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Chapter 1

Introduction

In control and system theory the fundamentally important concept of
controllability arose naturally during the early development of optimal con-
trol theory in the 1960s and was developed by a number of mathematicians

and engineers in the world.

In addition to making further contributions to control theory of discrete
processes, the present paper gives a treatment of constrained control prob-

lems with emphasis-on the controllability of dynamical-discrete-time systems.

Control theory of nonlinear systems requires more sophisticated methods
than those of linear systems. The difficulties increase to the same extent as
passing from linear discrete-time systems to nonlinear discrete-time systems,
especially when the constraints on both control and state are involved, the

nonlinear controllability problem becomes to be considerably difficult.

We deal with the.existence, uniqueness, and a variation of solutions of the
nonlinear control system with nonlinear monotone hemicontinuous and coer-
cive operator. Of caurse, we study the semilinear case with linear principal

operator satisfying Garding’s inequality.

For general nonlinear control systems, we wiuse several approaches for

the study of controllability problem:
(1) Fixed-point methods

(2) Methods based on functional analysis



(3) Approximate linearization methods based on the stability theorems.
This dissertation is organized as follows;

In Chapter 2, we obtain the regularity for semilinear equation by con-
verting the problem into a fixed point problem with nonlinear monotone
hemicontinuous and coercive operator. Moreover, We show the approximate

cotrollability for semilinear equation.

The previous results on the approximate controllability of a semilinear
control system have been studied as a particular case of sufficient condi-
tions. In [1], Carrasco and Lebia give sufficient conditions for approximate
controllability of parabolic equations with delay and“in [2, 3, 4, 5, 6], the
authors proved the approximate controllability under the range conditions of

the controller B.

However, Triggian [7] proved that the abstract linear system is never
exactly controllable in an infinite dimensional space when the semigroup

generated by A is compact.

Our approximate controllability is an attemptto extend under more gen-
eral conditions. We shew that.the input to-solution map is compact by using
the fact that L2(0,7;V)NW™2(0,T;V*) furnished with the usual topology
is compactly embedded in L?*(0, 7T, H) provided that the injection V C H is

compact.

In Chapter 3, as mentioned in chapter 2, the principal operator A is
a monotone hemicontinuous operator from V' to V* and satisfies the coer-

cive condition and B is a bounded linear operator from the Banach space

L*(0,T;U) to L*(0,T;H). If Bu € L*(0,T;V*), it is well known as the



quasi-autonomous differential equation(see Theorem 2.6 of Chapter III in

Barbu [8]).

The existence and the norm estimate of a solution was given in [8]. Based
on the result, we intend to establish the approximate controllability for equa-
tion. Approximate controllability for a class of systems governed by a class of
nonlinear evolution equations with nonlinear operator A have been studied
in references by Naito [2] and Zhou [5]. As for the semilinear control sys-
tem with the linear operator A generated Cy-semigroup, Naito [2] proved the
approximate controllability under the range conditions of the controller B.
The papers treating-the controllability for systems with nonlinear principal
operator A are not so many. We will prove the approximately controllability
for (E) under a rather applicable assumption on the range of the control

operator B.

In Chapter 4, we transform the variational inequality into nonlinear func-
tional differential control problem according to the subdifferential operator
0¢ and deal with the existence for solution when the nonlinear mapping f is
a Lipschitz continuous from-R x V into H. In view of the monotonicity of
d¢, we show that the solution mapping is continuous. Thereafter, we obtain
the approximate controllability for the control system governed by the vari-
ational inequality problem with the control term Bu instead of k. Sufficient
conditions for approximate controllability of the system are discussed under

the bounded condition on the controller operator B, which is that for any



e>0and p e L?0,T; H) there exists a u € L*(0,T;U) such that

S S(T — s){p(s) — (Bu)(s)}| < e,

|| Bul|p20,6m) < aul|plle2opmy, 0<t<T,

where ¢; is constant and independent of p. S(¢) is an analytic semigroup

generated by A.

In Chapter 5, we deal with optimal control problems governed by semilin-
ear parabolic type equations in Chapter 4. Let U be a Hilbert space of control
variables, and B be a bounded linear operator from U into L*(0,T; H). Let
admissible set U,q be a closed convex subset of U. Let J = J(v) be a given
quadratic cost function. We eonsider optimal control problems finding a con-
trol 4 € Uy for a given cost function. First of all, we study, the regularity

and a variational of constant formula for solutions of the nonlinear functional

differential equation. Thereafter, we prove the existence and the uniqueness
of optimal control for the problem. Consequently, in view of the monotonic-
ity of 0¢, we show that.the mapping u — x, is Lipschitz continuous in order
to establish the necessary -eonditions of ©ptimality of optimal controls for

various observation cases.

We will also characterize the optimal controls by giving necessary con-
ditions for optimality by proving the Gateaux differentiability of solution

mapping on control variables.



Chapter 2
Approximate controllability and regularity for

nonlinear differential equations

2.1. Introduction

Let H and V' be two real separable Hilbert spaces such that V' is a dense
subspace of H. We are interested in the following nonlinear differential con-

trol system on H:

o' (t) + Ax(t) = gty [y (185, )ds) + (Bu)(t), "0 < t,
(D=0, =0 (5] — -

(SE)

where the nonlinear term, which is a Lipschitz continuous operator, is a semi-
linear version of the quasilinear form. The principal operator A is assumed
to be a single valued; monotone operator, which_ is hemicontinuous and co-
ercive from V' to V*._ Here V* stands for the dual space of V. Let U be
a Banach space of control variables.The controller B is a linear bounded
operator from a Banach space L*(0,T;U) to L?(0,T; H) for any T > 0. Let
the nonlinear mapping k be Lipschitz continuous from R x [—h, 0] x V into H.
If the right side of the equation (SE) belongs to L2(0,T; V*), it is well known
as the quasi-autonomous differential equation(see Theorem 2.6 of Chapter

11 in [8)).



The problem of existence for solutions of semilinear evolution equations
in Banach spaces has been established by several authors [8, 9, 10]. We refer
to [9, 11, 12] to see the existence of solutions for a class of nonlinear evolution

equations with monotone perturbations

First, we begin with the existence, and a variational constant formula for
solutions of the equation (SE) on L?(0,T;V) N W12(0,T;V*), which is also
applicable to optimal control problem. We prove the existence and unique-
ness for solution of the equation by converting the problem into a fixed point
problem. Thereafter, based on the regularity results for solutions of (SE), we
intend to establish the approximate controllability for.(SE). The controllabil-
ity results for linear control systems have been proved by many authors and
several authors have extended these concepts to infinite dimensional semi-
linear system (see [3, 4, 5]). In recent years, as for the controllability for
semilinear differential equations, Carrasco and Lebia [1] discussed sufficient
conditions for approximate controllability of parabolic equations with delay,
and Naito [2]and [3, 4, 5, 6] proved the approximate controllability under

the range conditions of the controller B.

The previous results on the approximate controllability of a semilinear
control system have been proved as a particular case of sufficient conditions
for the approximate solvability of semilinear equations by assuming either
that the semigroup generated by A is a compact operator or that the cor-
responding linear system (SE) when g = 0 is approximately controllable.
However, Triggian [7] proved that the abstract linear system is never exactly

controllable in an infinite dimensional space when the semigroup generated



by A is compact. Thus, we will establish the approximate controllability

under more general conditions on the nonlinear term and the controller.

Our goal in this section is to establish the approximate controllablility for
(SE) under a stronger assumption that {y : y(t) = (Bu)(t), v e L*(0,T;U)
} is dense subspace of L?(0, T, H), which is reasonable and widely used in case
of the nonlinear system. We show that the input to solution(control to state)
map is compact by using the fact that L2(0,T;V)NWH2(0,T; V*) furnished
with the usual topology is compactly embedded in L?(0, T, H) provided that

the injection V' C H is compact.

Lastly we give a simple example to which the range conditions of the

controller can be applied.

2.2. Nonlinear functional equations

Let H and V" be two real Hilbert spaces. Assume and V' is/dense subspace
in H and the‘injection of V into H is continuous. If H s identified with
its dual space we may write .V C H C V* densely and the corresponding
injections are continuous. The norm-on V(resp. H) will be denoted by || - ||
(resp. |-]). The duality pairing between the element v; of V* and the element
vy of V' is denoted by (vy,v), which is the ordinary inner product in H if

v1, vy € H. For the sake of simplicity, we may consider

lulle < ful <|lull, weV



where || - ||« is the norm of the element of V*. If an operator A is bounded
linear from V to V* and generates an analytic semigroup, then it is easily

seen that

T
H={zxecV": / || Aetx||2dt < oo},
0

for the time T > 0. Therefore, in terms of the intermediate theory we can
see that
(V,V)sy=H

where (V,V*) 1o denotes the real interpolation space between V and V*.

We note that a nonlinear operator A is said to be hemicontinuous on V'
if

—lim A ty)= A
w —lim (z'+ ty) a:

for every x, y € V. where ”w—lim” indicates the weak convergence on V*. Let
AV — V* be given a single valued, monotone operator and hemicontinuous

from V to V* such that
(Al) A(O) =0, (AU—A’U,U—U) 2w1||u—v||2—w2|u—v|2,

(A2)  [|Aulls < ws((lull +1)

for every u, v € V where ws € R and wy, w3 are some positive constants.

Here, we note that if 0 # A(0) we need the following assumption

(Au, u) > wifu][* — wslul?



for every u € V. It is also known that A is maximal monotone and R(A) = V*

where R(A) denotes the range of A.

Let the controller B is a bounded linear operator from a Banach space

L?(0,T;U) to L*(0,T; H) where U is a Banach space.

For each t € [0, 7], we define z; : [—h,0] — H as
z(s) =z(t+s), —h<s<O0.

We will set
Il = L*=h,0; V) 'and R*=[0,00).

Let £ and B be the Lebesgue o-field on [0, co) and the Borel o-field on [—h, 0]

respectively. Let k : RT x R*¥ x II — H be a nonlinear mapping satisfying

the following;:

(K1) For any z. € II the mapping k(:, -, 2.) is strongly £ x B-measurable;

(K2) There exist positive constants Ky, K7 such that

IRt 5, 26) = k(t, 5, y )b K = g [,

|k(t,5,0)] < Ko
for all (t,s) € Rt x [—h,0] and z.,y. € II.
Let g : RT xII x H — H be a nonlinear mapping satisfying the following:

(G1) Foranyz €ll,y € H the mapping g(-, x.,y) is strongly £-measurable;



(G2) There exist positive constants Lo, Ly, Ly such that
gtz y) — g(t, 2., 9)| < Luflw. — &.f|u + Lofy — 91,

’g(ta Oa O)’ S LO

forallt e RT, z.,2. € II, and y,5 € H.

Remark 2.2.1 The above operator g is the semilinear case of the nonlinear

part of quasilinear equations considered by Yong and Pan [13].

For x € L*(—h,T; V), T > 0 we set

t
G(t,x) :g(t,ajt,/ k(t, s, xs)ds).
0

Here as in [13] we consider the Borel measurable corrections of z(-).

Lemma 2.2.1 Let x € L*(—h,T;V). Then the mapping ¢ -+ z; belongs to
C([0, T];1I) and

e | Loy < VT @bzt (2.2.1)

Proof. 1t is easy to verify the first paragraph and (2.2.1) is a consequence

of the estimate

T T 0
Ao < [ lladfide< [ [ flate+ o) Pdsa
0 0 —

T T
< /0 dt/h lz(s)*ds < T2 72 vy

10



Lemma 2.2.2 Let x € L*(—h,T;V), T > 0. Then G(-,z) € L*(0,T; H) and

G (-, 2)|| 20,150y < LoVT + LyK T3 /\/3 (2.2.2)

+ (LT + Loy Ky T3 )V 2) 2] 2oy
Moreover if z1, @y € L*(—=h,T;V), then

NG (- 21) — Gy o)l |2 < (VT + LK T2V 2) |21 — || 2 nv)-
(2.2.3)

Proof. 1t follows from (K2) and (2.2.1) that

H/ k('asvxs)dsHLz(O,T;H) < H/ k('asvo)ds"Lz(O,T;H)
0 0
£ / R0, T . 0))0: ko )
0
T t
< Ko T2/ /B 4 | / | / K lds e} 2
0 0

T t
< KoT*2/v/B + { / K24 / e dsdt}?
0 0

< KoT*2 /N34 KxTIV2| |2 | 120,m)

< KoT32 V3 + K\ T3 V2| |2|| 2 hrvy

11



and hence, from (G2), (2.2.1) and the above inequality it is easily seen that

NG o) r20mm) < G0+ |G(2) — G- 0)]]
< LoVT + Lil|z.||L20,mmy + Lol /0. (-, s, 2)ds|| L2 (0, m)
< LoVT + LlﬁHxHLQ(—h,T;V)
+ Lo(KoT*? V3 + KaT* V2|2 12 (o).

Similarly, we can prove (2.2.3). O

Let us considerthe quasi-autonomous differential equation

o (@ - Az(t) = f&), 0<t<T,
2(0) = ¢°

(E)
where A satisfies the hypotheses mentioned above. The following result is
from Theorem 2.6 of ChapterIIT in [8].

Proposition 2.2.1 . Let ¢° &-H and_f € 42(0, T;V*). Then there exists a

unique solution x of (E) belonging to
C([0,T]; H)N L*(0,T; V)N W0, T; V*)

and satisfying

(1) + / z(s)|[2ds < C1(6° + / /()| 2ds). (2.2.4)
[ < cigep + [l (2:25)

12



where (] is a constant.

Acting on both sides of (E) by z(t), we have

52 2O +willz@]* < walz @) + (f (1), 2(1)).

As is seen Theorem 2.6 in [8], integrating from 0 to ¢t we can determine

the constant ' in Proposition 2.1.
We establish the following result on the solvability of the equation (SE).
Theorem 2.2.1 Let A and the nonlinear mapping g be given satisfying the

assumptions mentioned above. Then for any (¢°, ¢*) € H.x L?(—h,0; V) and

f e L*0,T;V*), T > 0, thefollowing nonlinear equation

z'(t)+ Az(t) = Gtgz) + f(t), 0<t<T,
z(0) =¢’, x(s) =9'(s)  —h <s<0

(2.2.6)

has a unique solution & belonging to
L*(—=h, T; ¥V Wh0,7; V*)-c C([0,T); H)
and satisfying that there exists a constant C5 such that

2l 2w 2ory < Ca(1+ 8% + 110 |2 novy + 11 20,m50+))-
(2.2.7)
Proof. Let y € L*(0,T;V). Then we extend it to the interval (—h,0) by

setting y(s) = ¢'(s) for s € (—h,0) and hence, G(-,y(+)) € L*(0,T; H) from

13



Lemma 2.2.2. Thus, in virtue of Proposition 2.2.1 we know that the problem

z'(t)+ Ax(t) = G(t,y) + f(t), 0<t,
H0)= & a(s)=d(s) —h<s<O

(2.2.8)

has a unique solution z,, € L*(0,7;V) N W2(0,T;V*) corresponding to y.

Let us fix Ty > 0 so that
wi e (LT + LK T JV2) < 1. (2.2.9)

Let z;, i = 1, 2, be the solution of (2.2.8) corresponding to y;. Multiplying
by x1(t) — xo(t), we have that

(@1(t) ~do(t), 21 (t) ma(t)) + (A, (t) — Azs(t), 21(2) — 22(t))
= (G(t,y1) — Gt y2), 21(t) — 2()),
and hence it follows that

1d

S (B = 20+l (@)= 0]

< wolzy (t) — w2() FANG & 1)) =G, y)llilz1(t) — (1)

From Lemma 2.2.2 and integrating over [0,t], it follows

1 t
() = 2aOF [ () = al)] s
0
I 2
< 5 [ 1GG.m) — Gls. )l s
¢Jo

t t
+ g/ ||21(5) — m9(s)||*ds + wg/ |z1(s)ds — xo(s)ds|*ds,
0 0

14



where ¢ is a positive constant satisfying 2w; — ¢ > 0. Here we used that

aP  b?

ab< —+—, ploq!
Pooq

=1(1 <p<o0)

for any pair of nonnegative numbers a and b. Thus, from (2.2.3) it follows

that

|21 (t) — 22 (t)]* + (2w; — c)/o ||21(s)ds — z5(s)ds||*ds
< N IVTo + LKA Ty % V2)? /Ot ly1(s) = y2(s)[|*ds

¢
+ 2w2/ |z1(8) — 29(s)[2ds.
0

By using Gronwall’s inequality, we get

To
|1 (To) = z2(To) P + (2wy — ¢) / |1 (s) — z2(s)|[*ds
0
To
< NIVTo 3 Lo Ko Ty [V erTo / y1(s) = ya(s)]|?ds.
0

Taking ¢ = wy, it holds that

|21 = 22| 200,10y < wflemTO(Lﬂ/To

+ L2K1T§/2/\/§)Hyl - yZHLQ(O,To;V)'

Hence we have proved that y — x is a strictly contraction from L?(0,Ty; V)
to itself if the condition (2.2.9) is satisfied. It gives the equation (2.2.6) has

a unique solution in [0, Tp).

15



From now on, we derive the norm estimates of solution of the equation

(2.2.6). Let y be the solution of

y'() +Ay(t) = f(t), 0<t<Ty,
y(0) = ¢°.

(2.2.10)

Then

d

Z(@(t) = y(1) + (Az(t) — Ay(t)) = G(t, ),

by multiplying by z(t) — y(¢) and using the assumption (A1), we obtain
sl () =y(OF +willa(t) —y@)I®

< walz (W& y@FF + |G )|l (t) = y(DI].

By integrating over [0, t] and using Gronwall’s inequality, we have

lz = yllr2m5) < Wi e |G @) 20,10+

S wl_le(lJQTO{Lo\/To + LgKng/Z/\/g
+ (LivVTo + L2K1T5’/2/\/§)(||$||L2(0,TO;V) + 102 -nov)}s
and hence, putting

N = wl_lewﬂb and L = Llﬁo + L2K1T60’/2/\/§>

16



it holds

(LoV'To + Ly KoT2? /\/3) (2.2.11)

N
HxHLQ(O,TO?V) S 1 _ NL

1 NL 1
1 — NLHyHLQ(O,To;V) + 1— NL||¢ ||L2(—h,0;v)

+

< (LoV/To + Ly Ko T? /V/3)

1-NL
&

+1—NL(

16° + 11 f 1] 2200.70:7))

NL

+1—NL

16" | L2¢=x0)
< Gy #19° + 119" | 2—nony + I I1e2 0057 4)

for some positive constant Cs. Since the condition (2.2.9) is independent of
initial values, the solution of (2.2.6) can be extended to the internal [0, nTp|
for natural number n, i.e., for the initial value (z(nTp), z,7;) in the interval
[nTy, (n+1)Th], as analogousestimate (2.2.11) holds for the solution in [0, (n+
1)To). O

Theorem 2.2.2 If (¢°, ¢') € H x L*(=h,0;V)) and f € L?(0,T;V*), then
x € L*(=h, T;V)NW12(0,T;V*), and the mapping

HxL*(—h,0; V)< L*(0,T;V*) 3 (¢°, ¢', f) = x € L*(—h, T; V)NW (0, T; V*)

is continuous.
Proof. Tt is easy to show that if (¢°,¢') € H x L*(—=h,0;V) and f €
L?(0,T;V*) for every T' > 0, then z belongs to L*(—h, T; V)NWY2(0,T; V*).

17



Let
( ?7¢'}7f7,> € H x Lz(_hvoﬂ V) X L2(07T1; V*)

and z; be the solution of (2.2.6) with (¢, ¢}, f;) in place of (¢°, ¢, f) for

1 =1, 2. Then in view of Proposition 2.2.1 and Lemma 2.2.2 we have
§%|x1(t) — 2o () [* + w21 (t) — 22(1)]||? (2.2.12)
< walay (t) = 22(t)]* + |G (t, 21) = G(t, w2) |21 (t) — z2(t)]]

+ 1/1(8) = L2 (O] (£) — 22(2)]]
If wy — ¢/2 > 0, we can choose a constant ¢; > 0 so that

w.=c/2 TEnl2>.0
and

1
1168~ fo(0)all2a(E) — R@IFSE - () ~ L@
+ Sl (8) = (1)
Let T} < T be such that

2w —Cc—c] — c_lezmTl(Ll\/Tl + L2K1T13/2/\/§)2 > 0.

Integrating on (2.2.12) over [0,77] and as is seen in the first part of proof, it

18



follows

(2w1 — ¢ — c)lJor — 2ol B my < €227 |60 — 692
1 2 1 2
+lIG(t @) = G 22)llz20ma + a||f1 = folli20mv) )
< e {|g] — g5
1
+ E(Ll\/Tl + L2K1T13/2/\/§)2||$1 - x2||%2(7h,T1;V)
1 2
+—Ifi = fellz2o v -
C1
Putting that
Ny =2w1, ¢ — df—c e Wi/ Ty, + L2K1T13/2/\/§)2

we have

g2 1
|21 — @3l r20,m15v) < W(|¢? — 3| + C—1||f1 — Lllzomy)  (2:2.13)
1

671/260.;27’1 (Ll’ /Tl + L2K1T13/2/\/§)
+ N2
0

o1 =23l 22 (—n.00)-
Suppose that

(& Gns fu) = (&%, 01, f) in H x L*(=h,0; V) x L*(0,T; V"),

and let x, and x be the solutions (2.2.6) with (¢%,#., f.) and (¢°, ¢!, f)

respectively. By virtue of (2.2.13) with T replaced by T; we see that

T, =z in L*(—h,Ty;V)NWY(0,T;V*) c C([0,Th]; H).

19



This implies that (z,(T1), (x,)7,) — (x(T1),27,) in HxL*(—h,0;V). Hence

the same argument shows that
T, = in L*(Ty,min{2Ty, T} V) N Wh(Ty, min{2Ty, T}; V).
Repeating this process we conclude that

T, =z in L*(—=h,T; V)N W20, T; V*).

Remark 2.2.2 For x € L*(0,T; V) we set

G(t,x) = /0 k(t — s)g(s,z(s))ds

where & belongs to L*(0,T) and g : [0, T} x V.— H be a nonlinear mapping
satisfying
9, z) — g(t,y)| < Lz =y

for a positive'constant L. Let x € L*(0,T;V), T > 0. Then G(-,z) €
L*(0,T; H) and

G (-, @) r20,r:m) < LK 20,0y VT2 p20,7v -
Moreover if z1, x5 € L?(0,T;V), then
|G (-, 21) — Gy 22)| |20 < LIKIVT |21 — 22| 20709
Then with the condition that

wite? L k|| Ty < 1
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in place of the condition (2.2.9), we can obtain the results of Theorem 2.2.1.

2.3. Approximate controllability

In what follows we assume that the embedding V' C H is compact and
A is a continuous operator from V to V* satisfying (A1) and (A2). For

h € L*(0,T; H) and let z; be the solution of the following equation with
B =1

x(t) + Az(t) = G(t,z) + h(t), 0<t, o)
[0} 230.1 ¥ =0 £ h ¢ 3< 0,

where
t
elf 3 — xt,/ k(t;s,z;)ds).
0
We define the solution mapping S from L?(0,7;V*) to L*(0,T;V) by
(Sh)(t) = z(t), h e L*0,T;V*). (2.3.2)

Let A and G be the Nemitsky operators corresponding to the maps A and
G, which are defined by A(z)(-) = Az(-) and G(h)(-) = G(-,zp), respec-
tively. Then since the solution x belongs to L*(—h,T; V)N W12(0,T;V*) C
C([0,T]; H), it is represented by

zp(t) = /Ot((f +G — AS)h)(s)ds, (2.3.3)

21



and with aid of Lemma 2.2.2 and Proposition 2.2.1
"Sh"LQ(O,T;V)OWL?(O,T;V*) = HCUhH < ClHG('7$h) + hHLQ(O,T;V*) (2-3-4)
< C{LoVT + LyKoT*? N3 + (LiVT + LK T2 V2) |2 | 2031
+ [|Allz2 v}
< C{LoVT + Ly Ko T%? /\/3

+ (LiVT + LK T2 JV2) (1 + [|B| 20 m+) + Rl 20009 }-

Hence if h is bounded in L?(0,T;V*), then so-is z in L*(0,T;V) N
Wh2(0,T;V*).” Since V is compactly embedded in H by assumption, the
embedding L*(0,T;V) N W2(0,T;V*) € L*(0,T; H) is compact in view of
Theorem 2 of Aubin [14]. Hence, the mapping h — Sh = xj is compact
from L?(0,T;V*) to L*(0,T; H). Therefore, G is a compact mapping from
L*(0,T;V*)'to L*(0,T; H).and so is AS from L*(0,T;V*) to itself. The
solution of (SE). is denoted by z(T’; g, u) associatedswith the nonlinear term

g and control u at time 7.

Definition 2.3.1 The system (SE) is said to be approximately controllable
at time T if Cl{z(T;g,u) : v € L*(0,T;U)} = V* where CI denotes the

closure in V*.

We assume

(T) 1—w;'lwze?T >0
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(B) CHy : y(t) = (Bu)(t), a.e. u € L*(0,T;U)} = L*(0,T; H). Here ClI
is the closure in L*(0,T; H).

Theorem 2.3.1 Let the assumptions (T) and (B) be satisfied. Then
CIH{(I — AS)h: h € L*(0,T;V*)} = L*(0,T; V*). (2.3.5)

Therefore, the following nonlinear differential control system

4 4 Ax(t) = (Bu)(t), 0<t<T,

(2.3.6)
()] = %)
is approximately controllable-at time 7'
Proof. Let z € L*(0,T; V*) and r be a constant such that
ze U, ={a € L*(0, T; V) : |2 20mv+) <7}
Take a constant d > 0 such that
(7’ + wg N2|,T0|)(]_ = NQ)_I < d, (237)

where

Ny = witwse®?T,

Taking scalar product on both sides of (2.3.1) with G = 0 by z(t)

5 7O +wnllo @ < wola(®) + 1A (@)
< wala(F + o I + Sl
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where ¢ is a positive constant satisfying 2w; — ¢ > 0. Integrating on [0, t], we

get

1 ! 1 I
SOF o [ la@lFas < Glaof + 5 [ 1In(s)lEas

t t
+9/ Hx(s)Hst—i—wg/ Iz (s)[2ds,
2 0 0
and hence,

t 1 t
o) + (201 =) [ o) Pds < ool + ¢ [ [In(5)]s
0
t
B, - / 15 s)2ds.
0

By using Gronwall’s inequality, it follows that

T8 1 T
o)+ — L e (2ol + ¢ [ B ds),
0 0

that is,
1Skl 20,70y-= l|2{z2@ 7,9 (2.3.8)

< e (2w — o) (|wo| + Al 20,10
Let us consider the equation

z= (I — AS)w. (2.3.9)
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Let w be the solution of (2.3.9). Then z € U, and taking ¢ = wy, from (2.3.7)
and (2.3.8)

wl|z2mv=) < |l2llL20.1v+) + [ASW]| L2 0,7v+)
<1+ ws(|[Swl|20,1,v+) + 1)
< 7+ wsfw; e (|zo| + wy P [wl]) + 1},

and hence
[|lw]] < (r 4+ ws + No|zo|) (1 — No) ™' < d

it follows that w ¢ OU,; where U, stands for the boundary of U;. Thus the
homotopy property of topological degree theory there exists w € L*(0,T; V™)
such that the equation (2.3.9) holds. Since the assumption (B), there exists a
sequence {u, } € L*(0, T; U) such that Bu,, ~ w in L*(0, T;V*). Then by the
last paragraph of Theorem 2.1 we have that x(-; g, u,) — @, in L*(0,7; V)N
Wh2(0,T;V*) € C([0,T); H). Hence we have proved (2.3.5). Let y € V*.

Then there exists an element u € L?(0,T; U) such that

5= (E=AS)Bul s girve) <

3l

Thus

Iy =Dl = o= [ (7= 48) Bu)(s)is].
< [ 1% = (= As) B Lds

< \/T||% — (I = AS)Bul|2013v+) < €.

25



Therefore, the system (2.3.6) is approximately controllable at time 7. O

In order to investigate the controllability of the nonlinear control system,

we need to impose the following condition.
(F) g is uniformly bounded: there exists a constant A, such that
l9(t, 2, y)| < My,
forall z, y e V.
By (F) it holds that
|| G )| 2o i< My VT
and for every h € L*(0,T; V*)
NG ()| o iy < M VT (2.3.10)

Theorem 2.3.2 Let the assumptions (T), (B) and (F) be satisfied. Then

we have
CIH{(G+1I—AS)h:hec L*0,T;V*)} = L*(0,T; V™). (2.3.11)

Thus the system (SE) is approximately controllable at time 7.

Proof. Let U, be the ball with radius r in L?(0,T;V*) and z € U,. To

prove (2.3.11) we will also use the degree theory for the equation

2= MG - AS)w+w, 0<A<1 (2.3.12)
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in open ball U; where the constant d satisfies
(r + ws 4+ Ny|zo| + MyVT)(1 — Ny)~t < d (2.3.13)

where the constant Ny is in Theorem 2.3.1. If w is the solution of (2.3.12)

then z € U; and from Lemma 2.2.1

[wll 20y < [[2]] + [[ASw|| + [|Gwl]
<7+ ws(||Sw|| + 1) + M,VT)
<7+ wsfw; e (agltwr L wl]) + 1} + MyVT,
and hence
llawl} < (r + Wi+ Na|zo| + Mgy/'T)(1 — Ny)- < d

it follows that w ¢ OUy. Hence, there exists w € L?(0,T;V*) such that the
equation (2.3.12) holds. Using the similar way to the last part of Theorem
2.3.1 and the assumption (B) there exists a sequence {u,} € L*(0,T;U)
such that Bu, + w in L*(0,7;V*) and z(-;¢,4,) +—> 2, in L*(0,T;V) N
Wh2(0,T;V*) C C([0;7]; H)-Thus, we have proved (2.3.11) and the system

(2.1.1) is approximately controllable at time 7. O

2.4. Example

Let —A be an operator associated with a bounded sesquilinear form

a(u,v) defined in V' x V and satisfying Garding’s inequality

Rea(u,v) > co||u||2 — cl|u|2, >0 ¢ >0
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for any u € V. It is known that A generates an analytic semigroup in both H
and V*. In virtue of the Riesz-Schauder theorem, if the embedding V' C H

is compact then the operator A has discrete spectrum
o(A)={p,:n=1, 2, ... }

which has no point of accumulation except possibly y = co. Let u, be a pole
of the resolvent of A of order k, and P, the spectral projection associated
with g,

1 _
Pp==— (/’L—A) 1d/’67

27 iy

where I',, is a small circle centered at pu, such that it surrounds no point
of o(A) except u,. Then the generalized eigenspace corresponding to pi, is
given by

B, = P =L« U |

and we have that from P2 = P, and H, C V it follows that

BV = {Pyul: u € V} =.H}

Definition 2.4.1 The system of the generalized eigenspaces of A is complete
in H if Cl{span{H,, : n =1, 2, ... }} = H where Cl denotes the closure in
H.

We need the following hypotheses:

(B1) The system of the generalized eigenspaces of A is complete.
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(B2) There exists a constant d > 0 such that

lvll < d||Bvl|, veL*0,T;U).

We can see many examples which satisfy (B2)(cf. [5, 6]).

Consider about the intercept controller B defined by

(Bu)(t) = 3 ualh), (2.4.1)
n=1
where
0, i <<
T ¥
Pu(t), LT <t<T

Hence we see that u,(t) =0 and wu,(t) € Im P,.

First of all, for the meaning of the condition (B) in section 2.3, we need
to show the existence of controller satisfying Cl{Bu : u € L?(0,T;U)} #
L?(0,T;H). " In fact, by completion of the generalized eigenspaces of A
we may write that f(t).= > " P,f(t) for f €L*(0,T;H). Let us choose
f €L?(0,T; H) satisfying

T
/ 1Pf ()| [2dt > 0.
0

Then since

/0 1£(2) — Bu(t)|Pdt = / SOIIP(f(0) — Bult))| Pt

> [ IR0 = Buto)Pa = [ 1RS> o
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the statement mentioned above is reasonable.

Let f € L*(0,T; H) and o = T/(T — T/n). Then we know
f¢)=aKgrmfla( - —T/n)) in L*0,T;H),

where K[r 7/ is the characteristic function of [T',T/n]. Define
UJ(S) - an(s)a ’lUn(S) = aK[T,T/n]B_lpnf<a(S - T/?’L))
n=1

Thus (Bw)(t) = > 2, P.f(s), a.e.. Since the system of the generalized

eigenspaces of A is complete, it holds that for everyf € L2(0,T; H) and

e>0

1FO=>_ PifOllzozsm = NG, — Bwllaomm <
n=1

Thus, the intercept controller B defined by (2.4.1) satisfies the condition (B).
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Chapter 3
Approximate controllability for nonlinear differential

equations with quasi-autonomous operator

3.1. Introduction

Let H and V' be two real separable Hilbert spaces such that V' is a dense
subspace of H. We are interested in the approximate controllability for the

following nonlinear functional control system on H:

20 +Aux(t) 5 (Bu)(t), 0<t<T, (E)

Assume that A is a monotone hemicontinuous operator from V' to V* and
satisfies the coercive condition. Here V* stands for the dual space of V. Let U
be a Banach space and the controller operator B be a bounded linear operator
from the Banach space-L?(0,T;U) to L*(0,T; H). If Bu'e L*(0,T;V*), it is
well known as the quasi-autonomous differential equation(see Theorem 2.6
of Chapter III in Barbu [8]). In [8], the existence and the norm estimate of a
solution of the above equation on L*(0,T; V)NW12(0, T; V*) was given, and
results similar to this case were obtained by many authors(see bibliographical
notes of [5, 8, 12, 15, 16]), which is also applicable to an optimal control

problem.
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The optimal control problems for a class of systems governed by a class
of nonlinear evolution equations with nonlinear operator A have been stud-
ied by Ahmed, Teo and Xiang [9, 11, 17]. The condition equivalent to the
approximate controllability for semilinear control system have been obtained
in by Naito [2] and Zhou [5]. As for the semilinear control system with the
linear operator A generated Cy-semigroup, Naito [2] proved the approximate
controllability under the range conditions of the controller B. The papers

treating the controllability for systems with nonlinear principal operator A

are not many.

In the present section, we will prove the approximately controllable for
(E) under a rather applicable assumption on the range of the control operator
B, namely that {y : y(t) = Bu(t), w &.L*0,T;U)} is dense subspace of
L?(0,T, H), which is reasonable and widely used in case of the nonlinear

system(refer to [2, 5, 18]).

3.2. Quasi-autonomous differential equations

Let H and V be two-real separable Hilbert spaces forming Gelfand trip-
ple V.C H C V* with pivot space H as mentioned in Chapter 2. Let
h € L*(0,T;V*) and z be the solution of the following quasi-autonomous

differential equation with forcing term h(t):

) L Ax(t) 3 h(t), 0<t<T, 3.2.1)

z(0) = xg
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where A is given satisfying the hypotheses mentioned above. The following

result is from Theorem 2.6 of Chapter III in [8].

Proposition 3.2.1 Let 7o € H and h € L*(0,T;V*). Then there exists a

unique solution x of (3.2.1) belonging to
C([0,T); H)N L*(0,T; H)n W (0, T; V*)
and satisfying

()] + / (s)|[2ds < Caffrnf+ / h(s)2ds + 1), (322)
J 1S g < i + [ ks <) (323)

where (] is a constant.

Lemma 3.2.1 Let 2, and zj be the solutions of (3.2.1) corresponding to h

and k in L?(0,T;V*). Then we have that

1 2 d 2
5 |on () (2)] +w1/0 ||zn(s) —zk(8)|FFds
= /0 220 |an(s) — ax(s)|] |lh(s) — K(s)l].ds, (3.2.4)

and

1 t
Slan(®F + e [ llan(o)lPas

€2w2t
<
2

t
2of? + / 22|z ()] [ (s)]|uds. (3.2.5)

33



Proof. In order to prove (3.2.5), taking scalar product on both sides of

(3.2.1) by z(¢),

1d

5 77 1o (O +wnllzaOIF < wolza(@F + llza@)HIRO]]-.

Integrating on [0, t], we get

1 t
Slan(F + e [ llan(o)lFas

1
< = |mo)? +w2/ lza (s \ds+/ lza(s)|] [17(3)]]ds. (3.2.6)

[\

From (3.2.6) it follows that

d i ; :
d_{e—2w2t/ |Ih<8)|2d8} - 26_2w2t{—|xh(t)|2 X w2/ |l’h<3)|2d8}
‘ . 2 0

< 2e Gl [ lon(HIH)ds)
(3.2.7)

Integrating (3.2.7) over (0, t) we have

—2wgt
—2// 2027 gl (5)]] 13(8) s + e o2

t 6720.)25 o 6720.)21‘/ 1— 6724@1‘/
=2 h «d - x)?
| @) s + oo

1 ' —2w2s —2w l—e
=o)L ot — 7220 |an(s)]] IR (s)l]ods +
0
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and hence,

2wat 1

t t
“2/ |5 (s)[?ds < / (€22 —1)||an ()] | ()]s + ——
0 0

2

(3.2.8)
Combining (3.2.6) with (3.2.8) it follows that

eQth

1 t t
a4 / lzn(s)|Pds < o + / 29|z, ()] 1) .

We also obtain (3.2.4) by the similar-argument in the proof of (3.2.5). O

Theorem 3.2.1 If (xg,h) € H x L*(0,T;V*), then z € L*(0,T;V) N
C([0,T]; H) and the mapping

H x.L*(0,T; V) 3 (mo, h) =€ L*(0, T;V) N C([0,T]; H)

1s continuous.

Proof. By virtue of Proposition 3.2.1 for any (a, h) € H x L*(0,T;V*),
the solution z of (3.2:1) belongs to L4(0, T; V)N C([0, T); H). Let (xo;, hi) €
H x L*(0,T;V*) and z; be the solution of (3.2.1) with (zg;, h;) instead of
(xg, h) for i =1, 2. Multiplying on (3.2.1) by z1(t) — x2(t), we have

1d 2 2
5 77121(8) = 22O + w21 (1) — 2a(t)]]

< walw1(t) — @) + [Jz1(8) — w2 [[Pa(t) = ha(1)]].
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By the similar process of the proof of (3.2.5) it holds

%L’L‘l(t) - $2(t)|2 —|—w1/0 l|z1(s) — 5(72(8)||2d8

equQt

t
< Sl =+ [ 0 () = aa(s)] 1 (s) = ha(o) .
0

We can choose a constant ¢ > 0 such that

c
w; —e*2T= >

2

and, hence

/o e242=9)| |2, (s) — 22 (s)|| | (5) — ha(s)||sds

< [ 2flen(s) = alo) [P Gl (s) = s .

Thus, there exists a constant C' > 0 such that

||$1 - $2||L2(0,T,V)mC([0,T};H) < C’(|x01 - $02| + ||h1 k- h2||L2(0,T;V*))-

(3.2.9)

Suppose (Ton, hy) — (zoyh)in Hox L*(0,T;V*), and let z,, and x be the

solutions (E) with (xo,, h,) and (zo, h), respectively. Then, by virtue of

(3.2.9), we see that z,, — x in L*(0,T,V) N C([0,T]; H).

3.3. Approximate controllability

O

In what follows we assume that the embedding V' C H is compact. Let

x5, be the solution of (3.2.1) corresponding to h in L?*(0,7T;V*). We define
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the solution mapping S from L*(0,7;V*) to L*(0,T;V) by

(Sh)(t) = x(t), he€ L*0,T;V*).
Let A be the Nemitsky operator corresponding to the map A, which is defined
by A(z)() = Ax(:).

Then
t
n(t) = [ (1~ AS()ds,
0
and with the aid of Proposition 3.2.1
[[Shlzz 0 myrwre vy = lTnll L2 0mv)nwsz 0, v+)

< Ci(|wo| + [|Al L20,0;v+) ). (3.3.1)

Hence if i is bounded in L?(0, T; V*), then sois xj, in L*(0,7; V)NW12(0, T; V*).
Since V is compactly embedded in H by assumption, the embedding L?(0,T; V)N
Wh2(0,T;V*) C L*(0,T; H)s compact in view of Theorem 2 of Aubin [14].
Hence, since the-embedding L?(0,7; H) C L*(0,T3V*) is continuous, the
mapping h — Sh = x;,is_compact from L2(0,T;V*) to itself.

The solution of (E) is denoted by x(T’;u) associated with the control u

at time 7. The system (E) is said to be approzimately controllable at time

T if Cl{z(T;u) :u e L*(0,T;U)} = H where Cl denotes the closure in H.

We assume
(B) Cly:y(t)=(Bu)(t), ae wuelLl?*0,T;U)}=L*0,T;H)
where Cl denotes also the closure in L*(0,T; H).
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The main results of this section is the following.

Theorem 3.3.1 Let the assumption (B) be satisfied. If our constants con-

dition in (A1), (A2) contains the following inequality: w3 < wq, then
CIH{(I — AS)h: h € L*(0,T;V*)} = L*(0,T; V*). (3.3.2)

Therefore, the nonlinear differential control system (E) is approximately con-

trollable at time 7.

Proof. Let us fix Ty > 0 so that

N—="17wger ez 1 (3.3.3)
Let z € L?(0,Tp; V*) and r be a constant such that
z€ U, =f& € L*(0,To; V) : ||| | r20,1v4) <7}
Take a constant d > 0 such that
(r + ws + wswy 2Bz (1 - N ! <'d, (3.3.4)
(3.2.5) in Lemma 3.2.1 implies

62w2 To

L T

w1
W1||Ih||%2(o,To;V) < 5 |zo|* + ?H%H%%o,%;v) +

that is,

IShI|L20,10:v) = 78]l 220,70

< e (w20 ] + wi IR 2 010v+))- (3.3.5)
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Let us consider the equation
z=(I—-MAS)h, 0< A< 1 (3.3.6)

Let h be the solution of (3.3.5). Then, for the element z € U,, from (3.3.4)
and (3.3.5), it follows that

A2 myve) < 211+ IASAI| < 7+ ws([|Sh]] + 1)

<7 4 wa{e?™ (WP zo| + wi | 2 omn ) + 1},

and hence

A< (4w + wp Pwse D fzol) (1= N) !
<d.

It follows that h ¢ OU, where U, stands for the boundary of U;. Thus the
homotopy property of topological degree theory there exists h € Uy such that
the equation
z=(IL—AS)h

holds. Since the assumption(B), there exists a sequence {u, } € L*(0,Ty; U)
such that Bu, + h in L*(0,Ty; V*). Then by Theorem 3.2.1 we have that
z(:;u,) — @y in L2(0,Ty; V) N C([0,To); H). Let y € H. We can choose
g € WH2(0,Ty; V*) such that g(0) = z¢ and ¢g(Tp) = y and from the equation
(3.3.6) thereis h € L?(0, Ty; V*) such that ¢ = (I—.AS)h. By the assumption
(B) there exists u € L*(0,Ty; U) such that

\/§w1

ew2 To

||h = Bul|r20m;v+) < €
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for every € > 0. From (3.2.4)
1 t
slen(®) = zpu(OF +wn / [lzn(s) — 2pu(s)[[*ds <
0
t
/0 20wy (s) — wpu(s)]] [[h(s) — (Bu)(s)||ds

(&

o /| 1) = (B

t
<o / 20(5) — wpu(s)][*ds +
0

it holds
wa2Ty

e
Hxh - xBullc([07To]§H) - m”h = BUHLQ(O,To;V*%

thus, we have

v — @) < / (12 A8)h)(s)ds / (I A8) Bu)(s)ds|

0

6w2T0

vV 2w1

S ||h — BUHLQ(O,TO;V*) S €.

Therefore, the system (E) is approximately controllable at time Ty. Since

the condition (3.3.3).is independent-of initial values, we can solve the equa-

tion in [Ty, 27p] with the initial value x(7y). By repeating this process, the

approximate controllability for (E) can be extended the interval [0, nTy] for

natural number n, i.e., for the initial z(nTp) in the interval [nTy, (n + 1)Ty].

O
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Chapter 4
Controllability for nonlinear variational inequalities

of parabolic type

4.1. Introduction

Let H and V be two complex Hilbert spaces. Assume that V' is a dense
subspace in H and the injection of V' into H is continuous. The norms on V'
and H will be denoted by || - || and |- |, respectively. Let A be a continuous

linear operator from V" into V* which is assumed to-satisfy
(Auyu) > @ fful]* = woluf*

where w; > 0 and w, is a real number and let ¢ : V' — (—00,+00] be a lower
semicontinuous, proper convex function. Consider the following variational

inequality problem with nonlinear term:

(@'(t) + Az(t), 2(t)=2) +oa(t)) = 6(z)
< (f(tz(t) + k(t),z(t) — z), ae., 0<t<T, z€V (VIP)
z(0) = xo.

According to the subdifferential operator d¢, the problem (VIP) is rep-

resented by the following nonlinear functional differential problem on H:
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' (t) + Ax(t) + 0p(x(t)) o f(t,z(t)) + k(t), 0<t<T,
z(0) = xo.

(NDE)

The existence and regularity for the parabolic variational inequality in
the linear case( f = 0), which was first investigated by Brézis [15], has been

developed as seen in section 4.3.2 of Barbu [19](also see section 4.3.1 in [8]).

First, in Section 4.2 we will deal with the existence for solutions of (NDE)
when the nonlinear mapping f is a Lipschitz continuous from R x V into H
and the norm estimate of a solution of the above nonlinear equation on
L*0,T;V) nWt2(0,T; V*yn C([0, T); H).as seen in [20]. Consequently, in

view of the monotonicity of d¢, we show that the mapping
H'x'LX0,T; V%) > (20, k) — @ € L0, T; V)N C([06,T); H)

is continuous." Thereafter, we can obtain the approximate controllability for
the nonlinear functional differential control problem governed by the varia-
tional inequality in Section 4.4. Let .U be a complex Banach space and B be
a bounded linear operator from L?(0,T;U) to L*(0,T; H). Let us consider
the following control system governed by the variational inequality problem

with the control term Bwu instead of k:

2/ (t) + Ax(t) + 0o(z(t)) 2 f(t,z(t)) + (Bu)(t), 0<t<T,
z(0) = xo.

(NCE)
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For every ¢ > 0, we define the Moreau-Yosida approximation of ¢ as

¢e(x) = inf{||z — yl|?/2¢ + ¢(y) 1 y € H}.

Then the function ¢, is Fréchet differentiable on H. By using the facts
that its Fréchet differential 0¢. is a single valued and Lipschitz continuous
on H, we investigate the control problem of (NCE) by transforming onto
the semilinear differential equation with d¢. in place of d¢ and obtain the
norm estimate of a solution of the above nonlinear equation on L*(0,7; V)N

W20, T; V)N C([0,T]; H) in section 4.3.

In recent years, as for the controllability for semilinear differential equa-
tions, Carrasco-and Lebia [1] discussed sufficient conditions for approximate
controllability of a system.of parabolic equations with delay, Mahmudov [21]
in case the semilinear equations with nonlocal conditions with condition on
the uniform boundedness of the Frechet derivative of nonlinear term, and
Sakthivel et al. [22] on impulsive and neutral functional differential equa-

tions.

In this section, in order te show the investigate the approximate control-
lability problem for (NCE),-we assume range-conditions of the controller B,
which is that for any ¢ > 0 and p € L?(0,T; H) there exists a u € L*(0,T;U)
such that

| 5 S(T — s){p(s) — (Bu)(s)}] <,

[Bul|z20.6:m) < aullpll 2,6y, 0 <t < T,

where ¢; is a constant independent of p and S(¢) is an analytic semigroup

generated by A.
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Here, we remark that the quantity condition of the constant ¢; as seen in
Zhou [[5]; (3.3)] is not necessary. Some examples to which main result can

be applied are given in [2, 5].

If D(A) is compactly embedded in V' (or the semigroup operator S(t) is

compact), the following embedding
L*(0,T; D(A) nWh*(0,T; H) C L*(0,T;V))

is compact in view of Theorem 2 of Aubin [14]. Hence, the mapping u — x
is compact from L%(0,T;U) to L*(0,T; V). From these results we can obtain
the approximate controllability for the equation (NCE), which is the extended
result of Naito 2] to the equation (NCE). Finally, a simple examples which

our main result can be applied is given.

4.2. Preliminaries

Forming Gelfand triple V. C H C V* with pivot space H, for the sake of

simplicity, we may consider
Hulle < [uf S lull;_ueV

where || - ||« is the norm of the element of V*. We also assume that there

exists a constant C'; such that
1/2
[[ull < Calful| 5y lul 2 (42.1)
for every u € D(A), where

lullpeay = (| Aul® + |uf?)/
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is the graph norm of D(A). Let a(-,-) be a bounded sesquilinear form defined
in V x V and satisfying Garding’s inequality

Re a(u,u) > wi||u|]* — walul?>, weV (4.2.2)

where w; > 0 and wy is a real number. Let A be the operator associated with

the sesquilinear form a(-, -):
(Au,v) = a(u,v), u, veV.

Then A is a bounded linear operator from V to V* and —A generates an
analytic semigroup in-both of H and V* as is seen-in [[16]; Theorem 3.6.1].

The realization for the operator A in H which is the restriction of A to
B(A) = {u <Vl < }

be also denoted by A.

The following L?-regularity for the abstract linear parabolic equation

@(t)+ Ax(t) = k(t), 0L T, (LE)
r(0) ="z

has a unique solution z in [0, 7] for each 7" > 0 if xg € (D(A), H)1/22 and
k € L*(0,T; H) where (D(A), H); /2 is the real interpolation space between
D(A) and H. Moreover, we have

|[|z20,7:papwr20.1.m) < Colllzoll(D(a),m), o0 + Kl L20018r))  (4:2.3)

where Cy depends on T and M (see Theorem 2.3 of [24], [38§]).
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Let 0 < 8 < 1,1 < p < oo. Then by considering an intermediate
method between the initial Banach space and the domain of the infinitesimal

generator A of the analytic semigroup 7'(t) is represented by

o dt
ViV = (o€ Vs [ (@llAcallp T < o)
0

(see Theorem 3.5.3 of [25]).

Proposition 4.2.1 Let xyp € H and k € L*(0,T;V*), T > 0. Then there

exists a unique solution z of (LE) belonging-to
L*0, T; VYN W0, T; V*) c-C([0,T); H)
and satisfying
||| 20, vynwr 250+ (ol +- |k L20,13v%)) (4.2.4)

where C} is a constant depending on 7.

Let ¢ : V —(—00,4+0c0] be a lower semicontinuous, proper convex func-

tion. Then the subdifferential-operator dp-of ¢ is-defined by

0p(z) = {z" € V'i0(z) < o(y) + (2", 2 —y), yeV}

First, let us concern with the following perturbation of subdifferential oper-

ator:

2'(t) + Azx(t) + 0p(x(t)) 2 k(t), 0<t<T, (VE)
z(0) = xo.
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Using the regularity for the variational inequality of parabolic type as

seen in [2; section 4.3] we have the following result on the equation (VE).

Proposition 4.2.2 1) Let k € L?(0,T;V*) and zy € D(¢) where D(¢) is
the closure in H of the set D(¢) = {u € V : ¢(u) < oco}. Then the equation

(VE) has a unique solution
z € LX0,T;V) N C([0,T]; H),
which satisfies

x (t) = (k(t) — Az(t) — 0ta(t)))”

and

2] 2no S Ca(d + |wol +11 ] 2 0.7:v4)) (4.2.5)

where C3 is some positive constant and L* N C = L*(0,T;V) N ¢([0,T); H)

and where (0¢)° is the minimal segment of d¢.

2) Let A be symmetric and let us assume that there exists h € H such

that for every ¢ > 0 and any y € D(9)

Je(y 4 ¢eh) € D(¢) and o(J(y +<€h)) < ¢(y)

where J. = (I + €A)™'. Then for k € L*(0,T; H) and xq € D(¢) NV the

equation (VE) has a unique solution
v € L3(0,T; D(A) N W'(0, T H) 0 C([0,T); H),
which satisfies

|| L2awr2ne < Cs(1+ [|zol| + [|E]| 20,758 )- (4.2.6)
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Here, we remark that if D(A) is compactly embedded in V and z €
L*(0,T; D(A))(or the semigroup operator S(t) generated by A is compact),
the following embedding

L*(0,T; D(A)) N\ W20, T; H) € L*(0,T;V))

is compact in view of Theorem 2 of Aubin [14]. Hence, the mapping k — x
is compact from L%(0,T; H) to L*(0,T; V'), which is applicable to the control

problem.

(F) Let f be a nonlinear single valued mapping-from [0, 00) x V into H.

We assume that
|f(t, 21) — f(t, @) < L||z1 — 2],

for every x,, xo € V.

The following result is from Jeong and Park [26].

Theorem 4.2.1[[26]] Let the assumption(F) be satisfied. Assume that

k € L*(0,T;V*) and 2y € D(¢). Then; the equation (NDE) has a unique
solution

r € L*0,T;V)nC([0,T); H)

and there exists a constant Cy depending on 7" such that

[|#][ 2o < Ca(1 + |zo] + [[F]] 20.2v+))- (4.2.7)
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Furthermore, if k € L?(0,T; H) then the solution z belongs to W2(0, T; H)

and satisfies
2||lwrzo,rmy < Ca(1+ |zo| + ||K]|L2(0,1:m))- (4.2.8)

If (zo,k) € H x L?(0,T; H), then the solution x of the equation (NDE)
belongs to x € L*(0,T; V)N C([0,T); H) and the mapping

H x L*(0,T; H) > (z9, k) = 2 € L*(0,T; V)N C([0,T]; H)

1s continuous.

4.3. Smoothing system corresponding to (NCE)

For every € > 0, define

¢e(z) = inf{|lx — yl|Z/2e + d(y) : y € H}.

Then the function ¢, is Fréchet differentiable on H and its Frec¢het differential
O¢, is Lipschitz continnous on H with Lipschitz-constant e~! where d¢, =
e (I — (I +€dg)~Y] as-is seen in Corollary-2.2 in {[8]; Chapter II). Tt is also
well known results that lim,_,o ¢, = ¢ and lim_,q 9. (x) = (9¢)°(z) for every
x € D(0¢).

Now, we introduce the smoothing system corresponding to (NCE) as

follows.

o' (t) + Ax(t) + 06 (x(t)) = f(t,z(t)) + (Bu)(t), 0<t<T, (SCE)

z(0) = x.
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Since —A generates a semigroup S(¢) on H, the mild solution of (SCE) can

be represented by
x(t) = S(t)zo + /0 S(t— s){f(s,z(s)) + (Bu)(s) — 0d(x(s)) }ds.

In virtue of Theorem 4.2.1 we know that if the assumption (F) is satisfied
then for every xyp € H and every u € L?(0,T;U) the equation (SCE) has a

unique solution
r € L*(0,T; V)N WY (0, T; VynC([0,T]; H)
and there exists a constant Cy depending on 7" such that

HZL’HLQQWLQQC S C4(1 = |.’L'0| + HUHLQ(O,T;U))- (431)

(A) We assume the hypothesis that (9¢)° is uniformly bounded, i.e.,

(09)°z| < My, zeH.

Lemma 4.3.1 Let z. and z, be the solutions of (SCE) with same control u.

Then there exists a constant C' independent of € and A such that

|ze — 2allcormnezorvy < Cle+A), 0<T.

Proof. For given ¢, A > 0, let z. and x, be the solutions of (SCE)

corresponding to € and A, respectively. Then from the equation (SCE) we
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have

2(t) = 23(8) + Alw(t) = 2a(1)) + 0bc(wc(1)) — pa(2a(1))

= f(tvxe(t)) - f(ta LC)\(t)),

and hence, from (4.2.2) and multiplying by z.(t) — z(t), it follows that

£ lrlt) — ma () + nllolt) — eI (4.3.2)
T (96e(a(1)) — Do (@a(t)), 2e(t) — 22(1)
< (f(t, @) —F b an()elt) < 2] +awalec(t) — ar(0).

Let us choose a constant ¢ > 0 such that 2w; — c¢L-> 0. Noting that
(f (&) —f(t 2x(E)), 2c(8) = 2a (1))

S ae(t) = £ ()] |zc(t) —2x()]

cL 9 i 2
< S lwe(t) = B+ - lze(t) = z(®),

by integrating (4.3.2)-over {0, 7] and using.the monotonicity of d¢ we have

1 9 cL, [ 2
Fic0) = s OF + (= 5 [ la(t) = as(ol P
< /0 (0¢c(xc(t)) — OPa(xA(1)), NOPA(TA(t) — €0 (x(t))dE

(e [ lad) =m0
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Here, we used that
Dpe(ze(t)) = € H(we(t) — (I + edp) " (t)).

Since |0¢.(z)] < [(0¢)°x| for every x € D(d¢) it follows from (A) and

using Gronwall’s inequality that

|ze = 2|0, mn20,mv) < Cle+ ), 0<T.

Theorem 4.3.1 Let the assumptions (F) and (A) be satisfied. Then = =
lim, oz, in L*0,7;V) N C([0,T]; H) is a solution of the equation (NCE)

where z. is the solution of (SCE).

Proof. Invirtue of Lemma 4.3.1, there exists z(-) € L*(0,T); V) such that
#.(v) — N S ([0, T); .
From (F) it follows that
f(,z) = f(x), -strongly-in L*(0,T; H) (4.3.3)

and

Az, — Az, strongly in L*(0,T;V*). (4.3.4)

Since 0¢.(x.) are uniformly bounded by assumption (A), from (4.3.3) and
(4.3.4) we have that

d

o ix, weakly in L*(0,T;V*),

Te —
< T dt
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therefore
Ope(v) = f(-,2) +k —a' — Az, weakly in L*(0,T; V™).

Note that d¢.(x.) = 0((I + €dp)x.). Since (I + edp) 'z — x strongly

and 0¢ is demiclosed, we have that
fC,x)+k—a' — Az € 0¢p(x) in L*(0,T;V™).

Thus we have proved that x(t) satisfies a.e. on (0,7) the equation (NCE). O

4.4. Approximate controllability

In this section we show.the approximate controllability for the equation
(NCE) with the more general condition for the range of the control operator,
which is the extended result of Zhou [[5]; section 3] and Naito [2] to the
equation (SCE).

For the sake of simplicity we assume that the solution semigroup S(t) is
uniformly bounded:

IS <M >0

Lemma 4.4.1 Let u; € L?(0,T;U) and z; be the solution of (SCE) with u;

in place of u for ¢ = 1, 2. Then there exists a constant C' > 0 such that
|z (t) — zea(t)] < MVHC(e™" + L) + 1}||Buy — Bus||r201:)

forO0<t<T.
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Proof. In virtue of Theorem 4.2.1 it holds that there exists a constant

C' > 0 such that
l|lza — el 22(0,6v) < Cl|Bur — Bus||r204m), t>0.

The proof of Lemma 4.3.1 is a consequence of the estimate

[Ta(t) — ze(t)] = |/O St —s)[{f(s,zals)) = f(s,za(t))}
+{00c(za1(s) — Ogelwer(s)))}+{(Bur)(s) — (Buz)(s)}|ds]
<MV + D)l = zellr204v) + MVE|Bur — Bus|| 20,4

<MWH{C(e + L)+ 1}||Bu, — Bus|| 12 (0,6;m)-

We denote the linear operator S from L*(0,T;H) to H by

Sp= /0 S(T —s)p(s)ds

for p € L*(0,T; H). The system (SCE) is approximately controllable on

0, T7] if for any € > 0 and &7 € H there exists a control u € L*(0,T; U) such
that

[€r = S(T)z0 — S{f(-, 25 9)) — Dbe(we(-)} — SBul < e.

We need the following hypothesis:
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(B) For any € > 0 and p € L?(0,T; H) there exists a u € L*(0,T;U) such
that

|Sp — SBu| < ¢,
(1)

| Bul|r206m) < aillpllzopm)y, 0<t<T.

where ¢; is a constant independent of p.

Remark 4.4.1. If the range of B is dense in L?(0,T; H) then Hypothesis
(B) is satisfied (Theorem 3.3 of [2]). Some examples to which main result can
be applied are given in {2, 5]. Those examples will-be given which show that
even if the range of B is not dense in L*(0,T;H). In [5], Zhou proved that

such a system is approximately controllable under Hypothesis (B) dependent

of the time 7.

In this section, sufficient conditions for. the approximate controllability of the

system (SCE) are no need to assume the condition on the length 7" of the
time interval, which has a simple form and can be easily checked in many
examples. So this-sufficient.condition is more general than previous ones. It
is suitable not only for a-nonlinear abstract control system in Hilbert space,
but also for the finite dimensional ordinary differential equations by using the
spectral projection operator with finite rank associated with the generalized

eigenspace.

The solutions of (NCE) and (SCE) are denoted by z(t; ¢, f, u) and z.(¢; ¢, f, u),

respectively.
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Theorem 4.4.1 Under the assumptions (F) and (B), the system (SCE) is

approximately controllable on [0, 7.

Proof. We shall show that
D(A) ¢ CHz(T; ¢, f,u) :u € L*(0,T;U)}

where Cl denotes the closure in H, i.e., for given ¢ > 0 and & € D(A) there

exists u € L?(0,T;U) such that

|§T - xe(Ta ¢E? f7 U)| < g,
where

Ze(t opfrid) =S(T)ap + / S(T — 5){F(s) e ¥, £,10))
— 0P (2c(S; Pes fru) + (Bu)(s)}ds.

As & € D(A) there exists a p € L*(0,T; H) such that
Sp = & — S(T),
for instance, take p(s) = ({x+ sAfp=15(8)x0)/T.
Set
F(ze(s; e, f,u) = [(s,@e(s; @c, [ u) — 0¢c(@e(s; ¢, [, u)).

Then
‘F(.CCE(S; (be; fa ul)) - F(.CCG(S; (be; f7 u2))‘

S (671 —+ L)er(s; (bea f7 ul) - :UG(S; ¢6> fa uQ)H
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Let u; € L?(0,T;U) be arbitrary fixed. Since by the assumption (B)

there exists uy € L*(0,T;U) such that

S(p = Flae36c fow))) = SBus| < 7,

it follows

€7 — S(T)wo — SF(c(-; be, frur)) — SBus| < Z (4.4.1)

We can also choose wy € L?*(0,T;U) by the assumption (B) such that
R A £
[S(F (el e, frttz)) = F(2e(50e, 1)) =S Bws| < ¢ (4.4.2)

and
| Bwaln2(0,:0) < @illF (@e(5; e, fr wr)) — F(@e(-; de, fruz))||22(0,:m)

for 0 <t < T. Therefore, in view of Lemma 4.4.1 and the assumption (B)

¢
||Bw2||L2(0,t;H) S CIl{/ |F(Jf€(7, Qbe, fv u2)) e, F(xe(Ta ¢E’ f7 ul))|2d7_}%
0
t 1
< Ch(eil + L){/ er(T; ¢E7 f7 ul) - xe(T; (be? fa UZ))szT}E
0
t 1
< qet+ L)[/ M*{C(e " + L) + 1}*7||Buy — BU1||%2(07T;H)dT]§
0
t 1
< @M + D{Cle + 1) + 1}(/ rdr)|[Bus — Busl| iz
0

. . 2.1
=M+ L{C(e " + L)+ 1}(5)é || Buy — Bua||12(0.0:8)-
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Put us = us — we. We determine ws such that

|S(F(x5<7¢67 f’ Ug))) - F(mf(a ¢67f’ Ug))) - S’BQU3| < %a
HBwSHm(o,t;H) < C]1HF($6(‘; be; [, U3)) - F(iCe(‘; be, f, u2))HL2(O,t;H)

for 0 <t <T. Hence, we have

|| Bws|| 20,4,

S Q1{/0 |F(:L'6<T, ¢67f> Ug)) [ ) F($€(T7 (bea f7 UQ))‘QdT}%
: 1
< qu(e +0)] /0 HEL(T: b, foul) — 273 bor FreBIEN
gmM&1+mw&*+m+r&/ﬂww—8wmmmmmﬁ
0

t
< qM(e "+ L){C(eSA+ L) + 1}{/ Tl Bwa |72 (g 7oy dr} 2
0
<Mt HL){CEe 4 L) + 1}

t = 7_2 1
{/0 Tl M + L{C(e "+ L)+ 1}]2§!|Bu2 — Bua|L2(0rumd7}?

t 7_3
<M+ L){C(e "+ L)+ 1}]2(/ EdT)%HBUz — Bu|[r2(0,m)
0

4

— [ M(et + L){C(e + L) + 1P (=

2 ) 4)§||BU2 — BulHLQ(O’t;H).

By proceeding this process for u, 1 = u, — w,(n = 1,2, ...), and from that
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1B (tn, — tni1)||L20,60) = |[Bwnl|22(0,6:m)

<[@M(e '+ L{C(e ' + L)+ 13"}

t2n—2 i
(2 4. (2n _ 2))2||Bu2 - BU’1||L2(O’t;H)

_ [qlTM(e_l + L){C(e '+ L)+ 1}]n_1 1

HBuz - BU1||L2(Ot~H)a
V2 V(n—1)! v

it follows that

Z || Bugit1 — BunHL2(0,T;H)

- i[qlTM(el +LD){Cet+ L)+ 1}

]n ||BU2 [ ¥ BUlHL?(o,T;H)
n=0 \/§ \/m

Therefore, there exists u* & L2(0, T; H) such that
lim Bu, =u* in L*(0,T;H).

n—o0

From (4.4.1) and (4.4.2) it follows that
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|&r — S(T)xo — SF(IE('; Ge, [yu2)) — S’Bu3|
= & — S(T)xg — SF(x.(+; de, f,u1)) — SBuy + SBuws

— S[F(2c(; e, fru2)) = Flae(; 6e, frm))]|

1 1
+ —)e.

<(5* 3

By choosing choose w,, € L?(0,T;U) by the assumption (B) such that

€

IS(F (s 60, L)) = F(@li 9 fyun=1)) = SBwa| < oo,

since Uy,+1 = U, — Wy, we have
]gT 7 S(T):EO ool S’F(xe(a ¢67 fv un)) s S(Bun—|—1|

1 1

n=12, -
According to (4.4.3) for & > 0 there exists integer N such that
A X £
JSBUN—FI - SBUN| < 5

and

ér — S(T)zo — SF(xc(; e, f,un)) — SBuy|
< |ér — S(T)wo — SF(x(; ¢, frun)) — SBuni1]

+ |»§BUN+1 — ;SA’@’LLNI
1 1 5

<(g+ gt

<e.
2_6
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Thus the system (SCE) is approximately controllable on [0,7] as N tends to

infinity. O

From Theorem 4.3.1 and Theorem 4.4.1 we obtain the following results.

Theorem 4.4.2 Under the assumptions (A), (F) and (B), the system (NCE)

is approximately controllable on [0, 7.

Example 4.4.1 Let €2 be a region in an n-dimensional Euclidean space R™
with smooth boundary 99 and closure . C™(Q2) is the set of all m-times
continuously differential functions on Q. CJ*(€2) will denote the subspace of

C™(2) consisting of these functions which have compact. support in €.

For 1 </p < oo, W™P(Q)) is the set of all functions f = f(x) whose
derivative D*f up to degree m in distribution sense belong to LP(£2). As

usual, the norm is then given by

1
= @ p P < = @
[1llmp = (D7 1D FIEYR < P00 [|f] oo max || D%l o,

a<m

where D°f = f. In particular, W9P(Q) = LP(Q) with the norm || - ||,.

WP () is the closure of C§°(2) in W™?(Q2). For p = 2, we denote W™?(£2)
H™(Q)(simply, Wh(Q) = H(Q)), W*(Q) = H(Q). H Q) stands for
the dual space W,”(Q)* whose norm is denoted by || - ||;. From now on,
we consider a Gelfand triple as V = Hy(Q), H = L*(Q) and V = H1(Q) to

discuss our problems given in section 2.
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We consider the control problem of the following variational inequality
problem:

(

(0/ot)u(x,t) + Az, Dy)u(z,t), u(z,t) — 2)

+ [ lerad u(t, z)[?de — [, |grad 2(t, z)[2dx

< (s k(e = $)g(s,2(5))ds + (Baw(®)(@)), ulw,1) = 2(z,1)) ,  (444)
(2,6) € Q x (0,T], z(-,t) € Hy(),

u(z,t) =0, red, te (0,7T].

Here, A(x,D,) is a second-order linear differential operator with smooth
coefficients in Q, and A(x, D) is elliptic. If we put that Au = A(z, D,)u
then it is known that —A generates an analytic semigroup in H1(Q) as is
seen in [26].

We denote the realization of A in L?(2) under the Dirichlet boundary
condition by A:

D(A) = HA(©) N Ho(®),
Av=Au §16d we DA

The operator —A generates analytic semigroup in L2(£2). From now on, both

A and A are denoted simply by A. So, we may consider that —A generates
an analytic semigroup in both of H = LP(Q2) and V* = H'(Q2) as seen in

section 4.2.
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For every u € Hy(£2) define

Jo lgradw)Pdz, if u(x,t) =0, (x,t) € 9Q x (0,7,
¢(u) =

+00, otherwise.

It is easy to check if ¢ is proper and lower semicontinuous on V' to (—oo, +00](see

in section 2.3 of [8]).

Let g : [0,7] x V — H be a nonlinear mapping such that ¢ — g(¢, ) is

measurable and

lg(t;x) — g(t,y)| < Lilz —yll, (4.4.5)

for a positive constant L. We assume that g(¢, 0) = 0 for the sake of simplic-
ity.

For z € L?(0,T;V) we set

P = /0 k(t — s)g(s, z(s))ds

where k belongs to L?(0,T). By (4.4.5) it is easily seen that the nonlinear

term f satisfies hypothesis (F) in section 2.

Let U = H, 0 < a < T and define the intercept controller operator B,
on L*(0,T; H) by



for v € L*(0,T;H). For a given p € L*(0,T; H) let us choose a control

function u satisfying

0, 0<t<a,
u(t) =

P(0) + 7255 — 72t — a)plr5(t — ), a <t <T
Then u € L2(0,T; H) and Sp = SB,u. From the following:

||Bau||L2(o,T;H) = ||U||L2(a,T;H)

alM o
<|lplle2a,z;m) + T _ a”p(T F a(. — )|l r2(a;m)

(0]
<(WHFM,/—— ;
< (L My [ Plhs2 02,0,

it follows that the controller B,, satisfies hypothesis (B). Hence from Theorem

4.4.1 and Theorem 4.4.2, it follows that the system (4.4.4) is approximately
controllable on[0, T].
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Chapter 5
Optimal Control Problems for Nonlinear Variational

Evolution Inequalities

5.1. Introduction

In this section, we deal with optimal control problems governed by the

following variational inequality in a Hilbert space H:

(2'(t) + Ax(t)ya(t) — 2) + o(2(t) = ¢(2)
< (f(t;z(t) + Bu(t), x(t) = 2), ae, 0<t<T, zeV (VIP)

Here, A is a continuous linear operator from V into VV* which is assumed to
satisfy Garding’s inequality, where V! is a dense subspace in H. Let ¢ : V —
(—o00, +00] be a lower semicontinuous, proper convex function. Let U be a
Hilbert space of.control variables, and B be a bounded linear operator from
U into L*(0,T; H). Let U,qbea closed convex subset of U, which is called the
admissible set. Let J = J(v) be a given quadratic cost function(see (5.3.3)
or (5.4.6)). Then we will find an element u € U,4 which attains minimum of

J(v) over U, subject to the equation (VIP).

Recently, initial and boundary value problems for permanent magnet
technologies have been introduced via variational inequalities in [19, 27],
and nonlinear variational inequalities of semilinear parabolic type in [20, 28].

The papers treating the variational inequalities with nonlinear perturbations
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are not so many. First of all, we deal with the existence and a variation of
constant formula for solutions of the nonlinear functional differential equa-
tion (VIP) governed by the variational inequality in Hilbert spaces in Section

5.2.

Based on the regularity results for solution of (VIP), we intend to estab-
lish the optimal control problem for the cost problems in Section 5.3. For
the optimal control problem of systems governed by variational inequalities,
see [29, 19]. We refer to [30, 22| to see the applications of nonlinear varia-
tional inequalities. Necessary conditions for state constraint optimal control
problems governed by semilinear elliptic problems. have been obtained by

Bonnans and Tida [32] using methods of convex analysis. (see also [40]).

Let x, stand for solution of (VIP) associated with the control u € U.
When the nonlinear mapping f is Lipschitz continuous from R x V into H,
we will obtain the regularity for solutions of (VIP) and the norm estimate of
a solution of the above nonlinear equation on desired solution space. Conse-
quently, in view of the monotonicity of d¢, we show that the mapping v — z,,
is continuous in order to establish the necessary econditions of optimality of

optimal controls for various ebservation cases.

In Section 5.4, we will characterize the optimal controls by giving nec-
essary conditions for optimality. For this, it is necessary to write down the
necessary optimal condition due to the theory of Lions [40]. The most impor-
tant objective of such a treatment is to derive necessary optimality conditions

that are able to give complete information on the optimal control.
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Since the optimal control problems governed by nonlinear equations are
nonsmooth and nonconvex, the standard methods of deriving necessary con-
ditions of optimality are inapplicable here. So we approximate the given
problem by a family of smooth optimization problems and afterwards tend
to consider the limit in the corresponding optimal control problems. An at-
tractive feature of this approach is that it allows the treatment of optimal
control problems governed by a large class of nonlinear systems with general

cost criteria.

5.2. Regularity for solutions

Let H and V' be two real separable Hilbert spaces forming Gelfand tripple
V C H C V* with pivot space H as mentioned in Chapter 3. We have the

following sequence
D) CcV ¢ @V ¢ D(A), (5.2.1)
where each space is dense in the next one which is.continuous injection.

Lemma 5.2.1 With the notations (4.2.1)-and (5.2.1), we have

(v, V*)1/2,2 = H,

(D(A), H)1/22 =V,

where (V, V*)1 /92 denotes the real interpolation space between V' and V*(Section

1.3.3 of [34]).
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It is also well known that A generates an analytic semigroup S(t) in both
H and V*. For the sake of simplicity we assume that w, = 0 and hence the

closed half plane {\ : Re A > 0} is contained in the resolvent set of A.

If X is a Banach space, L?(0,T; X) is the collection of all strongly measur-
able square integrable functions from (0,7) into X and W2(0,T; X) is the
set of all absolutely continuous functions on [0, 7] such that their derivative
belongs to L?*(0,7; X). C([0,T]; X) will denote the set of all continuously
functions from [0,77] into X with the supremum norm. If X and Y are two
Banach space, £(X,Y") is the collection of all-bounded linear operators from
X into Y, and L£(X, X) is simply written as £(X). Here, we note that by

using interpolation theory we have

L7 (0, TN AVZ5(0, TN C([0, T); Hy" (5.2.2)
First of all, consider the following linear system

z' (t) + Az(t) = k(t);
a0) F H

(5.2.3)

By virtue of Theorem 3.3 of [38](or Theorem 3.1 of [18], [16]), we have

the following result on the corresponding linear equation of (5.2.3).

Lemma 5.2.2 Suppose that the assumptions for the principal operator A

stated above are satisfied. Then the following properties hold:
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1) For g € V = (D(A), H)122(see Lemma 5.2.1) and k € L*(0,7; H),

T > 0, there exists a unique solution z of (5.2.3) belonging to
L*(0,T; D(A)) nW*(0,T; H) c C([0,T}; V)
and satisfying
||z[|z20,m:pap w2 0,10 < Ci(ll@ol| + |1kl L200,7:m)), (5.2.4)

where (] is a constant depending on 7.
2) Let g € H and k € L?(0,T;V*), T > 0. Then there exists a unique

solution x of (5.2.3) belonging to
L*0,T;V)nW"(0,T;V*) c C({0,T]; H)
and satisfying
|| 20, r:vamw 1202 +) = Cill@o] + 15| 20,2507 ) (5.2.5)

where (] is a.constant depending on 7'

Let Y be another Hilbert-space of control variables and take i = L*(0,T;Y")

as stated in Introduction.~Choose a bounded subset U of Y and call it a con-

trol set. Let us define an admissible control U, as

Ug={uec L*0,T;Y) : u is a strongly measurable function satisfying

u(t) € U for almost all t}.

Noting that the subdifferential operator d¢ is defined by

0p(x) ={a" € V' 9(x) < d(y) + (2", 2 —y), yeV},
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the problem (VIP) is represented by the following nonlinear functional dif-

ferential problem on H

z'(t) + Az(t) + 0 (z(t)) > f(t,2(t)) + Bu(t), 0<t<T,
z(0) = .

Referring to Theorem 3.1 of [20], we establish the following results on the
solvability of (VIP).

Proposition 5.2.1 1) Let the assumption (F) be satisfied. Assume that

uwe L*(0,T;Y), B L(Y,V*) and xy € D(¢) where-D(¢) is the closure in H
of the set D(¢).={u €V : ¢(u) < oo}. Then, (VIP) has a unique solution

z & L0, T; V)N eyo, T); H)

which satisfies

/7

z (t) = Bu(t) = Az(t) = (99)°(x(1)) + f(t, (1)),

where (0¢)° :*H — H is the minimum element of d¢ and there exists a

constant Cy depending-on T"such that
|zl L2ne < Co(t 4ol =+ [ Bull20mv+)), (5.2.6)
where Cy is some positive constant and L> N C = L*(0,T; V)N C([0,T]; H).

Furthermore, if B € L(Y, H) then the solution = belongs to W2(0,T; H)

and satisfies

HxHWLz(O,T;H) S 02(1 —|— ‘1‘0’ + HBUHLQ(O,T;H))- (527)

2) We assume
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(A) A is symmetric and there exists h € H such that for every ¢ > 0 and

any y € D(¢)
Je(y +€h) € D(¢) and ¢(Jc(y + €h)) < d(y),

where J, = (I +€A)™".

Then for v € L?(0,T;Y), B € L(Y,H), and zy € D(¢) NV the equation

(VIP) has a unique solution
xv € L*(0,T; D(A) W0, 7;H)NC([0,T); H),
which satisfies

|2l 2ew1.206"< Co(1 +[a6l], + || Bul | 22 (02:)); (5.2.8)

Remark 5.2.1 In terms of Lemma 5.2.1, the following inclusion
L2(0, T; VR VI (P ) "C ([0, T lskl)

is well known as seen (4.2.1) and is an easy consequence of the definition of
real interpolation spaces by the trace method(see |28, 16]).

The following Lemma is from Brézis [[15]; Lemma A.5].
Lemma 5.2.3 Let m € L'(0, T;R) satisfying m(t) > 0 for all ¢t € (0,T) and

a > 0 be a constant. Let b be a continuous function on [0,7] C R satisfying

the following inequality:

390 < 30+ [ mp(s)ds, v€f0.7),
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Then,

b(t)] < a—i—/otm(s)ds, t€10,7].

For each (zg,u) € H x L*(0,T;Y), we can define the continuous solution

mapping (zg,u) — z. Now, we can state the following theorem.

Theorem 5.2.1 1) Let the assumption (F) be satisfied, g € H, and B €
L(Y,V*). Then the solution z of (VIP) belongs to z € L?(0,T;V)NC([0,T]; H)
and the mapping

H x L*0,T;Y) > (wg,u) — z € L*(0,7; V)N C(0,T); H)

is Lipschtz continuous, i:e., suppose that (zo;, u;) € H x L*(0,T;Y) and x;
be the solution of (VIP) with (zg;, u;) in place of (zq,u) for i = 1, 2,

HSU1 - SC2HL2(0,T;V)OC([0,T];H) i C{’%l - 3302| i HU1 > U2HL2(0,T;Y)}> (5-2-9>

where C is a constant.

2) Let the assumptions (A) and (F) be satisfied and let B € L(Y, H) and

1o € D(¢)NV. Then x € L*(0,T; D(A))NW2(0,T; H), and the mapping
V x L*(0,T;Y) 3 (xg,u) = x € L*(0,T; D(A)) N W"2(0,T; H) (5.2.10)

1S continuous.

Proof. Due to Proposition 5.2.1, we can infer that (VIP) possesses a

unique solution z € L*(0,T;V)NC([0, T]; H) with the data condition (zg,u) €
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H x L*(0,T;Y). Now, we will prove the inequality (5.2.9). For that purpose,

we denote x1 — x5 by X. Then

X'(t) + AX (1) + 0¢(21(t)) — 0p(ws(t))
> [t () = [t w2(t) + B(ua(t) — us(t)), 0<t<T,
X(O) = X1 — Tp2-

Multiplying on the above equation by X (t), we have

1d 9 o
S X OF +wlX @l
< ol KRS0, a0 =0, mal)l | B (0 = () X (1)

Put
H(t) = (L|| X (@[] + | Blua(t) = u2(?)) )| X (2)]-

By integrating the above inequality over [0, ¢], we have

ISR X @)Pds (5211)

¢ ¢
< |x01—x02|2+w2/ |X(s)|2d5+/ H(s)ds.
0 0

N —

Note that

t 1 t
e [1X()Pds} < 20 2 GO - wn [ 1X(9)Pds)
t 0 2 0
1 t
< 27 {Jary — oo + / H(s)ds).
0
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integrating the above inequality over (0,t), we have

t 2 1 T
ew/ | X (s)[?ds < 2/ e {5 lwn —xoz!2+/ H(s)ds}dr
0 0 0

1 — €—2w2t t t
= —|I’01 — 1'02|2 + 2/ / 6_2w2TdTH(S)dS
QUJQ 0 s
t

1 — 6—2w2t

1
= 2—@\:1:01 — z02)® + M_Q/o (€225 — e722') [ (5)ds.

Thus, we get
t 1 t
w2/ [X(s)ds <5 (e = 1)zor = zoaf” +/ (X279 — 1) H (s)ds.
0 0

Combining this with (5.2.11) it holds that

1 ! 1 :
§|X(t)|2 + Wl/ || X(s)|[Pds < §€2w2t|$01 — oo/ +/ = H (s)ds.
0 0

(5.2.12)

By Lemma 5.2.3, the following inequality

1 t
XN+ wie 2 ) has
0

<

DO | —

t
w01 = wool” + / e (L[ X (s)|] 4 [B(ur(s) — ua(s)))e™*| X (s)|ds
0
implies that

e X (t)] < !xm—a:ozH/o e™925(L|| X (s)||+| B(uy (s)—us(s))])ds. (5.2.13)
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From (5.2.12) and (5.2.13) it follows that
1 2 ' 2 L gt 2
§|X<t>’ —+ wq HX(S)H ds S 56 2 ‘33'01 — xog‘ (5214)
0
t
" / P2 (LYX ()] + | B(ua(s) — ua(s)))e“** |01 — woz|ds
0
t
" /0 2= (L|X ()] + | Blua(s) — ua(s))])
g / e CTLIX ()| + | B (7) = uz(7)) ydrds.
0
=1+ 11+ 1L

Putting
G(s) = 11X ()l + [Bluals) — ua(s))l.

The third term of the right hand side of (5.2.14) is estimated as

t s
117 = [262 /O NG | Eletads (5.2.15)
t 1d s
— [Pt /0 s /0 7| |G () |\ dry s

1 t
= L / e=T)|G(7) dr}?
0

L., o2 1 —e et p2wat _
< I et = e = [ 6t Pas
L2 €2wzt_ 1
< % / (X + Blus(s) — ua(e)) s,
WQ 0

75



The second term of the right hand side of (5.2.14) is estimated as

¢
1l = ezwzt/ e 2 (LI| X (s)|| + | B(ui(s) — ua(s))|)ds|zor — o2 (5.2.16)
0
1 t 1
< 51 [IXGIP + 1Bl (o) = wals)P)ds + 56 s — s
0

Thus, from (5.2.15) and (5.2.16), we apply Gronwall’s inequality to (5.2.5),

and we arrive at

SIXOF +or [ IXEIFs < Cllam=auaf + [ |Blun(s) = () Ps),

(5.2.17)
where C' > 0 is a constant. Suppose (Tg,, u,) — (xo,u) in. H x L*(0,T;Y),
and let x,, and x be the solutions (VIP) with (x¢,,u,) and (xg,u), respec-
tively. Then, by virtue of (5.2.17), we see that =, — x in L*(0,7,V) N
C([0,T]; H).

2) It is easy to show thatwif zo € V and B € L(Y, H), then = belongs to
L*(0,T; D(A)NW'0,T; H). Let (ro;,u;) €V X L*0,T; H), and x; be the
solution of (VIP) with (g, u;) in place of (z,u)for i = 1, 2. Then in view

of Lemma 5.2.2 and Assumption (F), we have

|21 — 22| 20,7 D(a) w200 < Ci{l]or — o2l (5.2.18)
+[fCrxn) = FC @)l p2mm + | Blur — u2)l|L2mm }
< C1{||3301 - 1302H + HB(Ul - UZ)HLQ(O,T;H)
+ L||z1 — z2|[L2(0,1:v) }-
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Since
t
21(t) — 22(t) = zor — T2 + / (#1(s) — da(s))ds,
0
we get, noting that |- | <] -],

T
|21 — 22| 200,70 < \/THCE'm — zoo|| + —=||z1 — 2| lwr20,mm)-

V2
Hence arguing as in (4.2.1) we get
1/2 1/2
121 = 2|20y < Coller = zallyaropoppapll = 22ll oy (5:2:19)

1/2
< Co||$1 T $2”L/2(0,T;D(A))

=/
x ATY lzon,~ woo [P+ () Bl wally 0.y}

V2

< CoTM4|201 — B0 | 72|11 — mafla

L2(0,T;D(A))
e
+ CO(E)WHM - le|L2(0,T;D(A))OW1,2(O,T;H)

_ T
<2 7/400||$01 i 9002“ al 200(ﬁ)1/2||$1 i xQ'|L2(0,T;D(A))QW112(O,T;H)-

Combining (5.2.18) and (5.2.19) we obtain

|21 — 22| 20 pan w20 i) < Ci{llwor — wo2l|} + | Bur — Bual|r20,1;m)

(5.2.20)

_ T
+2 7/4COCILme — Tog|| + 20001(5)1/2[1”901 - xZ"LQ(O,T;D(A))ﬂWL?(O,T;H)'

77



Suppose that
(Ton, Un) = (z0,u) €V x L*(0,T;Y),

and let z,, and z be the solutions (VIP) with (x¢,, u,) and (xg, u) respectively.

Let 0 < T7 < T be such that
2C,Cy(Ty/V2)Y2L < 1.
Then by virtue of (5.2.23) with 7" replaced by T we see that
T, — x € L*(0,T1; D(A)) N W'2(0,T1; H).

This implies that (z;,(T3), (z,)7) = (2(Th), 2, ) in VxL*(0,T; D(A)). Hence

the same argument shows that x,, — x in
L*(Ty, min{213, T}; D(A)) nWh(T1, min {271, T}; H).

Repeating this process we conclude that @, = = in L*(0,T; D(A))NW2(0,T; H).
a

5.3. Optimal control problems

In this section we study the optimal control problems for the quadratic
cost function in the framework of Lions [40]. In what follows we assume that

the embedding D(A) C V' C H is compact.

Let Y be another Hilbert space of control variables, and B be a bounded

linear operator from Y into H, i.e.,

B e L(Y,H), (5.3.1)
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which is called a controller. By virtue of Theorem 5.2.1, we can define
uniquely the solution map u +— z(u) of L2(0, T;Y") into L*(0,T; V)NC([0,T]; H).

We will call the solution z(u) the state of the control system (VIP).

Let M be a Hilbert space of observation variables. The observation of

state is assumed to be given by
2(u) = Gz(u), G e LCO,T;V), M), (5.3.2)

where GG is an operator called the observer. The quadratic cost function

associated with the control system (VIP) is given by
J(v) = |Gz (v) = zal[3r + (Rv,v) 20y forv € L0, T3Y),  (5.3.3)

where z; € M is a desire value of z(v) and R € L£(L*(0,T;Y)) is symmetric

and positive, i.e.,
(Rv,v) 20 = (v, RO)pzay) = dl[v|[22 07y (5.3.4)

for some d > 0. Let-Usq be a closed convex subset of L*(0,7;Y), which is
called the admissible set. ‘An element u'€ U, which attains minimum of

J(v) over U,q is called an optimal control for the cost function (5.3.3).

Remark 5.3.1 The solution space W of strong solutions of (VIP) is defined
by
W= L*0,T;V)nW"0,T;V*) c C([0,T]; H)

endowed with the norm

|- llw = maX{H : ||L2(0,T;V)> | - ||W172(0,T;V*)}-
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We consider the following two types of observation G of distributive and
terminal values(see [36, 37]).

(1) We take M = L2((0,T) x Q) x L*() and G € £L(W, M) and observe
2(v) = Ga(v) = (2(v; ), 2(0, T)) € L2((0,T) x Q) x L*(Q);
(2) We take M = L2((0,T) x Q) and G € £(W, M) and observe
2(v) = Gz(v) =y (v;-) € L*((0,T) x Q).

The above observations are meaningful in view of the regularity of the equa-

tion 1) by Proposition 5.2.1.

Theorem 5.3.1 1) Let the.assumption(F) be satisfied. Assume that B €

L(Y,V*) and zg € D(¢). Let x(u) be the solution of (VIP) corresponding to
u. Then the mapping u = x(u) is compact from L*(0,7;Y) to L*(0,T; H).

2) Let the assumptions. (A) and (F) be satisfied. If B € L(Y, H) and
xg € W N V',.then the mapping u + z(u) is compact from L?(0,T;Y) to
L*(0,T;V).

Proof. 1) We define the solution mapping S from L?(0,T;Y) to L*(0,T; H)
by

Su=x(u), ue€L*0,T;Y).

In virtue of Lemma 5.2.2, we have

[Sul|L20,mvynwr2 0,5y = [z (w)|] < Ci{lzo| + || Bullr20,mv+) }-
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Hence if u is bounded in L?(0,T;Y), then so is z(u) in L*(0, T; V)NW12(0, T; V*).
Since V is compactly embedded in H by assumption, the embedding L?(0,T; V)N
Wh2(0,T;V*) C L*(0,T; H) is also compact in view of Theorem 2 of Aubin
[14]. Hence, the mapping u — Su = z(u) is compact from L?(0,T;Y) to

L*(0,T; H).

2) If D(A) is compactly embedded in V' by assumption, the embedding
L*(0,T; D(A) N W0, T; H) C L*(0,T;V)

is compact. Hence, the proof of 2) is complete: O

As indicated in Introduction we need to show the existence of an optimal
control and to give the characterizations of them. The existence of an optimal

control u for the cost funetion (5.3.3) can be stated by the following theorem.

Theorem 5.3.2 Let the assumptions (A) and (F) be satisfied and z, €

D(¢) N V. Then there exists at least one optimal control « for the control
problem (VIP) associated with the cost function«(5.3:3), i.e., there exists
u € U, such that

J(u) = inf J(v):= J. (5.3.5)

VEULq

Proof. Since Uy,q is non-empty, there is a sequence {u,} C U,q such that

minimizing sequence for the problem (5.3.5), which satisfies

inf J(v) = lim J(u,)=m.

VEUL n—00
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Obviously, {J(u,)} is bounded. Hence by (5.3.4) there is a positive constant
K, such that

This shows that {u, } is bounded in U,4. So we can extract a subsequence(denote
again by {u,}) of {u,} and find a u € U,q such that w — limwu,, = v in U.

Let x, = x(u,) be the solution of the following equation corresponding to

Up:

., (t) + Az, (t) + 00 (2, (1)) > f(t, 2,(t)) + Bun(t), 0<t<T,
2,(0) = x0.
(5.3.6)
By (5.2.4) and (5.2.5) we know {x,} and {z/,} are bounded in ?(0,7T; V') and

L?(0,T; V*), respectively. Therefore, by the extraction theorem of Rellich’s,

we can find a subsequence of {z,}, say again {z,} and find z such that
Tn(:) = z(+) weakly in L*(0,T;V)nC([0,T]; H),

and

x;l — &, weakly in L*(0,T;V™). (5.3.7)

But by Theorem 5.3.1, we know that
Tn(-) — x(-), strongly in L*(0,T;V).
From (F) it follows that
fC,z,) = f(-, ), strongly in L*(0,T; H). (5.3.8)
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By the boundedness of A we have
Az, — Az, strongly in L*(0,T;V*). (5.3.9)
Since 0¢(z,,) are uniformly bounded from (5.3.6)-(5.3.9) it follows that
0¢(xn) — f(-,2) + Bu—a' — Ax, weakly in L*(0,T;V*),
and noting that 0¢ is demiclosed, we have that
fG,z) 4+ Bu— 2’ — Az € 9¢(x) in L*(0,T;V*).
Thus we have proved that z(t) satisfies a.e. on (0,7’) the following equation:
o (1) 4 Ax(t)y + 09 (x(t)) > f(tsa(t)) + Bu(t), ae., 0<t<T,

z(0) =xo;

(5.3.10)

Since G is continuous and || - ||as is lower semicontinuous, it holds that

||Ga(u) — zq||pm < h}[ﬁi&f |Gz (un )= zal|n1-

It is also clear from lim inf, oo || RY2up|| 220y > || RY?ul| 20,7y that

liggioglf(Run, Un)L2(0,1v) = (B, u) 20,157

Thus,
m= lm J(u,) > J(u).

n—oo

But since J(u) > m by definition, we conclude u € U,y is a desired optimal

control. 0
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5.4. Necessary conditions for optimality

In this section we will characterize the optimal controls by giving nec-
essary conditions for optimality. For this it is necessary to write down the

necessary optimal condition
DJ(u)(v—u) >0, v&Uy (5.4.1)

and to analyze (5.4.1) in view of the proper adjoint state system, where
DJ(u) denote the Gateaux derivative of J(v) at v = u. Therefore, we have
to prove that the solutien mapping v + z(v)-is. Gateaux differentiable at

v = u. Here we note that from Theorem 5.2.1 it follows immediately that

lim z(u + Aw) = z(u) strongly in' L340, T;V)NC([0,T]; H). (5.4.2)

A—0

The solution map v — &(v) of L*(0475Y) into L?(0,T; V)N C([0,T); H) is
said to be Gateaux differentiable at v = w if for any w € L*(0,7;Y) there
exists a Dz(u). € L(L*(0,T;Y), L*(0,T; V)N C([0,T]; H) such that

H— (u+ Xw) =z(u)) = Dr(Wwl| =0 as X — 0.

The operator Dz(u) denotes the Gateaux derivative of z(u) at v = u and
the function Dz(u)w € L*(0,T;V) N C([0,T]; H)) is called the Gateaux
derivative in the direction w € L?(0,T;Y’), which plays an important part in

the nonlinear optimal control problems.

First, as is seen in Corollary 2.2 of Chapter II of [39], let us introduce the

regularization of ¢ as follows.
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Lemma 5.4.1 For every € > 0, define

¢e(x) = ||z — Jex”i/Q6 + ¢(Jex),

where J, = (I 4+ €¢)~'. Then the function ¢, is Fréchet differentiable on H
and its Frechet differential d¢, is Lipschitz continuous on H with Lipschitz

constant €. In addition,

lim ¢ (z) = ¢(x), Vo€ H,

e—0

¢(Jer) < del@) < o(w),— Ve >0, € H,

and

liy 06.(2) = (90)°(@), Vo€ HL

where (0¢)?(x) is the element of minimum norm in the set 0¢(z).

Now, we introduce the smoothing system corresponding to (VIP) as fol-

lows.

2/ (t) + Ax(t)+ 0¢.(z(t) = f(t,x@)) ¥ Bu(t), 0<t<T,
z(0) = xp.

(5.4.3)

Lemma 5.4.2 Let the assumption (F) be satisfied. Then the solution map
v z(v) of L2(0,T;Y) into L*(0,T; V)NC([0, T|; H) is Lipschitz continuous.

Moreover, let us assume the condition (A) in Proposition 5.2.1. Then
the map v — d¢(x(v)) of L*(0,T;Y) into L*(0,T; H) N C([0,T]; V*) is also

Lipschitz continuous.
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Proof. We set w = v — u. From Theorem 5.2.1, it follows immediately
that

lz(u + Aw) — 2(u)||co,r;m) < const|A|||w|| 20,y

so the solution map v +— z(v) of L*(0,T;Y) into L?(0,T;V) N C([0,T]; H)

is Gateaux differentiable at v = u. Moreover, since

Ope(x(u; 1)) — Ode(x(u+ Mw;t)) =z (u+ Mw;t) — ' (ust)
+ A(z(u+ Aw;t) —z(u;t)) — {f(t, z(u+ Mw;t)) — f(t, x(u;t)} — ABw(t),

by the assumption (A) and-2) of Theorem 5:2.1, it holds

109 (z(ut + Aw)) — (@ (w))|| L2

< l= (w+ Mw) — @ (w)l| 20y + e+ Aw) — 2(w)]] 2 0.7:0(a)
+ L{|z(u+ Aw) —@(u)l|z20.2.v) + [ANBI|[|w]] 220.7,0)

< constJA|||w]| L2077,

and, by the relation (5.2.1);

100c(2(u + Aw; t)) — O (x(u; 1))

< 2 (u+ dw;t) — & (s )]« + Al vy

(z(u+ Aw;t) — z(u; 1))

+ L[z (u + Aw; t) — w(u; )] + Al B[ [w(t)]

< const.|N|||w]|r20,7:v)-
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So we know that there exists the Gateaux derivative of the mapping v —

d(z(v)) of L*(0,T;Y) N C([0,T]; V*). O

Let the solution space W of (VIP) of strong solutions is defined by
Wi = L*(0,T; D(A)) nW"(0,T; H)

as stated in Remark 5.3.1.

In order to obtain the optimality conditions, we require the following

assumptions.

(F1) The Gateaux-derivative 0, f(¢, ) in the second argument for (¢,z) €
(0,7) x Vis measurable in ¢t € (0,7) for x € V and continuousin z € V
for a.e. t € (0,T), and further there exist functions 0y € L'(0,T;R),
0, € C(RT;R) such that

102 (¢, 2)[ls < 6:1(F) + Oa(ll]]), V(t,2) € (0,T) x V.
(F2) Themap x — 0¢.(x) is Gateaux differentiable, and the value DO¢.(x) Dx(u)

is the Gateaux derivative of 9. (x)x(w) atw € L*(0,T;U) such that

there exist functions 65,6, € L*(R";R) such that

1D () Dx(u)ll« < O5(t) + Oa(llull 207:v)), Yu € L*(0, T3 Y).

Theorem 5.4.1 Let the assumptions (A), (F1) and (F2) be satisfied. Let
u € Uyq be an optimal control for the cost function J in (5.3.3). Then the

following inequality:
(C*"AM(Cx(u) = 2q), y)w, + (Ru,v —w)r20my)y 20, Yo €Ug  (5.4.4)
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holds, where y = Dx(u)(v —u) € C([0,T];V*) is a unique solution of the

following equation:

y (t) + Ay(t) + D(0¢)°(x)(y(t)) = e f (t.x)y(t) + Bw(t), 0<t<T,
y(0) = 0.
(5.4.5)

Proof. We set w =v —u. Let A € (=1,1), A # 0. We set

y = }g% Az (u 4+ w) — z(u) = Da(u)w.

From (5.4.3), we have
o' (u+ Aw) = 2'(u) + A(z(a+  w) —&(w) + 0d (x(uw+ Iw)) — Ode(x(u))

= f(, 2(u+ M) — f(- z(u) + ABw!

Then as an immediate consequence of Lemma 5.4.2 one obtains

lim = 96w+ ;1)) 06 (e(us 1)) = DOGL )y (1)

A—0

lin (0, o+ 2 1)) e, 10D = o (1, 2)u(r),

thus, in the sense of (F2), we have that y = Dx(u)(v — u) satisfies (5.4.5)
and the cost J(v) is Gateaux differentiable at u in the direction w = v — u.

The optimal condition (5.4.1) is rewritten as
(Cx(u) — 24, y)mr + (Ru, v — w)r200,17)

= (C"Ap(Cx(u) = za), y)wy + (Ru, v — u)201yy > 0, Vv € Uyg
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With every control v € L*(0,T;Y), we consider the following distribu-

tional cost function expressed by

Jl(u):/o ||C:vu(t)—zd(t)||§(dt+/0 (Ru(t), u(t))dt, (5.4.6)

where the operator C' is bounded from H to another Hilbert space X and

zq € L*(0,T; X). Finally we are given R is a self adjoint and positive definite:
R e.£(X), . and ~(Ru,u) > c||u|[;~._c > 0.

Let z,,(t) stand for solution of (VIP) associated with the control u € L*(0,T;Y).
Let Uy,q be a closed convex subset of L*(0,T3Y").

Theorem |5.4.2 Let the assumption in Theorem 5.4.1 be satisfied and let
the operators C and N satisfy the conditions mentioned above. Then there

exists a unique element u € U,, such that

Ji(u) E haf Uy(v). (5.4.7)
Furthermore, it is holds the following inequality:

/T(A;IB*pu(t) + Ru(t), (v —u)(t)dt >0, Yv € Uag (5.4.8)
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holds, where Ay is the canonical isomorphism Y onto Y* and p, satisfies the

following equation:

Pu(t) = A'pu(t) — D(09)° () pu(t) + 0o f (t, ) pu(t) = —C*Ax (Cau(t) — 24(t)),
for 0<t<T,

P,(T) =0.
(5.4.9)

Proof. Let x, be a solution of (VIP) associated with the control u. Then
it holds that

— | lCartt = teiat+ [ (Rote)uliyya
- / O (1) <8(0)) + Cx(8) B (0) 2t / (Ro(t), v(t))dt

—beluf) - 208 /||zd ()|t

where

7 (u,v) :/0 (Cfzu(t) — (1)), Cla, (L) =2(l))) xdt
+ /O (Ru(t), v(t))dt

T
L(v) = / (zalt) — Ca(t), Clan(t) — (1)) xdt.
0
The form 7(u,v) is a continuous bilinear form in L*(0,7;Y) x L*(0,T;Y)
and from assumption of the positive definite of the operator R, we have
m(v,v) > c||v||* v e L*0,T;Y).
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If w is an optimal control, similarly for (5.4.4) and (5.4.1) is equivalent to

/0 (C*Ax (Cau(t) — za(t)), y(t))dt + /0 (Ru(t), (v — w)(t))dt > 0. (5.4.10)

Now we formulate the adjoint system to describe the optimal condition:

Pu(t) = A*pu(t) = DOG(x)"pu(t) + 02 f (L, 2)"pu(t) = —(C*AxCry(t) — 24(1)),
for 0<t<T,
P,(T) = 0.
(5.4.11)

Taking into account the regularity result of Proposition 5.2.1 and the
observation conditions, we can assert that (5.4.11) admits a unique weak
solution p, reversing the direction of time ¢ — T — t by referring to the

wellposedness result of Dautray and Lions [[38], p. 558-570].

We multiply both sides of equation (5.4.11) by y(¢) of (5.4.5) and integrate

it over [0, T]. Then we have

/0 (C*Ax (Ca(t) — 2att)) oy lt))di (5.4.12)
- / (W, (1), w(t))dt + / (Apult). y(t))dt + / (DO, ()" palt), y(0))dt

_/0 (82f(t’x)*pu(t)7y(t))dt.
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By the initial value condition of y and the terminal value condition of p,, the

left hand side of (5.4.12) yields

— (pu(T), 5(T)) + (pa(0), y(0)) + / (pu(t). 4/ (1))t + / (pu(t), Ay(t))dt
" / (pu(t), DOG()y(t))dt — / (pu(8), Buf (£, )y (1)) dt
_ / (palt), Bv — u)(t))dt.

Let u be the optimal control subject to (5.4.6). Then (5.4.10) is represented
by

/Q(pu(t), B(v — u)(#))dt + /0 (Ru(®), (v— u)(t))dt> 0, (5.4.13)

which is rewritten by (5.4.8). Note that C* € B(X*, H) and for ¢ and ¢
in H we have (C*AxC¥,¢) =< Ci),Co >x, where duality pairing is also
denoted by (-,+). O

Remark 5.4.1 Identifying the antidual X with X we meed not use the
canonical isomorphism Ay. However, in case where X C V* this leads to

difficulties since H has already been identified with its dual.
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