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Review on the Coverage Probabilities of Confidence Intervals

for a Binomial Proportion

Lionel Sahabo

Department of Statistics, The Graduate School,
Pukyong National University

Abstract

The interval estimation of the parameter for the probability of success p in a binomial
distribution is one of the most basic and methodologically important problems in
statistical practice. Since the first introduction of the Wilson interval, many modified
intervals have been developed. In most elementary statistics textbooks the Wald
interval is nearly universally accepted. In this study we review popular confidence
intervals in terms of coverage probabilities such as the Clopper-Pearson exact interval,
the Wald interval, the Wilson’s score interval, the Agresti & Coull (or adjusted Wald)
interval, and Bayesian credible intervals with beta priors. Their performances are
evaluated using such criteria as mean coverage probability, expected length, average
expected length, and mean absolute error. According to the above criteria, the interval

by equal-tailed Bayesian method with a beta prior shows comparable results.

Key words : Confidence interval, Binomial proportion, Coverage probability, Bayesian

credible interval.
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I . Introduction

The interval estimation of the parameter for the probability of success p in
a binomial distribution is one of the most basic and methodologically
important problems in statistical practice.

The nearly universally accepted confidence interval in most elementary
statistics textbooks is the Wald confidence interval defined as

p(1—p)

piza/Z n

where p is the sample proportion of success and z, is the 100(1—a)%
percentile of standard normal distribution. The actual coverage probabilities of the
standard interval displays poor performance for p near 0 or 1. Recent articles
point out that the coverage probabilities can be erratically poor even if p is
not near the boundaries.

The purpose of the study is to review coverage probabilities of popular
confidence intervals such as exact interval (Clopper & Pearson 1934), Wald
interval (P-S Laplace 1812) with z-critical value and t-critical value as well,
Wilson’s score interval (Wilson 1927), Agresti & Coull (or adjusted Wald)
interval (A & C 1998) and Bayesian credible interval with beta prior and
Jeffrey prior (Brown, Cai and DasGupta 2001).

The Wald confidence interval is first introduced by Laplace (1812) and its
coverage properties have been remarked on Gosh (1979), Blyth & Still (1983),
Santner (1988), and Agresti & Coull (1998).



The Clopper-Pearson interval is based on inverting alternative two-sided tests

for H,:p=p, and is termed exact due to the availability of endpoints

reaching the desired significance level for all z. See Bohning (1994), Leemis
and Trivedi (1996), and Jovanovic & Levy (1997) for the method.

Wilson’s score confidence interval is also based on inverting the equal-tailed
test, but uses the standard error with null value instead of estimator.

The Agresti-Coull interval is based on the Wilson’s score interval, but it has
simple formula like the Wald interval plugging new n and p. Thus it keeps the
simplicity and catchy formula of Wald interval. This interval is first introduced
in the elementary statistics textbook by Samuels & Witmer (1999).

The Bayesian confidence intervals use beta conjugate priors for the binomial
likelihood. Bayesian confidence intervals with noninformative beta priors such
as uniform and Jeffrey prior also perform well in a frequentist sense. For
further results see Carlin and Louis (1996) and Brwon, Cai, and DasGupta
(2001).

There exist many literatures about methods for constructing the confidence
intervals of the binomial parameter. See Santner and Duffy (1989), Vollset
(1993), Pires and Amado (2008) etc. Especially Pires and Amado list twenty
methods and compared them in terms of coverage probabilities.

Many parts of this study is to reproduce major results of the existing
methods and confirm the pros and cons of their coverage probabilities.

For the study we introduce some terminologies and Lemmas in the first part
of chapter 2. Confidence intervals by frequentist approach are reviewed at the
remaining part of chapter 2. In chapter 3 we look at interval estimator by

Bayesian approach wusing beta conjugate priors. Their performances are



compared in terms of criteria using coverage probabilities. In chapter 4 we
compare the methods using some performance criteria and we summarize the

pros and cons of the methods in chapter 5.



II. Non-Bayesian Confidence Intervals

2.1 Introduction

Assume a discrete random variable X has the probability function p(x;0) of
x which depends on unknown parameter 6. The problem of confidence
intervals consists in ascribing to every possible values of X, eg. x;
(k=1,2,...) an interval [, =(L(z,), Ulx,)) such that whenever we observe z,
the probability of our being correct in €7 is P(OEL)>1—a, where «
belongs to (0,1) and is chosen in advance. Here are some terminologies which
are used in this study:

* the confidence coefficient is infyc(y, POEL,)
* the coverage probability of the interval 7 is P(OE 1)
* the nominal coverage probability is 1—«

The bigger the actual coverage probability is than the nominal coverage

probability 1 —c, the corresponding interval is considered conservative. When the

random variable X is of continuous type, we have P01 )=1—a for every 0.

In this study we use some properties of the cumulative distribution function

of the binomial random variable.

Lemma 2.1.1 Let X~bin(n,p). We then are able to express the right tail
summation of the binomial probabilities in terms of the cumulative distribution

function (cdf) of a beta distribution as follows:



Px= K= 3y a—py

i=k
P ! . o (2.1.1)
=71 (kn—k+1)

P

Ia+b) /p -1 b—1
IT(ab)=—~—2 | " '(1—¢) 'at
where p(a b) @I ®) | ( ) denotes the cdf of a beta

random variable with parameters ¢ >0 and b > 0.
Similarly the left tail summation of binomial probabilities can be obtained as

follows:

P(X<k)=1-P(X=k+1)=1-L(k+1,n—k). (2.1.2)

P

Proof. For the proof we refer the exercise 3.3.22 of Hogg, McKean and Craig. (J

Lemma 2.1.2 Let us denote the cdf of binomial random variable as a function

of the success proportion p, that is,

k
P (X< k)zjg)(?)p’(l—pw.

The cdf is then strictly decreasing in p for k=0,1,...,n—1 and P (X=k) is
strictly increasing in p for k=1,...,n.
Proof. The strictly increasing property of the upper tail sum is proved by

showing that the partial derivative of P, (X>k) with respect to p takes

positive value:



R S -y j—;i;(?)(n—j)ﬂl(l—p)”jl
:"{JXZ —p)" j—:gt(ngl)pj(l p) T 1}
:k:(Z) )k > 0.

The third equality follows from the following binomial identities

i TSy

J
The other part, the strictly increasing property of the lower tail sum, is

derived by the complement the cdf Pp (X>k)= 1—Pp (X<k—1). O

2.2 The Exact Interval

When we are interested in testing A, : p=p, vs H, :p<p,, small

observed values can be used as supportive evidence against the alternative

hypothesis. With level of significance a we can reject H, for X < k(py,a),
where k(py,«) is selected as the largest integer k for which Ppﬂ(X <k)<aq,
that is, k(po,a)zmax{k:Ppo(Xé I{:)Sa}. Thus we get to reject FH, for
X> k(po,a

Sometimes the p—value corresponding to an observed value = of X is more
informative and convenient in testing hypotheses. The p—value is the probability

of obtaining an effect at least as extreme as the observed one under the truth of



the null hypothesis. It measures how compatible sampled data are with the null
hypothesis. The high p—values imply observed data are likely with a true null,
while low p—values imply data in hand are unlikely with a true null. A low p—
value thus suggests that observed data provide enough evidence that we can reject
the null hypothesis for the entire population.

In our testing situation the p—value corresponding to the observed x is

PPU(X < z), denoted p(z,p,) here. The decision of rejecting or accepting H,

is based on the p—value p(x,po), that is, F/, is rejected whenever
p(z,p,) < a and accepted when p(z,p,) > a.

The plots of Figure 2.1 show the probability mass function and cumulative
distribution function of the binomial random variable with n =40, p=0.3. In

this case the largest value x for which to reject 7, is 6, that is

max{k: Py,(X < k) < 0.05}=k(p, = 0.3, «=0.05)

6.

If confidence set is defined as all values p, for which the observed value x
of the random variable X leads into accepting /{,, we can set a relationship
between hypotheses testing and interval estimation. We denote the confidence
set as I(x). The confidence sets can be defined for each possibly observed
value z=0,1,...,n, thus be thought of a random set 1(X) before having
observed any =x.

Figure 2.2 shows the cdf F,(x) =P, (X < z) is a decreasing function of p
for each =, which implies that the confidence set /(x) for a specific realized
value  should have the form [0,p, ), where Py.o 18 the value p solving the

equation P, (X<z)=a.
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Let us see in detail how to find the value Dea for each x=0,1,...,n. The

definition of Z(z) was defined as the values of p for which the observed

value x causes accepting /Z,, in other words, producing p—wvalue> a, we can

have the following expression in terms of p—wvalue

I(x)= {po : p(x,po) = Pp X<z)> a}.

0

When x=0,1,...,n—1, Lemma 2.1.2 tells us that PpO(Xé x) is strictly

decreasing in p,, the confidence set I(z) is the collection of the values Py In
the interval [O,pu,mw), where p, , . is the value p satisfying
B,(Xéx)—g)(?)pi(l—p)”f—a (2.2.1)
i
By Lemma 2.1.1, the relationship between the cdf of binomial and beta

distribution,

Pp(XS x):1f]p(x+1,n*x)=a or [p(x—&-l,n*ac):l*a,
we can obtain the p, ., in R as gbeta(l —a,x+1,n—x).

However for z=n we have Pp(X <n)=1 for all p. The p—value with

the observed value n is thus 1 and always exceeds «. We get the confidence

interval /(n)=1[0,1]. That is Pyam = L.

Lemma 2.2.1 Using equation (2.2.1) we can see that the sequence (p

u,a,x)Z: 0 iS

strictly increasing in z, that is,
0 <pu.,a',0 <pu,a,1 <“'<pu,oz>n*1<pu.,a.,n =1

and we have for all p<p, .,



Pp(p <pu_a,X)Z Pp (p <pu,a,0): L.

Figure 2.3 shows the set of p,,, for @=0.05 and n=100 together with

corresponding estimates plz)==/n. In this case the possible smallest upper bound

i Dy.0.05.0 = gbeta(0.95,1,100) = 0.02951.

Lemma 2.2.2 The confidence coefficient of the confidence set is defined as

infpe [0,1] Pp (pE[(X)) :inpr [0,1] Pp(p < pu,a,X)’

which is 1—« since Pp(pEI(X))Z 1—a for some p. This implies for some p

P, (pe IX)=P

p po(Xé k(po,a)): Q.
Proof. For x=0,1,...,n—1 we have p, ,, as the solution p of Pp(Xé x)=a.

We thus have for p, =p, .., ©=0,1,....n—1 with k:(pgg,oz):z
P (Xﬁ k(pl,,a))z P (X<z)=aq,

Py Dy

which implies that the infimum is obtained at p=py,p;,--»p,_;. W

We now see that the coverage probability has continuity properties. For a fixed
value of p, the coverage probability of a confidence set /(X) is defined as the

probability of the interval containing that value as follows

PpEIX)=1- P, (pz [X)=1- P,(X < k(p.a)).

_‘]0_



| T
- ////////
; ///ﬂ*w749
Q;QQ///gooo

Figure 2.2. Strictly decreasing property of £, (z).

= |
« |
o
w |
o
=
<
T &
v estimate
@ upper bounds
o~
o
- 0.02951 =smallest possible upper bound
Il T T T T T
00 02 04 06 08 1.0
xn

Figure 2.3. Upper bounds p, , . and corresponding estimates.

_‘]‘]_



Recall from Lemma 2.2.1 that 0 <p, .0 <Py a1 <" "<Puan-1<Puan = 1. Let
us  denote p,=p,,; for i=0,1,...n. For p&E [p,_:p;), the set
C= {k:p<pk}= li,n] does not vary, since for j=4,...,n, we have p<p;
when p;_; <p<p, Also the fact that P, (X <Fk) is decreasing function of p

implies that P (X€C)= P, (X=1i) increases continuously in p over the interval

[pjfppi)-

When p reaches at p;, the set €' does lose the value ¢ and Pp(p <Pua, X) drops

by 2, (X=1) to

P(X>i+1)=1-P (X<i)=1—a.

pi pi

We can develop the similar procedures for the other intervals of p. Figure 2.4
displays the continuity property of the coverage probability. In R the plot can be

computed by calculating

n—1

P<p<pu,a,X>: Eol{qbeta(lfa,x+1,n7x)>p} -

T

)px(l—p)”r +p".

Now suppose we are interested in testing alternative hypothesis H, :p > p,.

The confidence set then is given by

1(z) :{po :p(x,po) =P (X=>z)> a}.

Py
For z=1,...,n we get the confidence set equal to I(z)= (pL’m(,l,, 1], where

Pl i the value p solving P (X>z)=a. In R we can obtain p, ., as p,, ,

= gbetalo,x,n—1x+1), since Lemma 2.1.1 says P, (X =>x) =1 (z,n—z+1).

_‘]2_
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With =0 we have PP(XZ 0)=1>a for all values p in [0,1], we thus

have 7(0)=[0,1]. The coverage probability is given by

n - n\ = n—zx
P(p>pL,a,X>: (1_p) +/le{qbeta(a.z.n*x+l)<p} ($)p (1_p) :

The continuity behavior of the coverage probability is displayed in Figure 2.5.

As explained till now for lower and upper bound of confidence intervals
corresponding to upper tail and lower tail alternative hypotheses, we can extend
the procedure to two-sided hypothesis with each confidence coefficient 1—a/2
respectively. Assuming that Pp(pz,ka/z x <DPui-a). X)Zl for any p and any
x=0,1,...,n, we have the desired confidence interval

I(z)= (plﬁl_(y /2.2 Put—af2, 1) The coverage probability for this interval is

Pp (pl.lfa/Z,X <p <pu,l*a/2,X)

=1-7 ({p = pl,l*a/Q,X} U {pu.ka/z)( = p})
=1-B,({p < p11- o))~ B ({Put—apox = 1})
>1—a/2—a/2

=l-«

The actual coverage probability is computed in R as follows

Pp (pl,lfoz/Q,X <pu,lfo¢/2,X)

n—1
n\ g n—x
= Zl‘[{qbeta,(u/l:n,n—:l:+l)<p<qbeta(l—(,v/2¢:L'+1,n—:L')}(x P (1_p)
T =

+(1 _p)n]{qbcta(l*a/ll,n) >p} + p”[{qbcta<a/2,n71) <p}
Figure 2.6 shows the behavior of the coverage probability for different sample

sizes.

_‘]4_
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The coverage probability plots for all types of alternative hypotheses show
conservatism, seemingly not reaching as far down as 1—a, 095 in the
displayed cases. This conservative, higher than 1—«, coverage is caused by
the fact that the supremum of a sum is not greater than the sum of supremum
over the involved sums. For example with two-sided alternative hypothesis

case, we have

inf, P (D1 - ajox <P =Dy1a2.x)
=1=sup, Z,({P <P1—afox} U{Pu1—as2x <P})
=1=sup, [Z,({p <211 apo x}) T By ({Pui—apox <P}
= 1=[sup, B, ({p < pri—ajox}) Fsup, By ({Pus - asax <p})]
=1—(a/2+0/2)
=1-a.
Specifically with extreme p, close to O or 1, the coverage probability plot
shows abrupt rise to 1—a/2. This is due to the fact that for p<p,; ./

we have P, ({p, |- a2 x <P})=0, which results in

Pp (pl,l—a/ZX =p= pu,l—a/Q,X)
=1=B,({p <p1-apox})= By ({Pui—ap2.x <p})

=1 —Pp ({p <pz,17a/2,X})

>1—a/2.

Similarly for p>p;,_ s, we have P, ({p<pl.’1_w/2.X}): 0, which results in

Pp (pmw/zx =p= pu,lfa/2.,X>
:1_Pp({p<pl;l*a/?,X})_Pp({pu,lfa/Z,X<p}>

- 1_P[1<{pl~,l—a/2,X <p}) = 1—a/2

_‘]7_



Therefore it does not make sense to allocate the probability «/2 to the
lower bound or the upper bound, which causes a conservative evaluation for
the extreme values of p.

One of many reasons why it is impossible to achieve the exact nominal
confidence level is due to the discrete nature of the binomial distribution. The
Clopper-Pearson’s exact method always produces the actual coverage
probability bigger than the nominal level. This implies the method is too
conservative. We need a better method in the sense that its resulting
confidence interval makes the actual coverage probability close to the nominal

confidence level.

2.3 The Wald Interval

As pointed out in the last part of the exact method, we would like to have
the actual coverage probability close to the nominal confidence level in
developing a confidence interval estimation. However the discrete nature of the
binomial distribution makes it not possible to achieve the exact nominal
confidence level.

The confidence interval by Wald is based on normal approximation and has
gained universal recommendation in the elementary statistics books. The
interval is given by

p(1—p)

piza/Q n

where p=X/n and z,, solves the equation P(Z<z,,)=1—a/2. This

_‘]8_



interval is obtained through the duality of the Wald’s asymptotic normal test

for a general problem:

)— ¢

—~

— <k
se(#)

~

where 0 is the MLE of 6 and sAe(é) the estimated standard error of 6 and k is

the (1—a/2)><100 percentile of standard normal distribution or ¢ distribution. In

binomial case, 6 =p, 0= X/n and S/é(é): \/m

This interval estimation was first described by Pierre-Simon Laplace in his
1812 book Théorie analytique des probabilités (page 283). It is simple to
calculate and often justified by the central limit theorem. Most students seem
not to give any doubt that the larger the n, the better the asymptotic property.
They believe that the conservatism of the exact method will disappear as the
number n get increased. However, this is not the case. Figure 2.7 shows that
there exist significant oscillation for fixed p. This swinging phenomenon is
still present with increasing the n even to 1000. When we fix n and vary
values of p, there exist systematic bias in the coverage probability which is
displayed in Figure 2.8. This problematic unsatisfactory coverage probability,
not reaching to 1—cq, is bad at extreme values of p.

From this plots we can be sure that the normal approximation as a rational
for Wald interval estimation can be seriously erratic when the true value of p
is at boundaries such as 0 or 1.

The problematic phenomenon of coverage probability for p near 0 or 1 are
cited in many popular textbooks. Brown, Cai & DasGupta (2001) list the

following qualifications by examination of 11 popular textbooks:
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The confidence interval may be used if
® np, n(l—p) =5 (or 10);
@ np(1—p) =5 (or 10);
® np, n(l—p) =5 (or 10);
&) ]54_-3\/;5(1—]5) does not contain 0 or I;
® n quite large;

® n = 50 unless p is very small.

However they give cautions that the above prescriptions are still defective,
saying the first two conditions are not verifiable in the estimation problem, the
condition ® useless, ® obviously misleading. Even though we can verify the
conditions @ and @, they say the two conditions are also useless because a
data-driven method is not meaningful in frequentist coverage probabilities.
From this results we feel it too dangerous to use the standard Wald interval.

In the next sections we review better alternatives.
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Figure 2.7. Coverage probability with varying n from 10 to 1000 for p=0.5.
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Figure 2.8. Coverage probability with varying n over 10~1000 for p=0.5.
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2.4 The Score Interval

The Score method is based on inverting the approximately normal test called

the Score test that uses the null #,: p=p,, rather than estimated, standard
error. We thus accept the null hypothesis if and only if the confidence interval
contains the null parameter. The end points of the confidence intervals are the
ones p, that solves the equations

b—Dpy

—=1z
po(l_po)/n

a/2'

We have the resulting confidence interval as follows:

¢ {p(1—p)+22),/4n)
iza/Q

1
(l-l—zim/n)

2n n

2
(}5‘1‘ Za/?

This confidence interval was first discussed by Edwin B. Wilson (1927) and
is called as the Wilson interval in honor of him. It is sometimes termed the
score confidence interval to highlight the inversion of the Score tests. Some
call the interval the Wilson’s score interval combining the previous two facts.

The midpoint of the Wilson’s score interval look embarrassing at first,
while the center of Wald’s interval ]5 1s the maximum likelihood estimator.

However we can figure out that the center of the score interval lies between

p and 1/2 by expressing it as a weighted average of them:

2
1 2o
+5( 2 J
n—i—za/z

This center point shrinks 1; toward 1/2 and the amount of shrinkage gets

~

=D

n

1 (}; Z?y/?
(1-1—23/2/71) 2n

n—i—zi/Q

smaller as n increases.
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The square of the coefficient of z,, in the term added to and subtracted
from the centered value is also of a weighted average of the variance of a

sample proportion with p=p and that with p=1/2, replacing n with n—l—zz/Q:

2
1 ~ ~ n 1 1 Z(y/z
i 222 )
{ n+2’i/z) 202 Nn+z,

n—!—zi/Q
Figure 2.9 and 2.10 show the behavioral characteristics of coverage

probabilities of the score interval comparing with the Wald interval with z and
t critical values. The coverage probability for fixed p with varying n shows
still oscillating phenomenon. = However for fixed n with varying p, the
systematic bias problem present in the Wald interval disappears in the

Wilson’s score interval.
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Figure 2.9. Behavioral characteristics of coverage probabilities for p =0.5 and
n=10—1000.

_25_



ol [ framnnd.d B )
VVVVVVUUHL\N\WQWN
=1 T T T T T l T T T T T T
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
P P
Wilson’s Interval Wald’s Interval with t Critical Value

(a) Coverage Probability of the Nominal 95% Confidence Intervals

1 WWW\N\N e Y A = =R BaS S
° T T T T T ° T T T T T T
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
p p
Wilson’s Interval Wald’s Interval with t Critical Value

(b) Coverage Probability of the Nominal 99% Confidence Intervals
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2.5 The Adjusted Wald Interval

The standard Wald interval is simple and easy to memorize, but it has poor
performance. There are many instructors who recommend the score interval
instead of the Wald interval. However the formula is considered to be
awkward to use in elementary statistics courses. As a compromise Agresti &
Coull (1998) suggests a similar form to the Wald interval with a better
estimate of p than ]32 X/n. They have an idea from the center value of the

score interval and define the confidence interval for p by

~ p(1—p)
P + ZQ/Q T~ = >
mn

where ;g:;(/ﬁ with )A(:ZX-i-zi/Q and ﬁ:n—i-zi/g.

When constructing 95% confidence interval, we have z,, =1.96 and 2 =4,

The center value of the score interval becomes

- X+2/2  X+2

This interval can be regarded such a version of the Wald formula as adding

two successes and two failures with n+4 trials, which yields a point estimate

132 (X+2)/(n+4). Because of its derivation background, the interval is called

an adjusted Wald interval or the Agresti-Coull interval.

Figure 2.11 shows the coverage probabilities of the adjusted Wald interval,

compared with those of the Wilson’s score and the Wald intervals for different n.
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Figure 2.11. Comparison of coverage probabilities for the nominal 95% intervals.
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III. Bayesian Confidence Intervals

3.1 Bayesian Point Estimator

As an estimate of the binomial proportion p, a statistic p is computed from
the observed data. We can consider the posterior mean, posterior median, or
posterior mode as suitable Bayesian point estimates of p.

Suppose we use the posterior mean square (PMS) as a measure of goodness

of an estimator. Then the PMS of an estimator p of the proportion p is

defined as
Pus)= [ - iPolo)dy
= fol(p—73+73+13)29(p:r)dp
= [ o-Potarar [ G- Potplelap
= Var(plz) +(p—p)*,

~ 1
where p= f pg(plz)dp, i.e., the posterior mean.
0

Since the last term, the squared distance of the true value from the posterior
mean, is always non-negative, the posterior mean is the optimum estimator of
the binomial proportion. It gives us a reasonable cause of the posterior mean

as the estimate and an explanation of the posterior mean being the most

_29_



widely used Bayesian estimate.

3.2 Bayesian Confidence Intervals

In Bayesian world, we would like to identify intervals of the parameter
space which seem to contain the true value of the parameter. After observing

data, we can construct an interval (pL(Jc)7 pU(x)) in a way that the interval

has high probability of containing the true parameter.
The coverage probability of Bayesian approach can be defined by using the

posterior probability. An interval (pL(x),pU(:r)) with endpoints computed after
observing data x, has coverage probability of (1—ca) for p if the posterior
probability satisfies

PpE(p, (@), py(@))| X=2)=1-a.

While the frequentist interprets the coverage probability of the interval as the
probability of covering the true value before the data are observed, Bayesian
describes it as the probability of locating the true value of p in the interval
after observing the data. These intervals are often called credible intervals, to
be distinct from frequentist confidence intervals. We consider a few main

conventions for choosing two endpoints of the interval.

3.2.1 Equal-Tailed Interval

The simplest and easiest method to construct a Bayesian confidence interval
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is to find quantiles of posterior probability density with equal tails. A

100(1—a)% confidence intervals is obtained by finding two numbers ¢,/ and
4y o of posterior distribution satisfying

P(p > o/ | X=2)=a/2 and P(p <G o) | X=2)=0a/2,
that is, the 1—a/2 and /2 posterior quantiles respectively.

This implies (g /5 <p < o/ | X=2)=1—a. Thus the desired 100(1—a)%

equal-tailed Bayesian credible interval of p is (g, .25 Gu/2)-

3.2.2 Highest Posterior Density Interval

When we obtain a credible interval in terms of equal-tailed property, there
exist some points outside the interval with higher probability than some points
inside the interval. This suggests the existence of the shortest possible interval
H(z) covering 100(1— )% of the posterior mass or density as follows:

® PpeEHX)|X=12)=1-a
@ If p)€H(z), and p, & H(x), then Plp, | X=12)> Plp,| X=1).

All points in H(z) have higher posterior probability than points outside it.
The interval H(z) is termed the highest posterior density (HPD) confidence
interval. Unfortunately, an HPD interval can not be one interval if the posterior

density has more than one peaks.

3.2.3 Approximate Interval

When the prior distribution of the binomial proportion p follows a U(0,1), i.e,
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beta(1,1), the posterior distribution of p after observing x successes is beta

(x+1,n—2x+1). The posterior density has the form f(plz) oc p*(1—p)" *, and

its log transformation yields Z(p) =logf(plz)=k+ xlogp+ (n—x)log(1—p).
Taking partial derivatives we can obtain maximum likelihood estimator of p

as follows:

oL(p) x n—=x N T
ap » 1-p Pure n

8°L(p) __ =z nTT o, _ 8*L(p) o n

op’ py  (1-p) o |-, pll—p)
This yields an asymptotic normal distribution about p:

Vn(p—p) d
vVp1—p)

Applying the approximation we can obtain a 100(1—a)% confidence interval

Y pi=p) - [p(—p)
/2 n » P /2 n

N(0,1)

as follows:

3.3 Coverage Probability with Priors

3.3.1 Beta prior
When X follows bin(n,p), its standard conjugate priors are beta

distributions. Suppose the prior distribution of the binomial proportion p
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follows beta(a,b), then the posterior distribution of p for the observed data x
is betala+x, b+n—z).

The 100(1—a)% equal-tailed Bayesian credible interval for p is given by

[qlfoz/Q,a-‘r;L’,b-‘rn*z’ qa/?,a-‘rx.,b-'—n*z]’
where ¢, denotes the (1—a) quantile of a beta(m,n) distribution. Thus 95%

equal-tailed Bayesian confidence interval can be constructed by finding the 2.5th
and 97.5th percentiles. In R they are computed by gbeta(0.025,a+z,b+n—zx)
and gbeta(0.975, a+x,b+n—x) respectively.

To obtain the 95% HPD credible interval we need to find two quantiles
with which the interval has the lower and upper endpoints and its outside total
area is 1—a. However it is not easy to compute them mathematically. Thus
we approximate the beta(a+x,b+n—x) posterior distribution by the normal

distribution with the same mean and variance, i.e,

— d
= S N0,
b =
where mzﬁ and s® = (a+x)2( a2} . The resulting 95%
at+b+n (a+b+n)(a+b+n+1)

approximate credible interval is given by (m—1.96xs, m+1.96<s).

3.3.2 Jeffrey Prior

The Jeffrey prior for p is defined in terms of the Fisher information;
£,p) o< 1p)"?,

where the Fisher information /(p) is given by
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Ip) — E{@ logf(X|p)}

P op*
When X ~ bin(n,p), we have

2

1o} x n—x
—logf(xlp) =— 55—
op’ p (1-p)
and Ep (X)=mnp yields
2 _
[(p):_@{a logf§X|p)}:n_127+ n an __n
ap P (-pP  pd-p)

Therefore f (p) o I(p)l/ ) gl 2(1 p) 1/ 2, which implies the Jeffrey prior is
J p

beta(1/2,1/2) with the density function

fJ(P) 1/2(1 p 1/2]01)(19

The 100(1— )% equal-tailed Bayesian credible interval is defined as

[ [pLJ pUJ( )]

0 =0

where r)= ;
pL,J( ) {qla/Q,x 1/2.n—xz+1/2 Otherwise
and

1 r=n
pU"](x) - {qa/2,x+1/2,nz+1/2 otherwise’

For =0, we have the lower limit 0 to avoid the result that the coverage
probability goes to zero as p approaches 0. Similarly by the same reason the
upper limit for x =n is also modified to 1.

The endpoints of the credible interval with Jeffrey prior is easily computed

using R:

py ()= gbetala/2,2+1/2.n—z+1/2)
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and pUH,(ac)Z gheta(l—o/2,2+1/2,n—2+1/2).

Using the HPD intervals instead of equal-tailed approach, we would have a
better Bayesian solution with shorter interval for the same confidence level.
However the HPD intervals are not easy to compute mathematically and are
approximated by normal approximation. With the Jeffrey prior, the approximate

100(1 —a)% credible interval is (m—za/Qs, m-+ za/25),

Cz+1/2 ,  (@+1/2)(n—z2+1/2)
where m = , 8=
(n+1)2(n+2)

n+1

The plots in Figure 3.1 display the coverage probabilities of equal-tailed
interval and approximate confidence interval with the Jeffrey prior. Even
though the approximate intervals are easy to compute, they are biased than the

equal-tailed intervals.
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IV. Measures of Performance

In order to choose good confidence intervals, we need useful measures of
the performance for various interval methods. Here we consider such
performance criteria as the mean coverage probability, the expected length, the

average expected length and the mean absolute error.

4.1 Mean Coverage Probability

For any confidence interval method for estimating p, the actual coverage

probability at a fixed value of p is defined

Clp,n) = i I(z,p)

x=0

Z)pw 1=p) "

where I(z,p)=1 if p is in the interval when X=2z and equals 0 otherwise.
The confidence coefficient is defined as the infimum of coverage probabilities
over all possible values of p. The definition is a theoretical concept about the
worst possible performance, thus it is more practical to use average performance
instead.

As a summary measure of performance the mean coverage probability, obtained
by averaging the coverage probabilities over all the possible values of p, is

defined as

yctn)= [ gy
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where ¢(p) is the density for p.

Table 4.1 and Figure 4.1 show the mean coverage probability with root
mean squared error for the exact, score, Wald, adjusted Wald (A&C) intervals,
and two Bayesian intervals. Among the considered confidence intervals the
mean coverage probability of Wilson’s score interval is closest to the nominal
level, the Bayesian credible interval with equal-tailed approach is secondly
close and the adjusted Wald (A&C) interval is thirdly close to the nominal
level 0.95. However these three approaches has almost the same mean
coverage probability as the nominal level.

And it is evident that the exact interval has the largest mean coverage
probability, the adjusted Wald interval and Bayesian equal-tailed interval are in
decreasing order. It implies that the confidence interval by those three methods

show conservatism. However the Wald interval and Bayesian interval by

normal approximation to posterior density have smaller coverage probability.

Table 4.1. Mean coverage probabilities with root MSE in parenthesis

n Exact Score Wald Adj. Wald Equal Tail Approx Bayes
5 0.989(0.0394) 0.954(0.0248) 0.867(0.1002) 0.975(0.0304)  0.957(0.0075)  0.929(0.0206)
10 0.978(0.0286) 0.952(0.0130) 0.900(0.0577) 0.962(0.0186)  0.953(0.0031)  0.933(0.0165)
15 0.974(0.0252) 0.951(0.0148) 0.916(0.0419) 0.957(0.0154)  0.952(0.0019)  0.936(0.0140)
20 0.971(0.0225) 0.951(0.0127) 0.926(0.0274)  0.955(0.0119)  0.951(0.0011)  0.938(0.0119)
40 0.966(0.0166) 0.951(0.0079) 0.938(0.0155) 0.952(0.0083)  0.950(0.0003)  0.942(0.0079)
50 0.964(0.0155)  0.95(0.0074) 0.940(0.0127)  0.951(0.0073)  0.950(0.0001)  0.943(0.0069)
60  0.963(0.0139) 0.951(0.0056) 0.942(0.0118)  0.951(0.0058)  0.950(0.0001)  0.944(0.0059)
80 0.962(0.0139)  0.95(0.0059) 0.944(0.0800) 0.951(0.0059)  0.950(0.0001)  0.945(0.0048)
100 0.961(0.0115)  0.95(0.0053)  0.945(0.0069)  0.95(0.0053)  0.950(0.0001)  0.946(0.0041)
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Figure 4.1. Mean coverage probabilities as a function of n.

4.2 Expected Length

The expected length of confidence intervals is defined for a specific p with

n fixed in advance as follows:
_n - -~ N\ k. \n—k
E;:,,p[length(CI)]_ Z (pu.,a.,k pl,g,k)(k)p (1 p) s
k=0

where ﬁmk and ﬁ,ak are the left and the right end points of the confidence

interval, respectively.

Figure 4.2 shows the expected widths for the nominal 95% exact, score,
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Wald, A&C and two Bayesian intervals as a function of p for n=15 and
n=100. For small n, all the intervals tend to be shorter as p approaches to
boundary regions. The Wald intervals are shorter than the exact intervals over
the whole range of p and the Score intervals get much shorter than exact
intervals. The fact that the length of the Wald intervals goes to zero as p
approaches 0 or 1 implies that its interval get degenerated at * =0 or n. The
intervals by the two Bayesian methods with equal-tailed and approximation has
shorter length except for Wislon’s. When x =0, the Wilson’s score interval is
[0, 1.96%/ (n+1.96> )] =10, 0.2034], the exact interval
[0, 1—(0.025)""] = [0,— 10g(0.025)/n] = [0, 3.69/n] = [0,0.246] and the adjusted
Wald interval (A&C interval) is

22

2(n+22)

o+ 2

n+z

1+ =[—0.034, 0.2385].

With large n=100, the exact interval is wider than the other intervals
except for the boundary regions where the A&C interval is a little wider than
the other intervals, though negligible. The Bayesian method yields the shortest

intervals.
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4.3 Average Expected Length

Suppose p follows the distribution g(p). The average expected length is then

defined over the whole interval [0,1] of p as follows:

Average Expected Length
1
= [ £, tengtnChlo o)y

1 n . . |
= Z (p11,7a7:r _p[,07>(2)pT (1 _p)n_ldp,
0xz=0

where ﬁuax and ]A)I?a,r are the left and the right end points of the confidence

interval, respectively.

There are in Figure 4.3 the average expected lengths of the exact, score,
Wald, adjusted Wald and two Bayesian intervals for the uniform distribution of
p with varying n from 10 to 100. It is clear from the plot that among the
six intervals the Wald interval is the shortest, and the score interval, Bayesian
with equal-tailed, Bayesian with approximation, the adjusted Wald interval and
the exact interval are in the narrowness order. The tendency does not change

for larger n.
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4.4 Mean Absolute Error

The last criterion we use for comparison of the alternative intervals is the
mean absolute error defined as the mean of the absolute difference between

the actual coverage probability and the nominal confidence level:
1

Mean Absolute Error (MAE)Z/ | Cp,n)— (1—a) | g(p)dp,
0

where C’(p,n) is the actual coverage probability for p with distribution g(p).
There are MAEs in Figure 4.4 for the exact, score, Wald, adjusted Wald,
equal-tailed and approximate Bayesian intervals with the uniform distribution of
p with varying n from 10 to 100. It is clear from the plot that among the
four intervals the Wald and equal-tailed Bayesian interval have significantly
largest errors, while the adjusted Wald interval has the smallest mean absolute

errors over all the considered range of n.
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Figure 4.4. The mean absolute errors of the coverages for n =10 ~ 100.
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V. Conclusions

We have reviewed major existing confidence intervals of the binomial
proportion parameter centered on their coverage probabilities. Since the discrete
nature of the random variable, it is impossible to obtain confidence interval
with the exact coverage probability. Every method studied here has its own
pros and cons.

The Clopper-Pearson interval (1934) is exact for all n. The endpoints of the
interval are computed using the quantiles of a beta distribution. However this
interval yields that the actual coverage probability is always not less than
nominal level 1—c, thus it keeps conservatism.

The Wald interval is considered standard in many elementary textbooks, due
to the convenience of derivation and computation. But it shows too abnormal
behavior of the coverage probability, and performed poorly especially at p
close to zero or one.

The Wilson’s score interval (1927) is based on inverting the score test and
uses the standard error of null parameter, not its estimate. It has theoretical
attraction, but is not easy to memorize the end points.

With combining the simplicity of the Wald interval and theoretical appeal of
the Wilson’s interval, Agresti and Coull suggest an adjusted Wald interval.
Like the Wald interval, the adjusted interval has simple formula of new n and
p with the property of extra addition of successes and failures.

As Bayesian intervals we reviewed the equal-tailed interval using quantiles

of posterior probability density and the HPD intervals. But the HPD interval is
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not easy to compute, it is approximated by normal distribution.

We evaluated each method using a few performance criteria, which results
in the preference of the Wilson’s score, A&C and Bayesian equal-tailed
intervals.

This study is not a new ftrial but a look-back attitude to understand their
derivations and coverage probabilities. For further study topics we will make
efforts to find out erratic behaviors of coverage probabilities of each confidence

interval with theoretical approach.
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Appendix: R-Codes

# Figure 2.4
# Coverage Probability Behavior of Upper Bound
# The related hypothesis: Ha: p<p0
#
Pup.cvg=function(n,alpha,p){
# n=10; alpha=0.05;x=2
# p=qbeta(l-alpha,x+1,n-x)
U=matrix(0,n+1,4)
x=0:n
U[,1]=x
U[,2]=gbeta(1-alpha,x+1,n-x) # Upper bound for [0, P(alpha, x)) x=0,....,n
# When x=0,...,n-1
# =P_U(l-alpha,x,n)=p*(x) is such that
#  p-value=P(X<=x|p*(x))=alpha
# When x=n
# P(X<=n)=1 for all p
#  so let p*(n)=1
U[,3]=(U[,2]>p) # For given x decide whether x belongs to CI i.e.
# p in [0,P(alpha,x)) i.e., p <p*(x), for x=0,...,n-1
Uln+1,3]=1 # Since p*(n)=1, when x=n CI=[0,1], coverage prob=1
Ul[,4]=dbinom(x,n,p)
B=sum(U[,4][U[,3]==1]) # The coverage probability for the given p
# Pr{p in [0,P_U(X))}=Pr{k: p<P_U(k)}
# = p™n +sum_{k=0}"{n-1}P(X=k)I {qgbeta(l-a,k+1,n-k)>p}(k)

# Check p*(i)=P(X<=ilpi)=alpha;

# for i=0,...,n-1

#

alpha=0.05

B3=rep(0,n)

for (i in 0:(n-1)){
B3[i+1]=pbinom(i,n,qbeta(1-alpha,i+1,n-1))

_50_



7

# Compute the coverage probability for any p in [0,1]

7

n=10; alpha=0.05;

Np=50; # the no. of p's in [p*(k-1),p*(k)); k=1,...,n
whole.p=rep(1,Np*(n+1)+1) # pllast]=p*(n)=1
whole.cvrg=rep(1,Np*(n+1)+1) # coverage prob for p*(n)=1

for (k in O:mn){
pstart=gbeta(1-alpha,k,n-k+1); pend=qgbeta(l-alpha,k+1,n-k)
# p*(n)=1; p*(i)=gbeta(l-alpha,i+1,n-i) i=0,...,n-1
# k=0 corresponds p=0 ie p in [0,p*(0))
p=seq(pstart,pend,length=Np+1); p=p[-(Np+1)]
# Choose Np of p's in the interval [P_U(k-1), P_U(k))
# to calculate Coverage Prob P{p in C(X)}
whole.p[(k*Np+1):((k+1)*Np)]=p
for (i in 1:Np) whole.cvrg[k*Np+i]=Pup.cvg(n,alpha,p[i])
H

# Plot of Coverage probability
#
plot(whole.p, whole.cvrg, type="1", xlab="",ylab="")

# ylab=expression(paste("Probablity of Coverage " hat(p)[U])))
abline(h=1-alpha,lty=2)

# give xlabel and ylabel using mtext
title(line=1.5,expression(

paste("Coverage Probability Behavior of Upper Bound ", hat(p)[U])))
mtext(expression(paste("Probablity of Coverage " hat(p)[U])),side=2,line=2)
mtext("p",side=1,line=2)

al=paste("nominal confidence level=",1-alpha,"\n sample size n=",n)
text(0.5,1.0,pos=1,al)
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# Figure 2.5

# Coverage Probability Behavior of Lower Bound
# The related hypothesis: Ha: p>p0

#

Plow.cvg=function(n,alpha,p){
# n=10; alpha=0.05; x=n
# p=qbeta(alpha,x,n-x+1)
L=matrix(0,n+1,4)
x=0:n
L[,1]=x
L[,2]=qgbeta(alpha,x,n-x+1) # Lower bound for (P_L(x),1] x=0,...,n
# When x=1,...,n
# =P L(alpha,x,n)=p*(x) is such that
#  p-value=P(X>=x|p*(x))=alpha
# When x=0
#  p-value=P(X>=0[p)=1>alpha for all p
# so let p*(0)=0

L[,3]1=(L[,2]<p) # For given x decide whether x belongs to CI i.e.
# p in (P_L(x),1] i.e., p>p*(x), for x=1,....n
L[1,3]=1 # Since p*(0)=0, when x=0 CI=[0,1], coverage prob=1
L[,4]=dbinom(x,n,p)
B=sum(L[,4][L[,3]==1]) # The coverage probability for the given p
# Pr{p in (P_L(X),1]}=Pr{k: p>P_L(k)}
# = (1-p)"n + sum_{k=1}"{n}P(X=k)I_{qbeta(a,k,n-k+1)>p}(k)

# Check p*(i)=P(X>=i|pi)=alpha;
# for i=1,...,n
#

alpha=0.05

B3=rep(0,n)

for (i in l:n){
B3[i]=1-pbinom(i-1,n,qbeta(alpha,i,n-i+1))}
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7

# Compute Coverage probability for any p in [0,1]

#
n=100; alpha=0.05;
Np=30; # the no. of p's in (p*(k-1),p*(k)]; k=1,...,n

whole.p=rep(0,Np*(n+1)+1) # p[lst]=p*(0)=0
whole.cvrg=rep(1,Np*(n+1)+1) # coverage prob for p*(0)=1

for (k in O:mn){
pstart=gbeta(alpha,k,n-k+1); pend=qgbeta(alpha,k+1,n-k)
# p*(i)=qgbeta(alpha,i,n-i+1) i=0,...,n
# k=n corresponds to p in (p*(n),l]
p=seq(pstart,pend,length=Np+1); p=p[-1]
# Choose Np of p's in the interval (P_U(k-1), P_U(k)]
# to calculate Coverage Prob P{p in C(X)}
whole.p[(k*Np+2):((k+1)*Np+1)]=p
for (i in 1:Np) whole.cvrg[k*Np+1+i]=Plow.cvg(n,alpha,p[i])
H

# Plot of Coverage probability
#
plot(whole.p, whole.cvrg, type="1", xlab="",ylab="")

# ylab=expression(paste("Probablity of Coverage ",hat(p)[L])))
abline(h=1-alpha,lty=2)

# give xlabel and ylabel using mtext
title(line=1.5,expression(

paste("Coverage Probability Behavior of Lower Bound ", hat(p)[L])))
mtext(expression(paste("Probablity of Coverage " hat(p)[L])),side=2,line=2)
mtext("p",side=1,line=2)

al=paste("nominal confidence level=",1-alpha,"\n sample size n=",n)
text(0.5,1.0,pos=1,al)
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Figure 2.6

Coverage Probability Behavior of Confidence Interval
Ha: p ne pO

i.e., both upper and lower bound

H H H = H

Check P_L(alpha,x,n)<P_Uf(alpha,x,n) for all x=0,....,n
P_L(alpha,x,n)=qgbeta(alpha,x,n-x+1)
P_U(alpha,x,n)=gbeta(1-alpha,x+1,n-x)

H OFH H H H

n=10; x=0:n; alpha=0.05

a=gbeta(alpha,x,n-x+1); b=qgbeta(l-alpha,x+1,n-x)
A=cbind(a,b,rep(0,11))

Al,3]=a<b

Pboth.cvg=function(n,alpha,p){

# n=11; alpha=0.05; x=1

# p=qbeta(alpha,x,n-x+1)
B=matrix(0,n+1,5)
x=0:n
B[,1]=x
B[,2]=qgbeta(alpha/2,x,n-x+1) # P_L(alpha/2,x,n)
B[,3]=qgbeta(l-alpha/2,x+1,n-x) # P_U(alpha/2,x,n)
B[,4]=(B[,2]<p)&(B[.3]>p)
if (gbeta(alpha/2,n,1)<p) B[n+1,4]=1
if (qbeta(l-alpha/2,1,n)>p) B[1,4]=1
B[,5]=dbinom(x,n,p)
Bsum=sum(B[,5][B[,4]==1]) # The coverage probability for the given p

# Pr{p in (P_L(X),1]}=Pr{k: p>P_L(k)}
# = (I-p)"n + sum_{k=1}"{n}P(X=k)I {gbeta(a,k,n-k+1)>p}(k)

# Check p*(i)=P(X>=i|pi)=alpha; for i=l,...,n
#

B3=rep(0,n)

for (i in 1:n){
B3[i]=1-pbinom(i-1,n,gbeta(alpha,i,n-i+1))

§

#

1
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# Compute Coverage probability for any p in [0,1]
#
Coverage=function(n,alpha,Np){
# n=no. of trials
# alpha=0.05
# Np=no. of p's in (p*(k-1),p*(k)]; k=1,....n
whole.p=rep(0,Np*(n+1)+1) # p[lst]=p*(0)=0
whole.cvrg=rep(1,Np*(n+1)+1) # coverage prob for p*(0)=I1

for (k in O:n){
pstart=gbeta(alpha,k,n-k+1); pend=qgbeta(alpha,k+1,n-k)
# p*(i)=gbeta(alpha,i,n-i+1) i=0,...,n
# k=n corresponds to p in (p*(n),l]
p=seq(pstart,pend,length=Np+1); p=p[-1]
# Choose Np of p's in the interval (P_U(k-1), P_U(k)]
# to calculate Coverage Prob P{p in C(X)}
whole.p[(k*Np+2):((k+1)*Np+1)]=p
for (i in 1:Np) whole.cvrg[k*Np+1+i]=Pboth.cvg(n,alpha,p[i])
H

return(list(p=whole.p, cov.prg=whole.cvrg))

}

# Plot of Coverage probability
#
n=11; alpha=0.05; Np=30

A=Coverage(n,alpha,Np)

whole.p=AS$p; whole.cvrg=AS$cov.prg

plot(whole.p, whole.cvrg, type="1", xlab="",ylab="", ylim=c(0.95,1.00))
abline(h=1-alpha,lty=2)

# give xlabel and ylabel using mtext
title(line=1.5,expression(
paste("Coverage Probability of Confidence Intervals [", hat(p)[L]," , ", hat(p)[U],"T")))
mtext(expression(paste("Probablity of Coverage for [ ", hat(p)[L]," , ", hat(p)[U],"
1"),side=2,line=2)
mtext("p",side=1,line=2)

al=paste("nominal confidence level=",1-alpha,"\n sample size n=",n)
text(0.5,1.0,pos=1,al)
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#

# Figure 2.8-11
# Comparison of Coverage Probabilities for
the Nominal 95% Intervals

#

#

# Coverage probability of
# 1) Wilson's Score

# 2) Wald

# 3) Wald with t-critical
# 4) Mid-P

# 5) Continuity-corrected Score
#
#

n=5; alpha=0.05; p=0.05
Cvgprob.fixedP=function(n,alpha,p){
# Coverage Probability at a fixed value of p
x=0:n
px=dbinom(x,n,p)
z.crt=qnorm(1-alpha/2)
phat=x/n

xtilde=x+z.crt"2/2

ntilde=n+tz.crt"2

ptilde=xtilde/ntilde

den=1+z.crt"2/n

wgt=n/(n+z.crt"2)
mid.point=phat*wgt+0.5*(1-wgt)
z.coef=phat*(1-phat)*wgt+(1/4)*(1-wgt)

ws.width=sqrt(z.coef/(n+z.crt"2))
wd.width=sqrt(phat*(1-phat)/n)
adjwd.width=sqrt(ptilde*(1-ptilde)/ntilde)

WS=WDz=WDt=AWD=matrix(0,n+1,5)
colnames(WS)=colnames(WDz)=colnames(WDt)=colnames(AWD)=c("k",
"L_CI" ’"U_CI"’paste(llp:"’p’sep:"")’"P(X:k)")

# Wilson Score CI

WS[,1]=x
WSJ,2]=mid.point-z.crt*ws.width
WSJ,3]=mid.point+z.crt*ws.width
WS[4]=(WS[,2]<p)&(WS[,3]>p)
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WSL,5]=px
Cvgprob.WS=sum(WS[,5][WS[,4]==1]) # coverage prob of Wilson's Score CI

# Wald CI with z-critical

WDz[,1]=x

WDz[,2]=phat-z.crt*wd.width

WDz[,3]=phat+z.crt*wd.width

WDz[,4]=(WDz[,2]<p)&(WDz[,3]>p)

WDz[,5]=px

Cvgprob.WDz=sum(WDz[,5][WDz[,4]==1]) # coverage prob of Wald's CI

# Wald CI with t-critical

t.crt=qt(1-alpha/2,n-1)

WDt[,1]=x

WDt[,2]=phat-t.crt*wd.width

WDt[,3]=phat+t.crt*wd.width

WDL[,4]=(WDt[,2]<p)&(WDt[,3]>p)

WDt[,5]=px

Cvgprob.WDt=sum(WDt[,5][WDt[,4]==1]) # coverage prob of Wald's CI

# Adj Wald CI

AWD[,1]=x

AWDI,2]=ptilde-z.crt*adjwd.width

AWD[,3]=ptilde+z.crt*adjwd.width

AWD[,4]=(AWD[,2]<p)&(AWD[,3]>p)

AWDI,5]=px

Cvgprob. AWD=sum(AWD[,5]JAWD[,4]==1]) # coverage prob of Wald's CI

return(list(WS=Cvgprob.WS, WDz=Cvgprob.WDz, WDt=Cvgprob.WDt,
AWD=Cvgprob.AWD))
§

#

# Coverage probabilities for all possible values of p
# which is used in plotting it with Exact CI

#
Cvgprob.allP=function(n,alpha,Np){

# Np=30

CV=matrix(0,Np*(n+1),5)

colnames(CV)=c("p", "Wislon","Wald.z", "Wald.t","AdjWald")

for (k in O:n){
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pstart=gbeta(alpha,k,n-k+1); pend=gbeta(alpha,k+1,n-k)
# p*(i)=gbeta(alpha,i,n-i+1) i=0,...,n
# k=n corresponds to p in (p*(n),l]
p=seq(pstart,pend,length=Np+1);p=p[-1]
# Choose Np of p's in the interval (P_U(k-1), P_U(k)]
# to calculate Coverage Prob P{p in C(X)}
CV[(k*Np+1):((k+1)*Np),1]=p
for (i in 1:Np) {
a=Cvgprob.fixedP(n,alpha,p[i])
CV[k*Np+i,2:5]=c(a$WS,a§ WDz,a$WDt, aSAWD)
H
H
return(CV)

}

#
# Figure 2.8-10

# Behavioral characteristics of coverage probability
# for various methods

#
par(mar=c(4,3,2,1))

alpha=0.05

A=Cvgprob.allP(30,alpha,30)

n=dim(A)

Al=A[-n,]

plot(A1[,1],A1[,4],type="1", xlab="p", ylab="",ylim=c(0.5,1.0))
abline(h=1-alpha, Ity=2)

#
# Figure 2.11

# Compare coverage probability of Cls

# for various methods according to sample sizes
# Exact, Wilson, Wald with z, Wald with t

#
par(mar=c(4,3,2,1))

A=Cvgprob.allP(10,0.05,30)

n=dim(A)

Al=A[-n,]

plot(A1[,1],A1[,3],type="1", xlab="p", ylab="",ylim=c(0.5,1.0))
lines(A1[,1],A1[,2],lty=2,col="blue")

lines(A1[,1],A1[,5],1ty=3, col="red")

legend(0.4, 0.7, Ity=1:3, bty="n", col=c("black", "blue", "red"),
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#
#

legend=c("Wald", "Wilson","Adj Wald"))
abline(h=1-alpha, lty=2)

Figure 3.1

# Bayesian Coverage Probabilities
# of Equal-tailed and approximate Intervals

#

# Bayesian Credible Region with Equal-Tailed Approach
# for a binomial proportion p with Jeffrey prior

#

H FH H FH H

p ~ beta(a,b)

X|p ~ bin(n,p)

plx ~ beta(at+x, b+n-x)
E(p|x)=(a+x)/(atb+n)

Var(p|x)=(a+x)(n-x+b)/ (atb+n)"2 (atb+ntl)

Bay.cvglp=function(alpha,a,b,n,p){

# Coverage probability of

# Bayesian CI with Equal-tailed quantiles

# prior beta(a,b)

# inputs: alpha=0.05; a=b=1/2; n=50; p=0.5

x=0:n
px=dbinom(x,n,p)

Eq.plow=gbeta(alpha/2,a+x,b+n-x)
Eq.pup=qgbeta(1-alpha/2,a+x,b+n-x)

Length.Beq=Eq.pup-Eq.plow
EL.Beg=sum(Length.Beq*px)

z.crt=gqnorm( 1-alpha/2)
Amean=(a+x)/(a+tb+n)
Aden=(at+b+n)"2*(atb+n+1)
Avar=(a+x)*(n-x+b)/Aden
Asd=sqrt(Avar)
Apup=Amean+z.crt*Asd
Aplow=Amean-z.crt* Asd
Length.Bap=2*z.crt*Asd
EL.Bap=sum(Length.Bap*px)

A=E=matrix(0,n+1,5)
E[,1]=x
E[,2]=Eq.plow ; E[1,2]=0

# modification
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E[,3]=Eq.pup ; E[nt1,3]=1

E[4]=(E[,2]<=p)&(E[,3]>=p)

E[,5]=px

Cvgprob.E=sum(E[,5][E[,4]==1]) # coverage prob of Bayesian Equal Tailed

A=matrix(0,n+1,5)

AlL1]=x

A[,2]=Aplow; #A[1,2]=0 # modification

A[,3]=Apup; #A[n+1,3]=1

ALAT=(AL2]<=p)&(A[31>=p)

AlST=px

Cvgprob.A=sum(A[,5][A[,4]==1])

return(list(Eq=Cvgprob.E, As=Cvgprob.A,EL.Beq=EL.Beq, EL.Bap=EL.Bap))

ELength=function(n,alpha,p){
# Expected Length of CI at a fixed value of p
# n is fixed in advance
# E[Length(CD)]=Sum_{k=0}"n {length[CI(k,p)]*P(x=k)}
x=0:n
px=dbinom(x,n,p)
z.crt=gnorm( 1-alpha/2)

# Exact Method
U.exact=qbeta(1-alpha/2,x+1,n-x)
L.exact=gbeta(alpha/2,x,n-x+1)
Length.exact=U.exact-L.exact
EL.exact=sum(Length.exact*px)

# Wilson Method
phat=x/n
wgt=n/(n+z.crt"2)
sl=phat*(1-phat)*wgt+0.25*(1-wgt)
s2=sqrt(s1/(n+z.crt"2))
EL.wilson=2*z.crt*sum(s2*px)

# Wald Method
al=sqrt(phat*(1-phat)/n)
EL.wald=2*z.crt*sum(al *px)

# Adjusted Wald
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xtilde=xtz.crt"2/2
ntilde=ntz.crt"2
ptilde=xtilde/ntilde
aw=sqrt(ptilde*(1-ptilde)/ntilde)
EL.AWD=2*z.crt*sum(aw1 *px)

return(list(exact=EL.exact, wilson=EL.wilson,
wald=EL.wald, adj=EL.AWD))

# Check the function Bay.cvglp
# a=Bay.cvglp(0.05,1/2,1/2,50,0.02)
# b=Bay.cvglp(0.05,1/2,1/2,50,0.98)

#

# Function to compute coverage probabilities
# over the interval of p [0,1] uniform
#

Bay.cvgallp=function(alpha,a,b,n){
np=1000
p=seq(0.0,1.0,length=np)
CV=matrix(0,np,3)
for (i in l:np) {
cvg=Bay.cvglp(alpha,a,b,n,p[i])
CVI[i,]=c(p[i],cvg$Eq,cvg$ As)

H
return(CV)

# Figure 3.1
# Plot the coverage probability for n=50
#

x=Bay.cvgallp(0.05,1/2,1/2,50)

par(mar=c(4,3,2,1))

plot(x[,1],x[,2],xlab="p", ylab="",type="1", ylim=c(0.84,1.00))
abline(h=1-alpha, lty=2)

lines(x[,1],x[,3],col="blue", lty=2)
legend(0.4,0.90,1ty=c(1,2),legend=c("Equal-Tailed"," Approximate"),bty="n")
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#

# Table 4.1

# Comparison of Mean coverage probability with root MSE

# for the various sample size

# 1) Bayesian Credible Region

#

nc=c(5,10,15,20,40,50,60,80,100)

MC=matrix(0,length(nc),5)

MC[,1]=nc

for (i in I:length(nc)){
X=Bay.cvgallp(0.05,1/2,1/2, nc[i])
Xmean=apply(X[,2:3],2, mean)
MCI[i,2]=Xmean[1]
MC[i,3]=sqrt(mean(X[,2]-0.95)"2)
MC(Ji,4]=Xmean[2]
MCJi,5]=sqrt(mean(X[,3]-0.95)"2)

}

H
# 2) Mean coverage probability and Root MSE

for the various sample size and

# p from uniform or beta distribution

#  for Exact, Wilson, Wald with z, Wald with t, Adj-Wald
#

T+

Comp.cvg.beta=function(n, alpha, Nsim){
CVG=matrix(0, Nsim, 6)
# colnames(CVG)=c("p","Exact","Wilson","Wald.z", "Wald.t","Adj Wald")
for(j in 1:Nsim){
# p=rbeta(1,3.5, 31.5) # beta(3.5, 3.5)

p=rbeta(1,12,12) # beta(12, 12)

CVGI[j,1]=p

CVG][j,2]=Pboth.cvg(n,alpha,p) # Exact Method
a=Cvgprob.fixedP(n,alpha,p) # Wilson, Wald, Adj-Wald

CVG@[j},3:6]=c(a$WS,a$WDz,a$WDt, a$AWD)
H
mean.cvg=apply(CVGI[,2:6],2,mean)
X=CVG[,2:6]-0.95
RMSE.cvg=sqrt(apply(X"2,2,mean))

return(c(mean.cvg, RMSE.cvg))

_62_



nsize=c(5,10,15,20,40,50,60,80,100); alpha=0.05

Nsim=1000

ntype=length(nsize)

A=matrix(0,ntype,11)

colnames(A)=c("n","m-Ex","m-WS","m-WDz","m-WDt","m-AWD",
"Rm-Ex","Rm-WS","Rm-WDz", "Rm-WDt", "RM-AWD")

for (k in l:ntype){

n=nsize[k]

#A[k,]=c(n,Comp.cvg(n,alpha,Nsim)) # If Uniform

Alk,]=c(n,Comp.cvg.beta(n,alpha,Nsim)) # If Beta distn

§

# In order to have the Table 4.1
# combine MC and A

#
# Figure 4.1
# Mean coverage probability as a function of n
# We need the output A and MC from Table 4.1
#
par(mar=c(3,5,2,2))
nc=0.8 # point size
F4=cbind(A[,2:4],A[,6],MC[,2],MC[,4])
colnames(F4)=c("Ex","WS","WD","AdW","B-Eq","B-Ap")
plot(nsize,F4[,1],type="1", ylim=c(0.85,1.0), xlab="n", ylab="", lty=3,cex=nc)
color=c("red","purple","green","red","purple","green")
for (k in 2:6) {

lines(nsize,F4[ k],lty=k,cex=nc)
§
legend("topright", lty=1:6,

legend=c("Exact", "Score", "Wald", "AdjWald","B-Equal","B-App"))

#
# Figure 4.2 Comparison of the Expected Lengths
# Actual coverage probability
# for p from uniform(0,1)
#
Comp.cvg=function(n, alpha, Nsim){

CVG=matrix(0, Nsim, 6)
# colnames(CVG)=c("p","Exact","Wilson","Wald.z", "Wald.t", "Adj Wald")
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for(j in 1:Nsim){
p=runif(1)
CVG[j,11=p
CV(Jj,2]=Pboth.cvg(n,alpha,p)
a=Cvgprob.fixedP(n,alpha,p)
CVG[j,3:6]=c(a$WS,a$WDz,a$ WDt,a§ AWD)
§
mean.cvg=apply(CVGI[,2:6],2,mean)
X=CVG[,2:6]-0.95
RMSE.cvg=sqrt(apply(X”"2,2,mean))

return(c(mean.cvg, RMSE.cvg))

#

# Figure 4.2-4.4

# A. Expected Length of CI

# as a function of p with n fixed in advance
# B. Average Expected Length

# over p in [0,1] as a function of n.

# C. Mean Absolute Error

# over p as a function of n

#

ELength=function(n,alpha,p){
# Expected Length of CI at a fixed value of p
# n is fixed in advance
# E[Length(CD)]=Sum_{k=0}"n {length[CI(k,p)]*P(x=k)}
x=0:n
px=dbinom(x,n,p)
z.crt=gnorm( 1-alpha/2)

# Exact Method
U.exact=qbeta(1-alpha/2,x+1,n-x)
L.exact=gbeta(alpha/2,x,n-x+1)
Length.exact=U.exact-L.exact
EL.exact=sum(Length.exact*px)

# Wilson Method

phat=x/n
wgt=n/(n+z.crt"2)
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s1=phat*(1-phat)*wgt+0.25*(1-wgt)
s2=sqrt(sl/(n+z.crt*2))
EL.wilson=2*z.crt*sum(s2*px)

# Wald Method
al=sqrt(phat*(1-phat)/n)
EL.wald=2*z.crt*sum(al *px)

# Adjusted Wald
xtilde=x+tz.crt"2/2
ntilde=ntz.crt"2
ptilde=xtilde/ntilde
awl=sqrt(ptilde*(1-ptilde)/ntilde)
EL.AWD=2*z.crt*sum(aw1 *px)

return(list(exact=EL.exact, wilson=EL.wilson,
wald=EL.wald, adj=EL.AWD))

}

#
# Figure 4.2
# Compute Expected Length of CI for a p in [0,1]
# and plot it
#
n=100; alpha=0.05;
p=seq(0,1,by=0.01); np=length(p)
A=matrix(0,np,6)
for (k in 1:mnp){
a=ELength(n,alpha,p[k])
Alk,1:4]=c(a$exact, a$wilson, a$wald, a$adj)
b=Bay.cvglp(alpha,l,1,n,p[k]) # U(0,1)=Beta(1,1)
A[k,5:6]=c(b$EL.Beq, b$SEL.Bap)
}

plot(p,A[,1],type="1",xlab="",ylab="E(width)")
for (k in 2:6){

lines(p,A[k],lty=k)
}

lines(p,A[,5],col="red") # Bayes with equal tailed
lines(p,A[,6],col="blue") # Bayes with approximate
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legend(0.3,0.15,1ty=1:6,
c("Exact","Wilson","Wald","AdjWald","Bayes_Eq","Bayes.App"),
col=c("black","black","black","black","red","blue"))

#
# Figure 4.3-4.4
# Compute Average Expected Length and
# Mean Absolute Error
# as a function of sample size and plot it
#
AvgEL~=function(n,alpha) {
# Average Expected Length
p=seq(0,1,by=0.01); np=length(p)
A=matrix(0,np,6)
for(k in 1:np){
a=ELength(n,alpha,p[k])
Alk,1:4]=c(a$exact, a$wilson, a$wald, a$adj)
b=Bay.cvglp(alpha,1,1,n,p[k]) # U(0,1)=Beta(1,1)
Afk,5:6]=c(b$SEL.Beq, bSEL.Bap)
H
AL=apply(A,2,mean)
H

AbsErr=function(n,alpha,binomp){
# Absolute Error
p=binomp
AE=Pboth.cvg(n,alpha,p) # Cov. prob for exact method
a=Cvgprob.fixedP(n,alpha,p) # coverage probability for approximate methods
b=Bay.cvglp(alpha,l1,1,n,p) # Coverage Prob for Bayesian
Abs.Error=abs(c(AE, a$WS, a$WDz, aSAWD, b$Eq, b$As)-(1-alpha)) #relative error
§

MeanAbsErr=function(n,alpha) {
# Mean Absolute Error
p=seq(0,1,by=0.01); np=Ilength(p)
A=matrix(0,np,6)
for(k in I:np){
Alk,]=AbsErr(n,alpha,p[k]) # Exact, Wilson, Wald-z, Adj-WD, B-eq, B-appr
H
AL=apply(A,2,mean)
H
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nsize=c(seq(10,25),seq(30,100,by=10)); nlen=length(nsize)
B=matrix(0,nlen,6)
MAE=matrix(0,nlen,6)
for (k in 1:nlen){
B[k,]=AvgEL(nsize[k],0.05)
MAE[k,]=MeanAbsErr(nsize[k],0.05)
}

#

7

# Figure 4.3

# Plot Average Expected Length

#

plot(nsize,B[,1],type="1",ylim=c(0,0.6),xlab="", ylab="")

mtext("n",side=1,line=1.5)

mtext("Avg[E(width)]",side=2,line=2.5)

for (k in 2:6){
lines(nsize,B[,k],lty=k)

}

lines(nsize,B[,5],col="red")

lines(nsize,B[,6],col="blue")

legend(15,0.6,1ty=1:6,c("Exact", "Score", "Wald", "A&C", "Bayes.Eq", "Bayes.Ap"),
col=c("black","black","black","black","red","blue"))

T

# Figure 4.4
# Plot Mean Absolute Error
#
plot(nsize, MAE[,1],type="1",ylim=c(0,0.6),xlab="", ylab="")
mtext("n",side=1,line=1.5)
mtext("E[|error|]",side=2,line=2.5)
for (k in 2:6){
lines(nsize, MAE[ k],1ty=k)
}
lines(nsize, MAE[,5],col="red")
lines(nsize, MAE[,6],col="blue")
legend(15,0.6,1ty=1:6,c("Exact", "Score", "Wald", "A&C", "Bayes.Eq", "Bayes.Ap"),
col=c("black","black","black","black","red","blue"))
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