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Review on the Coverage Probabilities of Confidence Intervals
for a Binomial Proportion

Lionel Sahabo

Department of Statistics, The Graduate School,
Pukyong National University

Abstract
The interval estimation of the parameter for the probability of success  in a binomial 
distribution is one of the most basic and methodologically important problems in 
statistical practice. Since the first introduction of the Wilson interval, many modified 
intervals have been developed. In most elementary statistics textbooks the Wald 
interval is nearly universally accepted. In this study we review popular confidence 
intervals in terms of coverage probabilities such as the Clopper-Pearson exact interval, 
the Wald interval, the Wilson’s score interval, the Agresti & Coull (or adjusted Wald) 
interval, and Bayesian credible intervals with beta priors. Their performances are 
evaluated using such criteria as mean coverage probability, expected length, average 
expected length, and mean absolute error. According to the above criteria, the interval 
by equal-tailed Bayesian method with a beta prior shows comparable results.

Key words : Confidence interval, Binomial proportion, Coverage probability, Bayesian 
credible interval.
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이항모수에 대한 신뢰구간들의 포함확률에 관한 고찰

Lionel Sahabo

부경대학교 대학원 통계학과

요약

이항분포의 모수인 성공확률 의 구간추정은 통계적 실제상황에서 가장 기본적이

며 또한 방법론적으로도 매우 중요한 문제이다. Wilson에 의해 구간추정이 처음

소개된 이후로 개선된 많은 구간추정방법들이 개발되어 왔다. 대부분의 기초통계

학 교재에는 Wald의 구간추정방법이 거의 모든 책에서 범용적으로 채택되어 사용

되고 있다. 본 연구에서는 기존에 발표된 구간추정방법들 중 포함확률에 의거하여

Clopper-Pearsonl, Wald, Wilson, Agresti & Coull의 방법들과 Bayesian 방법들을

중심으로 고찰하였다. 또한 이러한 방법들을 비교하기 위하여 평균포함확률, 신뢰

구간의 기댓값, 평균기대구간의 길이 및 절대오차의 평균값 등과 같은 평가기준을

사용하였다. 본 평가기준에 의하면 베타사전분포를 사용한 베이지안 방법에 의해

구해진 신뢰구간의 포함확률이 기존의 비베이지안방법 못지 않은 결과를 보여주

었다.
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Ⅰ. Introduction

The interval estimation of the parameter for the probability of success   in 
a binomial distribution is one of the most basic and methodologically 
important problems in statistical practice.

The nearly universally accepted confidence interval in most elementary 
statistics textbooks is the Wald confidence interval defined as

 ± 




 , 

where  is the sample proportion of success and  is the 100%  
percentile of standard normal distribution. The actual coverage probabilities of the 
standard interval displays poor performance for  near 0 or 1. Recent articles 
point out that the coverage probabilities can be erratically poor even if  is 
not near the boundaries.

The purpose of the study is to review coverage probabilities of popular 
confidence intervals such as exact interval (Clopper & Pearson 1934), Wald 
interval (P-S Laplace 1812) with z-critical value and t-critical value as well, 
Wilson’s score interval (Wilson 1927),  Agresti & Coull (or adjusted Wald) 
interval (A & C 1998) and Bayesian credible interval with beta prior and 
Jeffrey prior (Brown, Cai and DasGupta 2001).

The Wald confidence interval is first introduced by Laplace (1812) and its 
coverage properties have been remarked on Gosh (1979), Blyth & Still (1983), 
Santner (1988), and Agresti & Coull (1998).
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The Clopper-Pearson interval is based on inverting alternative two-sided tests 
for      and is termed exact due to the availability of endpoints 
reaching the desired significance level for all . See Böhning (1994), Leemis 
and Trivedi (1996), and Jovanovic & Levy (1997) for the method.

Wilson’s score confidence interval is also based on inverting the equal-tailed 
test, but uses the standard error with null value instead of estimator.

The Agresti-Coull interval is based on the Wilson’s score interval, but it has 
simple formula like the Wald interval plugging new  and . Thus it keeps the 
simplicity and catchy formula of Wald interval. This interval is first introduced 
in the elementary statistics textbook by Samuels & Witmer (1999).

The Bayesian confidence intervals use beta conjugate priors for the binomial 
likelihood. Bayesian confidence intervals with noninformative beta priors such 
as uniform and Jeffrey prior also perform well in a frequentist sense. For 
further results see Carlin and Louis (1996) and Brwon, Cai, and DasGupta 
(2001).

There exist many literatures about methods for constructing the confidence 
intervals of the binomial parameter. See Santner and Duffy (1989), Vollset 
(1993), Pires and Amado (2008) etc. Especially Pires and Amado list twenty 
methods and compared them in terms of coverage probabilities.

Many parts of this study is to reproduce major results of the existing 
methods and confirm the pros and cons of their coverage probabilities.

For the study we introduce some terminologies and Lemmas in the first part 
of chapter 2. Confidence intervals by frequentist approach are reviewed at the 
remaining part of chapter 2. In chapter 3 we look at interval estimator by 
Bayesian approach using beta conjugate priors. Their performances are 
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compared in terms of criteria using coverage probabilities. In chapter 4 we 
compare the methods using some performance criteria and we summarize the 
pros and cons of the methods in chapter 5.
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Ⅱ. Non-Bayesian Confidence Intervals

2.1 Introduction

Assume a discrete random variable  has the probability function  of 
 which depends on unknown parameter . The problem of confidence 
intervals consists in ascribing to every possible values of , e.g.  
( ) an interval  (, ) such that whenever we observe  
the probability of our being correct in ∈ is ∈≥, where  
belongs to  and is chosen in advance. Here are some terminologies which 
are used in this study:

Ÿ the confidence coefficient is inf∈∈
Ÿ the coverage probability of the interval  is ∈
Ÿ the nominal coverage probability is 

The bigger the actual coverage probability is than the nominal coverage 
probability , the corresponding interval is considered conservative. When the 
random variable  is of continuous type, we have ∈  for every .

In this study we use some properties of the cumulative distribution function 
of the binomial random variable.

Lemma 2.1.1 Let ∼. We then are able to express the right tail 
summation of the binomial probabilities in terms of the cumulative distribution 
function (cdf) of a beta distribution as follows:
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≥
  



   

      







  

       ≡

(2.1.1)

where 
 





   denotes the cdf of a beta 

random variable with parameters   and   . 
Similarly the left tail summation of binomial probabilities can be obtained as 

follows: 

≤ ≥ . (2.1.2)

Proof. For the proof we refer the exercise 3.3.22 of Hogg, McKean and Craig. ❒

Lemma 2.1.2 Let us denote the cdf of binomial random variable as a function 
of the success proportion , that is, 

≤
  



   .

The cdf is then strictly decreasing in  for   and ≥ is 
strictly increasing in  for  . 
Proof. The strictly increasing property of the upper tail sum is proved by 
showing that the partial derivative of ≥ with respect to  takes 
positive value:
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

≥

  



      
 

     

  
  



 


  
  

 

 

  

       .

The third equality follows from the following binomial identities

   


 and    


.

The other part, the strictly increasing property of the lower tail sum, is 
derived by the complement the cdf ≥ ≤.   ❒

2.2 The Exact Interval

When we are interested in testing      vs     , small 
observed values can be used as supportive evidence against the alternative 
hypothesis. With level of significance  we can reject  for ≤, 
where  is selected as the largest integer  for which ≤≤, 

that is, ≡max  ≤≤. Thus we get to reject  for 
.

Sometimes the value corresponding to an observed value  of  is more 
informative and convenient in testing hypotheses. The value is the probability 
of obtaining an effect at least as extreme as the observed one under the truth of 
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the null hypothesis. It measures how compatible sampled data are with the null 
hypothesis.  The high values imply observed data are likely with a true null, 
while low values imply data in hand are unlikely with a true null. A low 
value thus suggests that observed data provide enough evidence that we can reject 
the null hypothesis for the entire population. 

In our testing situation the value corresponding to the observed  is 
≤, denoted  here. The decision of rejecting or accepting  

is based on the value , that is,  is rejected whenever 
≤ and accepted when .

The plots of Figure 2.1 show the probability mass function and cumulative 
distribution function of the binomial random variable with  ,  . In 
this case the largest value  for which to reject  is , that is 

max  ≤≤    .
If confidence set is defined as all values  for which the observed value  

of the random variable  leads into accepting , we can set a relationship 
between hypotheses testing and interval estimation. We denote the confidence 
set as . The confidence sets can be defined for each possibly observed 
value  , thus be thought of a random set  before having 
observed any .

Figure 2.2 shows the cdf   ≤  is a decreasing function of  
for each , which implies that the confidence set  for a specific realized 
value  should have the form  , where  is the value  solving the 
equation  ≤.
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(a) Probability mass function of  

(b) Cumulative distribution function of  

Figure 2.1. Binomial distribution.
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Let us see in detail how to find the value  for each  . The 
definition of  was defined as the values of  for which the observed 
value  causes accepting , in other words, producing , we can 
have the following expression in terms of 

   ≤.

When  , Lemma 2.1.2 tells us that ≤ is strictly 

decreasing in , the confidence set  is the collection of the values  in 
the interval , where  is the value  satisfying 

≤
  



      (2.2.1)

By Lemma 2.1.1, the relationship between the cdf of binomial and beta 
distribution, 

≤  or  ,
we can obtain the   in R as qbeta().

However for  we have ≤  for all . The  with 
the observed value  is thus 1 and always exceeds . We get the confidence 
interval  . That is  .

Lemma 2.2.1 Using equation (2.2.1) we can see that the sequence     is 
strictly increasing in , that is,

   ⋯  

and we have for all  
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   ≥   . 
Figure 2.3 shows the set of   for  and   together with 

corresponding estimates  . In this case the possible smallest upper bound 
is   .

Lemma 2.2.2  The confidence coefficient of the confidence set is defined as 

inf∈∈inf∈  ,

which is  since ∈  for some . This implies for some  

∉≤.

Proof. For   we have  as the solution  of ≤. 
We thus have for  ,   with  

≤≤,

which implies that the infimum is obtained at   .   ❑

We now see that the coverage probability has continuity properties. For a fixed 
value of , the coverage probability of a confidence set  is defined as the 
probability of the interval containing that value as follows 

∈∉ ≤.
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Figure 2.2. Strictly decreasing property of  .

Figure 2.3. Upper bounds  and corresponding estimates.
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Recall from Lemma 2.2.1 that    ⋯  . Let 
us denote   for   . For ∈ , the set 
      does not vary, since for   , we have    
when  ≤. Also the fact that ≤ is decreasing function of p 
implies that ∈≥ increases continuously in  over the interval 
 .

When  reaches at , the set  does lose the value  and   drops 
by    to 

≥ ≤ . 

We can develop the similar procedures for the other intervals of . Figure 2.4 
displays the continuity property of the coverage probability. In R the plot can be 
computed by calculating

 
  

 

        .

Now suppose we are interested in testing alternative hypothesis    . 
The confidence set then is given by  

  ≥.

For   we get the confidence set equal to     , where 

 is the value  solving ≥. In R we can obtain  as 
, since Lemma 2.1.1 says ≥ .
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(a) The nominal confidence level with  

(b) The nominal confidence level with  

  

Figure 2.4. Coverage probability behavior of upper bound.
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With   we have ≥  for all values  in , we thus 
have  . The coverage probability is given by 

   


  



     .

The continuity behavior of the coverage probability is displayed in Figure 2.5.
As explained till now for lower and upper bound of confidence intervals 

corresponding to upper tail and lower tail alternative hypotheses, we can extend 
the procedure to two-sided hypothesis with each confidence coefficient  
respectively. Assuming that       for any  and any 
 , we have the desired confidence interval 
     . The coverage probability for this interval is 

        

 ≤ ∪ ≤

 ≤    ≤

≥

 

The actual coverage probability is computed in R as follows

    


  

 

       

         .
Figure 2.6 shows the behavior of the coverage probability for different sample 

sizes.
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(a) The nominal confidence level 0.95 with  

(b) The nominal confidence level 0.95 with  

  

Figure 2.5. Coverage probability behavior of lower bound.
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(a) The nominal confidence level 0.95 with   

(b) The nominal confidence level 0.95 with   

  

Figure 2.6. Coverage probability behavior of confidence interval.
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The coverage probability plots for all types of alternative hypotheses show 
conservatism, seemingly not reaching as far down as , 0.95 in the 
displayed cases. This conservative, higher than , coverage is caused by 
the fact that the supremum of a sum is not greater than the sum of supremum 
over the involved sums. For example with two-sided alternative hypothesis 
case, we have

 inf   ≤≤  
sup   ∪  
sup      
≥[sup   sup   ]


 .

Specifically with extreme , close to  or , the coverage probability plot 
shows abrupt rise to . This is due to the fact that for    
we have   , which results in 

     ≤≤  
     

  

≥.
 Similarly for    we have    , which results in 

     ≤≤  
     

   ≥.
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Therefore it does not make sense to allocate the probability  to the 
lower bound or the upper bound, which causes a conservative evaluation for 
the extreme values of . 

One of many reasons why it is impossible to achieve the exact nominal 
confidence level is due to the discrete nature of the binomial distribution. The 
Clopper-Pearson’s exact method always produces the actual coverage 
probability bigger than the nominal level. This implies the method is too 
conservative. We need a better method in the sense that its resulting 
confidence interval makes the actual coverage probability close to the nominal 
confidence level.

2.3 The Wald Interval

As pointed out in the last part of the exact method, we would like to have 
the actual coverage probability close to the nominal confidence level in 
developing a confidence interval estimation. However the discrete nature of the 
binomial distribution makes it not possible to achieve the exact nominal 
confidence level.  
The confidence interval by Wald is based on normal approximation and has 
gained universal recommendation in the elementary statistics books. The 
interval is given by 

 ± 






where  and  solves the equation ≤ . This 



- 19 -

interval is obtained through the duality of the Wald’s asymptotic normal test 
for a general problem: 


 ≤

where   is the MLE of  and   the estimated standard error of   and  is 
the × percentile of standard normal distribution or  distribution. In 
binomial case,    ,  and   .

This interval estimation was first described by Pierre-Simon Laplace in his 
1812 book Théorie analytique des probabilités (page 283). It is simple to 
calculate and often justified by the central limit theorem. Most students seem 
not to give any doubt that the larger the , the better the asymptotic property. 
They believe that the conservatism of the exact method will disappear as the 
number  get increased. However, this is not the case. Figure 2.7 shows that 
there exist significant oscillation for fixed . This swinging phenomenon is 
still present with increasing the  even to . When we fix  and vary 
values of , there exist systematic bias in the coverage probability which is 
displayed in Figure 2.8. This problematic unsatisfactory coverage probability, 
not reaching to , is bad at extreme values of . 

From this plots we can be sure that the normal approximation as a rational 
for Wald interval estimation can be seriously erratic when the true value of  
is at boundaries such as 0 or 1. 

The problematic phenomenon of coverage probability for  near 0 or 1 are 
cited in many popular textbooks. Brown, Cai & DasGupta (2001) list the 
following qualifications by examination of 11 popular textbooks:
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The confidence interval may be used if 
➀  ≥ (or );
➁ ≥ (or 10);
➂   ≥ (or );

➃ ±  does not contain 0 or 1;
➄  quite large;
➅ ≥ unless  is very small.

However they give cautions that the above prescriptions are still defective, 
saying the first two conditions are not verifiable in the estimation problem, the 
condition ➄ useless, ➅ obviously misleading. Even though we can verify the 
conditions ➂ and ➃, they say the two conditions are also useless because a 
data-driven method is not meaningful in frequentist coverage probabilities. 
From this results we feel it too dangerous to use the standard Wald interval. 
In the next sections we review better alternatives. 
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(a) Wald’s interval with z critical value

(b) Wald’s interval with  critical value

Figure 2.7. Coverage probability with varying  from 10 to 1000 for  . 
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With z critical value With t critical value
(a) Coverage probability with 95% level for   and  

With z critical value With t critical value
(b) Coverage probability with 99% level for   and  

Figure 2.8. Coverage probability with varying  over 10~1000 for  . 
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2.4 The Score Interval

The Score method is based on inverting the approximately normal test called 
the Score test that uses the null     , rather than estimated, standard 
error. We thus accept the null hypothesis if and only if the confidence interval 
contains the null parameter. The end points of the confidence intervals are the 
ones  that solves the equations 




±.

We have the resulting confidence interval as follows:


 










±




  


.

This confidence interval was first discussed by Edwin B. Wilson (1927) and 
is called as the Wilson interval in honor of him. It is sometimes termed the 
score confidence interval to highlight the inversion of the Score tests. Some 
call the interval the Wilson’s score interval combining the previous two facts. 

The midpoint of the Wilson’s score interval look embarrassing at first, 
while the center of Wald’s interval  is the maximum likelihood estimator. 
However we can figure out that the center of the score interval lies between 
 and 1/2 by expressing it as a weighted average of them:


 

 




 











 




.

This center point shrinks  toward 1/2 and the amount of shrinkage gets 
smaller as  increases. 
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The square of the coefficient of  in the term added to and subtracted 
from the centered value is also of a weighted average of the variance of a 
sample proportion with  and that with  , replacing  with  :




 








   











 












.

Figure 2.9 and 2.10 show the behavioral characteristics of coverage 
probabilities of the score interval comparing with the Wald interval with z and 
t critical values. The coverage probability for fixed  with varying  shows 
still oscillating phenomenon.  However for fixed  with varying , the 
systematic bias problem present in the Wald interval disappears in the 
Wilson’s score interval. 
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(a) Coverage Probability of Wilson’s Score Interval 

(b) Coverage Probability of Wald’s Interval

Figure 2.9. Behavioral characteristics of coverage probabilities for   and 
 .
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Wilson’s Interval Wald’s Interval with t Critical Value
(a) Coverage Probability of the Nominal 95% Confidence Intervals

Wilson’s Interval Wald’s Interval with t Critical Value
(b) Coverage Probability of the Nominal 99% Confidence Intervals

Figure 2.10. Behavioral characteristics of coverage probabilities for   and 
  .
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2.5 The Adjusted Wald Interval 

The standard Wald interval is simple and easy to memorize, but it has poor 
performance. There are many instructors who recommend the score interval 
instead of the Wald interval. However the formula is considered to be 
awkward to use in elementary statistics courses. As a compromise Agresti & 
Coull (1998) suggests a similar form to the Wald interval with a better 
estimate of  than . They have an idea from the center value of the 
score interval and define the confidence interval for  by

 ± 




 ,

where  with   and  .
When constructing 95% confidence interval, we have   and ≈. 

The center value of the score interval becomes 




≈

 .

This interval can be regarded such a version of the Wald formula as adding 
two successes and two failures with  trials, which yields a point estimate 
 . Because of its derivation background, the interval is called 
an adjusted Wald interval or the Agresti-Coull interval.

Figure 2.11 shows the coverage probabilities of the adjusted Wald interval, 
compared with those of the Wilson’s score and the Wald intervals for different .
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(a)  

(b)  

Figure 2.11. Comparison of coverage probabilities for the nominal 95% intervals.
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Ⅲ. Bayesian Confidence Intervals 

3.1 Bayesian Point Estimator

As an estimate of the binomial proportion , a statistic  is computed from 
the observed data. We can consider the posterior mean, posterior median, or 
posterior mode as suitable Bayesian point estimates of .

Suppose we use the posterior mean square (PMS) as a measure of goodness 
of an estimator. Then the PMS of an estimator  of the proportion  is 
defined as  

PMS()






      






    











      ,

where 




, i.e., the posterior mean. 

Since the last term, the squared distance of the true value from the posterior 
mean, is always non-negative, the posterior mean is the optimum estimator of 
the binomial proportion. It gives us a reasonable cause of the posterior mean 
as the estimate and an explanation of the posterior mean being the most 
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widely used Bayesian estimate.

3.2 Bayesian Confidence Intervals

In Bayesian world, we would like to identify intervals of the parameter 
space which seem to contain the true value of the parameter. After observing 
data, we can construct an interval    in a way that the interval 
has high probability of containing the true parameter.

The coverage probability of Bayesian approach can be defined by using the 
posterior probability. An interval   with endpoints computed after 
observing data  , has coverage probability of  for  if the posterior 
probability satisfies

 ∈     .

While the frequentist interprets the coverage probability of the interval as the 
probability of covering the true value before the data are observed, Bayesian 
describes it as the probability of locating the true value of  in the interval 
after observing the data. These intervals are often called credible intervals, to 
be distinct from frequentist confidence intervals. We consider a few main 
conventions for choosing two endpoints of the interval.

3.2.1 Equal-Tailed Interval

The simplest and easiest method to construct a Bayesian confidence interval 
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is to find quantiles of posterior probability density with equal tails.  A 
 confidence intervals is obtained by finding two numbers  and 
  of  posterior distribution satisfying 

    and    , 

that is, the  and  posterior quantiles respectively. 
This implies              . Thus the desired    

equal-tailed Bayesian credible interval of  is    .

  3.2.2 Highest Posterior Density Interval

When we obtain a credible interval in terms of equal-tailed property, there 
exist some points outside the interval with higher probability than some points 
inside the interval. This suggests the existence of the shortest possible interval 
 covering  of the posterior mass or density as follows:

  ① ∈  
  ② If ∈, and ∉, then       .

All points in  have higher posterior probability than points outside it. 
The interval  is termed the highest posterior density (HPD) confidence 
interval. Unfortunately, an HPD interval can not be one interval if the posterior 
density has more than one peaks. 

  3.2.3 Approximate Interval
  When the prior distribution of the binomial proportion  follows a U(), i.e, 
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beta , the posterior distribution of  after observing  successes is beta
 . The posterior density has the form ∝  , and 
its log transformation yields log   loglog .
  Taking partial derivatives we can obtain maximum likelihood estimator of  
as follows:




 





   ⇒  









  ⇒ 

 
  





This yields an asymptotic normal distribution about :



 
  

Applying the approximation we can obtain a  confidence interval 
as follows:

 





   




 .

3.3 Coverage Probability with Priors 

3.3.1 Beta prior
When  follows , its standard conjugate priors are beta 

distributions. Suppose the prior distribution of the binomial proportion  
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follows beta , then the posterior distribution of  for the observed data  
is beta . 

The 100()% equal-tailed Bayesian credible interval for  is given by
      ,

where  denotes the  quantile of a beta distribution. Thus 95% 
equal-tailed Bayesian confidence interval can be constructed by finding the 2.5th 
and 97.5th percentiles. In R they are computed by    
and    respectively. 

To obtain the 95% HPD credible interval we need to find two quantiles 
with which the interval has the lower and upper endpoints and its outside total 
area is . However it is not easy to compute them mathematically. Thus 
we approximate the beta  posterior distribution by the normal 
distribution with the same mean and variance, i.e, 



 
 ,

where 
  and  

 . The resulting 95% 

approximate credible interval is given by × ×.

3.3.2 Jeffrey Prior

The Jeffrey prior for  is defined in terms of the Fisher information; 

∝ 
,

where the Fisher information  is given by
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
 log  .

When ∼, we have



 





and  yields 


 log  






 .

Therefore  ∝ ∝ , which implies the Jeffrey prior is 
beta  with the density function 


  .

The 100()% equal-tailed Bayesian credible interval is defined as 

  ,

where     
   

 

and

   
   

.

For  , we have the lower limit 0 to avoid the result that the coverage 
probability goes to zero as  approaches 0. Similarly by the same reason the 
upper limit for  is also modified to 1.

The endpoints of the credible interval with Jeffrey prior is easily computed 
using R: 

 
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and  .

Using the HPD intervals instead of equal-tailed approach, we would have a 
better Bayesian solution with shorter interval for the same confidence level. 
However the HPD intervals are not easy to compute mathematically and are 
approximated by normal approximation. With the Jeffrey prior, the approximate 
100()% credible interval is   , 

where 
 ,  

 .

The plots in Figure 3.1 display the coverage probabilities of equal-tailed 
interval and approximate confidence interval with the Jeffrey prior. Even 
though the approximate intervals are easy to compute, they are biased than the 
equal-tailed intervals. 
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Figure 3.1. Coverage probabilities of equal-tailed and approximate intervals 
for  .
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Ⅳ. Measures of Performance

In order to choose good confidence intervals, we need useful measures of 
the performance for various interval methods. Here we consider such 
performance criteria as the mean coverage probability, the expected length, the 
average expected length and the mean absolute error. 

4.1 Mean Coverage Probability

For any confidence interval method for estimating , the actual coverage 
probability at a fixed value of  is defined 


  



     

where   if  is in the interval when  and equals 0 otherwise. 
The confidence coefficient is defined as the infimum of coverage probabilities 
over all possible values of . The definition is a theoretical concept about the 
worst possible performance, thus it is more practical to use average performance 
instead. 

As a summary measure of performance the mean coverage probability, obtained 
by averaging the coverage probabilities over all the possible values of , is 
defined as  






  
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where  is the density for .
Table 4.1 and Figure 4.1 show the mean coverage probability with root 

mean squared error for the exact, score, Wald, adjusted Wald (A&C) intervals, 
and two Bayesian intervals. Among the considered confidence intervals the 
mean coverage probability of Wilson’s score interval is closest to the nominal 
level, the Bayesian credible interval with equal-tailed approach is secondly 
close and the adjusted Wald (A&C) interval is thirdly close to the nominal 
level . However these three approaches has almost the same mean 
coverage probability as the nominal level.

And it is evident that the exact interval has the largest mean coverage 
probability, the adjusted Wald interval and Bayesian equal-tailed interval are in 
decreasing order. It implies that the confidence interval by those three methods 
show conservatism. However the Wald interval and Bayesian interval by 
normal approximation to posterior density have smaller coverage probability. 

Table 4.1. Mean coverage probabilities with root MSE in parenthesis
 Exact Score Wald Adj. Wald Equal Tail Approx Bayes
5 0.989(0.0394) 0.954(0.0248) 0.867(0.1002) 0.975(0.0304) 0.957(0.0075) 0.929(0.0206)

10 0.978(0.0286) 0.952(0.0130) 0.900(0.0577) 0.962(0.0186) 0.953(0.0031) 0.933(0.0165)
15 0.974(0.0252) 0.951(0.0148) 0.916(0.0419) 0.957(0.0154) 0.952(0.0019) 0.936(0.0140)
20 0.971(0.0225) 0.951(0.0127) 0.926(0.0274) 0.955(0.0119) 0.951(0.0011) 0.938(0.0119)
40 0.966(0.0166) 0.951(0.0079) 0.938(0.0155) 0.952(0.0083) 0.950(0.0003) 0.942(0.0079)
50 0.964(0.0155) 0.95(0.0074) 0.940(0.0127) 0.951(0.0073) 0.950(0.0001) 0.943(0.0069)
60 0.963(0.0139) 0.951(0.0056) 0.942(0.0118) 0.951(0.0058) 0.950(0.0001) 0.944(0.0059)
80 0.962(0.0139) 0.95(0.0059) 0.944(0.0800) 0.951(0.0059) 0.950(0.0001) 0.945(0.0048)

100 0.961(0.0115) 0.95(0.0053) 0.945(0.0069) 0.95(0.0053) 0.950(0.0001) 0.946(0.0041)
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Figure 4.1. Mean coverage probabilities as a function of . 

4.2 Expected Length

The expected length of confidence intervals is defined for a specific  with 
 fixed in advance as follows: 

[length(CI)]
 



   ,

where  and  are the left and the right end points of the confidence 
interval, respectively.

Figure 4.2 shows the expected widths for the nominal 95% exact, score, 
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Wald, A&C and two Bayesian intervals as a function of  for   and 
 . For small , all the intervals tend to be shorter as  approaches to 
boundary regions. The Wald intervals are shorter than the exact intervals over 
the whole range of  and the Score intervals get much shorter than exact 
intervals. The fact that the length of the Wald intervals goes to zero as  
approaches 0 or 1 implies that its interval get degenerated at   or . The 
intervals by the two Bayesian methods with equal-tailed and approximation has 
shorter length except for Wislon’s. When  , the Wilson’s score interval is 
    , the exact interval  
   ≈  log       and the adjusted 
Wald interval (A&C interval) is 



 ±



   .

With large  , the exact interval is wider than the other intervals 
except for the boundary regions where the A&C interval is a little wider than 
the other intervals, though negligible. The Bayesian method yields the shortest 
intervals.
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(a)  

(b)  

Figure 4.2. Comparison of the expected lengths for   to 100. 
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4.3 Average Expected Length

Suppose  follows the distribution . The average expected length is then 
defined over the whole interval   of  as follows:

  Average Expected Length






[length(CI)]







  



    ,

where  and  are the left and the right end points of the confidence 
interval, respectively.

There are in Figure 4.3 the average expected lengths of the exact, score, 
Wald, adjusted Wald and two Bayesian intervals for the uniform distribution of 
 with varying  from  to . It is clear from the plot that among the 
six intervals the Wald interval is the shortest, and the score interval, Bayesian 
with equal-tailed, Bayesian with approximation, the adjusted Wald interval and 
the exact interval are in the narrowness order. The tendency does not change 
for larger .
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Figure 4.3. Comparison of the average expected lengths for   to 100.
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4.4  Mean Absolute Error
The last criterion we use for comparison of the alternative intervals is the 
mean absolute error defined as the mean of the absolute difference between 
the actual coverage probability and the nominal confidence level:

Mean Absolute Error (MAE)




,

where  is the actual coverage probability for  with distribution .
There are MAEs in Figure 4.4 for the exact, score, Wald, adjusted Wald, 

equal-tailed and approximate Bayesian intervals with the uniform distribution of 
 with varying  from  to . It is clear from the plot that among the 
four intervals the Wald and equal-tailed Bayesian interval have significantly 
largest errors, while the adjusted Wald interval has the smallest mean absolute 
errors over all the considered range of . 

Figure 4.4. The mean absolute errors of the coverages for   ∼ .
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Ⅴ. Conclusions

We have reviewed major existing confidence intervals of the binomial 
proportion parameter centered on their coverage probabilities. Since the discrete 
nature of the random variable, it is impossible to obtain confidence interval 
with the exact coverage probability. Every method studied here has its own 
pros and cons.

The Clopper-Pearson interval (1934) is exact for all . The endpoints of the 
interval are computed using the quantiles of a beta distribution. However this 
interval yields that the actual coverage probability is always not less than 
nominal level , thus it keeps conservatism.

The Wald interval is considered standard in many elementary textbooks, due 
to the convenience of derivation and computation. But it shows too abnormal 
behavior of the coverage probability, and performed poorly especially at  
close to zero or one.

The Wilson’s score interval (1927) is based on inverting the score test and  
uses the standard error of null parameter, not its estimate. It has theoretical 
attraction, but is not easy to memorize the end points.

With combining the simplicity of the Wald interval and theoretical appeal of 
the Wilson’s interval, Agresti and Coull suggest an adjusted Wald interval. 
Like the Wald interval, the adjusted interval has simple formula of new  and 
 with the property of extra addition of successes and failures. 

As Bayesian intervals we reviewed the equal-tailed interval using quantiles 
of posterior probability density and the HPD intervals. But the HPD interval is 
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not easy to compute, it is approximated by normal distribution.
We evaluated each method using a few performance criteria, which results 

in the preference of the Wilson’s score, A&C and Bayesian equal-tailed 
intervals. 

This study is not a new trial but a look-back attitude to understand their 
derivations and coverage probabilities. For further study topics we will make 
efforts to find out erratic behaviors of coverage probabilities of each confidence 
interval with theoretical approach.
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Appendix: R-Codes
#--------------------------------------------------------------------------------------------------
# Figure 2.4 
# Coverage Probability Behavior of Upper Bound
# The related hypothesis: Ha: p<p0
# -------------------------------------------------------------------------------------------------
Pup.cvg=function(n,alpha,p){
        # n=10; alpha=0.05;x=2 
        # p=qbeta(1-alpha,x+1,n-x)
 U=matrix(0,n+1,4)
 x=0:n
 U[,1]=x
 U[,2]=qbeta(1-alpha,x+1,n-x)  # Upper bound for [0, P(alpha, x)) x=0,...,n
                               # When x=0,...,n-1
                               #   =P_U(1-alpha,x,n)=p*(x) is such that
                               #   p-value=P(X<=x|p*(x))=alpha   
                               # When x=n  
                               #   P(X<=n)=1 for all p
                               #   so let p*(n)=1
 U[,3]=(U[,2]>p) # For given x decide whether x belongs to CI i.e. 
                 # p in [0,P(alpha,x)) i.e., p <p*(x), for x=0,...,n-1
 U[n+1,3]=1      # Since p*(n)=1, when x=n CI=[0,1], coverage prob=1
 U[,4]=dbinom(x,n,p)
 B=sum(U[,4][U[,3]==1])  # The coverage probability for the given p 
                         # Pr{p in [0,P_U(X))}=Pr{k: p<P_U(k)}
                   # = p^n +sum_{k=0}^{n-1}P(X=k)I_{qbeta(1-a,k+1,n-k)>p}(k)  
}

#-------------------------------------------
# Check p*(i)=P(X<=i|pi)=alpha; 
#            for i=0,...,n-1
# ----------------------------------------- 
alpha=0.05 
B3=rep(0,n)
 for (i in 0:(n-1)){
    B3[i+1]=pbinom(i,n,qbeta(1-alpha,i+1,n-i))
} 
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#--------------------------------------------------------------------------
# Compute the coverage probability for any p in [0,1]
#--------------------------------------------------------------------------
n=10; alpha=0.05;
Np=50;                           # the no. of p's in [p*(k-1),p*(k)); k=1,...,n
whole.p=rep(1,Np*(n+1)+1)          # p[last]=p*(n)=1
whole.cvrg=rep(1,Np*(n+1)+1)       # coverage prob for p*(n)=1

for (k in 0:n){
 pstart=qbeta(1-alpha,k,n-k+1);  pend=qbeta(1-alpha,k+1,n-k)
                 # p*(n)=1; p*(i)=qbeta(1-alpha,i+1,n-i) i=0,...,n-1
                 # k=0 corresponds p=0 ie p in [0,p*(0))  
 p=seq(pstart,pend,length=Np+1); p=p[-(Np+1)]   
                 # Choose Np of p's in the interval [P_U(k-1), P_U(k)) 
                 # to calculate Coverage Prob P{p in C(X)} 
 whole.p[(k*Np+1):((k+1)*Np)]=p
 for (i in 1:Np) whole.cvrg[k*Np+i]=Pup.cvg(n,alpha,p[i])
}

#-----------------------------------------------
# Plot of Coverage probability
# ---------------------------------------------
plot(whole.p, whole.cvrg, type="l", xlab="",ylab="")
      # ylab=expression(paste("Probablity of Coverage  ",hat(p)[U])))
abline(h=1-alpha,lty=2)

# give xlabel and ylabel using mtext
title(line=1.5,expression(

paste("Coverage Probability Behavior of Upper Bound  ", hat(p)[U])))
mtext(expression(paste("Probablity of Coverage  ",hat(p)[U])),side=2,line=2)
mtext("p",side=1,line=2)

a1=paste("nominal confidence level=",1-alpha,"\n sample size n=",n)
text(0.5,1.0,pos=1,a1)
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#---------------------------------------------------------------------------------------------------
# Figure 2.5 
# Coverage Probability Behavior of Lower Bound
# The related hypothesis: Ha: p>p0
# -------------------------------------------------------------------------------------------------

Plow.cvg=function(n,alpha,p){
       #  n=10; alpha=0.05; x=n 
       #  p=qbeta(alpha,x,n-x+1)
 L=matrix(0,n+1,4)
 x=0:n
 L[,1]=x
 L[,2]=qbeta(alpha,x,n-x+1)  # Lower bound for (P_L(x),1] x=0,...,n
                             # When x=1,...,n
                             #   =P_L(alpha,x,n)=p*(x) is such that
                             #   p-value=P(X>=x|p*(x))=alpha   
                             # When x=0  
                             #   p-value=P(X>=0|p)=1>alpha for all p
                             #   so let p*(0)=0

 L[,3]=(L[,2]<p) # For given x decide whether x belongs to CI i.e. 
                 # p in (P_L(x),1] i.e., p>p*(x), for x=1,...,n
 L[1,3]=1        # Since p*(0)=0, when x=0 CI=[0,1], coverage prob=1
 L[,4]=dbinom(x,n,p)
 B=sum(L[,4][L[,3]==1])  # The coverage probability for the given p 
                         # Pr{p in (P_L(X),1]}=Pr{k: p>P_L(k)}
                     # = (1-p)^n + sum_{k=1}^{n}P(X=k)I_{qbeta(a,k,n-k+1)>p}(k)  
}

#--------------------------------------------------
# Check p*(i)=P(X>=i|pi)=alpha; 
#             for i=1,...,n
# ------------------------------------------------ 
 alpha=0.05
 B3=rep(0,n)
 for (i in 1:n){
    B3[i]=1-pbinom(i-1,n,qbeta(alpha,i,n-i+1))}  
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#---------------------------------------------------------------------
# Compute Coverage probability for any p in [0,1]
# -------------------------------------------------------------------
n=100; alpha=0.05;
Np=30;                        # the no. of p's in (p*(k-1),p*(k)]; k=1,...,n
whole.p=rep(0,Np*(n+1)+1)     # p[1st]=p*(0)=0
whole.cvrg=rep(1,Np*(n+1)+1)  # coverage prob for p*(0)=1

for (k in 0:n){
 pstart=qbeta(alpha,k,n-k+1);  pend=qbeta(alpha,k+1,n-k)
                 # p*(i)=qbeta(alpha,i,n-i+1) i=0,...,n
                 # k=n corresponds to p in (p*(n),1]  
 p=seq(pstart,pend,length=Np+1); p=p[-1]   
                 # Choose Np of p's in the interval (P_U(k-1), P_U(k)] 
                 # to calculate Coverage Prob P{p in C(X)} 
 whole.p[(k*Np+2):((k+1)*Np+1)]=p
 for (i in 1:Np) whole.cvrg[k*Np+1+i]=Plow.cvg(n,alpha,p[i])
}

#------------------------------------------
# Plot of Coverage probability
# ----------------------------------------
plot(whole.p, whole.cvrg, type="l", xlab="",ylab="")
    # ylab=expression(paste("Probablity of Coverage  ",hat(p)[L])))
abline(h=1-alpha,lty=2)

# give xlabel and ylabel using mtext
title(line=1.5,expression(

paste("Coverage Probability Behavior of Lower Bound  ", hat(p)[L])))
mtext(expression(paste("Probablity of Coverage  ",hat(p)[L])),side=2,line=2)
mtext("p",side=1,line=2)

a1=paste("nominal confidence level=",1-alpha,"\n sample size n=",n)
text(0.5,1.0,pos=1,a1)
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#----------------------------------------------------------------------------------------------------------
# Figure 2.6 
# Coverage Probability Behavior of Confidence Interval
# Ha: p ne p0
# i.e., both upper and lower bound
# ---------------------------------------------------------------------------------------------------------

# ------------------------------------------------------------------------
# Check P_L(alpha,x,n)<P_U(alpha,x,n) for all x=0,...,n
#      P_L(alpha,x,n)=qbeta(alpha,x,n-x+1)
#      P_U(alpha,x,n)=qbeta(1-alpha,x+1,n-x)
# -----------------------------------------------------------------------
 n=10; x=0:n; alpha=0.05
 a=qbeta(alpha,x,n-x+1);  b=qbeta(1-alpha,x+1,n-x)
 A=cbind(a,b,rep(0,11))
 A[,3]=a<b

Pboth.cvg=function(n,alpha,p){
    # n=11; alpha=0.05; x=1 
    # p=qbeta(alpha,x,n-x+1)
 B=matrix(0,n+1,5)
 x=0:n
 B[,1]=x
 B[,2]=qbeta(alpha/2,x,n-x+1)    # P_L(alpha/2,x,n)
 B[,3]=qbeta(1-alpha/2,x+1,n-x)  # P_U(alpha/2,x,n)
 B[,4]=(B[,2]<p)&(B[,3]>p)    
 if (qbeta(alpha/2,n,1)<p) B[n+1,4]=1
 if (qbeta(1-alpha/2,1,n)>p) B[1,4]=1        
 B[,5]=dbinom(x,n,p)
 Bsum=sum(B[,5][B[,4]==1])  # The coverage probability for the given p 
                         # Pr{p in (P_L(X),1]}=Pr{k: p>P_L(k)}
                    # = (1-p)^n + sum_{k=1}^{n}P(X=k)I_{qbeta(a,k,n-k+1)>p}(k)  
}

#------------------------------------------------------------
# Check p*(i)=P(X>=i|pi)=alpha; for i=1,...,n
# ---------------------------------------------------------- 
 B3=rep(0,n)
 for (i in 1:n){
    B3[i]=1-pbinom(i-1,n,qbeta(alpha,i,n-i+1))
}  
#------------------------------------------------------------------------
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# Compute Coverage probability for any p in [0,1]
# ----------------------------------------------------------------------
Coverage=function(n,alpha,Np){
         # n=no. of trials
         # alpha=0.05
         # Np=no. of p's in (p*(k-1),p*(k)]; k=1,...,n

whole.p=rep(0,Np*(n+1)+1)     # p[1st]=p*(0)=0
whole.cvrg=rep(1,Np*(n+1)+1)  # coverage prob for p*(0)=1

for (k in 0:n){
   pstart=qbeta(alpha,k,n-k+1);  pend=qbeta(alpha,k+1,n-k)

                 # p*(i)=qbeta(alpha,i,n-i+1) i=0,...,n
                 # k=n corresponds to p in (p*(n),1]  

   p=seq(pstart,pend,length=Np+1); p=p[-1]   
                 # Choose Np of p's in the interval (P_U(k-1), P_U(k)] 
                 # to calculate Coverage Prob P{p in C(X)} 

   whole.p[(k*Np+2):((k+1)*Np+1)]=p
   for (i in 1:Np) whole.cvrg[k*Np+1+i]=Pboth.cvg(n,alpha,p[i])

   }
 return(list(p=whole.p, cov.prg=whole.cvrg))
}

#--------------------------------------------
# Plot of Coverage probability
# ------------------------------------------
n=11; alpha=0.05; Np=30
A=Coverage(n,alpha,Np)
whole.p=A$p; whole.cvrg=A$cov.prg
plot(whole.p, whole.cvrg, type="l", xlab="",ylab="", ylim=c(0.95,1.00))
abline(h=1-alpha,lty=2)

# give xlabel and ylabel using mtext
title(line=1.5,expression(

paste("Coverage Probability of Confidence Intervals [", hat(p)[L]," , ", hat(p)[U],"]")))
mtext(expression(paste("Probablity of Coverage for [ ", hat(p)[L]," , ", hat(p)[U]," 

]")),side=2,line=2)
mtext("p",side=1,line=2)

a1=paste("nominal confidence level=",1-alpha,"\n sample size n=",n)
text(0.5,1.0,pos=1,a1)
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# --------------------------------------------------------------------------------------------
# Figure 2.8-11 
# Comparison of Coverage Probabilities for 
# the Nominal 95% Intervals
# --------------------------------------------------------------------------------------------
# Coverage probability of 
#  1) Wilson's Score
#  2) Wald 
#  3) Wald with t-critical
#  4) Mid-P
#  5) Continuity-corrected Score
# -------------------------------------------------------------
# n=5; alpha=0.05; p=0.05 
Cvgprob.fixedP=function(n,alpha,p){
    # Coverage Probability at a fixed value of p

x=0:n
px=dbinom(x,n,p)
z.crt=qnorm(1-alpha/2)
phat=x/n

xtilde=x+z.crt^2/2
ntilde=n+z.crt^2
ptilde=xtilde/ntilde
den=1+z.crt^2/n
wgt=n/(n+z.crt^2)
mid.point=phat*wgt+0.5*(1-wgt)
z.coef=phat*(1-phat)*wgt+(1/4)*(1-wgt)

ws.width=sqrt(z.coef/(n+z.crt^2))
wd.width=sqrt(phat*(1-phat)/n)
adjwd.width=sqrt(ptilde*(1-ptilde)/ntilde)

 WS=WDz=WDt=AWD=matrix(0,n+1,5)
colnames(WS)=colnames(WDz)=colnames(WDt)=colnames(AWD)=c("k",
"L_CI","U_CI",paste("p=",p,sep=""),"P(X=k)")

 # Wilson Score CI 
 WS[,1]=x
 WS[,2]=mid.point-z.crt*ws.width
 WS[,3]=mid.point+z.crt*ws.width
 WS[,4]=(WS[,2]<p)&(WS[,3]>p)   
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 WS[,5]=px 
Cvgprob.WS=sum(WS[,5][WS[,4]==1])  # coverage prob of Wilson's Score CI

 # Wald CI with z-critical
WDz[,1]=x
WDz[,2]=phat-z.crt*wd.width
WDz[,3]=phat+z.crt*wd.width
WDz[,4]=(WDz[,2]<p)&(WDz[,3]>p)

 WDz[,5]=px
 Cvgprob.WDz=sum(WDz[,5][WDz[,4]==1])  # coverage prob of Wald's CI
 
 # Wald CI with t-critical

t.crt=qt(1-alpha/2,n-1)
WDt[,1]=x
WDt[,2]=phat-t.crt*wd.width
WDt[,3]=phat+t.crt*wd.width
WDt[,4]=(WDt[,2]<p)&(WDt[,3]>p)

 WDt[,5]=px
 Cvgprob.WDt=sum(WDt[,5][WDt[,4]==1])  # coverage prob of Wald's CI

 # Adj Wald CI 
AWD[,1]=x
AWD[,2]=ptilde-z.crt*adjwd.width
AWD[,3]=ptilde+z.crt*adjwd.width
AWD[,4]=(AWD[,2]<p)&(AWD[,3]>p)

 AWD[,5]=px
 Cvgprob.AWD=sum(AWD[,5][AWD[,4]==1])  # coverage prob of Wald's CI   

    return(list(WS=Cvgprob.WS, WDz=Cvgprob.WDz, WDt=Cvgprob.WDt,
AWD=Cvgprob.AWD))

 }

#------------------------------------------------------------------------
# Coverage probabilities for all possible values of p
# which is used in plotting it with Exact CI
# -----------------------------------------------------------------------
Cvgprob.allP=function(n,alpha,Np){
# Np=30
 CV=matrix(0,Np*(n+1),5)
 colnames(CV)=c("p", "Wislon","Wald.z", "Wald.t","AdjWald")

 for (k in 0:n){
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   pstart=qbeta(alpha,k,n-k+1);  pend=qbeta(alpha,k+1,n-k)
                 # p*(i)=qbeta(alpha,i,n-i+1) i=0,...,n
                 # k=n corresponds to p in (p*(n),1]  
   p=seq(pstart,pend,length=Np+1);p=p[-1]   
                 # Choose Np of p's in the interval (P_U(k-1), P_U(k)] 
                 # to calculate Coverage Prob P{p in C(X)} 
   CV[(k*Np+1):((k+1)*Np),1]=p
   for (i in 1:Np) {

a=Cvgprob.fixedP(n,alpha,p[i])
CV[k*Np+i,2:5]=c(a$WS,a$WDz,a$WDt, a$AWD)

   }
 }
 return(CV)
}

# -----------------------------------------------------------------
# Figure 2.8-10
# Behavioral characteristics of coverage probability
# for various methods
# ----------------------------------------------------------------
par(mar=c(4,3,2,1))
alpha=0.05
A=Cvgprob.allP(30,alpha,30)
n=dim(A)
A1=A[-n,]
plot(A1[,1],A1[,4],type="l", xlab="p", ylab="",ylim=c(0.5,1.0))
abline(h=1-alpha, lty=2)

# --------------------------------------------------------------------
# Figure 2.11
# Compare coverage probability of CIs
# for various methods according to sample sizes
# Exact, Wilson, Wald with z, Wald with t
# -------------------------------------------------------------------
par(mar=c(4,3,2,1))
A=Cvgprob.allP(10,0.05,30)
n=dim(A)
A1=A[-n,]
plot(A1[,1],A1[,3],type="l", xlab="p", ylab="",ylim=c(0.5,1.0))
lines(A1[,1],A1[,2],lty=2,col="blue")
lines(A1[,1],A1[,5],lty=3, col="red")
legend(0.4, 0.7, lty=1:3, bty="n", col=c("black", "blue", "red"),
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  legend=c("Wald", "Wilson","Adj Wald"))
abline(h=1-alpha, lty=2)

# --------------------------------------------------------------------
# Figure 3.1 
# Bayesian Coverage Probabilities 
# of Equal-tailed and approximate Intervals
# ------------------------------------------------------------------------
# Bayesian Credible Region with Equal-Tailed Approach
# for a binomial proportion p with Jeffrey prior
# p ~ beta(a,b)
# X|p ~ bin(n,p)
# p|x ~ beta(a+x, b+n-x)
# E(p|x)=(a+x)/(a+b+n)
# Var(p|x)=(a+x)(n-x+b)/ (a+b+n)^2 (a+b+n+1)  
#
Bay.cvg1p=function(alpha,a,b,n,p){

# Coverage probability of
# Bayesian CI with Equal-tailed quantiles
# prior beta(a,b)
# inputs: alpha=0.05; a=b=1/2; n=50; p=0.5

x=0:n
px=dbinom(x,n,p)
Eq.plow=qbeta(alpha/2,a+x,b+n-x)
Eq.pup=qbeta(1-alpha/2,a+x,b+n-x)
Length.Beq=Eq.pup-Eq.plow
EL.Beq=sum(Length.Beq*px)

z.crt=qnorm(1-alpha/2)
Amean=(a+x)/(a+b+n)
Aden=(a+b+n)^2*(a+b+n+1)
Avar=(a+x)*(n-x+b)/Aden
Asd=sqrt(Avar)
Apup=Amean+z.crt*Asd
Aplow=Amean-z.crt*Asd
Length.Bap=2*z.crt*Asd
EL.Bap=sum(Length.Bap*px)

A=E=matrix(0,n+1,5)
  E[,1]=x
 E[,2]=Eq.plow ; E[1,2]=0     # modification
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 E[,3]=Eq.pup  ; E[n+1,3]=1
 E[,4]=(E[,2]<=p)&(E[,3]>=p)   
 E[,5]=px 

Cvgprob.E=sum(E[,5][E[,4]==1])  # coverage prob of Bayesian Equal Tailed

A=matrix(0,n+1,5)
  A[,1]=x
 A[,2]=Aplow; #A[1,2]=0     # modification
 A[,3]=Apup;  #A[n+1,3]=1
 A[,4]=(A[,2]<=p)&(A[,3]>=p)   
 A[,5]=px 

Cvgprob.A=sum(A[,5][A[,4]==1]) 
return(list(Eq=Cvgprob.E, As=Cvgprob.A,EL.Beq=EL.Beq, EL.Bap=EL.Bap))

}

ELength=function(n,alpha,p){
# Expected Length of CI at a fixed value of p
# n is fixed in advance 
# E[Length(CI)]=Sum_{k=0}^n {length[CI(k,p)]*P(x=k)}
x=0:n
px=dbinom(x,n,p)
z.crt=qnorm(1-alpha/2)

# Exact Method
U.exact=qbeta(1-alpha/2,x+1,n-x)
L.exact=qbeta(alpha/2,x,n-x+1)
Length.exact=U.exact-L.exact
EL.exact=sum(Length.exact*px)

# Wilson Method
phat=x/n
wgt=n/(n+z.crt^2)
s1=phat*(1-phat)*wgt+0.25*(1-wgt)
s2=sqrt(s1/(n+z.crt^2))
EL.wilson=2*z.crt*sum(s2*px)

# Wald Method
a1=sqrt(phat*(1-phat)/n)
EL.wald=2*z.crt*sum(a1*px)

# Adjusted Wald
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xtilde=x+z.crt^2/2
ntilde=n+z.crt^2
ptilde=xtilde/ntilde
aw1=sqrt(ptilde*(1-ptilde)/ntilde)
EL.AWD=2*z.crt*sum(aw1*px)

return(list(exact=EL.exact, wilson=EL.wilson, 
wald=EL.wald, adj=EL.AWD))

}

# Check the function Bay.cvg1p
# a=Bay.cvg1p(0.05,1/2,1/2,50,0.02)
# b=Bay.cvg1p(0.05,1/2,1/2,50,0.98)

# ------------------------------------------------------------
# Function to compute coverage probabilities
# over the interval of p [0,1] uniform 
# -----------------------------------------------
Bay.cvgallp=function(alpha,a,b,n){

np=1000
p=seq(0.0,1.0,length=np)
CV=matrix(0,np,3)
for (i in 1:np) {
cvg=Bay.cvg1p(alpha,a,b,n,p[i])
CV[i,]=c(p[i],cvg$Eq,cvg$As)

   }
 return(CV)
}

#-------------------------------------------------------
# Figure 3.1 
# Plot the coverage probability for n=50
# -----------------------------------------------------
x=Bay.cvgallp(0.05,1/2,1/2,50)
par(mar=c(4,3,2,1))
plot(x[,1],x[,2],xlab="p", ylab="",type="l", ylim=c(0.84,1.00))
abline(h=1-alpha, lty=2)
lines(x[,1],x[,3],col="blue", lty=2)
legend(0.4,0.90,lty=c(1,2),legend=c("Equal-Tailed","Approximate"),bty="n")
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# ---------------------------------------------------------------------------------
# Table 4.1 
# Comparison of Mean coverage probability with root MSE
# for the various sample size 
# 1) Bayesian Credible Region
# -----------------------------------------------------------------
nc=c(5,10,15,20,40,50,60,80,100)
MC=matrix(0,length(nc),5)
MC[,1]=nc
for (i in 1:length(nc)){

X=Bay.cvgallp(0.05,1/2,1/2, nc[i])
Xmean=apply(X[,2:3],2, mean)
MC[i,2]=Xmean[1] 
MC[i,3]=sqrt(mean(X[,2]-0.95)^2)
MC[i,4]=Xmean[2]
MC[i,5]=sqrt(mean(X[,3]-0.95)^2)

}

#--------------------------------------------------------------------------------
# 2) Mean coverage probability and Root MSE
#   for the various sample size and 
#   p from uniform or beta distribution
#   for Exact, Wilson, Wald with z, Wald with t, Adj-Wald
# ------------------------------------------------------------------------------

Comp.cvg.beta=function(n, alpha, Nsim){
  CVG=matrix(0, Nsim, 6)
  # colnames(CVG)=c("p","Exact","Wilson","Wald.z", "Wald.t","Adj Wald")
  for(j in 1:Nsim){
    # p=rbeta(1,3.5, 31.5)   # beta(3.5, 3.5)
     p=rbeta(1,12,12)        # beta(12, 12)
     CVG[j,1]=p
     CVG[j,2]=Pboth.cvg(n,alpha,p)    # Exact Method
     a=Cvgprob.fixedP(n,alpha,p)      # Wilson, Wald, Adj-Wald
     CVG[j,3:6]=c(a$WS,a$WDz,a$WDt, a$AWD)
  }
  mean.cvg=apply(CVG[,2:6],2,mean)
  X=CVG[,2:6]-0.95
  RMSE.cvg=sqrt(apply(X^2,2,mean))

  return(c(mean.cvg, RMSE.cvg))
}



- 63 -

nsize=c(5,10,15,20,40,50,60,80,100); alpha=0.05
Nsim=1000
ntype=length(nsize)
A=matrix(0,ntype,11)
colnames(A)=c("n","m-Ex","m-WS","m-WDz","m-WDt","m-AWD",
             "Rm-Ex","Rm-WS","Rm-WDz", "Rm-WDt", "RM-AWD")
for (k in 1:ntype){
n=nsize[k]
#A[k,]=c(n,Comp.cvg(n,alpha,Nsim))        # If Uniform
A[k,]=c(n,Comp.cvg.beta(n,alpha,Nsim))     # If Beta distn
}

# In order to have the Table 4.1
# combine MC and A

# ---------------------------------------------------------------
# Figure 4.1 
# Mean coverage probability as a function of n
# We need the output A and MC from Table 4.1
# ---------------------------------------------------------------
par(mar=c(3,5,2,2))
nc=0.8  # point size
F4=cbind(A[,2:4],A[,6],MC[,2],MC[,4])
 colnames(F4)=c("Ex","WS","WD","AdW","B-Eq","B-Ap")
plot(nsize,F4[,1],type="l", ylim=c(0.85,1.0), xlab="n", ylab="", lty=3,cex=nc)
color=c("red","purple","green","red","purple","green")
for (k in 2:6) {

lines(nsize,F4[,k],lty=k,cex=nc)
}
legend("topright", lty=1:6, 

  legend=c("Exact", "Score", "Wald", "AdjWald","B-Equal","B-App"))

# ----------------------------------------------------------------------------------------------
# Figure 4.2 Comparison of the Expected Lengths
# Actual coverage probability
# for p from uniform(0,1)
# ---------------------------------------------
Comp.cvg=function(n, alpha, Nsim){
  CVG=matrix(0, Nsim, 6)
#  colnames(CVG)=c("p","Exact","Wilson","Wald.z", "Wald.t", "Adj Wald")



- 64 -

  for(j in 1:Nsim){
     p=runif(1)
     CVG[j,1]=p
     CVG[j,2]=Pboth.cvg(n,alpha,p)
     a=Cvgprob.fixedP(n,alpha,p)
     CVG[j,3:6]=c(a$WS,a$WDz,a$WDt,a$AWD)
  }
  mean.cvg=apply(CVG[,2:6],2,mean)
  X=CVG[,2:6]-0.95
  RMSE.cvg=sqrt(apply(X^2,2,mean))

  return(c(mean.cvg, RMSE.cvg))
}

# --------------------------------------------------------------------------------
# Figure 4.2-4.4
# A. Expected Length of CI 
#  as a function of p with n fixed in advance
# B. Average Expected Length
#  over p in [0,1] as a function of n.
# C. Mean Absolute Error
#  over p as a function of n
# --------------------------------------------------------------------------------

ELength=function(n,alpha,p){
# Expected Length of CI at a fixed value of p
# n is fixed in advance 
# E[Length(CI)]=Sum_{k=0}^n {length[CI(k,p)]*P(x=k)}
x=0:n
px=dbinom(x,n,p)
z.crt=qnorm(1-alpha/2)

  # Exact Method
U.exact=qbeta(1-alpha/2,x+1,n-x)
L.exact=qbeta(alpha/2,x,n-x+1)
Length.exact=U.exact-L.exact
EL.exact=sum(Length.exact*px)

   # Wilson Method
phat=x/n
wgt=n/(n+z.crt^2)
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s1=phat*(1-phat)*wgt+0.25*(1-wgt)
s2=sqrt(s1/(n+z.crt^2))
EL.wilson=2*z.crt*sum(s2*px)

   # Wald Method
a1=sqrt(phat*(1-phat)/n)
EL.wald=2*z.crt*sum(a1*px)

   # Adjusted Wald
xtilde=x+z.crt^2/2
ntilde=n+z.crt^2
ptilde=xtilde/ntilde
aw1=sqrt(ptilde*(1-ptilde)/ntilde)
EL.AWD=2*z.crt*sum(aw1*px)

return(list(exact=EL.exact, wilson=EL.wilson, 
wald=EL.wald, adj=EL.AWD))

}

# ------------------------------------------------------------
# Figure 4.2 
# Compute Expected Length of CI for a p in [0,1]
# and plot it 
# ------------------------------------------
n=100; alpha=0.05; 
p=seq(0,1,by=0.01); np=length(p)
A=matrix(0,np,6)
for (k in 1:np){ 

a=ELength(n,alpha,p[k])
A[k,1:4]=c(a$exact, a$wilson, a$wald, a$adj)
b=Bay.cvg1p(alpha,1,1,n,p[k])    # U(0,1)=Beta(1,1)
A[k,5:6]=c(b$EL.Beq, b$EL.Bap)

}

plot(p,A[,1],type="l",xlab="",ylab="E(width)")
for (k in 2:6){

lines(p,A[,k],lty=k)
}

lines(p,A[,5],col="red")     # Bayes with equal tailed
lines(p,A[,6],col="blue")    # Bayes with approximate
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legend(0.3,0.15,lty=1:6,
c("Exact","Wilson","Wald","AdjWald","Bayes_Eq","Bayes.App"),
col=c("black","black","black","black","red","blue"))

# ---------------------------------------------------
# Figure 4.3-4.4
# Compute Average Expected Length and
# Mean Absolute Error
# as a function of sample size and plot it 
# --------------------------------------------------
AvgEL=function(n,alpha) {
        # Average Expected Length

p=seq(0,1,by=0.01); np=length(p)
A=matrix(0,np,6)
for(k in 1:np){ 
a=ELength(n,alpha,p[k])
A[k,1:4]=c(a$exact, a$wilson, a$wald, a$adj)
b=Bay.cvg1p(alpha,1,1,n,p[k])    # U(0,1)=Beta(1,1)
A[k,5:6]=c(b$EL.Beq, b$EL.Bap)
}

AL=apply(A,2,mean)
}

AbsErr=function(n,alpha,binomp){ 
   # Absolute Error
  p=binomp
  AE=Pboth.cvg(n,alpha,p)       # Cov. prob for exact method 
  a=Cvgprob.fixedP(n,alpha,p)    # coverage probability for approximate methods
  b=Bay.cvg1p(alpha,1,1,n,p)     # Coverage Prob for Bayesian
  Abs.Error=abs(c(AE, a$WS, a$WDz, a$AWD, b$Eq, b$As)-(1-alpha))  #relative error
}

MeanAbsErr=function(n,alpha) {
    # Mean Absolute Error

p=seq(0,1,by=0.01); np=length(p)
A=matrix(0,np,6)
for(k in 1:np){ 
A[k,]=AbsErr(n,alpha,p[k])   # Exact, Wilson, Wald-z, Adj-WD, B-eq, B-appr
}

AL=apply(A,2,mean)
}
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nsize=c(seq(10,25),seq(30,100,by=10)); nlen=length(nsize)
B=matrix(0,nlen,6)
MAE=matrix(0,nlen,6)
for (k in 1:nlen){

B[k,]=AvgEL(nsize[k],0.05)
MAE[k,]=MeanAbsErr(nsize[k],0.05)

}

#--------------------------------------------
# Figure 4.3
# Plot Average Expected Length
# ------------------------------------------
plot(nsize,B[,1],type="l",ylim=c(0,0.6),xlab="", ylab="")
mtext("n",side=1,line=1.5)
mtext("Avg[E(width)]",side=2,line=2.5)
for (k in 2:6){

lines(nsize,B[,k],lty=k)
}
lines(nsize,B[,5],col="red")
lines(nsize,B[,6],col="blue")
legend(15,0.6,lty=1:6,c("Exact", "Score", "Wald", "A&C", "Bayes.Eq", "Bayes.Ap"),

col=c("black","black","black","black","red","blue"))

#--------------------------------------------
# Figure 4.4
# Plot Mean Absolute Error
# ------------------------------------------
plot(nsize,MAE[,1],type="l",ylim=c(0,0.6),xlab="", ylab="")
mtext("n",side=1,line=1.5)
mtext("E[|error|]",side=2,line=2.5)
for (k in 2:6){

lines(nsize,MAE[,k],lty=k)
}
lines(nsize,MAE[,5],col="red")
lines(nsize,MAE[,6],col="blue")
legend(15,0.6,lty=1:6,c("Exact", "Score", "Wald", "A&C", "Bayes.Eq", "Bayes.Ap"),

col=c("black","black","black","black","red","blue"))
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