi >=

0}. The inner product in Rn is defined by ⟨x, y⟩ := xTy for all x, y ∈ Rn. We

say that a set A in Rn is convex whenever µa1+(1−µ)a2 ∈ A for all µ ∈ [0, 1],

a1, a2 ∈ A. Let f be a function from Rn to R, where R = [−∞,+∞].

Here, f is said to be proper if for all x ∈ Rn, f(x) > −∞ and there exists

x0 ∈ Rn such that f(x0) ∈ R. We denote the domain of f by domf , that

is, domf := {x ∈ Rn | f(x) < +∞}. The epigraph of f , epif , is defined as

epif := {(x, r) ∈ Rn × R | f(x) <= r}, and f is said to be convex if for all

µ ∈ [0, 1],

f((1− µ)x+ µy) <= (1− µ)f(x) + µf(y)

for all x, y ∈ Rn, equivalently epif is convex. The function f is said to be

concave whenever −f is convex. Recall that f is said to be quasiconvex if for

all x1, x2 ∈ Rn and λ ∈ (0, 1), f((1− λ)x1 + λx2) <= max{f(x1), f(x2)}. We

define level sets of f with respect to a binary relation ⋄ on R as L(f, ⋄, β) :=

{x ∈ Rn | f(x) ⋄ β} for any β ∈ R. Then, f is quasiconvex if and only if

for any β ∈ R, L(f,<=, β) is a convex set, or equivalently, for any β ∈ R,

L(f,<, β) is a convex set. Any convex function is quasiconvex, but the

converse is not true. Let g : Rn → R ∪ {+∞} be a convex function. The

(convex) subdifferential of f at x ∈ Rn is defined by

∂f(x) =

{
{x∗ ∈ Rn | ⟨x∗, y − x⟩ ≤ f(y)− f(x), ∀y ∈ Rn}, if x ∈ domf,
∅, otherwise.
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More generally, for any ϵ >= 0, the ϵ-subdifferential of f at x ∈ Rn is defined

by

∂ϵf(x) =

{
{x∗ ∈ Rn | ⟨x∗, y − x⟩ ≤ f(y)− f(x) + ϵ, ∀y ∈ Rn}, if x ∈ domf,
∅, otherwise.

We say f is a lower semicontinuous function if lim infy→x f(y) >= f(x) for all

x ∈ Rn. As usual, for any proper convex function g on Rn, its conjugate func-

tion g∗ : Rn → R∪{+∞} is defined by g∗(x∗) = sup {⟨x∗, x⟩ − g(x) | x ∈ Rn}

for any x∗ ∈ Rn. For a given set A ⊂ Rn, we denote the closure, the convex

hull, and the conical hull generated by A, by clA, coA, and coneA, respec-

tively. The indicator function δA is defined by

δA(x) :=

{
0, x ∈ A,
+∞, otherwise.

We denote the relative interior of a convex set S ⊂ Rn by riS. Let C be a

closed convex subset of Rn and let x ∈ C. Then the normal cone NC(x) to

C at x is defined by

NC(x) = {v ∈ Rn | ⟨v, y − x⟩ <= 0, for all y ∈ C},

and let ϵ >= 0, then the ϵ-normal set N ϵ
C(x) to C at x is defined by

N ϵ
C(x) = {v ∈ Rn | ⟨v, y − x⟩ <= ϵ, for all y ∈ C}.

When C is a closed convex cone in Rn, we denote NC(0) by C∗ and call it

the negative dual cone of C.
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Chapter 2

Approximate Solutions

for Robust Optimization Problems

2.1 Introduction

In this chapter, we consider approximate solutions for a robust convex

optimization problem in the face of data uncertainty. Using the robust opti-

mization approach (the worst-case approach), we establish optimality theo-

rems and duality theorems for approximate solutions for the robust convex

optimization problems. Moreover, we give an example illustrating the duality

theorems.

A standard form of convex optimization problem [13, 64] with a geometric

constraint set is given by

(CP) min f(x)

s.t. gi(x) <= 0, i = 1, · · · ,m,

x ∈ C,

where f, gi : Rn → R, i = 1, · · · ,m, are convex functions and C is a closed

convex cone of Rn.
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The convex optimization problem (CP) in the face of data uncertainty in

the constraints can be captured by the problem

(UCP) min f(x)

s.t. gi(x, vi) <= 0, i = 1, · · · ,m,

x ∈ C,

where gi : Rn × Rq → R, gi(·, vi) is convex and vi ∈ Rq is an uncertain

parameter which belongs to the set Vi ⊂ Rq, i = 1, · · · ,m.

We study an approximate optimality theorem and approximate duality

theorem for the uncertain convex optimization problem (UCP) by examining

its robust counterpart [8]

(RCP) min f(x)

s.t. gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, · · · ,m,

x ∈ C.

where gi : Rn × Rq → R, gi(·, vi) is convex and vi ∈ Rq is the uncertain

parameter which belongs to the set Vi ⊂ Rq, i = 1, · · · ,m. Clearly, A :=

{x ∈ C | gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m} is the feasible set of the robust

convex optimization problem (RCP).

Let ϵ >= 0. Then x̄ is called an approximate solution of (RCP) if for any

x ∈ A,

f(x) >= f(x̄)− ϵ.

Recently, many authors have studied robust convex optimization prob-

lems [5, 7, 8, 9, 11, 12, 33, 44]. In particular, Jeyakumar and Li [44] has

11



shown that when C = Rn and ϵ = 0, the Lagrangian strong duality holds be-

tween s robust counterpart and an optimistic counterpart for robust convex

optimization problem in the face of data uncertainty via robust optimization

under a new robust characteristic cone constraint qualification (RCCCQ)

that ∪
vi∈Vi,λi>=0

epi(
m∑
i=1

λigi(·, vi))∗

is convex and closed. Moreover, they gave numerical examples which present

their duality theory insightfully.

In this chapter, we consider approximate solutions for a robust convex

optimization problem with geometric constraint. We establish approximate

optimality theorem for (RCP) under the following constraint qualification:

∪
vi∈Vi,λi>=0

epi(
m∑
i=1

λigi(·, vi))∗ + C∗ × R+

is convex and closed. Moreover, we formulate a Wolfe type dual problem for

the primal one and prove approximate weak duality and approximate strong

duality between the primal problem and its Wolfe type dual problem, which

hold under a weakened constraint qualification. We also give an example

illustrating the duality theorems.

Proposition 2.1.1. [31] Let f : Rn → R be a convex function and let δC

be the indicator function with respect to a closed convex subset C of Rn. Let

12



ϵ >= 0. Then

∂ϵ(f + δC)(x̄) =
∪

ϵ0>=0, ϵ1>=0
ϵ0+ϵ1=ϵ

{∂ϵ0f(x̄) + ∂ϵ1δC(x̄)} .

The following proposition, which describes the relationship between the

epigraph of a conjugate function and the ϵ-subdifferential and plays a key

role in deriving the main results, was recently given in [33].

Proposition 2.1.2. [33] If f : Rn → R∪ {+∞} is a proper lower semicon-

tinuous convex function and if a ∈ domf , then

epif ∗ =
∪
ϵ>=0

{(v, ⟨v, a⟩+ ϵ− f(a)) | v ∈ ∂ϵf(a)}.

Proposition 2.1.3. [35] Let f, g : Rn → R ∪ {+∞} be proper lower semi-

continuous convex functions. If dom f ∩ dom g ̸= ∅, then

epi(f + g)∗ = cl(epif ∗ + epig∗).

Moreover, if one of the functions f and g is continuous, then

epi(f + g)∗ = epif ∗ + epig∗.

Proposition 2.1.4. [39, 53] Let gi : Rn → R ∪ {+∞}, i ∈ I (where I is

an arbitrary index set), be a proper lower semicontinuous convex function.

Suppose that there exists x0 ∈ Rn such that supi∈I gi(x0) < +∞. Then

epi(sup
i∈I

gi)
∗ = cl (co

∪
i∈I

epi g∗i ).
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Slightly modifying the proof of Proposition 3.2 in [44], we can obtain the

following Proposition.

Proposition 2.1.5. Let gi : Rn × Rq → R, i = 1, . . . ,m, be continuous

functions such that for each vi ∈ Rq, gi(·, vi) is a convex function and let C

be a closed convex cone of Rn. Suppose that each Vi ⊂ Rq, i = 1, . . . ,m, is

compact and convex, and there exists x0 ∈ C such that

gi(x0, vi) < 0, ∀vi ∈ Vi, i = 1, . . . ,m. (2.1)

Then
∪

vi∈Vi, λi>=0epi(
∑m

i=1λigi(·, vi))∗ + C∗ × R+ is closed.

Proof. Let {(zk, sk)} be a sequence in the set
∪

vi∈Vi, λi>=0epi(
∑m

i=1λigi(·, vi))∗

+C∗ × R+ such that (zk, sk) converges to (z, s). Then there exist vki ∈

Vi, λk
i

>= 0, i = 1, . . . ,m, ck ∈ C∗ and rk ∈ R+ such that (zk, sk) ∈

epi(
∑m

i=1λ
k
i gi(·, vki ))∗+(ck, rk), that is, (zk−ck, sk−rk) ∈ epi(

∑m
i=1λ

k
i gi(·, vki ))∗.

Since Vi is compact, we may assume that vki → vi ∈ Vi, i = 1, . . . ,m. Let

λk :=
∑m

i=1 λ
k
i . We first show that {λk} is bounded. Otherwise, we may

assume that λk → +∞. Since 0 <=
λk
i

λk
<= 1, i = 1, . . . ,m, we may assume that

λk
i

λk → δi ∈ R+, i = 1, . . . ,m. Since λk :=
∑m

i=1 λ
k
i ,

∑m
i=1 δi = 1. For each

x ∈ C,

(zk)Tx−
m∑
i=1

λk
i gi(x, v

k
i ) <= (zk − ck)Tx−

m∑
i=1

λk
i gi(x, v

k
i )

<= (
m∑
i=1

λk
i gi(·, vki ))∗(zk − ck)

<= sk − rk <= sk,

14



and so

(zk)
T
x

λk
−

m∑
i=1

λk
i

λk
gi(x, v

k
i ) <=

sk

λk
.

Passing to the limit and noting that gi is continuous, we see that, for each

x ∈ C,
∑m

i=1δigi(x, vi) >= 0. This contradicts (2.1) as
∑m

i=1 δi = 1.

Now, as {λk} is bounded, we may assume that λk
i → λi. As for each

x ∈ C,

(zk)Tx−
m∑
i=1

λk
i gi(x, v

k
i ) <= sk,

it follows by passing to the limit and noting that each gi is continuous that

for each x ∈ C,

zTx−
m∑
i=1

λigi(x, vi) <= s.

Thus, for any x ∈ Rn,

zTx−
m∑
i=1

λigi(x, vi)− δC(x) <= s,

and hence (
∑m

i=1λigi(·, vi) + δC)
∗(z) <= s. So, by Proposition 2.3, (z, s) ∈

epi(
∑m

i=1λigi(·, vi) +δC)
∗ = epi(

∑m
i=1λigi(·, vi))∗ + C∗ × R+.

Using Proposition 2.3 in [44], we can obtain the following proposition.

Proposition 2.1.6. Let gi : Rn × Rq → R, i = 1, . . . ,m, be continuous

functions and let C be a closed convex cone of Rn. Suppose that each Vi ⊆ Rq,
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i = 1, . . . ,m, is convex, for all vi ∈ Rq, gi(·, vi) is a convex function, and for

each x ∈ Rn, gi(x, ·) is concave on Vi. Then

∪
vi∈Vi, λi>=0

epi(
m∑
i=1

λigi(·, vi))∗ + C∗ × R+,

is convex.

Proof. By Proposition 2.3 in [44],
∪

vi∈Vi, λi>=0 epi(
∑m

i=1λigi(·, vi))∗ is convex.

Since C∗×R+ is convex,
∪

vi∈Vi, λi>=0epi(
∑m

i=1λigi(·, vi))∗+C∗×R+ is convex.

Slightly modifying Example 2.1 in [44], we can obtain the following ex-

ample showing that the cone
∪

vi∈Vi, λi>=0epi(
∑m

i=1λigi(·, vi))∗ +C∗ ×R+ may

not be convex:

Example 2.1.1. Let v1 ∈ V1 := [0, 1]. Let g1 : R2 × R → R be defined by

g1(x, v1) = v21|x1|+max{x2, 0} − 2v1.

Let C = −R2
+. Then for each λ1 >= 0 and v1 ∈ V1,

(λ1g1(·, v1))∗(a1, a2)

= sup
(x1,x2)∈R2

{a1x1 + a2x2 − λ1(v
2
1|x1|+max{x2, 0} − 2v1)}

=

{
2λ1v1, if − λ1v

2
1
<= a1 <= λ1v

2
1 and 0 <= a2 <= λ1,

+∞, else.
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So,
∪

v1∈V1
λ1>=0

epi(λg1(·, vi))∗ =
∪

v1∈[0,1]
λ1>=0

[−λ1v
2
1, λ1v

2
1]× [0, λ1]× [2λ1v1,+∞)

=
∪

s>=r>=0

[−r, r]× [0, s]× [2
√
rs,+∞).

Hence, we have

∪
v1∈V1
λ1>=0

epi(λ1g1(·, v1))∗ + C∗ × R+ =
∪

s>=r>=0

[−r,+∞)× [0,+∞)× [2
√
rs,+∞).

Let a = (0, 1, 0) and b = (1, 1, 2). Then, a, b ∈
∪

v1∈[0,1]
λ1>=0

epi(λ1g1(·, v1))∗+C∗×

R+. On the other hand, c := a+b
2

= (0.5, 1, 1) /∈
∪

v1∈[0,1]
λ1>=0

epi(λ1g1(·, v1))∗ +

C∗ × R+. Otherwise,

(0.5, 1, 1) ∈
∪

s>=r>=0

[−r,+∞)× [0,+∞)× [2
√
rs,+∞),

and so, there exist s >= r >= 0 such that r >= 0.5, s >= 1 and 2
√
rs <= 1. Note

that for any r >= 0.5 and s >= 1, we have 2
√
rs >= 2

√
0.5 > 1. This is a

contradiction, and hence, the cone,
∪

v1∈V1
λ1>=0

epi(λ1g1(·, v1))∗ +C∗ ×R+, is not

convex.

Now we give an example illustrating Propositions 2.1.5 and 2.1.6.

Example 2.1.2. Let v1 ∈ V1 := [1, 2] and let g1 : R× R → R be defined by

g1(x, v1) = x2 − 2v1x.

17



Let C = R+. Then we can easily find points which satisfy the Slater condi-

tion. Moreover, for each λ1 >= 0 and v1 ∈ V1,

g1(·, v1)∗(a) =
(a+ 2v1)

2

4
,

and

∪
v1∈V1
λ1>=0

epi(λ1g1(·, vi))∗ =
∪

v1∈[1,2]
λ1>0

epi(λ1g1(·, vi))∗ ∪ ({0} × [0,+∞))

=
∪

v1∈[1,2]
λ1>0

λ1{(a, r) | r >=
(a+ 2v1)

2

4
} ∪ ({0} × [0,+∞))

= {(a, α) | max{0, 2a} <= α}.

So, the cone,
∪

v1∈[1,2]
λ1>=0

epi(λ1g1(·, vi))∗+C∗×R+ = {(a, α) | max{0, 2a} <= α},

is closed and convex.

2.2 Approximate Optimality Theorem

Slightly extending Theorem 2.4 in [44] to a robust convex optimization

problem with a geometric constraint, we can obtain the following lemma

which is the robust version of Farkas’ lemma for convex functions in [39]:

Lemma 2.2.1. Let f : Rn → R be a convex function and let gi : Rn ×Rq →

R, i = 1, . . . ,m, be continuous functions such that for each vi ∈ Rq, gi(·, vi)

is a convex function. Let C be a closed convex cone of Rn. Let Vi ⊆ Rq,
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i = 1, . . . ,m, be compact and let A := {x ∈ C | gi(x, vi) <= 0, ∀vi ∈ Vi, i =

1, . . . ,m} ̸= ∅. Then the following statements are equivalent:

(i) {x ∈ C | gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m} ⊆ {x ∈ Rn | f(x) >= 0};

(ii) (0, 0) ∈ epif ∗ + cl co (
∪

vi∈Vi, λi>=0

epi(
m∑
i=1

λigi(·, vi))∗ + C∗ × R+).

Proof. Let D := {x ∈ Rn | gi(x, vi) <= 0, ∀vi ∈ Vi, i = 1, . . . ,m}. Then A =

C ∩ D. We will prove that epiδ∗A = cl co (
∪

vi∈Vi, λi>=0epi(
∑m

i=1λigi(·, vi))∗ +

C∗ × R+). For any x ∈ Rn,

δA(x) = δC(x) + δD(x) and δD(x) = sup
vi∈Vi
λi>=0

m∑
i=1

λigi(x, vi). (2.2)

Thus we have epiδ∗A = epi(δD+δC)
∗. So, by Proposition 2.1.3, epi(δD+δC)

∗ =

cl(epiδ∗D + epiδ∗C). So, from (2.2),

cl(epiδ∗D + epiδ∗C) = cl(epi( sup
vi∈Vi
λi>=0

m∑
i=1

λigi(·, vi))∗ + epiδ∗C).

Hence, by Proposition 2.1.4,

cl(epi( sup
vi∈Vi
λi>=0

m∑
i=1

λigi(·, vi))∗ + epiδ∗C) = cl(cl co
∪

vi∈Vi
λi>=0

epi(
m∑
i=1

λigi(·, vi))∗ + epiδ∗C)

= cl co(
∪

vi∈Vi
λi>=0

epi(
m∑
i=1

λigi(·, vi))∗ + C∗ × R+).
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Thus, we see that

epiδ∗A = cl co(
∪

vi∈Vi
λi>=0

epi(
m∑
i=1

λigi(·, vi))∗ + C∗ × R+). (2.3)

Now, we assume that (ii) holds. So, from (2.3), (ii) is equivalent to (0, 0) ∈

epif ∗+epiδ∗A. From Proposition 2.1.3, equivalently, (0, 0) ∈ epi(f +δA)
∗. So,

by the definition of epigraph, we see that (f + δA)
∗(0) <= 0. Also, from the

definition of conjugate function, we see that (f + δA)(x) >= 0, for any x ∈ Rn.

It means that f(x) >= 0, for any x ∈ A. Thus, we have (ii) ⇔ (i).

Using Lemma 2.2.1, we can obtain the following theorem:

Theorem 2.2.1. Let x̄ ∈ A and let gi : Rn×Rq → R, i = 1, . . . ,m, be contin-

uous functions such that for each vi ∈ Rq, gi(·, vi) is convex on Rn. Let Vi ⊆

Rq, i = 1, . . . ,m, be compact. Suppose that
∪

vi∈Vi, λi>=0 epi(
∑m

i=1 λigi(·, vi))∗+

C∗ ×R+ is closed and convex. Then the following statements are equivalent:

(i) x̄ is an approximate solution of (RCP);

(ii) if there exist λ̄i >= 0 and v̄i ∈ Vi, i = 1, . . . ,m, such that for any x ∈ C,

f(x) +
m∑
i=1

λ̄igi(x, v̄i) >= f(x̄)− ϵ.
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Proof. [(i) ⇒ (ii)] Let x̄ be an approximate solution of (RCP). Then f(x) >=

f(x̄)− ϵ, for any x ∈ A. So, A ⊆ {x ∈ C | f(x)− f(x̄) + ϵ >= 0}. By Lemma

2.2.1 and the assumption,

(0, ϵ− f(x̄)) ∈ epif ∗ +
∪

vi∈Vi, λi>=0

epi(
m∑
i=1

λigi(·, vi))∗ + C∗ × R+.

So, there exist λ̄i >= 0 and v̄i ∈ Vi, i = 1, . . . ,m, such that

(0, ϵ− f(x̄)) ∈ epif ∗ + epi(
m∑
i=1

λ̄igi(·, v̄i))∗ + C∗ × R+.

Then there exist u∗ ∈ Rn, α >= 0, w∗
i ∈ Rn, βi >= 0, i = 1, . . . ,m, c∗ ∈ C∗ and

r ∈ R+ such that

(0, ϵ− f(x̄)) ∈ (u∗, f ∗(u∗) + α) +
m∑
i=1

λ̄i(w
∗
i , g

∗
i (w

∗
i , v̄i) + βi) + (c∗, r).

So, 0 = u∗ +
∑m

i=1λ̄iw
∗
i + c∗ and ϵ− f(x̄) = f ∗(u∗) +α+

∑m
i=1λ̄i(g

∗
i (w

∗
i , v̄i) +

βi) + r. Hence, for any x ∈ Rn,

−⟨
m∑
i=1

λ̄iw
∗
i , x⟩ − ⟨c∗, x⟩ − f(x)

= ⟨u∗, x⟩ − f(x)

<= f ∗(u∗)

= ϵ− f(x̄)− α−
m∑
i=1

λ̄i(g
∗
i (w

∗
i , v̄i) + βi)− r.
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Thus, for any x ∈ C,

f(x̄)− ϵ <= ⟨
m∑
i=1

λ̄iw
∗
i , x⟩+ ⟨c∗, x⟩+ f(x)− α−

m∑
i=1

λ̄ig
∗
i (w

∗
i , v̄i)−

m∑
i=1

λ̄iβi − r

<= ⟨
m∑
i=1

λ̄iw
∗
i , x⟩+ f(x)−

m∑
i=1

λ̄ig
∗
i (w

∗
i , v̄i)

<=

m∑
i=1

(λ̄igi(x, v̄i)) + f(x).

[(ii) ⇒ (i)] Suppose that there exist λ̄i >= 0, v̄i ∈ Vi, i = 1, . . . ,m, such

that for any x ∈ C, f(x)+
∑m

i=1 λ̄igi(x, v̄i) >= f(x̄)− ϵ. Then we have for any

x ∈ A,

f(x) >= f(x) +
m∑
i=1

λ̄igi(x, v̄i) >= f(x̄)− ϵ.

Thus f(x) >= f(x̄)− ϵ, for any x ∈ A. Hence x̄ is an approximate solution of

(RCP).

Using Lemma 2.2.1, we can obtain the following approximate optimality

theorem for approximate solution of (RCP).

Theorem 2.2.2. (Approximate Optimality Theorem) Let x̄ ∈ A and

let gi : Rn×Rq → R, i = 1, . . . ,m, be continuous functions such that for each

vi ∈ Rq, gi(·, vi) is convex on Rn. Let Vi ⊆ Rq, i = 1, . . . ,m, be compact.

Suppose that
∪

vi∈Vi, λi>=0 epi(
∑m

i=1 λigi(·, vi))∗ +C∗×R+ is closed and convex.

Then the following statements are equivalent:
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(i) x̄ is an approximate solution of (RCP);

(ii) (0, ϵ− f(x̄)) ∈ epif ∗ +
∪

vi∈Vi, λi>=0

epi(
m∑
i=1

λigi(·, vi))∗ + C∗ × R+;

(iii) there exist v̄i ∈ Vi, λ̄i >= 0, i = 1, . . . ,m, and ϵi >= 0, i = 0, 1, . . . ,m+1

such that

0 ∈ ∂ϵ0f(x̄) +
m∑
i=1

∂ϵi(λ̄igi(·, v̄i))(x̄) +N
ϵm+1

C (x̄)

and
m+1∑
i=0

ϵi − ϵ =
m∑
i=1

λ̄igi(x̄, v̄i).

Proof. Let x̄ be an approximate solution of (RCP). Then f(x) >= f(x̄) − ϵ,

for any x ∈ A. Let h(x) = f(x)− f(x̄) + ϵ. Then

h∗(v) = sup{⟨v, x⟩ − h(x) | x ∈ Rn}

= sup{⟨v, x⟩ − f(x) + f(x̄)− ϵ | x ∈ Rn}

= sup{⟨v, x⟩ − f(x) | x ∈ Rn}+ f(x̄)− ϵ

= f ∗(v) + f(x̄)− ϵ.

So, by Lemma 2.2.1, (i) ⇔ (ii).

Now we will show that (ii) ⇔ (iii). Let A := {x ∈ C | gi(x, vi) <= 0, ∀vi ∈

Vi, i = 1, . . . ,m}. Then A ̸= ∅. Now we suppose that (ii) holds. Since

C∗ × R+ = epiδ∗C , we have

(0, ϵ− f(x̄)) ∈ epif ∗ +
∪

vi∈Vi, λi>=0

epi(
m∑
i=1

λigi(·, vi))∗ + epiδ∗C .
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It means that there exist v̄i ∈ Vi and λ̄i >= 0, i = 1, . . . ,m, such that

(0, ϵ− f(x̄)) ∈ epif ∗ + epi(
m∑
i=1

λ̄igi(·, v̄i))∗ + epiδ∗C .

So, by Proposition 2.1.1 and Proposition 2.1.2, equivalently, there exist v̄i ∈

Vi, λ̄i >= 0, i = 1, . . . ,m, and ϵi >= 0, i = 0, 1, . . . ,m+ 1, such that
∑m

i=1 ϵi =

ϵ∗,

(0, ϵ− f(x̄)) ∈
∪
ϵ0>=0

{(ξ0, ⟨ξ0, x̄⟩+ ϵ0 − f(x̄)) | ξ0 ∈ ∂ϵ0f(x̄)}

+
∪
ϵ∗>=0

{(ξ∗, ⟨ξ∗, x̄⟩+ ϵ∗ −
m∑
i=1

λ̄igi(x̄, v̄i)) | ξ∗ ∈ ∂ϵ∗
m∑
i=1

λ̄igi(·, v̄i)(x̄)}

+
∪

ϵm+1>=0

{(ξm+1, ⟨ξm+1, x̄⟩+ ϵm+1 − δC(x̄)) | ξm+1 ∈ ∂ϵm+1δC(x̄)}.

It means that there exist v̄i ∈ Vi, λ̄i >= 0, ξ̄0 ∈ ∂ϵ0f(x̄), ξ̄
∗ ∈ ∂ϵ∗

∑m
i=1 λ̄igi(·, v̄i)(x̄),

ξ̄m+1 ∈ ∂ϵm+1δC(x̄), i = 1, . . . ,m, and ϵi >= 0, i = 0, 1, . . . ,m + 1, such that∑m
i=1 ϵi = ϵ∗,

(0, ϵ− f(x̄)) = (ξ̄0, ⟨ξ̄0, x̄⟩+ ϵ0 − f(x̄)) + (ξ̄∗, ⟨ξ̄∗, x̄⟩+ ϵ∗ −
m∑
i=1

λ̄igi(x̄, v̄i))

+(ξ̄m+1, ⟨ξ̄m+1, x̄⟩+ ϵm+1 − δC(x̄)).

Thus, equivalently, there exist v̄i ∈ Vi, λ̄i >= 0, ξ̄0 ∈ ∂ϵ0f(x̄), ξ̄i ∈ ∂ϵiλ̄igi(x̄, v̄i),

ξ̄m+1 ∈ N
ϵm+1

C (x̄), i = 1, . . . ,m, and ϵi >= 0, i = 0, 1, . . . ,m + 1, such that

0 =
∑m+1

i=0 ξ̄i and
∑m+1

i=0 ϵi − ϵ =
∑m

i=1 λ̄igi(x̄, v̄i).
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2.3 Approximate Duality Theorem

As usual convex programs, the dual problem of (RCP) is sometimes more

treatable than (RCP). So, we formulate a dual problem (RLD) for (RCP) as

follows:

(RLD) Maximize(x,v,λ) f(x) +
m∑
i=1

λigi(x, vi)

subject to 0 ∈ ∂ϵ0f(x) +
m∑
i=1

∂ϵiλigi(x, vi) +N
ϵm+1

C (x),

λi >= 0, vi ∈ Vi, i = 1, . . . ,m,

ϵi >= 0, i = 0, 1, . . . ,m+ 1,
m+1∑
i=0

ϵi <= ϵ.

If ϵ = 0 and gi(x, vi) = gi(x), i = 1, . . . ,m, then (RCP) becomes (CP), and

(RLD) collapses to the Wolfe dual problem (D) for (CP) as follows:

(D) Maximize(x,λ) f(x) +
m∑
i=1

λigi(x)

subject to ∂f(x) +
m∑
i=1

∂λigi(x) +NC(x) = 0,

λi >= 0, i = 1, . . . ,m.

Now, we prove an approximate weak duality theorem and an approximate

strong duality theorem which hold between (RCP) and (RLD).
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Theorem 2.3.1. (Approximate Weak Duality Theorem) For any fea-

sible solution x of (RCP) and any feasible solution (y, v, λ) of (RLD),

f(x) >= f(y) +
m∑
i=1

λigi(y, vi)− ϵ.

Proof. Let x and (y, v, λ) be feasible solutions of (RCP) and (RLD), respec-

tively. Then there exist ϵ0 >= 0, ϵi >= 0, i = 1, . . . ,m, ϵm+1 >= 0, ξ̄0 ∈ ∂ϵ0f(y),

ξ̄i ∈ ∂ϵi(λigi)(y, vi), i = 1, . . . ,m, and ξ̄m+1 ∈ N
ϵm+1

C (y) such that ϵ =
∑m+1

i=0 ϵi

and
∑m+1

i=0 ξ̄i = 0. Thus, we have

f(x)− {f(y) +
m∑
i=1

λigi(y, vi)}

>= ⟨ξ̄0, x− y⟩ − ϵ0 −
m∑
i=1

λigi(y, vi)

= −⟨
m∑
i=1

ξ̄i, x− y⟩ − ⟨ξ̄m+1, x− y⟩ − ϵ0 −
m∑
i=1

λigi(y, vi)

>= −
m∑
i=1

λi(gi(x, vi)− gi(y, vi))−
m∑
i=1

ϵi − ϵm+1 − ϵ0 −
m∑
i=1

λigi(y, vi)

= −
m∑
i=1

λigi(x, vi)−
m∑
i=1

ϵi − ϵm+1 − ϵ0

>= −
m+1∑
i=0

ϵi

= −ϵ.

Hence f(x) >= f(y) +
∑m

i=1 λigi(y, vi)− ϵ.
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Theorem 2.3.2. (Approximate Strong Duality Theorem) Let gi : Rn×

Rq → R, i = 1, . . . ,m, be continuous functions such that for each vi ∈ Rq,

gi(·, vi) is convex on Rn. Suppose that

∪
vi∈Vi, λi>=0

epi(
m∑
i=1

λigi(·, vi))∗ + C∗ × R+

is closed and convex. If x̄ is an approximate solution of (RCP), then there

exist λ̄ ∈ Rm
+ and v̄ ∈ Rq such that (x̄, v̄, λ̄) is a 2-approximate solution of

(RLD).

Proof. Let x̄ ∈ A be an approximate solution of (RCP). Then, by Theorem

2.2.2, there exist λ̄i >= 0, v̄i ∈ Vi, i = 1, . . . ,m, and ϵi >= 0, i = 0, 1, . . . ,m+1,

such that

0 ∈ ∂ϵ0f(x̄)+
m∑
i=1

∂ϵiλ̄igi(x̄, v̄i)+N
ϵm+1

C (x̄) and
m+1∑
i=0

ϵi− ϵ =
m∑
i=1

λ̄igi(x̄, v̄i).

So, (x̄, v̄, λ̄) is a feasible solution of (RLD). Hence, by Theorem 2.3.1, for

any feasible (y, v, λ) of (RLD),

f(x̄) +
m∑
i=1

λ̄igi(x̄, v̄i)− {f(y) +
m∑
i=1

λigi(y, vi)}

>= −ϵ+
m∑
i=1

λ̄igi(x̄, v̄i)

>= −ϵ+
m+1∑
i=0

ϵi − ϵ

>= −2ϵ.
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Thus (x̄, v̄, λ̄) is a 2-approximate solution of (RLD).

Now, we give an example illustrating our approximate duality theorems:

Example 2.3.1. Consider the following convex optimization problem with

uncertainty:

(RCP) min x1 + x2
2

s.t. x2
1 − 2v1x1 <= 0, v1 ∈ [−1, 1],

(x1, x2) ∈ R2
+.

Let f(x1, x2) = x1 + x2
2, g1((x1, x2), v1) = x2

1 − 2v1x1 and 0 < ϵ <=
1
4
.

Then A := {(0, x2) ∈ R2 | x2 >= 0} is the set of all robust feasible solu-

tions of (RCP) and Ā := {(0, x2) ∈ R2 | x1 = 0, 0 <= x2 <=
√
ϵ} is the

set of all robust approximate solutions of (RCP). Moreover, we can check

that
∪

v1∈[−1,1], λ1>=0 epi(λ1g1(·, v1))∗ + C∗ × R+ = R × R− × R+. Let F :=

{((x1, x2), v1, λ1) | 0 ∈ ∂ϵ0f((x1, x2)) + ∂ϵ1λ1g((x1, x2), v1) + N ϵ2
R2
+
(x), λ1 >=

0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2, ϵ0+ϵ1+ϵ2 <= ϵ}. Then F := Ã∪B̃∪ C̃∪D̃

is a set of all robust feasible solutions of (RLD), where

Ã := {((0, 0), v1, λ1) | 0 ∈ ∂ϵ0f(0, 0) + ∂ϵ1λ1g((0, 0), v1) +N ϵ2
R2
+
(0, 0),

λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2, ϵ0 + ϵ1 + ϵ2 <= ϵ}

= {((0, 0), v1, λ1) | 0 ∈ {1} × [−2
√
ϵ0, 2

√
ϵ0] + [−2λ1v1 − 2

√
λ1ϵ1,

−2λ1v1 + 2
√
λ1ϵ1]× {0} − R2

+, λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0,

i = 0, 1, 2, ϵ0 + ϵ1 <= ϵ}
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= {((0, 0), v1, λ1) | 0 <= λ1 <= 1/2v1, 0 <= v1 <= 1} ∪ {((0, 0), v1, λ1) |

1/2v1 <= λ1 <= (v1 + ϵ1 +
√

ϵ21 + 2v1ϵ1)/2v
2
1, 0 <= v1 <= 1, ϵ0 >= 0,

ϵ2 >= 0, 0 <= ϵ1 <= ϵ},

B̃ := {(0, x2), v1, λ1) | x2 > 0, 0 ∈ ∂ϵ0f(0, x2) + ∂ϵ1λ1g((0, x2), v1)

+N ϵ2
R2
+
(0, x2), λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2, ϵ0 + ϵ1 + ϵ2 <= ϵ}

= {((0, x2), v1, λ1) | x2 > 0, 0 ∈ {1} × [2x2 − 2
√
ϵ0, 2x2 + 2

√
ϵ0] +

[−2λ1v1 − 2
√

λ1ϵ1,−2λ1v1 + 2
√
λ1ϵ1]× {0}+ (−∞, 0]× [−ϵ2/x2, 0],

λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2, ϵ0 + ϵ1 + ϵ2 <= ϵ}

= {((0, x2), v1, λ1) | x2 > 0, 0 <= 1− 2λ1v1 + 2
√
λ1ϵ1, 2x2 − 2

√
ϵ0

−ϵ2/x2 <= 0, λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2, ϵ0 + ϵ1 + ϵ2 <= ϵ}

= {((0, x2), v1, λ1) | 0 <= λ1 <= 1/2v1, 0 < x2 <= (
√
ϵ0 +

√
ϵ0 + 2ϵ2)/2,

ϵi >= 0, i = 0, 1, 2, ϵ0 + ϵ2 <= ϵ} ∪ {((0, x2), v1, λ1) | 1/2v1 <= λ1 <=

(v1 + ϵ1 +
√

ϵ21 + 2v1ϵ1)/2v
2
1, 0 <= v1 <= 1, 0 < x2 <= (

√
ϵ0 +

√
ϵ0 + 2ϵ2)/2, 0 <= v1 <= 1, ϵi >= 0, i = 0, 1, 2, ϵ0 + ϵ1 + ϵ2 <= ϵ},

C̃ := {(x1, 0), v1, λ1) | x1 > 0, 0 ∈ ∂ϵ0f(x1, 0) + ∂ϵ1λ1g((x1, 0), v1)

+N ϵ2
R2
+
(x1, 0), λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2, ϵ0 + ϵ1 + ϵ2 <= ϵ}

= {((x1, 0), v1, λ1) | x1 > 0, 0 ∈ {1} × [−2
√
ϵ0, 2

√
ϵ0] + [−2λ1v1 + 2λ1x1

−2
√

λ1ϵ1,−2λ1v1 + 2λ1x1 + 2
√

λ1ϵ1]× {0}+ [−ϵ2/x1, 0]× (−∞, 0],

λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2, ϵ0 + ϵ1 + ϵ2 <= ϵ}
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= {((x1, 0), v1, λ1) | x1 > 0, 0 >= 1− 2λ1v1 + 2λ1x1 − 2
√

λ1ϵ1 − ϵ2/x1,

0 <= 1− 2λ1v1 + 2λ1x1 + 2
√
λ1ϵ1, λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0,

i = 0, 1, 2, ϵ1 + ϵ2 <= ϵ}

= {((x1, 0), v1, λ1) | x1 > 0, x1 − 2λ1v1x1 + λ1x
2
1
<= −λ1x

2
1 + 2

√
λ1ϵ1x1

+ϵ2, 0 <= 1− 2λ1v1 + 2λ1x1 + 2
√
λ1ϵ1, λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0,

i = 0, 1, 2, ϵ1 + ϵ2 <= ϵ},

D̃ := {(x1, x2), v1, λ1) | x1, x2 > 0, 0 ∈ ∂ϵ0f(x1, x2) + ∂ϵ1λ1g((x1, x2), v1) +

N ϵ2
R2
+
(x1, x2), λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2, ϵ0 + ϵ1 + ϵ2 <= ϵ}

= {((x1, x2), v1, λ1) | x1 > 0, x2 > 0, 0 ∈ {1} × [2x2 − 2
√
ϵ0, 2x2 + 2

√
ϵ0]

+[−2λ1v1 + 2λ1x1 − 2
√

λ1ϵ1,−2λ1v1 + 2λ1x1 + 2
√

λ1ϵ1]× {0}

+[−ϵ12/x1, 0]× [−ϵ22/x2, 0], λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2,

ϵ0 + ϵ1 + ϵ2 <= ϵ}

= {((x1, x2), v1, λ1) | x1 > 0, x2 > 0, 0 >= 1− 2λ1v1 + 2λ1x1 − 2
√
λ1ϵ1

−ϵ12/x1, 0 <= 1− 2λ1v1 + 2λ1x1 + 2
√
λ1ϵ1, 0 >= 2x2 − 2

√
ϵ0 − ϵ22/x2,

λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2, ϵ12 + ϵ22 = ϵ2, ϵ0 + ϵ1 + ϵ2 <= ϵ}

= {((x1, x2), v1, λ1) | x1 > 0, x2 > 0, x1 − 2λ1v1x1 + λ1x
2
1
<= −λ1x

2
1

+2
√
λ1ϵ1x1 + ϵ12, 0 <= 1− 2λ1v1 + 2λ1x1 + 2

√
λ1ϵ1, 0 < x2 <= (

√
ϵ0

+
√
ϵ0 + 2ϵ22)/2, λ1 >= 0, v1 ∈ [−1, 1], ϵi >= 0, i = 0, 1, 2, ϵ12 + ϵ22 = ϵ2,

ϵ0 + ϵ1 + ϵ2 <= ϵ}.
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We can check for any (x1, x2) ∈ A and any ((y1, y2), v1, λ1) ∈ F ,

f(x1, x2) >= f((y1, y2)) + λ1g((y1, y2), v1)− ϵ, (2.4)

that is, approximate weak duality holds. Indeed, let x ∈ A and let ((y1, y2),

v1, λ1) ∈ D̃ be any fixed. Then

f(y1, y2) + λ1g((y1, y2), v1)− ϵ

= y1 + y22 + λ1y
2
1 − 2λ1v1x1 − ϵ

<= −λ1y
2
1 + 2

√
λ1ϵ1y1 + ϵ12 + y22 − ϵ

<= ϵ1 + ϵ12 + (ϵ0 + ϵ22 +
√
(ϵ0 + ϵ22)

2)/2− ϵ

= ϵ1 + ϵ12 + ϵ0 + ϵ22 − ϵ

<= 0

<= f(x1, x2).

Let (x̄1, x̄2) ∈ Ā be an approximate solution of (RCP). Then x̄1 = 0,

0 <= x̄2 <=
√
ϵ. Let λ̄1 = 1, v̄1 =

√
ϵ. Then we can easily check that

((x̄1, x̄2),
√
ϵ, 1) ∈ F . Moreover, for any ((y1, y2), v1, λ1) ∈ F ,

f(x̄1, x̄2) + λ̄1g((x̄1, x̄2), v̄1)− {f(y1, y2) + λ1g((y1, y2), v1)}

>= −ϵ+ λ̄1g((x̄1, x̄2), v̄1) (by (2.4))

= −ϵ+ λ̄1(x̄
2
1 − 2v̄1x̄2)

= −ϵ+ λ̄1(x̄1 − v̄1)
2 − (v̄1)

2

= −ϵ+ (x̄1 −
√
ϵ)2 − ϵ

>= −ϵ+−ϵ = −2ϵ.
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So, ((x̄1, x̄2),
√
ϵ, 1) is an approximate solution of (RLD). Hence approximate

strong duality theorem holds.

2.4 Robust Fractional Optimization Problems

The purpose of this section is to extend the approximate optimality the-

orems and approximate duality theorems from Section 2.2 and Section 2.3,

respectively, to fractional optimization problems with data uncertainty.

Now, we consider approximate solutions for a fractional optimization

problem in the face of data uncertainty. Using the robust optimization ap-

proach (the worst-case approach), we establish optimality theorems and dual-

ity theorems for approximate solutions for the robust fractional optimization

problem. Moreover, we give an example illustrating our duality theorems.

Consider the following standard form of fractional optimization problem

with a geometric constraint set:

(FP) min
f(x)

g(x)

s.t. hi(x) <= 0, i = 1, · · · ,m,

x ∈ C,

where f, hi : Rn → R, i = 1, · · · ,m, are convex functions, C is a closed

convex cone of Rn and g : Rn → R is a concave function such that for any

x ∈ C, f(x) >= 0 and g(x) > 0.
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The fractional optimization problem (FP) in the face of data uncertainty

in the constraints can be captured by the problem:

(UFP) min max
(u,v)∈U×V

f(x, u)

g(x, v)

s.t. hi(x,wi) <= 0, i = 1, · · · ,m,

x ∈ C,

where f : Rn × Rp → R, hi : Rn × Rq → R , f(·, u) and hi(·, wi) are convex,

and g : Rn ×Rp → R, g(·, v) is concave, and u ∈ Rp, v ∈ Rp and wi ∈ Rq are

uncertain parameters which belongs to the convex and compact uncertainty

sets U ⊂ Rp, V ⊂ Rp and Wi ⊂ Rq, i = 1, · · · ,m, respectively.

We study approximate optimality theorems and approximate duality the-

orems for the uncertain fractional optimization problem (UFP) by examining

its robust counterpart [8]:

(RFP) min max
(u,v)∈U×V

f(x, u)

g(x, v)

s.t. hi(x,wi) <= 0, ∀wi ∈ Wi, i = 1, · · · ,m,

x ∈ C.

Clearly, A := {x ∈ C | hi(x,wi) <= 0, ∀wi ∈ Wi, i = 1, . . . ,m} is the feasible

set of (RFP).

Let ϵ >= 0. Then x̄ is called an approximate solution of (RFP) if for any

x ∈ A,

max
(u,v)∈U×V

f(x, u)

g(x, v)
>= max

(u,v)∈U×V

f(x̄, u)

g(x̄, v)
− ϵ.
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Using parametric approach, we transform the problem (RFP) into the ro-

bust non-fractional convex optimization problem (RNCP)r with a parameter

r ∈ R+:

(RNCP)r min max
u∈U

f(x, u)− rmin
v∈V

g(x, v)

s.t. hi(x,wi) <= 0, ∀wi ∈ Wi, i = 1, · · · ,m,

x ∈ C.

Let ϵ >= 0. Then x̄ is called an approximate solution of (RNCP)r if for any

x ∈ A,

max
u∈U

f(x, u)− rmin
v∈V

g(x, v) >= max
u∈U

f(x̄, u)− rmin
v∈V

g(x̄, v)− ϵ.

Proposition 2.4.1. [31] Let ϵ >= 0. Let hi : Rn → R ∪ {+∞}, i = 1, . . . ,m,

be proper lower semicontinuous convex functions. If
m∪
i=1

ri(domhi) ̸= ∅, then

for all x ∈
m∪
i=1

domhi,

∂ϵ(
m∑
i=1

h)(x) =
∪

{
m∑
i=1

∂ϵihi(x) | ϵi >= 0, i = 1. · · · ,m,

m∑
i=1

ϵi = ϵ}.

Now we give the following relation between approximate solution of (RFP)

and (RNCP)r̄.

Lemma 2.4.1. Let x̄ ∈ A and let ϵ >= 0. If max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

− ϵ >= 0, then the

following statements are equivalent:
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(i) x̄ is an approximate solution of (RFP);

(ii) x̄ is an ϵ̄-approximate solution of (RNCP)r̄, where r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

−ϵ

and ϵ̄ = ϵmin
v∈V

g(x̄, v).

Proof. [(i) ⇒ (ii)] Let x̄ ∈ A be an approximate solution of (RFP). Then for

any x ∈ A, max
(u,v)∈U×V

f(x,u)
g(x,v)

>= max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

−ϵ. Put r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

−ϵ and

ϵ̄ = ϵmin
v∈V

g(x̄, v). Then we have for any x ∈ A, max
u∈U

f(x, u)−min
v∈V

r̄g(x, v) >= 0.

Since max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v)− ϵmin
v∈V

g(x̄, v) = 0, for any x ∈ A,

max
u∈U

f(x, u)− r̄min
v∈V

g(x, v) >= max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v)− ϵmin
v∈V

g(x̄, v)

= max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v)− ϵ̄.

Hence x̄ is and ϵ̄-approximate solution of (RNCP)r̄.

[(ii) ⇒ (i)] Let x̄ ∈ A be an ϵ̄-approximate solution of (RNCP)r̄. Then

for any x ∈ A, max
u∈U

f(x, u) − r̄min
v∈V

g(x, v) >= max
u∈U

f(x̄, u) − r̄min
v∈V

g(x̄, v) −

ϵ̄. Since max
u∈U

f(x̄, u) − r̄min
v∈V

g(x̄, v) − ϵmin
v∈V

g(x̄, v) = 0, for any x ∈ A,

max
u∈U

f(x, u) − r̄min
v∈V

g(x, v) >= 0. So, we have max
(u,v)∈U×V

f(x,u)
g(x,v)

>= r̄. Since

r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

− ϵ,

max
(u,v)∈U×V

f(x, u)

g(x, v)
>= max

(u,v)∈U×V

f(x̄, u)

g(x̄, v)
− ϵ.

Hence x̄ is an approximate solution of (RFP).
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Now, we give the following lemma which is the robust version of Farkas

Lemma for non-fractional convex functions.

Lemma 2.4.2. Let f : Rn×Rp → R and hi : Rn×Rq → R be functions such

that for any u ∈ Rp, f(·, u) and for each wi ∈ Rq, hi(·, wi), i = 1, . . . ,m,

are convex functions, and for any x ∈ Rn, f(x, ·) is a concave function.

Let g : Rn × Rq → R be a function such that for any v ∈ Rp, g(·, v) is

a concave function, and for all x ∈ Rn, g(x, ·) is a convex function. Let

U ⊂ Rp, V ⊂ Rp and Wi ⊂ Rq, i = 1, . . . ,m, be convex and compact

sets. Let r >= 0 and let C be a closed convex cone of Rn. Assume that

A := {x ∈ C | hi(x,wi) <= 0, ∀wi ∈ Wi, i = 1, . . . ,m} ̸= ∅. Then the

following statements are equivalent:

(i) {x ∈ C | hi(x,wi) <= 0, ∀wi ∈ Wi, i = 1, . . . ,m} ⊆ {x ∈ Rn | max
u∈U

f(x, u)

−rmin
v∈V

g(x, v) >= 0};

(ii) there exist ū ∈ U and v̄ ∈ V such that

A ⊆ {x ∈ Rn | f(x, ū)− rg(x, v̄) >= 0};

(iii) (0, 0) ∈
∪
u∈U

epi(f(·, u))∗ +
∪
v∈V

epi(−rg(·, v))∗

+clco(
∪

wi∈Wi,λi>=0

epi(
m∑
i=1

λihi(·, wi))
∗ + C∗ × R+);

(iv) (0, 0) ∈ epi(max
u∈U

f(·, u))∗ + epi(−rmin
v∈V

g(·, v))∗

+clco(
∪

wi∈Wi,λi>=0

epi(
m∑
i=1

λihi(·, wi))
∗ + C∗ × R+).
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Proof. Notice that epiδ∗A = cl co (
∪

wi∈Wi,λi>=0epi(
∑m

i=1λihi(·, wi))
∗+C∗×R+)

by the proof of Lemma 2.2.1.

[(i) ⇔ (iv)] Now we assume that the statement (iv) holds. Then, by

Proposition 2.1.3, the statement (iv) is equivalent to

(0, 0) ∈ epi(max
u∈U

f(·, u))∗ + epi(−rmin
v∈V

g(·, v))∗ + epiδ∗A

= epi(max
u∈U

f(·, u)− rmin
v∈V

g(·, v) + δA)
∗.

Equivalently, by the definition of epigraph of max
u∈U

f(·, u)−rmin
v∈V

g(·, v)+δA)
∗,

(max
u∈U

f(·, u)− rmin
v∈V

g(·, v) + δA)
∗(0) <= 0.

From the definition of conjugate function, for any x ∈ Rn,

(max
u∈U

f(·, u)− rmin
v∈V

g(·, v) + δA)(x) >= 0.

It is equivalent to the statement that for any x ∈ A,

max
u∈U

f(x, u)− rmin
v∈V

g(x, v) >= 0.

[(ii) ⇔ (iii)] Now we assume that the statement (iii) holds. Then the

statement (iii) is equivalent to

(0, 0) ∈
∪
u∈U

epi(f(·, u))∗ +
∪
v∈V

epi(−rg(·, v))∗ + epiδ∗A.

It means that there exist ū ∈ U and v̄ ∈ V such that

(0, 0) ∈ epi(f(·, ū)− rg(·, v̄) + δA)
∗.
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It is equivalent to the statement that there exist ū ∈ U and v̄ ∈ V such that

(f(·, ū)− rg(·, v̄) + δA)
∗(0) <= 0,

From the definition of conjugate function, there exist ū ∈ U and v̄ ∈ V such

that for any x ∈ Rn,

(f(·, ū)− rg(·, v̄) + δA)(x) >= 0.

It means that there exist ū ∈ U and v̄ ∈ V such that for any x ∈ A,

f(x, ū)− rg(x, v̄) >= 0.

[(iii) ⇔ (iv)] To get a desired result, it suffices to show that

∪
u∈U

epi(f(·, u))∗ = epi(max
u∈U

f(·, u))∗ (2.5)

∪
v∈V

epi(−rg(·, v))∗ = epi(−rmin
v∈V

g(·, v))∗. (2.6)

By Proposition 2.1.4, epi(max
u∈U

f(·, u))∗ = cl co
∪
u∈U

epi(f(·, u))∗. Let (z1, α1),

(z2, α2) ∈
∪
u∈U

epi(f(·, u))∗ and let µ ∈ [0, 1]. Then there exist u1, u2 ∈

U such that (z1, α1) ∈ epi(f(·, u1))
∗ and (z2, α2) ∈ epi(f(·, u2))

∗, that is,

(f(·, u1))
∗(z1) <= α1 and (f(·, u2))

∗(z2) <= α2. Using the definition of conju-

gate function, we have for all x ∈ Rn,

⟨z1, x⟩ − f(x, u1) <= α1 and ⟨z2, x⟩ − f(x, u2) <= α2. (2.7)

38



Since for all x ∈ Rn, f(x, ·) is concave, we have f(x, µu1 + (1 − µ)u2) >=

µf(x, u1) + (1− µ)f(x, u2), i.e.,

−f(x, µu1 + (1− µ)u2) <= −µf(x, u1)− (1− µ)f(x, u2). (2.8)

So, from (2.7) and (2.8), we have for all x ∈ Rn,

⟨µz1 + (1− µ)z2, x⟩ − f(x, µu1 + (1− µ)u2) <= µα1 + (1− µ)α2,

and so, (f(·, µu1 + (1− µ)u2))
∗(µz1 + (1− µ)z2) <= µα1 + (1− µ)α2. Hence,

we have

(µz1 + (1− µ)z2, µα1 + (1− µ)α2) ∈ epi(f(·, µu1 + (1− µ)u2))
∗.

So,
∪
u∈U

epi(f(·, u))∗ is convex.

Now we will show that
∪
u∈U

epi(f(·, u))∗ is closed. Let

(zn, αn) ∈
∪
u∈U

epi(f(·, u))∗

with (zn, αn) → (z∗, α∗) as n → ∞. Then there exists un ∈ U such that

(f(·, un))
∗(zn) <= αn. Since U is compact, we may assume that un → u∗ ∈ U

as n → ∞. So, for each x ∈ Rn,

⟨zn, x⟩ − f(x, un) <= αn.

Since for all x ∈ Rn, f(x, ·) is concave, f(x, ·) is continuous. Passing to the

limit as n → ∞, we get that, for each x ∈ Rn, ⟨z∗, x⟩−f(x, u∗) <= α∗. Hence,

we have

(z∗, α∗) ∈ epi(f(·, u∗))∗.
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So,
∪
u∈U

epi(f(·, u))∗ is closed. Thus, (2.5) holds.

Moreover, since for all x ∈ Rn, g(x, ·) is convex and r >= 0, for all x ∈ Rn,

−rg(x, ·) is concave. So, similarly, we can prove that (2.6) holds.

Remark 2.4.1. Using the convex-concave minimax theorem (Corollary 37.3.2

in [64]), we can prove that the statement (i) in Lemma 2.4.2 is equivalent to

the statement (ii) in Lemma 2.4.2.

Remark 2.4.2. From proving Lemma 2.4.2 that the statement (i) is equiv-

alent to the statement (iv), we see that we can prove the equivalent relation

without the assumptions that for all x ∈ Rn, f(x, ·) and g(x, ·) are concave

and convex, respectively.

From Lemmas 2.4.1 and 2.4.2, we can get the following theorem:

Theorem 2.4.1. Let f : Rn × Rp → R and hi : Rn × Rq → R be functions

such that for any u ∈ Rp, f(·, u) and for each wi ∈ Rq, hi(·, wi), i = 1, . . . ,m,

are convex functions, and for any x ∈ Rn, f(x, ·) is concave function. Let

g : Rn ×Rp → R be a function such that for any v ∈ Rp, g(·, v) is a concave

function, and for all x ∈ Rn, g(x, ·) is a convex function. Let U ⊂ Rp, V ⊂ Rp

and Wi ⊂ Rq, i = 1, . . . ,m, be convex and compact, and let A := {x ∈

C | hi(x,wi) <= 0, ∀wi ∈ Wi, i = 1, . . . ,m} ̸= ∅. Let r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

− ϵ.

Suppose that
∪

wi∈Wi,λi>=0 epi(
m∑
i=1

λihi(·, wi))
∗+C∗×R+ is closed and convex.

Then the following statements are equivalent:
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(i) x̄ ∈ A is an approximate solution of (RFP);

(ii) there exist ū ∈ U , v̄ ∈ V, w̄i ∈ Wi and λ̄i >= 0, i = 1, . . . ,m, such that

for any x ∈ C,

f(x, ū)− r̄g(x, v̄) +
m∑
i=1

λ̄ihi(x, w̄i) >= 0.

Proof. [(i) ⇒ (ii)] Let x̄ be an approximate solution of (RFP). Then, by

Lemma 2.4.1, equivalently, x̄ is an ϵ̄-approximate solution of (RNCP)r̄, where

r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

− ϵ and ϵ̄ = ϵmin
v∈V

g(x̄, v), that is, for any x ∈ A,

max
u∈U

f(x, u)− r̄min
v∈V

g(x, v) >= max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v)−ϵmin
v∈V

g(x̄, v). Since

max
u∈U

f(x̄, u)−r̄min
v∈V

g(x̄, v)−ϵmin
v∈V

g(x̄, v) = 0, we haveA ⊆ {x ∈ C | max
u∈U

f(x, u)−

r̄min
v∈V

g(x, v) >= 0}. Then, by Lemma 2.4.2, we have

(0, 0) ∈
∪
u∈U

epi(f(·, u))∗ +
∪
v∈V

epi(−r̄g(·, v))∗

+ cl co (
∪

wi∈Wi,λi>=0

epi(
m∑
i=1

λihi(·, wi))
∗ + C∗ × R+).

Moreover, by assumption,

(0, 0) ∈
∪
u∈U

epi(f(·, u))∗ +
∪
v∈V

epi(−r̄g(·, v))∗

+
∪

wi∈Wi,λi>=0

epi(
m∑
i=1

λihi(·, wi))
∗ + C∗ × R+.
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So, there exist ū ∈ U , v̄ ∈ V , w̄i ∈ Wi and λ̄i >= 0, i = 1, . . . ,m, such that

(0, 0) ∈ epi(f(·, ū))∗ + epi(−r̄g(·, v̄))∗ + epi(
m∑
i=1

λ̄ihi(·, w̄i))
∗ + C∗ × R+.

Then there exist s ∈ Rn, η >= 0, t ∈ Rn, µ >= 0, zi ∈ Rn, ρi >= 0, i = 1, . . . ,m,

c∗ ∈ C∗ and γ ∈ R+ such that

(0, 0) = (s, (f(·, ū))∗(s) + η) + (t, (−r̄g(·, v̄))∗(t) + µ)

+
m∑
i=1

(zi, (λ̄ihi(·, w̄i))
∗(zi) + ρi) + (c∗, γ).

So, 0 = s + t +
m∑
i=1

zi + c∗ and 0 = (f(·, ū))∗(s) + η + (−r̄g(·, v̄))∗(t) + µ +

m∑
i=1

((λ̄ihi(·, w̄i))
∗(zi) + ρi) + γ. Hence, for any x ∈ Rn,

− ⟨
m∑
i=1

zi, x⟩ − ⟨c∗, x⟩ − f(x, ū)− (−r̄g(x, v̄))

= ⟨s, x⟩+ ⟨t, x⟩ − f(x, ū)− (−r̄g(x, v̄))

<= (f(·, ū))∗(s) + (−r̄g(·, v))∗(t)

= − η − µ−
m∑
i=1

((λ̄ihi(·, w̄i))
∗(zi) + ρi)− γ.

(2.9)

Since η >= 0, µ >= 0, ρi >= 0, i = 1, . . . ,m, and c∗ ∈ C∗, from (2.9), for any
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x ∈ C,

0 <= ⟨
m∑
i=1

zi, x⟩+ ⟨c∗, x⟩+ f(x, ū) + (−r̄g(x, v̄))− η − µ

−
m∑
i=1

(λ̄ihi(·, w̄1))
∗(zi)−

m∑
i=1

λ̄iρi − γ

<= ⟨
m∑
i=1

zi, x⟩+ f(x, ū)− r̄g(x, v̄)−
m∑
i=1

(λ̄ihi(·, w̄i))
∗(zi)

<= f(x, ū)− r̄g(x, v̄) +
m∑
i=1

(λ̄ihi(x, w̄i)).

[(ii) ⇒ (i)] Suppose that there exist ū ∈ U , v̄ ∈ V , w̄i ∈ Wi and λ̄i >= 0,

i = 1, . . . ,m, such that for any x ∈ C,

f(x, ū)− r̄g(x, v̄) +
m∑
i=1

λ̄ihi(x, w̄i) >= 0. (2.10)

Since r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

−ϵ, we have max
u∈U

f(x̄, u)−r̄min
v∈V

g(x̄, v)−ϵmin
v∈V

g(x̄, v) =

0. So, from (2.10), we have for any x ∈ A,

max
u∈U

f(x, u)− r̄min
v∈V

g(x, v) >= max
u∈U

f(x, u)− r̄min
v∈V

g(x, v) +
m∑
i=1

λ̄ihi(x, w̄i)

>= f(x, ū)− r̄g(x, v̄)) +
m∑
i=1

λ̄ihi(x, w̄i)

>= 0

= max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v)− ϵmin
v∈V

g(x̄, v).
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Hence, for any x ∈ A, max
u∈U

f(x, u)−r̄min
v∈V

g(x, v) >= max
u∈U

f(x̄, u)−r̄min
v∈V

g(x̄, v)−

ϵmin
v∈V

g(x̄, v). It means that x̄ is an ϵ̄-approximate solution of (RNCP)r̄. Thus,

by Lemma 2.4.1, x̄ is an approximate solution of (RFP).

Using Remark 2.4.2 and Lemma 2.4.1 and Lemma 2.4.2, we can obtain

the following characterization of approximate solution for (RFP).

Theorem 2.4.2. (Approximate Optimality Theorem) Let f : Rn ×

Rp → R and hi : Rn ×Rq → R be functions such that for any u ∈ Rp, f(·, u)

and for each wi ∈ Rq, hi(·, wi), i = 1, . . . ,m, are convex functions. Let

g : Rn ×Rp → R be a function such that for any v ∈ Rp, g(·, v) is a concave

function. Let U ⊂ Rp, V ⊂ Rp and Wi ⊂ Rq, i = 1, . . . ,m, be convex and

compact and let A := {x ∈ C | hi(x,wi) <= 0, ∀wi ∈ Wi, i = 1, . . . ,m} ̸= ∅.

Let x̄ ∈ A and let ϵ >= 0. Let r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

− ϵ. If max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

< ϵ,

then x̄ is an approximate solution of (RFP). If max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

>= ϵ and

∪
wi∈Wi,λi>=0

epi(
m∑
i=1

λihi(·, wi))
∗+C∗×R+ is closed and convex, then the follow-

ing statements are equivalent:

(i) x̄ is an approximate solution of (RFP);

(ii) There exist w̄i ∈ Wi and λ̄i >= 0, i = 1, . . . ,m, ϵ10 >= 0, ϵ20 >= 0 and

ϵi >= 0, i = 1, . . . ,m+ 1 such that
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0 ∈ ∂ϵ10(max
u∈U

f(·, u))(x̄) + ∂ϵ20(−r̄min
v∈V

g(·, v))(x̄) +
m∑
i=1

∂ϵi(λ̄ihi(·, w̄i))(x̄)

+N
ϵm+1

C (x̄), (2.11)

max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v) = ϵmin
v∈V

g(x̄, v) and (2.12)

ϵ10 + ϵ20 +
m+1∑
i=1

ϵi − ϵmin
v∈V

g(x̄, v) =
m∑
i=1

λ̄ihi(x̄, w̄i). (2.13)

Proof. [(i) ⇒ (ii)] We assume that x̄ is an approximate solution of (RFP).

Then, by Lemma 2.4.1, x̄ is an ϵ̄-approximate solution of (RNCP)r̄, where r̄ =

max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

− ϵ and ϵ̄ = ϵmin
v∈V

g(x̄, v), that is, for any x ∈ A, max
u∈U

f(x, u)−

r̄min
v∈V

g(x, v) >= max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v)−ϵmin
v∈V

g(x̄, v). Since max
u∈U

f(x̄, u)−

r̄min
v∈V

g(x̄, v) − ϵmin
v∈V

g(x̄, v) = 0, we have A ⊆ {x ∈ C | max
u∈U

f(x, u) −

r̄min
v∈V

g(x, v) >= 0}. By Lemma 2.4.2,

(0, 0) ∈ epi(max
u∈U

f(·, u))∗ + epi(−r̄min
v∈V

g(·, v))∗

+ cl co (
∪

wi∈Wi,λi>=0

epi(
m∑
i=1

λihi(·, wi))
∗ + C∗ × R+).

By assumption,

(0, 0) ∈ epi(max
u∈U

f(·, u))∗ + epi(−r̄min
v∈V

g(·, v))∗

+
∪

wi∈Wi,λi>=0

epi(
m∑
i=1

λihi(·, wi))
∗ + C∗ × R+.
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Notice that C∗ × R+ = epiδ∗C . So, there exist w̄i ∈ Wi and λ̄i >= 0, i =

1, . . . ,m, such that

(0, 0) ∈ epi(max
u∈U

f(·, u))∗+epi(−r̄min
v∈V

g(·, v))∗+epi(
m∑
i=1

λ̄ihi(·, w̄i))
∗+epiδ∗C .

By Proposition 2.1.2, we obtain that

(0, 0) ∈
∪
ϵ10>=0

{(ξ10 , ⟨ξ10 , x̄⟩+ ϵ10 −max
u∈U

f(x̄, u)) | ξ10 ∈ ∂ϵ10(max
u∈U

f(·, u))(x̄)}

+
∪
ϵ20>=0

{(ξ20 , ⟨ξ20 , x̄⟩+ ϵ20 + r̄min
v∈V

g(x̄, v)) | ξ20 ∈ ∂ϵ20(−r̄min
v∈V

g(·, v))(x̄)}

+
∪
ϵ∗>=0

{(ξ∗, ⟨ξ∗, x̄⟩+ ϵ∗ −
m∑
i=1

λ̄ihi(x̄, w̄i)) | ξ∗ ∈ ∂ϵ∗(
m∑
i=1

λ̄ihi(·, w̄i))(x̄)}

+
∪

ϵm+1>=0

{(ξm+1, ⟨ξm+1, x̄⟩+ ϵm+1 − δC(x̄)) | ξm+1 ∈ ∂ϵm+1δC(x̄)}.

So, there exist ξ̄10 ∈ ∂ϵ10(max
u∈U

f(·, u))(x̄), ξ̄20 ∈ ∂ϵ20(−r̄min
v∈V

g(·, v))(x̄), ξ̄∗ ∈

∂ϵ∗(
m∑
i=1

λ̄ihi(·, w̄i))(x̄), ξ̄m+1 ∈ ∂ϵm+1δC(x̄), ϵ
1
0
>= 0, ϵ20 >= 0, ϵ∗ >= 0 and ϵm+1 >= 0

such that 0 = ξ̄10 + ξ̄20 + ξ̄∗ + ξ̄m+1 and ϵ10 + ϵ20 + ϵ∗ + ϵm+1 = max
u∈U

f(x̄, u) −

r̄min
v∈V

g(x̄, v) +
m∑
i=1

λ̄ihi(x̄, w̄i). Hence, by Proposition 2.4.1, there exist ξ̄10 ∈

∂ϵ10(max
u∈U

f(·, u))(x̄), ξ̄20 ∈ ∂ϵ20(−r̄min
v∈V

g(·, v))(x̄), ξ̄i ∈ ∂ϵi(λ̄ihi(·, w̄i))(x̄), ξ̄m+1 ∈

∂ϵm+1δC(x̄), ϵ
1
0
>= 0, ϵ20 >= 0, ϵi >= 0, i = 1, . . . ,m, and ϵm+1 >= 0 such that

0 ∈ ∂ϵ10(max
u∈U

f(·, u))(x̄)+∂ϵ20(−r̄min
v∈V

g(·, v))(x̄)+
m∑
i=1

∂ϵi(λ̄ihi(·, w̄i))(x̄)+N
ϵm+1

C (x̄)
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and

ϵ10 + ϵ20 +
m+1∑
i=1

ϵi = max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v) +
m∑
i=1

λ̄ihi(x̄, w̄i). (2.14)

Hence, (2.11) holds. Moreover, since r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

− ϵ,

max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v)− ϵmin
v∈V

g(x̄, v) = 0. (2.15)

So, (2.12) holds, and so, from (2.14) and (2.15), we have

ϵ10 + ϵ20 +
m+1∑
i=1

ϵi − ϵmin
v∈V

g(x̄, v) =
m∑
i=1

λ̄ihi(x̄, w̄i).

Thus, (2.13) holds.

[(ii) ⇒ (i)] Taking into account the converse of the process for proving

(i) ⇒ (ii), we can easily check that the statement (ii) ⇒ (i) holds.

If for all x ∈ Rn, f(x, ·) is concave, and for all x ∈ R, g(x, ·) is con-

vex, then using Lemma 2.4.1 and Lemma 2.4.2, we can obtain the following

characterization of approximate solution for (RFP).

Theorem 2.4.3. (Approximate Optimality Theorem) Let f : Rn ×

Rp → R and hi : Rn × Rq → R, i = 1, . . . ,m, be functions such that for any

u ∈ Rp, f(·, u) and for each wi ∈ Rq, hi(·, wi) are convex functions, and for

all x ∈ Rn, f(x, ·) is concave function. Let g : Rn × Rp → R be a function

such that for any v ∈ Rp, g(·, v) is concave, and for all x ∈ Rn, g(x, ·) is

convex. Let U ⊂ Rp, V ⊂ Rp and Wi ⊂ Rq, i = 1, . . . ,m, be convex and
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compact and let A := {x ∈ C | hi(x,wi) <= 0, ∀wi ∈ Wi, i = 1, . . . ,m} ̸= ∅.

Let x̄ ∈ A and let ϵ >= 0. Let r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

− ϵ. If max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

<

ϵ, then x̄ is an approximate solution of (RFP). If max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

>= ϵ and

∪
wi∈Wi,λi>=0

epi(
m∑
i=1

λihi(·, wi))
∗+C∗×R+ is closed and convex, then the follow-

ing statements are equivalent:

(i) x̄ is an approximate solution of (RFP);

(ii) There exist ū ∈ U , v̄ ∈ V, w̄i ∈ Wi, λ̄i >= 0, i = 1, . . . ,m, ϵ10 >= 0,

ϵ20 >= 0 and ϵi >= 0, i = 1, . . . ,m+ 1, such that

0 ∈ ∂ϵ10(f(·, ū))(x̄) + ∂ϵ20(−r̄g(·, v̄))(x̄) +
m∑
i=1

∂ϵi(λ̄ihi(·, w̄i))(x̄)

+N
ϵm+1

C (x̄), (2.16)

max
u∈U

f(x̄, u)−min
v∈V

r̄g(x̄, v) = ϵmin
v∈V

g(x̄, v) and (2.17)

ϵ10 + ϵ20 +
m+1∑
i=1

ϵi − ϵmin
v∈V

g(x̄, v) <=

m∑
i=1

λ̄ihi(x̄, w̄i). (2.18)

Proof. [(i) ⇒ (ii)] Let x̄ be an approximate solution of (RFP). Then, by

Lemma 2.4.1, x̄ is an ϵ̄-approximate solution of (RNCP)r̄, where r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

−

ϵ and ϵ̄ = ϵmin
v∈V

g(x̄, v), that is, for any x ∈ A, max
u∈U

f(x, u)− r̄min
v∈V

g(x, v) >=

max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v)− ϵmin
v∈V

g(x̄, v). Since max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v)−

ϵmin
v∈V

g(x̄, v) = 0, we have A ⊆ {x ∈ C | max
u∈U

f(x, u)− r̄min
v∈V

g(x, v) >= 0}. By
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Lemma 2.4.2 and the assumption, (0, 0) ∈
∪
u∈U

epi(f(·, u))∗+
∪
v∈V

epi(−r̄g(·, v))∗+

∪
wi∈Wi,λi>=0 epi(

m∑
i=1

λihi(·, wi))
∗ +C∗×R+. Since C

∗×R+ = epiδ∗C , there exist

ū ∈ U , v̄ ∈ V , w̄i ∈ Wi and λ̄i >= 0, i = 1, . . . ,m, such that

(0, 0) ∈ epi(f(·, ū))∗ + epi(−r̄g(·, v̄))∗ + epi(
m∑
i=1

λ̄ihi(·, w̄i))
∗ + epiδ∗C .

By Proposition 2.1.2, we obtain that

(0, 0) ∈
∪
ϵ10>=0

{(ξ10 , ⟨ξ10 , x̄⟩+ ϵ10 − f(x̄, ū)) | ξ10 ∈ ∂ϵ10(f(·, ū))(x̄)}

+
∪
ϵ20>=0

{(ξ20 , ⟨ξ20 , x̄⟩+ ϵ20 + r̄g(x̄, v̄)) | ξ20 ∈ ∂ϵ20(−r̄g(·, v̄))(x̄)}

+
∪
ϵ∗>=0

{(ξ∗, ⟨ξ∗, x̄⟩+ ϵ∗ −
m∑
i=1

λ̄ihi(x̄, w̄i)) | ξ∗ ∈ ∂ϵ∗(
m∑
i=1

λ̄ihi(·, w̄i))(x̄)}

+
∪

ϵm+1>=0

{(ξm+1, ⟨ξm+1, x̄⟩+ ϵm+1 − δC(x̄)) | ξm+1 ∈ ∂ϵm+1δC(x̄)}.

So, there exist ξ̄10 ∈ ∂ϵ10(f(·, ū))(x̄), ξ̄20 ∈ ∂ϵ20(−r̄g(·, v̄))(x̄), ξ̄∗ ∈ ∂ϵ∗(
m∑
i=1

λ̄ihi(·, w̄i))(x̄), ξ̄m+1 ∈ ∂ϵm+1δC(x̄), ϵ
1
0
>= 0, ϵ20 >= 0, ϵ∗ >= 0 and ϵm+1 >= 0

such that 0 = ξ̄10 + ξ̄20 + ξ̄∗ + ξ̄m+1 and ϵ10 + ϵ20 + ϵ∗ + ϵm+1 = f(x̄, ū) −

r̄g(x̄, v̄)+
m∑
i=1

λ̄ihi(x̄, w̄i). By Proposition 2.4.1, there exist ξ̄10 ∈ ∂ϵ10(f(·, ū))(x̄),

ξ̄20 ∈ ∂ϵ20(−r̄g(·, v̄))(x̄), ξ̄i ∈ ∂ϵi(λ̄ihi(·, w̄i))(x̄), ξ̄m+1 ∈ ∂ϵm+1δC(x̄), ϵ
1
0
>= 0,
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ϵ20 >= 0, ϵi >= 0, i = 1, . . . ,m, and ϵm+1 >= 0 such that

0 ∈ ∂ϵ10(f(·, ū))(x̄) + ∂ϵ20(−r̄g(·, v̄))(x̄) +
m∑
i=1

∂ϵi(λ̄ihi(·, w̄i))(x̄) +N
ϵm+1

C (x̄)

and ϵ10 + ϵ20 +
m+1∑
i=1

ϵi = f(x̄, ū)− r̄g(x̄, v̄) +
m∑
i=1

λ̄ihi(x̄, w̄i). (2.19)

Hence, (2.16) holds. Since r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

− ϵ, we have max
u∈U

f(x̄, u) −

r̄min
v∈V

g(x̄, v) = ϵmin
v∈V

g(x̄, v). So, we have

f(x̄, ū)− r̄g(x̄, v̄) <= max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v) = ϵmin
v∈V

g(x̄, v). (2.20)

Hence, (2.17) holds. Also, from (2.19) and (2.20), we have

ϵ10 + ϵ20 +
m+1∑
i=1

ϵi − ϵmin
v∈V

g(x̄, v) <=

m∑
i=1

λ̄ihi(x̄, w̄i).

Consequently, (2.16) and (2.18) hold.

[(ii) ⇒ (i)] Taking into account the converse of the process for proving

(i) ⇒ (ii), we can easily check that the statement (ii) ⇒ (i) holds.

Remark 2.4.3. Assume that f : Rn × Rp → R and g : Rn × Rp → R are

functions such that for all x ∈ Rn, f(x, ·) and g(x, ·) are concave and convex,

respectively. Then, we know that Theorem 2.4.2 is equivalent to Theorem

2.4.3 from Lemma 2.4.2, immediately.
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Now. following the approach in [27], we formulate a dual problem (RFD)

for (RFP) as follows:

(RFD) max r

s.t. 0 ∈ ∂ϵ10(max
u∈U

f(·, u))(x) + ∂ϵ20(−rmin
v∈V

g(·, v))(x)

+
m∑
i=1

∂ϵi(λihi(·, wi))(x) +N
ϵm+1

C (x),

max
u∈U

f(x, u)− rmin
v∈V

g(x, v) >= ϵmin
v∈V

g(x, v),

ϵ10 + ϵ20 +
m+1∑
i=1

ϵi − ϵmin
v∈V

g(x, v) <=

m∑
i=1

λihi(x,wi),

r >= 0, wi ∈ Wi, λi >= 0, i = 1, . . . ,m,

ϵ10 >= 0, ϵ20 >= 0, ϵi >= 0, i = 1, . . . ,m+ 1.

Clearly, F := {(x,w, λ, r) | 0 ∈ ∂ϵ10(max
u∈U

f(·, u))(x) + ∂ϵ20(−rmin
v∈V

g(·, v))(x) +

m∑
i=1

∂ϵi(λihi(·, wi)) (x) +N ϵ2
R+

(x), max
u∈U

f(x, u)− rmin
v∈V

g(x, v) >= ϵg(x, v), ϵ10 +

ϵ20 +
m+1∑
i=1

ϵi − ϵmin
v∈V

g(x, v) <=
m∑
i=1

λihi(x,wi), r >= 0, wi ∈ Wi, λi >= 0, ϵ10 >=

0, ϵ20 >= 0, ϵi >= 0, i = 1, . . . ,m, ϵm+1 >= 0} is the feasible set of (RFD).

Let ϵ >= 0. Then (x̄, w̄, λ̄, r̄) is called an approximate solution of (RFD) if

for any (y, w, λ, r) ∈ F , r̄ >= r − ϵ.

When ϵ = 0, max
u∈U

f(x, u) = f(x), min
v∈V

g(x, v) = g(x) and hi(x,wi) =

hi(x), i = 1, . . . ,m, (RFP) becomes (FP), and (RFD) collapses to the Mond-
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wier type dual problem (FD) for (FP) as follows [56]:

(FD) max r

s.t. 0 ∈ ∂f(x) + ∂(−rg)(x) +
m∑
i=1

∂λihi(x) +NC(x),

f(x)− rg(x) >= 0, λihi(x) >= 0,

r >= 0, λi >= 0, i = 1, . . . ,m.

Now, we prove an approximate weak duality theorem and an approximate

strong duality theorem which hold between (RFP) and (RFD).

Theorem 2.4.4. (Approximate Weak Duality Theorem) For any fea-

sible solution x of (RFP) and any feasible solution (y, w, λ, r) of (RFD),

max
(u,v)∈U×V

f(x, u)

g(x, v)
>= r − ϵ.

Proof. Let x and (y, w, λ, r) be feasible for (RFP) and (RFD), respectively.

Then there exist ξ̄10 ∈ ∂ϵ10(max
u∈U

f(·, u))(y), ξ̄20 ∈ ∂ϵ20(−rmin
v∈V

g(·, v))(y), ξ̄i ∈

∂ϵi(λihi(·, wi)(y), ξ̄m+1 ∈ N
ϵm+1

C (y), ϵ10 >= 0, ϵ20 >= 0, ϵi >= 0, i = 1, . . . ,m and

ϵm+1 >= 0 such that

ξ̄10 + ξ̄20 +
m+1∑
i=1

ξ̄i = 0, max
u∈U

f(y, u)− rmin
v∈V

g(y, v) >= ϵmin
v∈V

g(y, v)

and ϵ10 + ϵ20 +
m+1∑
i=1

ϵi − ϵmin
v∈V

g(y, v) <=

m∑
i=1

λihi(y, wi).
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Thus, we have

max
u∈U

f(x, u)− rmin
v∈V

g(x, v) + ϵmin
v∈V

g(x, v)

>=max
u∈U

f(y, u)− rmin
v∈V

g(y, v) + ⟨ξ̄10 + ξ̄20 , x− y⟩ − ϵ10 − ϵ20 + ϵmin
v∈V

g(x, v)

=max
u∈U

f(y, u)− rmin
v∈V

g(y, v)− ⟨
m+1∑
i=1

ξ̄i, x− y⟩ − ϵ10 − ϵ20 + ϵmin
v∈V

g(x, v)

>=max
u∈U

f(y, u)− rmin
v∈V

g(y, v) +
m∑
i=1

λihi(y, wi)−
m∑
i=1

λihi(x,wi)− ϵ10 − ϵ20

−
m+1∑
i=1

ϵi + ϵmin
v∈V

g(x, v)

>=max
u∈U

f(y, u)− rmin
v∈V

g(y, v) +
m∑
i=1

λihi(y, wi)− ϵ10 − ϵ20 −
m+1∑
i=1

ϵi

>=max
u∈U

f(y, u)− rmin
v∈V

g(y, v)− ϵmin
v∈V

g(y, v)

>=0

Hence, we have max
(u,v)∈U×V

f(x,u)
g(x,v)

>= r − ϵ.

Theorem 2.4.5. (Approximate Strong Duality Theorem) Suppose

that ∪
wi∈Wi,λi>=0

epi(
m∑
i=1

λigi(·, wi))
∗ + C∗ × R+

is closed. If x̄ is an approximate solution of (RFP) and max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

−ϵ >= 0,
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then there exist w̄ ∈ Rq, λ̄ ∈ Rm
+ and r̄ ∈ R+ such that (x̄, w̄, λ̄, r̄) is a 2-

approximate solution of (RFD).

Proof. Let x̄ ∈ A be an approximate solution of (RFP). Let r̄ = max
(u,v)∈U×V

f(x̄,u)
g(x̄,v)

.

Then, by Theorem 2.4.2, there exist w̄i ∈ Wi, λ̄i >= 0, ϵ10 >= 0, ϵ20 >= 0, ϵi >= 0,

i = 1, . . . ,m and ϵm+1 such that

0 ∈ ∂ϵ10(max
u∈U

f(·, u))(x̄) + ∂ϵ20(−r̄min
v∈V

g(·, v))(x̄) +
m∑
i=1

∂ϵi(λ̄ihi(·, w̄i))(x̄)

+N
ϵm+1

C (x̄),

max
u∈U

f(x̄, u)− r̄min
v∈V

g(x̄, v) = ϵmin
v∈V

g(x̄, v) and

ϵ10 + ϵ20 +
m+1∑
i=1

ϵi − ϵmin
v∈V

g(x̄, v) =
m∑
i=1

λ̄ihi(x̄, w̄i).

So, (x̄, w̄, λ̄, r̄) is a feasible solution of (RFD). For any feasible (y, u, v, w, λ, v)

of (RFD), it follows from Theorem 2.4.4 (Approximate Weak Duality Theo-

rem) that

r̄ = max
(u,v)∈U×V

f(x̄, u)

g(x̄, v)
− ϵ >= r − ϵ− ϵ = r − 2ϵ.

Thus (x̄, w̄, λ̄, r̄) is a 2-approximate solution of (RFD).

Remark 2.4.4. Using the optimality conditions of Theorem 2.4.2, robust

fractional dual problem (RFD) for a robust fractional problem (RFP) in the

convex constraint functions with uncertainty is formulated. However, when

we formulated the dual problem using optimality condition in Theorem 2.4.3,
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we could not know whether approximate weak duality theorem is established,

or not. It is our open question.

Now we give an example illustrating our duality theorems.

Example 2.4.1. Consider the following fractional optimization problem

with uncertainty:

(RFP) min max
(u,v)∈U×V

ux+ 1

vx+ 2

s.t. 2w1x− 3 <= 0, w1 ∈ [1, 2], x ∈ R+,

where U = [1, 2] and V = [1, 2].

Now we transform the problem (RFP) into the robust non-fractional con-

vex optimization problem (RNCP)r with a parameter r ∈ R+:

(RNCP)r min max
u∈[1,2]

(ux+ 1)− r min
v∈[1,2]

(vx+ 2)

s.t. 2w1x− 3 <= 0, w1 ∈ [1, 2], x ∈ R+.

Let f(x, u) = ux+1, g(x, v) = vx+2 , h1(x,w1) = −2w1x−3 and ϵ ∈ [0, 9
22
].

Then A := {x ∈ R | 0 <= x <=
3
4
} is the set of all robust feasible solutions

of (RFP) and Ā := {x ∈ R | 0 <= x <=
4ϵ

3−2ϵ
} is the set of all approxi-

mate solutions of (RFP). Let F := {(y, w1, λ1, r) | 0 ∈ ∂ϵ10(max
u∈U

f(·, u))(y) +

∂ϵ20(−rmin
v∈V

g(·, v))(y)+∂ϵ1(λ1h1(·, w1))(y)+N ϵ2
R+

(x), max
u∈U

f(y, u)−rmin
v∈V

g(y, v)

>= ϵmin
v∈V

g(y, v), ϵ10 + ϵ20 + ϵ1 + ϵ2 − ϵmin
v∈V

g(y, v) <= λ1h1(y, w1), r >= 0, w1 ∈
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[1, 2], λ1 >= 0, ϵ10 >= 0, ϵ20 >= 0, ϵ1 >= 0, ϵ2 >= 0}. Then we formulate a dual

problem (RFD) for (RFP) as follows:

(RFD) max r

s.t. (y, w1, λ1, r) ∈ F.

Then F is the set of all robust feasible solutions of (RFD). Now we calculate

the set F = Ã ∪ B̃, where

Ã := {(0, w1, λ1, r) | 0 ∈ ∂ϵ10(max
u∈U

f(·, u))(0) + ∂ϵ20(−rmin
v∈V

g(·, v))(0) +

∂ϵ1(λ1h1(·, w1))(0) +N ϵ2
R+

(0), max
u∈U

f(0, u)− rmin
v∈V

g(0, v) >=

ϵmin
v∈V

g(0, v), ϵ10 + ϵ20 + ϵ1 + ϵ2 − ϵmin
v∈V

g(0, v) <= λ1h1(0, w1), r >= 0,

u ∈ [1, 2], λ1 >= 0, ϵ10 >= 0, ϵ20 >= 0, ϵ1 >= 0, ϵ2 >= 0}

= {(0, w1, λ1, r) | 0 ∈ {2}+ {−r}+ {2λ1w1}+ (−∞, 0], 1− 2r >= 2ϵ,

ϵ10 + ϵ20 + ϵ1 + ϵ2 − 2ϵ <= −3λ1, r >= 0, w1 ∈ [1, 2], λ1 >= 0, ϵ10 >= 0,

ϵ20 >= 0, ϵ1 >= 0, ϵ2 >= 0}

= {(0, w1, λ1, r) | r <= 2 + 2λ1w1, r <=
1− 2ϵ

2
, ϵ10 + ϵ20 + ϵ1 + ϵ2 − 2ϵ <=

−3λ1, r >= 0, w1 ∈ [1, 2], λ1 >= 0, ϵ10 >= 0, ϵ20 >= 0, ϵ1 >= 0, ϵ2 >= 0},

B̃ := {(y, w1, λ1, r) | 0 ∈ ∂ϵ10(max
u∈U

f(·, u))(y) + ∂ϵ20(−rmin
v∈V

g(·, v))(y) +

∂ϵ1(λ1h1(·, w1))(y) +N ϵ2
R+

(y), max
u∈U

f(y, u)− rmin
v∈V

g(y, v) >=

ϵmin
v∈V

g(y, v), ϵ10 + ϵ20 + ϵ1 + ϵ2 − ϵmin
v∈V

g(y, v) <= λ1h1(y, w1), y > 0,

r >= 0, w1 ∈ [1, 2], λ1 >= 0, ϵ10 >= 0, ϵ20 >= 0, ϵ1 >= 0, ϵ2 >= 0}
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= {(y, w1, λ1, r) | 0 ∈ {2− r + 2λ1w1}+ [−ϵ2
y
, 0], 2y + 1− r(y + 2) >=

ϵ(y + 2), y > 0, ϵ10 + ϵ20 + ϵ1 + ϵ2 − ϵ(y + 2) <= λ1(2w1y − 3), r >= 0,

w1 ∈ [1, 2], λ1 >= 0, ϵ10 >= 0, ϵ20 >= 0, ϵ1 >= 0, ϵ2 >= 0}

= {(y, w1, λ1, r) | 0 ∈ [2− r + 2λ1w1 −
ϵ2
y
, 2− r + 2λ1w1], 2y + 1−

r(y + 2) >= ϵ(y + 2), ϵ10 + ϵ20 + ϵ1 + ϵ2 − ϵ(y + 2) <= λ1(2w1y − 3),

y > 0, r >= 0, w1 ∈ [1, 2], λ1 >= 0, ϵ10 >= 0, ϵ20 >= 0, ϵ1 >= 0, ϵ2 >= 0}.

We can check for any x ∈ A and any (y, w1, λ1, r) ∈ F ,

max
(u,v)∈U×V

f(x, u)

g(x, v)
>= r − ϵ,

that is, Theorem 2.4.4 (Approximate Weak Duality Theorem) holds. Indeed,

let x ∈ A and (y, w1, λ1, r) ∈ Ã be any fixed. Then

max
u∈[1,2]

f(x, u)− r min
v∈[1,2]

g(x, v) + ϵ min
v∈[1,2]

g(x, v)

= 2x+ 1− r(x+ 2) + ϵ(x+ 2)

= (2− r)x+ 1− 2r + ϵ(x+ 2)

>= −2λ1w1x+ 2ϵ+ ϵ(x+ 2)

>= −3λ1 + 2ϵ+ ϵ(x+ 2)

>= −3λ1 + ϵ10 + ϵ20 + ϵ1 + ϵ2 + 3λ1 + ϵ(x+ 2)

>= 0.
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Moreover, let x ∈ A and (y, u, , v, w1, λ1, r) ∈ B̃ be any fixed.

max
u∈[1,2]

f(x, u)− r min
v∈[1,2]

g(x, v) + ϵ min
v∈[1,2]

g(x, v)

= 2x+ 1− r(x+ 2) + ϵ(x+ 2)

= 2y + 1− r(y + 2) + (2− r)(x− y) + ϵ(x+ 2).

If x− y >= 0, then

max
u∈[1,2]

f(x, u)− r min
v∈[1,2]

g(x, v) + ϵ min
v∈[1,2]

g(x, v)

= 2y + 1− r(y + 2) + (2− r)(x− y) + ϵ(x+ 2)

>= 2y + 1− r(y + 2)− 2λ1w1(x− y) + ϵ(x+ 2)

>= ϵ(y + 2) + 2λ1w1y − 3λ1 + ϵ(x+ 2)

>= ϵ10 + ϵ20 + ϵ1 + ϵ2 + 3λ1 − 3λ1 + ϵ(x+ 2)

>= 0.

If x− y < 0, then

max
u∈[1,2]

f(x, u)− r min
v∈[1,2]

g(x, v) + ϵ min
v∈[1,2]

g(x, v)

=2y + 1− r(y + 2) + (2− r)(x− y) + ϵ(x+ 2)

>=2y + 1− r(y + 2) + (−2λ1w1 +
ϵ2
y
)(x− y) + ϵ(x+ 2)

>=ϵ(y + 2) + 2λ1w1y − ϵ2 − 3λ1 +
ϵ2
y
x+ ϵ(x+ 2)

>=ϵ10 + ϵ20 + ϵ1 + ϵ2 + 3λ1 − ϵ2 − 3λ1 +
ϵ2
y
x+ ϵ(x+ 2)

>=0.
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Let ϵ = 1
3
. Then x̄ ∈ Ā := {x ∈ R | 0 <= x <=

4
7
} is the set of all

approximate solutions of (RFP) and 1
6
<= r̄ <=

1
2
.

If x̄ = 0, then r̄ = 1
6
. When ϵ = 1

3
, we can calculate the set Ã as follows:

Ã := {(0, w1, λ1, r) | 0 <= r <=
1

6
, 0 <= λ1 <=

2

9
, w1 ∈ [1, 2]}.

Let w̄1 = 2, λ̄1 =
1
9
. Then, (0, 2, 5

8
, 1
9
) ∈ Ã. So, we have

r̄ = max
(u,v)∈U×V

f(x̄, u)

g(x̄, v)
− ϵ =

1

6
=

5

6
− 2ϵ >= r − 2ϵ.

Hence, (0, 2, 1
9
, 1
6
) is a 2-approximate solution of (RFD). If 0 < x̄ <=

4
7
, then,

1
6
< r̄ <=

1
2
. When ϵ = 1

3
, we can calculate the set B̃ as follows:

B̃ :={(y, w1, λ1, r) | y > 0, 2 + 2λ1w1 −
ϵ2
y

<= r <=
5y + 1

3(y + 2)
, ϵ2 −

1

3
(y + 2) <=

λ1(2w1y − 3), r >= 0, u ∈ [1, 2], v ∈ [1, 2], w1 ∈ [1, 2], ϵ2 >= 0}.

Let w̄1 = 2, λ̄1 = 0 and ϵ2 =
x̄+2
3
. Then, (x̄, 2, 0, 5x̄+1

3(x̄+2)
) ∈ B̃. So, we have

r̄ = max
(u,v)∈U×V

f(x̄, u)

g(x̄, v)
− ϵ =

5x̄+ 1

3(x̄+ 2)
>= r >= r − 2ϵ.

Hence, (x̄, 2, 0, 5x̄+1
3(x̄+2)

) is a 2-approximate solution of (RFD) So, Theorem

2.4.5 (Approximate Strong Duality Theorem) holds.
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Chapter 3

Surrogate Duality for

Robust Semi-infinite Optimization Problems

3.1 Introduction

In this chapter, a semi-infinite optimization problem involving a quasi-

convex objective function and infinitely many convex constraint functions

with data uncertainty are considered. A surrogate duality theorem for the

semi-infinite optimization problem is given under a closed and convex cone

constraint qualification. Moreover, we extend the surrogate duality theorem

for the semi-infinite optimization problem to fractional semi-infinite opti-

mization problem with data uncertainty. Also, we induce characterizations

of the robust moment cone of Goberna et al. [22] by our results. Using a

closed and convex cone constraint qualification, we present surrogate duality

theorems for robust linear semi-infinite optimization problems.

Consider the following semi-infinite optimization problem in the absence

of data uncertainty

(SIP) min f(x)

s.t. gt(x) <= 0, ∀t ∈ T,

x ∈ C,
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where f, gt : Rn → R, t ∈ T , are functions, T is an index set with coordinately

possible infinite and C is a closed convex cone of Rn.

The semi-infinite optimization problem (SIP) in the face of data uncer-

tainty in the constraints can be captured by the problem

(USIP) min f(x)

s.t. gt(x, vt) <= 0, ∀t ∈ T,

x ∈ C,

where gt : Rn × Rq → R, gt(·, vt) is convex for all t ∈ T and ut ∈ Rq is an

uncertain parameter which belongs to the set Ut ⊂ Rq, t ∈ T . The robust

counterpart of (USIP):

(RSIP) min f(x)

s.t. gt(x, vt) <= 0, ∀vt ∈ Vt, ∀t ∈ T,

x ∈ C.

The robust feasible set F of (RSIP) is defined by

F := {x ∈ C | gt(x, vt) <= 0, ∀vt ∈ Vt, t ∈ T}.

The uncertainty set-valued mapping V : T ⇒ Rq is defined as V(t) := Vt

for all t ∈ T . We represent an element of an uncertainty set Vt by vt ∈ Vt

and v ∈ V means that v is a selection of V , i.e., v : T → Rq and vt ∈ Vt for all

t ∈ T (v is denoted by (vt)t∈T ). R(T )
+ denotes the set of mapping λ : T → R+

(also denoted by (λt)t∈T such that λt = 0 except for finitely many indices).
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The surrogate dual of (USIP) is given by

(USD) max
λ∈R(T )

+

inf{f(x) |
∑
t∈T

λtgt(x, vt) <= 0, x ∈ C}.

x is optimistic feasible solution of (USD) if and only if for every t ∈ T ,∑
t∈T gt(x, vt) <= 0 for some vt ∈ Vt and λt ≥ 0 [4]. The optimistic counterpart

of the uncertain surrogate dual (USD) over the set of optimistic feasible

solutions is as follows:

(OSD) max
V×R(T )

+

inf{f(x) |
∑
t∈T

λtgt(x, vt) <= 0, x ∈ C}.

By Lemma 2.2.1, we can obtain the following lemma which is the robust

version of Farkas Lemma for convex functions:

Lemma 3.1.1. Let f : Rn → R be a convex function and let gt : Rn ×Rq →

R, t ∈ T , be continuous functions such that for each vt ∈ Rq, gt(·, vt) is a

convex function. Let C be a closed convex cone of Rn. Let Vt ⊆ Rq, t ∈ T ,

and let F := {x ∈ C | gt(x, vt) <= 0, ∀vt ∈ Vt, t ∈ T} ̸= ∅. Then the

following statements are equivalent:

(i) {x ∈ C | gt(x, vt) <= 0, ∀vt ∈ Vt, t ∈ T} ⊆ {x ∈ Rn | f(x) >= 0};

(ii) (0, 0) ∈ epif ∗ + cl co (
∪

(v,λ)∈V×R(T )
+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ × R+).

Proof. We can easily prove this lemma in a similar way to the proof of Lemma

2.2.1.
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3.2 Surrogate Duality Theorem

In this section, we investigate a surrogate duality theorem for a semi-

infinite optimization problem with a quasiconvex objective function and con-

vex constraint functions with data uncertainty, that is, the value of the robust

counterpart (RSIP) is equal to the value of the optimistic counterpart (OSD)

(“primal worst equals dual best”) in the sense that

inf{f(x) | x ∈ F} = max
(v,λ)∈V×R(T )

+

inf{f(x) |
∑
t∈T

λtgt(x, vt) <= 0, x ∈ C}.

under the robust characteristic cone constraint qualification that∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ + R+

is closed and convex.

Now, we establish the surrogate duality theorem for the semi-infinite op-

timization problem with data uncertainty:

Theorem 3.2.1. Let f : Rn → R be an upper semicontinuous quasiconvex

function with domf∩F ̸= ∅, and let gt : Rn×Rq → R be continuous functions

such that for each t ∈ T and vt ∈ Vt, gt(·, vt) is a convex function. Assume

that the robust characteristic cone,∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ + R+

is closed and convex. Then

inf{f(x) | x ∈ F} = max
(v,λ)∈V×R(T )

+

inf{f(x) |
∑
t∈T

λtgt(x, vt) <= 0, x ∈ C}.
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Proof. Suppose that the assumption holds. Let m = infx∈F f(x). If m =

−∞, then the conclusion holds trivially. So, assume that m is finite. If

L(f,<,m) is empty, then putting λ = 0 and taking any v ∈ V , the equality

holds. Suppose that L(f,<,m) is not empty. Then L(f,<,m) ∩ F = ∅,

L(f,<,m) is a nonempty open convex set, and F is closed and convex. So,

by separation theorem, there exist a nonzero x∗ ∈ Rn and α ∈ R, such that

for all x ∈ F and y ∈ L(f,<,m),

⟨x∗, x⟩ <= α < ⟨x∗, y⟩ . (3.1)

Since ⟨x∗, x⟩ <= α for any x ∈ F, (x∗, α) ∈ epiδ∗F . Let A := {x ∈ Rn :

gt(x, vt) <= 0, ∀t ∈ T, ∀vt ∈ Vt}. Then F = A ∩ C. So, for any x ∈ Rn,

δF (x) = δA(x) + δC(x) and δA(x) = sup
v∈V
λ∈R(T )

+

∑
t∈T

λtgt(·, vt).

By Lemma 2.1.3 and Lemma 2.1.4,

epiδ∗F = epi(δA + δC)
∗ = epiδ∗A + epiδ∗C

= epi( sup
v∈V
λ∈R(T )

+

∑
t∈T

λtgt(·, vt))∗ + epiδ∗C

= cl co(
∪

(v,λ)∈V×R(T )
+

epi(
∑
t∈T

λtgt(·, vt))∗) + C∗ × R+.

So, by assumption,

(x∗, α) ∈ epiδ∗F =
∪

(v,λ)∈V×R(T )
+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ × R+.
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Hence, there exist λ̄ ∈ R(T )
+ , v̄ ∈ V , c∗ ∈ C∗ and r ∈ R+ such that

(x∗, α) ∈ epi(
∑
t∈T

λ̄tgt(·, v̄t))∗ + (c∗, r).

So,
∑

t∈T λ̄tgt(·, v̄t)∗(x∗−c∗) <= α−r, and hence ⟨x∗−c∗, x⟩−
∑

t∈T λ̄tgt(x, v̄t) <=

α − r for any C, that is, ⟨x∗, x⟩ −
∑

t∈T λ̄tgt(x, v̄t) <= α − r + ⟨c∗, x⟩ <= α

for any C. Hence, for any x ∈ F(v̄,λ̄), ⟨x∗, x⟩ <= α. Thus, from (3.1),

for any x ∈ F(v̄,λ̄), x /∈ L(f,<,m). So, for any x ∈ F(v̄,λ̄), f(x) >= m,

that is, inf{f(x) |
∑

t∈T λ̄tgt(x, v̄t) <= 0, x ∈ C} >= m. Since inf{f(x) |∑
t∈T λ̄tgt(x, vt) <= 0, x ∈ C} >= inf{f(x) | x ∈ F}, we have

inf{f(x) |
∑
t∈T

λ̄tgt(x, v̄t) <= 0, x ∈ C} = m.

Now we give an example illustrating Theorem 3.2.1.

Example 3.2.1. Consider the following semi-infinite optimization problem

with uncertainty:

(RSIP)1 min x3
1 + x5

2

s.t. x2
1 − 2vtx1 <= 0, ∀vt ∈ [t− 2, t+ 2], ∀t ∈ [0, 1],

(x1, x2) ∈ R2
+.

Let f(x1, x2) = x3
1+x2

2 and gt((x1, x2), vt) = x2
1−2vtx1. Then f is quasiconvex

function on R2 and F := {(x1, x2) ∈ R2 | 0 <= x1 <= 1, x2 >= 0} is the
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set of all robust feasible solutions of (RSIP)1. Also, we see that, for each

vt ∈ Vt = [t− 2, t+ 2], t ∈ [0, 1],

gt(·, vt)∗(a1, a2) =
{

(a1+2vt)2

4
, a2 = 0,

+∞, a2 ̸= 0.

So,

∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗

=
∪

vt∈Vt,λt>0

epi(
∑
t∈T

λtgt(·, vt))∗ ∪ {0} × {0} × R+

=
∪

vt∈Vt,λt>0

∑
t∈T

λtepi(gt(·, vt))∗ ∪ {0} × {0} × R+

=
∪

vt∈Vt,λt>0

∑
t∈T

λt{(a1, 0, rt) | r >=
(a1+2vt)2

4
} ∪ {0} × {0} × R+

= R× {0} × R+.

Hence, the cone,
∪

(v,λ)∈V×R(T )
+

epi(λtgt(·, vt))∗+C∗×R+ = R× (−R+)×R+,

is closed and convex. Moreover, let λ̄0 = λ̄1 = 1 and λ̄t = 0 for all t ∈ (0, 1)

and vt ∈ [t− 2, t+ 2], then

0 = inf{f(x1, x2) | (x1, x2) ∈ F}

= inf{f(x1, x2) |
∑
t∈T

λtgt(x1, x2, vt) <= 0, (x1, x2) ∈ R+}.

Thus, Theorem 3.2.1 holds.
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We now show that if for each x ∈ Rn, gt(x, ·) is concave on Vt and Vt ⊆ Rq,

t ∈ T , is convex, then the robust characteristic cone is a convex cone.

Proposition 3.2.1. (cf. [44]) Let gt : Rn × Rq → R, t ∈ T , be continuous

functions and let C be a closed convex cone. Suppose that each Vt ⊆ Rq,

t ∈ T , is convex, for all vt ∈ Rq, gt(·, vt) is a convex function, and for each

x ∈ Rn, gt(x, ·) is concave on Vt. Then, the cone,

∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ × R+,

is convex.

Proof. Let Λ :=
∪

(v,λ)∈V×R(T )
+

epi(
∑

t∈T λtgt(·, vt))∗+C∗×R+. Let (y1, α1) ∈

Λ, (y2, α2) ∈ Λ, and µ ∈ [0, 1]. We will show that (µy1 + (1 − µ)y2, µα1 +

(1− µ)α2) ∈ Λ. Since Λ is a cone, µ(y1, α1) ∈ Λ and (1− µ)(y2, α2) ∈ Λ. So,

there exist v1t ∈ Vt for all t ∈ T , (λ1
t )t∈T ∈ R(T )

+ , c∗1 ∈ C∗ and r1 ∈ R+ such

that

µ(y1, α1) ∈ epi(
∑
t∈T

λ1
t gt(·, v1t ))∗ + (c∗1, r1).

Similarly, there exist v2t ∈ Vt for all t ∈ T , (λ2
t )t∈T ∈ R(T )

+ , c∗2 ∈ C∗ and

r2 ∈ R+ such that

(1− µ)(y2, α2) ∈ epi(
∑
t∈T

λ2
tgt(·, v2t ))∗ + (c∗2, r2).
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Hence, we have

(
∑
t∈T

λ1
tgt(·, v1t ))∗(µy1 − c∗1) + (

∑
t∈T

λ2
tgt(·, v2t ))∗((1− µ)y2 − c∗2)

<= µα1 + (1− µ)α2 − r1 − r2.

Let for each t ∈ T , λt = λ1
t + λ2

t and

vt :=

{
v1t , if λt = 0,
λ1
t

λt
v1t +

λ2
t

λt
v2t , if λt > 0.

If λt = 0, then λ1
t = λ2

t = 0, and hence λ1
t gt(x, v

1
t ) + λ2

tgt(x, v
2
t ) = λtgt(x, vt).

Now we assume that λt > 0. Since gt(x, ·) is concave, we have

λ1
tgt(x, v

1
t ) + λ2

tgt(x, v
2
t ) = λt(

λ1
t

λt

gt(x, v
1
t ) +

λ2
t

λt

gt(x, v
2
t ))

<= λtgt(x,
λ1
t

λt

v1t +
λ2
t

λt

v2t )

= λtgt(x, vt).

Thus for any t ∈ T , λ1
tgt(x, v

1
t )+λ2

tgt(x, v
2
t ) <= λtgt(x, vt). Moreover, we have

µα1 + (1− µ)α2 − r1 − r2

>= (
∑
t∈T

λ1
t gt(·, v1t ))∗(µy1 − c∗1) + (

∑
t∈T

λ2
tgt(·, v2t ))∗((1− µ)y2 − c∗2)

= sup
x∈Rn

{⟨µy1 − c∗1, x⟩ −
∑
t∈T

λ1
tgt(x, v

1
t )}+ sup

x∈Rn

{⟨(1− µ)y2 − c∗2, x⟩

−
∑
t∈T

λ2
tgt(x, v

2
t )}
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>= sup
x∈Rn

{⟨µy1 + (1− µ)y2 − c∗1 − c∗2, x⟩ −
∑
t∈T

(λ1
tgt(x, v

1
t ) + λ2

tgt(x, v
2
t ))}

>= sup
x∈Rn

{⟨µy1 + (1− µ)y2 − c∗1 − c∗2, x⟩ −
∑
t∈T

λtgt(x, vt)}

= (
∑
t∈T

λtgt(·, vt))∗(µy1 + (1− µ)y2 − c∗1 − c∗2).

So, (µy1+(1−µ)y2−c∗1−c∗2, µα1+(1−µ)α2−r1−r2) ∈ epi(
∑

t∈T λtgt(·, vt))∗,

and hence (µy1 + (1− µ)y2, µα1 + (1− µ)α2) ∈ epi(
∑

t∈T λtgt(·, vt))∗ + (c∗1 +

c∗2, r1 + r2). Since (c∗1 + c∗2, r1 + r2) ∈ C∗ × R+, we see that (µy1 + (1 −

µ)y2, µα1 + (1− µ)α2) ∈ Λ.

Let T be a compact metric space and V : T ⇒ Rq be a set-valued map-

ping. Let g : Rn ×Rq → R be a given function and let C be a closed convex

cone of Rn. Now, we will assume that the following conditions hold:

(C1) gtk(·, vtk) → gtk(·, vt), when x ∈ Rn, tk → t ∈ T and vtk ∈ Vtk → vt ∈ Vt

as k → ∞.

(C2) (Slater condition) There exists x0 ∈ C such that

gt(x0, vt) < 0, ∀vt ∈ Vt, t ∈ T.

Now we prove that the robust characteristic cone is closed under the

conditons (C1) and (C2).

Proposition 3.2.2. Let T be a compact metric space and let V be compact,

convex and uniformly upper semicontinuous on T . Let gt : Rn × Rq → R,
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t ∈ T , be continuous functions such that for all vt ∈ Rq, gt(·, vt) is a convex

function and let C be a closed convex cone of Rn. Suppose that the condition

(C1) and the condition (C2) hold. Then

∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ × R+

is closed.

Proof. First we notice that

∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ × R+

=
∪
v∈V

co cone({epi(gt(·, vt))∗ : t ∈ T} ∪ (0, 1)) + C∗ × R+.

Let Λ :=
∪

(v,λ)∈V×R(T )
+

epi(
∑

t∈T λtgt(·, vt))∗ + C∗ × R+ and let (wk, αk) ∈ Λ

with (wk, αk) → (x∗, α) ∈ Rn × R. Now, we will show that (x∗, α) ∈ Λ.

Since (wk, αk) ∈ Λ, for each k ∈ N, there exist vkt ∈ Vt, t ∈ T , ck ∈ C∗

and rk ∈ R+ such that (wk, αk) ∈ co cone({epi(gt(·, vkt ))∗ : t ∈ T} ∪ (0, 1)) +

C∗ × R+. So, from Carathéodory theorem, for each k ∈ N, there exist

vtki ∈ Vtki
, tki ∈ T , λk

i
>= 0, i = 1, . . . , n + 1, and λk

0
>= 0 such that (wk, αk) ∈∑n+1

i=1 λk
i epi(gtki (·, vtki ))

∗ + λk
0(0, 1). Since T is compact, we may assume that

tki → ti ∈ T as t → ∞, i = 1, . . . , n+ 1.

Fix i = 1, . . . , n+1 and let ϵ > 0 be any fixed. Since V is uniformly upper

semicontinuous, there exist η > 0 such that Vt ⊂ Vti + ϵB, for any t ∈ T with

d(t, ti) <= η, where B is a unit ball in Rq. Since tki → ti as k → ∞, there exists
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ki ∈ N such that k >= ki, d(t
k
i , ti) <= η. So, for all k >= ki, Vtki

⊂ Vti + ϵB. Since

vtki ∈ Vtki
, there exists wti ∈ Vti such that vtki ∈ wti + ϵB, i.e., ∥vtki −wti∥ < ϵ.

So, infzti∈Vti
∥vtki − zti∥ < ϵ. It follows that there exists ki ∈ N such that for

all k >= ki, d(vtki ,Vti) <= ϵ. So, d(vtki ,Vti) = 0 as k → ∞, i.e., vtki ∈ Vti . Hence,

there exists z∗
tki
∈ Vti , k = 1, 2, . . ., such that d(vtki ,Vti) = ∥vtki − z∗

tki
∥ → 0 as

k → ∞. Since Vti is compact, we may assume that there exists vti ∈ Vti such

that z∗
tki
→ vti as k → ∞. Hence, we have

lim
k→∞

∥vtki − vti∥ = lim
k→∞

∥(vtki − z∗tki
) + (z∗tki

− vti)∥

<= lim
k→∞

∥vtki − z∗tki
∥+ lim

k→∞
∥z∗tki − vti∥ = 0.

So, vtki → vti as k → ∞.

Now, we show that lk :=
∑n+1

i=1 λk
i + λk

0 is bounded. Otherwise, we may

assume that lk → +∞. By passing to subsequences, we may assume that

λk
i

lk
→ δi ∈ R+, i = 1, . . . , n+ 1,

λk
0

lk
→ δ0 ∈ R+ with

∑n+1
i=1 δi + δ0 = 1. Then,

for each x ∈ Rn,

(wk)Tx−
n+1∑
i=1

λk
i gtki (x, vtki )

<= (wk − ck)Tx−
n+1∑
i=1

λk
i gtki (x, vtki )

<= (
n+1∑
i=1

λk
i gtki (·, vtki ))

∗(wk − ck)

<= αk − rk − λk
0

<= αk − λk
0.
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Dividing both sides of the last inequality by lk and passing to the limit, we get

that, for each x ∈ C,
∑n+1

i=1 δigti(x, vti) >= δ0. If δi = 0, for all i = 1, . . . , n+1,

then we see that 0 =
∑n+1

i=1 δigti(x, vti) >= 1. This is a contradiction. Also,

if δi ̸= 0, for some i, then
∑n+1

i=1 δigti(x, vti) >= 0. This contradicts (C2) as

0 <
∑n+1

i=1 δi <= 1.

Now, as lk is bounded, we may assume that λk
i → λi and λk

0 → λ0. As,

for each x ∈ C,

(wk)Tx−
n+1∑
i=1

λk
i g

k
ti
(x, vkti) <= αk − λk

0,

it follows, by passing to the limit and noting that gt is continuous, that, for

each x ∈ C,

(x∗)Tx−
n+1∑
i=1

λigti(x, vti) <= α− λ0.

Hence, for any x ∈ Rn,

(x∗)Tx−
n+1∑
i=1

λigti(x, vti)− δC <= α− λ0,

and so (
∑n+1

i=1 λigti(·, vti) + δC)
∗(x∗) <= α − λ0. By Lemma 2.1.3, it follows

that

(x∗, α− λ0) ∈ epi(
n+1∑
i=1

λigti(·, vti) + δC)
∗ = epi(

n+1∑
i=1

λigti(·, vti))∗ + C∗ × R+.
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Hence, we have

(x∗, α) ∈ epi(
n+1∑
i=1

λigti(·, vti))∗ + λ0(0, 1) + C∗ × R+

⊆ epi(
∑
t∈T

λtgt(·, vt))∗ + {0} × R+ + C∗ × R+

⊆
∪

(v,λ)∈V×R(T )
+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ × R+.

Thus, the cone
∪

(v,λ)∈V×R(T )
+

epi(
∑

t∈T λtgt(·, vt))∗ + C∗ × R+ is closed.

We give an example illustrating Proposition 3.2.1 and Proposition 3.2.2.

Example 3.2.2. Consider the following semi-infinite optimization problem

with uncertainty:

(RSIP)2 min x3
1 + x5

2

s.t. tx2
1 − 2vtx1 <= 0, ∀vt ∈ [t, t+ 1], ∀t ∈ [1, 2],

(x1, x2) ∈ R2
+.

Let f(x1, x2) = x3
1 + x5

2 and gt((x1, x2), vt) = tx2
1 − 2vtx1. Then f is quasi-

convex function on R2, for each x ∈ R2, gt(x, ·) is concave on Vt and for all

vt ∈ R, gt(·, vt) is convex on R2. F := {(x1, x2) ∈ R2 | 0 <= x1 <= 2, x2 >= 0}

is the set of all robust feasible solutions of (RSIP)2. Clearly, the Slater con-

dition holds for (RSIP)2. Also, we see that, for each vt ∈ Vt = [t, t + 1],

t ∈ [1, 2],

gt(·, vt)∗(a1, a2) =
{

(a1+2vt)2

4t
, a2 = 0,

+∞, a2 ̸= 0.
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So, we have

∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗

=
∪

vt∈Vt,λt>0

∑
t∈T

λtepi(gt(·, vt))∗ ∪ {0} × {0} × R+

=
∪

vt∈[t,t+1],λt>0

∑
t∈[1,2]

λt{(a1, 0, rt) | rt >=
(a1 + 2vt)

2

4t
} ∪ {0} × {0} × R+

= {(a1, 0, α) | max{0, 2a} <= α}.

Hence,
∪

(v,λ)∈V×R(T )
+

epi(λtgt(·, vt))∗+C∗×R+ = {(a1, a2, α) | max{0, 2a1} <=

α, a2 <= 0} is closed and convex.

We obtain the surrogate duality theorem for the semi-infinite optimization

problem under the Slater condition:

Corollary 3.2.1. Let gt : Rn ×Rq → R, t ∈ T , be continuous functions and

let C be a closed convex cone. Suppose that each Vt ⊆ Rq, t ∈ T , is convex,

for all vt ∈ Rq, gt(·, vt) is a convex function, for each x ∈ Rn and gt(x, ·) is

concave on Vt. If the condition (C1) and the condition (C2) hold, then

inf{f(x) | x ∈ F} = max
(v,λ)∈V×R(T )

+

inf{f(x) |
∑
t∈T

λtgt(x, vt) <= 0, x ∈ C}.

Proof. By Proposition 3.2.1 and Proposition 3.2.2, we know that the robust

characteristic cone is convex and closed. So, by Theorem 3.2.1, the theorem

holds.
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Now, we consider the following standard form of fractional semi-infinite

optimization problem (FSIP) with a geometric constraint set:

(FSIP) min
p(x)

q(x)

s.t. gt(x) <= 0, t ∈ T,

x ∈ C,

where p, gt : Rn → R, t ∈ T , are convex functions, C is a closed convex

cone of Rn and q : Rn → R is a linear function such that for any x ∈ C,

p(x) >= 0 and q(x) > 0. The fractional semi-infinite optimization problem

(FSIP) in the face of data uncertainty in the constraints can be captured by

the problem:

(UFSIP) min
p(x)

q(x)

s.t. gt(x, vt) <= 0, t ∈ T,

x ∈ C,

where gt : Rn × Rq → R, gt(·, vt) is convex and vt ∈ Rq is an uncertain

parameter which belongs to the set Vt ⊂ Rq, t ∈ T . The robust counterpart

of (UFSIP) is

(RFSIP) min
p(x)

q(x)

s.t. gt(x, vt) <= 0, ∀vt ∈ Vt, t ∈ T,

x ∈ C.
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Theorem 3.2.2. Let C be a closed convex cone of Rn. Let p : Rn → R

and q : Rn → R be convex and linear respectively such that for any x ∈ C,

p(x) >= 0 and q(x) > 0, and let gt : Rn × Rq → R be continuous functions

such that for each t ∈ T and vt ∈ Vt, gt(·, vt) is a convex function. Assume

that the robust characteristic cone,

∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ + R+

is closed and convex. Then

inf{p(x)
q(x)

| x ∈ F} = max
(v,λ)∈V×R(T )

+

inf{p(x)
q(x)

|
∑
t∈T

λtgt(x, vt) <= 0, x ∈ C}.

Proof. By Result 3 in [48], p(x)
q(x)

is a quasiconvex function. Thus, by Theorem

3.2.1, the conclusion holds.

3.3 Application to Robust Linear Semi-infinite Opti-

mization Problem

In this section, by using the results in Section 3.2, we induce charac-

terizations of the robust moment cone of Goberna et al. [22]. Moreover,

we present surrogate duality theorems for linear semi-infinite optimization

problem under a closed and convex cone constraint qualification.
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Now we consider the following linear semi-infinite optimization problem

in the absence of data uncertainty [22]:

(LSIP) min ⟨c, x⟩

s.t. ⟨at, x⟩ >= bt, ∀t ∈ T,

x ∈ C,

where c, at ∈ Rn and bt ∈ R, t ∈ T . The semi-infinite optimization problem

in the face of data uncertainty in the linear constraints can be captured by

the problem [22]

(ULSIP) min ⟨c, x⟩

s.t. ⟨at, x⟩ >= bt, ∀t ∈ T,

x ∈ C,

where at and bt are uncertain parameters, and (at, bt) belongs to the set

Vt ⊂ Rn+1 for all t ∈ T .

Let (at, bt) ∈ Vt, for t ∈ T . The set-valued mapping V : T ⇒ Rn+1 is

defined as V(t) := Vt for all t ∈ T [22].

The robust counterpart of (ULSIP) [22] is

(RLSIP) min ⟨c, x⟩

s.t. ⟨at, x⟩ >= bt, ∀(at, bt) ∈ Vt, ∀t ∈ T,

x ∈ C.

Clearly, F1 := {x ∈ C | ⟨at, x⟩ <= bt, ∀(at, bt) ∈ Vt, ∀t ∈ T} is the feasible set

of (RLSIP). Goberna et al. [22] defined the robust moment cone of (RLSIP)
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for x ∈ Rn as

∪
(at,bt)t∈T∈V

co cone{(at, bt), t ∈ T : (0n, 1)}. (3.2)

For x ∈ C, (3.2) is transformed into

∪
(at,bt)t∈T∈V

co cone{(at, bt), t ∈ T}+ C∗ × R+.

It can be induced by our robust characteristic cone of (RSIP) as follows:

∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ × R+,

where gt(x, ut) = ⟨at, x⟩ − bt, vt = (at, bt) ∈ Vt, t ∈ T , x ∈ C.

Proposition 3.3.1. Let gt : Rn×Rn+1 → R, t ∈ T , be continuous functions.

Let at ∈ Rn and bt ∈ R, Vt ⊂ Rn+1, t ∈ T , and let C be a closed convex cone.

Then, for x ∈ C,

∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ + R+

=
∪

(at,bt)∈Vt

co cone{(at, bt) | t ∈ T}+ C∗ × R+.

Proof. Define gt : Rn × Rn+1 → R by

gt(x, vt) = ⟨at, x⟩ − bt, vt = (at, bt) ∈ Vt, t ∈ T.
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Then we have

∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ × R+

=
∪

(at,bt)t∈T∈V

λ∈R(T )
+

epi(
∑
t∈T

λt⟨at, ·⟩ −
∑
t∈T

λtbt)
∗ + C∗ × R+.

Let (w,α) ∈
∪

(at,bt)t∈T∈V

λ∈R(T )
+

epi(
∑

t∈T λt⟨at, ·⟩−
∑

t∈T λtbt)
∗+C∗×R+. It means

that there exist vt = (at, bt) ∈ Vt and λ ∈ R(T )
+ such that

(w,α) ∈ epi(
∑
t∈T

λt⟨at, ·⟩ −
∑
t∈T

λtbt)
∗ + C∗ × R+,

that is, there exist c∗ ∈ C∗ and r ∈ R+ such that

⟨w − c∗, x⟩ −
∑
t∈T

λt⟨at, x⟩+
∑
t∈T

λtbt <= α− r, ∀x ∈ C

⇔ ⟨w − c∗ −
∑
t∈T

λtat, x⟩+
∑
t∈T

λtbt <= α− r, ∀x ∈ C

⇔ w =
∑
t∈T

λtat + c∗ and
∑
t∈T

λtbt + r <= α

⇔ w =
∑
t∈T

λtat + c∗ and α ∈
∑
t∈T

λtbt + R+.
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So, there exist vt = (at, bt) ∈ Vt, λ ∈ R(T )
+ and c∗ ∈ C∗ such that

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ × R+ = epi(
∑
t∈T

λt⟨at, ·⟩ −
∑
t∈T

λtbt)
∗ + C∗ × R+

= {
∑
t∈T

λtat + c∗} × {
∑
t∈T

λtbt + R+}

= (
∑
t∈T

λtat,
∑
t∈T

λtbt) + {c∗} × R+

= co cone{(at, bt) | t ∈ T}+ {c∗} × R+

⊆ co cone{(at, bt) | t ∈ T}+ C∗ × R+.

Hence,

∪
(v,λ)∈V×R(T )

+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ + R+

⊆
∪

(at,bt)∈Vt

co cone{(at, bt) | t ∈ T}+ C∗ × R+.

Similarly, we can show that

∪
(at,bt)∈Vt

co cone{(at, bt) | t ∈ T}+ C∗ × R+

⊆
∪

(v,λ)∈V×R(T )
+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ + R+.

Thus, we obtain the desired result.

From Theorem 3.2.1, we obtain the following theorem:
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Theorem 3.3.1. Let c, at ∈ Rn, bt ∈ R, t ∈ T , and C be a closed convex

cone. Assume that the robust moment cone,

∪
(at,bt)t∈T∈V

co cone{(at, bt) : t ∈ T}+ C∗ × R+,

is closed and convex. Then

inf{⟨c, x⟩ | ⟨at, x⟩ − bt <= 0, ∀vt = (at, bt) ∈ Vt, ∀t ∈ T, x ∈ C}

= max
(v,λ)∈V×R(T )

+

inf{⟨c, x⟩ |
∑
t∈T

λt(⟨at, x⟩ − bt) <= 0, x ∈ C}.

Proof. Let f(x) := ⟨c, x⟩, x ∈ C. Define gt : Rn × Rn+1 → R by

gt(x, vt) = ⟨at, x⟩ − bt, vt = (at, bt) ∈ Vt, t ∈ T..

Then, by Proposition 3.3.1,

∪
(at,bt)∈Vt

cocone{(at, bt) | t ∈ T}+ C∗ × R+

=
∪

(v,λ)∈V×R(T )
+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ + R+.

By assumption,
∪

(v,λ)∈V×R(T )
+

epi(
∑

t∈T λtgt(·, vt))∗ is closed and convex, by

Theorem 3.2.1,

inf{f(x) | gt(x, vt) <= 0, ∀vt ∈ Vt, ∀t ∈ T, x ∈ C}

= max
(v,λ)∈V×R(T )

+

inf{f(x) |
∑
t∈T

λtgt(x, vt) <= 0, x ∈ C}.
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Thus, we see that

inf{⟨c, x⟩ | ⟨at, x⟩ − bt <= 0, ∀vt = (at, bt) ∈ Vt, ∀t ∈ T, x ∈ C}

= max
(v,λ)∈V×R(T )

+

inf{⟨c, x⟩ |
∑
t∈T

λt(⟨at, x⟩ − bt) <= 0, x ∈ C}.

Proposition 3.3.2. (cf. [22]) Let c, at ∈ Rn, bt ∈ R, t ∈ T , and C be a

closed convex cone. Then

∪
(at,bt)t∈T∈V

co cone{(at, bt) | t ∈ T}+ C∗ × R+

is convex.

Proof. Define gt : Rn × Rn+1 → R by

gt(x, vt) = ⟨at, x⟩ − bt, vt = (at, bt) ∈ Vt, t ∈ T.

Let vt = (at, bt) ∈ Vt, for t ∈ T . Then gt : Rn × Rn+1 → R, t ∈ T , are

continuous, and Vt is convex. For all vt ∈ Rn+1, gt(·, vt) is convex, and for

each x ∈ Rn, gt(x, ·) is affine on Vt. Since, by Proposition 3.3.1,

∪
(at,bt)∈Vt

cocone{(at, bt) | t ∈ T}+ C∗ × R+

=
∪

(v,λ)∈V×R(T )
+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ + R+,
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from Proposition 3.2.1,

∪
(at,bt)∈Vt

cocone{(at, bt) | t ∈ T}+ C∗ × R+

is convex.

Proposition 3.3.3. (cf. [22]) Let T be a compact metric space and let V be

compact-valued and uniformly upper semicontinuous on T . Let c, at ∈ Rn,

bt ∈ R, t ∈ T , and C be a closed convex cone. Suppose that there exists

x0 ∈ Rn such that ⟨at, x0⟩ < bt for all (at, bt) ∈ Vt, t ∈ T . Then

∪
(at,bt)t∈T∈V

co cone{(at, bt) : t ∈ T}+ C∗ × R+

is closed.

Proof. Define gt : Rn × Rn+1 → R by

gt(x, vt) = ⟨at, x⟩ − bt, vt = (at, bt) ∈ Vt, t ∈ T.

Let vt = (at, bt) ∈ Vt, for t ∈ T . Then gt : Rn × Rn+1 → R, t ∈ T are

continuous functions such that for all vt ∈ Rn+1, gt(·, vt) is a convex function.

By Proposition 3.3.1,

∪
(at,bt)∈Vt

cocone{(at, bt) | t ∈ T}+ C∗ × R+

=
∪

(v,λ)∈V×R(T )
+

epi(
∑
t∈T

λtgt(·, vt))∗ + C∗ + R+,
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and by assumption, there exists x0 ∈ Rn such that g(x, vt) = ⟨at, x0⟩− bt < 0

for all vt = (at, bt) ∈ Vt, t ∈ T . So, from Proposition 3.2.2,

∪
(at,bt)∈Vt

cocone{(at, bt) | t ∈ T}+ C∗ × R+

is closed.

From Proposition 3.3.2 and 3.3.3, we obtain the following theorem:

Theorem 3.3.2. Let T be a compact metric space and let V be compact-

valued and uniformly upper semicontinuous on T . Let c, at ∈ Rn, bt ∈ R,

t ∈ T , and C be a closed convex cone. Suppose that there exists x0 ∈ Rn such

that ⟨at, x0⟩ < bt for all (at, bt) ∈ Vt, t ∈ T . Then

inf{⟨c, x⟩ | ⟨at, x⟩ − bt <= 0, ∀vt = (at, bt) ∈ Vt, ∀t ∈ T, x ∈ C}

= max
(v,λ)∈V×R(T )

+

inf{⟨c, x⟩ |
∑
t∈T

λt(⟨at, x⟩ − bt) <= 0, x ∈ C}.
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Chapter 4

Solving Robust SOS-convex Polynomial

Optimization Problems with a SOS-concave

Matrix Polynomial Constraint

4.1 Introduction

In this chapter, the tractable containments of a convex semi-algebraic

set, defined by a SOS-concave matrix polynomial constraint, in a non-convex

semi-algebraic set, defined by difference between a SOS-convex and a support

function, are considered. Moreover, using our set containment characteriza-

tions, we derive a zero duality gap result for a robust SOS-convex polynomial

problem (RP), where the dual problem (D)sos can be represented by a sum

of squares relaxation problem and other dual problem (SDP) and its dual

problem (SDD) can be represented by a semidefinite program and which can

be easily solved by interior-point methods. Also, we present the relations of

the optimal solution of (RP) and the optimal solution of (SDD), and the op-

timal solution of (D)sos and (SDP). Finally, we illustrate our results through

a simple numerical example.

Now we give some definitions and preliminary results which will be used

in this chapter. A semi-algebraic subset of Rn is a set of {xi | i = 1, . . . , n} in

Rn satisfying a Boolean combination of polynomial equations and inequalities
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with real coefficients [15]. We say that a real polynomial f is a sum of squares

if there exist real polynomials fj, j = 1, . . . , r, such that f =
∑r

j=1 f
2
j . The

set consisting of all sums of squares of real polynomials is denoted by Σ2.

Moreover, the set consisting of all sum of squares of real polynomials with

degree at most d is denoted by Σ2
d. For a multi-index α ∈ Nn, let |α| :=∑n

i=1 αi. xα denotes the monomial xα1
1 · · · xαn

n . Consider the vector vd(x) =

(xα)|α|<=d = (1, x1, . . . , xn, x
2
1, x1x2, . . . , xn−1xn, x

2
n, . . . , x

d
1, . . . , x

d
n)

T , of all the

monomials xα of degree less than or equal to d, which has a dimension s(d) :=(
n+ d
n

)
. An n×n symmetric matrix X is said to be a positive semidefinite

(psd) matrix if for all v ∈ Rn, vTXv ≥ 0. Similarly, an n × n symmetric

matrix X is called a positive definite (pd) matrix if for all non-zero v ∈ Rn,

vTXv > 0. Let Sn be a set of n×n symmetric matrices and let Sn
+ be a set of

n×n positive semidefinite symmetric matrices. Similarly, Sn
++ denotes the set

of positive definite n × n symmetric matrices. For X,Y ∈ Sn, X ≽ Y (resp.

X ≻ Y ) if and only if X−Y is positive semidefinite (resp. positive definite).

We now introduce a definition of SOS-convex polynomials.

Definition 4.1.1. [1, 2, 30] A real polynomial f on Rn is called SOS-convex if

a Hessian matrix function H : x 7→ ∇2
xxf(x) is a SOS matrix polynomial, that

is, there exists a matrix polynomial F (x) such that ∇2
xxf(x) = F (x)F (x)T ,

equivalently, for all x, y ∈ Rn and for all λ ∈ [0, 1],

λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y)
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is a sum of squares polynomial in R[x; y] (with respect to variables x and y

). Moreover, we say f is SOS-concave if −f is SOS-convex.

Clearly, a SOS-convex polynomial is convex. However, the converse is

not true. Thus, there exists a convex polynomial which is not SOS-convex

[1, 2]. The degree of a polynomial g is denoted by degg. The set of convex

polynomials in n variables of degree d and SOS-convex polynomials in n

variables of degree d are denoted by C̃n,d and Σ̃Cn,d, respectively. Then

C̃n,d = Σ̃Cn,d if and only if n = 1 or d = 2 or (n, d) = (2, 4) [2].

Now we introduce a definition of concave matrix.

Definition 4.1.2. A m × m symmetric matrix polynomial G(x) is called

concave matrix if for any x, y ∈ Rn and any λ ∈ [0, 1],

G((1− λ)x+ λy) ≽ (1− λ)G(x) + λG(y).

Remark 4.1.1. Let G(x) be a m ×m symmetric matrix polynomial. Then

the following statements are equivalent:

(i) G(x) is concave;

(ii) For all Λ ∈ Sm
+ , −⟨Λ, G(x)⟩ is convex, where ⟨Λ, G(x)⟩ = tr(ΛG(x));

(iii) For all ξ ∈ Rm, −⟨ξξT , G(x)⟩ is convex;

(iv) For all ξ ∈ Rm, −ξTG(x)ξ is convex;

(v) For all ξ ∈ Rm, −∇2
xx(ξ

TG(x)ξ) ≽ 0.
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The definition of SOS-concave matrix is as follows:

Definition 4.1.3. [59] A m×m symmetric matrix polynomial G(x) is called

SOS-concave if for every ξ ∈ Rm, there exists a polynomial matrix Fξ(x) in

x such that

−∇2
xx(ξ

TG(x)ξ) = Fξ(x)
TFξ(x).

From Definition 4.1.3, we can obtain the following result.

Remark 4.1.2. Let G(x) be a m ×m symmetric matrix polynomial. Then

the following statements are equivalent:

(i) G(x) is SOS-concave;

(ii) For all Λ ∈ Sm
+ , −⟨Λ, G(x)⟩ is SOS-convex;

(iii) For all ξ ∈ Rm, −⟨ξξT , G(x)⟩ is SOS-convex;

(iv) For all ξ ∈ Rm, −ξTG(x)ξ is SOS-convex.

The following simple example illustrates a SOS-concave matrix polyno-

mial.

Example 4.1.1. Consider the following polynomial matrix:

G(x1, x2) =

(
−x2

1 − 4x1 − 3− x2
2 x2

x2 −x2

)
.

Then, for all ξ = (ξ1, ξ2)
T ∈ R2,

−ξTG(x1, x2)ξ = ξ21x
2
1 + ξ21x

2
2 + 4ξ21x1 + (ξ22 − 2ξ1ξ2)x2 + 3ξ21 .
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and

−∇2
xx(ξ

TG(x)ξ) =

(
2ξ21 0
0 2ξ21

)
=

( √
2ξ1 0

0
√
2ξ1

)T ( √
2ξ1 0

0
√
2ξ1

)
.

So, −ξTG(x)ξ is a SOS-convex polynomial. It follows from Remark 2.2 (iv)

that G(x) is a SOS-concave matrix polynomial.

Now we introduce a definition of support functions. Let K be a compact

convex set in Rn. The support function s(x|K) of K [58] is defined by

s(x|K) := max{uTx : u ∈ K}.

The following useful existence result for solutions of convex polynomial

programs will play an important role later.

Lemma 4.1.1. [6] Let f0, f1, . . . , fm be convex polynomials on Rn. Let C :=

{x ∈ Rn : fi(x) <= 0, i = 1, . . . ,m}. Suppose that infx∈C f0(x) > −∞. Then,

argminx∈C f0(x) ̸= ∅.

Proposition 4.1.1. [50] A polynomial g ∈ R[x]2d has a sum of squares de-

composition if and only if there exists a real symmetric and positive semidef-

inite matrix Q ∈ Rs(d)×s(d) such that g(x) = vd(x)
TQvd(x), for all x ∈ Rn.

Now we let vd(x)vd(x)
T =

∑
α∈Nn xαBα, where Bα are s(d) × s(d) real

symmetric matrices, Then g(x) =
∑

α∈Nn gαx
α is a sum of squares if and

only if solving the following semidefinite feasibility problem [50]:

Find Q ∈ Rs(d)×s(d) such that

Q = QT , Q ≽ 0, ⟨Q,Bα⟩ = gα, ∀α ∈ Nn.
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Lasserre [49] established an extension of Jensen’s inequality when one

restricts its application to the class of SOS- convex polynomials.

Lemma 4.1.2. [49] Let f ∈ R[x] be a SOS-convex polynomial, and let y =

(yα)α∈Nn
2d

satisfy y0 = 1 and
∑

α∈Nn
2d

yαBα ≽ 0. Let Ly : R[x] → R be a linear

function defined by Ly(f) =
∑
α

fαyα, where f =
∑
α

fαx
α. Then

Ly(f(x)) >= f(Ly(x)),

where Ly(x) = (Ly(x1), . . . , Ly(xn)).

4.2 Set Containment Characterizations

Under the Slater condition, we can obtain the following set containment

result:

Theorem 4.2.1. Let f : Rn → R be a SOS-convex polynomial and let

G(x) be a m × m symmetric SOS-concave matrix polynomial. Let h(x) =

max
(a,b)∈U

(aTx + b), where U is a compact convex subset of Rn+1. Assume that

K := {x ∈ Rn : G(x) ≽ 0} ̸= ∅. Assume that the Slater condition holds, i.e.,

there exists x̂ ∈ Rn such that G(x̂) ≻ 0. Then the following statements are

equivalent:

(i) {x ∈ Rn : G(x) ≽ 0} ⊂ {x ∈ Rn : f(x)− h(x) >= 0};

(ii) For any (a, b) ∈ U , there exists Λ ∈ Sm
+ such that

f − aT (·)− b− ⟨Λ, G(·)⟩ ∈ Σ2.
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Proof. [(ii) ⇒ (i)] Suppose that (ii) holds. Then, for any (a, b) ∈ U and any

ϵ > 0, there exist Λ ∈ Sm
+ and σ ∈ Σ2 such that

f − aT (·)− b− ⟨Λ, G(·)⟩ = σ.

So, if G(x) ≽ 0, then ⟨Λ, G(x)⟩ >= 0 and for any (a, b) ∈ U , f(x)−aTx−b >= 0,

and hence, f(x)− h(x) >= 0. Thus (i) holds.

[(i) ⇒ (ii)] Assume that (i) holds. Then, we have for any x ∈ Rn,

G(x) ≽ 0 implies that f(x) − h(x) >= 0. Let (a, b) ∈ U . Then, we have for

any x ∈ Rn,

{x ∈ Rn : G(x) ≽ 0} ⊂ {x ∈ Rn : f(x)− aTx− b >= 0, ∀(a, b) ∈ U}

Moreover, it is well known that the Slater condition implies the closedness

of the set
∪

Λ∈Sm
+
epi(⟨Λ, G(·)⟩∗) [39]. So, it follows from Theorem 2.2 in [17]

that there exists Λ ∈ Sm
+ such that

f(x)− aTx− b− ⟨Λ, G(x)⟩ >= 0, ∀x ∈ Rn. (4.1)

Let ϕ(x) = f(x) − aTx − b − ⟨Λ, G(x)⟩. Then, since f and −⟨Λ, G(x)⟩ are

SOS-convex, and −aTx− b is affine, ϕ is SOS-convex. From (4.1), ϕ(x) >= 0

for all x ∈ Rn. By Lemma 4.1.1, ϕ has a global minimizer x∗ ∈ Rn, that is,

ϕ(x) >= ϕ(x∗) for all x ∈ Rn, and hence ∇ϕ(x∗) = 0. Since ϕ is SOS-convex,

it follow from Theorem 3.1 in [2] that there exists σ ∈ Σ2 such that

ϕ(x)− ϕ(x∗)−∇ϕ(x∗)T (x− x∗) = σ.

Since ϕ(x∗) >= 0 and ∇ϕ(x∗) = 0, ϕ ∈ Σ2 and thus (ii) holds.
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Using the proof approach of Theorem 4.2.1, we can obtain the following

set containment result.

Theorem 4.2.2. Let f : Rn → R be a SOS-convex polynomial and G(x) be a

m×m symmetric SOS-concave matrix polynomial. Let h(x) = max
u∈co{v1,...,vl}

uTx,

where v1, . . . , vl ∈ Rn. Assume that K := {x ∈ Rn : G(x) ≽ 0} ̸= ∅. Assume

that there exists x̂ ∈ Rn such that G(x̂) ≻ 0. Then the following statements

are equivalent:

(i) {x ∈ Rn : G(x) ≽ 0} ⊂ {x ∈ Rn : f(x)− h(x) >= 0};

(ii) For each i = 1, . . . , l, there exists Λi ∈ Sm
+ such that

f − vTi (·)− ⟨Λi, G(·)⟩ ∈ Σ2.

Proof. [(ii) ⇒ (i)] Suppose that (ii) holds. Then, for any x ∈ Rn, for each

i = 1, . . . , l, there exist Λi ∈ Sm
+ and σi ∈ Σ2 such that

f(x)− vTi x− ⟨Λi, G(x)⟩ = σi.

It implies that f(x) − vTi x − ⟨Λi, G(x)⟩ >= 0 for any x ∈ Rn. If G(x) ≽ 0,

then ⟨Λi, G(x)⟩ >= 0, and so f(x) − vTi (x) >= 0, and hence, f(x) − h(x) >= 0.

Thus (i) holds.

[(i) ⇒ (ii)] Assume that (i) holds. Since h(x) = max
u∈co{v1,...,vl}

uTx, for any

x ∈ Rn, G(x)(x) ≽ 0 implies that f(x)− max
u∈co{v1,...,vl}

uTx >= 0. It follow from

the above inequality that

0 <= f(x)− max
u∈co{v1,...,vl}

uTx = min
i=1,...,l

{f(x)− vTi x} <= f(x)− vTi x, i = 1, . . . , l.
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Since the Slater condition holds, it implies the closedness of the set
∪

Λ∈Sm
+

epi(⟨Λ, G(·)⟩∗). So, it follows from Theorem 2.2 in [17] that for each i =

1, . . . , l, there exists Λi ∈ Sm
+ such that

f(x)− vTi x− ⟨Λi, G(x)⟩ >= 0, ∀x ∈ Rn. (4.2)

Let ϕi(x) = f(x) − vTi x − ⟨Λi, G(x)⟩, i = 1, . . . , l. Then, since f and

−⟨Λi, G(x)⟩ are SOS-convex, and each −vTi x, i = 1, . . . , l, is linear, each

ϕi, i = 1, . . . , l, is SOS-convex. Let i ∈ {1, . . . , l} be any fixed. From (4.2),

ϕi(x) >= 0, for all x ∈ Rn. By Lemma 4.1.1, ϕi has a global minimizer

x∗ ∈ Rn, that is, ϕi(x) >= ϕi(x
∗) for all x ∈ Rn, and hence ∇ϕi(x

∗) = 0. Since

ϕi is SOS-convex, it follows from Theorem 3.1 in [2] that there exists σi ∈ Σ2

such that

ϕi(x)− ϕi(x
∗)−∇ϕi(x

∗)T (x− x∗) = σi.

Since ϕi(x
∗) >= 0 and ∇ϕi(x

∗) = 0, ϕi ∈ Σ2 and thus (ii) holds.

4.3 Exact SDP Relaxations

Consider the following SOS-convex polynomial optimization problem:

(P) inf f(x)

s.t. G(x) ≽ 0,

where f : Rn → R is a SOS-convex polynomial with degree 2d, G(x) is a

m×m symmetric SOS-concave matrix polynomial.
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The SOS-convex polynomial optimization problem (P) in the face of data

uncertainty in the objective function can be captured by the problem:

(UP) inf φ(x, u)

s.t. G(x) ≽ 0,

where φ : Rn × Rn → R is a SOS-convex polynomial defined by φ(x, u) =

f(x)− uTx, and u ∈ Rn is an uncertain parameter which belongs to the set

co{v1, . . . , vl}, vi ∈ Rn, i = 1, . . . , l. Let K := {x ∈ Rn : G(x) ≽ 0}.

The robust counterpart (the worst case) of (UP):

(RP) inf f(x)− max
u∈co{v1,...,vl}

uTx

s.t. G(x) ≽ 0.

In the sequel, we assume that the optimal value of (RP) is finite. More-

over, the problem (RP) can be rewritten as follows:

min
i=1,...,l

inf
x∈K

{f(x)− vTi x}.

The Lagrangian dual problem for (RP) is given by

(LD) min
i=1,...,l

sup
Λi∈Sm

+

inf
x∈Rn

{f(x)− vTi x− ⟨Λi, G(x)⟩}.

which can be written equivalently as

(D) min
i=1,...,l

sup
µi∈R,Λi∈Sm

+

{µi ∈ R | f(x)− vTi x− ⟨Λi, G(x)⟩ − µi >= 0, ∀x ∈ Rn}.
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A sum of squares relaxation problem of (D) is as follows :

(D)sos min
i=1,...,l

sup
µi∈R,Λi∈Sm

+

{µi ∈ R | f − vTi (·)− ⟨Λi, G(·)⟩ − µi ∈ Σ2
2d}.

Then, from Proposition 4.1.1, (D)sos can be rewritten as the following semidef-

inite problem (SDP):

(SDP) min
i=1,...,l

sup
X,Λi

f0 − (vTi (·))0 − ⟨Λi, G0⟩ − ⟨X,B0⟩

s.t. ⟨Λi, Gα⟩+ ⟨X,Bα⟩ = fα − (vTi (·))α,

α ̸= 0, X ∈ S
s(d)
+ , Λi ∈ Sm

+ .

The dual problem of (SDP) is the following semidefinite problem (SDD):

(SDD) min
i=1,...,l

inf
y

(f − vTi (·))0 +
∑
α ̸=0

(f − vTi (·))αyα

s.t. G0 +
∑
α̸=0

yαGα ≽ 0,

B0 +
∑
α̸=0

yαBα ≽ 0.

Now, using the result of Theorem 4.2.2, we give a zero duality gap result

for (RP), (D)sos, (SDP) and (SDD) under the Slater condition.

Theorem 4.3.1. (Zero duality gap) Let K := {x ∈ Rn | G(x) ≽ 0} ̸= ∅.

Assume that inf (RP) := f ∗ is finite and the Slater condition holds, that is,

there exists x̂ ∈ Rn such that G(x̂) ≻ 0. Then

Val(RP) = Val(D)sos = Val(SDP) = Val(SDD).
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Proof. Let α be an optimal value of (RP). Then, we have

{x ∈ Rn : G(x) ≽ 0} ⊂ {x ∈ Rn | f(x)− h(x) >= α}.

By Theorem 4.2.2, for each i = 1, . . . , l, there exist σi ∈ Σ2 and Λi ∈ Sm
+

such that

f − vTi (·)− ⟨Λi, G(·)⟩ − α = σi >= 0,

and so, sup
µi∈R,Λi∈Sm

+

{µi | f − vTi (·)− ⟨Λi, G(·)⟩ − µi ∈ Σ2} >= α. Thus, we have

min
i=1,...,l

sup
µi∈R,Λi∈Sm

+

{µi | f − vTi (·)− ⟨Λi, G(·)⟩ − µi ∈ Σ2} >= α. (4.3)

On the other hand, let µ̄ := min
i=1,...,l

sup
µi∈R,Λi∈Sm

+

{µi ∈ R | f − vTi (·) −

⟨Λi, G(·)⟩ − µi ∈ Σ2}. Then, we see that for all i = 1, . . . , l,

µ̄ <= sup
µi∈R,Λi∈Sm

+

{µi ∈ R | f − vTi (·)− ⟨Λi, G(·)⟩ − µi ∈ Σ2}.

Since for each µi ∈ R and each Λi ∈ Sm
+ , f − vTi (·)−⟨Λi, G(·)⟩−µi ∈ Σ2 and

⟨Λi, G(·)⟩ >= 0, f(x)− vTi x >= µi, for all x ∈ K, Hence for each i = 1, . . . , l,

f(x)− vTi x >= sup
µi∈R,Λi∈Sm

+

{µi ∈ R | f − vTi (·)− ⟨Λi, G(·)⟩ − µi ∈ Σ2}, ∀x ∈ K,

and so, f(x)− vTi x >= µ̄, for all x ∈ K. Thus, f(x)−maxi=1,...,l v
T
i x >= µ̄, for

all x ∈ K. So, we have f(x)− h(x) >= µ̄, for all x ∈ K. Hence,

µ̄ = min
i=1,...,l

sup
µi∈R,Λi∈Sm

+

{µi | f − vTi (·)− ⟨Λi, G(·)⟩ − µi ∈ Σ2} <= α. (4.4)
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Thus, from (4.3) and (4.4), Val(RP) = Val(D)sos. Moreover, Val(D)sos =

Val(SDP) obviously holds by the construction of (D)sos and (SDP).

Now, we will show that Val(SDP) <= Val(SDD). Let for each i = 1, . . . , l,

(Λi, X) and y be any feasible for (SDP) and (SDD) respectively. Then we

have

(f − vTi (·))0 + ⟨G0,Λi⟩ − ⟨B0, X⟩

<= (f − vTi (·))0 + ⟨−
∑
α ̸=0

yαGα,Λi⟩ − ⟨
∑
α ̸=0

yαBα, X⟩

= (f − vTi (·))0 +
∑
α ̸=0

yα(⟨−Gα,Λi⟩ − ⟨Bα, X⟩)

= (f − vTi (·))0 +
∑
α ̸=0

yα(f − vTi (·))α

=
∑
α

yα(f − vTi (·))α.

So, we have Val(SDP) <= Val(SDD).

To finish the proof of the theorem, we will prove that Val(RP) >= Val(SDD).

Let x̃ be any feasible solution of (RP). Then G(x̃) ≽ 0. Let ỹ = (ỹα)α ̸=0 =

(x̃1, . . . , x̃n, (x̃1)
2, x̃1x̃2, . . . , (x̃1)

2m, . . . , (x̃n)
2m). Then 0 ≼ G(x̃) =

∑
α Gαx̃

α =

G0+
∑

α̸=0 Gαỹα. Moreover, ỹỹT = B0+
∑

α ̸=0 ỹαBα ≽ 0. So, ỹ is feasible for

(SDD). Moreover, since x̃ is feasible solution of (RP), we see that for each
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i = 1, . . . , l,

f(x̃)− vTi x̃ =
∑
α

(f − vTi (·))αx̃α

=(f − vTi (·))0 +
∑
α ̸=0

(f − vTi (·))αỹα

>= inf
y

∑
α

(f − vTi (·))αyα

>=Val(SDD).

Hence,

min
i=1,...,l

{f(x̃)− vTi x̃} = f(x̃)− max
u∈co{v1,...,vl}

uT x̃ = f(x̃)− h(x̃) >= Val(SDD).

Since x̃ is any feasible solution of (RP), we have

Val(RP) = inf
x∈K

{f(x)− h(x)} >= Val(SDD).

Thus, we obtain the desired result.

Now, we give the relations of the optimal solution of (RP) and the optimal

solution of (SDD), and the optimal solution of (D)sos and (SDP).

Theorem 4.3.2. Assume that inf (RP) := f ∗ is finite and the Slater condi-

tion holds, that is, there exists x̂ ∈ Rn such that G(x̂) ≻ 0. Let K := {x ∈

Rn | G(x) ≽ 0} ̸= ∅. Then the following statements hold:

(i) x̄ is a minimizer of (RP) if and only if the vector

ȳ := (x̄1, . . . , x̄n, x̄
2
1, x̄1x̄2, . . . , x̄

2d
1 , . . . , x̄2d

n ) (4.5)

is a minimizer of (SDD).
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(ii) (Λ̄i0 , µ̄i0) ∈ Sm
+ × R is a maximizer of (D)sos if and only if (Λ̄i0 , X̄) ∈

Sm
+ × S

s(d)
+ is a maximizer of (SDP) for some X̄ =

∑r
k=1 q̄

i0
k q̄

i0
k

T
and

q̄i0k ∈ Rs(d).

Proof. (i) (⇒) Let µ̄ be an optimal value of (RP). It follows that for any

x ∈ K, f(x)−h(x) >= µ̄. By Theorem 4.2.2, equivalently, for each i = 1, . . . , l,

there exists Λi ∈ Sm
+ such that

f − vTi (·)− ⟨Λi, G(·)⟩ − µ̄ ∈ Σ2.

Letting µ̄i = inf
x∈K

{f(x) − vTi x}, i = 1, . . . , l, equivalently, there exists i0 ∈

{1, . . . , l} such that µ̄ = µ̄i0 and

f − vTi0(·)− ⟨Λi0 , G(·)⟩ − µ̄i0 ∈ Σ2,

for some Λi0 ∈ Sm
+ . It means that there exist some polynomials qi0k (x) : Rn →

R with degree d and coefficient vectors qi0k ∈ Rs(d), k = 1, . . . , r, such that

f(x)− vTi0x− ⟨Λi0 , G(x)⟩ − µ̄i0 =
r∑

k=1

qi0k (x)
2, ∀x ∈ Rn.

From Proposition 4.1.1, equivalently, there exists a real symmetric and pos-

itive semidefinite matrix X ∈ S
s(d)
+ such that

f(x)− vTi0x− ⟨Λi0 , G(x)⟩ − µ̄i0 = vd(x)
TXvd(x), ∀x ∈ Rn (4.6)
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with X =
∑r

k=1 q
i0
k q

i0
k

T
. Notice that vd(x)

TXvd(x) = ⟨X, vd(x)vd(x)
T ⟩. Let

vd(x)vd(x)
T =

∑
α∈Nn xαBα ≽ 0, where Bα are s(d) × s(d) real symmetric

matrices. It follows that from (4.6),

f(x)− vTi0x− ⟨Λi0 , G(x)⟩ − µ̄i0 = ⟨X,
∑
α∈Nn

xαBα⟩, ∀x ∈ Rn. (4.7)

Moreover, since ⟨Λi0 , G(x)⟩ =
∑

α∈Nn⟨Λi0 , Gα⟩xα,

f(x)− vTi0x− ⟨Λi0 , G(x)⟩ − µ̄i0 =
∑
α

(f − vTi0(·))αx
α −

∑
α∈Nn

⟨Λi0 , Gα⟩xα − µ̄i0 .

(4.8)

From (4.7) and (4.8), we have

∑
α

(f − vTi0(·))αx
α − µ̄i0 = ⟨X,

∑
α∈Nn

xαBα⟩+ ⟨Λi0 ,
∑
α∈Nn

xαGα⟩. (4.9)

Let y = (yα)α ̸=0 = (x1, . . . , xn, (x1)
2, x1x2, . . . , (x1)

2m, . . . , (xn)
2m) and y0 =

1. Then, (4.9) is equivalent to that

(f − vTi0(·))0 +
∑
α ̸=0

(f − vTi0(·))αyα − µ̄i0

= ⟨X,B0 +
∑
α ̸=0

yαBα⟩+ ⟨Λi0 , G0 +
∑
α ̸=0

yαGα⟩.

So, if α = 0, then we have

(f − vTi0(·))0 − ⟨G0,Λi0⟩ − ⟨B0, X⟩ = µ̄i0 (4.10)
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and if α ̸= 0, then we have

⟨Gα,Λi0⟩+ ⟨Bα, X⟩ = (f − vTi0(·))α. (4.11)

By (4.10) and (4.11), we see that (Λi0 , X) is feasible for (SDP) with value

µ̄i0 . Since µ̄ is a minimum of (RP) and µ̄i0 = µ̄, (Λi0 , X) is a maximizer of

(SDP). Notice that Val(RP) = Val(SDP) = Val(SDD) (by Theorem 4.3.1)

and x̄ is an optimal solution of (RP). Since for ȳ in (4.5), G0+
∑
α ̸=0

yαGα ≽ 0

and B0 +
∑
α ̸=0

yαBα ≽ 0, ȳ is feasible for (SDD) with value µ̄i0 . Moreover,

since (f − vTi (·))0 +
∑

α ̸=0(f − vTi (·))αȳα =
∑

α(f − vTi (·))αx̄α = µ̄i0 , ȳ is

minimizer of (SDD).

(⇐) Suppose that there exist i0 ∈ {i, . . . , l} such that the vector ȳ in

(4.5) is a minimizer of (SDD). Let µ̄i0 is an optimal value of (SDD). Since

G(x) is a m × m SOS-concave symmetric matrix polynomial, by Remark

4.1.2 (ii), for any Λ ∈ Sm
+ , −⟨Λ, G(x)⟩ is a SOS-convex polynomial. It follow

from Lemma 4.1.2 that

Lȳ(−⟨Λ, G(x)⟩) >= −⟨Λ, G(Lȳ(x))⟩ = −⟨Λ, G(x̄)⟩, (4.12)

where x̄ = Lȳ(x) = (Lȳ(x1), . . . , Lȳ(xn)). Moreover, since ȳ is a feasible

solution of (SDD) satisfying ȳ0 = 1, we see that

Lȳ(−⟨Λ, G(x)⟩) =
∑
α

(−⟨Λ, Gα⟩ȳα) = −⟨Λ, G0 +
∑
α ̸=0

ȳαGα⟩ <= 0. (4.13)
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So, from (4.12) and (4.13), we see that ⟨Λ, G(x̄)⟩ >= 0. Since Λ ∈ Sm
+ , we

have G(x̄) ≽ 0, i.e., x̄ is feasible for (RP). Similarly, since f is a SOS-convex

polynomial and vTi0(·) is linear,

µ̄i0 =
∑
α

(f − vTi0(·))αȳα

= Lȳ(f − vTi0(·)) >= (f − vTi0(·))(Lȳ(x))

= (f − vTi0(·))(x̄)

>= min
i=1,...,l

(f − vTi (·))(x̄).

Moreover, since Val(RP) = Val(SDD) = µ̄i0 (by Theorem 4.3.1), µ̄i0 =

min
i=1,...,l

(f − vTi (·))(x̄). It means that x̄ is an optimal solution of (RP).

(ii) Let (Λ̄i0 , µ̄i0) ∈ Sm
+ × R be a maximizer of (D)sos, for some i0 ∈

{i, . . . , l}. Since (Λ̄i0 , µ̄i0) ∈ Sm
+ × R is feasible for (D)sos,

f − vTi0(·)− ⟨Λ̄i0 , G(·)⟩ − µ̄i0 ∈ Σ2.

It means that there exist some polynomials q̄i0k (x) : Rn → R with degree d

and coefficient vectors q̄i0k ∈ Rs(d), k = 1, . . . , r, such that

f(x)− vTi0x− ⟨Λ̄i0 , G(x)⟩ − µ̄i0 =
r∑

k=1

q̄i0k (x)
2, x ∈ Rn.

From Proposition 4.1.1, equivalently, there exists a real symmetric and pos-

itive semidefinite matrix X̄ ∈ S
s(d)
+ such that

f(x)− vTi0x− ⟨Λ̄i0 , G(x)⟩ − µ̄i0 = vd(x)
T X̄vd(x), ∀x ∈ Rn (4.14)
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with X̄ =
∑r

k=1 q̄
i0
k q̄

i0
k

T
. Since vd(x)

T X̄vd(x) = ⟨vd(x)vd(x)T , X̄⟩ = ⟨B0 +∑
α ̸=0 x

αBα, X̄⟩, (4.14) is equivalent to that

f(x)− vTi0x− ⟨Λ̄i0 , G(x)⟩ − µ̄i0 = ⟨B0 +
∑
α ̸=0

xαBα, X̄⟩, ∀x ∈ Rn. (4.15)

Notice that

f(x)−vTi0x−⟨Λ̄i0 , G(x)⟩−µ̄i0 =
∑
α

(fα−(vTi0(·))α−⟨Λ̄i0 , Gα⟩)xα−µ̄i0 . (4.16)

From (4.15) and (4.16), it follows that

⟨B0 +
∑
α̸=0

xαBα, X̄⟩ =
∑
α

(fα − (vTi0(·))α − ⟨Λ̄i0 , Gα⟩)xα − µ̄i0 , ∀x ∈ Rn.

It means that

(f − vTi0(·))0 − ⟨G0, Λ̄i0⟩ − ⟨B0, X̄⟩ = µ̄i0 (4.17)

and

⟨Gα, Λ̄i0⟩+ ⟨Bα, X̄⟩ = (f − vTi0(·))α, ∀α ̸= 0. (4.18)

By (4.17) and (4.18), we see that (Λ̄i0 , X̄) is feasible for (SDP) with value

µ̄i0 . Moreover, since Val(D)sos = Val(SDP) (by Theorem 4.3.1), (Λ̄i0 , X̄) is a

maximizer of (SDP).

Remark 4.3.1. When G(x) is a diagonal matrix polynomial and h(x) = 0,

then Lasserre [49] proved Theorem 4.3.2 (i) using Lemma 4.1.2.
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The following example shows that a zero duality gap result for (RP),

(D)sos, (SDP) and (SDD) and the relations of the optimal solution of (RP)

and the optimal solution of (SDD), and the optimal solution of (D)sos and

(SDP).

Example 4.3.1. Consider the following problem:

(RP) min x8
1 + x1x2 + x2

1 + x2
2 − max

u1∈[−1,1],u2∈[−1,1]
(u1, u2)

T (x1, x2)

subsect to

(
−x2

1 − 4x1 − 3− x2
2 x2

x2 −x2

)
≽ 0.

Let f(x1, x2) = x8
1+x1x2+x2

1+x2
2, G(x1, x2) =

(
−x2

1 − 4x1 − 3− x2
2 x2

x2 −x2

)
and h(x) = max

u1∈[−1,1],u2∈[−1,1]
(u1, u2)

T (x1, x2) = max
(u1,u2)∈coM

(u1, u2)
T (x1, x2) =

|x1| + |x2|, where M = {(1, 1), (1,−1), (−1, 1), (−1,−1)}. Let v1 = (1, 1),

v2 = (1,−1), v3 = (−1, 1) and v4 = (−1,−1). Then, clearly f is a SOS-

convex polynomial. Moreover we already checked that G is SOS-concave

matrix in Example 4.1.1. Let K := {(x1, x2) | G(x1, x2) ≽ 0} be a feasible

set of (P0). Then we have K = {(x1, x2) | (x1+2)2+(x2− 1
2
)2 <=

5
4
, x2 <= 0}.

Moreover, let (x̂1, x̂2) = (−2,− 1
100

). Then G(x̂1, x̂2) ≻ 0. So, the Slater

condition holds for (P0). So, the optimal solution and the optimal value for

(RP) is (−1, 0) and 1, respectively (See Fig. 4.3.1).
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Figure 4.3.1 (a) f(x1, x2) = x8
1 + x1x2 + x2

1 + x2
2 − x1 − x2, (b) f(x1, x2) = x8

1 +

x1x2 + x2
1 + x2

2 − x1 + x2, (c) f(x1, x2) = x8
1 + x1x2 + x2

1 + x2
2 + x1 − x2 and (d)

f(x1, x2) = x8
1+x1x2+x2

1+x2
2+x1+x2. The feasible set of (P0) is K(solid), an optimal

solution of (P0) is (−1, 0) (a dot) and level sets of the objective function f of (P0) (dotted).

Now, we consider the dual problem of (RP) as follows:

(D)sos min
i=1,...,4

max
µi∈R,Λi∈S2

+

{µi | f − vTi (·) + ⟨Λi, G(·)⟩ − µi ∈ Σ2}.

Then, the problem (D)sos is equivalent to min
i=1,...,4

(Di)
sos, where (Di)

sos =

max
µi∈R,Λi∈S2

+

{µi | f − vTi (·) + ⟨Λi, G(·)⟩ − µi ∈ Σ2}. Since for each i = 1, . . . , 4,
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f − vTi (·) + ⟨Λi, G(·)⟩ − µi ∈ Σ2, for each i = 1, . . . , 4, there exist some

polynomials qik(x) : Rn → R with degree at most 4 and coefficient vectors

qik ∈ Rs(d), k = 1, . . . , r, such that for any x ∈ R2,

f − vTi (x) + ⟨Λi, G(x)⟩ − µi =
r∑

k=1

qik(x)
2 = v4(x)

TXv4(x),

where X is s(4)× s(4) real symmetric and positive semidefinite matrix.

Notice that the dimension of v4(x) is 15. Then from Theorem 1 in [63],

we can reduce the dimension of v8(x), that is, 6, and so X ∈ S6
+. Ac-

tually, v4(x) = (1, x1, x2, x
2
1, x

3
1, x

4
1) in (D)sos. Then, by using the MAT-

LAB optimization package SOSTOOLS [62] together with the SDP-solver

SeDuMi [65], we can easily get the optimal value of (Di)
sos, i = 1, . . . , 4,

that is, µi ≈ 3, i = 1, 2, and µi ≈ 1, i = 3, 4. So, the optimal value

of (D)sos is 1. We can not easily find optimal solutions of (D)sos, but ac-

tually optimal solutions of (D)sos are (Λ3, µ3) ≈ (
(

4.5003 1.0699
1.0699 4.1399

)
, 1) and

(Λ4, µ4) ≈ (
(

4.5005 1.9507
1.9507 3.9016

)
, 1). Now, we rewrite (D)sos as the following

semidefinite problem:

(SDP) min
i=1,...,4

sup
X,Λi

(f − vTi (·))0 − ⟨Λi, G0⟩ − ⟨X,B0⟩

s.t. ⟨Λi, Gα⟩+ ⟨X,Bα⟩ = (f − vTi (·))α, α ̸= 0,

X ∈ S6
+, Λi ∈ S2

+, i = 1, . . . , 4.

Then, by using the MATLAB optimization package VSDP [29] together with

the SDP-solver SeDuMi [65], we can easily find the optimal solutions for
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(SDPi), i = 1, . . . , 4, that is,

X̄1 =


13.5026 10.5017 0.5000 −2.6382 −0.4572 −0.8196
10.5017 11.7773 0.5000 0.4572 −1.5449 −0.7265
0.5000 0.5000 6.5009 0.0000 0.0000 −0.0000

−2.6382 0.4572 0.0000 4.7290 0.7265 −0.9070
−0.4572 −1.5449 0.0000 0.7265 1.8140 −0.0000
−0.8196 −0.7265 −0.0000 −0.9070 −0.0000 1.0000

,

Λ̄1 =
(

5.5009 1.4072
1.4072 4.8145

)
,

X̄2 =


13.5009 10.5006 0.5001 −2.4328 −0.2789 −0.8464
10.5006 11.3658 0.5000 0.2789 −1.2825 −0.6962
0.5001 0.5000 6.5003 −0.0000 0.0000 0.0000

−2.4328 0.2789 −0.0000 4.2577 0.6962 −0.8498
−0.2789 −1.2825 0.0000 0.6962 1.6997 0.0000
−0.8464 −0.6962 0.0000 −0.8498 0.0000 1.0000

,

Λ̄2 =
(

5.5003 2.1967
2.1967 4.3937

)
,

X̄3 =


12.5010 9.5007 0.5000 −1.7733 −0.0775 −1.3042
9.5007 9.0470 0.5000 0.0775 −0.2703 −0.8012
0.5000 0.5000 5.5003 0.0000 −0.0000 0.0000

−1.7733 0.0775 0.0000 3.1490 0.8012 −0.4970
−0.0775 −0.2703 −0.0000 0.8012 0.9940 −0.0000
−1.3042 −0.8012 0.0000 −0.4970 −0.0000 1.0000

,

Λ̄3 =
(

4.5003 1.0699
1.0699 4.1399

)
,

X̄4 =


13.5026 10.5017 0.5000 −2.6382 −0.4572 −0.8196
10.5017 11.7773 0.5000 0.4572 −1.5449 −0.7265
0.5000 0.5000 6.5009 0.0000 0.0000 −0.0000

−2.6382 0.4572 0.0000 4.7290 0.7265 −0.9070
−0.4572 −1.5449 0.0000 0.7265 1.8140 −0.0000
−0.8196 −0.7265 −0.0000 −0.9070 −0.0000 1.0000

 and

Λ̄4 =
(

5.5009 1.4072
1.4072 4.8145

)
,

and the optimal values for (SDPi), i = 1, . . . , 4, that is, Val(SDPi) ≈ 3.0000,

i = 1, 2 and Val(SDPi) ≈ 1.0000, i = 3, 4. So, the optimal solution and value

for (SDP) are (Λ̄3, X̄3) and (Λ̄4, X̄4), and 1, respectively. Finally, we consider
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the dual problem (SDD) of (SDP) as follows:

(SDD) min
i=1,...,4

inf
y

∑
α

(f − vTi (·))αyα

s.t. G0 +
∑
α

yαGα ≽ 0,

B0 +
∑
α

yαBα ≽ 0.

Then, by using the MATLAB optimization package OPTI Toolbox [16] to-

gether with the SDP-solver SeDuMi [65], we can easily find the optimal

solutions for (SDDi), i = 1, . . . , 4, that is,

y1 = (−1, 0, 1, 0, 0,−1, 0, 1, 0,−1, 0, 1,−1, 1), y2 = (−1, 0, 1, 0, 0,−1, 0, 1, 0,−1, 0, 1,−1, 1)

y3 = (−1, 0, 1, 0, 0,−1, 0, 1, 0,−1, 0, 1,−1, 1), y4 = (−1, 0, 1, 0, 0,−1, 0, 1, 0,−1, 0, 1,−1, 1)

and the optimal values for (SDDi), i = 1, . . . , 4, that is, Val(SDDi) ≈ 3,

i = 1, 2, and Val(SDDi) ≈ 1, i = 3, 4. So, the optimal solution and value for

(SDD) are y3, y4, and 1, respectively. So, Val(RP) = Val(D)sos = Val(SDP) =

Val(SDD). Thus, Theorem 4.3.1 holds. Moreover, Theorem 4.3.2 also holds.

108



References

[1] A. A. Ahmadi and P. A. Parrilo (2012), A convex polynomial that is

not SOS-convex, Math. Program., 135(1-2), 275-292.

[2] A. A. Ahmadi and P. A. Parrilo (2013), A complete characterization of

the gap between convexity and SOS-convexity, SIAM J. Optim., 23(2),

811-833.

[3] M. Anjos and J. B. Lasserre (2012), Handbook of Semidefinite, Conic

and Polynomial Optimization, Springer, New York.

[4] A. Barros, J. B. G. Frenk (1996), S. Schaible and S. Zhang, Using duality

to solve generalized fractional programming problems, J. Global Optim.,

8(2), 139-170.

[5] A. Beck and A. Ben-Tal (2009), Duality in robust optimization: primal

worst equals dual best, Oper. Res. Lett., 37, 1-6.

[6] E. G. Belousov and D. Klatte (2002), A Frank-Wolfe type theorem for

convex polynomial programs, Comp. Optim. Appl., 22(1), 37-48.

[7] A. Ben-Tal, L. E. Ghaoui and A. Nemirovski (2009), Robust Opti-

mzation, Princeton Series in Applied Mathematics, Priceton University

Press, Priceton, NJ.

109



[8] A. Ben-Tal and A. Nemirovski (2008), A selected topics in robust convex

optimization, Math. Program., Ser B, 112, 125-158.

[9] A. Ben-Tal and A. Nemirovski (2002), Robust optimization-

methodology and applications, Math. Program., Ser B, 92, 453-480.

[10] A. Ben-Tal and A. Nemirovski (1999), Robust solutions to uncertain

linear programs, Oper. Res. Lett., 25, 1-13.

[11] D. Bersimas and D. Brown (2009), Constructing uncertainty sets for

robust linear optimization, Oper. Res., 57, 1483-1495.

[12] D. Bersimas, D. Pachamanova and M. Sim (2004), Robust linear opti-

mization under general norms, Oper. Res. Lett., 32, 510-516.

[13] S. Boyd and L. Vandenberghe (2004), Convex Optimization, Cambridge

University Press, Cambridge.

[14] A. Chinchuluun, D. Yuan and P. M. Pardalos (2007), Optimality con-

ditions and duality for nondifferentiable multiobjective fractional pro-

gramming with generalized convexity. Ann. Oper. Res., 154(1), 133-147.

[15] M. Coste (2002), An Introduction to Semialgebraic Geometry, Universite

de Rennes.

[16] J. Currie, A free Matlab package for optimization, OPTI Toolbox,

version 2.15, available at http://www.i2c2.aut.ac.nz/Wiki/OPTI/

index.php/Main/HomePage.

110



[17] N. Dinh, V. Jeyakumar and G. M. Lee (2005), Sequential Lagrangian

conditions for convex programs with applications to semidefinite pro-

gramming, J. Optim. Theory Appl., 125(1), 85-112.

[18] J. B. G. Frenk and S. Schaible (2004), Fractional Programming. Hand-

book of Generalizaed Convexity and Monotonicity. 333-384, Springer,

Berlin.

[19] F. Glover (1965), A Multiphase-dual algorithm for the zero-one integer

programming problem, Oper. Res., 13, 879-919.

[20] M. A. Goberna (2005), Linear semi-infinite optimization: recent ad-

vances, in: V. Jeyakumar, A. M. Rubinov, (eds.) Continuous Optimiza-

tion, 3-22, Springer, NewYork.

[21] M. A. Goberna, V. Jeyakumar and N. Dinh (2006), Dual character-

izations of set containments with strict convex inequalities, J. Global

Optim., 34(1), 33-54.

[22] M. A. Goberna, V. Jeyakumar, G. Li and M. A. López (2013), Ro-
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polynomial optimization problems: exact SDP relaxations, Optim. Lett.,

9(1), 1-18.
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