

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for the Degree of Doctor of Engineering

Fast Doppler Radar Image Generation

System based on Tornado

Recognition using Deep Learning

by

Liu Yang

Department of IT Convergence and Application Engineering

The Graduate School

Pukyong National University

June 2016

[UCI]I804:21031-000002299461

Fast Doppler Radar Image Generation

System based on Tornado

Recognition using Deep Learning

딥러닝을 이용한 토네이도 인식 기반

고속 도플러 레이더 영상 생성 시스템

Advisor: Prof. Ki-Ryong Kwon

by

Liu Yang

A thesis submitted in partial fulfillment of the requirements

for the degree of doctor of engineering

In Department of IT Convergence and Application Engineering, The

Graduate School,

Pukyong National University

June 2016

Fast Doppler Radar Image Generation System based on

Tornado Recognition using Deep Learning

A Thesis

by

Liu Yang

Approved by:

───────────────────

(Chairman) Kwang-Seok Moon

───────────────────

(Member) Suk-Hwan Lee

───────────────────

(Member) Bong-Kee Sin

───────────────────

(Member) Heug-Kook Choi

───────────────────

(Member) Ki-Ryong Kwon

June 24, 2016

- 1 -

Contents

Ⅰ. Introduction ··13

1.1 Development of short-range dense Doppler radar network

···13

1.2 Low atmospheric layer detection with CASA network ········17

1.3 The analysis of features in machine learning ························20

1.4 Outline of thesis ··22

Ⅱ. Related works ···23

2.1 Reflectivity express in Doppler radar ··23

2.2 Coordinate mapping research in radar image retrieval model

···26

2.3 The features of tornadoes in radar image for recognition
··29

2.4 Neural networks and back propagation in CNNs ··················31

Ⅲ. Hierarchical contour-line PPI generation based on MRF · 34

3.1 UF data Structure ···36

3.2 Raw image preprocess and contour line abstraction ·············37

- 2 -

3.2.1 Image denoise analysis ···37

3.2.2 Build random field in PPI image ·····································38

3.3 The framework of MRF segmentation ······································40

3.3.1 Definition of MRF in an individual radar layer ···········40

3.3.2 MRF and Gibbs equivalence ··42

3.3.3 Framework of MRF-MAP ···42

3.3.4 Metropolis algorithm ··44

3.4 Layers completion ··45

3.5 Testing environment and raw image generation ···················46

3.5.1 Testing object and bed ···46

3.5.2 Raw radar image generation ···47

3.6 PPI image generation experiment ···49

3.6.1 PPI image generation with proposed method ···············49

3.6.2 PPI image generation with conventional method ········ 53

3.6.3 Quality evaluation and computing time ·························54

Ⅳ Tornadoes features and regression model analysis based on

CNNs ··58

- 3 -

4.1 Basic regression model ··58

4.2 The algorithms related with CNNs regression model ·········· 61

4.2.1 Convolutional layer ···61

4.2.2 Pooling layer ··62

4.2.3 Loss layer – softmax ···62

4.3 Feed forward pass ··63

4.4 Back propagation pass ···64

4.5 Convolutional neural networks ···65

4.6 Learning combination of feature maps ······································68

4.7 Enforcing sparse combination ··69

4.8 Data sets and testing bed ··70

4.9 CNNs recognition experiment ··72

4.9.1 Testing model ··72

4.9.2 Training and Testing ··74

4.9.3 Reference methods and features ······································77

Ⅴ. Conclusion ··80

- 4 -

Appendix A. UFSXZ UF library user guide ····································81

Appendix B. Modified caffeNet structure ··86

References ··92

Acknowledgement ···100

- 5 -

Table Contents

Table 1. Enhanced Fujita scale ··18

Table 2. Reflectivity threshold in different precipitation category · 25

Table 3. Data and features in each layer ···74

- 6 -

Figure Contents

Figure 1. (a) The diagram of beam spreading of radar, (b) an

example of radar image ··17

Figure 2. (a) Conventional Doppler radar, (b) CASA short range Doppler

radar system ··19

Figure 3. Features of different objects from different level ······················21

Figure 4. Coordinate mapping from spheroidal coordinate to Cartesian

coordinate ···27

Figure 5. Hook echo in base reflectivity image ··30

Figure 6. (a) base reflectivity image of Doppler radar, (b) velocity image

of Doppler radar ··31

Figure 7. Layer structure of neural networks ···33

Figure 8. Back propagation algorithm model ··33

Figure 9. Flow char of a Tornado Recognition Method by Using CNNs

Based on Fast Doppler Radar Image Generation Method ······· 35

Figure 10. A brief structure of UF raw file ···37

- 7 -

Figure 11. Definitions of neighborhood and cliques in sweep ··················41

Figure 12. (a) Base reflectivity raw image, (b) base velocity raw image

··48

Figure 13. Performance of different denoising algorithms ························48

Figure 14. Contour line in different layers, (a) ~ (f) are 8th ~ 13th layers

environment ··51

Figure 15. The PPI Image after fields interpolation, (a) ~ (f) are 8th ~

13th layers ··53

Figure 16. Base reflectivity PPI image (a) by conventional method, (b)

by proposed method ··55

Figure 17. Comparison of processing time between conventional method

and proposed method ··56

Figure 18. Processing time distribution of proposed method on average

(ms) ···57

Figure 19. The influence of the number of contour pixels to the

processing time of MRF segmentation and the field

interpolation ··57

- 8 -

Figure 20. Brief Learning process model ··59

Figure 21. Linear regression model ··60

Figure 22. Convolutional process in convolution layer ······························61

Figure 23. Max Pooling with 2*2 kernel ···62

Figure 24. Samples of CNNs training (tornadoes images and regular

images) ···71

Figure 25. Layer structure in CNNs ··73

Figure 26. Loss reduced in 1500 iterations ···76

Figure 27. Accuracy in training ··76

Figure 28. The vortex in velocity image of Doppler ·································78

Figure 29. Vortex model of tornadoes ···78

Figure 30. The couplets of tornadoes in Doppler velocity images ·········· 79

9

딥러닝을 이용한 토네이도 인식 기반 고속 도플러 레이더 영상 생성 시스템

Liu Yang

부 경 대 학 교 대 학 원 IT 융 합 응 용 공 학 과

요 약

토네이도는 가장 강력하고 파괴적인 대기 현상이다. 일반적으로 구름

에서 공기의 기둥이 형성되어 회전하는 것을 제시한다. 토네이도는 매

년 수백만 달러의 피해와 수백명의 사상자를 발생시킨다. 최근 몇년동

안, 인류는 관측 데이터 처리 및 정보 분석을 포함한 조밀 도플러 레이

더에 기반한 심각한 기상 경고와 단시간 기상 예보를 구축하려고 한다.

주요 목표는 토네이도 탐지 및 예측이다. 하지만 빠른 기상 예보의 한

가지 문제점은 대규모 데이터 처리에 의해 제한된다는 것이다. 분석에

서는 레이더 데이터 생성에서 많은 시간을 요구하는 데이터 보간을 보

여준다. 또 다른 하나는 대한 전형적인 토네이도를 검출하는 기능이 불

충분하다는 점이다. 검출 처리에서 CNNs(Convolutional Neural

Networks) 사용과 MRF분할 기반 계층적 등고선을 이용하여 레이더 이

미지를 생성하는 방법을 제안한다.

 기존의 방법과 달리, 데이터가 없는 부분을 계산하기 위해 다양

한 보간 방법을 사용하지만, 레이더 이미지의 반사율 규모의 각 층에서

윤곽을 검색하는 방법에 초점을 두지 않았다. 등고선검색 방법은 기존

의 방법에서 질량 반복 보간 처리를 회피함으로써, 처리 시간을 향상시

킬 수 있다. 본 논문에서는, 범용 포맷(UF) 원시 레이더 파일이 검색된

다. 다른 방법에 비해, 제안하는 방법은 신뢰할 수 있는 품질을 보다 신

속하게 레이더 이미지를 생성할 수 있다. 그러면 인류는 기상 재해 경

고에 대한 더 많은 리드 타임을 얻을 수 있다.

 토네이도 인식 처리에 있어, 하나 또는 여러 기능을 사용하는 기

존의 방법과 비교하여, 레이더 이미지의 정보와 기능을 처리하는 CNNs

10

방법을 사용한다. CNNs는 더 나은 강인성과 정확성을 가지고 있다. 우

리의 모델을 학습하기위해 레이더의 기본 속도 이미지를 사용한다. 모

델은 CaffeNet을 기반으로 한다. 모델은 미세 조정을 통해 레이더 이미

지을 매칭시킬 수 있다. 그리고 최종적으로 더 빠르고 더 나은 인식률

을 제공한다.

11

Fast Doppler Radar Image Generation System based on Tornado Recognition using

Deep Learning

Liu Yang

Department of IT Convergence and Application Engineering, The Graduate School,

Pukyong National University

Abstract

Tornado is the most strong and violent atmospheric phenomena. Usually it

presents like rotating column of air from cloud to the ground. Each year it results

in hundreds of millions dollars damage and around hundreds fatalities. In recent

years, people are attempting to build a system for short-time weather forecast and

severe weather warning base on dense Doppler radars, including observation, data

processing and information analysis. A major goal is tornado detection and

prediction. But one problem is that the rapid weather forecast is limited by large

scale data processing. Analysis shows that data interpolation costs a lot of time in

radar data generation. Another one is that the conventional tornado features for

detection is insufficient. We propose a method to faster generate radar image by

using hierarchical contour-line based on MRF segmentation and use

CNNs(Convolutional Neural Networks) in our detecting process.

Unlike conventional methods, we do not use various interpolation methods to

calculate the dataless parts, but focus on how to retrieve the contour in each layer

of reflectivity scale of radar image. Contour-line retrieval method can improve the

processing time by avoiding the mass repetitive interpolation process in

conventional methods. In this paper, the Universal Format (UF) raw radar files is

retrieved. Compared with other methods, our method can generate radar image

more rapidly with reliable quality. Then people can gain more lead time for

12

weather disaster warning.

In tornado recognition process, we use CNNs method to process the features

and information of radar image, comparing with conventional methods which only

use some individual one or several features. CNNs has better robustness and

accuracy. We use base velocity images of radar as input to train our model. The

model is based on CaffeNet. Through fine-tuning the model can suit our radar

images and finally gives a faster and good recognition rate.

13

Ⅰ. Introduction

1.1 Development of short-range dense Doppler radar

network

Weather information is an important part of daily life. A global data (82

countries) from EMDAT (Emergency Events Database) shows that there

are 10912 major nature disasters between 1970 and 2013, the disasters

which are related to the meteorological reach 63 percentage like cyclone,

storm and flood etc... Economic losses from meteorological disasters reach

an average of more than 2 hundred billion each year. More than one

million people are dead and almost 5 billion are affected in these 43 years

[1]. Rapid weather forecast can help people to reduce weather-related

losses and enhance societal benefits including property and life.

People have researched meteorology for decades, radar has been initially

introduced into meteorological fields since last century 50s. People learned

that besides monitoring enemy aircraft, radar also worked well at certain

wavelengths (about 3 to 10 centimeters) for detecting precipitation. Then

people find an effective way to study and track precipitation. Introducing

Doppler radar for weather forecast becomes Next great advance.

Comparing with conventional radar, Doppler radar can not only detect the

precipitation, by also produce velocity data by using the Doppler Effect.

Doppler radar is commonly used as weather radar since the Weather

Surveillance Radar – 1988 Doppler radar in United States, which is belong
to NEXRAD (Next Generation Weather Radar). These radars locate in

different places, provide the speed and direction data of precipitation, then

make it possible to warn and forecast some severe weather like

thunderstorms and hurricane etc.

14

Despite significant performance and capability, the ability of long-range

radar is impeded for detecting and identify small tornadoes and other

finescale weather phenomena [2]. Taking the WSR-88D as an example, the

radar can cover an area of 230~345 km radius, but more than 70% of the

troposphere below 1-km altitude above ground level (AGL) cannot be

observed [3]. Due to Earth’s curvature and terrain blockage, one major

problem with the long-range radars is that they are not able to observe

the lower parts of the atmosphere adequately. A study from published

research found that during 2008 approximately 75% of tornado warnings

issued by the National Weather Service (NWS) were false alarms which is

with 72% detection probability and 13-min lead time [4]. Apparently, this

cannot satisfy people’s need. Another major problem of radar is the spatial

resolution at the far end. Radar spreads microwave to the apace around

radar station, the resolution of radar contains two dimensions: radial

resolution and azimuthal resolution. Radial resolution is a certain data, it is

the number of bins for a given distance that radar is able to detect. The

azimuthal resolution also call beamwidth, it is the number of radials that

the radar can depict in scanning space of radar. From figure 1, we can

find that the distance between two adjacent radials will increase with

beam spreading, the gate of outer circle correspond to a larger area than

the inner one. Then the resolution on the outside will be lower than the

inside. Besides two previous points, the long-range radar also has some

other weaknesses like the high frequency attenuation, high construction and

operating cost etc… As solution, a project named CASA is developed to

overcome these limitations.

For overcoming the limitations of long-range radar and continually

improving the capability of weather radar, National Science Foundation

(NSF) Engineering Research Enter (ERC) developed next generation

weather-sensing networks, Collaborative Adaptive Sensing of the

15

Atmosphere (CASA). In contrast to the long-range radar, CASA tries to

employ a kind of low-cost, dense networks based on many short-range

X-band (3.2 cm wavelength) Doppler radars. Taking the first test bed IP1

in Oklahoma United States as an example, the radar sites locate only few

tens of kilometers apart from each other, each radar can detect an area of

40 km radius. This dense network has higher resolution and can see the

lower troposphere better. Meanwhile short-range radars install easier and

cost less. As CASA system makes the performance of weather forecast

better. Timeliness problem becomes more and more conspicuous. Because

CASA uses short-range radar, that means a very short period of warning

time from detecting moment. Furthermore the dense networks means that

more radar data need to be processed. So we need a faster method to

retrieve radar data.

In radar data retrieval process, we need to calculate and estimate a lot

of dataless parts in radar image generating step. Through analyzing the

time distribution in many radar data retrieval process. We find that the

most of retrieval time is spent on data interpolation step which is just a

mass of repetitive computation. People developed many algorithms for

gaining a fast interpolation method which also have an acceptable image

quality. But even the simplest and fast one, it is still unsatisfactory. In our

proposed method, we does not focus on the algorithm of interpolation.

Paper proposes a radar retrieval method by hierarchical contour-line

method, and use MRF to estimate and refine the contour. The major

information of radar image can be describe by the contour from different

layers, this will avoid a lot of repetitive calculation in radar retrieving

parts. Then we use flood fill and image merging to integrate a final radar

image. In experiment we retrieve UF raw data files by proposed method

and compare with a conventional method. The results show that the

proposed method can effectively reduce processing time through avoiding

16

the mass calculus of interpolation as expected.

This paper discusses how to fast generate weather radar data, then gain

more warning lead time for preparation. Although we only talk the radar

imaging, more generally the method can be used for hierarchical imaging

in more fields.

(a)

17

(b)

Fig. 1. (a) The diagram of beam spreading of radar, (b) an example of

radar image.

1.2 Low atmospheric layer detection with CASA

network

Tornadoes are the most eye-catching atmospheric phenomena, because they

are rarely seen and its devastating impact. Tornadoes occur at any time of

the year and in many place of the world, like America, Europe, Asia,

Australia, and three highest concentrations are the United States, Argentina

and Bangladesh. About 1,200 tornadoes pass over the United States each

year, and most of them occur in south central of the United States, which

is called "Tornado Alley“[5][6].

18

Scale Wind speed (km/h) Potential damage

EF0 105-137 light

EF1 138-177 moderate

EF2 178-217 considerable

EF3 218-266 severe

EF4 267-322 devastating

EF5 >322 incredible

The strength of tornadoes can described by the EF-Scale (Enhanced

Fujita scale) like table 1. Despite there are around one thousand tornadoes

occur, but only about 2% of them reach F4 of F5 level on EF-Scale.

Majority of tornadoes can not be detected, and hardly predict. The

tornadoes occurring in rural place have little influence to people, but some

may pass through urban localities. As previous mentioned, tornadoes only

occur below 1-km altitude above ground level, it a blind zone to most

weather radars (figure 2. (a)), even radar can get tornadoes, it is always

the top part of tornadoes, and the rotation features of this part is not

significant comparing with the lower part.

Comparing with other weather phenomena, tornado is always a small

scale one, and also short-time. According to statistics, 69% of all tornadoes

have lifetime of 1~10 minutes, 29% of all tornadoes last around 20 minutes

and only 2% of all tornadoes can last over an hour. Such short lifetime

brings us a problem it is difficult to track and research. So we need our

radars have high spatial temporal resolution to resolve these signature

(figure 2. (b)).

Table 1. Enhanced Fujita scale

19

(a)

(b)

Fig. 2 (a) Conventional Doppler radar, (b) CASA short range Doppler radar

system.

20

1.3 The analysis of features in machine learning

machine learning is a subject which focuses on how to simulate or learn

people's behaviour and get new knowledge, meanwhile continuously

reorganize excising knowledge to improve self-performance. The application

fields of machine learning is very extensive, like image recognition,

speech recognition, weather prediction, genetic expression etc. Machine

learning made the breakthrough in 2006, on the hardware side, it depends

on computer performance improvement and parallel processing capabilities

to big data. On software side, it depends on a new algorithm which is

deep learning[7]. With deep learning, people finally find a way to process

abstract conception of objects.

Before machine learning, when people do objects detection, classification

or recognition, the train of thought is data getting from sensor (like

CMOS), pre-processing, feature extraction, feature selection then inference,

prediction or recognition. During this procedure, the feature selection is a

key part, it directly determine the result. Until now there are many

effective features like SIFT, Hog, Textons, RIFT, GLOH etc. But feature

selection is a laborsome thing, need much test, comparison and analysis.

All of them have specific processing objects, non of them is all-purpose.

Then the most important part of all procedure actually depends on people's

knowledge, experience even luck.

A most important feature of deep learning is to learn feature

automatically, so deep learning has another name, unsupervised feature

learning[8]. Deep learning learns not only low-level features, but also

structure features[9]. For instant, the face recognition process, to an image

of face the feature on pixel-level is not valuable, the deeper level is edge

feature. We know that image can be described by edge's combination

21

[10][11], on this level it is hard to tell what the difference between the

edge of face and the edge of other object like a car (figure 3). A deeper

level of face than edge feature can be like a series of patches of our eyes,

nose and mouth, but you still can not confirm whether this is a face. Then

a deeper level than these patch is our faces. The distribution of eyes, nose

and mouth has structuredness, Using this structuredness we can confirm

whether it is a face without doubt[12]. So when we want to express some

more structure and complicated image, The expression on deeper level is

necessary[13].

Fig. 3. Features of different objects from different level.

22

1.4 Outline of thesis

In following chapter 2 briefly introduces the related works about the

conventional methods in radar imaging area, the CNNs method background

and major algorithms.

Chapter 3 proposes our hierarchical contour-line retrieval method based

on MRF segmentation, the content includes UF file reading, contour line

abstraction, MRF segmentation. We shows the retrieval results by

conventional method and proposed method, both performance and time

distribution in different steps are also analyzed. In CNNs process we

present the dataset which is used, and analyze the accuracy of the method

Chapter 4 We introduce the structure of CNNs method. Briefly talk

about three major parts: convolutional layer, pooling layer and loss layer.

Next step, we talk about the weight and loss calculation in forward and

back propagation. In simulation part, we talk about the model design and

tune. We use out data to analysis the results and the feature in tornadoes

recognition.

23

Ⅱ. Related works

2.1 Reflectivity express in Doppler radar

Radar is coined as an acronym for “radio detection and ranging” by the

United States Navy in 1940. This name accurately describes radar’s

function. Radar emits electromagnetic energy from a transmitter into the

atmosphere, some of the energy bounces back when it collides with some

objects and radar will collect the reflected energy by its receiver. Then

radar can detect these objects and measure their distance and size though

analyzing the signal from the return energy. There are three major parts:

1) Radar Data Acquisition, 2) Radar Production Generation, and 3) User

Display System [14]. In this process, two major parameters are produced:

base reflectivity and velocity. In this paper, we discuss about radar data

and reference algorithms and focus on how to generate radar image of

these two parameters by using raw radar data.

Reflectivity displays the amount of reflected energy, which is used to

establish the precipitation in atmosphere. A widely applied equation in

meteorology the Probert-Jones radar reflectivity equation will help to

quantify it,

 





ln

 
  


×

 


(1)

where  is the power returned to the radar from a target,   is the peak

24

transmitted power,  is the antenna gain,  is the angular beamwidth, 

is the pulse length,  is the physical constant depend on target character,

 is the signal loss factors associated with attenuation and receiver

detection,  is the reflectivity,  is the transmitted energy wavelength and

 is the range from radar to target.

We can use a simplified radar equation to describe the relation between

the reflectivity factor  , the power returned by precipitation scatter  , the

range from the target to the radar site  , attenuation factor and the

radar constant .

 




(2)

In practice the  is a value which can range over many orders of

magnitude, so people compress this large range of values for operational

use, that is dBZ and the convert function is as following.

  log (3)

The usual range of reflectivity is between 0 dBZ and 80 dBZ, different

value matches different precipitation category like table 2 [15]. In some of

extreme cases the value can reach 90 dBZ, and reflectivity value also can

be negative, for example a clear sky with a little dust or fog.

25

Level
R e f l e c t i v i t y

Interval dBZ
Precipitation description

1 18 - 30 Light precipitation

2 30 - 38 Light to moderate rain

3 38 - 44 Moderate to heavy rain

4 44 - 50 Heavy rain

5 50 - 57 Very heavy rain, hail possible

6 > 57 Very heavy rain and large hail

Table 2. Reflectivity threshold in different precipitation category.

Velocity is a radar product that displays the wind speed. Radar can

detect the wind speed is based on the Doppler Effect. The Doppler Effect

is the change of wavelength caused by motion of the source. Because the

spread of electromagnetic waves do not need medium, the shift in

frequency only depend on the relative velocity. The Doppler Effect for

electromagnetic waves is as following,

′ ± 


 (4)

where  is the observed frequency, ′ is the emitted frequency and  is

the relative velocity.

Normally in velocity image, red color means that winds are moving

away from the radar, green color means that winds are moving towards

the radar, and use darker color to denote slower winds, bright color to

denote faster winds. Then in the velocity image, we can find a couple of

reverse winds. If this couple of reverse winds was tight and bright enough

on screen that means there could produce a tornado.

26

2.2 Coordinate mapping research in radar image

retrieval model

After radar collects weather information and extracts raw radar data by

signal processing, the further process is radar image generation for

meteorological or other purposes. The most fundamental unit of radar data

is gate or bin which is sampled from radar wave. The many gates in a

same direction form a ray. The many rays of a scan form a sweep. And

the many sweeps with different elevations or azimuths form a volume. All

of process for radar data follow this structure. In conventional method,

radar data retrieval process usually contains several major steps like: raw

file reading, data normalization, coordinate transformation and data

interpolation. On raw file reading step, radar data is read by different data

structure, as it is generated. Several common formats are used like Dorade

file, UF file, FORAY netCDF file etc... Through data normalization, the

intensity value of each gate can be matched with color scale, then radar

data can be presented by images.

The next part is coordinate transformation. Radar emits electromagnetic

wave from radar site with a fixed detecting range, the data of radar

collected from a spherical coordinate. When we attempt to use the data, it

should be transformed into the Cartesian coordinate and interpolated the

super-resolution part, it means that we need find or calculate all the value

for each grid in Cartesian coordinate (figure 4) based on raw data image.

In radar application field, radar image usually has three display description

models, PPI (Plan Position Indicator), RHI (Range Height Indicator) and

CAPPI (Constant Altitude Plan Position Indicator) [16]. The differences

between three models are observing angle and data collection model.

Usually the PPI model is most frequently used. In PPI any gate 

27

from radar can be mapped on a flat surface  as flowing functions,

  ×cos ×cos
  ×sin ×cos
   

(5)

where  is the location in the Cartesian coordinate,  denotes the

azimuth,  denotes the elevation angle.  is the range from radar to

number  gate.

Fig. 4 Coordinate mapping from spheroidal coordinate to Cartesian

coordinate.

Because the beams of radar are not continued, data interpolation becomes

a necessary step for the super-resolution part after coordinate

transformation. As the most computationally expensive step, many

algorithms have been proposed, the difference between them are the

influence function (estimation function) and the weighting scheme. Nearest

neighbor mapping [17] [18] is a simple algorithm, it chooses the value of

the nearest point for the non-given points without considering the values

28

of neighboring at all. But the difference of echoes from adjacent beams

become bigger and bigger with radiating out of beams, then radar image

will be gridded and discontinuous. Bilinear interpolation [19] is a common

algorithm, extended from linear interpolation. It uses four neighbor pixels

respectively along two different directions to interpolate. Comparing with

nearest neighbor mapping algorithm, the discontinuous of bilinear

interpolation can be much improved, but has a little blur on contours.

Kriging [20] [21] is an interpolation method originally used in geostatistics.

It calculates a point by computing distance weighting of neighbor points

which have values and estimate based on Gaussian process. Under suitable

assumptions, Kriging method can give smooth and reliable values, but it is

computationally expensive and more complicated than the previous two

methods. Barnes interpolation [22] [23] describes a method to interpolate

data from a set of randomly spaced data in two dimensions using a

multi-pass scheme, it is commonly used in meteorology [24]. In all

mentioned methods, Barnes has relatively good edge sharpness, smoothness

and non-obvious discontinuous, meanwhile it involve amount of calculation.

All interpolation methods have two judgement scales: the processing time

and smooth reliable data. People attempt to find a fast algorithm

meanwhile that looks less gridded. But it is almost impossible to satisfy

both of them at same time. In practical applications, because of the

timeliness of radar data, people always tend to satisfy the former at first.

29

2.3 The features of tornadoes in radar image for

recognition

Since tornado records, people utilize many features for detecting tornadoes, from

single threshold to model simulation. All of these methods need find some features

from tornadoes. Like the classic hook echoes [25] [26] from base reflectivity radar

image (figure 5), it was first documented by Stout and Huff in 1953, and it is

sign to justify issuing a tornado warning by the National Weather Service of the

United States[27] [28]. Wang [29] et al. proposed a method for recognizing

tornadoes in Doppler radar. It is just based on this feature. However, Forbes [30]

found that not all of tornadoes have the hook echo feature in his research, even

more than half of them. When tornado appears, it does not always present the

classic “hook echo” on radar screen. Figure 6 shows the tornado at 12:46 pm on

April 24th in the city of Durant [31]. At that time, the tornado was producing

extreme damage which is classified level-four as “EF-scale” [32]. If we only

observed "hook echo" from the precipitation of conventional radar, we would never

know there was a tornado. The precipitation completely wrapped tornados like

figure 6(a), it is not different from its surrounding. But in velocity image (figure

6(b)) can show that winds blow either towards or away from the radar site,

because an individual Doppler radar can only measure wind in one dimension.

TVS (Tornado Vortex Signature) is the most unique feature to tornadoes. It is

used to calculate the POD (Probability Of Detection) of the national network of

WSR-88D radar (Weather Surveillance Radar – 1988 Doppler). Thomas [33]
proposed what percentage of Doppler radar detected vortices produce tornadoes

and what vortex attributeds are most useful in discriminating vortices that are

(and are not) associated with a tornado. Besides these, other features are also

utilized, like TSS (Tornadic Seismic Signal) [34], people try to detect the seismic

energy from ground when tornadoes are in contact with the ground. But it can

detect a tornado when it is included in high level of EF-scale and after tornadoes

touch down. Since Doppler radar has been applied in weather research, another

effective detecting feature "couplets" has always been used to detect tornadoes.

30

The velocity shows us the wind in precipitation. It is important for people to

detect some fine-scale short-time weather phenomena like tornado. Doppler radar

can detect cloud is moving toward or away from observer, then to tornado,

Doppler radar will find two color from both ends of the color scale is side by side

within a very narrow space. That's becausee of tornadoes' fast and strong

rotation.

Fig. 5. Hook echo in base reflectivity image.

31

(a) (b)

Fig. 6 (a) base reflectivity image of Doppler radar, (b) velocity image of

Doppler radar.

2.4 Neural networks and back propagation in CNNs

In 1958, David Hubei and Torsten Wiesel found the orientation selective cell in

John Hopkins university[35]. Their research found that apart of nerve cell of brain

cortex would be active when pupil got some stimulation. And when pupil found

the edge of object, if this edge pointed at some direction, the corresponding part

of nerve cell would be active. The work of David Hubei and Torsten Wiesel

inspired people think deeply. the working process of nerve cell, central nerve and

brain, may be a continuous process of iteration and abstraction. According their

visual system research, some model have been proposed [36][37]. As previous

mentioned, the model extracts and classifies the feature of input image. The

learned features are usually very robust to their specific object. Recently CNNs

32

algorithm even achieved state-of-the-art performances, such as ImageNet

Challenge[38] and IJCNN (International Joint Conference on Neural Networks)

competition[39][40].

Now the application of CNNs in image processing becomes more and more

extensive, including detection, recognition and classification [41][42][43]. CNNs

briefly contains two parts: convolutional neural networks structure and back

propagation of full connection. Like the conventional neural network, deep learning

has similar layered structure (figure 7). The system contains input layer, some

hidden layers and output layer. In this structure only adjacent layer has

connection, there is no connection in the same layer and cross-layer. Every layer

can be seen as a logistic regression model. This kind of layer structure is very

similar to our brain. In conventional neural networks training method is not

satisfactory. One of the major problems is the gradient will be more and more

sparse, when the system gets deeper, the error is smaller and smaller. Another

problem is sometime the system is only converge in a local minimum, expecially

the start place is far away from the global optimum. For overcoming the problems

in neural networks training, deep learning uses back propagation method. The

whole networks are trained by iterative algorithm, set initial values randomly,

calculate the output. Then algorithm changes the parameters of previous layer

according to the difference between last output and labels. This process will

continue until convergence (figure 8). The advantage in this process is parameter

sharing, sparse interactions and equivariant representations.

33

Fig. 7. Layer structure of neural networks.

Fig. 8. Back propagation algorithm model.

34

Ⅲ. Hierarchical contour-line PPI

generation based on MRF

In conventional method, radar image generation process mainly contains

four parts: raw file reading, data normalization, coordinate transformation

and data interpolation. Because of coordinate transformation, not all of

grids in the Cartesian coordinate can find corresponding values, more parts

need to be estimated. Through analyzing the reference weather radar

retrieval system [44], we can find that interpolation process occupies the

vast majority of process time in the retrieval system, usually this part can

reach 75~95 percentage. Nevertheless the interpolation is just lots of dense

repetitive calculation. So we attempt to find a way to avoid or reduce this

kind of mass interpolation process, and propose a method, contour-line

retrieval of multi-layers based on the MRF. After raw radar file reading,

the input data is processed by data normalization and denoising as most of

radar data process, then program generate a raw radar image. We use this

image as the input, the brief idea is as following figure 9.

35

Fig. 9. Flow char of a Tornado Recognition Method by Using CNNs Based

on Fast Doppler Radar Image Generation Method.

36

3.1 UF data Structure

The space which is scanned by radar is called a volume in radar data

structure, that radar scan around with a fixed elevation angle is called a

sweep  . When radar send a radar wave, it is called a ray  . A

volume contains a series of sweeps     , and a sweep

contains a series of rays which have same elevation angles

    . All of rays are sampled by the most fundamental

unit of radar data, called gate or bin  and     . In this

paper the raw radar data is generated following the Universal Format (UF)

structure. This format is created for Doppler radar data by Barnes [45].

One file contains a complete volume scan of radar. Within a file is a series

of stand-alone rays. The data is basically all 16 bit integer words, floating

values are expressed by a scale factor. The organizing information of data

and other setting information of radar store in header blocks in beginning

of each ray recorder. Due to memory-saving purpose, radar scan modes

are indicated by number and the field names are only two ASCII

characters, like  denotes the corrected reflectivity factor   and 

denotes the velocity   . A UF raw file of radar can be read following

the structure in figure 10, the detail can follow the program manual [46].

37

Fig. 10. A brief structure of UF raw file.

3.2 Raw image preprocess and contour line abstraction

3.2.1 Image denoise analysis

Following the UF structure, radar echo intensity can be read gate by gate.

They can compose a matrix which the length is equal to the number of

gates and the width is equal to the number of rays. After data

normalization, a whole sweep of radar scan can be expressed by an image,

we call it raw radar image. On this image, every pixel denotes a gate, the

radar echo intensity is expressed by image intensity, radial resolution

should be equal to the number of pixel in a line and azimuthal resolution

should be equal to the number of pixel in column. Therefore this raw

image contains all the radar echo intensities and how they distribute. In

image processing, usually there are two part contents on an image: contour

and color, and most information of image is expressed by contour. So the

intensity distribution on PPI radar image can also be described by the

38

contour line, the amount of computation will be less than the interpolation

of large area.

Before contour line abstraction, the raw radar image from radar data

reading will be processed by denoising process and thresholding according

to reflectivity scale. In denoising process, paper compared three typical

denoising algorithms: mean filter, wavelet and Adapted mean filter [47].

Considering keeping the detail of image and removing noise, we selects

mean filter for denoising process. Meanwhile the denoising algorithm can

smooth the contour line for reducing the calculated amount for post

process.

In most applications, radar image uses a kind of 4 bit color scale, so the

raw radar image is split up into 16 layers as well. In contour line

abstraction, the canny edge operator [48] is used, and as a result, these

contour trees can be expressed as sequences [49] [50]. From these

sequences we can know the relations between pixels in contour, it is

important because part of these pixels will not be continuous any more

after coordinate transformation, then the sequences will help us. The result

of contour line abstraction will be used in post process, one is that

program use the chain sequences of contour to find the neighbor of each

pixel for building the fields for MRF segmentation. The other is that

program use the area in contour to decide the order in the final layers

merging step.

3.2.2 Build random field in PPI image

Instead of all pixels transformation in conventional method, we only

transforms the pixels in contour line. The functions are exactly same as

the conventional one (function 5). After the transformation, the most part

39

of pixels in contour line become a series of independent points. Just like

opening an umbrella, the raw image can be though like unopened umbrella,

and the PPI image is an opened one. The radar site is the center of

umbrella, each ray is like a rib of the umbrella. The pixels on "ribs" have

exact values from a raw image, but pixels on "panel" is a dataless part,

they need to be estimated.

In next step, we generate a complete closed contour line by MRF. Before

that we build a series of fields based on adjacent pixels of contour line.

For instant, a contour line sequence in raw image ′ ′′

′


′

 ′

 
′
 


after the coordinate transformation, the pixels locate in new positions in

PPI image, then       
 , th and th are the location along

row and column of image. A rectangle field can be built based on two

adjacent pixels, for redundancy, we use      and    , if

     as diagonal points of the field.

The values in field, we choose bilinear interpolation to calculate. Let 

denote the range of radar,  and  respectively denote the resolution of

azimuth and radius, and  denotes the interesting point. There will be

four nearest known points         and     from two adjacent

rays. Then bilinear interpolation estimate of the unknown value is given

as:

    


       

     






 




 (6)

where    

  
and   

 
.

40

3.3 The framework of MRF segmentation

Markov Random Field (MRF) is an image model to describe a field which

has random value and Markov property. MRF method is based on MRF

image model and Bayesian estimation, it provide a way to build a model

for solving the ill-posed problems. In computer vision and image

processing the MRF theory has been widely used, since S. Geman and D.

Geman [51] proposed the image segmentation algorithm based on MRF.

We attempt to use MRF segmentation algorithm to find edge in fields,

because the distribution of contour line match the Markov property. In this

section, we use MRF - MAP and metropolis algorithm which is talked

based on energy and image.

3.3.1 Definition of MRF in an individual radar layer

In each layer of radar image, there are a series of fields    

which generate from previous steps. Because the contour line is a closed

curve, if a contour line have  pixels then we will get  fields,     .

Let us associate a layer image with a stochastic process, based on a set

of lattice points  as a field. Then  is a lattice point ∈ . Because we

attempt to estimate the corresponding classification for each pixel. Suppose

is a pixel in a rectangle sub image  , then for each single    .  is

the value of  at  . Here we use  to denote the neighboring point of  ,

and it must be symmetric, which has ∈⇒∈ and ∉  . A clique is a

set of points,  . Which are all neighbors of each other. The neighborhood

systems and cliques are also depicted as figure 11. Then the MRF can be

41

expressed as a stochastic process  on the lattice  with neighborhood

system  , if all ∈ :

  ≠    (7)

Fig. 11. Definitions of neighborhood and cliques in sweep.

42

3.3.2 MRF and Gibbs equivalence

Based on previous definition, each field in radar layer can be described by

conditional distribution, but this distribution is a "local" property, it is

hardly to describe the whole random field. Besag [52] solved it by

associating Markov random field with Gibbs distribution. MRF depicts the

statistical property of local image, Gibbs distribution can extend it to the

global. The association between them is based on a fundamental theorem

of random fields, Hammersley-Clifford theorem [53] [54]. It states that a

Markov random field can be represented as a Gibbs distribution. Let  is

value of  at the points in clique  ,  is the potential function of .

Then Gibbs distribution can be written as follows:

 

∙exp




∈



 (8)

Where  is the set of all cliques.  is partition function. The exponent

part also can be expressed as 
∈

, It is called energy function,

the smaller this value the lower energy. In physics, we know that it is

always more stable to be more low energy, and more possibility to realize.

3.3.3 Framework of MRF-MAP

Maximum a posteriori (MAP) is a common optimum criterion, and

MAP-MRF is the system combining MRF model with MAP criterion. Let

 denotes the image field,  denotes the labeling field. Then the solution

of MAP is the maximum of following function.

43

 arg ∈ (9)

According to the Bayes formula the object function can be written as

following:

 arg ∈ (10)

The probability distribution of MRF is equivalent to the distribution of

Gibbs,   

    , then the equation can be written like

  

    . Then Introduce Gibbs function into the object function,

we can get ∙∝
        , then the object function becomes:

 arg∈ (11)

For convenient calculation, the Ising model is generally use to describe

the potential function. This model is proposed by Ernst Ising in

ferromagnetic study [55]. The energy of interacting particles is determined

from their spin. The spin of particles has two states "up" and "down",

denoted by "+1" and "-1". This is very similar to a binary image. From

physic conception, we can know that more reverse spins, the system has

more energy, It is more instable. Then the model can be described by the

length of edges between reverse spins [56].

  

∙exp






 

 


∙exp








∼ 

 




(12)

44

Where  is the sum of all neighbor pairs of particles,  is the

Boltzmann constant,  is temperature,  and  is the spin of particle, 

for otherwise. In a finite field, × , the vertical boundary edges of

particle-pair is ×  , it is same for the horizontal, and the total

edges is ×  . Then 
∼ 

  ×   ∙ ,  is the length

of edges of reverse spins. Considering  and  are constants the function

12 can be written as following:

  

∙exp







∙ 


 (13)

3.3.4 Metropolis algorithm

MAP estimation reduces to minimizing the posterior energy function [57].

We use Metropolis algorithm for finding a global minima on an image.

The Metropolis algorithm is simulated annealing with a fixed temperature

[58]. The brief procedure is as following:

1) Start with any state, ∈    .

2) Select a pixel from  at random, denoted by  .

Change the sign of its value.

3) The new configuration

′        

4) Then accept the new ′ depending on the probability as

following:

45

′ min
′  (14)

If 
′

  , then acceptance probability ′   .If 
′

  ,

the acceptance probability ′ 
′

.

5) Generate uniform random number ∈, and accept ′ if

  ′, otherwise, keep .

Then cycle above steps continually, the system will converge to a stable

status from a random status. For each layer of sweep the contour line will

stabilize at a certain shape. Because the sizes of all fields are relatively

small, the convergence procedure can be completed in a short time.

3.4 Layers completion

In order to get an integrated layer of radar image, we use the flood fill

algorithm to fill the area in contour [59] [60]. In radar image, all contour is

closed including the boundary of radar screen. Based on that flood fill can

be used for radar image. The "seed" can be selected in raw radar image.

Different from normal method, we select a seed for background, not for

foreground the labeled area. Because the labeled area is several

independent disconnected areas in most cases, but the background is not.

We need to select many seeds for foreground but only one or few for

background. We initially set both foreground and background as the label

color, then fill the background with black color or the transparent to

complete a layer. The merging order follows the sequence of area in

46

contour to make sure that there is no area covered by other layer. And

the "hole" in layer can be detected by checking the neighbor of starting

point in contour sequences.

3.5 Testing environment and raw image generation

In experiment, we use UF raw data file as input to generate the basic

reflectivity PPI image of weather radar step by step. The contents of

experiment briefly include three parts. In the first section paper will

introduce the testing environment including testing data and computer

configuration. As preprocess for conventional and proposed methods, the

raw radar image will be generated. In the second section paper will

introduce the PPI image generation by proposed method and conventional

method. At last we will compare two method by computing time and

quality performance, meanwhile we will analyze the time distribution in

each method.

3.5.1 Testing object and bed

In practical application, radar data retrieval process mainly processes by

two computers. One is charge of radar control and signal processing at

radar site. The other is charge of data processing or product generation

and it can locate everywhere. The former usually uses some powerful

server-computers to calculate [61]. But the latter will be not. The

simulation of paper uses a normal PC, because the server-computer is

already very fast, the improvement on server-computer is not obvious like

PC and server-computer is not common like PC. Then in the retrieval

47

process, a normal computer is used which mainly includes Intel Core2

E7400 CPU and 2GB memory. The simulating software includes VS 2012

and OpenCV based on Window 7 operating system.

The input file is from the CASA project, generated by following UF

structure. The raw radar data comes from a radar site located in Rush

Springs city, Oklahoma US, and the recoded time is at 7:44 on May 14th

2009. The radar utilizes PPI sweep model with 2 degree elevation. The

radar file contains two fields: CZ, corrected reflectivity factor (dBZ) and

VE, velocity thresholded on NC (m/s). In CZ field, the number of samples

is 426, the number of samples used in volume is 996.

3.5.2 Raw radar image generation

In the raw image generation, we use a pixel to denote a gate in radar file,

and match image intensity with the normalized echo intensity of radar.

The resolution of raw image is same as the resolution of radar 996*426

(because the elevation is only 2 degree). We follow the UF structure to

retrieve the raw radar file as figure 12. In the postprocess the retrieval

processes are same for reflectivity and velocity, so in rest part paper only

shows reflectivity as example, and utilizes the proposed and conventional

methods generate the final PPI radar image.

48

(a)

(b)

Fig. 12. (a) Base reflectivity raw image, (b) base velocity raw image.

49

3.6 PPI image generation experiment

3.6.1 PPI image generation with proposed method

Following previous chapter, paper shows the results in the major parts. In

the proposed method, the raw image is initially processed by denoiseing

algorithm, it's not only for removing some noise, but also for reducing the

cost of calculation in post process. We compare the performance with

different algorithms like wavelet, mean filter, and adaptive mean filter etc…

and the mean filter algorithm is selected [62] [63], because it can keep

enough information and has fewer edge points. The denoising performances

are as figure 13:

Fig. 13. Performance of different denoising algorithms.

50

After denoising, we evenly split up the raw image into 16 layers as the

reflectivity scale. Usually the reflectivity of radar is a scale roughly

between 0 dBZ to 70 dBZ. Because the influence of lower number is very

weak, and the higher number rarely occur. But for better performance we

use the intensity scale is between -40 dBZ to 50 dBZ, it is the minimum

and the maximum value of that day, normalize the scale to of image

intensity scale (0~255). Then these are the threshold we used in canny

operator. The contour line of the specific intensity threshold can obtain

(figure 14). In our case, several layers at either end of the scale has no

data, then paper shows some samples of the 16 layers which has

reflectivity data.

In next step, the pixels in contour line will be transformed in to PPI

image. In PPI image the contour line becomes a series of independent

pixels. A whole contour line is stored as a sequence, we can know the

neighbors of each pixel. We use two adjacent pixels as diagonal points to

build a field, and use bilinear interpolation to calculate a value for filling

the fields. Then in PPI image, the pixels of contour line and fields can

make a closed contour which can segment the image into "inside" and

"outside". After that the flood fill algorithm is used to fill the "inside" part

with label color, the result is as figure 15.

Observing about PPI image, the labeled areas are not a whole completed

piece, there are some "holes", the lower intensity parts in the area. For

avoiding the coverage by unidirectional merging process. We use the color

of neighbor pixel of starting point in contour sequences to check the

"inside" and "outside" color, make sure they are different. After flood fill

process, the closed contour which is composed by fields is not necessary

any more. Then MRF algorithm is used to segment these fields into

"inside" parts and "outside" parts for generating an accurate edge of the

area. After that a completed layer is finished, then we merge these layers

51

together and get the final PPI radar image following the contour area order

in the final step.

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Contour line in different layers, (a) ~ (f) are 8th ~ 13th layers.

52

(a) (b)

(c) (d)

53

(e) (f)

Fig. 15. The PPI Image after fields interpolation, (a) ~ (f) are 8th ~ 13th

layers.

3.6.2 PPI image generation with conventional method

Besides raw file reading step, conventional method mainly contains three

steps: data normalization, coordinate transformation and data interpolation.

The first two steps have a fixed model as the introduced in related work

part. But the interpolation method may be different in different papers. In

practical applications, several interpolation methods are commonly used like

nearest neighbor mapping, bilinear interpolation, kriging and Barnes

interpolation etc… For these methods there are two measurement scales:

processing time and continuity performance. In other words, we need a

fast and smooth-looking performance algorithm, but it is almost impossible

to satisfy both of them at same time. Then we select a fast and

frequently used algorithm bilinear interpolation, even it has some

insufficiencies [64], because the main purpose of this paper is to improve

54

processing time. The conventional method with bilinear method is as R.

Kvasov proposed [65].

3.6.3 Quality evaluation and computing time

This section provides an analysis of proposed method, and compared with

conventional one. We respectively simulate the conventional method and

proposed method, and analyze the performance. Because of the mean filter,

the radar image generated by proposed method looks less gridded and

more smooth than the conventional, but meanwhile the former losses some

details (figure 16).

(a)

55

(b)

Fig. 16. Base reflectivity PPI image (a) by conventional method, (b) by

proposed method.

About the processing time we compared 10 radar samples, and the result

of comparison is as figure 17. From figure we can find that the proposed

method has much improved the processing time through avoiding the mass

dense interpolation process in conventional process [66]-[69]. Through

observing the proposed method step by step, two major computationally

expensive steps are field interpolation and MRF segmentation. Both of

them occupy 97 percentage of the whole processing time (figure 18). One

further step, through analyzing the processing time of each layer, we can

find that the determining factor of processing time of two major steps is

the number of fields. And the number of fields is equal to the number of

pixels in contour line. Figure 19 reflects the relation between the number

56

of pixels in contour line and the processing time of two major processes.

Then back to denoising step, we use the mean filter, because after this

filter we can get a relatively simple contour line. That means less

calculation amount in post-process[70]-[73].

Fig. 17. Comparison of processing time between conventional method and

proposed method.

57

Fig. 18. Processing time distribution of proposed method on average (ms).

Fig. 19. The influence of the number of contour pixels to the processing

time of MRF segmentation and the field interpolation.

58

Ⅳ.Tornadoes features and regression

model analysis based on CNNs

In a typical CNNs, the initial parts are the alternate of convolution and

subsampling. At the last some layers, the layers are all one dimensional

network of full connection. Then we complete the mission which

transforms all two dimensional features into one dimensional network. Next

we talk about BP (Back propagation) algorithm.

4.1 Basic regression model

CNNs is supervised regression model among a deep learning algorithms.

The process makes prediction according to input features. Supervised

algorithm is that finds a relatively accurate prediction with giving training

data set. This kind of algorithms can briefly be expressed as figure 20.

The linear regression is the most basic and core algorithm. If we supposed

that  is the size of training set,  is the feature of input,  is the

feature of output.  is the feature vector of sample  of training set, 


is the feature  of sample  . For single variate the prediction can be

expressed as:       .  is the parameters to be solved.

59

Fig. 20. Brief Learning process model.

In supervised learning process, data set usually contain two parts:

training data set and testing data set, for getting a relatively better

prediction result. Here the cost function should be defined:

 ╱
  



 
  


(15)

when we solve the parameter  and  . our target is to minimize the cost

function min  .

The gradient descent method can be used to solve the parameter. The

core idea is that initialize  and  , continuedly modify and tune  and 

to get the minimum  . The algorithm can be expressed as: iteration

   


 , until it is convergence. But most of time we explain

cost function from probability angle. the partial derivative on the cost

function can be expressed as:

60




  





  

 ∙ 


  ∙


  

   ∙


  

   ∙



  



 

   

(16)

Then for a single training example, this gives the update rule, the Least

Mean Squares (LMS) (figure 21).

       
 

 (17)

Fig. 21. Linear regression model.

61

4.2 The algorithms related with CNNs regression

model

In practical application basic model is rarely used, because of the amount

of repeating data calculation. Then we talk about the major algorithms in

CNNs from two area: vision layer and loss layer.

4.2.1 Convolutional layer

The convolutional layer in CNNs is composed by convolutional unit (figure

22). The parameter or weight of every convolutional unit will be optimized

by back propagation. The aim of convolutional process is to abstract

feature, the shallow layer maybe just abstract some basic features, like

edge, line and angle. Deeper layers can abstract more complicated features

based on features iteration of shallow layers.

Fig. 22. Convolutional process in convolution layer.

62

4.2.2 Pooling layer

Pooling layer usually follows convolutional layer, the aim of pooling layer

is to reduce the calculated amount, or we say it compress the

convolutional layer. Max pooling is frequently-used. For instant one neure

matches a 2 by 2 are in convolutional layer, then every neure value match

the maximum output from convolutional layer (figure 23). meanwhile it

provides rotary deformation.

Fig. 23. Max Pooling with 2*2 kernel.

4.2.3 Loss layer – softmax

Loss drives learning by comparing an output to a target and assigning

cost to minimize. The loss itself is computed by the forward pass and the

gradient to the loss is computed by the backward pass. The softmax loss

layer computes the multinomial logistic loss of the softmax of its inputs.

It's conceptually identical to a softmax layer followed by a multinomial

63

logistic loss layer, but provides a more numerically stable gradient.

4.3 Feed forward pass

If we have  samples, belong to  kinds. Then the square error cost

function can be written as following.

   



  




  




  

 (18)

Where 
 is the label of sample  in dimension . 

 is the  output of

sample . For multi-classes question, the output is usually a form "one of

c". It means that only the output of corresponding class is positive, the

other classes are zero or negative. This depends on the activation function.

Because the error of all training set is the sum of error of each sample,

we initially talk about the BP of one sample. To the sample  , the error

can be written as following:

  



  




  



 

 ∥  ∥ (19)

In conventional neural networks, we need to calculate cost function  to

every partial derivative of each weight according on BP. Use  to denote

layers, then the output can be written as following:

             (20)

There are several activation functions, like sigmoid, TanH (Hyperbolic

64

Tangent) and ReLU (Rectified-Linear). like sigmoid, it will normalize

output into [0,1]. So the last average of outputs always tends to zero.

4.4 Back propagation pass

The error from back propagation pass can be seen as the sensitivities of

each neure. the definition is as following:




 





  (21)

Because 


  , then 


 


 . It means that the sensitivities of bias




  is equal to the derivative 


of error  of all input . This is the

main idea which let the error of high level back propagate to button level.

the back propagation uses function as following:

       ∘′ (22)

The "∘" means each element multiply all other elements. the

sensitivities of output level is different:

  ′∘    (23)

In the last, use  to renew the weights of all neure. For a specific

neure, get its input, then use the  to calculate, and express by vector. To

the level , that use error to derived of each weight is the product of input

and sensitivities. Then the partial derivative multiply a negative learning

65

rate is renewed weight of neure.


 


   


(24)

∆   
 


(25)

Where  is weight,  is learning rate.

4.5 Convolutional neural networks

In a convolutional layer, Feature maps are convoluted by a convolutional

kernel, and pass activation function. Then the output feature map can be

gotten. Each output map can be input maps value of many convolutions.


  ∈ 


  ∗

 
 (26)

Where  is the set of input maps. Every output map will be given a

extra bias , but to a specific ouput map, the input maps of convolutional

kernel is different. It means that if output feature map  and output

feature map , both of them are gotten by input map  , the convolutional

kernels are different.

We assume there is a sub sampling layer   for each convolutional

layer . From BP, we know that the sensitivities  of each neure need to

be calculate before we calculate the renewed weight of each neure in

layer . For getting the sensitivities, we need initially get the sum of

sensitivities in next layer, then multiply corresponding weights  , multiply

66

derivative of activation function  of input  in current layer. Then the

sensitivities  of current layer can be gotten.

However, because of sub sampling, the sensitivities  of a neure of sub

sampling matches a pixel of output map of convolutional layer. So each

neure of map of layer  only connects one neure in next layer  .

For effective calculate sensitivities, we need to up sample the

sensitivities of this down sample layer. So it can make this map of

sensitivities equals to the map of convolutional layer. Then use the partial

derivative of activation value of map to multiply the sensitivities map of

layer sub sampling layer.

The weights in sub sampling layer use a same constant value  . So we

can get sensitivities  in layer  just by multiplying the result from last

step by  . We can repeat the same calculative process to each feature map

in convolutional layers. But this needs corresponding map from sub

sampling.


  

  ′∘
   (27)

"up" means up sampling. if the sampling factor is . If copy  times

along vertical and horizontal direction of each pixel, then can restore the

size. This function can also realize by Kronecker product.

≡⊗ ×  (28)

To a specific map, we can complete the sensitivities calculation. Then

we can use summation of all neure of map in layer  to calculate the

gradient of bias:

67









 


  


(29)

Where 
  


is the patch when  

   multiply by 
 . The output

convolutional map on location  is the product of convolutional kernel


 and the patch from last layer on location .

Here the most difficult part is sensitivities map calculation. We must

find that the patch in input map matches which pixel of output map. Then

the function A can be used, the sensitivities will be back propagation, in

addition, it needs multiply the weight between input patch and output

pixel. Actually this weight is the convolutional weight


  ′∘      ′′.

Until here, we can calculate the gradient of  and  . Firstly bias  is

like previous convolutional layer, just sum all elements of sensitivities map:






 

 (30)

Because the  is related to the calculation of down sampling map in

front propagation. We need keep these maps for back propagation. Then

we assume:


  

   (31)

then the gradient of  can be calculated as:






 

∘

 (32)

68

4.6 Learning combination of feature maps

In most of cases, we initially input many maps into convolution, then sum

of the convolutional values to get a output map. In reference papers,

generally people select maps to get a output map. Here we let CNNs to

combine these maps in training process. It means let the networks to

select which maps combination is the best. We use  to denote the

weight or contribution of input map  of output map  . Then the output

map  can be written as:


  

  

 ∈


   ∗

 
 (33)

It is need to satisfy the constraint: 


   and  ≤  ≤ . these

constraints of  can be expressed as softmax function of a set of

unconstraint hidden weights :

 


exp

exp
(34)

To a fixed  , every weight  is independent to other weights. Then we

can remove index  , only consider a renew of map, the others are same,

only index  is different. the derivative express of softmax:




   (35)

69

The  is Kronecker, the derivation of error of  in layer :




 








 

∘   ∗


 (36)

Finally we can get the partial derivative of cost function of weight  by

the chain rule.













 








 (37)

4.7 Enforcing sparse combination

For constrain that  is sparse, means make a output map to connect

some maps, not all of them. We add constraint term  into the whole

cost function. To a specific sample, rewrite the cost function as:



  

 
 (38)

Then find the contribution to the derivation of weight . the derivation is:




  (39)

Then use the chain rule, the derivation of  is:

70













 


 (40)

So, the gradient of weight  is:








 




(41)

4.8 Data sets and testing bed

In CNNs process, we use 800 images to train the model, and analysis the

loss and accuracy. We talk about some experience in CNNs traning. In

tornado and other radar images collection, we use the dataset from NSSL

(The National Severe Storms Laboratory) and CSWR (Center For Severe

Weather Research). For regular weather radar image is easily to find, But

tornadoes are not. So in our training dataset there are 400 images of

velocity of tornadoes and 400 images of regular weather (figure 24). The

testing dataset are 200 images of tornadoes and 200 images of the regular.

In testing process, we only used CPU. The configuration of computer is

Intel i5-2500 CPU, 8 GB memory and 64 bit Windows 7 operating system.

71

Fig. 24. Samples of CNNs training (tornadoes and regular velocity images).

72

4.9 CNNs recognition experiment

4.9.1 Testing model

Network design depends on input image size, kernel size of each layer and

processing objects, for convenience, our testing model is modified from the

ImageNet. The transfer learning the new networks from the imageNet

pretrain requires much less data than training from scratch. The whole

structure contains eight layers. Input images are conditioned to a specific

size 256*256. The image data and label are packaged in two LevelDB files

one for training another for testing. The whole model contains eight layers

(figure 25), Both of training model and testing model have similar

structures (Appendix B). And the data size and features distribution are as

table 3.

73

Fig. 25. Layer structure in CNNs.

74

Layer Dimension

Training Data 256*256*3

Training Data (Data Aug) 227*227*3

Convolution 11-96 55*55*96

Max pooling 1 27*27*96

LRN 27*27*96

2. Convolution 5-256 27*27*256
Max pooling 2 13*13*256

LRN 13*13*256

3. Convolution 3-384 13*13*384

4. Convolution 3-384 13*13*384

5. Convolution 3-256 13*13*256

Max pooling 5 6*6*256

6. FC-mine 6 1*1*4096

Dropout 1*1*4096

7. FC-mine 7 1*1*4096

Dropout 1*1*4096

8. FC-mine 8 1*1*2

Softmax

Table. 3. Data and features in each layer.

4.9.2 Training and Testing

In the training, we use "step" learning rates, and the initial value is 5e-5.

and the solver parameters are as following:

test_iter: 50

test_interval: 100

base_lr: 5e-005

display: 100

max_iter: 4000

lr_policy: "step"

gamma: 0.1

momentum: 0.9

75

weight_decay: 0.0005

stepsize: 500

snapshot: 1000

snapshot_prefix: "Tornado_imagenet_train"

solver_mode: CPU

Before the training we need calculate the beverage value and

normalization. We totally ran 4000 iteration by CPU. Because using a

small dataset and relatively bigger learning ratio, the loss reducing (figure

26) and accuracy increasing (figure 27) are very fast at the beginning 800

iterations. After that, the performance is continually improved with iteration

time, but the improvement will be not outstanding like the beginning. If

we want to reach the state-of-the-art, more data and more time training

are necessary. Meanwhile it needs fine-tuning.

In our tuning experience, the dimension and sparse of data influence the

result. Usually ignore the training cost, the more data the better. In

training process, some parameters and methods which we used have more

influence than the algorithm itself, like pooling and convolution. To image

recognition, usually more features are helpful, meanwhile we need sufficient

data for the training, otherwise the data will become relatively sparse to

specific feature.

76

Fig. 26. Loss reduced in 1500 iterations.

Fig. 27. Accuracy in training.

77

4.9.3 Reference methods and features

People have tried to predict tornadoes for a long time. But the

observations are limited by performance of radar. Every proposed algorithm

is based on their observation equipment at that time. There are simple

threshold recognitions, pattern recognitions of the base reflectivity of

conventional radar and base velocity recognitions of long range Doppler

radar [74]-[78]. Until Doppler radar application, people can observe inside

of tornadoes. Based the velocity image of radar the tornadoes can be

visualized observed [79]-[81]. We know that the Doppler radar can only

detect the speed of radial direction. If we want to know the wind direction

(figure 28) in tornadoes at least two Doppler radar are needed. But

because tornadoes occur uncertainly and short time, the most of tornadoes

radar data are from a single Doppler radar on some kinds of mobile

platforms. The moving either toward or away winds from the radar are

showed by base velocity. In velocity images two kinds of color are used to

denote the toward and away winds. Darker shading indicates slower winds,

brighter colors indicate faster winds. When Tornado shows up in velocity

images the two opposite winds color appear side by side with high brights

[82]. Then the vortex is present as "couplet" in velocity image, so in

CNNs process, the program actually are looking for the model described

in figure 29 [83] and the features are presented those couplets like figure

30).

78

Fig. 28. The vortex in velocity image of Doppler radar

Fig. 29. Vortex model of tornadoes.

79

Fig. 30. The couplets of tornadoes in Doppler velocity images

80

Conclusion

While people focus on the short- time and fine scale weather disaster and

the multi-application of weather information is used more and more.

Tornadoes are the representative of them. For detecting tornadoes a fast

radar data retrieval processing system is intense needed. On the hardware

side people build a short-range dense radar network as solution, we

attempt to make improvement on the software side. In this paper, we

proposed a radar image retrieval process by contour-line of multi-layers

based on MRF segmentation to generate radar images from a binary file.

The major purpose is to avoid the most computationally expensive

interpolation process by retrieving contour line. The proposed method

contains nine steps in detail, from beginning to end they are raw file

reading, data normalization, denoising, contour line abstraction, coordinate

transformation, field interpolation, MRF segmentation, layers merging and

CNNs tornadoes recognition. Through comparison between the conventional

method and the proposed, the results show that the proposed method is

more efficient. At last we analyzed the time distribution of each step, and

the related factors for future improvement. In CNNs step, we analysised

the features in tornadoes recognition process. According to experiments, the

tornadoes can be recognized by CNNs method with fine tuning.

81

Appendix A

UFSXZ UF library user guide

Universal format tapes conform to the following five specification:

1. 9 track tapes, 1600 or 6250 cpi density. [Now extended to other media]

2. 16-bit words, signed integers, 2's complement.

[Note that words are "big-endian" (most significant byte at end of

word)]

3. Physical records, length <= 4095 words. [Record lengths now < 65536

bytes.]

4. File marks between volume scans (volumes).

5. ASCII words are left justified, blank filled.

MANDATORY HEADER BLOCK

Word

1 UF (ASCII)

2 Record length (16-bit words)

3 Position of first word of nonmandatory header block. (If no

nonmandatory header block exists, this points to the first

existing header block following the mandatory. In this way,

word (3) always gives 1 + the length of the mandatory header.

4 Position of first word of local use header block. (If no local

use headers exist, this points to the start of the data

header block.)

5 Position of first word of data header block

6 Physical record number relative to beginning of file

7 Volume scan number relative to beginning of tape

8 Ray number within volume scan

9 Physical record number within the ray (one for the first

82

physical record of each ray)

10 Sweep number within this volume scan

11-14 Radar name (8ASCII characters, includes processor ID.)

15-18 Site name (8 ASCII characters)

19 Degrees of latitude (North is positive, South is negative)

20 Minutes of latitude

21 Seconds (x64) of latitude

22 Degrees of longitude (East is positive, West is negative)

23 Minutes of longitude

24 Seconds (x64) of longitude (Note: minutes and seconds have

same sign as degrees.)

25 Height of antenna above sea level (meters)

26 Year (of data) (last 2 digits)

27 Month

28 Day

29 Hour

30 Minute

31 Second

32 Time zone (2 ASCII -- UT, CS, MS, etc.)

33 Azimuth (degrees x 64) to midpoint of sample

34 Elevation (degrees x 64)

35 Sweep mode: 0 - Calibration

1 - PPI (Constant elevation)

2 - Coplane

3 - RHI (Constant azimuth)

4 - Vertical

5 - Target (stationary)

6 - Manual

7 - Idle (out of control

36 Fixed angle (degrees x 64) (e.g., elevation of PPI; azimuth

of RHI; coplane angle)

83

37 Sweep rate (degrees/seconds x 64)

38 Generation date of common format - Year

39 Month

40 Day

41-44 Tape generator facility name (8 character ASCII)

45 Deleted of missing data flag (Suggest 100000 octal)

OPTIONAL HEADER BLOCK

Word

1-4 Project name (8 ASCII)

5 Baseline azimuth (degrees x 64)

6 Baseline elevation (degrees x 64)

7 Hour (start of current volume scan)

8 Minute (start of current volume scan)

9 Second (start of current volume scan)

10-13 Field tape name (8 ASCII)

14 Flag (= 0 if number of range gates, R min, and spacing are the

same for all data within this volume scan; = 1 if these are

the same only within each sweep; = 2 if these are the same

only within each ray).

LOCAL USE HEADER BLOCK

Any use, any contents

DATA HEADER

Word

1 Total number of fields this ray

2 Total number of records this ray

84

3 Total number of fields this record

4 1st field name (2 ASCII): e.g., VE - velocity (m/s)

SW - spectral width (m/s)

DM - reflected power dB(mW)

DZ - dB(Z)

etc.

5 Position of 1st word of 1st field header

6 2nd field name

7 Position of 1st word of 2nd field header

etc.

FIELD HEADER

Word

1 Position of first data word

2 Scale factor (meteorological units = tape value divided by

scale factor)

3 Range to first gate (km)

4 Adjustment to center of first gate (m)

5 Sample Volume spacing (m)

6 Number of sample volumes

7 Sample volume depth (m)

8 Horizontal beam width (degrees x 64)

9 Vertical beam width (degrees x 64)

10 Receiver bandwidth (MHz)

11 Polarization transmitted (0 = horizontal; 1 =vertical;

2 = circular; >2 = elliptical)

12 Wavelength (cm x 64)

13 Number of samples used in field estimate

14 Threshold field (e.g., DM) (2 ASCII)

15 Threshold value

16 Scale

85

17 Edit code (2 ASCII)

18 Pulse repetition time (microseconds)

19 Bits per sample volume (16 for exchanged tape)

20-? Words for individual fields, as follows

for VF, VE, VR, VT, VP:

word

20 Nyquist velocity (scaled)

21 FL (2 ASCII) if flagged in least significant bit with

NCAR bad velocity flag (1 = good, 0 = bad)

for DM:

word

20 Radar constant = RC, such that dB(Z) = [(RC + DATA/SCALE]

+

20log(range in km)

21 Noise power (dB(mW) x scale)

22 Receiver gain (dB x scale)

23 Peak power (dB(mW) x scale)

24 Antenna gain (dB x scale)

25 Pulse duration (microseconds x 64)

86

Appendix B

Modified caffeNet structure

Training parts:

name: "CaffeNet"

state {

phase: TRAIN

}

layer {

name: "data"

type: "Data"

top: "data"

top: "label"

transform_param {

mirror: true

crop_size: 227

m e a n _ f i l e :

"data_mine/image_mean_leveldb.bina

ryproto"

}

data_param {

s o u r c e :

"data_mine/train_leveldb"

batch_size: 100

}

}

layer {

name: "conv1"

type: "Convolution"

bottom: "data"

top: "conv1"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

num_output: 96

kernel_size: 11

stride: 4

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 0

}

}

}

layer {

name: "relu1"

type: "ReLU"

87

bottom: "conv1"

top: "conv1"

}

layer {

name: "pool1"

type: "Pooling"

bottom: "conv1"

top: "pool1"

pooling_param {

pool: MAX

kernel_size: 3

stride: 2

}

}

layer {

name: "norm1"

type: "LRN"

bottom: "pool1"

top: "norm1"

lrn_param {

local_size: 5

alpha: 0.0001

beta: 0.75

}

}

layer {

name: "conv2"

type: "Convolution"

bottom: "norm1"

top: "conv2"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

num_output: 256

pad: 2

kernel_size: 5

group: 2

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 1

}

}

}

layer {

name: "relu2"

type: "ReLU"

bottom: "conv2"

top: "conv2"

}

layer {

name: "pool2"

type: "Pooling"

bottom: "conv2"

top: "pool2"

88

pooling_param {

pool: MAX

kernel_size: 3

stride: 2

}

}

layer {

name: "norm2"

type: "LRN"

bottom: "pool2"

top: "norm2"

lrn_param {

local_size: 5

alpha: 0.0001

beta: 0.75

}

}

layer {

name: "conv3"

type: "Convolution"

bottom: "norm2"

top: "conv3"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

num_output: 384

pad: 1

kernel_size: 3

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 0

}

}

}

layer {

name: "relu3"

type: "ReLU"

bottom: "conv3"

top: "conv3"

}

layer {

name: "conv4"

type: "Convolution"

bottom: "conv3"

top: "conv4"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

89

num_output: 384

pad: 1

kernel_size: 3

group: 2

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 1

}

}

}

layer {

name: "relu4"

type: "ReLU"

bottom: "conv4"

top: "conv4"

}

layer {

name: "conv5"

type: "Convolution"

bottom: "conv4"

top: "conv5"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

convolution_param {

num_output: 256

pad: 1

kernel_size: 3

group: 2

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 1

}

}

}

layer {

name: "relu5"

type: "ReLU"

bottom: "conv5"

top: "conv5"

}

layer {

name: "pool5"

type: "Pooling"

bottom: "conv5"

top: "pool5"

pooling_param {

pool: MAX

kernel_size: 3

stride: 2

}

90

}

layer {

name: "fc6"

type: "InnerProduct"

bottom: "pool5"

top: "fc6"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

inner_product_param {

num_output: 4096

weight_filler {

type: "gaussian"

std: 0.005

}

bias_filler {

type: "constant"

value: 1

}

}

}

layer {

name: "relu6"

type: "ReLU"

bottom: "fc6"

top: "fc6"

}

layer {

name: "drop6"

type: "Dropout"

bottom: "fc6"

top: "fc6"

dropout_param {

dropout_ratio: 0.5

}

}

layer {

name: "fc7"

type: "InnerProduct"

bottom: "fc6"

top: "fc7"

param {

lr_mult: 1

decay_mult: 1

}

param {

lr_mult: 2

decay_mult: 0

}

inner_product_param {

num_output: 4096

weight_filler {

type: "gaussian"

std: 0.005

}

bias_filler {

type: "constant"

value: 1

}

91

}

}

layer {

name: "relu7"

type: "ReLU"

bottom: "fc7"

top: "fc7"

}

layer {

name: "drop7"

type: "Dropout"

bottom: "fc7"

top: "fc7"

dropout_param {

dropout_ratio: 0.5

}

}

layer {

name: "fc_mine"

type: "InnerProduct"

bottom: "fc7"

top: "fc_mine"

param {

lr_mult: 10

decay_mult: 1

}

param {

lr_mult: 20

decay_mult: 0

}

inner_product_param {

num_output: 2

weight_filler {

type: "gaussian"

std: 0.01

}

bias_filler {

type: "constant"

value: 0

}

}

}

layer {

name: "loss"

type: "SoftmaxWithLoss"

bottom: "fc_mine"

bottom: "label"

}

92

Reference

[1] K. M. Ban. (2014, Mar.). The 2015 Global Assessment Report on

Disaster Risk Reduction. The United Nations Office for Disaster Risk

Reduction. [Online]. Available:

http://www.preventionweb.net/english/hyogo/gar/2015/en/home/download.htm

l

[2] P. L. Smith, Weather Radar Technology beyond NEXRAD. National

research council, National Academies Press, 2002.

[3] D. Mc-laughlin, D. Pepyne, and B. Philips et al., “Short-wavelength

technology and the potential for distributed networks of small radar

system,” Bulletin of the American Meteorological Society, vol. 90, pp.

1797-1817, Dec. 2009.

[4] J. Brotzge, S. Erickson, and H. Brooks, “A 5-yr climatology of tornado

false alarms,” Weather and Forecasting, vol. 26, pp. 534-544, Aug. 2011.

[5] V. Kambhampaty, R. Gali, and N. Prasad, "A short term tornado

prediction model using satellite imagery," IEEE International Conference

on Systems Informatics, Modelling and Simulation, pp. 132-138, May. 2014.

[6] [Online]. Available:

http://www.nssl.noaa.gov/education/svrwx101/tornadoes/

[7] G. E. Hinton, S. Osindero, and Y. The, "A fast learning algorithm for

deep belief nets," Neural Computation, pp.1527-1554, 2006.

[8] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy

Layer-Wise Training of Deep Networks," Advances in Neural Information

Processing Systems 19 (NIPS 2006) pp. 153-160, 2007.

[9] M. A. Ranzato, C. Poultney, S. Chopra, and Y. Lecun, " Efficient

learning of sparse representations with an energy-based model," Advances

in Neural Information Processing Systems (NIPS 2006), pp.1137-1144,

2007.

[10] B. A. Olshausen, P. Sallee, and M. S. Lewicki, "Learning sparse image

codes using a wavelet pyramid architecture," Advances in Neural

93

Information Processing Systems, pp.887-893, 2001.

[11] M. S. Lewicki and B. A. Olshausen, "Probabilistic framework for the

adaptation and comparison of image codes," Journal of the Optical Society

of America, pp.1587-1601, 1999.

[12] S. Lawrence, G. L. Giles, and A. D. Back, "Face recognition: a

convolutional neural-network approach," IEEE Transactions on Neural

Networks, vol. 8, no.1, pp. 98-113, Jan. 1997.

[13] Y. Bengio, "Learning deep architectures for AI," Foundations and

Trends in Machine Learning, pp.1-127, 2009.

[14] R. J. Doviak and D. S. Zrnic, Doppler radar and Weather

Observations, 2nd ed. San Diego CA: Academic Press, 1993.

[15] E. R. Hilgendorf and R. H. Johnson, “A study of the evolution of

mesoscale convective systems using wsr-88d data,” Weather Forecasting,

vol. 13, no. 2, pp. 437-452, 1998.

[16] M. A. Richards, Fundamentals of Radar Signal Processing, 2nd ed.

New York, NY: McGraw-Hill, 2005.

[17] J. Zhang, K. Howard, W. Xia, and J. J. Gourley, “Comparison of

objective analysis schemes for the WSR-88D radar data,” 31th

International Conference on Radar Meteorology, pp. 907-910, Aug. 2003.

[18] W. K. Jenkins, B. Mather, and D. C. Munson, " Nearest neighbor and

generalized inverse distance interpolation for Fourier domain image

reconstruction," IEEE International Conference on Acoustics, Speech, and

Signal Processing, pp. 1069-1072, Apr. 1985.

[19] R. J. Trapp and C. A. Doswell, "Radar Data Objective Analysis,"

Journal of Atmospheric and Oceanic Technology, vol. 17, pp. 105-120, Feb.

2000.

[20] S. F. Liu and S. H. Shen, "An adaptive image interpolation method

focusing on edge information," International Symposium on Computational

Intelligence and Design, vol. 1, pp. 421-424, Dec. 2014.

[21] M. Panggabean, O. Tamer, and L. A. Ronningen, "Parallel image

transmission and compression using windowed kriging interpolation," IEEE

International Symposium on Signal Processing and Information

94

Technology, pp. 315-320, Dec. 2010.

[22] M. A. Askelson, J. P. Aubagnac, and J. M. Straka, “An adaptation of

the barnes filter applied to the objective analysis of radar data,” Monthly

Weather Review, vol. 128, no. 9, pp. 3050-3082, Sep. 2000.

[23] S. L. Barnes, "A technique for maximizing details in numerical

weather map analysis," Journal of Applied Meteorology, vol. 3, pp.

396-409, Aug. 1964.

[24] Y. Kuleshov, G. de Hoedt, W. Wright, and A. Brewster,

"Thunderstorm distribution and frequency in Australia," Australian

Meteorological Magazine, vol. 51, pp. 145-154, Sep. 2002.

[25] P. M. Markowski, "Hook echoes and rear-flank downdrafts: a review,"

Mon. Wea. Rev., pp. 852-876, 2002.

[26] D. W. Burgess, M. A. Magsig, J. Wurman, D. C. Dowell, and Y.

Richardson, “Radar observations of the 3 May 1999 Oklahoma city

tornado,” Weather and Forecasting, vol. 17, pp. 456-471, Jun. 2002.

[27] A. Jim, "ISWS is pioneer in tracking tornadoes by radar," Apr. 2013

[28] Tornado warning guidance, National Weather Service. spring 2013.

[29] H. K. Wang, R. E. Mercer, J. L. Barron, and P. Joe, "Skeleton based

tornado hook echo detection," International Conference on Image

Processing, vol. 6, pp. 361-364, 2007.

[30] G. S. Forbes, "On the reliability of hook echoes as tornadoes

indicators," Mon. Weather Rev., pp.1457-1466, 1981.

[31] [Online]. Available:

http://www.srh.noaa.gov/jan/?n=2010_04_24_tor_radarimagery

[32] National Oceanic and Atmospheric Administration, "Enhanced F scale

for tornado damage," Storm Prediction Center. [Online]. Available:

http://www.spc.noaa.gov/efscale/ef-scale.html

[33] A. J. Thomas, M. M. Kevin, and T. S. John, "Association between

NSSL mesocyclone detection algorithm-detected vortices and tornadoes,"

Weather and Forecasting, vol. 19, pp.872-890, Oct. 2004.

[34] B. T. Frank, R. K. Kevin, and J. V. Stanley, "Tornado detection based

on seismic signal," Journal of Applied Meteorology, vol. 34, pp. 572-582,

95

Jul. 1994.

[35] D. H. Hubel and T. N. Wiesel, "Receptive fields and functional

architecture of monkey striate cortex," J . Physiol., vol. 195, no. 1,

pp.215-243, Mar. 1968.

[36] K. Fukushima, "Neocognitron: a self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position,"

Biol. Cybern., vol. 36, no. 4, pp.193-202, Apr. 1980.

[37] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based

learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp.

2278-2324, Nov. 1998.

[38] A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification

with deep convolutional neural networks," Proc. Adv. Neural Inf. Process.

Syst., vol. 25, pp. 1106-1114, 2012.

[39] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, "A committee of

neural networks for traffic sign classification," Proc. IJCNN, pp.

1918-1921, 2011.

[40] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, "The German

traffic sign recognition benchmark: a multi-class classification competition,"

Proc. IJCNN, pp. 1453-1460, 2011.

[41] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L.

FeiFei, "Large-scale video classification with convolutional neural

networks," IEEE Conference on Computer Vision and Pattern Recognition,

pp. 1725-1732, Jun. 2014.

[42] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y.

LeCun, "Overfeat: integrated recognition, localization and detection using

convolutional networks," International Conference on Learning

Representations, pp. 1-15, 2013.

[43] C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D.

Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions,"

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 1-9, Jun. 2015.

[44] S. X. Zhang, "CASA real-time multi-Doppler retrieval system," M.S.

96

thesis, Colorado State University, Fort Collins, CO, Jun. 2011.

[45] S. L. Barnes, “Report on a Meeting to Establish a Common Doppler

Radar Data Exchange Format,” The Bulletin of the American Metrological

Society, vol. 61, no. 11, pp. 1401-1404, Nov. 1980.

[46] IRIS programmer’s manual, Vaisala Oyj, Inc., Helsinki, Finland, 2013.

[47] A. Buades, B. Coll, and J. M. Morel, "A review of image denoising

algorithms, with a new one" Society for industrial and applied

mathematics, vol. 4, pp. 490-530, Apr. 2005.

[48] J. Canny, "A computational approach to edge detection," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6,

pp. 679-698, Nov. 1986.

[49] S. Suzuki and K. Abe, "Topological structural analysis of digitized

binary images by border following," Computer Vision, Graphics and Image

Processing, vol. 30, pp. 32-46, Apr. 1985.

[50] G. Bradski and A. Kaehler, Learning OpenCV, USA: O'Reilly Media,

2008.

[51] S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions,

and the Bayesian restoration of images," Pattern Analysis and Machine

Intelligence, vol. 6, pp. 721-741, Nov. 1984.

[52] J. Besag, "Spatial interaction and the statistical analysis of lattice

systems," Journal of the Royal Statistical Society. Series B, vol. 36, no. 2,

pp. 192-236, 1974.

[53] J. M. Hammersley and P. Clifford, "Markov fields on finite graphs and

lattices," 1971 (unpublished).

[54] P. Clifford, "Markov random fields in statistics," in Disorder in

Physical Systems: A Volume in Honour of John M. Hammersley, G.

Grimmett and D. Welsh, Ed. New York: Oxford University Press, 1990, pp.

19-32.

[55] K. Binder, "Ising model," in Encyclopaedia of Mathematics,

Hazewinkel, Michiel, Ed. New York: Springer Publishers. 2001.

[56] C. Hongler and S. Smirnov, "The energy density in the planar Ising

model," Acta Mathematica, vol. 211, pp. 191-225, Dec. 2013.

97

[57] M. Arbib, The handbook of brain theory and neural networks,

Cambridge MA: The MIT Press. 1995.

[58] I. Wegener, "Simulated Annealing Beats Metropolis in Combinatorial

Optimization," in Automata, Languages and Programming, M. Bugliesi, B.

Preneel, V. Sassone, and I. Wegener, Ed. Berlin Heidelberg:

Springer-Verlag, 2005, pp. 589-601.

[59] P. Heckbert, "A seed fill algorithm," in Graphics Gems, A. S. Glassner,

Ed. San Diego. CA: Academic Press, 1990. pp. 275-277.

[60] J. R. Shaw. (2004, Mar.). QuickFill: An Efficient Flood Fill Algorithm.

[Online]. Available:

http://www.codeproject.com/gdi/QuickFill.asp

[61] E. Ruzanski, V. Chandrasekar, and Y. Wang, "The CASA nowcasting

system," Journal of Atmospheric and Oceanic Technology, vol. 28, no. 5,

pp. 640-655, May 2011.

[62] N. Z. Feng, L. Y. Ma, and Y. Shen, "Fuzzy partition based curvelets

and wavelets denoise algorithm," Computational Intelligence and Security

Workshops, pp. 23-26, Dec. 2007.

[63] Z. Huang, "A median filter based on judging impulse noise by statistic

and adaptive threshold," Image and Signal Processing, vol. 3, pp. 207-210,

May. 2008.

[64] R. Sluiter, "Interpolation methods for climate data literature review,"

Royal Netherlands Meteorological Institute, De Bilt Netherlands, IR. 2009-04

KNMI, 2009.

[65] R. Kvasov, S. Cruz-Pol, J. Colom-Ustariz, L. Leon Colon, and P. Rees,

”Weather radar data visualization using first-order interpolation,” IEEE

International on Geoscience and Remote Sensing Symposium, pp.

3574-3577, July 2013.

[66] M. I. Skolnik, Introduction to Radar System, 3th ed. New Delhi, ND:

McGraw-Hill, 2001.

[67] M. A. Richards, Fundamentals of Radar Signal Processing, New York,

NY: McGraw-Hill, 2005.

[68] D. Flores-Tapia, G. Thomas, and S. Pistorius, “A comparison of

98

interpolation methods for breast microwave radar imaging,” Engineering in

Medicine and Biology Society, pp. 2735-2738, Sept. 2009.

[69] K. Shinozawa, M. Fujii, and N. Sonehara, “A weather radar image

prediction method in local parallel computation,” IEEE World Congress on

Computational Intelligence Neural Networks, vol. 7, pp. 4210-4215, July

1994.

[70] S. L. Barnes, “Report on a meeting to establish a common Doppler

radar data exchange format,” The Bulletin of the American Metrological

Society, vol. 61, no. 11, pp. 1401-1404, Nov. 1980.

[71] J. Zhang, H. Ken, W. W. Xia, and J. J. Gourley, “Comparison of

objective analysis schemes for the WSR-88D radar data,” 31th

International Conference on Radar Meteorology, Aug. 2003.

[72] R. Kvasov, S. Cruz-Pol, J. Colom-Ustariz, L. Leon Colon, and P. Rees,

”Weather radar data visualization using first-order interpolation,” 2013

IEEE International on Geoscience and Remote Sensing Symposium, pp.

3574-3577, July 2013.

[73] M. A. Askelson, J. P. Aubagnac, and J. M. Straka, “An adaptation of

the barnes filter applied to the objective analysis of radar data,” Monthly

Weather Review, vol. 128, no. 9, pp. 3050-3082, 2000.

[74] C. Marzban, and G. J. Stumpf, "A neural network for damaging wind

prediction," Weather and Forecasting, vol. 16, no. 5, pp.600-610, 1998.

[75] T. B. Trafalis, I. Adrianto, and M. B. Richman, "Active learning with

support vector machines for tornado prediction," International Conference

on Computational Science ICCS 2007, pp. 1130-1137, 2007.

[76] A. V. Ryzhkov, T. J. Schuur, D. W. Burgess, and D. S. Zrnic,

"Polarimetric tornado detection," Jornal of Applied Meteorology and

Climatology, vol. 44, no.5, pp.557-570, May. 2005.

[77] C. Marzban and G. J. Stumpf, "A neural network for tronado

prediction based on Doppler radar-derived attributes," Journal of Applied

Meteorology and Climatology, vol. 35, no.5, pp.617-626, May. 1996.

[78] R. A. Brown, L. R. Lemon, and D. W. Burgess, "Tornado detection by

pulsed Doppler radar," Monthly Weather Review, pp. 29-38, Jan. 1978.

99

[79] V. Lakshmanan, I. Adrianto, T. Smith, and G. Stumpf, "A

spatiotemporal approach to tornado predication," IEEE International Joint

Conference on Neural Networks, vol. 3, pp.1642-1647, 2005.

[80] V. T. Wood and R. A. Brown, "Sampling strategies for tornado and

mesocy clone detection using dynamically adaptive Doppler radar a

simulation study," Journal of Atmospheric and Oceanic Technology, vol. 26,

pp. 492-507, Mar. 2009.

[81] F. Junyent, S. Frasier, D. J. McLaughlin, and V. Chandrasekar, "High

resolution dual-polarization radar observation of tornados: implications for

radar development and tornado detection," IEEE International Geoscience

and Remote Sensing Symposium, vol.3, pp. 2034-2037, 2005.

[82] E. D. Mitchell, S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts, J. T.

Johnson, and K. W. Thomas, "The national severe storms laboratory

tornado detection algorithm," Weather and Forcasting, vol. 13, pp. 352-366,

June 1998.

[83] V. T. Wood and R. A. Brown, "Effects of radar sampling on

single-Doppler velocity signatures of mesocyclones and tornadoes,"

Weather and Forecasting, vol. 12, no. 4, pp. 928-938, Dec. 1997.

100

Acknowledgement

	Ⅰ.Introduction
	1.1 Development of short-range dense Doppler radar network
	1.2 Low atmospheric layer detection with CASA network
	1.3 The analysis of features in machine learning
	1.4 Outline of thesis

	Ⅱ.Related works
	2.1 Reflectivity express in Doppler radar
	2.2 Coordinate mapping research in radar image retrieval model
	2.3 The features of tornadoes in radar image for recognition
	2.4 Neural networks and back propagation in CNNs

	Ⅲ. Hierarchical contour-line PPI generation based on MRF
	3.1 UF data Structure
	3.2 Raw image preprocess and contour line abstraction
	3.2.1 Image denoise analysis
	3.2.2 Build random field in PPI image

	3.3 The framework of MRF segmentation
	3.3.1 Definition of MRF in an individual radar layer
	3.3.2 MRF and Gibbs equivalence
	3.3.3 Framework of MRF-MAP
	3.3.4 Metropolis algorithm

	3.4 Layers completion
	3.5 Testing environment and raw image generation
	3.5.1 Testing object and bed
	3.5.2 Raw radar image generation

	3.6 PPI image generation experiment
	3.6.1 PPI image generation with proposed method
	3.6.2 PPI image generation with conventional method
	3.6.3 Quality evaluation and computing time

	Ⅳ Tornadoes features and regression model analysis based on CNNs
	4.1 Basic regression model
	4.2 The algorithms related with CNNs regression model
	4.2.1 Convolutional layer
	4.2.2 Pooling layer
	4.2.3 Loss layer – softmax

	4.3 Feed forward pass
	4.4 Back propagation pass
	4.5 Convolutional neural networks
	4.6 Learning combination of feature maps
	4.7 Enforcing sparse combination
	4.8 Data sets and testing bed
	4.9 CNNs recognition experiment
	4.9.1 Testing model
	4.9.2 Training and Testing
	4.9.3 Reference methods and features

	Ⅴ. Conclusion
	Appendix A. UFSXZ UF library user guide
	Appendix B. Modified caffeNet structure
	References

<startpage>5
Ⅰ.Introduction 13
 1.1 Development of short-range dense Doppler radar network 13
 1.2 Low atmospheric layer detection with CASA network 17
 1.3 The analysis of features in machine learning 20
 1.4 Outline of thesis 22
Ⅱ.Related works 23
 2.1 Reflectivity express in Doppler radar 23
 2.2 Coordinate mapping research in radar image retrieval model 26
 2.3 The features of tornadoes in radar image for recognition 29
 2.4 Neural networks and back propagation in CNNs 31
Ⅲ. Hierarchical contour-line PPI generation based on MRF 34
 3.1 UF data Structure 36
 3.2 Raw image preprocess and contour line abstraction 37
 3.2.1 Image denoise analysis 37
 3.2.2 Build random field in PPI image 38
 3.3 The framework of MRF segmentation 40
 3.3.1 Definition of MRF in an individual radar layer 40
 3.3.2 MRF and Gibbs equivalence 42
 3.3.3 Framework of MRF-MAP 42
 3.3.4 Metropolis algorithm 44
 3.4 Layers completion 45
 3.5 Testing environment and raw image generation 46
 3.5.1 Testing object and bed 46
 3.5.2 Raw radar image generation 47
 3.6 PPI image generation experiment 49
 3.6.1 PPI image generation with proposed method 49
 3.6.2 PPI image generation with conventional method 53
 3.6.3 Quality evaluation and computing time 54
Ⅳ Tornadoes features and regression model analysis based on CNNs 58
 4.1 Basic regression model 58
 4.2 The algorithms related with CNNs regression model 61
 4.2.1 Convolutional layer 61
 4.2.2 Pooling layer 62
 4.2.3 Loss layer – softmax 62
 4.3 Feed forward pass 63
 4.4 Back propagation pass 64
 4.5 Convolutional neural networks 65
 4.6 Learning combination of feature maps 68
 4.7 Enforcing sparse combination 69
 4.8 Data sets and testing bed 70
 4.9 CNNs recognition experiment 72
 4.9.1 Testing model 72
 4.9.2 Training and Testing 74
 4.9.3 Reference methods and features 77
Ⅴ. Conclusion 80
Appendix A. UFSXZ UF library user guide 81
Appendix B. Modified caffeNet structure 86
References 92
</body>

