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Chapter 1

Introduction and Preliminaries

1.1 Motivation

Sometimes in engineering and economic problems, we do not exactly know
input data. Robust convex optimization problems are to solve convex op-
timization problems with data uncertainty (incomplete data) by using the
worst-case approach. Here, uncertainty means that input parameter of these
problems are not known exactly at the time when solution has to be deter-
mined [8]. Generally, there are two main approaches to deal with constrained
optimization with uncertainty: robust programming approach and stochastic
programming approach; in robust programming one seeks for a solution which
simultaneously satisfies all possible realizations of the constraints, and the
stochastic programming approach works with the probabilistic distribution of
uncertainty and the constraints are required to be satisfied up to prescribed
level of probability [32]. So, sometimes it is convenient to use the robust
approach for dealing with optimization problems with data uncertainty:.

Many researchers [5, 43, 44, 54, 67] have investigated duality theory for
linear or convex optimization problems under uncertainty with the worst-case
approach (the robust approach).

The study of convex programs that are affected by data uncertainty [5, 7,

8,9, 10, 44, 51] is becoming increasingly important in optimization. Recently,



the duality theory for convex programs under uncertainty via the robust
approach (the worst-case approach) have been studied in [5, 44, 45, 51]. It
was shown that the value of the robust counterpart of primal problem is
equal to the value of the optimistic counterpart of the dual primal (“primal
worst equals dual best”) [5, 44, 45].

In [4, 14, 18, 27, 28, 52, 55|, many authors have treated fractional opti-
mization problems in the absence of data uncertainty. Very recently, Jeyaku-
mar and Li [42] have established a duality theory for fractional optimization
problem in the face of data uncertainty via robust optimization.

The solution of the dual problem provides a lower bound to the solution of
the primal problem. However, usually, the optimal value of the primal prob-
lem is different from the optimal value of the dual problem. The difference
of the optimal values of the primal and dual problem is called the duality
gap. There are a lot of dual problems, such as Lagrangian dual problem,
Wolfe dual problem, Fenchel dual problem, the surrogate dual problem, etc..
Using of Lagrangian relaxation is effective to solve large-scale linear problem,
as well as convex and nonconvex problems. On the other hand, surrogate
dual problems are less known than Lagrangian dual problems. Neverthe-
less, surrogate dual problems have virtues, that is, surrogate duality gaps are
equal to or less than Lagrangian duality gaps [26]. Surrogate dual problem
is the primal problem with many constraints that is converted into a single
constraint problem. Recently, many authors [25, 26, 57, 60, 61, 66, 67] have
investigated surrogate duality for quasiconvex optimization problem. Surro-
gate duality is used not only in quasiconvex optimization problem but also

in integer programming and the knapsack problem [19, 25, 26, 57, 60, 61]. In



particular, Suzuki, Kuroiwa and Lee [67] proved a surrogate duality theorem
for an optimization problem involving a quasiconvex objective function and
finitely many convex constraint functions with data uncertainty and a sur-
rogate duality theorem for a semidefinite optimization problem involving a
quasiconvex objective function and a constraint set defined by a linear matrix
inequality with data uncertainty.

On the other hand, duality theory for semi-infinite optimization problem
have been extensively studied [20, 22, 23]. In particular, Goberna, Jeyaku-
mar, G. Li and Lépez [22] gave robust duality by establishing strong duality
between the robust counterpart of an uncertain semi-infinite linear program
and the optimistic counterpart of its uncertain Lagrangian dual.

The well-known Farkas’ lemma provides a dual characterization of the
containment of a polyhedral convex set in a closed half space. The general-
izations of dual characterizations of set containments have been studied in
21, 24, 34, 37, 38, 40]. Such dual characterizations of containments have
important and strong applications in optimization problems, for example,
strong duality and optimality criteria.

Recently, many authors [1, 2, 30, 36, 47| have investigated SOS-convex
polynomials and their applications. The class of SOS-convex polynomials in-
cludes separable convex polynomials and convex quadratic functions as their
special cases. The important feature of the SOS-convexity, which distin-
guishes from the convexity of polynomials, is that one can numerically check
whether a polynomial is SOS-convex or not by solving a related semidefinite

optimization (feasibility) problem which can be solved efficiently via interior



point methods [50]. In particular, the gap between SOS-convex polynomi-
als and convex polynomials is completely characterized in [2]. Moreover,
Lasserre [49] proved that under the Slater condition, SOS-convex optimiza-
tion problems such as minimization of a SOS-convex polynomial subject to
SOS-convex inequality constraints enjoys an exact SDP relaxation in the
sense that the optimal value of the given SOS-convex optimization prob-
lem and its sum of squares relaxation problem are equal and the relaxation
problem attains its optimal solution.

In particular, the exact semidefinite optimization problem relaxation or
strong duality involving dual semidefinite programs is a highly desirable prop-
erty because semidefinite optimization problem can be efficiently solved (e.g.
using interior point methods) [3, 13, 30, 36]. Recently, Jeyakumar and Li [41]
established exact SDP relaxations for classes of nonlinear semidefinite opti-
mization problems with SOS-convex polynomials. Very recently, Jeyakuma
et al. [46] established sums-of-squares polynomial representations charac-
terizing robust solutions and exact SDP-relaxations of robust SOS-convex
polynomial optimization problems under various commonly used uncertainty

sets.

Optimization problems in the face of data uncertainty have been treated
by the worst case approach or the stochastic approach. The worst case
approach for optimization problems, which has emerged as a powerful deter-
ministic approach for studying optimization problems with data uncertainty,

associates an uncertain optimization problem with its robust counterpart.



Now, to explain the worst case approach for optimization problems, we con-
sider the case of linear optimization problem:
(LP) min 'z
st. alx<b,i=1,...,m,
where a;,c,x e R"and b, e R, e =1,...,m.
The linear optimization problem (LP) in the face of data uncertainty in
the objective and constraint function can be captured by the problem
(ULP)  min "z
st. alr<b,i=1,..,m,
where (a;, b;) is an uncertain parameter which belongs to the set U; C R" xR,
1=1,...,m.

For the worst case of (ULP), the robust counterpart of (ULP) is given as
follows [7];

(RULP) min ¢’z

st alw < b, Yay,b) €Uy, i=1,...,m,
or the same optimization problem
(RULP) min{t|c"z <t, o]z <b;, V(a,b) €Uy, i=1,...,m}.

In stochastic optimization, the uncertain parameters are assumed to be
random variables. The stochastic programming approach works with the

probabilistic distribution of uncertainty and the constraints are required to



be satisfied up to the prescribed level of probability [32]. Now, we consider

the stochastic model of (LP):

(SLP) min c'x

st. Prob(alz<b)=n,i=1,...,m,

where (a;,b;), i = 1,....m, are random variables on some probability space
and n € [0.1] .

The robust optimization is associated with the choice of the uncertain set
U. There are various uncertain sets such as box (or interval), scenario data,
ellipsoidal, polyhedral uncertain set, etc..

In this thesis, we consider optimization problems with data uncertainty

which belongs to the interval uncertain sets.

1.2 Outline of the thesis

This thesis consists of three main parts. In the first part presented by
Chapter 2, approximate solutions for a robust convex optimization problem
in the face of data uncertainty are considered. Using the robust optimization
approach (the worst-case approach), we establish an optimality theorem and
duality theorems for approximate solutions for the robust convex optimiza-
tion problem. Also, we extend the approximate optimality theorems and the
approximate duality theorems for convex optimization problems to fractional
optimization problems with data uncertainty. Moreover, we give an example

illustrating the duality theorems.



In Chapter 3, a semi-infinite optimization problem involving a quasicon-
vex objective function and infinitely many convex constraint functions with
data uncertainty are considered. A surrogate duality theorem for the semi-
infinite optimization problem is given under a closed and convex cone con-
straint qualification. Moreover, we extend the surrogate duality theorem for
the semi-infinite optimization problem to fractional semi-infinite optimiza-
tion problem with data uncertainty. Also, we induce characterizations of the
robust moment cone of Goberna et al. [22] by our results. Using a closed and
convex cone constraint qualification, we present surrogate duality theorems
for robust linear semi-infinite optimization problems. Moreover, we give an
example illustrating the duality theorems.

In the last part given by Chapter 4, we consider the tractable contain-
ments of a convex semi-algebraic set, defined by a SOS-concave matrix poly-
nomial constraint, in a non-convex semi-algebraic set, defined by difference
between a SOS-convex and a support function. Moreover, using our set con-
tainment characterizations, we derive a zero duality gap result for robust
SOS-convex polynomial optimization problem (RP), where the dual problem
(D)% can be represented by a sum of squares relaxation problem and other
dual problem (SDP) and its dual problem (SDD) can be represented by a
semidefinite program and which can be easily solved by interior-point meth-
ods. Also, we present the relations of the optimal solution of (RP) and the
optimal solution of (SDD), and the optimal solution of (D)** and (SDP).

Finally, we illustrate our results through a simple numerical example.



1.3 Preliminaries

Let us first recall some notations and preliminary results which will be
used throughout this thesis. R™ denotes the n-dimensional Euclidean space.
The nonnegative orthant of R™ is defined by R%} := {(z1, -+ ,2,) € R" 1 2, =
0}. The inner product in R" is defined by (z,y) := zTy for all z,y € R*. We
say that a set A in R™ is convex whenever pa;+(1—p)as € A for all u € [0, 1],
ap,ay; € A. Let f be a function from R” to R, where R = [—o0, +-00].
Here, f is said to be proper if for all x € R™, f(x) > —oo and there exists
xo € R™ such that f(zp) € R. We denote the domain of f by domf, that
is, domf := {z € R" | f(x) < +00}. The epigraph of f, epif, is defined as
epif := {(z,r) € R* x R | f(x) £ r}, and f is said to be convex if for all
e [0,1],

S =p)z+ py) < (1= p)f(x) + pnf(y)
for all x,y € R", equivalently epif is convex. The function f is said to be
concave whenever — f is convex. Recall that f is said to be quasiconvex if for
all z1, zo € R* and A € (0,1), f((1 — AN)z1 + Axe) < max{f(z1), f(z2)}. We
define level sets of f with respect to a binary relation ¢ on R as L(f, ¢, 3) :=
{z € R" | f(z) o p} for any B € R. Then, f is quasiconvex if and only if
for any g € R, L(f,<,[) is a convex set, or equivalently, for any 8 € R,
L(f,<,pP) is a convex set. Any convex function is quasiconvex, but the
converse is not true. Let g : R” — R U {400} be a convex function. The

(convex) subdifferential of f at x € R™ is defined by

_ {J]* € R” | <$*7y—l’> S f<y> —f(ZL’), vy € Rn}7 if v € dOIIlf,
Of (@) = { 0, otherwise.



More generally, for any € = 0, the e-subdifferential of f at x € R" is defined
by

[ eR | {rty—a) < ()~ f2) +e, Wy R, iz € domy,
Ocf(w) = { 0, otherwise.

We say f is a lower semicontinuous function if liminf, ,, f(y) = f(x) for all
x € R™. As usual, for any proper convex function g on R", its conjugate func-
tion g* : R — RU{+o0} is defined by g*(2*) = sup {(z*,z) — g(x) | x € R"}
for any z* € R™. For a given set A C R", we denote the closure, the convex
hull,; and the conical hull generated by A, by clA, coA, and coneA, respec-
tively. The indicator function 4 is defined by

0, x €A,
400, otherwise.

a(x) = {

We denote the relative interior of a convex set S C R" by riS. Let C be a

closed convex subset of R™ and let # € C. Then the normal cone Ng(x) to

C at x is defined by
Ne(z)={veR" | (v,y—x) < 0, for ally € C},
and let € = 0, then the e-normal set N5 (z) to C at x is defined by
Ni(z) ={veR" | (v,y—z) < ¢ forally € C}.

When C'is a closed convex cone in R”, we denote N¢(0) by C* and call it

the negative dual cone of C.



Chapter 2
Approximate Solutions

for Robust Optimization Problems

2.1 Introduction

In this chapter, we consider approximate solutions for a robust convex
optimization problem in the face of data uncertainty. Using the robust opti-
mization approach (the worst-case approach), we establish optimality theo-
rems and duality theorems for approximate solutions for the robust convex
optimization problems. Moreover, we give an example illustrating the duality

theorems.

A standard form of convex optimization problem [13, 64] with a geometric

constraint set is given by

(CP) min f(z)
st. gi(x) £0,i=1,---,m,

x e C),

where f, g, :R" - R, 1 =1,--- ,m, are convex functions and C' is a closed

convex cone of R™.

10



The convex optimization problem (CP) in the face of data uncertainty in

the constraints can be captured by the problem

(UCP) min f(z)
s.t. gi<w7vi)§07 7’:17 , Ty

x e,

where ¢g; : R" x R — R, ¢;(-,v;) is convex and v; € R is an uncertain
parameter which belongs to the set V; CR?, ¢ =1,--- ,m.

We study an approximate optimality theorem and approximate duality
theorem for the uncertain convex optimization problem (UCP) by examining

its robust counterpart [8]

(RCP) min f(z)
st. gilz,v) 20, Vo €V, i =1, m,

xzeC.

where g; : R" x R? — R, g¢;(-,v;) is convex and v; € R? is the uncertain
parameter which belongs to the set V; C R?, i = 1,---,m. Clearly, A :=
{x e C| gi(x,v;) £0, Yv; € V;, i =1,...,m} is the feasible set of the robust
convex optimization problem (RCP).

Let € = 0. Then 7 is called an approximate solution of (RCP) if for any
T €A,

flx) = f(7) —e
Recently, many authors have studied robust convex optimization prob-

lems [5, 7, 8, 9, 11, 12, 33, 44]. In particular, Jeyakumar and Li [44] has

11



shown that when C' = R™ and € = 0, the Lagrangian strong duality holds be-
tween s robust counterpart and an optimistic counterpart for robust convex
optimization problem in the face of data uncertainty via robust optimization
under a new robust characteristic cone constraint qualification (RCCCQ)
that
m
U epi(z Aigi(-vi))"
v;€V;,A; 20 =1
is convex and closed. Moreover, they gave numerical examples which present
their duality theory insightfully.
In this chapter, we consider approximate solutions for a robust convex
optimization problem with geometric constraint. We establish approximate

optimality theorem for (RCP) under the following constraint qualification:

U e Xig(u) +C" xRy
=1

v; €V, 20

is convex and closed. Moreover, we formulate a Wolfe type dual problem for
the primal one and prove approximate weak duality and approximate strong
duality between the primal problem and its Wolfe type dual problem, which
hold under a weakened constraint qualification. We also give an example

illustrating the duality theorems.

Proposition 2.1.1. [31] Let f : R" — R be a convexr function and let d¢

be the indicator function with respect to a closed convex subset C' of R™. Let

12



€e=0. Then

0(f+0c)(@) = | {0, f()+0,0c(T)}.

€020, €120
€pt+€e1=¢€

The following proposition, which describes the relationship between the
epigraph of a conjugate function and the e-subdifferential and plays a key

role in deriving the main results, was recently given in [33].

Proposition 2.1.2. [33] If f : R" — RU{+o0} is a proper lower semicon-

tinuous convex function and if a € domf, then

epif* = (J{(v, (v.a) + ¢~ f(a)) | v € Of(a)}-

€20

Proposition 2.1.3. [35] Let f,g : R" — RU {400} be proper lower semi-

continuous convez functions. If dom f N domg # (), then

epi(f + g)" = cl(epif” + epig").

Moreover, if one of the functions f and g us continuous, then

epi(f + g)* = epif” + epig”.

Proposition 2.1.4. [39, 53] Let g; : R® — R U {+o0}, i € I (where I is
an arbitrary index set), be a proper lower semicontinuous convex function.

Suppose that there exists xo € R™ such that sup;c; gi(xo) < +00. Then

epi(sup g;)* = cl(co U epig)).
el icl

13



Slightly modifying the proof of Proposition 3.2 in [44], we can obtain the

following Proposition.

Proposition 2.1.5. Let g; : R®" xR — R, ¢ = 1,...,m, be continuous
functions such that for each v; € RY, g;(-,v;) is a convex function and let C
be a closed convexr cone of R™. Suppose that each V; C R, i =1,....m, is

compact and convex, and there exists xo € C such that
gi(xo,v;) <0, Yo € V;, i =1,...,m. (2.1)
Then Uwe%Aizoepi(zz'il/\igi(-, v;))* + C* x Ry is closed.

Proof. Let {(z*,s*)} be a sequence in the set Uvievi’/\Z_goepi(zgl)\igi(~, v;))*
+C* x Ry such that (2%, s*) converges to (z,s). Then there exist vf €
Vi, ) 20,0 =1,...,m, ¢ € C* and 7* € R, such that (z*,s*) €
epi(S7 Nogi(-, 08"+ (e, ), thatis, (k¥ 1) € epi(S, Negi(-, o)
Since V; is compact, we may assume that vf — v; € V;, i = 1,...,m. Let
A= ST AR We first show that {AF} is bounded. Otherwise, we may

k
assume that \¥ — +00. Since 0 < % <1,i=1,...,m, we may assume that

:\\—z — 6 € Ry, i =1,...,m. Since \¥ := 3" AF/ 3™ §, = 1. For each

xel,

()7 =Y Ngiw,of) = (F =) Te = Mg, of)
i=1 i=1

< O Mal, ) G- )

I

sF— k< gk

14



and so

(Zk)TZE PV oy SF
e Zﬁgi(x’vi) S
i=1

Passing to the limit and noting that g; is continuous, we see that, for each
reC, > " 8;gi(x,v;) 2 0. This contradicts (2.1) as > .~ §; = 1.
Now, as {A\*} is bounded, we may assume that \F — );. As for each

x € C,
() e =Y Ngi(w, o) < 5,
i=1

it follows by passing to the limit and noting that each g; is continuous that

for each x € C,
2o — Z)\igi(x, v;) < 8.
i=1

Thus, for any = € R”,
ZT{E o ZAzgl<x>U2) - 50(.23) é S,
i=1

and hence (37", Nigi(-, v;) + 0¢)*(2) £ s. So, by Proposition 2.3, (z,s) €
epi(d o Nigi(-, vi) +00)* = epi(doit Nigi(-, v)* + C* x R O
Using Proposition 2.3 in [44], we can obtain the following proposition.

Proposition 2.1.6. Let g; : R x R? - R, ¢ = 1,...,m, be continuous

functions and let C' be a closed convex cone of R™. Suppose that each V; C RY,

15



i=1,...,m, is convex, for all v; € R?, g;(-,v;) is a convex function, and for

each x € R", g;(z,-) is concave on V;. Then

U epi(z)\igi('avi>>* +C" xRy,

0:€Vi, Ai =0 i=1

18 convez.
Proof. By Proposition 2.3 in [44], U, ¢y, =0 €PI( 12 Aigi(+, v:))* is convex.
Since C* xR is convex, (U, ey, x,208PI(0 10 Aigi(s, vi))* +C* xR is convex.

]

Slightly modifying Example 2.1 in [44], we can obtain the following ex-
ample showing that the cone U,,cy, 1,206 521 Aigi(+, v:))* + C* x Ry may

not be convex:

Example 2.1.1. Let v; € V; := [0,1]. Let g; : R? x R — R be defined by
gi(z,v1) = v? |21 + max{xy, 0} — 2v;.
Let C' = —R%. Then for each A\; = 0 and v, € Vi,

(A1 (s, v1))" (a1, az)

= sup {azy + agxe — A\ (vi|21| + max{z,, 0} — 2v1)}
(z1,22)€ER?

2)\11)1, if — )\17}% § aq § )\1’0% and 0 é Qo § )\1,
+00, else.

16



So, |J epiAgi(v)” = | [=h0f, Mod] x [0, M] x [2A101, +00)

= U [—r,7] x [0, 5] x [2¢/Ts, +00).

Hence, we have

L epihgi( o)+ C* xRy = | [—r,+00) x [0,+00) x [24/r's, +-00).

v1 €V s>r>0
A >0

Let a = (0,1,0) and b = (1,1,2). Then, a,b € ,,co1) ePi(A1g1(+, v1))* +C* X
A1>0

R;. On the other hand, ¢ := %2 = (0.5,1,1) ¢ Uy, oy epi(Mgi(-,01))* +
A1>0

C* x Ry. Otherwise,

(05,1,1) € | J [=r,400) x [0,400) x [2v/75, +00),

and so, there exist s = r = 0 such that » = 0.5, s = 1 and 24/rs < 1. Note

that for any r = 0.5 and s = 1, we have 2\/rs = 2v/0.5 > 1. This is a

contradiction, and hence, the cone, (J,, ey, epi(A1g1(-,v1))* + C* x R, is not
A120

convex.

Now we give an example illustrating Propositions 2.1.5 and 2.1.6.

Example 2.1.2. Let v; € V; :=[1,2] and let ¢; : R x R — R be defined by

g1(z,v)) = 2% — 2u.

17



Let C'=R,. Then we can easily find points which satisfy the Slater condi-

tion. Moreover, for each A\; = 0 and v; € Vy,

(a+ 2vp)?

gl('vvl)*(a> = 4 )

and

U epitugi(hv)) = | epiChugn(v:)* U ({0} x [0, +00))

v1€V) v1€[1,2]
A1=0 A1>0
a+ 2v;)?
= U Ml 12 S (o) x [0, +00))
1)16[1,2}
A1>0

= {(a,®) | max{0,2a} < a}.

SO: the cone, lee[LQ] epi(/\lgl(') Ul)>*+0* X R-l— i {(CL, Oé) | max{(), 2@} < O[},
A1>0

is closed and convex.

2.2 Approximate Optimality Theorem

Slightly extending Theorem 2.4 in [44] to a robust convex optimization
problem with a geometric constraint, we can obtain the following lemma

which is the robust version of Farkas’” lemma for convex functions in [39]:

Lemma 2.2.1. Let f : R® — R be a convex function and let g; : R™ x R? —
R, i =1,...,m, be continuous functions such that for each v; € R, g;(-,v;)

1s a convexr function. Let C' be a closed convexr cone of R™. Let V; C RY,

18



i=1,...,m, be compact and let A .= {x € C' | g;(x,v;) £0, Yv; € V;, i =

1,...,m} # 0. Then the following statements are equivalent:

(i) {z€C| gi(z,v;) L0, Vv, € Vs, i =1,...,m} C{z e R" | f(z) 2 0};

(ii) (0,0) € epif* + clco( U epi(Z)\igi(-, vi)) + C* x Ry).
v; €V5, A >0 =1
Proof. Let D :={x € R" | gi(z,v;) £0, Vv; €V;, i=1,...,m}. Then A =
C'ND. We will prove that epidy = clco (U,ep, »,208PH(2 10 Nigi(, vi))* +

C* x Ry). For any z € R",

m

da(x) =dc(x) + op(x) and dp(x) = sug g Aigi(x, v;). (2.2)
ViV =1
Ai>0

Thus we have epid’, = epi(dp+d¢)*. So, by Proposition 2.1.3, epi(dp+dc)* =
cl(epidy, + epids). So, from (2.2),

cl(epid}, + epidy.) = cl(epi( sup Z AiGi(+v3))" + epidg).
VEV: i1
)\7;20

Hence, by Proposition 2.1.4,

cl(epi( sup Z/\igi(" v;))" +epids) = cl(clco U epi(z Nigi(+,v3))" + epids)

= cleo( U epi(z Xigi(+,v))" +C* x Ry).
Vi€V =1
Xi=0
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Thus, we see that

epioy = clco( U epi ZAZQ@ L))+ CF x RY). (2.3)

Vi EV;
Ai=0

Now, we assume that (ii) holds. So, from (2.3), (ii) is equivalent to (0,0) €
epif*+epid’. From Proposition 2.1.3, equivalently, (0,0) € epi(f+d4)*. So,
by the definition of epigraph, we see that (f + 04)*(0) < 0. Also, from the
definition of conjugate function, we see that (f +d4)(z) = 0, for any =z € R".

It means that f(x) = 0, for any x € A. Thus, we have (ii) < (i). O

Using Lemma 2.2.1, we can obtain the following theorem:

Theorem 2.2.1. Letx € A and let g; : R"xR? — R, i =1,...,m, be contin-
uous functions such that for each v; € R, g;(-,v;) is convex on R™. Let V; C
RY,i=1,...,m, be compact. Suppose thatJ, y, . >0 epi(d o, Nigi(- i) +

C* x Ry s closed and convex. Then the following statements are equivalent:
(i) = is an approzimate solution of (RCP);

(ii) if there exist \; = 0 and v; € V;, i = 1,...,m, such that for any x € C,

Z gl'rvl Zf<j>
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Proof. [(i) = (ii)] Let Z be an approximate solution of (RCP). Then f(x) =
f(Z)—e€ forany z € A. So, AC{zx e C| f(z)— f(Z)+ €= 0}. By Lemma

2.2.1 and the assumption,

(0,e = f(z)) € epif” + U epi(z/\igi('a v))" +C" xRy

0 EVi, Ai =0 i=1

So, there exist \; = 0 and ©; € V;, i = 1,...,m, such that

(0,e — f(Z)) € epif” + epi(zj\igi('a ;)" +C" X Ry

=1

Then there exist u* € R", a =20, w; € R", 3, =20,2=1,...,m, ¢ € C* and

r € R, such that
(0,¢ - £(@)) € (w', f* Z w}, g7 (i, )+ B) + (7).

So, 0 =u*+ > 7" Nwi +c* and e — f(Z) = f*(u*)+a+ D Ni(gf (w), 0;) +
B:) + r. Hence, for any x € R,

~(C Awta) = () = £(@)

= (W2~ ()
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Thus, for any z € C,

f(z)—e < <§: Awi ) + () + f(x) —a— Z:)\lgZ wy, v;) i)\iﬁi —r
i=1 i=1
< Zsz,x + f(z zm:j\gzw
< D (gile, ) + f(x).
=1

[(ii) = (i)] Suppose that there exist \; = 0, v; € V;, i = 1,...,m, such
that for any x € C, f(z)+>.1", Migi(z,9;) = f(Z) —e. Then we have for any

r €A,
f(z) = f(z) + Zj\igi(iﬁ,@) = f(7) —

Thus f(x) = f(z) — ¢, for any x € A. Hence 7 is an approximate solution of
(RCP). O

Using Lemma 2.2.1, we can obtain the following approximate optimality

theorem for approximate solution of (RCP).

Theorem 2.2.2. (Approximate Optimality Theorem) Let z € A and
let g - R"xRY — R, i=1,...,m, be continuous functions such that for each
v; € RY, g;(-,v;) is conver on R™. Let V; CRY, ¢ = 1,...,m, be compact.
Suppose that |, ¢y, y,=0 P 10y Aigi(+ vi))* +C* xRy is closed and convex.

Then the following statements are equivalent:
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(i) & is an approximate solution of (RCP);

(ii) (0,e = f(Z)) € epif* + U epi(Z)\igi<'7vi))* +C" x Ry;

v; €V;, Ai=>0 =1

(iii) there exist v; € V;, \y 20,i=1,...,m, ande; 20,1 =0,1,...,m+1
such that

m

0€d,f(T)+ Z O, (Xigi(-,0:)) () + N (z)

i=1

m+1

and € — €= Z igi(Z,7;).
=0 =1

Proof. Let & be an approximate solution of (RCP). Then f(x) = f(z) — e,
for any z € A. Let h(z) = f(z) — f(Z) + €. Then

h*(v) = sup{{(v,z)

|

SN

8
S~—

8

m
Zs)
S
—

I
~
*
&
_I_
=
&I
SN—
|
(@)

So, by Lemma 2.2.1, (i) < (ii).
Now we will show that (ii) < (iii). Let A :={z € C'| g;(x,v;) <0, Vu; €
Vi, i = 1,...,m}. Then A # (. Now we suppose that (ii) holds. Since

C* x Ry = epidg, we have

(0,6 = f(2)) € epif” + U epi(z Aigi(+,vi))" + epidc.

v;€Vi, A 20 =1
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It means that there exist 7; € V; and \; =0, i = 1,...,m, such that

(0,e — f(Z)) € epif” + epi Z * + epidg.

So, by Proposition 2.1.1 and Proposition 2.1.2, equivalently, there exist v; €
Vi, Mi20,i=1,...,m,and ¢ 20,i=0,1,...,m+ 1, such that " ¢ =

€,

(0,e = f(@)) € [J{(&0: (€0, 2) + 0 — f(2)) | & € 0 f(2)}

€0=>0

+ L e Z i0i(Z,7;)) | € € Oe Zkzgl ,0i)(T)}

=1

i U {(fm-i—lv <€m+1a f> + €Em+1 — 50(57)) ’ gm—i-l € 8€m+150(i’)}.

6m+120

It means that there exist o; € Vi, \; 2 0, & € O, f(Z), & € 0 >t Nigi (-, 0:) (),
Emi1 € Ocpir00(Z), i =1,...,m,and ¢ =2 0,7 = 0,1,...,m + 1, such that

D i € =€,

0,6 = f(2)) = (6o: (0, @) + €0 — f(T)) + (£, (6",7) + € — Z Xigi(T, 0i))

i=1
+<Em+17 <€m+17 T) + €my1 — 6c(T)).

Thus, equivalently, there exist 7; € Vi, \j = 0, & € Oiy f(Z), & € O, \igi(T, ¥;),
Emi1 € Ngt (), i =1,...,m, and ¢ 2 0, i = 0,1,...,m + 1, such that

0= Z?lgl i and ngl 6—€=y 1", j\igi(ja'l_)i)- O
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2.3 Approximate Duality Theorem

As usual convex programs, the dual problem of (RCP) is sometimes more
treatable than (RCP). So, we formulate a dual problem (RLD) for (RCP) as

follows:
(RLD)  Maximize(,, ) f(z)+ Z Aigi(z,v;)
i=1

subject to 0€d,f(x)+ Z De, Nigi(x, v;) + No"' (),

i=1
Azgoa UiGVia izlv"wmv

m+1
€20,i=01,....m+1 > g<e
=0

If e =0 and g;(z,v;) = gs(x), i = 1,...,m, then (RCP) becomes (CP), and
(RLD) collapses to the Wolfe dual problem (D) for (CP) as follows:

(D)  Maximizey f(z) + Z Aigi(z)
i=1

subject to of (x) + Z OA\igi(z) + Neo(z) =0,
i=1
/\120, Z:1,,m

Now, we prove an approximate weak duality theorem and an approximate

strong duality theorem which hold between (RCP) and (RLD).
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Theorem 2.3.1. (Approximate Weak Duality Theorem) For any fea-
sible solution x of (RCP) and any feasible solution (y,v,\) of (RLD),

fl@) = fy) + Z Xigi(y,v;) — €.

Proof. Let x and (y,v,\) be feasible solutions of (RCP) and (RLD), respec-
tively. Then there exist ¢ =0, ¢ 20,7 =1,...,m, €pmy1 =0, & € O, f (),
& € 0,(Ng)(y,vi),i=1,...,m,and &,.1 € Ng"*' (y) such that e = > ¢

and S H € = 0. Thus, we have

flx) ={f(y) + Z Aigi(y, vi) }

= (G.r—y) —e— Y Nigi(y,vi)
i=1
= _<Zgiax < ¥) e -, Z)\igi(yfl/i)
i1 i=1
> =3 N9 v) = 6y i) = D & = emir — €0 — > Xigi(y, vi)
i=1 i=1 i=1
= - Z Aigi(z, v;) — Z € — €m+1 — €0
=1 i=1
m+1
= — Z €
i=0
= —e
Hence f(x) 2 f(y) + 321 Migi(y, vi) — €. O

26



Theorem 2.3.2. (Approximate Strong Duality Theorem) Let g; : R" x
R? — R, ¢ =1,...,m, be continuous functions such that for each v; € RY,

gi(+,v;) is convexr on R"™. Suppose that

m
U epi(z Aigi(+vi))" + C" x Ry
UiEVi,AigO =1
is closed and convex. If T is an approzimate solution of (RCP), then there
exist A € R and v € RY such that (z,0, \) is a 2-approzimate solution of

(RLD).

Proof. Let z € A be an approximate solution of (RCP). Then, by Theorem

2.2.2, there exist \; 20,7, € V;,i=1,...,m,and e =0,i=0,1,...,m+1,

such that
m m+1 m

0 € 0, f(2) + Z O, Xigi(T,0;) + Nt (z) - and Z €]l i Z Xigi(Z, ;).
= =0 i=1

So, (Z,9,)) is a feasible solution of (RLD). Hence, by Theorem 2.3.1, for
any feasible (y, v, A) of (RLD),

f(@) + Z Xigi(Z,0;) — {f(y) + Z Aigi(y, vi) }

= —€+ Z Xigi(T, ;)
i1

m+1

= —e—l—Zq—e
i=0

—2€.

L\
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Thus (z,, \) is a 2-approximate solution of (RLD). O

Now, we give an example illustrating our approximate duality theorems:
Example 2.3.1. Consider the following convex optimization problem with
uncertainty:

(RCP) min 2, + 3
st. 2t —2ur <0, v € [—1,1],
(x1,29) € Ri.

Let f(z1,22) = 1 + 23, gi((z1,22),01) = 2} — 2021 and 0 < € < 1.

Then A := {(0,23) € R? | 2o = 0} is the set of all robust feasible solu-
tions of (RCP) and A := {(0,25) € R? | 21 = 0, 0 < 2y < +/e} is the
set of all robust approximate solutions of (RCP). Moreover, we can check

that U, 1.1, a0 €PH(A191(,01))" + C* X Ry = R x R_ x Ry Let F :=
{((@1,22), 01, M) [ 0 € O (21, 22)) 4 O Mg((21, 22), 01) + Ngi (), A 2
0, v1€[-1,1], =20, i=0,1,2, eg+e;+e < e}. Then F:= AUBUCUD
is a set of all robust feasible solutions of (RLD), where
A = {((0,0),v1,A1) | 0 € O, f(0,0) 4 O, A19((0,0),v1) + NH%(O,O),
M=0, v e[-1,1], =0,i=0,1,2, g+ +e <€}
= {((0,0),v1,\) | 0 € {1} x [~2v/c0, 2v/0] + [~2\v1 — 2/ Mver,
—2001 4 2y a] x {0} —R2, A 20, vy € [~1,1], ¢ =0,
i=0,1,2, g+ €1 < €}
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{((0,0),01,)\1) | 0 é )\1 § 1/2’111, 0 é U1 é 1} U {((0,0),01,)\1) |

1/201 £ M £ (v1 + 61 + /€ +201€6) /207, 0< 0 £ 1,60 20,

€220, 0= ¢ <€},

{(0,22),v1, A1) | 22 >0, 0 € O f(0,22) + O, A19((0, 22), v1)
+N]1§%(07I2)7 M 20, v €[-1,1], 20, 1=0,1,2, g+ €1+ € < €}
{((0,29),v1, A1) | 22 >0, 0 € {1} X [222 — 2+/€0, 222 + 2:/€0] +
[—2X101 — 2/ Mer, =201 + 24/ A1€] x {0} + (—00,0] X [—€a /22, 0],
M 20, ve[-1,1], ¢20,i=0,1,2, g+ €1 + € < €}
{((0, 23), v1, A1) | 22> 0, 0 <1 —2X\v1 + 2/ A€y, 229 — 2V/eo
—€/13£0, My 20,01 €[-1,1], 20, 1 =0,1,2, eg+ €1 + €3 < €}

{((0,1’2),1)1, ) | 0\ £ 1/2’01, O<a < (\/_+ \/€0+262)/
€; %0, i:O,l,Q, 60+€2 éE}U{((O,QTz),Ul,)\l) | 1/2U1 é)\l §

(v + €1+ /€ +2v1€e) /20, 0< v 1, 0 < 1y < (Ve +

Veo+26)/2, 001 €1, ,20,i=0,1,2, ¢g+e; +e < e},
{(z1,0),v1, A1) | 1 >0, 0 € O f(21,0) + O A19((21,0),v1)
—l—N{é(xl,O), M 20, v€[-1,1], ¢20,1=0,1,2, g+ €1 + €3 < €}
{((x1,0),v1,A1) | 1 >0, 0 € {1} x [=2/€0,2V/€0] + [—2 101 + 2124

—2\/ )\161, 2)\1’111 + 2)\11‘1 + 2\/ )\161 {O} + 62/$1, 0] X (—OO, O],

M=0, v €[-1,1], 20, i=0,1,2 g+ € +e <€}
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{((z1,0),v1, A1) | 1 >0, 0 =1 =2 01 + 2\ 21 — 24/ A\j€1 — €9/,
0<1—2\v1 +2\iz1 + 2/ Aer, M = 0,0 € [—1,1], ¢ =0,
i=0,1,2, €+ € <€}

{((21,0),v1, A1) | 21 >0, 2y — 2\ o2y + Aot < —\jad + 2\/Ex1
Fer, 01— 200y +2\21 + 2/ \er, A\ = 0,0, € [—1,1], ¢ =0,
i=0,1,2, €1 + €3 < €},

{(z1,22),v1, A1) | 1,22 >0, 0 € O f (1, 22) + O M g((21,22),v1) +
N{é(azl,wg), M 20, v €[-1,1], ¢=20,i=0,1,2, g+ €1+ € < €}
{((x1,22),v1, A1) | 21 >0, 2 >0, 0 € {1} X [2z2 — 2\/€0, 222 + 2+/€0)]
+[=2XA1v1 4 2M 121 — 20/ A€, =200 + 2021 + 24/ Are] x {0}
+[—e3/21,0] X [—€3/22,0], A1 =20, vy € [-1,1], 20, i =0,1,2,
€0+ €1+ €2 <€}

{((z1,22),v1, A1) | 1 >0, 23>0, 0=1—2 vy +2\z1 — 2/ 1€
—ey/z1, 0< 1= 2Xu + 2\ 21 + %/E, 0 = 279 — 2\/€0 — €5/,
M=0, v €[-1,1], =20,i=0,1,2, e3+€ =¢€, €9+ €1+ € <€}
{((z1,22),v1, A1) | 21 >0, 29 >0, 21 — 2\ 0101 + \2] < —\ja]

+2V/Aemy ey, 0 <1 — 20w + 2021 + 24/ \er, 0 < 20 < (Veo

+\/ 60_'_26%)/27 )‘1 %07 v € [_171]7 61’207 i2071727 E%‘FGg:GQ’

€0+€1+€2§€}.
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We can check for any (z1,25) € A and any ((y1,¥2),v1, A1) € F,

f(xywa) 2 F((y1,92)) + Mgy, 92), 01) — €, (2.4)

that is, approximate weak duality holds. Indeed, let x € A and let ((y1,y2),

v, A1) € D be any fixed. Then

f,y2) + Ag((y1, v2),v1) — €

= Y1+ Y5+ MY — 2\ 0T — €

< My 2V ey H e+l —e

< ate+(o+es+4/(e0+ed)?)/2—¢
= 61+6§+60+6§—e

<0

< f(@1,72).

Let (41,72) € A be an approximate solution of (RCP). Then z; = 0,

0 <@ < fe. Let Ay = 1, o, = /e. Then we can easily check that

((Z1,T2),v/€, 1) € F. Moreover, for any ((y1,v2),v1,\1) € F,

F(@1,32) + Mg((Z1,72), 1) — {f(y1,92) + Mg((y1,92),01)}
—€+Aig((T1,22),71)  (by (2.4))

—e+ M\ (T2 — 20,7,)

—e+ M (T, — 1) — (01)?

—e+ (T —Ve) —¢

—€+ —e = —2e.
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So, ((Z1,Z2), /€, 1) is an approximate solution of (RLD). Hence approximate

strong duality theorem holds.

2.4 Robust Fractional Optimization Problems

The purpose of this section is to extend the approximate optimality the-
orems and approximate duality theorems from Section 2.2 and Section 2.3,
respectively, to fractional optimization problems with data uncertainty.

Now, we consider approximate solutions for a fractional optimization
problem in the face of data uncertainty. Using the robust optimization ap-
proach (the worst-case approach), we establish optimality theorems and dual-
ity theorems for approximate solutions for the robust fractional optimization
problem. Moreover, we give an example illustrating our duality theorems.

Consider the following standard form of fractional optimization problem

with a geometric constraint set:

—

(z)
z)

st hi(x) £0,i=1,---,m,

(FP) min

Q
—~

x e,

where f, h; : R — R, ¢ = 1,---,m, are convex functions, C' is a closed
convex cone of R® and g : R® — R is a concave function such that for any

xeC, f(x) 20 and g(x) > 0.
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The fractional optimization problem (FP) in the face of data uncertainty

in the constraints can be captured by the problem:

f(x,u)

(UFP) min  max
(wo)eUxv g(x,v)

st. hi(z,w;) £0,i=1,---,m,

x e,

where f:R" X RP - R, h; : R" x R — R, f(-,u) and h;(-,w;) are convex,
and g : R" x R? — R, ¢(+,v) is concave, and u € RP, v € RP and w; € R? are
uncertain parameters which belongs to the convex and compact uncertainty
setsd CRP, V CRPand W; CRY, i =1,--- ,m, respectively.

We study approximate optimality theorems and approximate duality the-
orems for the uncertain fractional optimization problem (UFP) by examining

its robust counterpart [8]:

f(z,u)

(RFP) min  max
(u,w)EUXV g(,I’, U)

st hilm,w) £0, Yw; €Wy, i=1,--+,m,

rzeC.

Clearly, A :={z € C' | hi(z,w;) £0, Yw; € W;, i = 1,...,m} is the feasible
set of (RFP).
Let € = 0. Then Z is called an approximate solution of (RFP) if for any

r €A,

—
~—

(z,u f(Z,u)
max = max —
(wo)euUxv g(z,v) — (ww)euxv g(Z,v)

— €.
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Using parametric approach, we transform the problem (RFP) into the ro-
bust non-fractional convex optimization problem (RNCP), with a parameter

reR,:

(RNCP), min max flz,u) — rrvnelgg(m, v)

s.t. hZ(ZL’,U}l) <0, Yw; € Wi, 1=1,---,m,
rel.

Let € = 0. Then Z is called an approximate solution of (RNCP), if for any

rEA,

. A); > M (7. v) —
max f(z,u) rrglellr}g(x,v) = max f(z,u) rrglelgg(x,v) €.

Proposition 2.4.1. [31] Let € 2 0. Let h; : R" - RU {400}, i=1,...,m,

m
be proper lower semicontinuous convex functions. If |J ri(domh;) # (0, then
i=1

for all x € |J domh;,

=1
m m

éME:M@ﬂ:LHE:@ﬂm@|Q§O,%:L~wn%EZQ:G}

i=1 i=1

Now we give the following relation between approximate solution of (RFP)

and (RNCP);.

Lemma 2.4.1. Let 1 € A and let ¢ 2 0. If max fow) o> 0, then the
(uv)etuxy 9E&0)

&I

following statements are equivalent:
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(i) & is an approximate solution of (REFP);

—

(:T:,u)) iy

(ii) Z is an é-approzimate solution of (RNCP)z, where 7 = max
(u,0)EUXV 9

R |

dé—
and € = erglelgg(:c v).

Proof. [(i) = (ii)] Let £ € A be an approximate solution of (RFP). Then for

—e. Put7= max i@W_
(u,v)eUXV 9(z)

f(@u
)

—

€ and

any r € A, max few) > ax
Y (u,v)EUXV g(zv) = (u,v)EUXV 9

&

€ = emin g(z,v). Then we have for any x € A, max f(z, u)—mig rg(x,v) = 0.
vey ue ve

Since max f(z,u) — Tml]glg(x v) — emmg(m v) =0, for any x € A,
ve

i > = _
Tég{f(x w) T%lelng(l' v) ngj{f(x w) T’Iglel‘glg([)? v) Elglel]ljlg(x v)

= rggd{f(x w) —rlglelgg(x v) — E.

Hence 7 is and éapproximate solution of (RNCP);.
[(ii) = (i)] Let z € A be an éapproximate solution of (RNCP);. Then

— 7 mi > T — 7mi T _
for any x € A, rgtle%(f(x,u) rrynggg(x,v) > rggff(x,u) rrglelgg(x,v)

€. - — =0, f A
€. Since I{ngzj{f(x u) rgxlelgg(x v) erglelgg(x v) = 0, for any = € A,

max f(x,u) — rnung(:c v) = 0. So, we have max L% > 7 Since
uel veY (u,0)eUXV g(zv)

[z, u) f(@,u)

max > max —
(woyeuUxv g(z,v) ~ (uo)euxv g(Z,v)

Hence 7 is an approximate solution of (RFP). O

35



Now, we give the following lemma which is the robust version of Farkas

Lemma for non-fractional convex functions.

Lemma 2.4.2. Let f: R"xR?P — R and h; : R® xR — R be functions such
that for any w € RP, f(-,u) and for each w; € R, h;(-,w;), 1 = 1,...,m,
are convex functions, and for any x € R", f(z,-) is a concave function.
Let g : R" x R? — R be a function such that for any v € RP, g(-,v) is
a concave function, and for all x € R", g(x,-) is a convex function. Let
U C R,V C R and W; C R4, ¢ = 1,...,m, be convex and compact
sets. Let r = 0 and let C' be a closed convexr cone of R™. Assume that
A=A{x e C| h(z,w;) £0, Yw; €W;, i = 1,....,m} # 0. Then the
following statements are equivalent:

(i) {x € C | hi(z,w;) £0, Vw; e W;, e =1,...,m} C{x e R" | meagcf(x,u)

—rmi >0}
Trgggg(w,v)_ Ji

(i) there exist u € U and v € V such that

AC{zeR"| f(z,u) —rg(z,v) 2 0};

(iii) (07 0) € U epi(f(-, u>>* + U epi(—rg(-, U))*

uel veY
+ cleo( U epi(z Nhi(-w;)) 4+ C* x Ry);
wEWAZ0 =1

(iv) (0,0) € epi(max f(-, u))" + epi(—rming(-,v))"

+ cleo( U epi(z Aihi(-,w;))* + C* x Ry).

w; EW;,A; 20 =1
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Proof. Notice that epid} = clco (U, ey, x,208P1 (D iy Aifi(+ wi))* +C* xR,

by the proof of Lemma 2.2.1.
(i) & (iv)] Now we assume that the statement (iv) holds. Then, by

Proposition 2.1.3, the statement (iv) is equivalent to

(0,0) € epi(meazf f( u))* + epi(—r rrleigg(-,v))* + epidy

= epi(max f(-,u) = rmin g (-, v) + 84)°"

uel

Equivalently, by the definition of epigraph of max fGu)—r mif;l g(-,v)+54)",
ue ve

(Iileazj{f(, u) — rrglei]r}g(-, v) +04)*(0) £0.

From the definition of conjugate function, for any = € R",

(mas f (-, u) —rming(-,v) + d4)(x) = 0.

It is equivalent to the statement that for any = € A,

— rmi > 0.
max f(z, u) —rming(z,v) =

[(ii) < (iii))] Now we assume that the statement (iii) holds. Then the

statement (iii) is equivalent to

(0,0) € U epi(f(-,u))* + U epi(—rg(-,v))" + epid’y.

ueld vey
It means that there exist w € U4 and v € V such that

(O’ O) S epi(f(-,ﬂ) - Tg('777) + 5A)*
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It is equivalent to the statement that there exist u € & and v € V such that

(f(,u) =rg(-,0) +64)°(0) = 0,

From the definition of conjugate function, there exist « € U and v € V such

that for any = € R",
(f( @) —rg(-,0) +da)(x) 2 0.
It means that there exist u € U and v € V such that for any x € A,
f(z,a) —rg(z,v) 2 0.

[(iii) < (iv)] To get a desired result, it suffices to show that

J epi(f(u)* = epi(max f (-, u))* (2.5)
U epi(=rg(-,0))" = epi(~rming(,v))" (2:6)
veY

By Proposition 2.1.4, epi(magc f( u)* =cleo U epi(f(-,u))*. Let (21,aq),
ue uel

(22,2) € | epi(f(-,u))* and let g € [0,1]. Then there exist uj,us €
ueld

U such that (z1,a1) € epi(f(-,u1))* and (22,2) € epi(f(-,uz2))*, that is,
(f(-,u1))*(z1) £ oy and (f(-,u2))*(22) £ ag. Using the definition of conju-

gate function, we have for all x € R",

(z1,2) — f(zyuy) £ a1 and (z2,7) — f(x,u2) < an. (2.7)
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Since for all x € R", f(z,-) is concave, we have f(z,pu; + (1 — p)ug) =
Mf($7u1) + (1 - ,M)f(l’,UQ), i'e'a
—fl@, pur + (1 = pug) £ —pf(z,u1) — (1 — p) f(z, u2). (2.8)

So, from (2.7) and (2.8), we have for all z € R",
(nar + (1= p)ze, @) — fla, pur + (1 — p)ug) < pon + (1 — po,

and so, (f(-, pur + (1 — pup))*(uz1 + (1 — p)22) < pay + (1 — p)ag. Hence,

we have
(21 + (1 = p)za, pon + (1 — p)ag) € epi(f (-, pur + (1 — p)ug))™

So, | epi(f(+,u))* is convex.
uel

Now we will show that |J epi(f(-,u))* is closed. Let
uel

8. '@ € U epi(f(-,u))*
uel
with (z,,a,) — (2*,a*) as n — oco. Then there exists u, € U such that
(f(-;un))*(zn) £ . Since U is compact, we may assume that u,, — u* € U

as n — 00. So, for each x € R,
<Zn7$> - f(x7un) < Q.

Since for all x € R™, f(x,-) is concave, f(z,-) is continuous. Passing to the
limit as n — oo, we get that, for each z € R™, (z*, x) — f(z,u*) < a*. Hence,
we have

(2", ") € epi(f(-,u"))".
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So, | epi(f(-,u))* is closed. Thus, (2.5) holds.

ueU

Moreover, since for all x € R", g(z, -) is convex and r = 0, for all z € R,

—rg(x,-) is concave. So, similarly, we can prove that (2.6) holds. O]

Remark 2.4.1. Using the convez-concave minimaz theorem ( Corollary 37.5.2
in [64]), we can prove that the statement (i) in Lemma 2.4.2 is equivalent to

the statement (ii) in Lemma 2.4.2.

Remark 2.4.2. From proving Lemma 2.4.2 that the statement (i) is equiv-
alent to the statement (iv), we see that we can prove the equivalent relation
without the assumptions that for all x € R", f(x,-) and g(x,-) are concave

and convezx, respectively.

From Lemmas 2.4.1 and 2.4.2, we can get the following theorem:

Theorem 2.4.1. Let f : R* x RP — R and h; : R” x R? — R be functions
such that for any uw € R?, f(-,u) and for each w; € RY, h;(-,w;),i=1,...,m,
are convex functions, and for any x € R", f(z,-) is concave function. Let
g:R"x RP — R be a function such that for any v € RP, g(-,v) is a concave
function, and for allx € R™, g(x,-) is a convez function. LetUd C RP, YV C RP

and W; C R, i = 1,...,m, be convex and compact, and let A = {z €

C| hi(x,w;)) £0, Yw, e W;, i=1,....m}#0. Let 7 = (u,ir)lngxv gg:; — €.

Suppose that |, ey, x50 ePI(>_ Aihi(+, w;))* +C* xRy is closed and conver.
= i=1
Then the following statements are equivalent:
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(i) £ € A is an approzimate solution of (RFP);

(ii) there existu €U, v €V, w; € W; and \; =0, i = 1,...,m, such that

for any x € C,
fla,m) —rg(z,0) + Y Nhy(z, @) = 0.
i=1

Proof. [(i) = (ii)] Let # be an approximate solution of (RFP). Then, by
Lemma 2.4.1, equivalently, T is an é-approximate solution of (RNCP);, where

F = max L&
7U)

(u,v)EUXV 9

— ¢ and € = emigg(a?,v), that is, for any =z € A,
ve

i3]

. > L ) r i WS onin o (3. o). S
rilgd(f(:v,u) rrglel]r/lg(a:,v)_rilea&(f(x,u) TIglel\I}lg(:B,U) erglelgg(x,v) Since

NIy § B -y B
Iile%(f(x,u) rlgg}lg(a:,v) 613151;1g($ﬂ)) 0, we have —{J;ECquI}eazj{f(x’u)

fmi\r)lg(a:,v) > 0}. Then, by Lemma 2.4.2, we have
ve

(0,0) € | epi(f (- w)” + | epi(—rg(-,v))"

ueU veyY

+clco( U epi(i Aihi(,w;))* +C" x Ry).

w; EW;,A; 20 =1

Moreover, by assumption,
(0,0) € [ J epi(f(-,w)" + | epi(=7g(-,v))"
ueY veY

+ | epi> ] Al wi)T + CF x Ry

w; EWi, A 20 =1
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So, there exist t €U, v € V, w; € W, and \; = 0,7 =1,...,m, such that
(0,0) € epi(f(-,u))" + epi(—r * + epi Z +C" xRy

Then there exist s e R", n =20, t€R", pn 20,2, €R", p;=20,2=1,...,m,
c¢® € C* and 7 € Ry such that

m

) (i Nahi( ) (20) + pi) + (¢7,7).

=1

So, 0 =s+1t+ i zi+c and 0 = (f(-,u)*(s) +n+ (—7g(-,0))"(t) + p+

i((/\ihi(', w;))*(2) + p;) + - Hence, for any z € R,
) _ma) — (", 3) — f(z,7) — (-Tg(z,0))

(2.9)

= —n—p- Z ) () + pi) = -

Sincen 20, u=20,p20,7i=1,...,m, and ¢* € C*, from (2.9), for any
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x € C,

< (Y ma)+ flaa) —Tg(z,0) - Z(thz( 1)) (2:)

é f(za ﬁ) o fg(:lf, 6) i Z()‘zhz<x7wz))

=1

[(ii) = (i)] Suppose that there exist 4 € U, v € V, w; € W and \; = 0,

1 =1,...,m, such that for any x € C,

m
fla,m) —7g(z,0) + Y Nihi(,w;) = 0. (2.10)
i=1
Since 7 = (uf)lgg{cxv ’;E?Z)) —e, we have max f(z,u)—F 1516151 g(z,v)—e 151613 g(z,v) =

0. So, from (2.10), we have for any = € A,

— 7'mi = — 7mi Aihi i
max f (v, u) = Fmin g(z, v) 2 max f(z,u) = Fming(w,0) + 3 Aihi(w, w)

= max (7, u) — rmin g(7, v) — emin g(z, v).
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H f A —7 mi > T, u)—7 min g(z,v)—
ence, for any z € ,IlrLleab){cf(x,u) Trglel‘rjlg(:v,v)_rileazjcf(a:,u) rrglel]rjlg(x,v)

€ Hli]Ijl g(Z,v). It means that T is an é-approximate solution of (RNCP);. Thus,
ve

by Lemma 2.4.1, Z is an approximate solution of (RFP). O

Using Remark 2.4.2 and Lemma 2.4.1 and Lemma 2.4.2, we can obtain

the following characterization of approximate solution for (REP).

Theorem 2.4.2. (Approximate Optimality Theorem) Let f : R™ x
R? — R and h; : R x R? — R be functions such that for any u € R?, f(-,u)
and for each w; € RY, hi(-,w;), i = 1,...,m, are convexr functions. Let
g:R"x RP — R be a function such that for any v € RP, g(-,v) is a concave
function. LetUd C RP, V C RP and W; C RY, ¢+ = 1,...,m, be convexr and
compact and let A = {x € C | hi(z,w;) £0, Yw; e W;, i =1,...,m} # 0.

Lett € A and let e 2 0. Let T = max f@y) If max f@uw) €,
(uw)ettxy IE) (wv)etixy I@)

then T is an approzimate solution of (RFP). If max 1&% > ¢ gnd
(u,v)EUXY 9(@v)

m

U epi(d] Nhi(s,w;))*+C* xRy is closed and convex, then the follow-
wEW,AZ0 0=l

ing statements are equivalent:

(i) z is an approzimate solution of (RFP);

(ii) There exist w; € Wy and \; 2 0, i = 1,....,m, ¢ 20, €2 = 0 and

€=20,1=1,...,m+ 1 such that
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m

0e ae(lj(rggz/}{{f(’ u))<j> + aeg(_flglei]l}g(W U))(j) + Za&(}‘zhz(ﬂﬂz))(‘f)

i=1

+ N (T, (2.11)

— = d 2.12

max f(zu) =7 15161‘1)1 g(Z,v) =€ 131619 g(Z,v) an (2.12)
m+1 m

e(l)—i—equZe,—emmng Z . (2.13)
i=1 =1

Proof. [(i) = (ii)] We assume that Z is an approximate solution of (RFP).

Then, by Lemma 2.4.1, Z is an é&-approximate solution of (RNCP);, where 7 =

(mglea&(w ];g Z)) —eand € = 6%1613 g(Z,v), that is, for any = € A, max flz,u) —
> — Si

rrvnel]r)l g(x,v) max f(zZ,u)— 7“%161][/1 9(Z,v) GIUIlelg g(Z,v). Since max f(z,u)—
S _ T _

rrglelélg(x v) erglelgg(:c v) = 0, we have A C {z € C | max [z, u)

fmi‘r}g(:v,v) > (0}. By Lemma 2.4.2,
ve

(0,0) € epi(max f(-, )" + epi(—ruing(-,v))"

+ cleo ( U epi(z Aihi(cw;))* + C* x Ry ).

w; EWi,Ai 20 =1

By assumption,

(0,0) € epi(max f(-,u))” + epi(—rming(-,v))"

+ U QPIZ)\h )4+ C" x Ry

w; EW; ,)\Zgo i=1
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Notice that C* x Ry = epids. So, there exist w; € W, and N =0, 0=
1,...,m, such that

(0,0) € epl(IBgzj( f( u)* +epi(— rmmg )"+ epi Z )"+ epidg..

By Proposition 2.1.2, we obtain that
1 = 1 = 1 ) . _
< U {<£07 <£0>x> + €o r}}g}f’(l‘au)) ‘ 60 S aeo<rilgj<f( ,'LL))(.Z‘)}

6(1)20

+ & (&7 + &+ rming(7,0)) | & € d(—rming(v))(x)}

6020

+ [ J L, ¢ 2) Z;\ (Z,@;)) | £ € Oes( Z w:))(T)}

€*>0

+ U {(€m+1a <€m+1vi‘> + €m+t1 — 50(‘%)) ‘ Sm-‘rl S a€m+1(50(:f)}.

€m+1=20

SO, there exist gé S aeé(méi‘l/){{f(vu))(j)a gg & 8%(—?1%1{)19(,’0))(@), g* S

Ms

D (D" Nihi (-, W) )(Z), &gt € Oeppir00(T), €620, €220, ¢ 20 and 6,41 = 0

1

%

such that 0 = & + & + & + &pyy and € + €2 + € + €1 = max f(z,u) —
U

THH\I}I g(%,v) + > N\ihi(Z,w;). Hence, by Proposition 2.4.1, there exist & €
ve i=1

ae (maxf( ))('T)a gg S 865(_7_1%16139('71}))(3_3)7 gz S 861(5‘1}%(7“_)1))(3_:)’ ngrl €

ueU

Deppir00(T), €20, €5 20,¢20,i=1,...,m, and €,41 = 0 such that
0 € 0y S )P40 i e )Y U ) N )
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and

m+1 m
€ + €0+ Z € = maxf T,u) — rrgggg(x v) + z; Nihi(Z,w;).  (2.14)
Hence, (2.11) holds. Moreover, since 7 = max @y _
(u,0)EUXV 9(z.v)
max f(Z,u) — 7 min g(Z,v) — emin g(z,v) = 0. (2.15)

uel veEV veY
So, (2.12) holds, and so, from (2.14) and (2.15), we have

m~+1 m
1 2
€0+60+E €; —emin g(z,v) g
- veY =

Thus, (2.13) holds.
[(ii) = (i)] Taking into account the converse of the process for proving
ii)

(i) = (i

, we can easily check that the statement (ii) = (i) holds. O

If for all z € R", f(z,-) is concave, and for all z € R, g(z,-) is con-
vex, then using Lemma 2.4.1 and Lemma 2.4.2, we can obtain the following

characterization of approximate solution for (RFP).

Theorem 2.4.3. (Approximate Optimality Theorem) Let f : R" x
RP - R and h; : R* xRY - R, i =1,...,m, be functions such that for any
u € RP, f(-,u) and for each w; € R, h;(-,w;) are convex functions, and for
all x € R, f(x,-) is concave function. Let g : R x R? — R be a function
such that for any v € RP, g(-,v) is concave, and for all x € R", g(x,-) is

convex. LetUd C RP, YV C RP and W; C R?, i = 1,...,m, be convex and
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compact and let A :={x € C | hiy(z,w;) £0, Yw; € W;, i =1,...,m} #0.

& |

Let T € Aand let € 2 0. Let ¥ = max L&W _ ¢ If max [(@u)
(u U)GUXV g( ) (U,U)EZ/{XV g(CC,U)

€, then T is an approzimate solution of (RFP). If max @Y > ¢ gnd
(u,0)EUXV g(zw

~

U epi(d] k(- w;))*+C* xRy is closed and convex, then the follow-

w; EW5,A; 20 =1

ing statements are equivalent:

(i) = is an approximate solution of (RFP);

(ii) There exvist u € U, v € V, w; € Wi, \i 20, i =1,....m, ¢ =0,

ee=20ande;=20,i=1,...,m+ 1, such that

0 € 0 (f(, )(@) + Dz (—7g(-0))(Z) + D Do (Nibi -, 0:)) ()
i=1
+Ng"(Z), (2.16)
max f(z,u) — IIIEI‘I}l r9(Z,v) = emel]]glg(x v) and (2.17)
m+1 m
6%4—63—}-261—61111119%1] gz (2.18)

Proof. [(i) = (ii)] Let & be an approximate solution of (RFP). Then, by

Lemma 2.4.1, Z is an é&-approximate solution of (RNCP);, where 7 = max

~

8

(u,v)EUXV 9

L : . >
€ and € EIvIlel\l}lg(SB,U), that is, for any = € A, Iileazj(f(x’u) 7“1516111;19(‘%,1)) >

I}LIE%(f(x u)—rrglelgg(x v)—elglel]r}g(a: v). Since max f(z, u)—rrglelgg(x v) —

eml]glg(m v) =0, we have A C {zx € C'| maxf(x u)—rmlng(:p v) =2 0}. By
ve
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Lemma 2.4.2 and the assumption, (0,0) € |J epi(f(-,u))*+ |J epi(—7g(-,v))*+

ueU veY
o xwo €I Aihi(fw;))* +C* xRy Since C* xRy = epidf, there exist
Wi EW;, A 20 c
= i=1

weU, vV, w; €W;and \; =0,i=1,...,m, such that
(0,0) € epi(f(-,a))* + epi(—7 * + epi Z * + epidg..

By Proposition 2.1.2, we obtain that

e | J{(&: (& 2) + e — f(@.3)) | & € dq(f(0)(@)}

6(1)20

+ (J (&, (6, 2) + & +79(7,7)) | & € da(~Tg(-,0)(®)}

eggo
+ J{E, ¢ 2) Z ) | € €0 () Niha(-,w
€e*>0 i=1 i=1

+ U {(gm-i—la <€m+17j> + €mt1 — 50(‘%)) | gm—f—l € aem+150(j:)}‘

€m+120

So, there exist & € a(f(-,u))(x), & € da(—7g(-,v))(z), & € Des (3

thl(awl)xi.)? Eerl S 8€m+160<'f.)7 6(1] 2 Ou 6% = O, € =2 0 and Em+1 =0

such that 0 = & + & + & + &y and ¢ + € + € + e = f(T, 1) —

7g(Z,0)+ Z hi(Z,w;). By Proposition 2.4.1, there exist £ € O (f(-,u))(2),

SE% € 363(—779('777))(37)’ él € aGZ(E‘ZhZ(?U_)Z))( ) £m+1 € a€m+l(5 (i') 6[% = 07
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€6=20,6=20,1=1,...,m, and €,,,1 = 0 such that

0 € 0a(f( ) (@) + 0 (=79 (-, 0))(®) + > OesNihil-, @) () + N+ (2)
i=1
m—+1 m
and e+ e+ Y €= f(z,u) - rg(Z,0) Z (2.19)
i=1 i=1
Hence, (2.16) holds. Since 7 = max H@uw) ¢ we have max f(z,u) —
(u,v)EUXV 9(z ) uelU

7“1516111} 9(Z,v) = EIglEI]I)l g(Z,v). So, we have

f(z,u) —rg(z,0) < max f(z,u) — rmel)gl HZ W A emellglg(x v).  (2.20)

Hence, (2.17) holds. Also, from (2.19) and (2.20), we have

m+1 m
= | 2
60—|—60—|—E el—emmng§g
- veY

Consequently, (2.16) and (2.18) hold.
[(ii) = (i)] Taking into account the converse of the process for proving

(i) = (ii), we can easily check that the statement (ii) = (i) holds. O

Remark 2.4.3. Assume that f : R" Xx RP — R and g : R" x R? — R are
functions such that for all x € R", f(x,-) and g(z,-) are concave and convez,

respectively. Then, we know that Theorem 2.4.2 is equivalent to Theorem

2.4.83 from Lemma 2.4.2, immediately.
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Now. following the approach in [27], we formulate a dual problem (RFD)
for (RFP) as follows:

(RFD) max r

st. 0€ 36(1)(?254 [ ) (@) + O (—r 15161‘1;1 g(-,v))(x)

m

+ 37 0 (il w) () + N (),

i=1

— >
rileadcf(a: w) rnn}r;g(x v) emllr;lg(x v),

m—+1 m
60"‘60"‘2 el—emmg:cv E i(z,w;),

i=1
T%O, wiGWZ-, )\120, izl,...,m,

0 g =0, ¢, SN —1, ... mTI.

Clearly, F:= {(z,w,\,7) | 0 € . (rneaf f(,u)(x) + 02 (—r migg(-, v))(x) +
0y 9 ve

f) O (Niu(-,wi)) (x) 4 N (x), max f(z,u) - rming(z,v) 2 eg(w,v), € +

i=1
m-+1
€2+ Zel—emlng(az v) < Z)\h(:c w;), =0, w; €Wi, i 20, ¢ =

0, =0, =20, i=1,...,m, €,41 =0} is the feasible set of (RFD).

Let € = 0. Then (Z,w, A, 7) is called an approximate solution of (RFD) if
for any (y,w,\,7) € F, 7 =7

When ¢ = 0, max f(z,u) = f(z), mei]glg(x,v) = g(z) and hi(z,w;) =

ueU

hi(xz),i=1,...,m, (RFP) becomes (FP), and (RFD) collapses to the Mond-
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wier type dual problem (FD) for (FP) as follows [56]:

(FD) max r
st 0€0f(x)+0(—rg)(x) + > INhi(x) + No(x),

f(x) —rg(z) 2 0, Aihi(x) 20,

r=0, =0,i=1,...,m.

Now, we prove an approximate weak duality theorem and an approximate

strong duality theorem which hold between (RFP) and (RFD).

Theorem 2.4.4. (Approximate Weak Duality Theorem) For any fea-
sible solution x of (RFP) and any feasible solution (y,w,\,r) of (RFD),

—

(z,u)
max
(uw)euxv g(z,v)

>7r —e€.

Proof. Let z and (y,w, A, r) be feasible for (RFP) and (RFD), respectively.

Then there exist g(% @ aeé(mea’zj(f<vu))(y)7 f_g € 66(2)(_r 1116199(7U))(y>7 EZ S

Oe; Nihi(-,wi)(y), Emir € NG (y), 20,2 20,¢,20,i=1,...,m and

€m+1 = 0 such that

m+1

_1 _2 -~ . .
i — 07 ) - 3 % )
E+8+ ;5 max f(y, u) — rming(y,v) = eming(y, v)

m—+1 m
1, 2 -
and €, + €5+ Z € — ervnelgg(y, v) < Zl Aihi(y, w;).

i=1
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Thus, we have

max f(z,u) —rming(z,v) + emin g(z, v)

= max f(y, u) — rming(y,v) + (§ + &, 7 — y) — g — € + eming(z, v)

ueU
m+1
=max f(y, u) — rming(y, v) — <; $inw —y) — € — € + emin g(z,v)
2max f(y,u) — rming(y,v) + Z_; Aihi(y, w;) — ; Nihi(z,w;) — € — €5
m+1
_ z; € + 61516111219(37, v)
m m+1
= max f(y, u) —rming(y, v) + 21 Xihi(y, wi) — €5 — € — ; €
- 5 - .
= max fy,u) rmin g(y, v) € i g(y,v)
=0
Hence, we have max flow) > ¢ O

(u)etuxy 9@

Theorem 2.4.5. (Approximate Strong Duality Theorem) Suppose
that

U epi(z Aigi(swi))* + C" X Ry

w; EW5,A; 20 =1

N

is closed. If T is an approzimate solution of (RFP) and max [@u

——~—c=0
(u,v)eUXV @ -

=

Q
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then there exist w € RY, \ € RY and 7 € Ry such that (z,w,\,T) is a 2-

approzimate solution of (RFD).

kel

Proof. Let & € A be an approximate solution of (RFP). Let # = max fzw)
(u,v)EUXV 9(z)

Then, by Theorem 2.4.2, there exist w; € W;, A\; = 0, € =20,e20,¢ =0,

t=1,...,m and €,y such that
0 € 0,5 ) E) + 05T o)) + 300, i 7))

+ N @),

I}ngd(f(x u) — rri%glg(a: P= 61511)1;19(3: v) and

m+1 m
eé+eg+ E €; — emin g(z,v) E
- veEY o=

So, (Z,w, A\, T) is a feasible solution of (RFD). For any feasible (y, u, v, w, A, v)
of (RFD), it follows from Theorem 2.4.4 (Approximate Weak Duality Theo-

rem) that
7= max f(:f’u) —e=2r—€e—€e=1r—2€.
(ww)euxv g(T,v)
Thus (Z,w, \,7) is a 2-approximate solution of (RFD). O

Remark 2.4.4. Using the optimality conditions of Theorem 2.4.2, robust
fractional dual problem (RED) for a robust fractional problem (RFP) in the
convex constraint functions with uncertainty is formulated. However, when

we formulated the dual problem using optimality condition in Theorem 2.4.3,
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we could not know whether approximate weak duality theorem is established,

or not. It i1s our open question.

Now we give an example illustrating our duality theorems.

Example 2.4.1. Consider the following fractional optimization problem

with uncertainty:

1
(RFP) min  max ur
(u)eUxV vx + 2

st. 2wx—3L0, w €[1,2], x € Ry,

where U = [1,2] and V = [1, 2].
Now we transform the problem (RFP) into the robust non-fractional con-

vex optimization problem (RNCP), with a parameter r € R :

(RNCP), min max (uxz + 1) —r min (ve +2)
uell,2] vellL,2]

st. 2wr—3<0, w €[1,2], z € R,.

Let f(z,u) = ux+1, g(z,v) = vz +2, hi(z,w;) = —2wyz—3 and € € [0, 55].

Then A := {z € R | 0 < 2 < 2} is the set of all robust feasible solutions

of (RFP) and A := {z € R | 0 < 2 < 325} is the set of all approxi-

mate solutions of (RFP). Let F' := {(y, w1, \1,7) | 0 € ael(ma}j{ fu)(y) +
0" ue
Ocg(—rmin g(-, v)) ()40 (Arfn (- w1)) (y) + N, (), max f(y, u)—rmin g(y, v)

€0 veEV

= emigg(y,v), 6[1) + 63 + €1+ € — emiyg(y,v) < Mha(y,wy), 720, wy €
ve ve
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1,2, i =0, ¢ =20, =0, ¢, 20, e = 0}. Then we formulate a dual
0 0

problem (RFD) for (RFP) as follows:

(RFD)  max r

sit. (y,wy, A1, 1) € F.

Then F' is the set of all robust feasible solutions of (RFD). Now we calculate

the set F = AU E, where

A

{0, w1, A, 7) | 0 € O (max £(-,u))(0) + ez (—r min (-, 0))(0) +
Oer (Arha (- w1))(0) + Ng2, (0), max £(0,u) — rming(0,v) =

emigg((),v), € +erte+e— emigg((),v) < A\hi(0,wy), 720,
s ve

€[1,2], M 20, =20, & 20, 4= 0, ¢, =0}
{(0,wy, A1,7) | 0 € {2} + {—r} + {2\w1} + (—00,0], 1 —2r = 2¢,
€ +eater+ea—2e< -3\, =20, wy €[1,2], A1 =0, =0,

63207 61%07 62%0}

{(0,wy,A1,7) | r <24 2\wy, r < 6, 6(1]+€(2)+61—|—€2—26§
=3\, 720, wi €[1,2], M1 =0, =0, =0, 6 20, & =0},
{(y,wi, Asr) |0 € O (max £, u))(y) + O (—rming(-,v))(y) +
Oer (Miha (- wn))(y) + Ng,(y), max f(y,u) —rming(y,v) =
ergleigg(y,v), € +ente+e— elgleigg(y,v) < Mhy(y,wy), y >0,

r=0, wy €[1,2], M =0, =0, =0, =0, ¢ =0}
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= {(y,wi,A1,7) |0 € {2 =7+ 2\ wi } + [_%70]7 2y +1—r(y+2)=

c(y+2), y>0, eg+e+e+e—ely+2) <NQ2uwy—3), r=0,

w1€[172]7 Algoy E(l)g()a 6(2)207 6120, 6220}

= {(y,wy,A1,7r) |0 € [2—r+2)\1w1—6—2,2—r+2)\1w1], 2u+1—
Yy

r(y+2) Ze(y+2), e +e+e+e—ely+2) <M\ (2wy — 3),

y>0,7=20, w €[1,2], A1 =0, =0, 6=0, ¢, 20, & =0}

We can check for any z € A and any (y, wy, A\1,r) € F,

~

I CAD)

=7 =i
(uw)euxv g(z,v)

= ?

that is, Theorem 2.4.4 (Approximate Weak Duality Theorem) holds. Indeed,

let z € A and (y,wy, Ay, 7) € A be any fixed. Then

[\ |\ |\

L\

a ,U) — i ,V) 4+ € min g(z,v
J?[lfé}f(x u) Tvren[}g}g(x v) vemg( )

2ol 1 =l 4 g (D2
2—r)z+1—-2r+e(x+2)

—2 w1 x + 2€ + €(x + 2)

=3\ + 2+ €(x +2)

=3\ + €+ g+ e+ €+ 3N +e(z +2)
0.
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Moreover, let z € A and (y,u, ,v, w1, A\1,7) € B be any fixed.

a - +
lg[l};]f(lf ,u) Tvléﬁ%]g(x V) %‘3%%]9(1’ V)

= 2z+1—r(z+2)+e(x+2)

= 2y+1—ry+2)+2—r)x—y)+elx+2).
If x —y =0, then

22y (00 ol + e i o)

= 2y+1—-rly+2)+2—1r)(x—y) +e(x+2)

IV

2y +1—r(y+2) — 22w (x —y) + e(z + 2)

IV

€(y+2) + 2\ w1y — 3A + €(z + 2)

vV

€0+ €+ €1+ €+ 3N — 3\ +e(x+2)

0.

L\

If x —y <0, then

14, T,u) —1r min g(r + € min g(x
Jé[fé]f( ) Jéu]g( v) ten Mg( V)

=2y+1—ry+2)+2—r)(z—y)+ex+2)

22y +1—r(y+2) + (—2Mwi + 2)(z —y) +e(z +2)
Ze(y +2) + 20wy — €2 — 3\ + Za + e(z +2)

2y + €+ e+ e+ 30 — e — 3\ + Lo+ e(a +2)

=0.
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Let € = Then 7 € A == {z € R| 0 < z < 2} is the set of all

Wl

approximate solutions of (RFP) and ¢ <7 < 1.

If =0, then 7 = %. When € = %, we can calculate the set A as follows:
A={0,w,\,7) |01 <

Let 0, =2, \; = é. Then, (0,2, g, %) e A. So, we have

S~

T 1 5
7= max (%’u)—e:—:——Zegr—%.
(wo)eUxv g(T,v) 6 6

Hence, (0, 2, %, %) is a 2-approximate solution of (RFD). If 0 < z < ‘—;, then,

%<f§ % When € = %, we can calculate the set B as follows:

B €2 oy +1 1

B :={(y,wi,A\1,7) | y>0, 242 w; — = <r<—2 e ——(y+2)<
{(y,wi, A7) [y 1w y 30+ 2) 9 3(y )

AM(2uwiy —3), r=20, ue(l,2], vell,2], w; €[1,2], & =0}.

Let w; = 2, A\; = 0 and € = 2. Then, (Z, 2,0, 3?;:”1;)) € B. So, we have

T T+ 1
f(%,u) —625?—+gr2r—26.
(wp)euUxy g(Z,v) 3(z+2)

Hence, (z,2,0, 35(215)) is a 2-approximate solution of (RFD) So, Theorem

2.4.5 (Approximate Strong Duality Theorem) holds.
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Chapter 3
Surrogate Duality for

Robust Semi-infinite Optimization Problems

3.1 Introduction

In this chapter, a semi-infinite optimization problem involving a quasi-
convex objective function and infinitely many convex constraint functions
with data uncertainty are considered. A surrogate duality theorem for the
semi-infinite optimization problem is given under a closed and convex cone
constraint qualification. Moreover, we extend the surrogate duality theorem
for the semi-infinite optimization problem to fractional semi-infinite opti-
mization problem with data uncertainty. Also, we induce characterizations
of the robust moment cone of Goberna et al. [22] by our results. Using a
closed and convex cone constraint qualification, we present surrogate duality
theorems for robust linear semi-infinite optimization problems.

Consider the following semi-infinite optimization problem in the absence

of data uncertainty

(SIP) min f(x)
st gix) L0, VteT,

x e,
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where f, g, : R" — R, t € T, are functions, T is an index set with coordinately
possible infinite and C' is a closed convex cone of R".
The semi-infinite optimization problem (SIP) in the face of data uncer-

tainty in the constraints can be captured by the problem

(USIP) min f(x)
st. gi(z,v) £0, VE €T,

x e’

where ¢g; : R" x R? — R, g;(+,v;) is convex for all ¢ € T and u; € R? is an
uncertain parameter which belongs to the set ¢4, C R?, ¢t € T. The robust
counterpart of (USIP):

(RSIP) min f(z)
st. gz, v) £0, Yo, €V, VEET,

zeC.

The robust feasible set F' of (RSIP) is defined by
F={xeC|g(r,u) L0, Vo,eV, t €T}

The uncertainty set-valued mapping V : T' = R? is defined as V(t) := V;
for all £ € T'. We represent an element of an uncertainty set V; by v, € 1,

and v € V means that v is a selection of V, i.e., v : T — R? and v; € V, for all

t € T (v is denoted by (v¢)ier). RSFT) denotes the set of mapping A : 7" — R

(also denoted by (A)ier such that Ay = 0 except for finitely many indices).
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The surrogate dual of (USIP) is given by

(USD)  max inf{f(x) | Z)\tgt(x,vt) <0, zeC}.
Aer (" teT
x is optimistic feasible solution of (USD) if and only if for every ¢t € T,
> et 9¢(z,vp) < 0 for some v, € V, and Ay > 0 [4]. The optimistic counterpart
of the uncertain surrogate dual (USD) over the set of optimistic feasible

solutions is as follows:

(OSD) max inf{ f(x) | Z)\tgt(x,vt) <0, ze€C}.

VXRy teT

By Lemma 2.2.1, we can obtain the following lemma which is the robust

version of Farkas Lemma for convex functions:

Lemma 3.1.1. Let f : R" — R be a convex function and let g, : R" x R? —
R, t € T, be continuous functions such that for each vy € R, g4(-,vy) is a
conver function. Let C' be a closed convex cone of R". LetV, CRY, t €T,
and let F := {z € C | g(x,v) <0, Yo € V), t € T} # 0. Then the
following statements are equivalent:

) {z el | g(z,0) £0, Voo €V, t €T} C{x e R* | f(z) = 0}

(ii) (0,0) € epif* 4 clco( U epi(Z)\tgt(-,Ut))* +C* x Ry).

(T) teT
(v,A)EVXRY

Proof. We can easily prove this lemma in a similar way to the proof of Lemma

2.2.1. [l
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3.2 Surrogate Duality Theorem

In this section, we investigate a surrogate duality theorem for a semi-
infinite optimization problem with a quasiconvex objective function and con-
vex constraint functions with data uncertainty, that is, the value of the robust
counterpart (RSIP) is equal to the value of the optimistic counterpart (OSD)
(“primal worst equals dual best”) in the sense that

inf{f(z) |x € F} = max inf{f(z)| > Ngi(z,v) £0, z € CY

(r
(v,A)EVXRY teT

under the robust characteristic cone constraint qualification that

U epi(z Agi(0)) + O+ Ry
(v,\)eVxR{" teT
is closed and convex.

Now, we establish the surrogate duality theorem for the semi-infinite op-

timization problem with data uncertainty:

Theorem 3.2.1. Let f : R® — R be an upper semicontinuous quasiconves
function with domfNF # (), and let g; : R"xR? — R be continuous functions
such that for each t € T and vy € Vy, gi(-,v¢) is a convex function. Assume

that the robust characteristic cone,

U epi(> gl + O + R,

(v,\)eVxR{" teT
1s closed and convex. Then

inf{f(z) |z € F} = max )inf{f(x) | Z/\tgt(x,vt) <0, zeC}.

(T
(v, \)EVXRY teT
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Proof. Suppose that the assumption holds. Let m = inf,cp f(x). If m =
—o00, then the conclusion holds trivially. So, assume that m is finite. If
L(f,<,m) is empty, then putting A\ = 0 and taking any v € V, the equality
holds. Suppose that L(f,<,m) is not empty. Then L(f,<,m)NF = 0,
L(f,<,m) is a nonempty open convex set, and F is closed and convex. So,
by separation theorem, there exist a nonzero z* € R™ and a € R, such that

forall z € F and y € L(f,<,m),

(", x) L a < (z"y). (3.1)
Since (z*,z) < «a for any z € F, (z*,a) € epid}. Let A == {z € R" :
gi(z, ) £0, Vt €T, Yo, € V;}. Then F = ANC. So, for any = € R",

dp(x) = da(x) + dc(x) and d4(xz) = sup Zx\tgt(-,vt).

veEY
(T) teT
AeR{]

By Lemma 2.1.3 and Lemma 2.1.4,

epidy = epi(da + da)* = epidy + epid;,

= epi( sup > Agilv))* + epidy,

veEV
() t€T
A€RY

= clco( U epi(z Aege(-,00))") + CF x Ry

(v,\) VxR teT
So, by assumption,
(", a) € epidy = U epi(z Aege(s, )"+ C* x Ry
(v,0)eVxRS teT
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Hence, there exist \ € Rf), v eV, c* € C*and r € Ry such that

(=", a) € epi(z Mg, T)" + (", 7).

teT

S0, > er Me(+, Te)*(x*—c*) £ a—r, and hence (z*—c*, 2) =", .p Mege (2, ) <
o —r for any C, that is, (z*,2) — > ,cp Mgz, %) £ a — 1+ (¢",2) < «
for any C. Hence, for any z € Fyy), (2% 2) < a. Thus, from (3.1),
for any x € Fi;5), © ¢ L(f,<,m). So, for any x € Fpy), f(z) = m,
that is, inf{f(z) | Y ,cp Mege(z,7) £ 0, € C} = m. Since inf{f(z) |

Sier Mege(m,v) £0, x € C} = inf{f(z) | z € F}, we have

inf{f(x) | > Mgz, ) 0, z € C} =m.

teT

Now we give an example illustrating Theorem 3.2.1.

Example 3.2.1. Consider the following semi-infinite optimization problem

with uncertainty:

(RSIP); min af + 2
st. ot — 20w <0, Yo, € [t —2,t+2], Vt€[0,1],

(1'1, LCQ) € Ri

Let f(z1,29) = 23+22% and g;((x1, x2), v¢) = 22 —2v;21. Then f is quasiconvex

function on R? and F := {(z1,25) € R? | 0 < 27 < 1, 29 = 0} is the
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set of all robust feasible solutions of (RSIP);. Also, we see that, for each

w eV, =[t—2,t+2],t€|0,1],

M =0
gt(VUt)*(al,aQ) = { 4 y A2 ,

+00, as # 0.

So,

U epi(z Agi(-,0r))"

(T) teT
(v, A\)EVXRY

= U eni hgl ) U {0} x {0} xR,

Ve EVe, A >0 teT

= U D nepi(g(00) U {0} x {0} x R,

Ve €V, A >0 teT

= U Snf(a,0,m) | r = @23 G {0} x {0} x R,

ve €V, A >0 teT
= R x {0} xR;.
Hence, the cone, U(v,x\)erRf) epi(Aegi(, ) + C* X Ry = R x (—Ry) xRy,
is closed and convex. Moreover, let A\ = A; = 1 and \; = 0 for all ¢ € (0,1)
and v; € [t — 2,t + 2|, then
0 = inf{f(21,22) | (v1,22) € F'}

= inf{f(l'l,xQ) | Z Atgt(xla x27/Ut) g 07 (xla xQ) € R+}

teT

Thus, Theorem 3.2.1 holds.
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We now show that if for each x € R", g;(x, ) is concave on V; and V;, C RY,

t € T, is convex, then the robust characteristic cone is a convex cone.

Proposition 3.2.1. (cf. [/4]) Let g, : R" x R? — R, t € T, be continuous
functions and let C' be a closed convex cone. Suppose that each V, C RY,
t €T, is convex, for all vy € R, g,(-,vy) is a convex function, and for each

x € R, gi(x,-) is concave on V;. Then, the cone,

U epi(z Agi(, o))" + CF X Ry,

(T) teT
(v,A)EVXRY

1S convez.

Proof. Let A := U(u)\)GVXRErT) epi(Y_er Aege(-ve))* +C* xRy Let (y1,01) €
A, (y2,0) € A, and p € [0,1]. We will show that (uy1 + (1 — )y, pag +
(1 —p)as) € A. Since A is a cone, p(yr, 1) € A and (1 — p)(y2, a2) € A. So,

there exist v} € V, for all t € T, (\})ser € ]RSFT), ¢ € C* and r; € R, such

that

pyr, ) € epi(Y Mg vi)™ + (€, ).

teT

Similarly, there exist v2 € V, for all t € T, (A2),er € R, ¢ € C* and

ro € R, such that

(1= p)(y2, a2) € epi(z Aige(vD))" + (c3,72).
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Hence, we have

Z A, “(hyr — 1) Z AL gi(- — 1)y2 — ¢3)

teT teT

< poag+ (1 —p)ag —rp — 1.

Let for each t € T, \y = A} + A\? and

L Utl if >\t = 0,
U= i—tvtl + i—tvf if A, > 0.

If \y =0, then \} = A\? =0, and hence A g;(z,v}) + A2g:(z,v) = Mg (z, vp).
Now we assume that \; > 0. Since g;(z, -) is concave, we have

AL A2
Age(@,vp) + Mgz, v7) = N\ (Atgt(:c ;) + A—igt(:c,vf))

Y 2
< )\tgt(xv /\_ivtl i )\i U?)

= A\ege(@, v).
Thus for any ¢ € T, A\ gi(z,v}) + Mg (z, v}) < M\gi(z,v,). Moreover, we have

pog + (1 — p)og —rp — 19

= O Malv) (ny — )+ O Nar(- — 1)y — ¢3)
teT teT
= sup{(uyr — ¢}, 7) = Y _ Mgz, v)} + sup {((1 = p)ya — 3, 2)
z€R™ teT zeR™

- Z)‘?gt(xvvtg)}

teT
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= sup{(uyr + (1= g — i — 5,2) = > (Mar(e,v)) + Nai(e,v7)}

oelk® teT
= sup{{un + (1= pyo — ¢ — 5, 2) = > Mgilw, )}
oelR™ teT

= O Mgl o) (pn + (1= pyz — ¢ — 63).

teT

So, (py1+ (1= p)y2 — i — 3, oy + (1= pr)ag =11 =713) € epi(d e Mrge(s, )",
and hence (uy1 + (1 — p)yz, pon + (1 — p)az) € epi(Q,cp Mg, ve))" + (cf +
c3, 1+ 1) Since (¢f + ¢b,rp +1r2) € C* x Ry, we see that (uy; + (1 —
)Yz, pan + (1 — plas) € A O

Let T be a compact metric space and V : T' = R? be a set-valued map-
ping. Let g : R" x R? — R be a given function and let C' be a closed convex

cone of R”. Now, we will assume that the following conditions hold:

(C1) g (- v) = g (-, v¢), whenz € R®, t* — ¢t € Tand v € Ve — v €V,

as k — 0.

(C2) (Slater condition) There exists xg € C' such that

gi(zo,v,) <0, Vo, €V, t€T.

Now we prove that the robust characteristic cone is closed under the

conditons (C1) and (C2).

Proposition 3.2.2. Let T be a compact metric space and let V be compact,

convex and uniformly upper semicontinuous on T'. Let g; : R" x R? — R,
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t €T, be continuous functions such that for all v, € R?, g4(-,v;) is a convex

function and let C be a closed convex cone of R™. Suppose that the condition

(C1) and the condition (C2) hold. Then

U epi(z Atge(5ve))" + C" x Ry

(T) teT
(v, A)EVXRY

15 closed.

Proof. First we notice that

U epi(z Atge(sve))* + CF x Ry

(T) teT
(v,A\)EVXRY

= U cocone({epi(gi(-,v))* :t € THU(0,1)) + C* x R,.

veY

Let A := U(v,/\)ewa) epi(Y e Aege(,v0))* + C* x Ry and let (w*, oF) € A
with (wF o) — (z*,a) € R® x R. Now, we will show that (z*,a) € A.
Since (w*, a¥) € A, for each k € N, there exist vf € V,, t € T, & € C*
and r* € R, such that (w®, o®) € cocone({epi(g;(-,vF))* : t € T} U(0,1)) +
C* x Ry. So, from Carathéodory theorem, for each k£ € N, there exist
U € Vi, tF € T, NP 20,0 =1,...,n+ 1, and Af = 0 such that (w*,a") €
Sl )\fepi(gtf(-, v ))" + A¥(0,1). Since T is compact, we may assume that
th >t,€eTast—o0,i=1,...,n+ 1.

Fixt=1,...,n+1 and let ¢ > 0 be any fixed. Since V is uniformly upper

semicontinuous, there exist 7 > 0 such that V, C V;, +€B, for any ¢t € T" with

d(t,t;) < n, where B is a unit ball in R?. Since t¥ — t; as k — oo, there exists
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k; € N such that k = k;, d(t¥,¢;) < n. So, for all k = k;, th C V;, +€B. Since
Upe € Vi, there exists wy, € Vy, such that vy € wy, +€B, Le., [Jvp —wy[| <e
So, inf, ev,, [[ve — 2t < €. It follows that there exists k; € N such that for
all k = k;, d(vgr, Vi) < €. So, d(v, Vi) = 0as k — o0, i.e., v € Vi, Hence,
there exists Z:f € Vi, k=1,2,..., such that d(vy, V) = |lvge — z;‘fH — 0 as
k — oo. Since V,, is compact, we may assume that there exists v;, € V;, such

that 2z}, — v, as k — oo. Hence, we have

Jim flog —vg || = lim [|(vg = 20) + (2 — e
= oy =51+ =l =0

S0, v — vy, as k — 00.
Now, we show that [* := Z?:Jrll ¥+ AF is bounded. Otherwise, we may
assume that [¥ — 400. By passing to subsequences, we may assume that

M6 ER,i=1,...,n+1 2% 5 eR, with Y716+ 6 = 1. Then,

)

for each x € R",

n+1 n+1
(w*) e — Z )‘fgtf (z, Utf) < (w* —cF)r — Z )‘fgtf (z, Utf)
i=1 i=1
n+1

< (Z /\fgtf(" Utf))*(wk — )

gak—rk—/\g

< af - Ak
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Dividing both sides of the last inequality by I* and passing to the limit, we get
that, for each x € C, S04 691, (w,v1,) = 6o 1 6; =0, forall i =1,...,n+1,
then we see that 0 = 327" 6,g;.(x,v;,) = 1. This is a contradiction. Also,
if §; # 0, for some i, then 37" 6;g,, (z,v,,) = 0. This contradicts (C2) as
0<SMls <1

Now, as [¥ is bounded, we may assume that \¥ — \; and A& — \g. As,

for each x € C,
n+1
(wk>Tx g ZA?Q,&(I’,UZ) < ak N )\57

=1

it follows, by passing to the limit and noting that g; is continuous, that, for

each x € C,
n+1
(x*)Tx _ Z )\thl (l'a Uti) é O — /\0.
i=1
Hence, for any x € R",
n+1
<x*>Tx = Z Aig (T, 01) — 00 £ a— Ao,
i=1

and 5o (37 Nigr, (- vi,) + 0¢)*(2*) £ a — N. By Lemma 2.1.3, it follows

that
n+1 n+1
(ZL‘*, o — /\U) S epl(z Aigti('? Uti) + 50)* = epl(z )‘igti('a Uti))* +C" x R-ﬁ-'
i=1 i=1
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Hence, we have

n+1

(37*, a) € epi(Z )‘igti('>vti))* + )‘0(07 1) + C* x RJr

=1

- epi(z Age( o))" + {0} x Ry +C% x Ry

teT

C U epi(z Mg v))" 4+ CF x Ry

(T) teT
(v,A)EVXRY

Thus, the cone U(U NeVxRD epi(Y er Aege(-,ve))* + C* x Ry is closed. [
; +

We give an example illustrating Proposition 3.2.1 and Proposition 3.2.2.

Example 3.2.2. Consider the following semi-infinite optimization problem

with uncertainty:
(RSIP); min 2% + x5
st. tx—2umx 20, Yo, € [t,t +1], Vt € [1,2],
(l’l, {['2) € Ri_
Let f(zy,7) = 23 + 25 and g;((71,22),v¢) = tax? — 2v,w;. Then f is quasi-
convex function on R?, for each x € R?, g;(x,-) is concave on V; and for all
v € R, g4(-,v¢) is convex on R?. F := {(x1,22) € R?* | 0 < 71 £ 2, 25 = 0}

is the set of all robust feasible solutions of (RSIP),. Clearly, the Slater con-
dition holds for (RSIP),. Also, we see that, for each v, € V, = [t,t + 1],

tell,2],
(a14+2vt)2 _
. * — 4t ; a2 = 07
9:(+,ve)" (a1, az) { +o0, as # 0.
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So, we have

U epi(z )‘tgt('a Ut))

(T) teT
(v,\)EVXRY

= J D Mepi(g(,v)  u{o} x {0} x Ry

Ve EVE, A\ >0 teT

- U Z)\t (a1,0,7m¢) | e 2 (a1+2vt) —— U {0} x {0} x R}

’Ute[t t+1} Ae>0 te[l 2]

= {(a1,0,a) | max{0,2a} < a}.

Hence, U Nevxr() epi(Agi (-, 1))+ C* xRy = {(ay, a2, @) | max{0,2a; } <

a, as < 0} is closed and convex.

We obtain the surrogate duality theorem for the semi-infinite optimization

problem under the Slater condition:

Corollary 3.2.1. Let g, : R" xR? - R, t € T, be continuous functions and
let C' be a closed convex cone. Suppose that each Vy; C R4, t € T, is conver,
for all v, € RY, g,(-,v) is a convex function, for each x € R"™ and g;(x,-) is

concave on Vy. If the condition (C1) and the condition (C2) hold, then

inf{f(z) |z € F} = max  inf{f(z |Z)\tgta:vt)£0 xz e C}.

(T)
(v, A)EVXRY teT

Proof. By Proposition 3.2.1 and Proposition 3.2.2, we know that the robust
characteristic cone is convex and closed. So, by Theorem 3.2.1, the theorem

holds. O
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Now, we consider the following standard form of fractional semi-infinite
optimization problem (FSIP) with a geometric constraint set:

(FSIP) min p(x)

q()
st. g(x) L0, teT,

x e,

where p,g; : R® — R, t € T, are convex functions, C' is a closed convex
cone of R” and ¢ : R® — R is a linear function such that for any = € C,
p(z) = 0 and g(z) > 0. The fractional semi-infinite optimization problem
(FSIP) in the face of data uncertainty in the constraints can be captured by

the problem:

min ]La:)
(UFSIP) (@)

st. giz,v) £0, t €T,

x e,

where g, : R" x R? — R, ¢(-,v;) is convex and v; € R? is an uncertain
parameter which belongs to the set V; C R?, ¢t € T. The robust counterpart
of (UFSIP) is

p(z)

RFSIP) min —<%
( ) q(z)

st. gi(z,v) L0, Yo, €V, t €T,

rzeC.
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Theorem 3.2.2. Let C' be a closed convex cone of R*. Let p : R*" - R
and q : R" — R be convex and linear respectively such that for any x € C,
p(z) =2 0 and g(x) > 0, and let g, : R x R? — R be continuous functions
such that for each t € T and vy € Vy, g4(+,v;) is a convex function. Assume

that the robust characteristic cone,

U epi(z )\tgt('u Ut))* +C"+ Ry

(T) teT
(v, A)EVXRY

1s closed and convex. Then

() p(z)
inf{—= |z e F maxmf Mge(z,v) £0, z € C
{Q(I) ‘ }(v A)EVXR(T) (] ZL’ | tEZT [ t) }

Proof. By Result 3 in [48], 224 is a quasiconvex function. Thus, by Theorem

’ q( )
3.2.1, the conclusion holds. O

3.3 Application to Robust Linear Semi-infinite Opti-

mization Problem

In this section, by using the results in Section 3.2, we induce charac-
terizations of the robust moment cone of Goberna et al. [22]. Moreover,
we present surrogate duality theorems for linear semi-infinite optimization

problem under a closed and convex cone constraint qualification.
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Now we consider the following linear semi-infinite optimization problem

in the absence of data uncertainty [22]:

(LSIP) min (¢, z)
sit. (ap,z) =2 by, VE €T,

x e C,

where ¢,a; € R" and b, € R, t € T. The semi-infinite optimization problem
in the face of data uncertainty in the linear constraints can be captured by

the problem [22]

(ULSIP) min (¢, z)
S.t. <at, QU> % bt7 vVt € T,

x € C,

where a; and b; are uncertain parameters, and (a;, b;) belongs to the set
V,CR" ™ forallteT.

Let (as,b;) € Vy, for t € T. The set-valued mapping V : T = R"*! is
defined as V(t) :=V, for all t € T' [22].

The robust counterpart of (ULSIP) [22] is

(RLSIP) min (¢, z)
sit. {ag,x) = by, Y(ag,b) €V, VEET,

rzeC.

Clearly, F} :={zx € C | (ay,z) < by, V(az,b) € Vi, Vt € T} is the feasible set
of (RLSIP). Goberna et al. [22] defined the robust moment cone of (RLSIP)
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for x € R™ as

U cocone{(as, by), t €T :(0,,1)}. (3.2)

(at,bt)teT€EV

For z € C, (3.2) is transformed into

U cocone{(as, by), t € T+ C* x R,

(at,bt)teT €V

It can be induced by our robust characteristic cone of (RSIP) as follows:

U epl(z )\tgt('a vt))* g C* x R+7

(v,\)eVxR{") teT
where g;(x,us) = (ag, x) — bt, vy = (a, b)) EVy, t €T,z € C.

Proposition 3.3.1. Let g, : R" xRt — R, t € T, be continuous functions.
Leta, € R" and b, € R, V, CR" t € T, and let C be a closed convex cone.
Then, for x € C,

U epi(S Mgiloo))* +C" + Ry

(T) teT
(v, A)EVXRY

= U cocone{(as by) |t € T+ C* x Ry.
(at,bt)EVt

Proof. Define g, : R* x R**1 — R by

gi(z,vp) = (ag, ) — bt, vy = (a, b)) € Vy, t €T.
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Then we have

U epi(z Aege(0))" + CF x Ry

(0.1 eVxR{" teT
= U epl( At<a/t, > — )\tbt) + O X R+.
(atbp)teT €V teT te’T
xer{)

Let (w, @) € Utapbnyerev €PIQ ser Aela, ) =D e Aebe)* +C* x R It means

AeRf)
that there exist v; = (ay, b)) € V; and X € RSFT) such that

(w,a) € epi(z A{ag, ) — Z Athy)" +C* x R,

teT teT

that is, there exist ¢* € C* and r € R, such that

(w—c*,a:)—Z)\t<at,x)+2)\tbt§a—r, Ve el

teT teT

& (w—c*—Z)\t@t,x)—l—Z)\tbtga—r, Ve e C

teT teT

& w:ZAtat—i-c* and Z)\tbt+r§a

teT teT

= w:Z/\tat—i—c* and OZEZ)\tbt+R+.

teT teT
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So, there exist vy = (a;,b;) € Vi, A € RSFT) and ¢* € C* such that

epi(z Agi( o))" +C" xRy = epi(z Aela, -) — Z Ac)" + C" x Ry

teT teT teT

= Do+ < A+ R

teT teT
= (Z )\tat, Z )\tbt) -+ {C*} X R+
teT teT

= cocone{(a,b;) |t €T} +{c"} xR,

N

cocone{(as, by) |t € T} +C* x Ry.

Hence,

U epiQ gl v) +C* + R,

(T) tel
(v,A)EVXRY

N

U cocone{(as, by) |t € T} +C* x R,
(at,bt)EVt

Similarly, we can show that

U coconef{(as, by) |t € T} +C* x Ry
(at,bt)EVt

- U epi(z Aege(sve))" + C" + Ry

(v \)eVxR teT
Thus, we obtain the desired result. O

From Theorem 3.2.1, we obtain the following theorem:
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Theorem 3.3.1. Let c,a; € R*, by € R, t € T, and C be a closed convex

cone. Assume that the robust moment cone,

U cocone{(as, by) :t €T} +C* xRy,

(at,bt)teT €V

1s closed and convex. Then

inf{(c, 33'> ‘ (at,x> — bt § O, V'Ut = (at,bt) € Vt, YVt € T, x e C}

= max inf{{c,x) | Y M((a,x) —b) 0, z€C}.

(@) eVxR{ py
Proof. Let f(x) :={c,z), z € C. Define g; : R® x R"*! — R by

gt(l’,’l]t) = <(1/t,$> = bt, Ve = (at,bt> € Vt, t e T..

Then, by Proposition 3.3.1,

U cocone{(as, b)) |t € T+ C* x Ry
(at,be)EVY

- U epi(z Aege(-ve))" + O + Ry

(T) teT
(v, A)EVXRY

By assumption, U(U NeVxRD epi(D e Aege(-,v¢))* is closed and convex, by
’ +

Theorem 3.2.1,

inf{f(x) | ge(x,v) <0,V €V, Vt €T, z € C}

= max _inf{f(2)| > Mglx,v) <0, z€C}.

T
(v \)evxR") pys
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Thus, we see that

inf{(c,z) | (ar,x) — b £ 0, Yo, = (ar,b;) €V, Vt € T, z € C}

= max _inf{(c,z) | Y M({a,z) —b) <0, z€C}.

(T)
(v,A)EVXRY teT

Proposition 3.3.2. (cf. [22]) Let c,a; € R", b, € R, t € T, and C be a

closed convex cone. Then

U cocone{(as, by) |t € T+ C* x Ry

(at bt)teT €V

18 convez.

Proof. Define g, : R* x R**!1 — R by
gi(z,v) = {ag, ) — by, vy = (ag, b)) € Vs, t €T.

Let v; = (as,b;) € Vy, fort € T. Then g, : R* x R"™ — R t € T, are
continuous, and V; is convex. For all v; € R" g,(-,v;) is convex, and for

each z € R", g;(x, ) is affine on V,. Since, by Proposition 3.3.1,

U cocone{(as, b)) |t € T} +C* x Ry

(at,bt)EVt
= U epi(z Aege(00))" +C" + Ry,
(wNevxr()  tET
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from Proposition 3.2.1,

U cocone{(as, b)) |t € T} + C* x Ry
(at,bt)GVt

1S convex. O

Proposition 3.3.3. (cf. [22]) Let T' be a compact metric space and let V be
compact-valued and uniformly upper semicontinuous on T'. Let c,a; € R",
by € R, t € T, and C be a closed convex cone. Suppose that there exists
xg € R™ such that {a;, xo) < by for all (ay,b;) € Vi, t € T. Then

U cocone{(as, by) :t €T+ C* xRy

(at,bt)reTEV

15 closed.

Proof. Define g, : R* x R**1 — R by
9t(33;Ut> = <(It,$> = bt, Ve = (a/t,bt) & Vt, teT.

Let v; = (ag, b;) € Vy, for t € T. Then g, : R* x R*™ — R, t € T are
continuous functions such that for all v; € R™™ g,(-,v;) is a convex function.

By Proposition 3.3.1,

U cocone{(a, b)) |t € T} + C* x Ry

(at,bt)EVt
= U epi(z Aege(00)" + C7 + Ry,
(v, \)eVxR{ teT
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and by assumption, there exists zy € R™ such that gz, v;) = (az, xo) —b <0

for all v, = (ay, b)) € Vi, t € T. So, from Proposition 3.2.2,

U cocone{(as, by) |t € T+ C* x Ry
(at,bt)EVt

is closed. n

From Proposition 3.3.2 and 3.3.3, we obtain the following theorem:

Theorem 3.3.2. Let T be a compact metric space and let V be compact-
valued and uniformly upper semicontinuous on T'. Let c,a; € R, by € R,
teT, and C be a closed convex cone. Suppose that there exists xy € R™ such

that {ay, xo) < by for all (ay,b;) € Vi, t € T. Then

inf{(c, ZL'> | (at,x> F— bt é 0, \VI'Ut = (at,bt) € Vt, Vit € T, x € C}

= max _inf{{c,x) | Z)\t(<at,x> —b)<0, zeC}.

(T)
(v, A)EVXRY teT

84



Chapter 4
Solving Robust SOS-convex Polynomial
Optimization Problems with a SOS-concave

Matrix Polynomial Constraint

4.1 Introduction

In this chapter, the tractable containments of a convex semi-algebraic
set, defined by a SOS-concave matrix polynomial constraint, in a non-convex
semi-algebraic set, defined by difference between a SOS-convex and a support
function, are considered. Moreover, using our set containment characteriza-
tions, we derive a zero duality gap result for a robust SOS-convex polynomial
problem (RP), where the dual problem (D) can be represented by a sum
of squares relaxation problem and other dual problem (SDP) and its dual
problem (SDD) can be represented by a semidefinite program and which can
be easily solved by interior-point methods. Also, we present the relations of
the optimal solution of (RP) and the optimal solution of (SDD), and the op-
timal solution of (D)% and (SDP). Finally, we illustrate our results through
a simple numerical example.

Now we give some definitions and preliminary results which will be used
in this chapter. A semi-algebraic subset of R" is a set of {z; |i =1,...,n} in

R™ satisfying a Boolean combination of polynomial equations and inequalities
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with real coefficients [15]. We say that a real polynomial f is a sum of squares
if there exist real polynomials f;, j = 1,...,r, such that f = 22:1 fj2. The
set consisting of all sums of squares of real polynomials is denoted by 2.
Moreover, the set consisting of all sum of squares of real polynomials with
degree at most d is denoted by 32. For a multi-index o € N", let |a| :=
Sor ;. x® denotes the monomial z{" - -- z2". Consider the vector vy(z) =
() jajgd = (L, 21,0 T, 3, 21 Z0, - Ty 1T, T2, - o )T of all the

monomials 2% of degree less than or equal to d, which has a dimension s(d) :=

( ":d ) An n x n symmetric matrix X is said to be a positive semidefinite

(psd) matrix if for all v € R", o7 Xv > 0. Similarly, an n x n symmetric
matrix X is called a positive definite (pd) matrix if for all non-zero v € R",
vI'Xv > 0. Let S” be a set of n x n symmetric matrices and let S be a set of
nxn positive semidefinite symmetric matrices. Similarly, ST, denotes the set
of positive definite n x n symmetric matrices. For X,Y € S” X > Y (resp.

X > Y)if and only if X —Y is positive semidefinite (resp. positive definite).

We now introduce a definition of SOS-convex polynomials.

Definition 4.1.1. [1, 2, 30] A real polynomial f on R™ is called SOS-convez if
a Hessian matriz function H : x — V2_f(x) is a SOS matrixz polynomial, that
is, there exists a matriz polynomial F(z) such that V2 f(x) = F(z)F(x)T,

equivalently, for all x, y € R™ and for all X € [0, 1],

AM(@)+ 1 =X f(y) = fAz+ (1= A)y)
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is a sum of squares polynomial in R|x;y| (with respect to variables x and y

). Moreover, we say f is SOS-concave if —f is SOS-conver.

Clearly, a SOS-convex polynomial is convex. However, the converse is
not true. Thus, there exists a convex polynomial which is not SOS-convex
[1, 2]. The degree of a polynomial g is denoted by degg. The set of convex

polynomials in n variables of degree d and SOS-convex polynomials in n
variables of degree d are denoted by C’md and iCmd, respectively. Then
Cra=3C,qifand only if n =1 or d =2 or (n,d) = (2,4) [2].

Now we introduce a definition of concave matrix.

Definition 4.1.2. A m x m symmetric matriz polynomial G(x) is called

concave matriz if for any x, y € R™ and any A € [0, 1],

G((1 = Nz + My) = (1 — NG(@) + AG(y).

Remark 4.1.1. Let G(x) be a m X m symmetric matriz polynomial. Then

the following statements are equivalent:

(i) G(z) is concave;

(ii) For all A € ST, —(\,G(x)) is convex, where (A, G(z)) = tr(AG(z));
(iii) For all ¢ € R™, —(¢€T G(x)) is convex;

(iv) For all ¢ € R™, —¢TG(x)€ is convex;

(v) For all ¢ e R™, —V2 (£TG(x)€) = 0.
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The definition of SOS-concave matrix is as follows:

Definition 4.1.3. [59] A m xm symmetric matriz polynomial G(z) is called
SOS-concave if for every & € R™, there exists a polynomial matriz Fe(z) in

x such that
—V3.(£7G(2)€) = Fe(x)" Fe(x).

From Definition 4.1.3, we can obtain the following result.

Remark 4.1.2. Let G(x) be a m x m symmetric matriz polynomial. Then

the following statements are equivalent:

(i) G(x) is SOS-concave;

(i) For all A € ST, —(A,G(x)) is SOS-conves;
(iii) For all € € R™, —(&€T, G(x)) is SOS-conver;

(iv) For all € € R™, —¢(TG(2)€ is SOS-conver.

The following simple example illustrates a SOS-concave matrix polyno-

mial.

Example 4.1.1. Consider the following polynomial matrix:

2 9 _ .2
G(m,xz):( e >

i) —X9
Then, for all ¢ = (£1,&)T € R?,

—ETG (w1, 12)€ = Ea] + a5 + 48 a1 + (6 — 261&) w2 + 387
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and

(5 ) (8 A (% &)

So, —(TG(x)€ is a SOS-convex polynomial. It follows from Remark 2.2 (iv)

that G(x) is a SOS-concave matrix polynomial.

Now we introduce a definition of support functions. Let K be a compact

convex set in R™. The support function s(z|K) of K [58] is defined by
s(z|K) == max{ulz : u € K}.
The following useful existence result for solutions of convex polynomial

programs will play an important role later.

Lemma 4.1.1. [6] Let fo, f1, ..., fm be convezx polynomials on R™. Let C :=
{z eR": fi(x) £0, i=1,...,m}. Suppose that inf,cc fo(x) > —oco. Then,

arg mingec fo(x) # 0.

Proposition 4.1.1. [50] A polynomial g € Rlx]aq has a sum of squares de-

composition if and only if there exists a real symmetric and positive semidef-

inite matriz Q € R¥D*) sych that g(x) = va(x)T Quy(z), for all x € R™.

Now we let vg(2)va(z)" = Y, cyn @ Ba, where B, are s(d) x s(d) real
symmetric matrices, Then g(z) = > .yn gox® is a sum of squares if and

only if solving the following semidefinite feasibility problem [50]:
Find Q € R*@*@ guch that
Q=0Q", Q=0, (Q Ba) = ga, Ya € N".
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Lasserre [49] established an extension of Jensen’s inequality when one

restricts its application to the class of SOS- convex polynomials.

Lemma 4.1.2. [49] Let f € R[z]| be a SOS-convez polynomial, and let y =
(Ya)aeny, satisfy yo =1 and Y yaBa = 0. Let L, : R[x] — R be a linear

aeNg,

function defined by L,(f) =" faYa, where f =" fox®. Then

where Ly(x) = (Ly(x1), ..., Ly(z,)).

4.2 Set Containment Characterizations

Under the Slater condition, we can obtain the following set containment

result:
Theorem 4.2.1. Let f : R® — R be a SOS-convex polynomial and let
G(z) be a m x m symmetric SOS-concave matriz polynomial. Let h(x) =

(H})?Xu(aTZE +b), where U is a compact convex subset of R". Assume that
a,b)&

K :={zx eR":G(x) = 0} # 0. Assume that the Slater condition holds, i.e.,
there exists & € R™ such that G(Z) = 0. Then the following statements are

equivalent:
(i) {reR": G(z) = 0} C{z e R": f(x) — h(z) 2 0};
(ii) For any (a,b) € U, there exists A € ST such that
f=a'()=0—(AG()) € 22
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Proof. [(ii) = (i)] Suppose that (ii) holds. Then, for any (a,b) € U and any

€ > 0, there exist A € ST" and o € X? such that
f—=ad"()=b—(AG()) =0

So, if G(x) = 0, then (A, G(z)) = 0 and for any (a,b) € U, f(z)—aTz—b =0,
and hence, f(x) — h(x) = 0. Thus (i) holds.

[(i) = (ii)] Assume that (i) holds. Then, we have for any z € R",
G(z) = 0 implies that f(z) — h(xz) = 0. Let (a,b) € U. Then, we have for

any v € R",
{reR":G(x) =0} Cc{r eR": f(z) —a’z —b=0, V(a,b) € U}

Moreover, it is well known that the Slater condition implies the closedness

of the set UAGST epi((A, G(-))*) [39]. So, it follows from Theorem 2.2 in [17]

that there exists A € S such that
f(z) —a"z —b—(A,G(z)) 20, VzecR™ (4.1)

Let ¢(z) = f(x) —a’x — b — (A, G(x)). Then, since f and —(A, G(z)) are
SOS-convex, and —a’z — b is affine, ¢ is SOS-convex. From (4.1), ¢(x) = 0
for all x € R". By Lemma 4.1.1, ¢ has a global minimizer x* € R", that is,
o(z) = ¢(x*) for all x € R", and hence Vo(z*) = 0. Since ¢ is SOS-convex,

it follow from Theorem 3.1 in [2] that there exists o € ¥? such that

¢(z) — ¢(z") = Vo(a") (z — 2") = 0.
Since ¢(z*) = 0 and Vo(z*) = 0, ¢ € X2 and thus (ii) holds. O
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Using the proof approach of Theorem 4.2.1, we can obtain the following

set containment result.

Theorem 4.2.2. Let f : R" — R be a SOS-convex polynomial and G(x) be a

mxm symmetric SOS-concave matriz polynomial. Let h(x) = max ulw,

ueco{vi,...,u; }

where vy, ...,u € R". Assume that K := {x € R": G(x) = 0} # 0. Assume
that there exists & € R™ such that G(z) > 0. Then the following statements

are equivalent:
(i) {r eR": G(x) =0} C{z € R": f(z) — h(z) = 0};
(i) For eachi=1,...,l, there exists A; € ST" such that
i) -l 6L)) €%
Proof. [(ii)) = (i)] Suppose that (ii) holds. Then, for any = € R", for each
i=1,...,1, there exist A; € ST and o; € ¥? such that
f(z) =vl'z — (A, G(z)) = 0.

It implies that f(z) — vlz — (A;, G(z)) = 0 for any x € R". If G(z) = 0,
then (A;,G(x)) =0, and so f(x) — vl (x) = 0, and hence, f(x) — h(x) = 0.
Thus (i) holds.

[(i) = (ii)] Assume that (i) holds. Since h(z) = max u’x, for any

ueco{vi,...,v; }

r € R", G(z)(z) = 0 implies that f(x) — max u’z = 0. It follow from
the above inequality that

0< f(z)— max u'x= 'ininl{f(x) —olzy < flz)—vlw, i=1,...,1

ueco{vi,...,v; } 1,...,
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Since the Slater condition holds, it implies the closedness of the set [ J,. sm

epi((A, G(+))*). So, it follows from Theorem 2.2 in [17] that for each i =
1,...,1, there exists A; € S7" such that

flx) — vz — (N, G(z)) =20, VzeR™ (4.2)

Let ¢;(x) = f(z) — vle — (A;,G(z)), i« = 1,...,1. Then, since f and
—(A;, G(z)) are SOS-convex, and each —v]x, i = 1,...,l, is linear, each
¢i, 1 =1,...,1, is SOS-convex. Let i € {1,...,l} be any fixed. From (4.2),
¢i(xr) =2 0, for all z € R". By Lemma 4.1.1, ¢; has a global minimizer
x* € R™, that is, ¢;(x) = ¢;(x*) for all x € R", and hence V¢;(z*) = 0. Since
¢; is SOS-convex, it follows from Theorem 3.1 in [2] that there exists o; € 32
such that
¢s(z) — ¢i(z*) — V(29T (z — z*) = 0.

Since ¢;(x*) =2 0 and Vey(z*) = 0, ¢; € X% and thus (ii) holds. O

4.3 Exact SDP Relaxations
Consider the following SOS-convex polynomial optimization problem:

(P)  inf f(z)
st. G(z) =0,

where f : R" — R is a SOS-convex polynomial with degree 2d, G(z) is a

m X m symmetric SOS-concave matrix polynomial.
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The SOS-convex polynomial optimization problem (P) in the face of data

uncertainty in the objective function can be captured by the problem:

(UP) inf  o(z,u)

st. G(z) =0,

where ¢ : R" x R" — R is a SOS-convex polynomial defined by ¢(x,u) =

f(z) —uTz, and u € R™ is an uncertain parameter which belongs to the set
cof{vy,...,u}t,v; € R" i=1,...,l. Let K :={z € R": G(z) = 0}.

The robust counterpart (the worst case) of (UP):

(RP)  inf f(x)— max wu'z

In the sequel, we assume that the optimal value of (RP) is finite. More-

over, the problem (RP) can be rewritten as follows:

A AT () ~ v 2l

The Lagrangian dual problem for (RP) is given by

(LD)  min sup inf {f(z) —viz — (A;, G(2))}.

i=1,...,0 A;esT rER”™
which can be written equivalently as

(D) min  sup {m €R| f(z) —vfz— (A, G(z)) —p; 2 0, Vo € R"}.

=Ll eR A EST
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A sum of squares relaxation problem of (D) is as follows :

(D) min  sup { €R | f—v () = (A, G()) — s € 5}
7777 MZGR,AZGST

Then, from Proposition 4.1.1, (D)%® can be rewritten as the following semidef-

inite problem (SDP):

(SDP) 'min sup f() — (UlT())O - <Az7 G0> — <X, B()>

i=1,...,0 XA
st. (A, Go) + (X, Ba) = fo — (07 (1)),

)

a#0, X e 859 A esm

The dual problem of (SDP) is the following semidefinite problem (SDD):

(SDD) min inf (f =] (-))o + > _(f — o] ())ava

i=1,...,1 Y s

s.t. Go+ ZyaGa =0,
a#0

By+ > YaBa = 0.
a#0

Now, using the result of Theorem 4.2.2, we give a zero duality gap result

for (RP), (D)**®, (SDP) and (SDD) under the Slater condition.

Theorem 4.3.1. (Zero duality gap) Let K := {z € R" | G(z) = 0} # 0.
Assume that inf (RP) := f* is finite and the Slater condition holds, that is,
there ezists & € R™ such that G(z) = 0. Then

Val(RP) = Val(D)*® = Val(SDP) = Val(SDD).
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Proof. Let o be an optimal value of (RP). Then, we have

{r eR":G(z) = 0} C {x e R" | f(z) — h(x) = a}.

By Theorem 4.2.2, for each i = 1,...,l, there exist o; € X* and A; € ST

such that
f=vl ()= (A, G()) —a=0; 20,

and so, sup {w | f—ol() = (A, G(")) — p; € X%} = a. Thus, we have

wi ER,A; ES;_”

min - sup {ui | f—v () = (AL, G()) - €57 z (4.3)

=Ll eR A €S

On the other hand, let i = min sup {,UZ e R ‘ f - UzT() _
i=1,..., l #i€R7Ai€ST

(A;, G(+)) — p; € ¥?}. Then, we see that forall i =1,...,1,

p< sup  {m €R|f—v () = (A, G() — s € 2%}

wi €ERA; GS_T

Since for each y; € R and each A; € ST, f — vl (:) = (A;, G(*)) — i € £* and

(N, G(-)) 20, f(z) —vlw = g, for all z € K, Hence for each i = 1,...,1,

fa) =Tz = s {meR|f—ol() = (A, G() = € 52, Va € K,

i ER,AiEST

.....

all z € K. So, we have f(z) — h(z) = [, for all € K. Hence,

p=min  sup {p | f-vf ()= (A, G() - €T S (44)

=Ll i €R, N EST
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Thus, from (4.3) and (4.4), Val(RP) = Val(D)**. Moreover, Val(D)**® =
Val(SDP) obviously holds by the construction of (D)*** and (SDP).

Now, we will show that Val(SDP) < Val(SDD). Let for each i =1,...,,
(A;, X) and y be any feasible for (SDP) and (SDD) respectively. Then we

have

(f = v (Do + (Go, Ai) — (Bo, X)

§ (f - UZT())O + <_ ZyaGaaAi> - <Z yaBaaX>

a#0 a#£0
= (f e UZT())O i3 Zya(<_Ga7Ai> = <Ba,X>)
a#0
= (f =v7 (Dot D Yalf-— v (a
a#0

= D talf =0 ()a-

So, we have Val(SDP) < Val(SDD).

To finish the proof of the theorem, we will prove that Val(RP) = Val(SDD).
Let & be any feasible solution of (RP). Then G(Z) > 0. Let § = (Ja)azo =
(‘%17 c. 7'1.717 (1'1)2, .i’li'g, ey (i.l)Qm’ ceey (in)2m> Then 0 = G(:i‘) = Za Gai'a =
Go+2" 020 Galla- Moreover, g7 = By+3" o JaBa = 0. So, § is feasible for

(SDD). Moreover, since 7 is feasible solution of (RP), we see that for each
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F@) =02 =) (f = 0] (-)ad®

[0}

=(f =0/ (Do +D_(f = v ())abla

a#0
%H;fZ(f - Uz‘T('))aya

>Val(SDD).

Z‘i]f%inl{f(fi‘) —vli} = f(&)— max u'%=f(&)— h(Z) = Val(SDD).

Since Z is any feasible solution of (RP), we have
Val(RP) = ;gf{{f(m) — h(z)} = Val(SDD).
Thus, we obtain the desired result. O
Now, we give the relations of the optimal solution of (RP) and the optimal

solution of (SDD), and the optimal solution of (D)*** and (SDP).

Theorem 4.3.2. Assume that inf (RP) := f* is finite and the Slater condi-
tion holds, that is, there exists & € R™ such that G(z) = 0. Let K := {x €
R"™ | G(z) = 0} # (0. Then the following statements hold:
(i) z is @ minimizer of (RP) if and only if the vector
Gi=(Z1,... T, T2, T1T0, ..., T30, ..., T2 (4.5)

is a minimizer of (SDD).
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(i) (Aiy, i) € ST x R is @ mazimizer of (D)** if and only if (A, X) €

ST x Sfr( is a mazimizer of (SDP) for some X =, _,q ’zoqﬁcoT and

"0 € Rsld

Proof. (i) (=) Let i be an optimal value of (RP). It follows that for any
x € K, f(x)—h(z) 2 i. By Theorem 4.2.2, equivalently, for each 7 = 1,... 1,

there exists A; € ST such that
F=vl ()= (N, G()) —p e X2

Letting f1; = 1nlf<{f(x) —wvlx}, ¢ = 1,...,1, equivalently, there exists iy €
Te

{1,...,1} such that g = fi;, and
f_vm() <A10>G( )>_/lio 6227

for some A;, € S'. It means that there exist some polynomials g0 (r) : R* —

R with degree d and coefficient vectors q,io eR*@ [ =1,...,r, such that

f(@) —vlz = (Mg, G(2)) — fisy = Zq (z)?, VzeR™

From Proposition 4.1.1, equivalently, there exists a real symmetric and pos-

s(d)

itive semidefinite matrix X € S such that

f(@) = vl — (A, G()) — iy = va(z)" Xvg(z), VzeR" (4.6)

99



with X =37, q,ioq,’f Notice that vg(z)T Xvg(z) = (X, v4(x)va(z)T). Let
va(z)vg(z) = Y cpnn ®*Ba = 0, where B, are s(d) x s(d) real symmetric

matrices. It follows that from (4.6),

f(@) —vie— (N, G()) — gy = Z x*B,), VreR" (4.7)

aeN”

Moreover, since (Ajy, G()) = D cnn (Nig, Ga)2®

f(l’) - U ol — <A207 G( )) — Hig = Z(f - Uij;('))axa - Z <Aioa Ga)‘ra — Hig-

o aeN"™

From (4.7) and (4.8), we have

D (f =i ()ar® = fiig = (X, Y @®Ba) + (g, Y 2°Ga).  (4.9)

« aeN" aeN?

Let ¥ = (Ya)ago = (T1, .-y Tny (21)?, 182, .. ., (21)*™, ..., (2,)*™) and yo =
1. Then, (4.9) is equivalent to that

— v (Do + D (f —vin()aa — i
a#0

= (X, Bo+ Y YaBa) + (Aiy, Go+ Y 4aGla)

a#0 a#0

So, if a = 0, then we have

(f - U£<~))0 - <G07Ai0> - <BOvX> = [ig (4'1())
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and if a # 0, then we have

<GaaAio> + <Ba7X> = (f - UT('))Oc' (4'11>

10

By (4.10) and (4.11), we see that (A;,, X) is feasible for (SDP) with value
fi,- Since fi is a minimum of (RP) and fi;, = 1, (A4, X) is a maximizer of
(SDP). Notice that Val(RP) = Val(SDP) = Val(SDD) (by Theorem 4.3.1)

and Z is an optimal solution of (RP). Since for g in (4.5), Go+ > ¥aGa = 0
a0

and By + Y yaBs = 0, 7 is feasible for (SDD) with value fi;,. Moreover,
a#0

since (f — v ())o + Lauo(f = v ())ala = 2o (f = v/ ())aZ® = fi,, 7 is
minimizer of (SDD).

(<) Suppose that there exist ig € {4,...,l} such that the vector § in
(4.5) is a minimizer of (SDD). Let fi;, is an optimal value of (SDD). Since
G(z) is a m x m SOS-concave symmetric matrix polynomial, by Remark
4.1.2 (ii), for any A € ST, —(A, G(z)) is a SOS-convex polynomial. It follow

from Lemma 4.1.2 that

Ly(=(A, G(2))) 2 (A, G(Ly(2))) = —(A, G(7)), (4.12)

where T = Ly(x) = (Ly(z1),..., Ly(x,)). Moreover, since g is a feasible

solution of (SDD) satisfying go = 1, we see that

Ly(—(A,G(@)) = 3 (—(A, Ga)lia) = (A, Go+ > GaGa) 0. (4.13)

ol a#0
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So, from (4.12) and (4.13), we see that (A,G(z)) = 0. Since A € ST, we
have G(z) = 0, i.e., Z is feasible for (RP). Similarly, since f is a SOS-convex

polynomial and vy () is linear,

Hig = Z(f_vz‘j(;('))aga

Moreover, since Val(RP) = Val(SDD) = f;, (by Theorem 4.3.1), fi;, =
Erllinl(f — X (-))(Z). It means that T is an optimal solution of (RP).

(ii) Let (A, f1i,) € ST x R be a maximizer of (D)%, for some iy €

{i,...,1}. Since (A4, fig,) € ST x R is feasible for (D),
f - ?}Z;() o <Aio> G()) =il ﬂio € 22'

It means that there exist some polynomials q‘,io (x) : R — R with degree d

and coefficient vectors q,io e R*@ k=1,...,r, such that
f(l’) - 1)3;1} - <]\107G(I)> — My = quio(x)27 r € R"
k=1

From Proposition 4.1.1, equivalently, there exists a real symmetric and pos-

itive semidefinite matrix X € Si(d) such that

fl@) = viz — (N, G(2)) — fiy = va(z)" Xvg(z), VzeR" (4.14)
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with X = >0, (j,io(j,ioT. Since vg(x)? Xvg(z) = (vg(x)vg(x)?, X) = (By +

a0 T4 Ba, X), (4.14) is equivalent to that

fla@) —vie— (M, G(x)) — iy = (Bo+ Y _2°Bq, X), Vo €R". (4.15)
a#0

Notice that

f<x>_vg;x_<Aio7G(x>>_ﬂio = Z(fa_<vg;<'>>a_<Aioa Ga>)xa_/~_"i0‘ (416>

«

From (4.15) and (4.16), it follows that

(Bo + ZxaBa,X'> 7 Z(fa 0 (UZTO())a — (Niy, Go))x® — iy, Yx €R™

a#0 «
It means that
(f — vp(-)o — (Go, Asy) — (Bo, X) = i, (4.17)

and

(Gay Mig) + (Bay X) = (f =vi())ay  Va #0. (4.18)

By (4.17) and (4.18), we see that (A;,, X) is feasible for (SDP) with value
fii,- Moreover, since Val(D)**® = Val(SDP) (by Theorem 4.3.1), (A;,, X) is a
maximizer of (SDP). O

Remark 4.3.1. When G(z) is a diagonal matriz polynomial and h(x) = 0,
then Lasserre [49] proved Theorem 4.5.2 (i) using Lemma 4.1.2.
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The following example shows that a zero duality gap result for (RP),
(D)=, (SDP) and (SDD) and the relations of the optimal solution of (RP)
and the optimal solution of (SDD), and the optimal solution of (D)** and
(SDP).

Example 4.3.1. Consider the following problem:

(RP) min 2} + v139 + 25 + 15 — max (u1, uz)” (z1, 29)
ule[fl,l},uge[fl,l]

2 4 . .2
subsect to ( riodn —3-ay m ) = 0.
i) —X2

2 2
—xy —4x1 —3—25 =«
Let f(xla x2> = ZL’§+$1$2+$%+I‘%, G(I’l,JjQ) — < 1 ; 2 ; )
2 —Z2

and h(z) = oy hax g (u1,ug)T (21, 29) = (UI’E;?éOM(Ul,UQ)T(Q?l’l'Q) =
|z1| + |x2|, where M = {(1,1),(1,—1),(—1,1),(—=1,—1)}. Let v; = (1,1),
ve = (1,-1), v3 = (—1,1) and vy = (—1,—1). Then, clearly f is a SOS-
convex polynomial. Moreover we already checked that G is SOS-concave
matrix in Example 4.1.1. Let K := {(x1,22) | G(x1,22) = 0} be a feasible
set of (Pg). Then we have K = {(z1,22) | (z1+2)*+ (22— 3)? £ 2, 2, < 0}.
Moreover, let (y,#2) = (=2, —155). Then G(&1,25) = 0. So, the Slater

condition holds for (Py). So, the optimal solution and the optimal value for

(RP) is (—1,0) and 1, respectively (See Fig. 4.3.1).
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Figure 4.3.1 (a) f(z1,22) = x% + 120 + :c% + x% —x1 — x2, (b) flz1,z2) = x? +
T1To + x% 3 x% —x1 + x2, (¢) flz1,22) = :L‘? + 129 + x% + x% + x1 — z2 and (d)
flz1,22) = CC? + 2120 +x% +x% + 21 + 2. The feasible set of (Pg) is K (solid), an optimal

solution of (Pg) is (—1,0) (a dot) and level sets of the objective function f of (Pg) (dotted).

Now, we consider the dual problem of (RP) as follows:

Oy min max {s | f—of () + (A GO)) — i€ T2

i=1,...4 i;€R,A; €52

Then, the problem (D)** is equivalent to £I111n4(Di)SOS, where (D;)%®

max  {p; | f—ol'(-) + (A;, G(-)) — p; € 3?}. Since for each i = 1,...,4,

ni€R,A; €52
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=)+ (A, G()) — p; € X2, for each i = 1,...,4, there exist some
polynomials ¢i(x) : R® — R with degree at most 4 and coefficient vectors

¢ € R*@D Ek=1,... 7, such that for any v € R?,
f=vl (@) + (A, G(2)) — s = Y qh(@)” = va(2)" Xua(2),
k=1

where X is s(4) x s(4) real symmetric and positive semidefinite matrix.
Notice that the dimension of v4(z) is 15. Then from Theorem 1 in [63],
we can reduce the dimension of vs(z), that is, 6, and so X € S%. Ac-
tually, vy(z) = (1, 21,29, 2% 23, 21) in (D)**. Then, by using the MAT-
LAB optimization package SOSTOOLS [62] together with the SDP-solver
SeDuMi [65], we can easily get the optimal value of (D;)*®, ¢ = 1,...,4,
that is, u; =~ 3, ¢+ = 1,2, and p; = 1, © = 3,4. So, the optimal value
of (D)’ is 1. We can not easily find optimal solutions of (D)%, but ac-

tually optimal solutions of (D)% are (As,us) ~ (( f:gggg 31:(1)233 ), 1) and

(Agy pg) =~ (< LD R ), 1). Now, we rewrite (D)** as the following

semidefinite problem:

(SDP) Erllin4 sup (f — viT(-))O — (N;, Go) — (X, By)
i=1,..., X,A;

st. (A, Go) + (X, Ba) = (f—v;r())a, a#0,
Xess Nest,i=1,....4.

Then, by using the MATLAB optimization package VSDP [29] together with

the SDP-solver SeDuMi [65], we can easily find the optimal solutions for
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(SDP;), i =1,...,4, that is,

13.5026  10.5017 0.5000 —2.6382 —0.4572 —0.8196
10.5017  11.7773 0.5000 0.4572 —1.5449 —0.7265
0.5000 0.5000 6.5009 0.0000 0.0000  —0.0000
—2.6382 0.4572 0.0000 4.7290 0.7265 —0.9070 )
—0.4572 —1.5449 0.0000 0.7265 1.8140 —0.0000
—-0.8196 —0.7265 —0.0000 —0.9070 —0.0000 1.0000

5.5009 1.4072
1.4072 48145 )»

13.5009  10.5006 0.5001 —2.4328 —0.2789 —0.8464
10.5006  11.3658 0.5000 0.2789 —1.2825 —0.6962
0.5001 0.5000 6.5003 —0.0000 0.0000 0.0000
—2.4328 0.2789  —0.0000 4.2577 0.6962 —0.8498 ’
—0.2789 —1.2825 0.0000 0.6962 1.6997 0.0000
—0.8464 —0.6962 0.0000 —0.8498 0.0000 1.0000

<
ho= (ZERUY
(

12.5010 9.5007 0.5000 —1.7733 —0.0775 —1.3042
9.5007 9.0470 0.5000 0.0775 —0.2703 —0.8012
0.5000 0.5000 5.5003 0.0000 —0.0000 0.0000

—1.7733 0.0775 0.0000 3.1490 0.8012 —0.4970 ’
—0.0775 —0.2703 —0.0000 0.8012 0.9940 —0.0000
—1.3042 —0.8012 0.0000 —0.4970 —0.0000 1.0000

4.5003 1.0699
1.0699 4.1399 J>

13.5026  10.5017 0.5000 —2.6382 —0.4572 —0.8196
10.5017  11.7773 0.5000 0.4572 —1.5449 —0.7265

0.5000 0.5000 6.5009 0.0000 0.0000  —0.0000
—2.6382 0.4572 0.0000 4.7290 0.7265 —0.9070
—0.4572 —1.5449 0.0000 0.7265 1.8140 —0.0000
—-0.8196 —0.7265 —0.0000 —0.9070 —0.0000 1.0000

and

A 5.5009 1.4072
A4 = < ) )

1.4072 4.8145

and the optimal values for (SDP;), i = 1,...,4, that is, Val(SDP;) ~ 3.0000,
i = 1,2 and Val(SDP;) ~ 1.0000, i = 3,4. So, the optimal solution and value
for (SDP) are (A3, X3) and (A4, X;), and 1, respectively. Finally, we consider
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the dual problem (SDD) of (SDP) as follows:

.....

st Go+ Y YaGa = 0,

B() + ZyaBa t 0

Then, by using the MATLAB optimization package OPTI Toolbox [16] to-
gether with the SDP-solver SeDuMi [65], we can easily find the optimal
solutions for (SDD;), i = 1,...,4, that is,

Y1 =(-1,0,1,0,0,—1,0,1,0,—1,0,1,—1,1), Y2 = (—1,0,1,0,0,-1,0,1,0,—1,0,1,—1,1)

Y3 =(-1,0,1,0,0,—1,0,1,0,—1,0,1,—1,1), Y4 = (—1,0,1,0,0,—1,0,1,0,—1,0,1,—1,1)
and the optimal values for (SDD;), ¢ = 1,...,4, that is, Val(SDD;) ~ 3,
i =1,2, and Val(SDD;) =~ 1, ¢ = 3,4. So, the optimal solution and value for

(SDD) are ys, y4, and 1, respectively. So, Val(RP) = Val(D)*** = Val(SDP) =
Val(SDD). Thus, Theorem 4.3.1 holds. Moreover, Theorem 4.3.2 also holds.
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