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Chapter 1

Introduction

In control and system theory the fundamentally important concept of

controllability arose naturally during the early development of optimal con-

trol theory in the 1960s and was developed by a number of mathematicians

and engineers in the world.

In addition to making further contributions to control theory of discrete

processes, the present paper gives a treatment of constrained control prob-

lems with emphasis on the controllability of dynamical discrete-time systems.

Control theory of nonlinear systems requires more sophisticated methods

than those of linear systems. The difficulties increase to the same extent as

passing from linear discrete-time systems to nonlinear discrete-time systems,

especially when the constraints on both control and state are involved, the

nonlinear controllability problem becomes to be considerably difficult.

We deal with the existence, uniqueness, and a variation of solutions of the

nonlinear control system with nonlinear monotone hemicontinuous and coer-

cive operator. Of caurse, we study the semilinear case with linear principal

operator satisfying G̊arding’s inequality.

For general nonlinear control systems, we wiuse several approaches for

the study of controllability problem:

(1) Fixed-point methods

(2) Methods based on functional analysis
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(3) Approximate linearization methods based on the stability theorems.

This dissertation is organized as follows;

In Chapter 2, we obtain the regularity for semilinear equation by con-

verting the problem into a fixed point problem with nonlinear monotone

hemicontinuous and coercive operator. Moreover, We show the approximate

cotrollability for semilinear equation.

The previous results on the approximate controllability of a semilinear

control system have been studied as a particular case of sufficient condi-

tions. In [1], Carrasco and Lebia give sufficient conditions for approximate

controllability of parabolic equations with delay and in [2, 3, 4, 5, 6], the

authors proved the approximate controllability under the range conditions of

the controller B.

However, Triggian [7] proved that the abstract linear system is never

exactly controllable in an infinite dimensional space when the semigroup

generated by A is compact.

Our approximate controllability is an attempt to extend under more gen-

eral conditions. We show that the input to solution map is compact by using

the fact that L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) furnished with the usual topology

is compactly embedded in L2(0, T,H) provided that the injection V ⊂ H is

compact.

In Chapter 3, as mentioned in chapter 2, the principal operator A is

a monotone hemicontinuous operator from V to V ∗ and satisfies the coer-

cive condition and B is a bounded linear operator from the Banach space

L2(0, T ;U) to L2(0, T ;H). If Bu ∈ L2(0, T ;V ∗), it is well known as the

2



quasi-autonomous differential equation(see Theorem 2.6 of Chapter III in

Barbu [8]).

The existence and the norm estimate of a solution was given in [8]. Based

on the result, we intend to establish the approximate controllability for equa-

tion. Approximate controllability for a class of systems governed by a class of

nonlinear evolution equations with nonlinear operator A have been studied

in references by Naito [2] and Zhou [5]. As for the semilinear control sys-

tem with the linear operator A generated C0-semigroup, Naito [2] proved the

approximate controllability under the range conditions of the controller B.

The papers treating the controllability for systems with nonlinear principal

operator A are not so many. We will prove the approximately controllability

for (E) under a rather applicable assumption on the range of the control

operator B.

In Chapter 4, we transform the variational inequality into nonlinear func-

tional differential control problem according to the subdifferential operator

∂φ and deal with the existence for solution when the nonlinear mapping f is

a Lipschitz continuous from R × V into H. In view of the monotonicity of

∂φ, we show that the solution mapping is continuous. Thereafter, we obtain

the approximate controllability for the control system governed by the vari-

ational inequality problem with the control term Bu instead of k. Sufficient

conditions for approximate controllability of the system are discussed under

the bounded condition on the controller operator B, which is that for any

3



ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such that

 |
∫ T

0
S(T − s){p(s)− (Bu)(s)}| < ε,

||Bu||L2(0,t;H) ≤ q1||p||L2(0,t;H), 0 ≤ t ≤ T,

where q1 is constant and independent of p. S(t) is an analytic semigroup

generated by A.

In Chapter 5, we deal with optimal control problems governed by semilin-

ear parabolic type equations in Chapter 4. Let U be a Hilbert space of control

variables, and B be a bounded linear operator from U into L2(0, T ;H). Let

admissible set Uad be a closed convex subset of U . Let J = J(v) be a given

quadratic cost function. We consider optimal control problems finding a con-

trol û ∈ Uad for a given cost function. First of all, we study the regularity

and a variational of constant formula for solutions of the nonlinear functional

differential equation. Thereafter, we prove the existence and the uniqueness

of optimal control for the problem. Consequently, in view of the monotonic-

ity of ∂φ, we show that the mapping u 7→ xu is Lipschitz continuous in order

to establish the necessary conditions of optimality of optimal controls for

various observation cases.

We will also characterize the optimal controls by giving necessary con-

ditions for optimality by proving the Gâteaux differentiability of solution

mapping on control variables.
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Chapter 2

Approximate controllability and regularity for

nonlinear differential equations

2.1. Introduction

Let H and V be two real separable Hilbert spaces such that V is a dense

subspace of H. We are interested in the following nonlinear differential con-

trol system on H:

 x ′(t) + Ax(t) = g(t, xt,
∫ t

0
k(t, s, xs)ds) + (Bu)(t), 0 < t,

x(0) = φ0, x(s) = φ1(s) − h ≤ s ≤ 0,
(SE)

where the nonlinear term, which is a Lipschitz continuous operator, is a semi-

linear version of the quasilinear form. The principal operator A is assumed

to be a single valued, monotone operator, which is hemicontinuous and co-

ercive from V to V ∗. Here V ∗ stands for the dual space of V . Let U be

a Banach space of control variables. The controller B is a linear bounded

operator from a Banach space L2(0, T ;U) to L2(0, T ;H) for any T > 0. Let

the nonlinear mapping k be Lipschitz continuous from R×[−h, 0]×V into H.

If the right side of the equation (SE) belongs to L2(0, T ;V ∗), it is well known

as the quasi-autonomous differential equation(see Theorem 2.6 of Chapter

III in [8]).
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The problem of existence for solutions of semilinear evolution equations

in Banach spaces has been established by several authors [8, 9, 10]. We refer

to [9, 11, 12] to see the existence of solutions for a class of nonlinear evolution

equations with monotone perturbations

First, we begin with the existence, and a variational constant formula for

solutions of the equation (SE) on L2(0, T ;V ) ∩W 1,2(0, T ;V ∗), which is also

applicable to optimal control problem. We prove the existence and unique-

ness for solution of the equation by converting the problem into a fixed point

problem. Thereafter, based on the regularity results for solutions of (SE), we

intend to establish the approximate controllability for (SE). The controllabil-

ity results for linear control systems have been proved by many authors and

several authors have extended these concepts to infinite dimensional semi-

linear system (see [3, 4, 5]). In recent years, as for the controllability for

semilinear differential equations, Carrasco and Lebia [1] discussed sufficient

conditions for approximate controllability of parabolic equations with delay,

and Naito [2] and [3, 4, 5, 6] proved the approximate controllability under

the range conditions of the controller B.

The previous results on the approximate controllability of a semilinear

control system have been proved as a particular case of sufficient conditions

for the approximate solvability of semilinear equations by assuming either

that the semigroup generated by A is a compact operator or that the cor-

responding linear system (SE) when g ≡ 0 is approximately controllable.

However, Triggian [7] proved that the abstract linear system is never exactly

controllable in an infinite dimensional space when the semigroup generated
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by A is compact. Thus, we will establish the approximate controllability

under more general conditions on the nonlinear term and the controller.

Our goal in this section is to establish the approximate controllablility for

(SE) under a stronger assumption that {y : y(t) = (Bu)(t), u ∈ L2(0, T ;U)

} is dense subspace of L2(0, T,H), which is reasonable and widely used in case

of the nonlinear system. We show that the input to solution(control to state)

map is compact by using the fact that L2(0, T ;V )∩W 1,2(0, T ;V ∗) furnished

with the usual topology is compactly embedded in L2(0, T,H) provided that

the injection V ⊂ H is compact.

Lastly we give a simple example to which the range conditions of the

controller can be applied.

2.2. Nonlinear functional equations

Let H and V be two real Hilbert spaces. Assume and V is dense subspace

in H and the injection of V into H is continuous. If H is identified with

its dual space we may write V ⊂ H ⊂ V ∗ densely and the corresponding

injections are continuous. The norm on V (resp. H) will be denoted by || · ||

(resp. |·|). The duality pairing between the element v1 of V ∗ and the element

v2 of V is denoted by (v1, v2), which is the ordinary inner product in H if

v1, v2 ∈ H. For the sake of simplicity, we may consider

||u||∗ ≤ |u| ≤ ||u||, u ∈ V

7



where || · ||∗ is the norm of the element of V ∗. If an operator A is bounded

linear from V to V ∗ and generates an analytic semigroup, then it is easily

seen that

H = {x ∈ V ∗ :

∫ T

0

||AetAx||2∗dt <∞},

for the time T > 0. Therefore, in terms of the intermediate theory we can

see that

(V, V ∗) 1
2
,2 = H

where (V, V ∗) 1
2
,2 denotes the real interpolation space between V and V ∗.

We note that a nonlinear operator A is said to be hemicontinuous on V

if

w − lim
t→0

A(x+ ty) = Ax

for every x, y ∈ V where ”w−lim” indicates the weak convergence on V ∗. Let

A : V → V ∗ be given a single valued, monotone operator and hemicontinuous

from V to V ∗ such that

(A1) A(0) = 0, (Au− Av, u− v) ≥ ω1||u− v||2 − ω2|u− v|2,

(A2) ||Au||∗ ≤ ω3(||u||+ 1)

for every u, v ∈ V where ω2 ∈ R and ω1, ω3 are some positive constants.

Here, we note that if 0 6= A(0) we need the following assumption

(Au, u) ≥ ω1||u||2 − ω2|u|2

8



for every u ∈ V . It is also known that A is maximal monotone andR(A) = V ∗

where R(A) denotes the range of A.

Let the controller B is a bounded linear operator from a Banach space

L2(0, T ;U) to L2(0, T ;H) where U is a Banach space.

For each t ∈ [0, T ], we define xt : [−h, 0]→ H as

xt(s) = x(t+ s), −h ≤ s ≤ 0.

We will set

Π = L2(−h, 0;V ) and R+ = [0,∞).

Let L and B be the Lebesgue σ-field on [0,∞) and the Borel σ-field on [−h, 0]

respectively. Let k : R+ × R+ × Π → H be a nonlinear mapping satisfying

the following:

(K1) For any x· ∈ Π the mapping k(·, ·, x·) is strongly L × B-measurable;

(K2) There exist positive constants K0, K1 such that

|k(t, s, x·)− k(t, s, y·)| ≤ K1||x· − y·||Π,

|k(t, s, 0)| ≤ K0

for all (t, s) ∈ R+ × [−h, 0] and x·, y· ∈ Π.

Let g : R+×Π×H → H be a nonlinear mapping satisfying the following:

(G1) For any x ∈ Π, y ∈ H the mapping g(·, x·, y) is strongly L-measurable;

9



(G2) There exist positive constants L0, L1, L2 such that

|g(t, x·, y)− g(t, x̂·, ŷ)| ≤ L1||x· − x̂·||Π + L2|y − ŷ|,

|g(t, 0, 0)| ≤ L0

for all t ∈ R+, x·, x̂· ∈ Π, and y, ŷ ∈ H.

Remark 2.2.1 The above operator g is the semilinear case of the nonlinear

part of quasilinear equations considered by Yong and Pan [13].

For x ∈ L2(−h, T ;V ), T > 0 we set

G(t, x) = g(t, xt,

∫ t

0

k(t, s, xs)ds).

Here as in [13] we consider the Borel measurable corrections of x(·).

Lemma 2.2.1 Let x ∈ L2(−h, T ;V ). Then the mapping t 7→ xt belongs to

C([0, T ]; Π) and

||x·||L2(0.T ;Π) ≤
√
T ||x||L2(−h,T ;V ). (2.2.1)

Proof. It is easy to verify the first paragraph and (2.2.1) is a consequence

of the estimate

||x·||2L2(0.T ;Π) ≤
∫ T

0

||xt||2Πdt ≤
∫ T

0

∫ 0

−h
||x(t+ s)||2dsdt

≤
∫ T

0

dt

∫ T

−h
||x(s)||2ds ≤ T ||x||2L2(−h,T ;V ).

2

10



Lemma 2.2.2 Let x ∈ L2(−h, T ;V ), T > 0. Then G(·, x) ∈ L2(0, T ;H) and

||G(·, x)||L2(0,T ;H) ≤ L0

√
T + L2K0T

3/2/
√

3 (2.2.2)

+ (L1

√
T + L2K1T

3/2/
√

2)||x||L2(−h,T ;V ).

Moreover if x1, x2 ∈ L2(−h, T ;V ), then

||G(·, x1)−G(·, x2)||L2(0,T ;H) ≤ (L1

√
T + L2K1T

3/2/
√

2)||x1 − x2||L2(−h,T ;V ).

(2.2.3)

Proof. It follows from (K2) and (2.2.1) that

||
∫ ·

0

k(·, s, xs)ds||L2(0,T ;H) ≤ ||
∫ ·

0

k(·, s, 0)ds||L2(0,T ;H)

+ ||
∫ ·

0

(k(·, s, xs)− k(·, s, 0))ds||L2(0,T ;H)

≤ K0T
3/2/
√

3 + {
∫ T

0

|
∫ t

0

K1||xs||Πds|2dt}1/2

≤ K0T
3/2/
√

3 + {
∫ T

0

K2
1 t

∫ t

0

||xs||2Πdsdt}1/2

≤ K0T
3/2/
√

3 +K1T/
√

2||x·||L2(0,T ;Π)

≤ K0T
3/2/
√

3 +K1T
3/2/
√

2||x||L2(−h,T ;V )

11



and hence, from (G2), (2.2.1) and the above inequality it is easily seen that

||G(·, x)||L2(0,T ;H) ≤ ||G(·, 0)||+ ||G(·, x)−G(·, 0)||

≤ L0

√
T + L1||x·||L2(0,T ;Π) + L2||

∫ ·
0

k(·, s, xs)ds||L2(0,T ;H)

≤ L0

√
T + L1

√
T ||x||L2(−h,T ;V )

+ L2(K0T
3/2/
√

3 +K1T
3/2/
√

2||x||L2(−h,T ;V )).

Similarly, we can prove (2.2.3). 2

Let us consider the quasi-autonomous differential equation

 x ′(t) + Ax(t) = f(t), 0 < t ≤ T,

x(0) = φ0
(E)

where A satisfies the hypotheses mentioned above. The following result is

from Theorem 2.6 of Chapter III in [8].

Proposition 2.2.1 Let φ0 ∈ H and f ∈ L2(0, T ;V ∗). Then there exists a

unique solution x of (E) belonging to

C([0, T ];H) ∩ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗)

and satisfying

|x(t)|2 +

∫ t

0

||x(s)||2ds ≤ C1(|φ0|2 +

∫ t

0

||f(s)||2∗ds), (2.2.4)

∫ t

0

||dx(s)

ds
||2∗dt ≤ C1(|φ0|2 +

∫ t

0

||f(s)||2∗ds) (2.2.5)

12



where C1 is a constant.

Acting on both sides of (E) by x(t), we have

1

2

d

dt
|x(t)|2 + ω1||x(t)||2 ≤ ω2|x(t)|2 + (f(t), x(t)).

As is seen Theorem 2.6 in [8], integrating from 0 to t we can determine

the constant C1 in Proposition 2.1.

We establish the following result on the solvability of the equation (SE).

Theorem 2.2.1 Let A and the nonlinear mapping g be given satisfying the

assumptions mentioned above. Then for any (φ0, φ1) ∈ H×L2(−h, 0;V ) and

f ∈ L2(0, T ;V ∗), T > 0, the following nonlinear equation

 x ′(t) + Ax(t) = G(t, x) + f(t), 0 < t ≤ T,

x(0) = φ0, x(s) = φ1(s) − h ≤ s ≤ 0
(2.2.6)

has a unique solution x belonging to

L2(−h, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying that there exists a constant C2 such that

||x||L2(−h,T ;V )∩W 1,2(0,T ;V ∗) ≤ C2(1 + |φ0|+ ||φ1||L2(−h,0;V ) + ||f ||L2(0,T ;V ∗)).

(2.2.7)

Proof. Let y ∈ L2(0, T ;V ). Then we extend it to the interval (−h, 0) by

setting y(s) = φ1(s) for s ∈ (−h, 0) and hence, G(·, y(·)) ∈ L2(0, T ;H) from

13



Lemma 2.2.2. Thus, in virtue of Proposition 2.2.1 we know that the problem

 x ′(t) + Ax(t) = G(t, y) + f(t), 0 < t,

x(0) = φ0, x(s) = φ1(s) − h ≤ s ≤ 0
(2.2.8)

has a unique solution xy ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) corresponding to y.

Let us fix T0 > 0 so that

ω−1
1 eω2T0(L1

√
T 0 + L2K1T

3/2
0 /
√

2) < 1. (2.2.9)

Let xi, i = 1, 2, be the solution of (2.2.8) corresponding to yi. Multiplying

by x1(t)− x2(t), we have that

(ẋ1(t)− ẋ2(t), x1(t)− x2(t)) + (Ax1(t)− Ax2(t), x1(t)− x2(t))

= (G(t, y1)−G(t, y2), x1(t)− x2(t)),

and hence it follows that

1

2

d

dt
|x1(t)− x2(t)|2 + ω1||x1(t)− x2(t)||2

≤ ω2|x1(t)− x2(t)|2 + ||G(t, y1))−G(t, y2)||∗||x1(t)− x2(t)||.

From Lemma 2.2.2 and integrating over [0,t], it follows

1

2
|x1(t)− x2(t)|2 + ω1

∫ t

0

||x1(s)− x2(s)||2ds

≤ 1

2c

∫ t

0

||G(s, y1)−G(s, y2)||2∗ds

+
c

2

∫ t

0

||x1(s)− x2(s)||2ds+ ω2

∫ t

0

|x1(s)ds− x2(s)ds|2ds,

14



where c is a positive constant satisfying 2ω1 − c > 0. Here we used that

ab ≤ ap

p
+
bq

q
, p−1 + q−1 = 1(1 < p <∞)

for any pair of nonnegative numbers a and b. Thus, from (2.2.3) it follows

that

|x1(t)− x2(t)|2 + (2ω1 − c)
∫ t

0

||x1(s)ds− x2(s)ds||2ds

≤ c−1(L1

√
T 0 + L2K1T

3/2
0 /
√

2)2

∫ t

0

||y1(s)− y2(s)||2ds

+ 2ω2

∫ t

0

|x1(s)− x2(s)|2ds.

By using Gronwall’s inequality, we get

|x1(T0)− x2(T0)|2 + (2ω1 − c)
∫ T0

0

||x1(s)− x2(s)||2ds

≤ c−1(L1

√
T 0 + L2K1T

3/2
0 /
√

2)2e2ω2T0

∫ T0

0

||y1(s)− y2(s)||2ds.

Taking c = ω1, it holds that

||x1 − x2||L2(0,T0;V ) ≤ ω−1
1 eω2T0(L1

√
T 0

+ L2K1T
3/2
0 /
√

2)||y1 − y2||L2(0,T0;V ).

Hence we have proved that y 7→ x is a strictly contraction from L2(0, T0;V )

to itself if the condition (2.2.9) is satisfied. It gives the equation (2.2.6) has

a unique solution in [0, T0].

15



From now on, we derive the norm estimates of solution of the equation

(2.2.6). Let y be the solution of

 y ′(t) + Ay(t) = f(t), 0 < t ≤ T0,

y(0) = φ0.
(2.2.10)

Then

d

dt
(x(t)− y(t)) + (Ax(t)− Ay(t)) = G(t, x),

by multiplying by x(t)− y(t) and using the assumption (A1), we obtain

1

2

d

dt
|x(t)− y(t)|2 + ω1||x(t)− y(t)||2

≤ ω2|x(t)− y(t)|2 + ||G(t, x)||∗||x(t)− y(t)||.

By integrating over [0, t] and using Gronwall’s inequality, we have

||x− y||L2(0,T0;V ) ≤ ω−1
1 eω2T0||G(·, x)||L2(0,T0;V ∗)

≤ ω−1
1 eω2T0{L0

√
T 0 + L2K0T

3/2
0 /
√

3

+ (L1

√
T 0 + L2K1T

3/2
0 /
√

2)(||x||L2(0,T0;V ) + ||φ1||L2(−h,0;V )},

and hence, putting

N = ω−1
1 eω2T0 and L = L1

√
T 0 + L2K1T

3/2
0 /
√

2,
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it holds

||x||L2(0,T0;V ) ≤
N

1−NL
(L0

√
T 0 + L2K0T

3/2
0 /
√

3) (2.2.11)

+
1

1−NL
||y||L2(0,T0;V ) +

NL

1−NL
||φ1||L2(−h,0;V )

≤ N

1−NL
(L0

√
T 0 + L2K0T

3/2
0 /
√

3)

+
C1

1−NL
(|φ0|+ ||f ||L2(0,T0;V ∗))

+
NL

1−NL
||φ1||L2(−h,0;V )

≤ C2(1 + |φ0|+ ||φ1||L2(−h,0;V ) + ||f ||L2(0,T0;V ∗))

for some positive constant C2. Since the condition (2.2.9) is independent of

initial values, the solution of (2.2.6) can be extended to the internal [0, nT0]

for natural number n, i.e., for the initial value (x(nT0), xnT0) in the interval

[nT0, (n+1)T0], as analogous estimate (2.2.11) holds for the solution in [0, (n+

1)T0]. 2

Theorem 2.2.2 If (φ0, φ1) ∈ H × L2(−h, 0;V )) and f ∈ L2(0, T ;V ∗), then

x ∈ L2(−h, T ;V )∩W 1,2(0, T ;V ∗), and the mapping

H×L2(−h, 0;V )×L2(0, T ;V ∗) 3 (φ0, φ1, f) 7→ x ∈ L2(−h, T ;V )∩W 1,2(0, T ;V ∗)

is continuous.

Proof. It is easy to show that if (φ0, φ1) ∈ H × L2(−h, 0;V ) and f ∈

L2(0, T ;V ∗) for every T > 0, then x belongs to L2(−h, T ;V )∩W 1,2(0, T ;V ∗).

17



Let

(φ0
i , φ

1
i , fi) ∈ H × L2(−h, 0;V )× L2(0, T1;V ∗)

and xi be the solution of (2.2.6) with (φ0
i , φ

1
i , fi) in place of (φ0, φ1, f) for

i = 1, 2. Then in view of Proposition 2.2.1 and Lemma 2.2.2 we have

1

2

d

dt
|x1(t)− x2(t)|2 + ω1||x1(t)− x2(t)||2 (2.2.12)

≤ ω2|x1(t)− x2(t)|2 + ||G(t, x1)−G(t, x2)||∗||x1(t)− x2(t)||

+ ||f1(t)− f2(t)||∗||x1(t)− x2(t)||

If ω1 − c/2 > 0, we can choose a constant c1 > 0 so that

ω1 − c/2− c1/2 > 0

and

||f1(t)− f2(t))||∗||x1(t)− x2(t)|| ≤ 1

2c1

||f1(t)− f2(t)||2∗

+
c1

2
||x1(t)− x2(t)||2.

Let T1 < T be such that

2ω1 − c− c1 − c−1e2ω2T1(L1

√
T 1 + L2K1T

3/2
1 /
√

2)2 > 0.

Integrating on (2.2.12) over [0, T1] and as is seen in the first part of proof, it

18



follows

(2ω1 − c− c1)||x1 − x2||2L2(0,T1;V ) ≤ e2ω2T1{|φ0
1 − φ0

2|2

+
1

c
||G(t, x1)−G(t, x2)||2L2(0,T1;V ∗) +

1

c1

||f1 − f2||2L2(0,T1;V ∗)}

≤ e2ω2T1{|φ0
1 − φ0

2|2

+
1

c
(L1

√
T 1 + L2K1T

3/2
1 /
√

2)2||x1 − x2||2L2(−h,T1;V )

+
1

c1

||f1 − f2||2L2(0,T1;V ∗)}.

Putting that

N1 = 2ω1 − c− c1 − c−1e2ω2T1(L1

√
T 1 + L2K1T

3/2
1 /
√

2)2

we have

||x1 − x2||L2(0,T1;V ) ≤
eω2T1

N
1/2
1

(|φ0
1 − φ0

2|+
1

c1

||f1 − f2||L2(0,T1;V ∗)) (2.2.13)

+
c−1/2eω2T1(L1

√
T1 + L2K1T

3/2
1 /
√

2)

N
1/2
1

||φ1
1 − φ1

2||L2(−h,0;V ).

Suppose that

(φ0
n, φ

1
n, fn)→ (φ0, φ1, f) in H × L2(−h, 0;V )× L2(0, T ;V ∗),

and let xn and x be the solutions (2.2.6) with (φ0
n, φ

1
n, fn) and (φ0, φ1, f)

respectively. By virtue of (2.2.13) with T replaced by T1 we see that

xn → x in L2(−h, T1;V ) ∩W 1,2(0, T1;V ∗) ⊂ C([0, T1];H).
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This implies that (xn(T1), (xn)T1) → (x(T1), xT1) in H×L2(−h, 0;V ). Hence

the same argument shows that

xn → x in L2(T1,min{2T1, T};V ) ∩W 1,2(T1,min{2T1, T};V ∗).

Repeating this process we conclude that

xn → x in L2(−h, T ;V ) ∩W 1,2(0, T ;V ∗).

2

Remark 2.2.2 For x ∈ L2(0, T ;V ) we set

G(t, x) =

∫ t

0

k(t− s)g(s, x(s))ds

where k belongs to L2(0, T ) and g : [0, T ]×V −→ H be a nonlinear mapping

satisfying

|g(t, x)− g(t, y)| ≤ L||x− y||

for a positive constant L. Let x ∈ L2(0, T ;V ), T > 0. Then G(·, x) ∈

L2(0, T ;H) and

||G(·, x)||L2(0,T ;H) ≤ L||k||L2(0,T )

√
T ||x||L2(0,T ;V ).

Moreover if x1, x2 ∈ L2(0, T ;V ), then

||G(·, x1)−G(·, x2)||L2(0,T ;H) ≤ L||k||
√
T ||x1 − x2||L2(0,T ;V ).

Then with the condition that

ω−1
1 eω2T0L||k||

√
T0 < 1
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in place of the condition (2.2.9), we can obtain the results of Theorem 2.2.1.

2.3. Approximate controllability

In what follows we assume that the embedding V ⊂ H is compact and

A is a continuous operator from V to V ∗ satisfying (A1) and (A2). For

h ∈ L2(0, T ;H) and let xh be the solution of the following equation with

B = I:  x ′(t) + Ax(t) = G(t, x) + h(t), 0 < t,

x(0) = 0, x(s) = 0 − h ≤ s ≤ 0,
(2.3.1)

where

G(t, x) = g(t, xt,

∫ t

0

k(t, s, xs)ds).

We define the solution mapping S from L2(0, T ;V ∗) to L2(0, T ;V ) by

(Sh)(t) = xh(t), h ∈ L2(0, T ;V ∗). (2.3.2)

Let A and G be the Nemitsky operators corresponding to the maps A and

G, which are defined by A(x)(·) = Ax(·) and G(h)(·) = G(·, xh), respec-

tively. Then since the solution x belongs to L2(−h, T ;V )∩W 1,2(0, T ;V ∗) ⊂

C([0, T ];H), it is represented by

xh(t) =

∫ t

0

((I + G −AS)h)(s)ds, (2.3.3)
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and with aid of Lemma 2.2.2 and Proposition 2.2.1

||Sh||L2(0,T ;V )∩W 1,2(0,T ;V ∗) = ||xh|| ≤ C1||G(·, xh) + h||L2(0,T ;V ∗) (2.3.4)

≤ C1{L0

√
T + L2K0T

3/2/
√

3 + (L1

√
T + L2K1T

3/2/
√

2)||x||L2(0,T ;V )

+ ||h||L2(0,T ;V ∗)}

≤ C1{L0

√
T + L2K0T

3/2/
√

3

+ (L1

√
T + L2K1T

3/2/
√

2)(1 + ||h||L2(0,T ;V ∗)) + ||h||L2(0,T ;V ∗)}.

Hence if h is bounded in L2(0, T ;V ∗), then so is xh in L2(0, T ;V ) ∩

W 1,2(0, T ;V ∗). Since V is compactly embedded in H by assumption, the

embedding L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ L2(0, T ;H) is compact in view of

Theorem 2 of Aubin [14]. Hence, the mapping h 7→ Sh = xh is compact

from L2(0, T ;V ∗) to L2(0, T ;H). Therefore, G is a compact mapping from

L2(0, T ;V ∗) to L2(0, T ;H) and so is AS from L2(0, T ;V ∗) to itself. The

solution of (SE) is denoted by x(T ; g, u) associated with the nonlinear term

g and control u at time T .

Definition 2.3.1 The system (SE) is said to be approximately controllable

at time T if Cl{x(T ; g, u) : u ∈ L2(0, T ;U)} = V ∗ where Cl denotes the

closure in V ∗.

We assume

(T) 1− ω−1
1 ω3e

ω2T > 0
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(B) Cl{y : y(t) = (Bu)(t), a.e. u ∈ L2(0, T ;U)} = L2(0, T ;H). Here Cl

is the closure in L2(0, T ;H).

Theorem 2.3.1 Let the assumptions (T) and (B) be satisfied. Then

Cl{(I −AS)h : h ∈ L2(0, T ;V ∗)} = L2(0, T ;V ∗). (2.3.5)

Therefore, the following nonlinear differential control system


dx(t)
dt

+ Ax(t) = (Bu)(t), 0 < t ≤ T,

x(0) = x0

(2.3.6)

is approximately controllable at time T .

Proof. Let z ∈ L2(0, T ;V ∗) and r be a constant such that

z ∈ Ur = {x ∈ L2(0, T ;V ∗) : ||x||L2(0,T ;V ∗) < r}.

Take a constant d > 0 such that

(r + ω3 +N2|x0|)(1−N2)−1 < d, (2.3.7)

where

N2 = ω−1
1 ω3e

ω2T .

Taking scalar product on both sides of (2.3.1) with G = 0 by x(t)

1

2

d

dt
|x(t)|2 + ω1||x(t)||2 ≤ ω2|x(t)|2 + ||h(t)||∗||x(t)||

≤ ω2|x(t)|2 +
1

2c
||h(t)||2∗ +

c

2
||x(t)||2
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where c is a positive constant satisfying 2ω1− c > 0. Integrating on [0, t], we

get

1

2
|x(t)|2 + ω1

∫ t

0

||x(s)||2ds ≤ 1

2
|x0|2 +

1

2c

∫ t

0

||h(s)||2∗ds

+
c

2

∫ t

0

||x(s)||2ds+ ω2

∫ t

0

|x(s)|2ds,

and hence,

|x(t)|2 + (2ω1 − c)
∫ t

0

||x(s)||2ds ≤ |x0|2 +
1

c

∫ t

0

||h(s)||2∗ds

+ 2ω2

∫ t

0

|x(s)|2ds.

By using Gronwall’s inequality, it follows that

|x(T )|2 + (2ω1 − c)
∫ T

0

||x(s)||2ds ≤ e2ω2T (|x0|2 +
1

c

∫ T

0

||h(s)||2∗ds),

that is,

||Sh||L2(0,T ;V ) = ||x||L2(0,T ;V ) (2.3.8)

≤ eω2T (2ω1 − c)−1/2(|x0|+ c−1/2||h||L2(0,T ;V ∗)).

Let us consider the equation

z = (I −AS)w. (2.3.9)
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Let w be the solution of (2.3.9). Then z ∈ Ud and taking c = ω1, from (2.3.7)

and (2.3.8)

||w||L2(0,T ;V ∗) ≤ ||z||L2(0,T ;V ∗) + ||ASw||L2(0,T ;V ∗)

≤ r + ω3(||Sw||L2(0,T ;V ∗) + 1)

≤ r + ω3{ω−1/2
1 eω2T (|x0|+ ω

−1/2
1 ||w||) + 1},

and hence

||w|| ≤ (r + ω3 +N2|x0|)(1−N2)−1 < d

it follows that w /∈ ∂Ud where ∂Ud stands for the boundary of Ud. Thus the

homotopy property of topological degree theory there exists w ∈ L2(0, T ;V ∗)

such that the equation (2.3.9) holds. Since the assumption (B), there exists a

sequence {un} ∈ L2(0, T ;U) such that Bun 7→ w in L2(0, T ;V ∗). Then by the

last paragraph of Theorem 2.1 we have that x(·; g, un) 7→ xw in L2(0, T ;V )∩

W 1,2(0, T ;V ∗) ⊂ C([0, T ];H). Hence we have proved (2.3.5). Let y ∈ V ∗.

Then there exists an element u ∈ L2(0, T ;U) such that

|| y
T
− (I −AS)Bu||L2(0,T ;V ∗) <

ε√
T
.

Thus

||y − x(T )||∗ = ||y −
∫ T

0

((I −AS)Bu)(s)ds||∗

≤
∫ T

0

|| y
T
− ((I −AS)Bu)(s)||∗ds

≤
√
T || y

T
− (I −AS)Bu||L2(0,T ;V ∗) < ε.
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Therefore, the system (2.3.6) is approximately controllable at time T . 2

In order to investigate the controllability of the nonlinear control system,

we need to impose the following condition.

(F) g is uniformly bounded: there exists a constant Mg such that

|g(t, x, y)| ≤Mg,

for all x, y ∈ V .

By (F) it holds that

||G(·, x)||L2(0,T ;H) ≤Mg

√
T ,

and for every h ∈ L2(0, T ;V ∗)

||G(h)||L2(0,T ;H) ≤Mg

√
T (2.3.10)

Theorem 2.3.2 Let the assumptions (T), (B) and (F) be satisfied. Then

we have

Cl{(G + I −AS)h : h ∈ L2(0, T ;V ∗)} = L2(0, T ;V ∗). (2.3.11)

Thus the system (SE) is approximately controllable at time T .

Proof. Let Ur be the ball with radius r in L2(0, T ;V ∗) and z ∈ Ur. To

prove (2.3.11) we will also use the degree theory for the equation

z = λ(G − AS)w + w, 0 ≤ λ ≤ 1 (2.3.12)
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in open ball Ud where the constant d satisfies

(r + ω3 +N2|x0|+Mg

√
T )(1−N2)−1 < d (2.3.13)

where the constant N2 is in Theorem 2.3.1. If w is the solution of (2.3.12)

then z ∈ Ud and from Lemma 2.2.1

||w||L2(0,T ;V ∗) ≤ ||z||+ ||ASw||+ ||Gw||

≤ r + ω3(||Sw||+ 1) +Mg

√
T )

≤ r + ω3{ω−1/2
1 eω2T (|x0|+ ω

−1/2
1 ||w||) + 1}+Mg

√
T ,

and hence

||w|| ≤ (r + ω3 +N2|x0|+Mg

√
T )(1−N2)−1 < d

it follows that w /∈ ∂Ud. Hence, there exists w ∈ L2(0, T ;V ∗) such that the

equation (2.3.12) holds. Using the similar way to the last part of Theorem

2.3.1 and the assumption (B) there exists a sequence {un} ∈ L2(0, T ;U)

such that Bun 7→ w in L2(0, T ;V ∗) and x(·; g, un) 7→ xw in L2(0, T ;V ) ∩

W 1,2(0, T ;V ∗) ⊂ C([0, T ];H). Thus, we have proved (2.3.11) and the system

(2.1.1) is approximately controllable at time T . 2

2.4. Example

Let −A be an operator associated with a bounded sesquilinear form

a(u, v) defined in V × V and satisfying G̊arding’s inequality

Re a(u, v) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0
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for any u ∈ V . It is known that A generates an analytic semigroup in both H

and V ∗. In virtue of the Riesz-Schauder theorem, if the embedding V ⊂ H

is compact then the operator A has discrete spectrum

σ(A) = {µn : n = 1, 2, ... }

which has no point of accumulation except possibly µ =∞. Let µn be a pole

of the resolvent of A of order kn and Pn the spectral projection associated

with µn

Pn =
1

2πi

∫
Γn

(µ− A)−1dµ,

where Γn is a small circle centered at µn such that it surrounds no point

of σ(A) except µn. Then the generalized eigenspace corresponding to µn is

given by

Hn = PnH = {Pnu : u ∈ H},

and we have that from P 2
n = Pn and Hn ⊂ V it follows that

PnV = {Pnu : u ∈ V } = Hn.

Definition 2.4.1 The system of the generalized eigenspaces of A is complete

in H if Cl{span{Hn : n = 1, 2, ... }} = H where Cl denotes the closure in

H.

We need the following hypotheses:

(B1) The system of the generalized eigenspaces of A is complete.

28



(B2) There exists a constant d > 0 such that

||v|| ≤ d||Bv||, v ∈ L2(0, T ;U).

We can see many examples which satisfy (B2)(cf. [5, 6]).

Consider about the intercept controller B defined by

(Bu)(t) =
∞∑
n=1

un(t), (2.4.1)

where

un =

0, 0 ≤ t ≤ T
n

Pnu(t), T
n
< t ≤ T.

Hence we see that u1(t) ≡ 0 and un(t) ∈ ImPn.

First of all, for the meaning of the condition (B) in section 2.3, we need

to show the existence of controller satisfying Cl{Bu : u ∈ L2(0, T ;U)} 6=

L2(0, T ;H). In fact, by completion of the generalized eigenspaces of A

we may write that f(t) =
∑∞

n=1 Pnf(t) for f ∈L2(0, T ;H). Let us choose

f ∈L2(0, T ;H) satisfying

∫ T

0

||P1f(t)||2dt > 0.

Then since∫ T

0

||f(t)−Bu(t)||2dt =

∫ T

0

∞∑
n=1

||Pn(f(t)−Bu(t))||2dt

≥
∫ T

0

||P1(f(t)−Bu(t))||2dt =

∫ T

0

||P1f(t)||2dt > 0,
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the statement mentioned above is reasonable.

Let f ∈ L2(0, T ;H) and α = T/(T − T/n). Then we know

f(·) ≡ αK[T,T/n]f(α( · − T/n)) in L2(0, T ;H),

where K[T,T/n] is the characteristic function of [T, T/n]. Define

w(s) =
∞∑
n=1

wn(s), wn(s) = αK[T,T/n]B
−1Pnf(α(s− T/n)).

Thus (Bw)(t) =
∑∞

n=1 Pnf(s), a.e.. Since the system of the generalized

eigenspaces of A is complete, it holds that for every f ∈ L2(0, T ;H) and

ε > 0

||f(·)−
∞∑
n=1

Pnf(·)||L2(0,T ;H) = ||f(·)−Bw||L2(0,T ;H) < ε.

Thus, the intercept controller B defined by (2.4.1) satisfies the condition (B).
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Chapter 3

Approximate controllability for nonlinear differential

equations with quasi-autonomous operator

3.1. Introduction

Let H and V be two real separable Hilbert spaces such that V is a dense

subspace of H. We are interested in the approximate controllability for the

following nonlinear functional control system on H:


dx(t)
dt

+Ax(t) 3 (Bu)(t), 0 < t ≤ T,

x(0) = x0.
(E)

Assume that A is a monotone hemicontinuous operator from V to V ∗ and

satisfies the coercive condition. Here V ∗ stands for the dual space of V . Let U

be a Banach space and the controller operator B be a bounded linear operator

from the Banach space L2(0, T ;U) to L2(0, T ;H). If Bu ∈ L2(0, T ;V ∗), it is

well known as the quasi-autonomous differential equation(see Theorem 2.6

of Chapter III in Barbu [8]). In [8], the existence and the norm estimate of a

solution of the above equation on L2(0, T ;V )∩W 1,2(0, T ;V ∗) was given, and

results similar to this case were obtained by many authors(see bibliographical

notes of [5, 8, 12, 15, 16]), which is also applicable to an optimal control

problem.
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The optimal control problems for a class of systems governed by a class

of nonlinear evolution equations with nonlinear operator A have been stud-

ied by Ahmed, Teo and Xiang [9, 11, 17]. The condition equivalent to the

approximate controllability for semilinear control system have been obtained

in by Naito [2] and Zhou [5]. As for the semilinear control system with the

linear operator A generated C0-semigroup, Naito [2] proved the approximate

controllability under the range conditions of the controller B. The papers

treating the controllability for systems with nonlinear principal operator A

are not many.

In the present section, we will prove the approximately controllable for

(E) under a rather applicable assumption on the range of the control operator

B, namely that {y : y(t) = Bu(t), u ∈ L2(0, T ;U)} is dense subspace of

L2(0, T,H), which is reasonable and widely used in case of the nonlinear

system(refer to [2, 5, 18]).

3.2. Quasi-autonomous differential equations

Let H and V be two real separable Hilbert spaces forming Gelfand trip-

ple V ⊂ H ⊂ V ∗ with pivot space H as mentioned in Chapter 2. Let

h ∈ L2(0, T ;V ∗) and x be the solution of the following quasi-autonomous

differential equation with forcing term h(t):


dx(t)
dt

+ Ax(t) 3 h(t), 0 < t ≤ T,

x(0) = x0

(3.2.1)
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where A is given satisfying the hypotheses mentioned above. The following

result is from Theorem 2.6 of Chapter III in [8].

Proposition 3.2.1 Let x0 ∈ H and h ∈ L2(0, T ;V ∗). Then there exists a

unique solution x of (3.2.1) belonging to

C([0, T ];H) ∩ L2(0, T ;H) ∩W 1,2(0, T ;V ∗)

and satisfying

|x(t)|2 +

∫ t

0

||x(s)||2ds ≤ C1(|x0|2 +

∫ t

0

||h(s)||2∗ds+ 1), (3.2.2)

∫ t

0

||dx(s)

ds
||2∗dt ≤ C1(|x0|2 +

∫ t

0

||h(s)||2∗ds+ 1) (3.2.3)

where C1 is a constant.

Lemma 3.2.1 Let xh and xk be the solutions of (3.2.1) corresponding to h

and k in L2(0, T ;V ∗). Then we have that

1

2
|xh(t)− xk(t)|2 + ω1

∫ t

0

||xh(s)− xk(s)||2ds

≤
∫ t

0

e2ω2(t−s)||xh(s)− xk(s)|| ||h(s)− k(s)||∗ds, (3.2.4)

and

1

2
|xh(t)|2 + ω1

∫ t

0

||xh(s)||2ds

≤ e2ω2t

2
|x0|2 +

∫ t

0

e2ω2(t−s)||xh(s)|| ||h(s)||∗ds. (3.2.5)
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Proof. In order to prove (3.2.5), taking scalar product on both sides of

(3.2.1) by x(t),

1

2

d

dt
|xh(t)|2 + ω1||xh(t)||2 ≤ ω2|xh(t)|2 + ||xh(t)|| ||h(t)||∗.

Integrating on [0, t], we get

1

2
|xh(t)|2 + ω1

∫ t

0

||xh(s)||2ds

≤ 1

2
|x0|2 + ω2

∫ t

0

|xh(s)|2ds+

∫ t

0

||xh(s)|| ||h(s)||∗ds. (3.2.6)

From (3.2.6) it follows that

d

dt
{e−2ω2t

∫ t

0

|xh(s)|2ds} = 2e−2ω2t{1

2
|xh(t)|2 − ω2

∫ t

0

|xh(s)|2ds}

≤ 2e−2ω2t{1

2
|x0|2 +

∫ t

0

||xh(s)|| ||h(s)||∗ds}.

(3.2.7)

Integrating (3.2.7) over (0, t) we have

e−2ω2t

∫ t

0

|xh(s)|2ds ≤ 2

∫ t

0

e−2ω2τ

∫ τ

0

||xh(s)|| ||h(s)||∗dsdτ +
1− e−2ω2t

2ω2

|x0|2

= 2

∫ t

0

∫ t

s

e−2ω2τdτ ||xh(s)|| ||h(s)||∗ds+
1− e−2ω2t

2ω2

|x0|2

= 2

∫ t

0

e−2ω2s − e−2ω2t

2ω2

||xh(s)|| ||h(s)||∗ds+
1− e−2ω2t

2ω2

|x0|2

=
1

ω2

∫ t

0

(e−2ω2s − e−2ω2t)||xh(s)|| ||h(s)||∗ds+
1− e−2ω2t

2ω2

|x0|2,
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and hence,

ω2

∫ t

0

|xh(s)|2ds ≤
∫ t

0

(e2ω2(t−s) − 1)||xh(s)|| ||h(s)||∗ds+
e2ω2t − 1

2
|x0|2.

(3.2.8)

Combining (3.2.6) with (3.2.8) it follows that

1

2
|xh(t)|2 + ω1

∫ t

0

||xh(s)||2ds ≤
e2ω2t

2
|x0|2 +

∫ t

0

e2ω2(t−s)||xh(s)|| ||h(s)||∗ds.

We also obtain (3.2.4) by the similar argument in the proof of (3.2.5). 2

Theorem 3.2.1 If (x0, h) ∈ H × L2(0, T ;V ∗), then x ∈ L2(0, T ;V ) ∩

C([0, T ];H) and the mapping

H × L2(0, T ;V ∗) 3 (x0, h) 7→ x ∈ L2(0, T ;V ) ∩ C([0, T ];H)

is continuous.

Proof. By virtue of Proposition 3.2.1 for any (x0, h) ∈ H × L2(0, T ;V ∗),

the solution x of (3.2.1) belongs to L2(0, T ;V )∩C([0, T ];H). Let (x0i, hi) ∈

H × L2(0, T ;V ∗) and xi be the solution of (3.2.1) with (x0i, hi) instead of

(x0, h) for i = 1, 2. Multiplying on (3.2.1) by x1(t)− x2(t), we have

1

2

d

dt
|x1(t)− x2(t)|2 + ω1||x1(t)− x2(t)||2

≤ ω2|x1(t)− x2(t)|2 + ||x1(t)− x2(t)|| ||h1(t)− h2(t)||∗.
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By the similar process of the proof of (3.2.5) it holds

1

2
|x1(t)− x2(t)|2 + ω1

∫ t

0

||x1(s)− x2(s)||2ds

≤ e2ω2t

2
|x01 − x02|2 +

∫ t

0

e2ω2(t−s)||x1(s)− x2(s)|| ||h1(s)− h2(s)||∗ds.

We can choose a constant c > 0 such that

ω1 − e2ω2T
c

2
> 0

and, hence∫ T

0

e2ω2(t−s)||x1(s)− x2(s)|| ||h1(s)− h2(s)||∗ds

≤ e2ω2T

∫ T

0

{ c
2
||x1(s)− x2(s)||2 +

1

2c
||h1(s)− h2(s)||2∗}ds.

Thus, there exists a constant C > 0 such that

||x1 − x2||L2(0,T,V )∩C([0,T ];H) ≤ C(|x01 − x02|+ ||h1 − h2||L2(0,T ;V ∗)). (3.2.9)

Suppose (x0n, hn) → (x0, h) in H × L2(0, T ;V ∗), and let xn and x be the

solutions (E) with (x0n, hn) and (x0, h), respectively. Then, by virtue of

(3.2.9), we see that xn → x in L2(0, T, V ) ∩ C([0, T ];H). 2

3.3. Approximate controllability

In what follows we assume that the embedding V ⊂ H is compact. Let

xh be the solution of (3.2.1) corresponding to h in L2(0, T ;V ∗). We define
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the solution mapping S from L2(0, T ;V ∗) to L2(0, T ;V ) by

(Sh)(t) = xh(t), h ∈ L2(0, T ;V ∗).

LetA be the Nemitsky operator corresponding to the map A, which is defined

by A(x)(·) = Ax(·).

Then

xh(t) =

∫ t

0

((I −AS)h)(s)ds,

and with the aid of Proposition 3.2.1

||Sh||L2(0,T ;V )∩W 1,2(0,T ;V ∗) = ||xh||L2(0,T ;V )∩W 1,2(0,T ;V ∗)

≤ C1(|x0|+ ||h||L2(0,T ;V ∗) + 1). (3.3.1)

Hence if h is bounded in L2(0, T ;V ∗), then so is xh in L2(0, T ;V )∩W 1,2(0, T ;V ∗).

Since V is compactly embedded inH by assumption, the embedding L2(0, T ;V )∩

W 1,2(0, T ;V ∗) ⊂ L2(0, T ;H) is compact in view of Theorem 2 of Aubin [14].

Hence, since the embedding L2(0, T ;H) ⊂ L2(0, T ;V ∗) is continuous, the

mapping h 7→ Sh = xh is compact from L2(0, T ;V ∗) to itself.

The solution of (E) is denoted by x(T ;u) associated with the control u

at time T . The system (E) is said to be approximately controllable at time

T if Cl{x(T ;u) : u ∈ L2(0, T ;U)} = H where Cl denotes the closure in H.

We assume

(B) Cl{y : y(t) = (Bu)(t), a.e. u ∈ L2(0, T ;U)} = L2(0, T ;H)

where Cl denotes also the closure in L2(0, T ;H).
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The main results of this section is the following.

Theorem 3.3.1 Let the assumption (B) be satisfied. If our constants con-

dition in (A1), (A2) contains the following inequality: ω3 < ω1, then

Cl{(I −AS)h : h ∈ L2(0, T ;V ∗)} = L2(0, T ;V ∗). (3.3.2)

Therefore, the nonlinear differential control system (E) is approximately con-

trollable at time T .

Proof. Let us fix T0 > 0 so that

N = ω−1
1 ω3e

ω2T0 < 1. (3.3.3)

Let z ∈ L2(0, T0;V ∗) and r be a constant such that

z ∈ Ur = {x ∈ L2(0, T0;V ∗) : ||x||L2(0,T0;V ∗) < r}.

Take a constant d > 0 such that

(r + ω3 + ω3ω
−1/2
1 eω2T0|x0|)(1−N)−1 < d. (3.3.4)

(3.2.5) in Lemma 3.2.1 implies

ω1||xh||2L2(0,T0;V ) ≤
e2ω2T0

2
|x0|2 +

ω1

2
||xh||2L2(0,T0;V ) +

e2ω2T0

2ω1

||h||2L2(0,T0;V ∗),

that is,

||Sh||L2(0,T0;V ) = ||xh||L2(0,T0;V )

≤ eω2T0(ω
−1/2
1 |x0|+ ω−1

1 ||h||L2(0,T0;V ∗)). (3.3.5)
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Let us consider the equation

z = (I − λAS)h, 0 ≤ λ ≤ 1. (3.3.6)

Let h be the solution of (3.3.5). Then, for the element z ∈ Ur, from (3.3.4)

and (3.3.5), it follows that

||h||L2(0,T0;V ∗) ≤ ||z||+ ||ASh|| ≤ r + ω3(||Sh||+ 1)

≤ r + ω3{eω2T0(ω
−1/2
1 |x0|+ ω−1

1 ||h||L2(0,T0;V ∗)) + 1},

and hence

||h|| ≤ (r + ω3 + ω
−1/2
1 ω3e

ω2T0|x0|)(1−N)−1

< d.

It follows that h /∈ ∂Ud where ∂Ud stands for the boundary of Ud. Thus the

homotopy property of topological degree theory there exists h ∈ Ud such that

the equation

z = (I −AS)h

holds. Since the assumption (B), there exists a sequence {un} ∈ L2(0, T0;U)

such that Bun 7→ h in L2(0, T0;V ∗). Then by Theorem 3.2.1 we have that

x(·;un) 7→ xh in L2(0, T0;V ) ∩ C([0, T0];H). Let y ∈ H. We can choose

g ∈ W 1,2(0, T0;V ∗) such that g(0) = x0 and g(T0) = y and from the equation

(3.3.6) there is h ∈ L2(0, T0;V ∗) such that g
′
= (I−AS)h. By the assumption

(B) there exists u ∈ L2(0, T0;U) such that

||h−Bu||L2(0,T0;V ∗) ≤
√

2ω1

eω2T0
ε
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for every ε > 0. From (3.2.4)

1

2
|xh(t)− xBu(t)|2 + ω1

∫ t

0

||xh(s)− xBu(s)||2ds ≤

∫ t

0

e2ω2(t−s)||xh(s)− xBu(s)|| ||h(s)− (Bu)(s)||∗ds

≤ω1

∫ t

0

||xh(s)− xBu(s)||2ds+
e2ω2t

4ω1

∫ t

0

||h(s)− (Bu)(s)||2ds,

it holds

||xh − xBu||C([0,T0];H) ≤
eω2T0

√
2ω1

||h−Bu||L2(0,T0;V ∗),

thus, we have

|y − xh(T )| = |
∫ T0

0

((I −AS)h)(s)ds−
∫ T0

0

((I −AS)Bu)(s)ds|

≤ eω2T0

√
2ω1

||h−Bu||L2(0,T0;V ∗) ≤ ε.

Therefore, the system (E) is approximately controllable at time T0. Since

the condition (3.3.3) is independent of initial values, we can solve the equa-

tion in [T0, 2T0] with the initial value x(T0). By repeating this process, the

approximate controllability for (E) can be extended the interval [0, nT0] for

natural number n, i.e., for the initial x(nT0) in the interval [nT0, (n+ 1)T0].

2
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Chapter 4

Controllability for nonlinear variational inequalities

of parabolic type

4.1. Introduction

Let H and V be two complex Hilbert spaces. Assume that V is a dense

subspace in H and the injection of V into H is continuous. The norms on V

and H will be denoted by || · || and | · |, respectively. Let A be a continuous

linear operator from V into V ∗ which is assumed to satisfy

(Au, u) ≥ ω1||u||2 − ω2|u|2

where ω1 > 0 and ω2 is a real number and let φ : V → (−∞,+∞] be a lower

semicontinuous, proper convex function. Consider the following variational

inequality problem with nonlinear term:


(x′(t) + Ax(t), x(t)− z) + φ(x(t))− φ(z)

≤ (f(t, x(t)) + k(t), x(t)− z), a.e., 0 < t ≤ T, z ∈ V

x(0) = x0.

(VIP)

According to the subdifferential operator ∂φ, the problem (VIP) is rep-

resented by the following nonlinear functional differential problem on H:
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 x′(t) + Ax(t) + ∂φ(x(t)) 3 f(t, x(t)) + k(t), 0 < t ≤ T,

x(0) = x0.
(NDE)

The existence and regularity for the parabolic variational inequality in

the linear case( f ≡ 0), which was first investigated by Brézis [15], has been

developed as seen in section 4.3.2 of Barbu [19](also see section 4.3.1 in [8]).

First, in Section 4.2 we will deal with the existence for solutions of (NDE)

when the nonlinear mapping f is a Lipschitz continuous from R× V into H

and the norm estimate of a solution of the above nonlinear equation on

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ∩ C([0, T ];H) as seen in [20]. Consequently, in

view of the monotonicity of ∂φ, we show that the mapping

H × L2(0, T ;V ∗) 3 (x0, k) 7→ x ∈ L2(0, T ;V ) ∩ C([0, T ];H)

is continuous. Thereafter, we can obtain the approximate controllability for

the nonlinear functional differential control problem governed by the varia-

tional inequality in Section 4.4. Let U be a complex Banach space and B be

a bounded linear operator from L2(0, T ;U) to L2(0, T ;H). Let us consider

the following control system governed by the variational inequality problem

with the control term Bu instead of k:

 x′(t) + Ax(t) + ∂φ(x(t)) 3 f(t, x(t)) + (Bu)(t), 0 < t ≤ T,

x(0) = x0.
(NCE)
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For every ε > 0, we define the Moreau-Yosida approximation of φ as

φε(x) = inf{||x− y||2∗/2ε+ φ(y) : y ∈ H}.

Then the function φε is Fréchet differentiable on H. By using the facts

that its Fréchet differential ∂φε is a single valued and Lipschitz continuous

on H, we investigate the control problem of (NCE) by transforming onto

the semilinear differential equation with ∂φε in place of ∂φ and obtain the

norm estimate of a solution of the above nonlinear equation on L2(0, T ;V )∩

W 1,2(0, T ;V ∗) ∩ C([0, T ];H) in section 4.3.

In recent years, as for the controllability for semilinear differential equa-

tions, Carrasco and Lebia [1] discussed sufficient conditions for approximate

controllability of a system of parabolic equations with delay, Mahmudov [21]

in case the semilinear equations with nonlocal conditions with condition on

the uniform boundedness of the Frechet derivative of nonlinear term, and

Sakthivel et al. [22] on impulsive and neutral functional differential equa-

tions.

In this section, in order to show the investigate the approximate control-

lability problem for (NCE), we assume range conditions of the controller B,

which is that for any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U)

such that  |
∫ T

0
S(T − s){p(s)− (Bu)(s)}| < ε,

||Bu||L2(0,t;H) ≤ q1||p||L2(0,t;H), 0 ≤ t ≤ T,

where q1 is a constant independent of p and S(t) is an analytic semigroup

generated by A.
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Here, we remark that the quantity condition of the constant q1 as seen in

Zhou [[5]; (3.3)] is not necessary. Some examples to which main result can

be applied are given in [2, 5].

If D(A) is compactly embedded in V (or the semigroup operator S(t) is

compact), the following embedding

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ L2(0, T ;V ))

is compact in view of Theorem 2 of Aubin [14]. Hence, the mapping u 7→ x

is compact from L2(0, T ;U) to L2(0, T ;V ). From these results we can obtain

the approximate controllability for the equation (NCE), which is the extended

result of Naito [2] to the equation (NCE). Finally, a simple examples which

our main result can be applied is given.

4.2. Preliminaries

Forming Gelfand triple V ⊂ H ⊂ V ∗ with pivot space H, for the sake of

simplicity, we may consider

||u||∗ ≤ |u| ≤ ||u||, u ∈ V

where || · ||∗ is the norm of the element of V ∗. We also assume that there

exists a constant C1 such that

||u|| ≤ C1||u||1/2D(A)|u|
1/2 (4.2.1)

for every u ∈ D(A), where

||u||D(A) = (|Au|2 + |u|2)1/2
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is the graph norm of D(A). Let a(·, ·) be a bounded sesquilinear form defined

in V × V and satisfying G̊arding’s inequality

Re a(u, u) ≥ ω1||u||2 − ω2|u|2, u ∈ V (4.2.2)

where ω1 > 0 and ω2 is a real number. Let A be the operator associated with

the sesquilinear form a(·, ·):

(Au, v) = a(u, v), u, v ∈ V.

Then A is a bounded linear operator from V to V ∗ and −A generates an

analytic semigroup in both of H and V ∗ as is seen in [[16]; Theorem 3.6.1].

The realization for the operator A in H which is the restriction of A to

D(A) = {u ∈ V ;Au ∈ H}

be also denoted by A.

The following L2-regularity for the abstract linear parabolic equation

 x′(t) + Ax(t) = k(t), 0 < t ≤ T,

x(0) = x0

(LE)

has a unique solution x in [0, T ] for each T > 0 if x0 ∈ (D(A), H)1/2,2 and

k ∈ L2(0, T ;H) where (D(A), H)1/2,2 is the real interpolation space between

D(A) and H. Moreover, we have

||x||L2(0,T ;D(A))∩W 1,2(0,T,H) ≤ C2(||x0||(D(A),H)1/2,2 + ||k||L2(0,T ;H)) (4.2.3)

where C2 depends on T and M (see Theorem 2.3 of [24], [38]).
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Let 0 < θ < 1, 1 < p < ∞. Then by considering an intermediate

method between the initial Banach space and the domain of the infinitesimal

generator A of the analytic semigroup T (t) is represented by

(V, V ∗)θ,p = {x ∈ V ∗ :

∫ ∞
0

(tθ||AetAx||∗)p
dt

t
<∞}

(see Theorem 3.5.3 of [25]).

Proposition 4.2.1 Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then there

exists a unique solution x of (LE) belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C2(|x0|+ ||k||L2(0,T ;V ∗)), (4.2.4)

where C2 is a constant depending on T .

Let φ : V → (−∞,+∞] be a lower semicontinuous, proper convex func-

tion. Then the subdifferential operator ∂φ of φ is defined by

∂φ(x) = {x∗ ∈ V ∗;φ(x) ≤ φ(y) + (x∗, x− y), y ∈ V }.

First, let us concern with the following perturbation of subdifferential oper-

ator:  x′(t) + Ax(t) + ∂φ(x(t)) 3 k(t), 0 < t ≤ T,

x(0) = x0.
(VE)
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Using the regularity for the variational inequality of parabolic type as

seen in [2; section 4.3] we have the following result on the equation (VE).

Proposition 4.2.2 1) Let k ∈ L2(0, T ;V ∗) and x0 ∈ D(φ) where D(φ) is

the closure in H of the set D(φ) = {u ∈ V : φ(u) <∞}. Then the equation

(VE) has a unique solution

x ∈ L2(0, T ;V ) ∩ C([0, T ];H),

which satisfies

x
′
(t) = (k(t)− Ax(t)− ∂φ(x(t)))0

and

||x||L2∩C ≤ C3(1 + |x0|+ ||k||L2(0,T ;V ∗)) (4.2.5)

where C3 is some positive constant and L2 ∩ C = L2(0, T ;V ) ∩ c([0, T ];H)

and where (∂φ)0 is the minimal segment of ∂φ.

2) Let A be symmetric and let us assume that there exists h ∈ H such

that for every ε > 0 and any y ∈ D(φ)

Jε(y + εh) ∈ D(φ) and φ(Jε(y + εh)) ≤ φ(y)

where Jε = (I + εA)−1. Then for k ∈ L2(0, T ;H) and x0 ∈ D(φ) ∩ V the

equation (VE) has a unique solution

x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ∩ C([0, T ];H),

which satisfies

||x||L2∩W 1,2∩C ≤ C3(1 + ||x0||+ ||k||L2(0,T ;H)). (4.2.6)
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Here, we remark that if D(A) is compactly embedded in V and x ∈

L2(0, T ;D(A))(or the semigroup operator S(t) generated by A is compact),

the following embedding

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ L2(0, T ;V ))

is compact in view of Theorem 2 of Aubin [14]. Hence, the mapping k 7→ x

is compact from L2(0, T ;H) to L2(0, T ;V ), which is applicable to the control

problem.

(F) Let f be a nonlinear single valued mapping from [0,∞) × V into H.

We assume that

|f(t, x1)− f(t, x2)| ≤ L||x1 − x2||,

for every x1, x2 ∈ V .

The following result is from Jeong and Park [26].

Theorem 4.2.1[[26]] Let the assumption (F) be satisfied. Assume that

k ∈ L2(0, T ;V ∗) and x0 ∈ D(φ). Then, the equation (NDE) has a unique

solution

x ∈ L2(0, T ;V ) ∩ C([0, T ];H)

and there exists a constant C4 depending on T such that

||x||L2∩C ≤ C4(1 + |x0|+ ||k||L2(0,T ;V ∗)). (4.2.7)
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Furthermore, if k ∈ L2(0, T ;H) then the solution x belongs to W 1,2(0, T ;H)

and satisfies

||x||W 1,2(0,T ;H) ≤ C4(1 + |x0|+ ||k||L2(0,T ;H)). (4.2.8)

If (x0, k) ∈ H × L2(0, T ;H), then the solution x of the equation (NDE)

belongs to x ∈ L2(0, T ;V ) ∩ C([0, T ];H) and the mapping

H × L2(0, T ;H) 3 (x0, k) 7→ x ∈ L2(0, T ;V ) ∩ C([0, T ];H)

is continuous.

4.3. Smoothing system corresponding to (NCE)

For every ε > 0, define

φε(x) = inf{||x− y||2∗/2ε+ φ(y) : y ∈ H}.

Then the function φε is Fréchet differentiable on H and its Frećhet differential

∂φε is Lipschitz continuous on H with Lipschitz constant ε−1 where ∂φε =

ε−1(I − (I + ε∂φ)−1] as is seen in Corollary 2.2 in [[8]; Chapter II). It is also

well known results that limε→0 φε = φ and limε→0 ∂φε(x) = (∂φ)0(x) for every

x ∈ D(∂φ).

Now, we introduce the smoothing system corresponding to (NCE) as

follows.

 x′(t) + Ax(t) + ∂φε(x(t)) = f(t, x(t)) + (Bu)(t), 0 < t ≤ T,

x(0) = x0.
(SCE)
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Since −A generates a semigroup S(t) on H, the mild solution of (SCE) can

be represented by

xε(t) = S(t)x0 +

∫ t

0

S(t− s){f(s, xε(s)) + (Bu)(s)− ∂φε(xε(s))}ds.

In virtue of Theorem 4.2.1 we know that if the assumption (F) is satisfied

then for every x0 ∈ H and every u ∈ L2(0, T ;U) the equation (SCE) has a

unique solution

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ∩ C([0, T ];H)

and there exists a constant C4 depending on T such that

||x||L2∩W 1,2∩C ≤ C4(1 + |x0|+ ||u||L2(0,T ;U)). (4.3.1)

(A) We assume the hypothesis that (∂φ)0 is uniformly bounded, i.e.,

|(∂φ)0x| ≤M1, x ∈ H.

Lemma 4.3.1 Let xε and xλ be the solutions of (SCE) with same control u.

Then there exists a constant C independent of ε and λ such that

||xε − xλ||C([0,T ];H)∩L2(0,T ;V ) ≤ C(ε+ λ), 0 < T.

Proof. For given ε, λ > 0, let xε and xλ be the solutions of (SCE)

corresponding to ε and λ, respectively. Then from the equation (SCE) we
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have

x
′

ε(t)− x
′

λ(t) + A(xε(t)− xλ(t)) + ∂φε(xε(t))− ∂φλ(xλ(t))

= f(t, xε(t))− f(t, xλ(t)),

and hence, from (4.2.2) and multiplying by xε(t)− xλ(t), it follows that

1

2

d

dt
|xε(t)− xλ(t)|2 + ω1||xε(t)− xλ(t)||2 (4.3.2)

+ (∂φε(xε(t))− ∂φλ(xλ(t)), xε(t)− xλ(t))

≤ (f(t, xε(t))− f(t, xλ(t)), xε(t)− xλ(t)) + ω2|xε(t)− xλ(t)|2.

Let us choose a constant c > 0 such that 2ω1 − cL > 0. Noting that

(f(t, xε(t))− f(t, xλ(t)), xε(t)− xλ(t))

≤ |f(t, xε(t))− f(t, xλ(t))| |xε(t)− xλ(t)|

≤ cL

2
||xε(t)− xλ(t)||2 +

1

2c
|xε(t)− xλ(t)|2,

by integrating (4.3.2) over [0, T ] and using the monotonicity of ∂φ we have

1

2
|xε(t)− xλ(t)|2 + (ω1 −

cL

2
)

∫ T

0

||xε(t)− xλ(t)||2dt

≤
∫ T

0

(∂φε(xε(t))− ∂φλ(xλ(t)), λ∂φλ(xλ(t)− ε∂φε(xε(t))dt

+ (
1

2c
+ ω2)

∫ T

0

|xε(t)− xλ(t)|2dt.
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Here, we used that

∂φε(xε(t)) = ε−1(xε(t)− (I + ε∂φ)−1xε(t)).

Since |∂φε(x)| ≤ |(∂φ)0x| for every x ∈ D(∂φ) it follows from (A) and

using Gronwall’s inequality that

||xε − xλ||C([0,T ];H)∩L2(0,T ;V ) ≤ C(ε+ λ), 0 < T.

2

Theorem 4.3.1 Let the assumptions (F) and (A) be satisfied. Then x =

limε→0 xε in L2(0, T ;V ) ∩ C([0, T ];H) is a solution of the equation (NCE)

where xε is the solution of (SCE).

Proof. In virtue of Lemma 4.3.1, there exists x(·) ∈ L2(0, T ;V ) such that

xε(·)→ x(·) in L2(0, T ;V ) ∩ C([0, T ];H).

From (F) it follows that

f(·, xε)→ f(·, x), strongly in L2(0, T ;H) (4.3.3)

and

Axn → Ax, strongly in L2(0, T ;V ∗). (4.3.4)

Since ∂φε(xε) are uniformly bounded by assumption (A), from (4.3.3) and

(4.3.4) we have that

d

dt
xε →

d

dt
x, weakly in L2(0, T ;V ∗),
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therefore

∂φε(xε)→ f(·, x) + k − x′ − Ax, weakly in L2(0, T ;V ∗).

Note that ∂φε(xε) = ∂φ((I + ε∂φ)−1xε). Since (I + ε∂φ)−1xε → x strongly

and ∂φ is demiclosed, we have that

f(·, x) + k − x′ − Ax ∈ ∂φ(x) in L2(0, T ;V ∗).

Thus we have proved that x(t) satisfies a.e. on (0, T ) the equation (NCE). 2

4.4. Approximate controllability

In this section we show the approximate controllability for the equation

(NCE) with the more general condition for the range of the control operator,

which is the extended result of Zhou [[5]; section 3] and Naito [2] to the

equation (SCE).

For the sake of simplicity we assume that the solution semigroup S(t) is

uniformly bounded:

|S(t)| ≤M t ≥ 0.

Lemma 4.4.1 Let ui ∈ L2(0, T ;U) and xεi be the solution of (SCE) with ui

in place of u for i = 1, 2. Then there exists a constant C > 0 such that

|xε1(t)− xε2(t)| ≤M
√
t{C(ε−1 + L) + 1}||Bu1 −Bu2||L2(0,t;H)

for 0 < t ≤ T .
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Proof. In virtue of Theorem 4.2.1 it holds that there exists a constant

C > 0 such that

||xε1 − xε2||L2(0,t;V ) ≤ C||Bu1 −Bu2||L2(0,t;H), t > 0.

The proof of Lemma 4.3.1 is a consequence of the estimate

|xε1(t)− xε2(t)| = |
∫ t

0

S(t− s)[{f(s, xε1(s))− f(s, xε2(t))}

+ {∂φε(xε1(s)− ∂φε(xε2(s)))}+ {(Bu1)(s)− (Bu2)(s)}]ds|

≤M
√
t(ε−1 + L)||xε1 − xε2||L2(0,t;V ) +M

√
t||Bu1 −Bu2||L2(0,t;H)

≤M
√
t{C(ε−1 + L) + 1}||Bu1 −Bu2||L2(0,t;H).

2

We denote the linear operator Ŝ from L2(0, T ;H) to H by

Ŝp =

∫ T

0

S(T − s)p(s)ds

for p ∈ L2(0, T ;H). The system (SCE) is approximately controllable on

[0, T ] if for any ε > 0 and ξT ∈ H there exists a control u ∈ L2(0, T ;U) such

that

|ξT − S(T )x0 − Ŝ{f(·, xε(·; g))− ∂φε(xε(·)} − ŜBu| < ε.

We need the following hypothesis:
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(B) For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U) such

that  |Ŝp− ŜBu| < ε,

||Bu||L2(0,t;H) ≤ q1||p||L2(0,t;H), 0 ≤ t ≤ T.
(1)

where q1 is a constant independent of p.

Remark 4.4.1. If the range of B is dense in L2(0, T ;H) then Hypothesis

(B) is satisfied (Theorem 3.3 of [2]). Some examples to which main result can

be applied are given in [2, 5]. Those examples will be given which show that

even if the range of B is not dense in L2(0, T ;H). In [5], Zhou proved that

such a system is approximately controllable under Hypothesis (B) dependent

of the time T .

In this section, sufficient conditions for the approximate controllability of the

system (SCE) are no need to assume the condition on the length T of the

time interval, which has a simple form and can be easily checked in many

examples. So this sufficient condition is more general than previous ones. It

is suitable not only for a nonlinear abstract control system in Hilbert space,

but also for the finite dimensional ordinary differential equations by using the

spectral projection operator with finite rank associated with the generalized

eigenspace.

The solutions of (NCE) and (SCE) are denoted by x(t;φ, f, u) and xε(t;φε, f, u),

respectively.
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Theorem 4.4.1 Under the assumptions (F) and (B), the system (SCE) is

approximately controllable on [0, T ].

Proof. We shall show that

D(A) ⊂ Cl{xε(T ;φε, f, u) : u ∈ L2(0, T ;U)}

where Cl denotes the closure in H, i.e., for given ε > 0 and ξT ∈ D(A) there

exists u ∈ L2(0, T ;U) such that

|ξT − xε(T ;φε, f, u)| < ε,

where

xε(t;φε, f, u) =S(T )x0 +

∫ T

0

S(T − s){f(s, xε(s;φε, f, u))

− ∂φε(xε(s;φε, f, u) + (Bu)(s)}ds.

As ξT ∈ D(A) there exists a p ∈ L2(0, T ;H) such that

Ŝp = ξT − S(T )x0,

for instance, take p(s) = (ξT + sAξT − S(s)x0)/T .

Set

F (xε(s;φε, f, u)) = f(s, xε(s;φε, f, u))− ∂φε(xε(s;φε, f, u)).

Then

|F (xε(s;φε, f, u1))− F (xε(s;φε, f, u2))|

≤ (ε−1 + L)||xε(s;φε, f, u1)− xε(s;φε, f, u2)||.
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Let u1 ∈ L2(0, T ;U) be arbitrary fixed. Since by the assumption (B)

there exists u2 ∈ L2(0, T ;U) such that

|Ŝ(p− F (xε(·;φε, f, u1)))− ŜBu2| <
ε

4
,

it follows

|ξT − S(T )x0 − ŜF (xε(·;φε, f, u1))− ŜBu2| <
ε

4
. (4.4.1)

We can also choose w2 ∈ L2(0, T ;U) by the assumption (B) such that

|Ŝ(F (xε(·;φε, f, u2))− F (xε(·;φε, f, u1)))− ŜBw2| <
ε

8
(4.4.2)

and

‖Bw2||L2(0,t;H) ≤ q1||F (xε(·;φε, f, u1))− F (xε(·;φε, f, u2))||L2(0,t;H)

for 0 ≤ t ≤ T . Therefore, in view of Lemma 4.4.1 and the assumption (B)

||Bw2||L2(0,t;H) ≤ q1{
∫ t

0

|F (xε(τ ;φε, f, u2))− F (xε(τ ;φε, f, u1))|2dτ}
1
2

≤ q1(ε−1 + L){
∫ t

0

||xε(τ ;φε, f, u1)− xε(τ ;φε, f, u2))||2dτ}
1
2

≤ q1(ε−1 + L)[

∫ t

0

M2{C(ε−1 + L) + 1}2τ ||Bu2 −Bu1||2L2(0,τ ;H)dτ ]
1
2

≤ q1M(ε−1 + L){C(ε−1 + L) + 1}(
∫ t

0

τdτ)
1
2 ||Bu2 −Bu1||L2(0,t;H)

= q1M(ε−1 + L){C(ε−1 + L) + 1}(t
2

2
)
1
2 ||Bu2 −Bu1||L2(0,t;H).
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Put u3 = u2 − w2. We determine w3 such that

|Ŝ(F (xε(·;φε, f, u3)))− F (xε(·;φε, f, u2)))− ŜBw3| <
ε

8
,

||Bw3||L2(0,t;H) ≤ q1||F (xε(·;φε, f, u3))− F (xε(·;φε, f, u2))||L2(0,t;H)

for 0 ≤ t ≤ T . Hence, we have

||Bw3||L2(0,t;H)

≤ q1{
∫ t

0

|F (xε(τ ;φε, f, u3))− F (xε(τ ;φε, f, u2))|2dτ}
1
2

≤ q1(ε−1 + L){
∫ t

0

||xε(τ ;φε, f, u3)− xε(τ ;φε, f, u2)||2dτ}
1
2

≤ q1M(ε−1 + L){C(ε−1 + L) + 1}{
∫ t

0

τ ||Bu3 −Bu2||2L2(0,τ :H)dτ}
1
2

≤ q1M(ε−1 + L){C(ε−1 + L) + 1}{
∫ t

0

τ ||Bw2||2L2(0,τ ;H)dτ}
1
2

≤ q1M(ε−1 + L){C(ε−1 + L) + 1}

{
∫ t

0

τ [q1M(ε−1 + L){C(ε−1 + L) + 1}]2 τ
2

2
||Bu2 −Bu1||2L2(0,τ ;H)dτ}

1
2

≤ [q1M(ε−1 + L){C(ε−1 + L) + 1}]2(

∫ t

0

τ 3

2
dτ)

1
2 ||Bu2 −Bu1||L2(0,t;H)

= [q1M(ε−1 + L){C(ε−1 + L) + 1}]2(
t4

2 · 4
)
1
2 ||Bu2 −Bu1||L2(0,t;H).

By proceeding this process for un+1 = un − wn(n = 1, 2, ...), and from that
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||B(un − un+1)||L2(0,t;H) = ||Bwn||L2(0,t;H)

≤ [q1M(ε−1 + L){C(ε−1 + L) + 1}]n−1

(
t2n−2

2 · 4 · · · (2n− 2)
)
1
2 ||Bu2 −Bu1||L2(0,t;H)

= [
q1TM(ε−1 + L){C(ε−1 + L) + 1}√

2
]n−1 1√

(n− 1)!
||Bu2 −Bu1||L2(0,t;H),

it follows that

∞∑
n=1

||Bun+1 −Bun||L2(0,T ;H)

≤
∞∑
n=0

[
q1TM(ε−1 + L){C(ε−1 + L) + 1}√

2
]n

1√
n!
||Bu2 −Bu1||L2(0,T ;H)

<∞.

Therefore, there exists u∗ ∈ L2(0, T ;H) such that

lim
n→∞

Bun = u∗ in L2(0, T ;H). (4.4.3)

From (4.4.1) and (4.4.2) it follows that
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|ξT − S(T )x0 − ŜF (xε(·;φε, f, u2))− ŜBu3|

= |ξT − S(T )x0 − ŜF (xε(·;φε, f, u1))− ŜBu2 + ŜBw2

− Ŝ[F (xε(·;φε, f, u2))− F (xε(·;φε, f, u1))]|

< (
1

22
+

1

23
)ε.

By choosing choose wn ∈ L2(0, T ;U) by the assumption (B) such that

|Ŝ(F (xε(·;φε, f, un))− F (xε(·;φε, f, un−1))− ŜBwn| <
ε

2n+1
,

since un+1 = un − wn, we have

|ξT − S(T )x0 − ŜF (xε(·;φε, f, un))− ŜBun+1|

< (
1

22
+ · · ·+ 1

2n+1
)ε, n = 1 2, · · ·.

According to (4.4.3) for ε > 0 there exists integer N such that

|ŜBuN+1 − ŜBuN | <
ε

2

and

|ξT − S(T )x0 − ŜF (xε(·;φε, f, uN))− ŜBuN |

≤ |ξT − S(T )x0 − ŜF (xε(·;φε, f, uN))− ŜBuN+1|

+ |ŜBuN+1 − ŜΦuN |

< (
1

22
+ · · ·+ 1

2N+1
)ε+

ε

2
≤ ε.
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Thus the system (SCE) is approximately controllable on [0, T ] as N tends to

infinity. 2

From Theorem 4.3.1 and Theorem 4.4.1 we obtain the following results.

Theorem 4.4.2 Under the assumptions (A), (F) and (B), the system (NCE)

is approximately controllable on [0, T ].

Example 4.4.1 Let Ω be a region in an n-dimensional Euclidean space Rn

with smooth boundary ∂Ω and closure Ω. Cm(Ω) is the set of all m-times

continuously differential functions on Ω. Cm
0 (Ω) will denote the subspace of

Cm(Ω) consisting of these functions which have compact support in Ω.

For 1 ≤ p ≤ ∞, Wm,p(Ω) is the set of all functions f = f(x) whose

derivative Dαf up to degree m in distribution sense belong to Lp(Ω). As

usual, the norm is then given by

||f ||m,p = (
∑
α≤m

||Dαf ||pp)
1
p , 1 ≤ p <∞, ||f ||m,∞ = max

α≤m
||Dαu||∞,

where D0f = f . In particular, W 0,p(Ω) = Lp(Ω) with the norm || · ||p.

Wm,p
0 (Ω) is the closure of C∞0 (Ω) inWm,p(Ω). For p = 2, we denoteWm,2(Ω) =

Hm(Ω)(simply, W 1,2(Ω) = H(Ω)), Wm,2
0 (Ω) = Hm

0 (Ω). H−1(Ω) stands for

the dual space W 1,2
0 (Ω)∗ whose norm is denoted by || · ||−1. From now on,

we consider a Gelfand triple as V = H0(Ω), H = L2(Ω) and V = H−1(Ω) to

discuss our problems given in section 2.
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We consider the control problem of the following variational inequality

problem:

(∂/∂t)u(x, t) +A(x,Dx)u(x, t), u(x, t)− z)

+
∫

Ω
|gradu(t, x)|2dx−

∫
Ω
|grad z(t, x)|2dx

≤
(∫ t

0
k(t− s)g(s, x(s))ds+ (Bαw(t))(x)), u(x, t)− z(x, t)

)
,

(x, t) ∈ Ω× (0, T ], z(·, t) ∈ H0(Ω),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ].

(4.4.4)

Here, A(x,Dx) is a second order linear differential operator with smooth

coefficients in Ω, and A(x,Dx) is elliptic. If we put that Au = A(x,Dx)u

then it is known that −A generates an analytic semigroup in H−1(Ω) as is

seen in [26].

We denote the realization of A in L2(Ω) under the Dirichlet boundary

condition by Â:

D(Â) = H2(Ω) ∩H0(Ω),

Âu = Au for u ∈ D(Â).

The operator −Â generates analytic semigroup in L2(Ω). From now on, both

A and Â are denoted simply by A. So, we may consider that −A generates

an analytic semigroup in both of H = Lp(Ω) and V ∗ = H−1(Ω) as seen in

section 4.2.
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For every u ∈ H0(Ω) define

φ(u) =


∫

Ω
|gradu)|2dx, if u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

+∞, otherwise.

It is easy to check if φ is proper and lower semicontinuous on V to (−∞,+∞](see

in section 2.3 of [8]).

Let g : [0, T ]× V −→ H be a nonlinear mapping such that t 7→ g(t, x) is

measurable and

|g(t, x)− g(t, y)| ≤ L||x− y||, (4.4.5)

for a positive constant L. We assume that g(t, 0) = 0 for the sake of simplic-

ity.

For x ∈ L2(0, T ;V ) we set

f(t, x) =

∫ t

0

k(t− s)g(s, x(s))ds

where k belongs to L2(0, T ). By (4.4.5) it is easily seen that the nonlinear

term f satisfies hypothesis (F) in section 2.

Let U = H, 0 < α < T and define the intercept controller operator Bα

on L2(0, T ;H) by

Bαu(t) =


0, 0 ≤ t < α,

u(t), α ≤ t ≤ T
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for u ∈ L2(0, T ;H). For a given p ∈ L2(0, T ;H) let us choose a control

function u satisfying

u(t) =

 0, 0 ≤ t < α,

p(t) + α
T−αS(t− α

T−α(t− α))p( α
T−α(t− α)), α ≤ t ≤ T.

Then u ∈ L2(0, T ;H) and Ŝp = ŜBαu. From the following:

||Bαu||L2(0,T ;H) = ||u||L2(α,T ;H)

≤ ||p||L2(α,T ;H) +
αM

T − α
||p( α

T − α
(· − α))||L2(α,T ;H)

≤ (1 +M

√
α

T − α
)||p||L2(0,T ;H),

it follows that the controller Bα satisfies hypothesis (B). Hence from Theorem

4.4.1 and Theorem 4.4.2, it follows that the system (4.4.4) is approximately

controllable on [0, T ].
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Chapter 5

Optimal Control Problems for Nonlinear Variational

Evolution Inequalities

5.1. Introduction

In this section, we deal with optimal control problems governed by the

following variational inequality in a Hilbert space H:


(x
′
(t) + Ax(t), x(t)− z) + φ(x(t))− φ(z)

≤ (f(t, x(t)) +Bu(t), x(t)− z), a.e., 0 < t ≤ T, z ∈ V

x(0) = x0.

(VIP)

Here, A is a continuous linear operator from V into V ∗ which is assumed to

satisfy G̊arding’s inequality, where V is a dense subspace in H. Let φ : V →

(−∞,+∞] be a lower semicontinuous, proper convex function. Let U be a

Hilbert space of control variables, and B be a bounded linear operator from

U into L2(0, T ;H). Let Uad be a closed convex subset of U , which is called the

admissible set. Let J = J(v) be a given quadratic cost function(see (5.3.3)

or (5.4.6)). Then we will find an element u ∈ Uad which attains minimum of

J(v) over Uad subject to the equation (VIP).

Recently, initial and boundary value problems for permanent magnet

technologies have been introduced via variational inequalities in [19, 27],

and nonlinear variational inequalities of semilinear parabolic type in [20, 28].

The papers treating the variational inequalities with nonlinear perturbations
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are not so many. First of all, we deal with the existence and a variation of

constant formula for solutions of the nonlinear functional differential equa-

tion (VIP) governed by the variational inequality in Hilbert spaces in Section

5.2.

Based on the regularity results for solution of (VIP), we intend to estab-

lish the optimal control problem for the cost problems in Section 5.3. For

the optimal control problem of systems governed by variational inequalities,

see [29, 19]. We refer to [30, 22] to see the applications of nonlinear varia-

tional inequalities. Necessary conditions for state constraint optimal control

problems governed by semilinear elliptic problems have been obtained by

Bonnans and Tida [32] using methods of convex analysis (see also [40]).

Let xu stand for solution of (VIP) associated with the control u ∈ U .

When the nonlinear mapping f is Lipschitz continuous from R× V into H,

we will obtain the regularity for solutions of (VIP) and the norm estimate of

a solution of the above nonlinear equation on desired solution space. Conse-

quently, in view of the monotonicity of ∂φ, we show that the mapping u 7→ xu

is continuous in order to establish the necessary conditions of optimality of

optimal controls for various observation cases.

In Section 5.4, we will characterize the optimal controls by giving nec-

essary conditions for optimality. For this, it is necessary to write down the

necessary optimal condition due to the theory of Lions [40]. The most impor-

tant objective of such a treatment is to derive necessary optimality conditions

that are able to give complete information on the optimal control.
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Since the optimal control problems governed by nonlinear equations are

nonsmooth and nonconvex, the standard methods of deriving necessary con-

ditions of optimality are inapplicable here. So we approximate the given

problem by a family of smooth optimization problems and afterwards tend

to consider the limit in the corresponding optimal control problems. An at-

tractive feature of this approach is that it allows the treatment of optimal

control problems governed by a large class of nonlinear systems with general

cost criteria.

5.2. Regularity for solutions

Let H and V be two real separable Hilbert spaces forming Gelfand tripple

V ⊂ H ⊂ V ∗ with pivot space H as mentioned in Chapter 3. We have the

following sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗, (5.2.1)

where each space is dense in the next one which is continuous injection.

Lemma 5.2.1 With the notations (4.2.1) and (5.2.1), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section

1.3.3 of [34]).
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It is also well known that A generates an analytic semigroup S(t) in both

H and V ∗. For the sake of simplicity we assume that ω2 = 0 and hence the

closed half plane {λ : Reλ ≥ 0} is contained in the resolvent set of A.

If X is a Banach space, L2(0, T ;X) is the collection of all strongly measur-

able square integrable functions from (0, T ) into X and W 1,2(0, T ;X) is the

set of all absolutely continuous functions on [0, T ] such that their derivative

belongs to L2(0, T ;X). C([0, T ];X) will denote the set of all continuously

functions from [0, T ] into X with the supremum norm. If X and Y are two

Banach space, L(X, Y ) is the collection of all bounded linear operators from

X into Y , and L(X,X) is simply written as L(X). Here, we note that by

using interpolation theory we have

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H). (5.2.2)

First of all, consider the following linear system

 x
′
(t) + Ax(t) = k(t),

x(0) = x0.
(5.2.3)

By virtue of Theorem 3.3 of [38](or Theorem 3.1 of [18], [16]), we have

the following result on the corresponding linear equation of (5.2.3).

Lemma 5.2.2 Suppose that the assumptions for the principal operator A

stated above are satisfied. Then the following properties hold:
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1) For x0 ∈ V = (D(A), H)1/2,2(see Lemma 5.2.1) and k ∈ L2(0, T ;H),

T > 0, there exists a unique solution x of (5.2.3) belonging to

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V )

and satisfying

||x||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1(||x0||+ ||k||L2(0,T ;H)), (5.2.4)

where C1 is a constant depending on T .

2) Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then there exists a unique

solution x of (5.2.3) belonging to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|x0|+ ||k||L2(0,T ;V ∗)), (5.2.5)

where C1 is a constant depending on T .

Let Y be another Hilbert space of control variables and take U = L2(0, T ;Y )

as stated in Introduction. Choose a bounded subset U of Y and call it a con-

trol set. Let us define an admissible control Uad as

Uad = {u ∈ L2(0, T ;Y ) : u is a strongly measurable function satisfying

u(t) ∈ U for almost all t}.

Noting that the subdifferential operator ∂φ is defined by

∂φ(x) = {x∗ ∈ V ∗;φ(x) ≤ φ(y) + (x∗, x− y), y ∈ V },

69



the problem (VIP) is represented by the following nonlinear functional dif-

ferential problem on H x
′
(t) + Ax(t) + ∂φ(x(t)) 3 f(t, x(t)) +Bu(t), 0 < t ≤ T,

x(0) = x0.

Referring to Theorem 3.1 of [20], we establish the following results on the

solvability of (VIP).

Proposition 5.2.1 1) Let the assumption (F) be satisfied. Assume that

u ∈ L2(0, T ;Y ), B ∈ L(Y, V ∗) and x0 ∈ D(φ) where D(φ) is the closure in H

of the set D(φ) = {u ∈ V : φ(u) <∞}. Then, (VIP) has a unique solution

x ∈ L2(0, T ;V ) ∩ C([0, T ];H)

which satisfies

x
′
(t) = Bu(t)− Ax(t)− (∂φ)0(x(t)) + f(t, x(t)),

where (∂φ)0 : H → H is the minimum element of ∂φ and there exists a

constant C2 depending on T such that

||x||L2∩C ≤ C2(1 + |x0|+ ||Bu||L2(0,T ;V ∗)), (5.2.6)

where C2 is some positive constant and L2 ∩ C = L2(0, T ;V ) ∩ C([0, T ];H).

Furthermore, if B ∈ L(Y,H) then the solution x belongs to W 1,2(0, T ;H)

and satisfies

||x||W 1,2(0,T ;H) ≤ C2(1 + |x0|+ ||Bu||L2(0,T ;H)). (5.2.7)

2) We assume

70



(A) A is symmetric and there exists h ∈ H such that for every ε > 0 and

any y ∈ D(φ)

Jε(y + εh) ∈ D(φ) and φ(Jε(y + εh)) ≤ φ(y),

where Jε = (I + εA)−1.

Then for u ∈ L2(0, T ;Y ), B ∈ L(Y,H), and x0 ∈ D(φ) ∩ V the equation

(VIP) has a unique solution

x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ∩ C([0, T ];H),

which satisfies

||x||L2∩W 1,2∩C ≤ C2(1 + ||x0||+ ||Bu||L2(0,T ;H)). (5.2.8)

Remark 5.2.1 In terms of Lemma 5.2.1, the following inclusion

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

is well known as seen (4.2.1) and is an easy consequence of the definition of

real interpolation spaces by the trace method(see [28, 16]).

The following Lemma is from Brézis [[15]; Lemma A.5].

Lemma 5.2.3 Let m ∈ L1(0, T ;R) satisfying m(t) ≥ 0 for all t ∈ (0, T ) and

a ≥ 0 be a constant. Let b be a continuous function on [0, T ] ⊂ R satisfying

the following inequality:

1

2
b2(t) ≤ 1

2
a2 +

∫ t

0

m(s)b(s)ds, t ∈ [0, T ].
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Then,

|b(t)| ≤ a+

∫ t

0

m(s)ds, t ∈ [0, T ].

For each (x0, u) ∈ H ×L2(0, T ;Y ), we can define the continuous solution

mapping (x0, u) 7→ x. Now, we can state the following theorem.

Theorem 5.2.1 1) Let the assumption (F) be satisfied, x0 ∈ H, and B ∈

L(Y, V ∗). Then the solution x of (VIP) belongs to x ∈ L2(0, T ;V )∩C([0, T ];H)

and the mapping

H × L2(0, T ;Y ) 3 (x0, u) 7→ x ∈ L2(0, T ;V ) ∩ C([0, T ];H)

is Lipschtz continuous, i.e., suppose that (x0i, ui) ∈ H × L2(0, T ;Y ) and xi

be the solution of (VIP) with (x0i, ui) in place of (x0, u) for i = 1, 2,

||x1 − x2||L2(0,T ;V )∩C([0,T ];H) ≤ C{|x01 − x02|+ ||u1 − u2||L2(0,T ;Y )}, (5.2.9)

where C is a constant.

2) Let the assumptions (A) and (F) be satisfied and let B ∈ L(Y,H) and

x0 ∈ D(φ) ∩ V . Then x ∈ L2(0, T ;D(A))∩W 1,2(0, T ;H), and the mapping

V × L2(0, T ;Y ) 3 (x0, u) 7→ x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) (5.2.10)

is continuous.

Proof. Due to Proposition 5.2.1, we can infer that (VIP) possesses a

unique solution x ∈ L2(0, T ;V )∩C([0, T ];H) with the data condition (x0, u) ∈
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H×L2(0, T ;Y ). Now, we will prove the inequality (5.2.9). For that purpose,

we denote x1 − x2 by X. Then


X
′
(t) + AX(t) + ∂φ(x1(t))− ∂φ(x2(t))

3 f(t, x1(t))− f(t, x2(t)) +B(u1(t)− u2(t)), 0 < t ≤ T,

X(0) = x01 − x02.

Multiplying on the above equation by X(t), we have

1

2

d

dt
|X(t)|2 + ω1||X(t)||2

≤ ω2|X(t)|2 + {|f(t, x1(t))− f(t, x2(t))|+ |B(u1(t)− u2(t))|}|X(t)|.

Put

H(t) = (L||X(t)||+ |B(u1(t)− u2(t))|)|X(t)|.

By integrating the above inequality over [0, t], we have

1

2
|X(t)|2 + ω1

∫ t

0

||X(s)||2ds (5.2.11)

≤ 1

2
|x01 − x02|2 + ω2

∫ t

0

|X(s)|2ds+

∫ t

0

H(s)ds.

Note that

d

dt
{e−2ω2t

∫ t

0

|X(s)|2ds} ≤ 2e−2ω2t{1

2
|X(t)|2 − ω2

∫ t

0

|X(s)|2ds}

≤ 2e−2ω2t{1

2
|x01 − x02|2 +

∫ t

0

H(s)ds},
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integrating the above inequality over (0, t), we have

e−2ω2t

∫ t

0

|X(s)|2ds ≤ 2

∫ t

0

e−2ω2τ{1

2
|x01 − x02|2 +

∫ τ

0

H(s)ds}dτ

=
1− e−2ω2t

2ω2

|x01 − x02|2 + 2

∫ t

0

∫ t

s

e−2ω2τdτH(s)ds

=
1− e−2ω2t

2ω2

|x01 − x02|2 +
1

ω2

∫ t

0

(e−2ω2s − e−2ω2t)H(s)ds.

Thus, we get

ω2

∫ t

0

|X(s)|2ds ≤ 1

2
(e2ω2t − 1)|x01 − x02|2 +

∫ t

0

(e2ω2(t−s) − 1)H(s)ds.

Combining this with (5.2.11) it holds that

1

2
|X(t)|2 + ω1

∫ t

0

||X(s)||2ds ≤ 1

2
e2ω2t|x01 − x02|2 +

∫ t

0

e2ω2(t−s)H(s)ds.

(5.2.12)

By Lemma 5.2.3, the following inequality

1

2
(e−ω2t|X(t)|)2 + ω1e

−2ω2t

∫ t

0

||X(s)||2ds

≤ 1

2
|x01 − x02|2 +

∫ t

0

e−ω2s(L||X(s)||+ |B(u1(s)− u2(s))|)e−ω2s|X(s)|ds

implies that

e−ω2t|X(t)| ≤ |x01−x02|+
∫ t

0

e−ω2s(L||X(s)||+|B(u1(s)−u2(s))|)ds. (5.2.13)
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From (5.2.12) and (5.2.13) it follows that

1

2
|X(t)|2 + ω1

∫ t

0

||X(s)||2ds ≤ 1

2
e2ω2t|x01 − x02|2 (5.2.14)

+

∫ t

0

e2ω2(t−s)(L||X(s)||+ |B(u1(s)− u2(s))|)eω2s|x01 − x02|ds

+

∫ t

0

e2ω2(t−s)(L||X(s)||+ |B(u1(s)− u2(s))|)

×
∫ s

0

eω2(s−τ)(L||X(τ)||+ |B(u1(τ)− u2(τ))|)dτds.

= I + II + III.

Putting

G(s) = ||X(s)||+ |B(u1(s)− u2(s))|.

The third term of the right hand side of (5.2.14) is estimated as

III = L2e2ω2t

∫ t

0

e−ω2s||G(s)||
∫ s

0

e−ω2τ ||G(τ)||dτds (5.2.15)

= L2e2ω2t

∫ t

0

1

2

d

ds
{
∫ s

0

e−ω2τ ||G(τ)||dτ}2ds

=
1

2
L2e2ω2t{

∫ t

0

e−ω2τ ||G(τ)||dτ}2

≤ 1

2
L2e2ω2t

1− e−2ω2t

2ω2

∫ t

0

||G(τ)||2dτ =
L2

4ω2

(e2ω2t − 1)

∫ t

0

||G(s)||2ds

≤ L2(e2ω2t − 1)

2ω2

∫ t

0

(||X(s)||2 + |B(u1(s)− u2(s))|2)ds.
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The second term of the right hand side of (5.2.14) is estimated as

II = e2ω2t

∫ t

0

e−ω2s(L||X(s)||+ |B(u1(s)− u2(s))|)ds|x01 − x02| (5.2.16)

≤ 1

2
e2ω2tL2

∫ t

0

(||X(s)||2 + |B(u1(s)− u2(s))|2)ds+
1

2
e2ω2t|x01 − x02|2.

Thus, from (5.2.15) and (5.2.16), we apply Gronwall’s inequality to (5.2.5),

and we arrive at

1

2
|X(t)|2 + ω1

∫ t

0

||X(s)||2ds ≤ C(|x01 − x02|2 +

∫ T1

0

|B(u1(s)− u2(s))|2ds),

(5.2.17)

where C > 0 is a constant. Suppose (x0n, un) → (x0, u) in H × L2(0, T ;Y ),

and let xn and x be the solutions (VIP) with (x0n, un) and (x0, u), respec-

tively. Then, by virtue of (5.2.17), we see that xn → x in L2(0, T, V ) ∩

C([0, T ];H).

2) It is easy to show that if x0 ∈ V and B ∈ L(Y,H), then x belongs to

L2(0, T ;D(A))∩W 1,2(0, T ;H). Let (x0i, ui) ∈ V ×L2(0, T ;H), and xi be the

solution of (VIP) with (x0i, ui) in place of (x0, u) for i = 1, 2. Then in view

of Lemma 5.2.2 and Assumption (F), we have

||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1{||x01 − x02|| (5.2.18)

+ ||f(·, x1)− f(·, x2)||L2(0,T ;H) + ||B(u1 − u2)||L2(0,T ;H)}

≤ C1{||x01 − x02||+ ||B(u1 − u2)||L2(0,T ;H)

+ L||x1 − x2||L2(0,T :V )}.
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Since

x1(t)− x2(t) = x01 − x02 +

∫ t

0

(ẋ1(s)− ẋ2(s))ds,

we get, noting that | · | ≤ || · ||,

||x1 − x2||L2(0,T ;H) ≤
√
T ||x01 − x02||+

T√
2
||x1 − x2||W 1,2(0,T ;H).

Hence arguing as in (4.2.1) we get

||x1 − x2||L2(0,T ;V ) ≤ C0||x1 − x2||1/2L2(0,T ;D(A))||x1 − x2||1/2L2(0,T ;H) (5.2.19)

≤ C0||x1 − x2||1/2L2(0,T ;D(A))

× {T 1/4||x01 − x02||1/2 + (
T√
2

)1/2||x1 − x2||1/2W 1,2(0,T ;H)}

≤ C0T
1/4||x01 − x02||1/2||x1 − x2||1/2L2(0,T ;D(A))

+ C0(
T√
2

)1/2||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H)

≤ 2−7/4C0||x01 − x02||+ 2C0(
T√
2

)1/2||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H).

Combining (5.2.18) and (5.2.19) we obtain

||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1{||x01 − x02||}+ ||Bu1 −Bu2||L2(0,T ;H)

(5.2.20)

+ 2−7/4C0C1L||x01 − x02||+ 2C0C1(
T√
2

)1/2L||x1 − x2||L2(0,T ;D(A))∩W 1,2(0,T ;H).
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Suppose that

(x0n, un) 7→ (x0, u) ∈ V × L2(0, T ;Y ),

and let xn and x be the solutions (VIP) with (x0n, un) and (x0, u) respectively.

Let 0 < T1 ≤ T be such that

2C0C1(T1/
√

2)1/2L < 1.

Then by virtue of (5.2.23) with T replaced by T1 we see that

xn → x ∈ L2(0, T1;D(A)) ∩W 1,2(0, T1;H).

This implies that (xn(T1), (xn)T1) 7→ (x(T1), xT1) in V×L2(0, T ;D(A)). Hence

the same argument shows that xn 7→ x in

L2(T1,min{2T1, T};D(A)) ∩W 1,2(T1,min{2T1, T};H).

Repeating this process we conclude that xn 7→ x in L2(0, T ;D(A))∩W 1,2(0, T ;H).

2

5.3. Optimal control problems

In this section we study the optimal control problems for the quadratic

cost function in the framework of Lions [40]. In what follows we assume that

the embedding D(A) ⊂ V ⊂ H is compact.

Let Y be another Hilbert space of control variables, and B be a bounded

linear operator from Y into H, i.e.,

B ∈ L(Y,H), (5.3.1)
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which is called a controller. By virtue of Theorem 5.2.1, we can define

uniquely the solution map u 7→ x(u) of L2(0, T ;Y ) into L2(0, T ;V )∩C([0, T ];H).

We will call the solution x(u) the state of the control system (VIP).

Let M be a Hilbert space of observation variables. The observation of

state is assumed to be given by

z(u) = Gx(u), G ∈ L(C(0, T ;V ∗),M), (5.3.2)

where G is an operator called the observer. The quadratic cost function

associated with the control system (VIP) is given by

J(v) = ||Gx(v)− zd||2M + (Rv, v)L2(0,T ;Y ) for v ∈ L2(0, T ;Y ), (5.3.3)

where zd ∈M is a desire value of x(v) and R ∈ L(L2(0, T ;Y )) is symmetric

and positive, i.e.,

(Rv, v)L2(0,T ;Y ) = (v,Rv)L2(0,T ;Y ) ≥ d||v||2L2(0,T ;Y ) (5.3.4)

for some d > 0. Let Uad be a closed convex subset of L2(0, T ;Y ), which is

called the admissible set. An element u ∈ Uad which attains minimum of

J(v) over Uad is called an optimal control for the cost function (5.3.3).

Remark 5.3.1 The solution space W of strong solutions of (VIP) is defined

by

W = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

endowed with the norm

|| · ||W = max{|| · ||L2(0,T ;V ), || · ||W 1,2(0,T ;V ∗)}.
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We consider the following two types of observation G of distributive and

terminal values(see [36, 37]).

(1) We take M = L2((0, T )× Ω)× L2(Ω) and G ∈ L(W ,M) and observe

z(v) = Gx(v) = (x(v; ·), x(v, T )) ∈ L2((0, T )× Ω)× L2(Ω);

(2) We take M = L2((0, T )× Ω) and G ∈ L(W ,M) and observe

z(v) = Gx(v) = y′(v; ·) ∈ L2((0, T )× Ω).

The above observations are meaningful in view of the regularity of the equa-

tion 1) by Proposition 5.2.1.

Theorem 5.3.1 1) Let the assumption (F) be satisfied. Assume that B ∈

L(Y, V ∗) and x0 ∈ D(φ). Let x(u) be the solution of (VIP) corresponding to

u. Then the mapping u 7→ x(u) is compact from L2(0, T ;Y ) to L2(0, T ;H).

2) Let the assumptions (A) and (F) be satisfied. If B ∈ L(Y,H) and

x0 ∈ D(φ) ∩ V , then the mapping u 7→ x(u) is compact from L2(0, T ;Y ) to

L2(0, T ;V ).

Proof. 1) We define the solution mapping S from L2(0, T ;Y ) to L2(0, T ;H)

by

Su = x(u), u ∈ L2(0, T ;Y ).

In virtue of Lemma 5.2.2, we have

||Su||L2(0,T ;V )∩W 1,2(0,T ;V ∗) = ||x(u)|| ≤ C1{|x0|+ ||Bu||L2(0,T ;V ∗)}.
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Hence if u is bounded in L2(0, T ;Y ), then so is x(u) in L2(0, T ;V )∩W 1,2(0, T ;V ∗).

Since V is compactly embedded inH by assumption, the embedding L2(0, T ;V )∩

W 1,2(0, T ;V ∗) ⊂ L2(0, T ;H) is also compact in view of Theorem 2 of Aubin

[14]. Hence, the mapping u 7→ Su = x(u) is compact from L2(0, T ;Y ) to

L2(0, T ;H).

2) If D(A) is compactly embedded in V by assumption, the embedding

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ L2(0, T ;V )

is compact. Hence, the proof of 2) is complete. 2

As indicated in Introduction we need to show the existence of an optimal

control and to give the characterizations of them. The existence of an optimal

control u for the cost function (5.3.3) can be stated by the following theorem.

Theorem 5.3.2 Let the assumptions (A) and (F) be satisfied and x0 ∈

D(φ) ∩ V . Then there exists at least one optimal control u for the control

problem (VIP) associated with the cost function (5.3.3), i.e., there exists

u ∈ Uad such that

J(u) = inf
v∈Uad

J(v) := J. (5.3.5)

Proof. Since Uad is non-empty, there is a sequence {un} ⊂ Uad such that

minimizing sequence for the problem (5.3.5), which satisfies

inf
v∈Uad

J(v) = lim
n→∞

J(un) = m.
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Obviously, {J(un)} is bounded. Hence by (5.3.4) there is a positive constant

K0 such that

d||un||2 ≤ (Run, un) ≤ J(un) ≤ K0.

This shows that {un} is bounded in Uad. So we can extract a subsequence(denote

again by {un}) of {un} and find a u ∈ Uad such that w − limun = u in U .

Let xn = x(un) be the solution of the following equation corresponding to

un:

 x
′
n(t) + Axn(t) + ∂φ(xn(t)) 3 f(t, xn(t)) +Bun(t), 0 < t ≤ T,

xn(0) = x0.

(5.3.6)

By (5.2.4) and (5.2.5) we know {xn} and {x′n} are bounded in L2(0, T ;V ) and

L2(0, T ;V ∗), respectively. Therefore, by the extraction theorem of Rellich’s,

we can find a subsequence of {xn}, say again {xn} and find x such that

xn(·)→ x(·) weakly in L2(0, T ;V ) ∩ C([0, T ];H),

and

x
′

n → x
′
, weakly in L2(0, T ;V ∗). (5.3.7)

But by Theorem 5.3.1, we know that

xn(·)→ x(·), strongly in L2(0, T ;V ).

From (F) it follows that

f(·, xn)→ f(·, x), strongly in L2(0, T ;H). (5.3.8)
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By the boundedness of A we have

Axn → Ax, strongly in L2(0, T ;V ∗). (5.3.9)

Since ∂φ(xn) are uniformly bounded from (5.3.6)-(5.3.9) it follows that

∂φ(xn)→ f(·, x) +Bu− x′ − Ax, weakly in L2(0, T ;V ∗),

and noting that ∂φ is demiclosed, we have that

f(·, x) +Bu− x′ − Ax ∈ ∂φ(x) in L2(0, T ;V ∗).

Thus we have proved that x(t) satisfies a.e. on (0, T ) the following equation:

 x
′
(t) + Ax(t) + ∂φ(x(t)) 3 f(t, x(t)) +Bu(t), a.e., 0 < t ≤ T,

x(0) = x0.

(5.3.10)

Since G is continuous and || · ||M is lower semicontinuous, it holds that

||Gx(u)− zd||M ≤ lim inf
n→∞

||Gx(un)− zd||M .

It is also clear from lim infn→∞ ||R1/2un||L2(0,T ;Y ) ≥ ||R1/2u||L2(0,T ;Y ) that

lim inf
n→∞

(Run, un)L2(0,T ;Y ) ≥ (Ru, u)L2(0,T ;Y ).

Thus,

m = lim
n→∞

J(un) ≥ J(u).

But since J(u) ≥ m by definition, we conclude u ∈ Uad is a desired optimal

control. 2
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5.4. Necessary conditions for optimality

In this section we will characterize the optimal controls by giving nec-

essary conditions for optimality. For this it is necessary to write down the

necessary optimal condition

DJ(u)(v − u) ≥ 0, v ∈ Uad (5.4.1)

and to analyze (5.4.1) in view of the proper adjoint state system, where

DJ(u) denote the Gâteaux derivative of J(v) at v = u. Therefore, we have

to prove that the solution mapping v 7→ x(v) is Gâteaux differentiable at

v = u. Here we note that from Theorem 5.2.1 it follows immediately that

lim
λ→0

x(u+ λw) = x(u) strongly in L2(0, T ;V ) ∩ C([0, T ];H). (5.4.2)

The solution map v 7→ x(v) of L2(0, T ;Y ) into L2(0, T ;V ) ∩ C([0, T ];H) is

said to be Gâteaux differentiable at v = u if for any w ∈ L2(0, T ;Y ) there

exists a Dx(u) ∈ L(L2(0, T ;Y ), L2(0, T ;V ) ∩ C([0, T ];H) such that

∣∣∣∣1
λ

(x(u+ λw)− x(u))−Dx(u)w
∣∣∣∣→ 0 as λ→ 0.

The operator Dx(u) denotes the Gâteaux derivative of x(u) at v = u and

the function Dx(u)w ∈ L2(0, T ;V ) ∩ C([0, T ];H)) is called the Gâteaux

derivative in the direction w ∈ L2(0, T ;Y ), which plays an important part in

the nonlinear optimal control problems.

First, as is seen in Corollary 2.2 of Chapter II of [39], let us introduce the

regularization of φ as follows.
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Lemma 5.4.1 For every ε > 0, define

φε(x) = ||x− Jεx||2∗/2ε+ φ(Jεx),

where Jε = (I + εφ)−1. Then the function φε is Fréchet differentiable on H

and its Frećhet differential ∂φε is Lipschitz continuous on H with Lipschitz

constant ε−1. In addition,

lim
ε→0

φε(x) = φ(x), ∀x ∈ H,

φ(Jεx) ≤ φε(x) ≤ φ(x), ∀ε > 0, x ∈ H,

and

lim
ε→0

∂φε(x) = (∂φ)0(x), ∀x ∈ H,

where (∂φ)0(x) is the element of minimum norm in the set ∂φ(x).

Now, we introduce the smoothing system corresponding to (VIP) as fol-

lows.

 x′(t) + Ax(t) + ∂φε(x(t)) = f(t, x(t)) +Bu(t), 0 < t ≤ T,

x(0) = x0.
(5.4.3)

Lemma 5.4.2 Let the assumption (F) be satisfied. Then the solution map

v 7→ x(v) of L2(0, T ;Y ) into L2(0, T ;V )∩C([0, T ];H) is Lipschitz continuous.

Moreover, let us assume the condition (A) in Proposition 5.2.1. Then

the map v 7→ ∂φε(x(v)) of L2(0, T ;Y ) into L2(0, T ;H) ∩C([0, T ];V ∗) is also

Lipschitz continuous.
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Proof. We set w = v − u. From Theorem 5.2.1, it follows immediately

that

||x(u+ λw)− x(u)||C([0,T ];H) ≤ const.|λ|||w||L2(0,T ;Y ),

so the solution map v 7→ x(v) of L2(0, T ;Y ) into L2(0, T ;V ) ∩ C([0, T ];H)

is Gâteaux differentiable at v = u. Moreover, since

∂φε(x(u; t))− ∂φε(x(u+ λw; t)) = x
′
(u+ λw; t)− x′(u; t)

+ A(x(u+ λw; t)− x(u; t))− {f(t, x(u+ λw; t))− f(t, x(u; t)} − λBw(t),

by the assumption (A) and 2) of Theorem 5.2.1, it holds

||∂φε(x(u+ λw))− ∂φε(x(u))||L2(0,T ;H)

≤ ||x′(u+ λw)− x′(u)||L2(0,T ;H) + ||x(u+ λw)− x(u)||L2(0,T ;D(A))

+ L||x(u+ λw)− x(u)||L2(0,T ;V ) + |λ|||B||||w||L2(0,T ;U)

≤ const.|λ|||w||L2(0,T ;Y ),

and, by the relation (5.2.1),

||∂φε(x(u+ λw; t))− ∂φε(x(u; t))||∗

≤ ||x′(u+ λw; t)− x′(u; t)||∗ + ||A||L(V,V ∗)||(x(u+ λw; t)− x(u; t))||

+ L||x(u+ λw; t)− x(u; t)||+ |λ|||B|||w(t)|

≤ const.|λ|||w||L2(0,T ;Y ).
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So we know that there exists the Gâteaux derivative of the mapping v 7→

φε(x(v)) of L2(0, T ;Y ) ∩ C([0, T ];V ∗). 2

Let the solution space W1 of (VIP) of strong solutions is defined by

W1 = L2(0, T ;D(A)) ∩W 1,2(0, T ;H)

as stated in Remark 5.3.1.

In order to obtain the optimality conditions, we require the following

assumptions.

(F1) The Gâteaux derivative ∂2f(t, x) in the second argument for (t, x) ∈

(0, T )×V is measurable in t ∈ (0, T ) for x ∈ V and continuous in x ∈ V

for a.e. t ∈ (0, T ), and further there exist functions θ1 ∈ L1(0, T ;R),

θ2 ∈ C(R+;R) such that

||∂2f(t, x)||∗ ≤ θ1(t) + θ2(||x||), ∀(t, x) ∈ (0, T )× V.

(F2) The map x→ ∂φε(x) is Gâteaux differentiable, and the valueD∂φε(x)Dx(u)

is the Gâteaux derivative of ∂φε(x)x(u) at u ∈ L2(0, T ;U) such that

there exist functions θ3, θ4 ∈ L2(R+;R) such that

‖D∂φε(x)Dx(u)‖∗ ≤ θ3(t) + θ4(‖u‖L2(0,T ;Y )),∀u ∈ L2(0, T ;Y ).

Theorem 5.4.1 Let the assumptions (A), (F1) and (F2) be satisfied. Let

u ∈ Uad be an optimal control for the cost function J in (5.3.3). Then the

following inequality:

(C∗ΛM(Cx(u)− zd), y)W1 + (Ru, v − u)L2(0,T ;Y ) ≥ 0, ∀v ∈ Uad (5.4.4)
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holds, where y = Dx(u)(v − u) ∈ C([0, T ];V ∗) is a unique solution of the

following equation:

 y
′
(t) + Ay(t) +D(∂φ)0(x)(y(t)) = ∂2f(t, x)y(t) +Bw(t), 0 < t ≤ T,

y(0) = 0.

(5.4.5)

Proof. We set w = v − u. Let λ ∈ (−1, 1), λ 6= 0. We set

y = lim
λ→0

λ−1(x(u+ λw)− x(u)) = Dx(u)w.

From (5.4.3), we have

x′(u+ λw)− x′(u) + A(x(u+ λw)− x(u)) + ∂φε(x(u+ λw))− ∂φε(x(u))

= f(·, x(u+ λw))− f(·, x(u)) + λBw.

Then as an immediate consequence of Lemma 5.4.2 one obtains

lim
λ→0

1

λ
{∂φε(x(u+ λw; t))− ∂φε(x(u; t))} = D∂φε(x)y(t),

lim
λ→0

1

λ
{f(t, x(u+ λw; t))− f(t, x(u; t))} = ∂2f(t, x)y(t),

thus, in the sense of (F2), we have that y = Dx(u)(v − u) satisfies (5.4.5)

and the cost J(v) is Gâteaux differentiable at u in the direction w = v − u.

The optimal condition (5.4.1) is rewritten as

(Cx(u)− zd, y)M + (Ru, v − u)L2(0,T ;Y )

= (C∗ΛM(Cx(u)− zd), y)W1 + (Ru, v − u)L2(0,T ;Y ) ≥ 0, ∀v ∈ Uad
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2

With every control u ∈ L2(0, T ;Y ), we consider the following distribu-

tional cost function expressed by

J1(u) =

∫ T

0

||Cxu(t)− zd(t)||2Xdt+

∫ T

0

(Ru(t), u(t))dt, (5.4.6)

where the operator C is bounded from H to another Hilbert space X and

zd ∈ L2(0, T ;X). Finally we are given R is a self adjoint and positive definite:

R ∈ L(X), and (Ru, u) ≥ c||u||, c > 0.

Let xu(t) stand for solution of (VIP) associated with the control u ∈ L2(0, T ;Y ).

Let Uad be a closed convex subset of L2(0, T ;Y ).

Theorem 5.4.2 Let the assumption in Theorem 5.4.1 be satisfied and let

the operators C and N satisfy the conditions mentioned above. Then there

exists a unique element u ∈ Uad such that

J1(u) = inf
v∈Uad

J1(v). (5.4.7)

Furthermore, it is holds the following inequality:

∫ T

0

(Λ−1
Y B∗pu(t) +Ru(t), (v − u)(t))dt ≥ 0, ∀v ∈ Uad (5.4.8)
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holds, where ΛY is the canonical isomorphism Y onto Y ∗ and pu satisfies the

following equation:
p′u(t)− A∗pu(t)−D(∂φ)0(x)∗pu(t) + ∂2f(t, x)∗pu(t) = −C∗ΛX(Cxu(t)− zd(t)),

for 0 < t ≤ T,

Pu(T ) = 0.

(5.4.9)

Proof. Let xu be a solution of (VIP) associated with the control u. Then

it holds that

J1(v) =

∫ T

0

||Cxv(t)− zd(t)||2Xdt+

∫ T

0

(Rv(t), v(t))dt

=

∫ T

0

||C(xv(t)− x(t)) + Cx(t)− zd(t)||2Xdt+

∫ T

0

(Rv(t), v(t))dt

= π(v, v)− 2L(v) +

∫ T

0

||zd(t)− Cx(t)||2Xdt,

where

π(u, v) =

∫ T

0

(C(xu(t)− x(t)), C(xv(t)− x(t)))Xdt

+

∫ T

0

(Ru(t), v(t))dt

L(v) =

∫ T

0

(zd(t)− Cx(t), C(xv(t)− x(t)))Xdt.

The form π(u, v) is a continuous bilinear form in L2(0, T ;Y ) × L2(0, T ;Y )

and from assumption of the positive definite of the operator R, we have

π(v, v) ≥ c||v||2 v ∈ L2(0, T ;Y ).
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If u is an optimal control, similarly for (5.4.4) and (5.4.1) is equivalent to

∫ T

0

(C∗ΛX(Cxu(t)− zd(t)), y(t))dt+

∫ T

0

(Ru(t), (v − u)(t))dt ≥ 0. (5.4.10)

Now we formulate the adjoint system to describe the optimal condition:


p′u(t)− A∗pu(t)−D∂φε(x)∗pu(t) + ∂2f(t, x)∗pu(t) = −(C∗ΛXCxu(t)− zd(t)),

for 0 < t ≤ T,

Pu(T ) = 0.

(5.4.11)

Taking into account the regularity result of Proposition 5.2.1 and the

observation conditions, we can assert that (5.4.11) admits a unique weak

solution pu reversing the direction of time t → T − t by referring to the

wellposedness result of Dautray and Lions [[38], p. 558-570].

We multiply both sides of equation (5.4.11) by y(t) of (5.4.5) and integrate

it over [0, T ]. Then we have∫ T

0

(C∗ΛX(Cxu(t)− zd(t)), y(t))dt (5.4.12)

= −
∫ T

0

(p′u(t), y(t))dt+

∫ T

0

(A∗pu(t), y(t))dt+

∫ T

0

(D∂φε(x)∗pu(t), y(t))dt

−
∫ T

0

(∂2f(t, x)∗pu(t), y(t))dt.
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By the initial value condition of y and the terminal value condition of pu, the

left hand side of (5.4.12) yields

− (pu(T ), y(T )) + (pu(0), y(0)) +

∫ T

0

(pu(t), y
′(t))dt+

∫ T

0

(pu(t), Ay(t))dt

+

∫ T

0

(pu(t), D∂φε(x)y(t))dt−
∫ T

0

(pu(t), ∂2f(t, x)y(t))dt

=

∫ T

0

(pu(t), B(v − u)(t))dt.

Let u be the optimal control subject to (5.4.6). Then (5.4.10) is represented

by

∫
Ω

(pu(t), B(v − u)(t))dt+

∫ T

0

(Ru(t), (v − u)(t))dt ≥ 0, (5.4.13)

which is rewritten by (5.4.8). Note that C∗ ∈ B(X∗, H) and for φ and ψ

in H we have (C∗ΛXCψ, φ) =< Cψ,Cφ >X , where duality pairing is also

denoted by (·, ·). 2

Remark 5.4.1 Identifying the antidual X with X we meed not use the

canonical isomorphism ΛX . However, in case where X ⊂ V ∗ this leads to

difficulties since H has already been identified with its dual.
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