

공 학 박 사 학 위 논 문

항공 원격탐사 자료의 융합을 통한 연안 해저 암반 탐지 방안 연구

부경대학교대학원

수로학연협동과정

신 명 식

공학박사학위논문

항공 원격탐사 자료의 융합을 통한 연안 해저 암반 탐지 방안 연구

지도교수 서 용 철

이 논문을 박사 학위논문으로 제출함.

2016년 8월 26일

부경대학교대학원

수로학연협동과정

신 명 식

신명식의 공학박사 학위논문을 인준함.

2016년 8월 일

					la the first	ľ
위 원	장	이학박사	한	경	수 (원)	
위	원	공학박사	김	경	j j	Constant of the local division of the local
위	원	공학박사	서	के	철	and the second s
위	원	공학박사	김	연		
위	원	공학박사	위	광	재	

목	차
---	---

표 목	· 차
그 림	목 차 ······ v
Abst	ract ······viii
I. ^メ] 론
1	.1. 연구 배경
1	.2. 연구 동향
1	.3. 연구 목적
1	.4. 연구 방법
∾ً. ا]론적 배경
2	.1. 해양 광학 원격탐사 이론13
	가. 해양의 반사 신호 구성
	나. 해수의 광학적 흡수 특성
2	.2. 암반 및 해저 재질 탐지를 위한 센서 종류 및 특징
	가. 항공 수심측량 시스템의 종류 및 특징
	나. 초분광 영상의 종류 및 특징
2	.3. 항공 수심측량 시스템을 이용한 수심측량 원리
	가. 측정 원리
	나. 위치결정 원리
	다. 스캐닝

라.	신호	데이터			•••••			 33
2.4.	항공	초분광	영상을	이용한	재질	분류	원리	 ·· 36
2.5.	탐지	알고리	즘의 분	류 및 특	특징			 39

Ⅲ. 연구 지역 및 자료
3.1. 연구 지역
3.2. 연구 자료
가. 항공 수심측량 자료4
나. 항공 수심측량 자료 전처리4
다. 항공 초분광 영상
라. 항공 초분광 영상 전처리
마. 검증자료
Ⅳ. 항공 수심측량 자료를 이용한 암반 탐지
4.1. 질감을 이용한 암반 탐지 방법68
가. 조건부 분산탐지
나. 최소-최대 질감 연산자
4.2. 항공 수심측량 자료를 이용한 암반 탐지 결과
Ⅴ. 항공 초분광 영상을 이용한 암반 탐지
5.1. 항공 초분광 영상을 이용한 암반 탐지 방법

가. 기준 분광반사자료 수집
나. 사용한 표적탐지 알고리즘
5.2. 항공 초분광 영상을 이용한 암반 탐지 결과80

가.	암반	탐지	결과	육안	분석	•••••	 С
나.	암반	탐지	결과	정탐:	지율	분석	 4

정확도 향상을 위한 초분광 영상과 항공 수심측량 자료 융합 방안 …87
6.1. 융합 자료를 이용한 암반 탐지 방법87
가. 초분광 영상과 질감 자료의 융합87
나. 융합 자료를 이용한 암반 탐지 방법89
6.2. 융합 자료를 이용한 암반 탐지 결과
6.3. 융합 자료 이용 시 정탐지율 향상 비교95

Ⅶ . 결 론
7.1. 연구결과 요약 및 향후 연구
7.2. 연구결과의 활용을 위한 제언
참 고 문 헌
감사의 글

표 목 차

표 1. SHOALS-3000, 1000, HawkEye II, CZMIL 장비 사양비교 17
표 2. 항공기 탑재 초분광센서의 종류
표 3. 위성 탑재 초분광센서의 종류
표 4. 분광반사율을 이용하는 표적탐지 알고리즘의 분류 및 수식41
표 5. 연구지역 선정 조건 및 선정 지역의 특성42
표 6. 항공수심측량장비(CZMIL) 세부 사양
표 7. 고도에 따른 점밀도 비교(SHOALS-3000 vs. CZMIL)
표 8. GPS/INS 성과 처리
표 9. ITRES사의 CASI-1500 모델사양
표 10. CASI-1500의 고도에 따른 공간해상도와 분광밴드 비교
표 11. 연구 지역에 대한 대기보정, 수면반사 보정, 수심에 의한
반사율 변화 보정 영상63
표 12. 분급, 왜도, 첨도 분류 기준
표 13. 암반 탐지 결과와 검증자료 비교 결과 정탐지율
표 14. 해저 재질별 분광반사특성 수집을 통해 정의한 기준 분광반사율·79
표 15. 암반 탐지 결과와 검증자료 비교 결과 정탐지율85
표 16. 암반 탐지 결과와 검증자료 비교 결과 정탐지율
표 17. 자료에 따른 암반 탐지 정탐지율 비교

그림목차

<그림 1> 저질의 종류별 산란 강도의 예4
<그림 2> 음파의 후방산란 신호를 이용하여 작성한 도면, Habitat map…4
<그림 3> 연구 방법 및 흐름
<그림 4> 해양을 관측한 광학 센서에 기록되는 신호의 구성13
<그림 5> 해수의 광학적 흡수특성15
<그림 6> 항공 수심측량 시스템
<그림 7> 초분광 영상의 개념
<그림 8> 위성 탑재 초분광 센서
<그림 9> 항공 수심측량 시스템의 레이저파 반사
<그림 10> 항공 수심측량의 원리
<그림 11> WGS84와 기준면과의 관계
<그림 12> 준원호형 스캐닝
<그림 13> 신호 데이터
<그림 14> 토양, 식생, 수체의 분광반사특성
<그림 15> 토양조직에 따른 반사특성 차이
<그림 16> 수분함량에 따른 토양의 반사특성 차이
<그림 17> 재질별 분광반사특성의 차이
<그림 18> 아스팔트 도로의 상태에 따른 분광반사곡선
<그림 19> 수체의 분광반사곡선
<그림 20> 연구 지역
<그림 21> 스캔 패턴 비교

<그림 22> 데이터 처리 Work flow48
<그림 23> 레이저 데이터 처리
<그림 24> 프로젝트 설정 인덱스
<그림 25> 노이즈 제거
<그림 26> 해저신호 분석을 위한 초분광 영상의 전처리 과정53
<그림 27> ATCOR를 이용한 대기보정 모습
<그림 28> 대기보정을 위한 입력인자 예시(기상청)
<그림 29> 대기보정 전 Radiance영상과 스펙트럼,
대기보정 후 Reflectance 영상과 스펙트럼
<그림 30> 수면반사 보정 원리
<그림 31> 수면반사 보정을 위한 샘플화소 선택 예시
<그림 32> 수면반사 보정을 위한 근적외선 밴드 선택
<그림 33> 수면반사 보정 전후 영상비교
<그림 34> 수심 1m 간격으로 반사율 샘플을 수집하는 장면 예시60
<그림 35> 수심에 따른 모래의 반사율 변화 모델 예시61
<그림 36> 수심에 따른 반사율 변화 모델을 기반으로 한
수시벼 바사우 버저랴 추저치

	주심별 만사율 보성당 주성지 ···································
<그림 37>	채니기를 이용한 저질 시료 채취64
<그림 38>	표층퇴적물 유형 분류 삼각다이어그램65
<그림 39>	육안판독을 통해 수집한 검증자료 160개 지점의 위치67
<그림 40>	방향성 분산을 계산하는데 사용된 윈도우
<그림 41>	윈도우 사이즈에 따른 질감연산 결과
<그림 42>	항공 수심측량 자료를 이용한 암반 탐지 결과
<그림 43>	항공 수심측량 자료를 이용한 암반 탐지 결과와 수심자료 비교…74
<그림 44>	암반 탐지 결과와 검증자료 비교

— vi —

<그림	45>	과거 저질조사 결과
<그림	46>	연구 지역의 1:5,000 해도
<그림	47>	분광각매퍼(SAM) 알고리즘의 원리80
<그림	48>	초분광 영상을 이용한 암반 탐지 결과82
<그림	49>	수심보정이 완료된 초분광 영상82
<그림	50>	수심에 의한 반사율 변화 보정을 위한 모델83
<그림	51>	사천해수욕장 부근에서 비암반이 암반으로 오탐지 된 예시…83
<그림	52>	초분광 영상 암반 탐지 결과와 검증자료 비교84
<그림	53>	누락오차가 발생한 지점 예시85
<그림	54>	초분광 영상과 질감자료를 융합한 영상88
<그림	55>	최대우도 분류 알고리즘91
<그림	56>	융합된 자료의 암반탐지 결과
<그림	57>	초분광 영상과 질감자료를 융합한 영상
<그림	58>	융합자료를 이용한 암반 탐지 결과와 검증자료 비교94
<그림	59>	항공 수심측량 자료, 초분광 영상, 융합자료를
		이용한 암반 탐지 결과

A Study on Seabed Rock Detection Method through Fusion of Airborne Remote Sensing Data

Shin Myoung Sig

UR Interdisciplinary Program of Hydrography, The Graduate School, Pukyong National University

Abstract

The distribution of seabed rock in the coastal area is connected to the navigation safety and development of ocean where it is a very important measurement target. Currently, the distribution of seabed rock is surveyed with interpretation of water depth data or point based bottom sampling, which shows low efficiency. This study aims to suggest an efficient and accurate detection method of seabed rock using airborne remote sensing data. Airborne bathymetric LiDAR data and hyperspectral image were used to detect seabed rock, respectively. Then a method was suggested for seabed rock detection using fused data which could overcome limitations from single data.

The seabed rock could be detected using texture information of airborne bathymetric LiDAR data. The result shown 88% detection accuracy and24% commission error due to blur effect of moving window operator for texture calculation. The spectral information was used to detect seabed rock using airborne hyperspectral image. The spectral angle mapper (SAM) algorithm was used to compare spectral similarity of each pixel to training samples. The result shown 79% detection accuracy with 16% commission error and 26% ommission error. The reasons of error might be limitation of image correction method and environmental variation at local area. The two data was fused to enhance detection accuracy that the texture data was added to hyperspectral

image as a band. The maximum likelihood (MLH) method was applied to detect seabed rock using fused data. The result shown 96% detection accuracy, 6% commission error and 1% ommission error which is 8%p and 17%p enhanced accuracy compare to results with bathymetric LiDAR data or hyperspectral image, respectively. Therefore, the suggested method should increase accuracy on seabed rock detection with fusion of two remote sensing dataset. Additionally, it may improve efficiency to survey seabed rock distribution.

Distribution of seabed rock can be a useful data on application fields such as navigation safety, military operation and sustainable development of coastal area. For this, further studies are needed aspect on accuracy enhancement, subdivision of class and expansion of area with various coastal characteristics of water and environments around Korean Peninsula.

I.서 론

1.1. 연구 배경

연안이라 함은 연안해역과 연안육역을 말하며, 연안 해역은 바닷가와 만 조수위선으로부터 영해의 외측한계까지의 바다를 말하고 연안육역은 무인 도서와 연안해역의 육지 쪽 경계선으로부터 500m, 산업단지의 경우에는 1000m 범위 안의 육지지역을 말한다. 연안은 지구표면 중 육지, 해양, 대 기가 만나 활발한 상호작용을 하는 곳으로, 개발로 인한 환경변화와 기후 변화로 인한 영향을 크게 받고 있다. 또한 우리나라의 경우 연안에 인접한 시/군/구가 전체 시/군/구의 약 34%이고, 공단의 절반 이상과 발전소의 약 60%가 연안에 위치하고 있다. 하지만 우리나라의 경우 연안 해역에 대한 해저정보조사는 부족한 실정이다(오윤석, 2004). 따라서 최근 연안 해역에 대한 물리, 화학 및 생물학적 등의 다양한 분야에서 활용될 수 있는 조사 가 이루어지고 있다.

특히 연안 해역의 저질/재질 분포 정보는 다양한 분야에서 활용성이 높 아 정밀한 조사가 필요하다. 여기서 저질 조사는 해저면에서 일정 깊이까 지 시료를 채취하는 것을 의미하고, 재질 조사는 해저 표면만을 대상으로 하는 것을 의미한다. 현재 저질분포 정보는 여러 가지 방법으로 수행되는 저질조사를 통해서 얻어진다. 여기서 '저질조사'라 함은 국립해양조사원 수 로측량업무규정 제2조(정의) 8항에서 "해역 및 수로의 수저면(水底面)을 구 성하고 있는 저질의 구성분포 및 종류를 조사하는 작업을 말한다"고 규정 하고 있다. 또한 해양용어사전(조창선 일진사, 2005)에서는 "해저 구성물질 의 채취와 저질분류표에 의한 이들 시료의 판별을 통해 저질의 종별을 조

- 1 -

사하는 작업을 말한다"고 하였다. 그리고 '저질'은 "하천, 호소, 해양 등의 밑바닥에 형성된 퇴적물, 흙, 암편 등의 물질을 말한다"고 하였다. 이러한 연안해역 저질조사는 항해 안전 및 군사작전 등 연안에서의 선박 운항을 위한 참고자료로 활용 가능하고, 해양 개발 및 보존 측면에서는 연안 및 항만 개발과 자원개발, 연안 보존과 관리를 위한 참고자료로 활용할 수 있 다.

연안해저에 대한 저질조사 방법은 선박에 장착된 다양한 관측 장비를 이 용한 조사와 조사자가 직접 바닷물 속으로 들어가서 조사하는 잠수조사 등 에 의한 방법이 있다. 잠수조사의 경우 가장 정확한 방법이지만 조사 범위 와 시간 측면에서 비효율적이다. 선박에 의한 조사방법은 일정한 거리를 갖는 점 단위의 표본 지점을 대상으로 하므로, 조사 범위와 시간 측면에서 잠수조사에 비해 효율성은 높다. 선박을 이용한 점 단위 조사 방법은 많은 시간과 비용이 소요되고, 해안선 부근과 암초 지역 등 선박 접근의 제한에 의한 미조사지역이 발생한다. 따라서 현재 우리나라 연안해역의 재질이 공 간적으로 어떻게 분포하는지 정밀하게 조사한 자료가 부재한 실정이다. 따 라서 기존 점 단위 조사 방법을 면 단위 조사 방법으로 개선함으로써 연안 해역 재질의 분포를 정밀하게 조사할 필요가 있다.

최근 항공 및 위성 원격탐사 자료를 이용한 측량 및 주제도 제작 기술이 발전하고 있다. 이 기술은 기존 현장 조사 방법에 비해 적은 비용으로 넓 은 지역을 연속적으로 관측할 수 있는 면 단위 조사방법으로 높은 효율성 을 확보할 수 있다. 특히 원격탐사 자료에 포함되어 있는 물질 고유의 분 광반사특성을 이용하여 물질의 종류 또는 특성을 파악하는 연구가 지속적 으로 이루어지고 있다. 최근 센서 기술의 발전으로 분광해상도가 향상된 초분광 영상이 등장하였고, 다양한 분야에서 활용되고 있다. 현재 대부분의 활용 분야가 산림, 농업, 토양, 도시 등 육상에 집중되어 있다. 국내에서는

- 2 -

최근 국립해양조사원에서 연안해안선의 재질분류를 위해 초분광 영상을 활 용하고 있다. 그러나 연안 중 연안 육역에 대한 국한된 재질분류 조사 기 술이 주를 이루고 있다. 따라서 연안 해역의 재질을 면 단위로 파악할 수 있는 다양한 조사 기술 개발과 정확도 향상이 필요하며, 또한 선박 접근불 가 지역에 대하여 최신의 탐사 기술을 이용한 조사 방안이 필요하다.

1.2. 연구 동향

이용한 연안 조사는 다양한 센서의 발달과 더불어 조사 항목의 증가로 이어지고 있다. 현재 선박을 이용한 조사는 여러 가지 장비를 이용한 샘플 채취 방법과 음향 후방산란 영상을 분석하는 방법 등이 있다. 샘플 채취 장비들은 그랩(Grab), 스내퍼(Snapper), 코어러(Corer), 드랫지(Dredge) 등 이 있다. 그랩과 스내퍼 장비는 해저면의 표층과 그 바로 아래 중층에서 중간 크기의 샘플을 수집한다. 코어러 장비는 해저의 저질을 훼손하지 않 고 샘플을 채취하는데 사용된다. 이 장비는 해저면을 상당부분 뚫고 들어 가 샘플을 채취할 수 있다. 드랫지는 해저면을 긁어서 해저의 물질과 침전 물을 수거하는 채취 장비이다. 음향 후방산란 영상을 획득할 수 있는 장비 에는 음향측심기(Echo Sounder)와 측면 주사 소나(Side Scan Sonar: SSS) 등이 있다. 음향측심기는 수중에서 음향의 왕복 시간을 측정함으로써 수심 을 측정할 수 있다. 이와 더불어 음향측심기와 측면 주사 소나는 음향의 후반산란 신호를 측정할 수 있어. 이를 이용한 해저 재질 분류와 관련된 연구가 시도되었다. 국제수로기구(International Hydrography Organization: IHO, 2011)는 재질 분류를 위한 음향의 산란신호 분석 방법으로 신호의 강 도 또는 질감 등을 이용하는 방법들을 제시하고 있다. 여기에서 산란신호 의 강도에 영향을 미치는 요인으로 재질의 강도, 입자의 거칠기를 주요인

- 3 -

으로 들고 있다. 그러나 주요인 외에도 주사각과 해저면의 반향각, 음향의 강도 등 다양한 인자로 인해 산란신호의 정규화가 복잡하므로, 실제 시료 를 채취한 지점에 한정하여 사용할 것을 권장하고 있다. <그림 1>은 저질 의 종류별 후방산란 신호의 강도를 나타내는 그림이다. <그림 2>의 좌측 은 후반산란 신호를 이용하여 작성된 도면이며, 우측 그림은 Habitat 도면 이다.

<그림 1> 저질의 종류별 산란 강도의 예(국제수로기구, 2011)

<그림 2> (좌)음파의 후방산란 신호를 이용하여 작성한 도면, (우)Habitat map (국제수로기구, 2011)

- 4 -

국내에서는 국립해양조사원(2015)이 동해항과 묵호항 주변의 일부 지역 을 대상으로 다중빔 음향측심기의 후방산란 강도를 이용하여 해저면 특성 분류를 시범적으로 수행한 바 있다. 또한 국립해양조사원 동해해양조사사 무소(2015)는 다중빔 음향측심기의 후방산란 강도를 이용하여 포항항 주변 의 해저질분포도를 제작하였다. 그러나 선박을 이용한 조사 방법의 특성 상 넓은 지역을 대상으로 하지 못하였고, 후방산란 강도에 대한 일관적인 분류 기준의 부재라는 한계가 존재하고 있다. 위에서 언급한 산란신호 강 도의 특성은 항공 수심측량 자료에 포함되어 있는 반사강도에도 동일하게 적용된다. 따라서 신호(음향 및 레이저)의 산란강도에 의한 저질 분류 기준 을 일관화 할 필요가 있다.

최근 항공기 또는 위성 기반의 원격탐사 기술의 발전과 함께 해안선 매 핑과 재질분류, 연안 해안 토지피복분류 및 해저지형변화 분석 등 다양한 분야에서 위성영상과 항공 LiDAR, 초분광영상 등의 원격탐사 자료를 이용 하고 있다. 오윤석 등(2005)은 우리나라 연안에 대해 현재까지 조사된 실정 을 파악하고 새로운 조사의 필요성에 대해 연구하였다. 또한 효율적인 조 사 방법으로 지역을 세분화하여 나누고 조사 대상간의 중요성에 따른 조사 우선순위를 고려함으로써 좀 더 효율적인 조사 방법을 제안하였다. 최해종 (2014)은 충청남도 태안 신두리 해수욕장 일대를 대상으로 초분광 센서인 AISA-Eagle로 촬영한 영상을 활용하여 해안선 지형특성의 기초가 되는 재질을 분류하였다. 모래, 자갈, 암석, 아스팔트에 대한 재질 분류를 수행한 결과, 88.07%의 전체 정확도로 비교적 높은 분류 정확도를 나타냈다고 판 단하였다. 또한 항공 수심측량 및 항공사진측량을 통한 데이터 획득이 해 안선추출 외에도 해양정보도를 제작하는데 많은 도움을 줄 것으로 예상하 였다. 김현호(2014)는 태안군 일원의 해역과 육역을 포함하는 연안지역을

- 5 -

대상으로 항공 초분광 영상으로부터 대기보정 등 전처리 과정을 통하여 화 소기반 분류방법과 객체기반 분류방법으로 토지이용/토지피복분류를 수행 하여 최적의 분류방법을 도출하고, 초분광 영상과 LiDAR (Light Detection and Ranging) DEM (Digital Elevation Model)으로부터 해안선 을 검출하였다. 대기 보정 영상이 미보정 영상에 비해 4~9% 정도 높은 분류정확도를 나타내었고, 초분광 48개 밴드 영상에 의한 분류결과가 4.8 개 밴드 영상에 비해 9~10% 높은 정확도를 나타냄으로써 토지피복분류에 서의 초분광 영상의 우월성을 확인하였다. 양인태 등(2014)은 CASI-1500 센서를 이용하여 촬영한 고해상도 영상으로 부산 해운대의 이안류에 의한 해저지형변화를 분석하였다. 그 결과, 수심을 관측하기 위해 가장 잘 반응 하는 반사 파장대는 480~597nm이며 초분광 영상의 높은 공간 해상도를 이용하면 상세한 해저지형을 산정할 수 있다고 강조하였다. 민지은 등 (2010)은 객체 기반의 영상 분류 방법을 고해상도 영상에 적용하여 열대해 역 서식환경 변화를 비교·분석하였다. 현장관측 값과 비교하여 정확도 검 증을 한 결과 적은 검증 자료의 이용, 넓은 현장 자료의 샘플링 간격 등의 이유로 그리 높지 않은 72.22%의 전체 정확도를 얻었으며 이러한 문제를 해결하기 위해서는 초분광 센서를 이용하여 관측함으로써 높은 분광 및 공 간해상도를 갖는 영상으로 분석한다면 보다 좋은 결과를 얻을 수 있을 것 이라 보고하였다. 미국 NOAA (National Oceanic and Atmospheric Administration)는 미국 연안에서 조사한 다양한 자료를 DB화하여 지도로 표출하는 Digital Coast 사업을 운영하고 있다. Digital Coast 사업 내에 연 안의 변화를 모니터링하기 위한 프로그램으로 C-CAP (Coastal Change Analysis Program)를 운영 중이다. C-CAP은 1970년대부터 약 10년 주기 로 미국 연안의 토지피복(Land cover) 분포와 변화 자료를 구축하여 제공 하고 있다. 이러한 자료는 연안의 변화를 모니터링 함으로써 연안 관리 및

- 6 -

보존을 위한 정책 수립의 기초자료로 활용하고 있다. 또한 NOAA는 연안 의 수중 생태자료로 해저피복도(Benthic cover map)를 제공하고 있다. 주 요 제작 지역은 해안선에 근접한 연안해역과, 조간대, 하구역으로 피복의 종류는 산호/암반(Reef/Hard-bottom), 수중 해조류(Submarshed aquatic vegetation), 조간대 해조류(Tidal marsh), 뻘(Tidal swamp), 퇴적물 (Unconsolidated sediments)의 5개 등급으로 분류하고 있다. 그러나 제작 시 기나 제작 기관 등에 따라 다른 분류 기준과 도면 제작 기준으로 제작되어 일정한 기준이 없다. Mishra 등(2007)은 남미 온두라스 연안에서 초분광 영상인 AISA-Eagle 영상을 이용하여 해저환경지도를 제작하였다. 이를 위 하여 수심에 따른 동일 해저 피복의 반사율 변화를 관찰하고, 수심에 의한 반사율 변화를 보정하였다. 그 후 모래, 해조류, 산호, 암반 등 8가지 재질 (피복)에 대한 분류를 실시하였고 그 결과 수심 10m 이내의 연안에서 신 뢰도 83%를 갖는다고 보고하였다. Ciraolo 등(2006)은 이탈리아 시칠리아 연안에서 초분광 영상인 MIVIS (Multispectral Infrared Visible 섬 Imaging Spectrometer) 영상을 이용하여 15가지 등급으로 구성된 연안 해 저 재질분류도를 제작하였다. 15가지 등급에는 모래, 암반을 비롯하여 다양 한 산호와 해조류의 종을 분류하고 있다. 수심에 의한 반사율 변화를 보정 한 후 수심 3m 이하를 대상으로 해저 재질분류도를 제작하였고, 적절한 수심보정의 필요성을 강조하였다.

한편, 연안 해저재질분류 가운데서도 해저 식생 및 산호초 분류에 대한 연구도 활발히 진행되고 있는데, 김태훈 등(2013)은 마이크로네시아 웨노섬 연안에 혼재하여 나타나는 잘피와 산호초 서식지를 대상으로 현장조사와 Worldview-2 위성영상으로 분석한 서식지 분포도를 작성하여 결과를 정량 적으로 비교·분석하였다. 현장조사 결과 모래 42.4%, 해초 26.1%, 해조류 14.9%, 잔해 8.9%, 단단한 산호 3.5%, 부드러운 산호 2.6%, 죽은 산호

- 7 -

1.5%, 기타 0.1%였고 Worldview-2 위성영상 조사 결과 모래 26.5%, 해초 23.3%, 모래+해초 12.3%, 산호 18.1%, 잔해 19.0%, 바위 0.8%로 총 65.2% 의 정확도를 보였으며 각 지형에 적합한 서식지 분류를 적용하여 위성영상 분석에 활용한다면 오분류를 최소화 할 수 있을 것이라 하였다. 김근용 등 (2012)은 장흥군 회진면 일대의 해초지를 대상으로 수중음향측심기와 고해 상도 Kompsat-2 위성영상을 이용하여 식생유무를 탐지하고 분포크기를 파악하였다. Kompsat-2 영상분석으로 계산된 해초지 면적은 약 3.9km²로 수중음향 탐사를 통해 구해진 4.5km²보다 과소탐지 되었다. Kompsat-2 위 성영상을 객체기반 영상분류법으로 해초 식생을 분석한 결과는 수중음향 결과 값에 대해 90%의 정확도를 보였는데, 이와 같이 높은 정확도는 Kappa지수(0.85)로도 확인되었으며, 위성영상과 수중음향 결과 간의 유사 도는 77.1%로 비교적 높았다고 하였다. Tamir 등(2015)은 Agaba 만의 북 쪽 끝에서 8km 남쪽의 Eilat 도시에 위치한 Coral Reef Marine Park를 대 상으로 초분광 카메라를 이용하여 14가지 클래스로 산호를 분류하였다. 전 처리 및 후처리 단계에서 5~15%의 정확도 향상을 보였고, 초분광 카메라 를 이용한 산호초 분류는 다른 원격탐사에 의한 분류보다 좋은 효율을 보 였다고 하였다.

또한, 초분광 영상과 항공 수심측량 자료를 이용한 연안 수심측량 및 재 질 분류에 관한 연구를 살펴보면 다음과 같다. 서동주 등(2008)은 낙동강 하구 일대의 연안지역을 대상으로 보다 효율적으로 연안해역의 수심을 추 출하기 위하여 EO-1 초분광 영상을 활용하였다. 대기보정과 기하보정을 실시하고 MNF (Minimum Noise Fraction)변환을 통해 밴드를 압축하고, 수체의 특성을 분석하는데 적합한 밴드를 선정하여 연안의 수심을 최종적 으로 결정하였다. 산정된 수심은 수치해도상의 수심과 평균 1.2m 정도의 차이를 보였고, 산정하고자 하는 수심이 깊을수록 오차가 크게 나는 것을

- 8 -

확인하였다. 김선화 등(2015)은 초분광 영상의 국내 연안 활용 범위 확대 및 정확성 향상을 위해 국외 연안지역에 대한 항공기 및 위성 탑재 초분광 영상의 다양한 처리 기법을 소개하였다. 육상과 달리 가시광선 영역에서 미세한 반사율을 보이는 해양의 경우, 보다 정밀한 대기보정과 함께 태양 광 정반사와 같은 이상 현상을 제거하기 위한 다양한 기법이 개발되었으 며, 초분광 영상은 최대 25m까지 수심측정이나 해저면 분류가 가능하다고 하나, 실제 많은 연구에서 항공기 및 위성 탁재 초분광 영상은 수심 10m 미만의 연안지역에서 활용하고 있고 국내 연안지역의 초분광 영상자료의 정확하고 정량적인 연안 활용을 위해서는 최대 탐지 가능한 수심 및 수질 조건 등에 대한 분석이 필요하다고 하였다. Zavalas 등(2014)은 호주 Victoria 서부 해변을 대상으로 수심 30m 미만의 저서 서식지의 특성을 조 사함에 있어 수심 LiDAR의 사용 가능성을 평가하였다. LiDAR 수심 측량 과 반사율 데이터를 이용하여 71%가 넘는 효과적이고 높은 분류 정확도를 보였다. Leiper 등(2014)은 호주 Great Barrier Reef를 대상으로 초분광 영 상인 CASI 영상을 이용하여 산호초 및 암초의 매핑과 수심을 측정하였다. 침전물, 미세 조류, 해조류, 산호 등은 약 8.0m 깊이에서 65%의 전체 정확 도로 매핑하였고, 0.5~10.0m에 대한 수심지도는 소나 데이터와 높은 일치 성을 보여주었다고 보고하였다.

위성영상과 LiDAR 자료가 가지고 있는 단점을 서로 보완하기 위하여 두 자료를 융합하여 정확도를 높이기 위한 연구도 계속되고 있는데, 김종 수(2012)는 위성영상 또는 항공 LiDAR 자료만을 이용한 산림 생체량 (biomass) 산정 기법의 한계가 예상됨에 따라 기 구축된 공간정보가 풍부 한 강원도 횡성군 횡성읍 일원의 산림 지역을 대상으로 위성영상과 LiDAR 자료를 융합하여 산림의 임상 정보와 수고 및 흉고직경 등의 산림 정보를 추출하고 이를 이용한 산림 바이오매스의 산정 기법을 제시하고자

- 9 -

하였고, 현장조사와 평균 88.3% 이상의 높은 정확도를 보였다. 강준묵 등 (2004)은 LiDAR 만을 이용할 경우에는 선형화 과정에서의 수작업과 주관 적인 재구성과정의 문제점이 발생하므로 고해상영상을 융합하여 통합 DEM 및 정사영상을 제작하고 이를 기반으로 도심지역의 지형, 건물, 수목 등의 정밀 모니터링을 수행하였다. 그 결과 융합한 DEM을 이용하여 제작 한 수치정사영상이 1:5.000 수치지도에 상응하는 위치정확도를 나타내었고 그 효율성이 입증되었다고 보고하였다. 유여상(2007)은 영상 간 융합을 위 해 화소단위가 아닌 객체기반으로 영상을 가공하여 화소기반 융합결과와 객체기반 융합결과를 각각 생성해보고 이를 비교·분석하였다. 이를 위해 Landsat 흑백모드 영상과 Hyperion 초분광 영상을 이용하였다. 그 결과. Hyperion 영상 상의 객체화에 따른 분광 정보왜곡이 다소 줄어든 모습을 확인할 수 있었다고 보고하였다. 신은솔(2013)은 지상 LiDAR 자료에서 식 생을 추출할 때 식생의 반사특성, 활력도를 고려하여 객관적이고 향상된 정확도를 얻을 수 있도록 영상자료와 지상 LiDAR 자료의 융합기법을 제 안하였고 평균 78%의 정확도로 식생을 추출할 수 있었다. 윤준희(2007)는 항공센서 데이터인 LiDAR 데이터와 디지털 영상을 융합하여 분할된 표면 패치를 생성하는 방법을 제안하였다. LiDAR 데이터만을 이용한 표면의 분 할은 데이터의 분포에 따라 결과의 정확도가 크게 좌우되었고, 영상만을 이용한 분할에서는 밝기값에 따른 경계가 세밀하게 표현되었으나 결과가 지나치게 세분되어 일반적인 표면에 적용시키기엔 무리가 있었다. 이러한 문제점들을 융합을 통해 감소시킬 수 있었으며 지형 등의 특징에 크게 영 향을 받지 않고 대체로 실세계의 인지적 표면과 일치하는 것을 확인하였 다. 정재욱 등(2005)은 수치항공사진과 LiDAR 데이터를 융합하여 건물의 외곽선을 자동으로 추출하는 방법을 제안하였다. 그 결과, 수동으로 도화된 3차원 도화데이터와 비교하였을 때 RMSE가 X방향 0.35m, Y방향 0.37m, Z방향 0.27m의 차이를 보였고 건물의 외곽선을 추출하는데 있어 우수한 결과를 보였다고 보고하였다. Stavrakoudis 등(2014)은 마케도니아 중부 에 위치한 University Forest of Texiarchis를 대상으로 고해상도 다중분광 영상과 초분광 영상을 융합하여 수종 매핑을 실시하였고, 그 효과를 조사 하였다. 그 결과, 융합 전보다 8%의 정확도 향상을 보였다.

위의 연구사례들에서 육상 활용을 위하여 광학영상과 LiDAR 자료를 융 합한 사례는 다수 있었으나, 해저 암반 탐지 또는 재질 분류를 위한 광학 영상과 항공 수심측량 자료의 융합 사례는 매우 제한적이다. 따라서 항공 수심측량 자료와 초분광영상의 융합을 통한 저질 분류 관련 연구가 필요하 다.

1.3 연구 목적

본 연구에서는 항공 수심측량 자료와 항공 초분광영상을 이용하여 연안 에 분포하는 해저 암반을 보다 효율적이고 정확하게 탐지하는 방법을 제시 하고자 한다. 이를 위하여 항공 수심측량 자료와 항공 초분광 영상을 각각 이용하여 해저 암반을 탐지함으로써 각 자료의 활용 가능성을 제시하고자 한다. 또한 수심측량 자료와 초분광영상을 융합하는 방안을 제시하고, 융합 자료를 이용하여 암반 탐지를 수행함으로써 탐지 정확도를 향상시킬 수 있 는지 분석하고자 한다.

1.4. 연구 방법

본 연구에서는 항공 수심측량 자료, 항공 초분광 영상 각각을 이용하여

암반탐지를 수행하고, 보다 향상된 암반탐지 결과 도출을 위하여 두 자료 를 융합하여 암반탐지를 수행한 후 그 결과를 비교하고자 한다(그림 1). 이 를 위하여 항공 수심측량 자료의 경우 전처리와 질감 연산을 통하여 지형 기복 정보를 추출하고, 이로부터 암반을 탐지한다. 항공 초분광 영상은 전 처리를 통하여 해수면에서의 반사율을 획득하고, 수심보정을 통해 해저 반 사율을 추출한 후 암반탐지를 수행한다. 융합자료는 항공 수심측량 자료에 서 추출한 질감(지형기복) 정보와 항공 초분광 영상에서 추출한 해저반사 율을 융합한 자료이다. 이 자료를 이용하여 암반을 탐지하고자 한다. 항공 수심측량 자료와 항공 초분광 영상 각각을 이용하여 탐지한 암반의 정확도 분석을 통해 단일 자료 이용에 따른 한계를 밝히고, 융합자료를 이용한 암 반탐지 결과와 비교함으로써 정확도 향상 정도를 밝히고자 한다.

<그림 4> 연구 방법 및 흐름

Ⅱ. 이론적 배경

2.1. 해양 광학 원격탐사 이론

가. 해양의 반사 신호 구성

초분광 영상을 포함한 광학영상 및 센서는 태양광을 에너지원으로 이용 하며, 입사된 태양에너지가 지구에서 반사되는 에너지를 기록한다. 해양은 육상과 다르게 해저면 위에 물이 존재하는 3차원적인 구조를 갖고 있다. 따라서 해양을 관측한 광학 센서에 기록되는 반사에너지(신호)는 <그림 4>와 같이 대기에서 산란된 신호, 수면에서 반사된 신호, 수중에서 산란된 신호, 그리고 해저면에서 반사된 신호로 구성된다. 여기에서 연안 해역 재 질분류는 해저면에서 반사된 신호를 이용한다.

<그림 4> 해양을 관측한 광학 센서에 기록되는 신호의 구성

나. 해수의 광학적 흡수 특성

물은 전자기에너지(태양광)를 흡수하는 물질로 일반적으로 지구상에서 낮은 반사도를 갖는 물질 중 하나이다. 물에 의한 전자기에너지의 흡수도 는 수층(수체기둥)의 두께가 두꺼울수록 기하급수적으로 증가한다. 이것은 연안에서 수심이 얕은 곳의 경우 해저면을 눈으로 볼 수 있지만, 수심이 깊어질수록 해저면을 볼 수 없는 것과 같은 원리이다. 즉 수심이 얕은 곳 에서는 해저면에 도달하는 태양광량이 높지만 수심이 깊어질수록 해저면에 도달하는 태양광량이 고수적으로 감소한다. 광학 센서의 관점에서 수심이 깊어질수록 해수에서 반사되어 센서에 도달하는 전체 에너지 중 해저면에 더 있어질수록 해수에서 반사되어 센서에 도달하는 전체 에너지 중 해저면에서 반사되는 에너지의 비율이 기하급수적으로 감소하는 것이다. 이러 한 원리는 Beer의 법칙에 의하여 아래 (식 1)로 정리할 수 있다.

$$L(z) = L(0)\exp(-Kz)$$

(식 1)

L: Radiance z: Water depth

K: Attenuation coefficient

Zoffoli 등(2014)은 매우 맑은 해수(Case-I water)의 수심에 의한 흡수특 성을 파장별로 측정하였고, 다양한 특성(클로로필-a, 탁도)의 해수를 대상 으로 수심에 의한 흡수특성을 측정하였다. <그림 5>는 Zoffoli의 연구에서 측정한 해수의 광학적 흡수특성을 보여주고 있다. 수심이 깊어질수록 지수 의 형태를 갖고 입사광량이 줄어드는 것을 볼 수 있다. 남태평양과 같이 매우 깨끗하고 클로로필-a의 농도가 낮은 해수의 경우 청색광(450~ 500nm)의 경우 100m 이상의 깊은 수심까지 입사광이 도달하고, 적색광(장 파장)으로 갈수록 흡수율이 높아 입사광의 도달 수심이 얕아지는 것을 볼 수 있다. 또한 연안과 같이 탁도와 클로로필-a의 농도가 높은 탁한 해수 (Case-2 water)의 경우 Case-1 water에 비해 입사광의 도달 수심이 매우 얕게 나타나 10~20m 정도에서 해저면까지 도달하는 입사광량이 0%로 떨 어진다.

<그림 5> 해수의 광학적 흡수특성 (Zoffoli 등, 2014)

2.2. 암반 및 해저 재질 탐지를 위한 센서 종류 및 특징

가. 항공 수심측량 시스템의 종류 및 특징

항공 수심측량 시스템의 역사는 매우 오래되었으며, 초기에는 군사 분야 에서 바다 속으로 침투하는 적들을 감지할 목적으로 연구가 진행되었다. 이후 수로측량에 적용하기 위한 연구가 이루어져 1969년에는 미 해군 수 로부에서 시험제작시스템 CAPS (Coastal Airborne Photo Laser Sounder) 개발에 성공하였다. 그리고 1970년대에는 스캐닝기구나 관성측정장치 등의 신기술을 적용한 실용적인 모델이 등장하게 되었다.

캐나다에서는 북극해안연안의 석유 및 가스자원개발과 관련하여 여름기 간동안 다도해 해군항로를 효율적으로 수로측량 할 목적으로 개발을 진행 하였고, 1980년에 시험제작 시스템인 CCRS Mk-Ⅱ (Canada Center for Remote Sensing type Lidar Bathymeter)를 완성시킨 이래 1985년에는 이 를 발전시킨 Larsen-500를 이용하여 본격적인 수로측량을 실시하였다.

그리고 이 CCRS Mk-II를 기초로 1991년 스웨덴 국방연구소(Swedish Defense Research Institute)와 Saab 그룹은 헬리콥터 탑재형 시스템인 Hawk Eye를 개발하였다. 한편, 호주에서는 선박을 통한 측량이 곤란한 산 호초해역이 넓게 분포되어 있어 이러한 산호초해역에 적용할 수 있는 새로 운 해도제작기술이 요구되어, 호주방위과학기술관에서 이러한 해역의 해도 제작을 주요 목적으로 하는 시험제작기 WRELADA-1 (Weapon Research Establishment type Laser Airborne Depth Sounder)로 1976년부터 측심작 입을 실시하였으며, 1981년에는 실용형 WRELADA-2를 완성시켰다.

현재 상업적으로 가동하고 있는 항공 수심측량 시스템은 캐나다 Optech 사의 SHOALS (Scanning Hydrographic Operational Airborne Laser System) 1000 / 3000, 스웨덴 AHAB사 Hawkeye II 및 호주 Tenix LADS사(2008년 Fugro사로 합병)의 LADS Mk-II 기종 등이 대표적이며 2013년 Optech사에서는 CZMIL을 개발하였다.

항공 수심측량 시스템은 파장이 다른 2개의 레이저 펄스를 주사하여 해 면과 해저면에 각각 반사된 레이저 펄스의 왕복에 필요한 시간을 기록하여 거리를 산출한다.

특히 라이다 시스템을 항공기에 탑재하여 데이터를 획득하므로 접근성과

신속성이 우수하며, 레이저 파를 이용하므로 주야로 기상조건의 영향을 적 게 받고 전천후 데이터 수집이 가능하고, GPS와 관성항법시스템을 이용하 여 신속하게 대량의 데이터를 효율적이고 경제적으로 확보할 수 있는 장점 이 있다.

또한 최근 선진외국의 기술동향은 기존의 방법과 더불어 첨단 신기술인 항공 레이저 측량기법을 이용하여 지상과 해저의 공간정보를 수집 분석하 고 있다.

<u></u> ц	SHOALS- SHOALS-		HawkEye	CZMII	
न च	3000	1000	II	CZIVIIL	
Measurement	3,000Hz	1,000Hz	4,000Hz	10,000Hz	
rate					
Operating	300-400m	200-400m	250-500m	400m, up to 1,000m	
altitude	300 40011	200 40011	200 00011		
Depth					
measurement	IHO Order 1	IHO Order 1	IHO Order 1	$[0.3^2 + (0.013 \times \text{depth})^2]^{1/2}$ m,	
medsurement	(~25cm, 1 σ)	(~25cm, 1 σ)	(~25cm, 1 σ)	0-30 m, 2 σ	
accuracy				//	
Horizontal	IHO Order 1	IHO Order 1	IHO Order 1	$(25 \pm 0.05 \text{ y donth}) = 2 \text{ g}$	
accuracy	(~2.5m, 1 σ)	(~2.5m, 1 σ)	(~2.5m, 1 σ)	(3.5 · 0.05 x depui/iii, 2 0	
Minimum	0.2	0.2	0.2	<0.7 m (system), <0.15 m	
depth	0.2 111	0.2 11	0.5 111	(with Shallow Water Algorithm)	
Maximum	50	50	70	$4.2/K_{d}$	
depth	50 m	50 m	70 m		
Sounding	Sounding 2×2, 3×3,		1.7×1.7 to	2×2 m nominal	
density	4×4, 5×5 m	4×4, 5×5 m	3.5 ×3.5 m	ZAZ III nominal	

표 1. SHOALS-3000, 1000, HawkEye II, CZMIL 장비 사양비교

 (a) SHOALS-3000
 (b) HawkEye II
 (c) CZMIL

 <그림 6> 항공 수심측량 시스템

나. 초분광 영상의 종류 및 특징

(1) 초분광 영상의 정의 및 특징

초분광 영상은 좁은 파장 폭을 지닌 수백 개의 밴드가 연속적으로 구성 되어 있는 높은 분광해상도의 영상으로 정의된다(Jensen, 2005; Goetz, 2009). 따라서 초분광 영상은 <그림 7> (좌)와 같이 영상의 밴드를 한 축 으로 하는 하이퍼큐브(Hypercube)의 형태로 표현할 수 있다. 또한 <그림 5> (우)와 같이 각 화소별로 파장에 대한 밴드는 x축으로 그리고 각 밴드 의 반사율을 y축으로 부여하면 분광반사곡선을 획득할 수 있다(Varshney and Arora, 2004; Goetz, 2009).

<그림 7> 초분광 영상의 개념 : 하이퍼큐브(좌)와 각 화소에서 추출되는 분광반사곡선(우)

지난 100여 년 동안 화학, 생물학, 천문학 등에서 대상 물체의 특성을 규 명하기 위한 수단으로 분광계(Spectrometer)를 사용해 왔고, 원격탐사 분야 에서도 실험실이나 야외에서 다양한 지표물의 분광반사곡선을 측정하기 위 하여 분광계를 사용하고 있다. 분광계가 하나의 물체에서 하나의 분광곡선 을 측정할 수 있는 반면에 초분광 영상은 영상을 구성하는 모든 화소마다 분광곡선을 얻을 수 있으며, 이를 이용하여 각 화소에 해당하는 지표물과 관련된 정보를 추출하는데 사용될 수 있다.

초분광 영상은 분광밴드가 많고(Many), 연속적이고(Continuous), 파장 폭이 좁은(Narrow) 세 가지 특징으로 정의할 수 있다. 초분광 영상은 밴드 폭이 넓고 불연속적인 몇 개의 밴드로 구성된 다중분광(Multispectral) 영 상에 비해 지표에 대한 완전한 분광반사곡선을 획득할 수 있다는 장점을 갖고 있다(Goetz et al., 1985; Karaska et al., 2004).

지구상의 다양한 지표물은 일반적으로 10nm에서 20nm의 좁은 폭에서 분광흡수 특성을 가지고 있으므로, 10nm 이하의 밴드 폭을 갖는 초분광 영상은 지표물의 분광흡수특성을 측정하는데 적합하다(Jensen, 2000). 초분 광 영상의 높은 분광해상도는 다중분광영상으로 감지가 어려운 미세한 분 광반사특성으로 인하여 보다 정량적으로 정확한 분석에 유용하게 활용될 수 있어, 최근 그 수요가 증가하고 있는 추세이다(김선화 외, 2005; 허아영 외, 2010). 초분광 영상 센서가 개발된 이후 지난 30여 년 간 다양한 활용 분야에서 지표에 대한 정량적 인자 추출 및 정밀 분류 등의 활용 가능성을 평가하였으며, 그 결과 초분광 영상의 활용 가능성이 매우 높은 것으로 분 석되었다(MacDonald et al., 2009; Goetz, 2009).

(2) 항공기 탑재 초분광 센서

현재 활용되는 초분광 영상의 대부분은 항공기 탑재 센서에 의존하고 있 으며, 그 종류만 해도 수십 가지에 이른다. 이는 초분광 영상 센서가 위성 에 탑재되어 운영될 만큼 기술 및 활용측면에서 충분한 기반을 갖추지 못 하고 있음을 의미한다. 표 2는 현재까지 개발되어 사용되고 있는 대표적인 항공기 탑재 초분광센서의 종류와 그 특징을 보여주고 있다. 1970년 첫 항 공기 탑재 초분광센서인 SIS (Scanning Imaging Spectrometer)를 시작으 로, 1987년 미국 NASA의 AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) 센서의 개발 및 자료의 획득으로 인해 항공기 탑재 초분광 센서의 개발이 세계 각국의 정부기관을 주축으로 본격적으로 수행되기 시 작했다. AVIRIS 센서는 1983년에 개발되어 1987년 처음으로 자료를 획득, 현재까지 초분광 영상관련 연구에서 가장 많은 초분광 영상을 공급하고 있 다. AVIRIS 센서는 400~2,500nm의 파장영역의 총 224개의 밴드를 가지고 있으며, 614개의 픽셀로 구성된 라인 스캐너이다. 1980년대 상업용 초분광 센서로 캐나다에서 개발한 CASI (Compact Airborne Spectrographic Imager)는 400~870nm 파장구간에서 총 228개의 밴드로 구성되어 있다. 또 하나의 상업용 초분광센서로, AISA (Airborne Imaging Spectrometer for Applications)가 핀란드에서 개발 되었으며, 같은 센서로서 호주와 미국 에서 각각 사용되어지고 있는 HyMap (Hyperspectral Mapper)과 Probe-1

이 사용되고 있다. 미국 해사연구소(NRL)에서 군사 목적으로 개발된 HYDICE (Hyperspectral Digital Imagery Collection Experiment) 센서는 현재 군사용 이외에 민간용 활용이 시도되고 있다. 이밖에 미국 GER사에 서 개발한 GERIS, DAIS(Digital Airborne Imaging Spectrometer), EPS센 서와, 다양한 각도에서 촬영이 가능한 ASAS센서, 가시광선-중적외선 구간 에서 92개, 열적외선 구간에서 10개의 밴드를 제공하는 MIVIS센서, ROSIS센서 등 많은 항공기 탑재 초분광센서가 개발, 사용되고 있다.

AVIRIS는 초분광 원격탐사 기술을 이끌고 있는 가장 중요한 센서의 하 나로 꼽을 수 있다. 미국 NASA JPL에서 1983년 개발된 초분광센서인 AIS (Airborne Imaging Spectrometer)를 개량하여 1987년에 소개된 센서 로서 400~2,500nm 파장구간에서 총 224개의 밴드로 영상을 촬영한다. AVIRIS는 매년 다양한 활용분야에 적합한 연구지역을 선정하여 영상을 촬영하여 공급하고 있으며, 현재까지 센서 검보정, 영상 전처리, 지질학 및 광물탐사, 생태, 환경, 해양, 대기 등 다양한 목적의 연구에 사용되고 있다. 특히 1988년부터 지금까지 매년 AVIRIS Workshop을 개최하여 AVIRIS 자료처리 기법 및 활용과 관련된 연구결과를 함께 나누는 자리를 마련하고 있다.

센서명 구분	AVIRIS	AVIS-2	Hymap	HYDICE	CASI-2	CASI-3
탑재체	ER-2	Light plane	Light plane	ERIM CV-580	Light plane	Light plane
개발주체	USA NASA JPL	Bavaria	Australia HyVista	USA NRL	Canada	Canada
촬영타입	Across	Along	Across	Along	Across	across
촬영고도	20km	3000m	2-5km	1.5-7.62km	466m	<210m
밴드수	224	128	128	210	228	288

표 2. 항공기 탑재 초분광센서의 종류

밴드폭 (nm)	10	9	10(VNIR) 20(SWIR) 100-200 (TIR)	3nm 10-20nm	2.5	2.2
파장범위 (nm)	400-2500	404-875	450-2500	400-2500	380 -1050	380-1050
SNR	500:1	64-65.5 dB	500:1	217/107/40	480:1	480:1
공간해상 도	20m	2-10m	3-10m	0.75-3.75m	0.5-10m	0.5-10m
주사폭 /FOV	34°	56°	61.3°	320 pixels	512pixels/ 54.4°	1480pixels /39.5°
센서명 구분	AISA	AISA+	AISA EAGLE	AISA HAWK	AISA DUAL	AISA OWL
탑재체	Light plane	Light plane	Light plane	Light plane	2	
개발주체	Finland Specim	Finland Specim	Finland Specim	Finland Specim	Finland Specim	Finland Specim
센서타입	along	along	along	along	171	along
촬영고도	대략 1000m	-		- /	∇	
밴드수	286	244	244	254	/	
밴드폭	1.6nm 9.4nm	2.9	2.9	8		
파장범위	400-900	400-970	400-970	1000-2400		760-1250
SNR	1.41-1.02 m	_	_	_		
공간 해상도	39.7°, 29.9°	1.41-1.02 m	0.71-1.2m	_		
주사폭/ FOV	39.5°	72×고도/3 9.7°,29.9°	/39.7°, 29.9°	31×고도/1 7.8°		
센서명 구분	Probe-1	DAIS 7915	APEX	EPS-H	HySpex (VNIR- 1600)	ISM
탑재체	CMI	Light	Light	Airborne	Light	

	Aircraft	plane	plane		plane	
개발주체	ESSI	EU and DLR (GER) GER & DLR	ESA	GER	NEO	DESPA
센서타입	Across	Across	Along	across	2D CCD	Across
촬영고도	2500m/ 5000m		3.5-10km			
밴드수	128	79	VNIR 114 SWIR 199	152 (TIR 12band)	160	128
밴드폭	20nm	15-45nm	5–8nm VNIR, 5–10nm SWIR	8-32nm	3.7nm	12-25nm
파장범위	400-2500 nm	400-12300	VNIR 380–970nm SWIR 940–2500 nm	430-12500	400-1000	800-3200
SNR	10		_	150 VNIR 300 SWIR	17	
공간해상 도	2.0mg	3-20m	2-30m	1.25–5 mrad	0.18mrad across, 0.36mrad along	3.3–11.7 mrad
주사폭/ FOV	60°	52°	28°	89°	17°	

(3) 위성 탑재 초분광 센서

항공기 탑재 센서와 달리 인공위성에서 영상을 공급하는 초분광센서는 많지 않다. 1988년 소형위성에 탑재되었던 HSI (Hyperspectral Imager)는 위성의 실패로 끝났으며, 2000년에 비로소 지구궤도에서 초분광 영상을 얻 을 수 있게 되었다. 2001년부터 미국 항공우주국의 소형위성을 이용한 지 구관측사업의 하나로 발사된 EO-1위성에 탑재된 Hyperion 센서로부터 초
분광 영상이 공급되고 있으나, 실험위성의 특성상 영상촬영이 주기적으로 이루어지지 않고 있다. 이밖에 유럽우주국에서 2001년 발사한 PROBA 위 성에 CHRIS (Compact High Resolution Imaging Spectrometer) 센서가 탑재되어 초분광 영상을 촬영하고 있으나, 이 역시 실험위성인 관계로 매 우 제한된 영상을 획득하고 있으며 또한 최대 19개 밴드만 촬영이 가능하 므로 완전한 분광반사값을 얻기 어렵다. 미 국방부에서 2000년 군사목적으 로 MightvSAT 2.1위성에 발사한 FTHSI (Fourier Transform Hyperspectral Imaging) 센서가 탑재되어 약 145개 밴드의 영상을 촬영하 고 있으나, 군용이므로 일반에 공급이 극히 제한되어 있다. 이밖에도 미국 과 유럽에서 민간 및 군사 목적의 초분광 위성영상 획득을 위한 프로그램 을 준비하고 있으며 향후 초분광 위성영상의 공급이 확대될 전망이다. 영 상 촬영이나 공급이 제한되어 있는 CHRIS나 FTHSI와 달리 Hyperion는 비록 주기적인 촬영은 아니지만, 지구 전 지역을 대상으로 공급되는 유일 한 초분광 위성영상이라고 할 수 있다. Hyperion이 탑재된 EO-1위성은 Landsat 7호 위성과 동일 궤도에서 약 1분 차이로 영상을 촬영하고 있다. 약 350~2500nm 파장구간에서 모두 242개 밴드 영상이 촬영되며, 각 밴드 는 약 10nm의 파장폭을 가지고 있다. AVIRIS와 같은 항공기탑재 초분광 영상과 달리 Hyperion영상은 상대적 신호대잡음비(SNR)가 떨어지기 때문 에 영상의 질이 상대적으로 낮다고 할 수 있다. Hyperion영상은 전 세계적 으로 공급되는 유일한 위성탑재 초분광 영상으로서 자료처리 및 여러 분야 의 활용을 위한 연구에 많이 사용되고 있다. 특히 동일 궤도에서 얻어지는 Landsat ETM+나 EO-1위성에 함께 탑재된 ALI와 같은 다중분광 영상과 Hyperion영상을 비교하여 초분광 영상의 높은 분광해상도의 효과를 비교 분석하는 연구가 발표되고 있다.

센서명 구분	Hyperion	CHRIS	FTHSI	COIS	AIRS	IASI
탑재체	EO-1	PROBA	MightySATI I.1	NEMO	Aqua	METOP
발사 주체	NASA	ESA (European Space Agency)	Air Force	US Navy	NASA	CNES
센서 타입	along	along/across	along	-	-	-
발사 날짜	2000/11/21	2001/10	2000/07/19	Mid-2000	2002/05/04	2006/10/19
촬영 고도	705km	600km	575km	605km	705.3km	
밴드수	242	82	146	210	2378	8461
밴드폭 (nm)	10	6-33	-	10	·R	
파장 범위 (nm)	350-2500	410-1050	475-1050	400-2500	3740-15400	3620-15500
파장폭 (km)	7.75	4	7.5-30	30	1650	2200
SNR	161(550nm) 147(700nm) 110(1125m) 40(2125nm)	200:1	<u> </u>	>200	-	_
공간 해상도	30m	18m,36m	30m	30m,60m	13.51km, 2.31km, 1km	1km, 25km
주사폭 /FOV	7.5×100km	14×14km	3 degrees	2.86 degrees	1.1 degrees	12
기타			군사용으로 개발 영상구입 불가	해군과 민간 사용으로 개발	장기적인 기후 변동에 따른 영향 관찰적합	대기의 온도와 습도 연직 분포관측

표 3. 위성 탑재 초분광센서의 종류

 (a) Hyperion
 (b) CHRIS
 (c) FTHSI

 <그림 8> 위성 탑재 초분광 센서

2.3. 항공 수심측량 시스템을 이용한 수심측량 원리

가. 측정 원리

항공 수심 측량 시스템은 육상측량용과 거의 동일한 하드웨어 장비로 구 성되어 항공기에서 운용되지만 수심을 투과하여 해저면을 측정한다는 특징 을 가진다. 수심 50m까지 투과하여 해저면의 지형을 측량할 수 있는 항공 수심측량 시스템(Airborne Bathymetry LiDAR System)의 상용화로 인하 여 기존 암초나 산호, 각종 어군망 등으로 인하여 수심측량이 불가능하였 던 연안 해역에 대하여 수심측량이 가능해졌다.

항공 수심측량 시스템의 경우 항공기를 사용함으로써 해면과 해저면의 동시관측이 가능하다. 즉, 파장이 다른 2개의 레이저를 발사하여 해면과 해 저면의 직각방향에 각각 반사된 레이저의 왕복 시간을 기록하여 거리를 산 출한다. 측량 원리상 대기중과 수중이라는 다른 2개의 층을 레이저 광이 통과하기 위해 각각의 층에 다른 광속(위상속도)으로 발사하여야 한다. 여 기서 그 경계면을 통과할 때 광속이 크게 변화하기 때문에 레이저 광의 굴절 현상이 발생하게 되며, 이와 같은 물리현상을 고려하여야 한다. 따라서 항공 수심측량 시스템은 지상라이다 측량에 사용하고 있는 것과 동일한 레이저인 근적외 레이저 파장뿐만 아니라 고주파수인 녹색 레이저 파를 추가로 사용하 여 해저면을 탐지하는 것이다.

<그림 9> 항공 수심측량 시스템의 레이저파 반사

항공기에서 발사된 레이저광 중 근적외 레이저빔(파장대 1064nm)은 대부

분이 해면에서 산란되고 일부가 수신기로 반사되어 돌아오며, 녹색 레이저 펄스 빔(파장대 532nm)은 해면과 수중을 투과하여 해저면에서 반사, 산란하 여 수신기로 돌아온다. 이 두 개 파의 왕복시간과 대기 및 수중에서의 광속 의 차이를 고려한 시간차로부터 해면의 위치와 수심을 구한다.

항공 수심측량 장비로부터 발사된 레이저파 중에서 근적외파는 해면에서 반사되어 되돌아오고, 해면에 도달한 근적외 레이저파는 해수 중에서 수 cm정도는 투과하지만 대부분은 해면에서 산란된다. 이중 후방 산란된 일 부가 수신기로 되돌아온다. 해면에 도달한 녹색 레이저 파는 수면에서 굴 절된 후 수중을 투과하여 해저면에 도달한다. 해저면에 도달한 녹색 레이 저 파는 해저면에서 반사·산란되어 그 중 일부가 입사경로와 동일한 경로 를 따라 수신기 센서에 도달하며, 그 왕복시간을 이용하여 해저면의 지형 을 결정한다.

<그림 10> 항공 수심측량의 원리

<그림 10>에서 레이저 발사장치로부터 해저반사점까지의 레이저 파의 거리를 Rb로 하고, 수중에서 굴절율(대기중 레이저의 위상속도와 수중 레 이저의 위상속도비)을 n, 수중에서 레이저파의 길이 nr이기 때문에 Rb = R+nr이 되고, 레이저 파의 왕복시간 t를 사용하면, Rb = C×t로 만족 한다. 스넬(Snell)의 규칙에 따라,

$$n = \frac{\sin\phi}{\sin\theta} \tag{(4) 2}$$

여기서, 수중에서의 광속의 저하에 따라 Depend bias를 ϵ_d 라 하면,

$$R_{b} = (H-h) \sec \phi + n \times (D+h+\epsilon_{d}) \sec \phi \qquad (43)$$

이를 변형하면, 수심 D는

$$D = \frac{R_b - Hsec\phi}{nsec\theta} - \epsilon_d - h[1 - \frac{\sec\phi}{nsec\theta}] \tag{(A) 4}$$

여기서, 우변 제3항은 파랑의 효과로 볼 수 있다. 레이저 파는 파랑의 어 느 위치에 있다고 가정하면, 파랑성분 Δh는

$$\Delta h = h \left[1 - \frac{\sec \phi}{n \sec \theta} \right] \le \frac{h}{4} \tag{(4) 5}$$

가 된다. 또한 $-h_{\max} \le h \le h_{\max}$ 되고, 정의에 따라 $h_{\max} = \frac{1}{2}$ 파고가 된다. 따라서 항공 수심측량에 있어서 파랑이 작은 잔잔한 바다에서 실시하는 것

- 29 -

이 바람직하다.

나. 위치결정 원리

항공 수심측량 시스템의 위치와 자세를 정확히 재현하는 것은 측량성과 의 품질을 높이기 위하여 매우 중요한 요소로 GPS에 의한 위치정보와 항 공기의 자세정보를 조합하여 수심측량기의 위치와 자세를 구하는 방법이 채용되고 있다.

항공 수심측량은 기본적으로 파랑과 조석 등에 의해 높이가 변화하는 해 면상공을 비행하여 측량하기 때문에 항공사진측량과 같이 대공표식을 설치 하는 등의 방법을 채용하는 것이 어렵기 때문이다.

항공 수심측량에서 GPS에 의한 이동체의 위치 결정은 단독측위도 가능 하지만 그 위치의 정도가 약 10m의 정도로 측량 데이터로 사용하기에는 충분하지 않다. 따라서 일반적으로 기지 고정점에 설치한 GPS 기준국으로 부터 획득한 보정 데이터를 사용하여 위치를 결정하는 DGPS법이 사용 된 다.

DGPS법에는 라디오 비콘을 사용하는 방법과 세계적인 위성통신을 이용 하는 방법이 있다. 항공 수심측량 시스템에서는 라디오 비콘 보정정보를 수신하여 측위 데이터를 보정할 수 있다. 한편으로 위성통신을 이용한 전 세계적인 DGPS 보정정보 시스템인 FUGRO OmniSTAR사 보정신호도 수 신이 가능하다.

항공 수심측량 시스템에는 GPS 수신기 외에 기체의 Roll, Pitch, Heading 등의 자세정보를 계측하는 INS 시스템의 탑재가 필요하다. INS 시스템은 관성 Motion 센서를 이용하여 선형 가속도와 각속도 측정이 가 능하다. 일반적으로 INS는 GPS 수신기와 일체화 된 GPS/INS 시스템으로 운용되어 위치와 자세의 정보를 통합 처리할 수 있다. 따라서 선형 가속도 와 각속도, GPS에 의한 위치와 운항속도를 융합함으로써 이동체의 위치와 자세를 고정도로 구하는 것이 가능해진다.

항공 수심측량 자료로부터 수심을 결정하기 위해서 수직기준면과 타원체 고 간의 관계 정립이 필요하다. <그림 11>과 같이 세계측지계의 기준이 되는 타원체(WGS-84)와 수직기준면을 연관 지을 수 있다. 항공 수심측량 기시스템으로 측량함으로써 타원체에 대한 광원의 고도(A), 광원으로부터 의 해면까지의 경사거리(R), 평균해면으로부터 광원까지의 높이(H), 해저로 부터 광원의 높이(B), 대기중에서 빔의 각도(θ)(타원체의 연직방향으로부 터), 수중에서의 빔의 각도(φ), 평균해면으로부터의 육지높이(P), 평균수면 으로부터의 측정한 해저까지의 깊이(D)가 구해지며, 타원체로부터 최저수 면까지의 높이(T)는 조석관측을 통해 수직기준면을 결정할 수 있다.

<그림 11> WGS84와 수직기준면과의 관계

항공 수심측량 시스템은 DGPS를 사용하여 WGS84 좌표계를 기준으로 하므로 다음의 절차를 통해 해저면의 절대적인 위치를 결정할 수 있다. ① WGS84 좌표계에 의한 광원(레이저 스캐너)(A)의 xyz좌표 결정

② 펄스 등의 해면반사 및 굴절점(S)의 좌표 결정

③ S점에 있어 심도(D)로부터 WGS84 좌표계에 의한 해저(C)의 좌표결정

이를 통해 해저(C)의 WGS84 xyz 좌표를 구할 수 있다. 따라서 측량 해 역부근의 수직기준점과 WGS84 좌표계와의 관계가 사전에 조사되면, 항공 기의 위치와 조위의 연동에 무관하게 해도제작에 필요한 수심데이터를 얻 을 수 있다.

다. 스캐닝(Scanning)

항공 수심측량 시스템은 크게 횡방향 직선형 스캔 패턴(반사경의 기계적 거동에 따른 빔스캐닝(스캔폭은 비행고도의 1/2 정도))과 준원호형 스캔 패 턴으로 나눌 수 있다.

위 <그림 12>는 준원호형 스캔 패턴을 채용하고 있는 SHOALS 항공 수심측량 시스템의 스캔 패턴을 나타낸다. SHOALS 시스템은 준원호형 주 사법으로 미러의 주향축과 평행조작용의 보간축을 갖는 2축 주사기구로 되 어 있다. 이것에 의하여 평행하게 주사하여 데이터의 공간밀도를 일정하게 보존 할 수 있다. 또 회전축에 대하여 점점 기울어진 미러를 회전하게 함 으로서, 해면으로의 입사각이 일정하게 된다. 준원호형 스캔 패턴에서는 위 와 같이 일정한 입사각을 보존할 수 있기 때문에, 굴절효과의 해석이 용이 하지만, 측정축을 변화시키는 것은 곤란하다. 한편 횡방향 직선형 스캔 패 턴으로는 주사각도에 따라 입사각이 변하기 때문에, 굴절각이 항상 변함에 따라 굴절효과의 해석이 어렵지만, 측정축을 변화시키는 것은 용이하다.

라. 신호데이터

수심측량시스템에서 조사된 레이저 펄스는 근적외선 펄스가 해면, 녹색 펄스가 해저에 각각 반사되어 수신기로 되돌아온다. 이 경우, 레이저의 spot 사이즈와 산란 등의 효과에 따라 펄스 내부 각각 광자의 왕복시간에 는 차이가 발생한다. 이 때문에 수신파의 에너지 강도는 일반적으로 시간 축에 대하여 가우스 분포의 형태가 조합된 모습이 된다.

<그림 13>은 전형적인 녹색 레이저광의 파형을 표시하고 있다. 횡축은 시간축을 나타내고, 종축은 센서에 수신된 녹색 레이저 에너지의 강도를 나타내고 있다. 전형적인 파형에 있어서는 해면반사와 해저반사의 peak 및 수중 등으로부터의 후방산란광이 첨가된 형태를 가진다. 항공 수심측량 시 스템에서는 이 해저반사파의 peak의 위치를 사용하여, 해저의 위치를 결정 한다.

항공 수심측량 시스템은 명료한 반사파 모습이 얻어질 수 있도록, 수신 방식이 다른 2개의 녹색 레이저 펄스를 사용하는 채널(천해용과 심해용)을 가지고 있다. 또한, 필터를 사용하여 보다 해저반사파가 명확히 되도록 하 는 연구도 수행되고 있다.

또한, 레이저 펄스가 발사된 시각(t₀)과 해면 및 해저로부터 반사 신호를 수신한 시각 ts, tb를 계측하여 심도를 구한다. 즉 t_s와 t_b 시간차 Δt의 함 수로 심도가 계산된다. 따라서, 광폭인 반사파형의 어느 위치에서 시작되는 가에 따라 얻은 심도와 그 정도가 변하게 된다. 항공 수심측량 시스템에서

- 34 -

는 해면과 해저 각각의 반사파형의 최고점(E_{max})을 계산하여 그의 반(1/2) 에 해당하는 0.5 E_{max}의 위치에 해당하는 시간차를 계산한다.

2.4. 항공 초분광 영상을 이용한 재질 분류 원리

지구는 식생, 토양, 물 등 다양한 피복으로 이루어져있으며, 지표물들은 <그림 14>와 같이 각자 고유의 분광반사특성을 가지고 있다. 고유의 분광 반사특성은 지표물의 물리/화학적 구성에 따라 변화한다.

<그림 14> 토양, 식생, 수체의 분광반사특성

식생은 지구 육지의 약 70%를 차지하고 있으며, 식생표면에 도달한 태 양광 중 가시광선구간(350~800nm)의 에너지는 잎에 분포한 엽록소 및 기 타 색소에 의해 대부분 흡수되어 낮은 반사율을 나타내고 근적외선 구간 (700~1200nm)에서는 약 70%의 강한 분광반사율을 보인다. 이는 잎의 세 포벽과 세포 간 공기에서 발생하는 내부 산란 효과로 식생의 건강이 좋을 수록 높은 반사율을 나타내고 건강상태를 구분할 수 있다. 토양은 지구상 에 물과 식생을 제외한 지표의 26%를 차지하고 있으며, 물, 바람 등에 의 해 지속적으로 풍화, 침식, 퇴적되고 구성성분의 종류, 입자크기, 수분함량 에 의해 반사특성이 변화한다. 특히, 토양조직, 수분함량, 유기물함량, 산화 철 함량, 표면의 거칠기에 따라 분광특성이 달라진다.

<그림 16> 수분함량에 따른 토양의 반사특성 차이

인공물의 반사특성은 재질의 종류에 따라 다른 반사특성을 보이며 일반 적으로 콘크리트 도로와 자갈 도로의 경우 높은 반사율을 보이며 주차장과 같이 아스팔트로 구성되어 있는 인공물은 낮은 반사율을 보인다. 자갈도로 는 다양한 광물로 구성되어 있고 광물별로 규산염과 탄산염은 2200nm, 산 화철은 520, 670, 870nm에서 빛의 흡수가 강하게 나타나며, 아스팔트도로 는 암석 및 다양한 화학성분(타르, 오일, 기타 탄산염), 광물질(이산화규소, 산화칼슘, 산화마그네슘)등으로 구성되어 있고, 전체적으로 낮은 반사율 패 턴을 보인다. 주차장은 아스팔트, 타르, 방수제로 구성되어 있고 전체적으 로 가장 낮은 반사율을 보이며, 구성성분에 있어 주요 광물이 없어 특정 흡수 특성이 나타나지 않는다. 콘크리트 도로는 시멘트, 자갈, 물, 기타성분 으로 구성되며 전체적으로 높은 반사율을 나타내고 특히 중적외선에서 탄 산칼슘에 의한 흡수현상이 발생하여, 방해석(2300nm), 백운석(2370nm)의 흡수 특성이 나타난다.

아스팔트 도로는 시간의 흐름에 따라 대기 중 산소, 태양, 열에 의한 영 향으로 도로 안에 있던 오일, 타르의 손실이 발생하고, 도로 표면에 먼지 및 오물 등이 쌓이게 된다. 이로 인해 오래 사용한 도로는 태양광의 흡수 율이 낮아져 파장 전 구역에서 새로 포장한 아스팔트 도로에 비해 높은 반 사율을 보이게 된다. Herold et al.(2004)의 연구에서 새로 포장한 아스팔트 도로의 경우 전체적으로 낮은 반사율을 보이며, 2100nm를 중심으로 약간 증가하는 패턴을 보이며, 새로 포장한 아스팔트 도로와 오래된 아스팔트 도로의 반사율은 근적외선과 중적외선에서 최대 14%의 반사율 차이를 보 인다.

인다. 따라서 수체 내에서 청색 파장영역이 다른 파장의 광들보다 투과율 이 높다. 근적외선 이후 파장영역에서는 수심이 깊고 순수한 수체로 입사 된 전자기에너지의 대부분이 흡수된다. 따라서, 물은 청색(400~500nm) 영 역에서의 높은 반사율로 인해 파랗게 보인다. 그러나 해수의 경우 조류를 포함하고 있어 녹색파장(500~600nm)에서 높은 반사율을 보인다. 또한 조 류와 부유물질의 농도가 높은 해수의 경우 700nm 부근의 적색파장에서도 반사율이 높아져 피크가 발생한다.

<그림 19> 수체의 분광반사곡선

2.5. 탐지 알고리즘의 분류 및 특징

현재까지 개발된 표적탐지알고리즘은 크게 분광반사율(또는 화소값)을 이용하는 알고리즘과 분광반사율과 형태학적 특성을 동시에 이용하는 알고 리즘으로 나눌 수 있다. 분광반사율을 이용하는 알고리즘은 다시 분광학적 거리 측정법(Spectral Distance Measure), 2차 통계값 기반 측정법(2nd Order Statistics-Based Measure or Stochastic Measure), 분광 특징 정합 법(Spectral Feature Matching)으로 나눌 수 있다.

분광학적 거리 측정법은 가장 기초적인 표적탐지 알고리즘으로 이미 알 려진 기준 분광반사곡선(Reference Spectrum)과 각 화소의 분광반사율(또 는 화소값)의 차를 이용한다. 대표적인 알고리즘으로는 유클리드 거리 (Euclidean Distance: ED), 분광각 측정법(Spectral Angle Mapper: SAM) 등이 있다. 2차 통계값 기반 측정법은 영상(배경)의 공분산 또는 상관계수 행렬과 기준 분광반사곡선 그리고 각 화소의 분광반사율의 관계를 이용한 다. 대표적인알고리즘으로는 마할라노비스 거리(Mahalanobis Distance: MD), 정합필터(Matched Filter: MF), 우도비(Likelihood Ratio: LR) 등이 있다. 분광 특징 정합법은 기준 분광반사곡선과 각 화소의 분광반사곡선의 분광특성(패턴)을 비교하며, 대표적인 알고리즘으로는 이전부호화(Binary Encoding: BE), 분광특징정합(Spectral Feature Fitting: SFF) 등이 있다. 표 4는 분광반사율을 기반으로 하는 기존 표적탐지 알고리즘의 종류를 분 류하고, 초분광 영상을 이용한 표적탐지에 주로 사용되고 있는 대표적인 알고리즘과 그 수식을 보여주고 있다.

Туре	Algorithm	Formula
	Euclidean Distance	$\sum_{i=1}^{N} t_i - t_i $
	(ED)	$\sum_{n=1}^{n} t_n - T_n $
	Tchebyshev	$\max_{x \in \mathcal{A}} \{ t - r \}$
Spectral	Distance (TD)	$\max_{1 \le n \le N} \iota_n - \iota_n f$
Distance Measure	Spectral Angle Mapper (SAM)	$\cos^{-1}\left(\frac{\sum_{n=1}^{N} t_n r_n}{\left(\sum_{n=1}^{N} t_n^2\right)^{\frac{1}{2}} \left(\sum_{n=1}^{N} r_n^2\right)^{\frac{1}{2}}}\right)$
	Mahalanobis	$(t-r)^T \Gamma^{-1}(t-r)$
	Distance (MD)	
	Matched Filter	$(t-\mu_b)^T \Gamma^{-1}(r-\mu_b)$
	(MF)	$(r-\mu_b)^T \varGamma^{-1}(r-\mu_b)$
	Adaptive Matched	$t^T \Gamma^{-1} r$
2nd Order	Filter (AMF)	$\overline{r^T \Gamma^{-1} r}$
Statistics-based Measure (Stochastic Measure)	Constrained Energy Minimization (CEM)	$\frac{t^T R_t^{-1} r}{r^T R_t^{-1} r}$
	Likelihood Ratio	$-\frac{1}{2}\log \Gamma - \left[\frac{1}{2}(t-r)^{T}\Gamma^{-1}(t-r)\right]$
	(LR)	$2^{\log_e 1} \left[2^{(e-r)+1} (e-r) \right]$
	Adaptive Coherence Estimator (ACE)	$\frac{(r^T \Gamma^{-1} t)^2}{(r^T \Gamma^{-1} r)(t^T \Gamma^{-1} t)}$
	Binary Encoding	① If $t(n) \ge T$ then $h(n) = 1$
	(BE)	② Ratio of matched code
		$h(n) \ge \text{threshold}$
Spectral Feature		① Continuum removal
Matching	Spectral Feature	(2) Relative absorption band width and
	Fitting (SFF)	depth from continuum
		(3) Calculation of matching ratio and
		RMSE by least square fitting for (2)
where, t_n · refi	ectance of test pixe	as at band n, r_n . reflectance of reference
spectrum at band	d n, N : number of	f bands, t : test pixel spectrum, r : (mean)
reference spectrum	m, μ_b : mean spect	rum of background or image, \varGamma : covariance
matrix, R : corre	lation matrix, $h(n)$:	spectral pattern (binary code)

표 4. 분광반사율을 이용하는 표적탐지 알고리즘의 분류 및 수식

Ⅲ. 연구 지역 및 자료

3.1. 연구 지역

항공 초분광 영상과 항공 수심측량 자료를 이용한 해저 암반 탐지 실험 은 강원도 사천진항에서 경포해수욕장 일대의 연안의 약 5.5km x 2km의 해역을 대상으로 진행하였다. 연구 지역의 해역은 비교적 탁도가 낮고 해 저 재질이 주로 모래와 암반으로 이루어져 있으며, 단일 재질인 모래가 전 수심에 고르게 분포하고 있어 본 연구를 진행하기에 적합한 장소라 판단하 였다. 아래 <표 5>는 연구지역을 선정하기 위한 조건을 나타내고 있고, <그림 20>은 이러한 조건을 바탕으로 선정한 연구 지역을 보여주고 있다.

표 5. 연구지역 선정 조건 및 선정 지역의 특성

항목	선정 조건	선정 지역 특성
수심	10m 이상	0-20m
수질 (투명도)	높은 투명도 또는 낮은 탁도	낮은 탁도 (총부유물질 농도 TSS :0.68-0.92 g/m')
해저질 구성	암반 포함 2가지 이상	암반, 모래
해저질 분포	단일 재질이 고른 수심에 분포	모래가 0-20m에 고르게 분포
자료	항공 수심측량 자료와 초분광영상 동시 존재	동시 존재

<그림 20> 연구 지역

3.2. 연구 자료

가. 항공 수심측량 자료

항공수심측량에 투입된 장비는 캐나다 Optech의 CZMIL(Coastal Zone Mapping Imaging LiDAR)로 2013년 9월에 관측하였다. 레이저 주사율은 육상에서 70kHz, 해상에서 10kHz이다. CZMIL 장비는 원형 스캐너로 균질 하지 않은 스캔 패턴을 가지며 원호 스캔 패턴인 SHOALS-3000에 비해서 항공기 양쪽에서의 레이저 주사 결과가 풍부하게 발생한다. 이러한 스캔

패턴은 취득되는 성과의 점밀도에도 영향을 미치며 동일 고도에서 CZMIL 장비의 점밀도가 상대적으로 더 높다.

장 비	항 목	세부 사양
	제 조 사	캐나다 Optech사(社)
	규 격 명	CZMIL
	운영고도	400m
	비행속도	140kts
-	해저 레이저	10 1.11
	반복률	10 KHZ
	육지 레이저	70 1-11-
	반복률	70 KHZ
	해상도	2m×2m nominal
	소 쾨 그나다	20° (fixed off-nadir,
	스캔 식도	circular pattern)
\mathbf{x}	스캔 폭	291m nominal
	게시기 비료	Class 4 laser product
	데이저 군유	(IEC 60825-1 Ed.1.2)

표 6. 항공수심측량장비(CZMIL) 세부 사양

<그림 21> 스캔 패턴 비교

Grid 고도	5×5m		3×3m		2×2m	
	SHOALS- 3000	CZMIL	SHOALS- 3000	CZMIL	SHOALS- 3000	CZMIL
600m	4.42	11.19	1.61	3.73	0.73	1.73
500m	5.30	13.44	1.85	4.42	0.83	2.00
400m	7.13	16.38	2.70	5.59	1.10	2.50
300m	8.38	20.69	2.87	7.96	1.34	3.68
200m	11.30	33.30	4.41	12.00	1.95	5.29

표 7. 고도에 따른 점밀도 비교(SHOALS-3000 vs. CZMIL)

나. 항공 수심측량 자료 전처리

(1) GPS/INS 자료처리

데이터 전처리 단계는 비행에서 취득한 원시 데이터와 지상에 설치된 지 상 GPS 기준국 데이터를 이용해 해저 지형에 대한 3차원 점 데이터 자료 를 얻는 단계를 의미한다. 항공수심측량을 이용하여 얻어진 데이터는 모두 디지털 형태이므로 시스템 내의 하드디스크에 실시간으로 저장된다.

항공기가 착륙한 후 데이터 처리용 컴퓨터에서 디코딩된 자료는 항공레 이저 관련 데이터 및 GPS/INS 데이터가 포함되어 있다. 따라서 기지점에 대한 지상 GPS 기준국 데이터, 센서 간의 이격거리, 시스템 검정 (Calibration)정보를 이용하여 초기의 원시 자료를 산출한다. GPS/INS 데 이터는 항공기 이동 중에 수신된 데이터이므로 좌표 결정을 위해서는 지상 GPS 기준국에서 생성된 데이터와 함께 사용해야 한다. 이 데이터들은 POSPac 소프트웨어를 이용해 DGPS 처리하였다. 이 과정에서 GPS 위성 의 개수 확인, 신호 단절 여부 확인, PDOP 품질관리 등이 이루어진다. INS는 초당 200회의 정보를 산출하며 항공기의 좌표 결정 이후 좌표 정보 와 합쳐져서 측량 당시 항공기의 위치 및 자세를 구한다. 이때 GPS, INS, 레이저 센서 데이터는 시간 정보를 기준으로 통합할 수 있다. 항공수심측 량 자료처리에 이용되는 GPS/INS 성과는 항공기의 위치 및 자세 정보(최 적항적, SBET: Smoothed Best Estimated Trajectory)이며 GPS/INS 처리 후 다음 표 8과 같이 촬영 당시의 위성 개수, PDOP 값, S/W 자체 품질성 과 값, Position Accuracy 등의 성과정확도에 대한 검토를 실시해 정확도 를 평가하였다.

표 8. GPS/INS 성과 처리

(2) 레이저 데이터 처리

GPS/INS 데이터 전처리 과정이 끝나면 항공기의 위치 및 자세정보를 바탕으로 HydroFusion 소프트웨어를 이용해 레이저 데이터를 처리한다. 처리에 앞서 각 단계의 Work flow를 결정한다. 레이저 데이터 처리는 GPS/INS 결과뿐 만 아니라 항공기와 센서 간의 이격거리, 시스템 검정 자 료 등이 필요하다. 이러한 검정 자료는 항공 데이터 검정 결과로 산출한다. 다음으로 여러 비행코스에서 연구 지역에 해당하는 부분을 선정하고 작업 영역 설정, 투영방법의 설정 단계를 수행한다. 본 연구는 WGS84 타원체를 기준으로 하였으며 UTM 좌표계를 적용하였다.

<그림 22> 데이터 처리 Work flow

<그림 23> 레이저 데이터 처리

(3) 지형자료 분류

(가) 프로젝트 설정 및 노이즈 제거

항공수심측량 데이터는 대용량 데이터이기 때문에 한 번에 로딩 할 수 없다. 따라서 블록 단위로 대상 지역을 구분하고 프로젝트를 설정함으로써 후처리 단계의 작업 효율성을 향상시켰다. 노이즈 데이터 확인 및 제거 또 한 블록 별로 수행하였다.

<그림 25> 노이즈 제거

다. 항공 초분광 영상

사용된 장비는 캐나다 ITRES사의 CASI-1500 모델로 2013년 10월에 촬 영하였다. 이 장비는 380nm~1,050nm의 분광해상도를 가지고 있으며, 최 대 288개의 분광밴드를 취득할 수 있다. CASI-1500 초분광센서는 푸쉬브 룸 스캐너(Pushbroom Scanner)의 라인촬영방식으로써 횡방향의 고정된 라 인으로 촬영 대상지역을 쓸어가듯이 영상을 취득하고, 기하정확도 및 방사 해상도가 우수하며, 분광해상도 및 공간해상도를 유연하게 조절할 수 있는 장점이 있다.

항 목	세부사양	장비사진
분광범위	380~1,050nm	
분광채널	36~288 band	
분광해상도	2.4~9.6nm	
방사분해력	14-bit(16,384:1)	
픽셀개수	1,500 개	
픽셀사이즈	20 x 20 micron	
시야각	40 도	
데이터 저장 속도	10.9 Mpix/sec	

표 9. ITRES사의 CASI-1500 모델사양

표 10. CASI-1500의 고도에 따른 공간해상도와 분광밴드 비교

사양 고도	공간해상도	분광밴드
1,000m	0.5m	24
1,500m	0.75m	36
2,000m	1.0m	48
2,500m	1.25m	48
3,000m	1.5m	72

라. 항공 초분광 영상 전처리

항공 또는 위성 광학 센서를 이용하여 해저면을 관측할 때 센서에 관측 되는 신호는 대기에서 산란된 신호, 수면에서 반사된 신호, 그리고 수중(수 체기둥)에서 반사된 신호, 그리고 수심이 얕은 경우 해저면에서 반사된 신 호로 구성되어 있다. 해저면에서 반사된 신호를 분석하기 위해서는 대기, 수면, 수중에서 반사된 신호를 제거(보정)하는 과정이 필요하다. 따라서 본 연구에서는 대기보정, 수면반사 보정, 수심에 의한 반사율 변이를 보정함으 로써 수중과 해저면에서 반사된 신호를 추출하는 보정과정을 거친다. <그 림 26>은 해저 반사 신호 분석을 위한 보정과정을 보여주고 있다.

<그림 26> 해저신호 분석을 위한 초분광 영상의 전처리 과정

(1) 대기보정

광학 센서가 사용하는 에너지인 전자기에너지(태양광)는 지구표면으로 입사하는 과정과 수출(water-leaving) 복사에너지가 센서로 도달하는 과정 에서 대기에 의한 신호왜곡이 발생한다. Stumpf and Holderied(2003)는 해 색위성인 CZCS와 AVHRR에서 사용하고 있는 대기보정 방법을 고해상도 위성영상에 적용하기 위하여 아래와 같은 대기보정 (식 6)을 이용하였다.

$$\begin{split} R_W &= \frac{\pi L_W(\lambda)}{E_d(\lambda)} \\ R_W &= R_T(\lambda_i) - Y(\lambda_i) R_T(\lambda_{IR}) - R_r(\lambda_i) \end{split} \tag{4} 6$$

 R_W = Water reflectance L_W = Water-leaving radiance E_d = Downwelling irradiance R_T = At-sensor total reflectance Y = Angstrom exponent R_r = Rayleigh reflectance

이 식은 수체의 반사율 (R_W) 은 입사광량 (E_d) 대비 수출복사량 (L_W) 으로 정의하고 있다. 보다 자세히 살펴보면 수체반사율은 센서에 도달한 총 반 사율 (R_T) 에서 대기 및 대기-수면 인접면에서 산란된 파장별 신호량인 Angstrom exponent $(Y(\lambda_i))$ 와 레일리산란 $(R_r(\lambda_i))$ 을 제거함으로서 산출할 수 있다.

본 연구에서 대기보정은 대기 복사전달모델인 MODTRAN을 기반으로 한 ATCOR 소프트웨어를 이용하여 실시하였다. ATCOR는 태양광이 지구 표면으로 입사하는 과정과 수출 복사에너지가 센서로 도달하는 과정에서 발생하는 대기에 의한 신호의 왜곡을 보정한다. 또한 복사전달모델에서 가 장 중요한 요소인 에어로졸 모델을 선택할 수 있는데, 해상의 경우 Maritime 에어로졸 모델을 선택함으로써 대기뿐만 아니라 대기와 수면의 인접면에서 발생하는 왜곡을 보정할 수 있다. <그림 27>은 ATCOR를 이 용하여 연안에 대한 대기보정 모습을 보여주고 있고, <그림 28>은 대기보 정을 위한 입력인자들의 목록 중 일부를 예로 보여주고 있다.

		NOV.	Atmospheric C						
	 Working on ba 	nd 5	MESSAGES			à			
	Working on ba	nd 11	QUIT		_			10	
1		-					1		
<	그림 2	7> A'	TCOF	(를 이	용한	대기보	느정 모	. क्	
Heading(east=90)	그림 2'	7> A'	TCOR	(를 이 544	용한 T(7) 문)	대기보 ^{H(습도)}	민정 모 ^{전해편기업}	습 	Visibility
Heading(east=90) degree	그림 2	7> A' ZE decimal	TCOR SZA deg ree	를 이 SAA degree	용한 T(기운) celcius	대기보 ^{H(숨도)}	신정 모 아해변기안 hPa	습 	Visibility km
Heading(east=90) degree 315	그림 2' 위도 decimal 34.52986	경도 decimal 1264089	SZA degree	SAA degree 142.3	용한 T(7)은) celcius 25.7	대기보 ^{H(숨도)} %	·(해변기안 hPa 1007.6	合 W/m ² 13.64	Visibility km 80
Heading(east=90) degree 315 135	그림 2 decimal 34.52986 34.52986	7> A'	SZA deg nee 13.6 12.9	SAA degree 142.3 150.8	용한 T(7) 윤) celcius 25.7 25.7	대기보 H(순도) % 57 57	·(해변기안 hPa 1007.6	값 (W) (J), (M) (J), (A) (J),	Visibility km 80 80
Heading(east=90) degree 315 135 315	그림 2 dedmai 34.52986 34.52556 34.52556 34.52456	7> A' decimal 1264089 1263778 1264183 12629778	SZA degree 136 129 123	SAA degree 142.3 150.8 158.1	용한 T(7) 문) celcius 25.7 25.7 75.7	버(슬도) % 57 57 57	1007.6 1007.6	W g/㎡ 13.64 13.64 13.64	Visibility km 80 80 425
Heading(east=90) degree 315 135 315 315	그림 2 ⁰ 역도 여 위도 여 위도 (- - - - - - - - - - -	7> A' decimal 1264089 1263778 1264183 12643875 1264349	SZA degree 136 129 128 119	SAA degree 142.3 150.8 158.1 164.8 173.2	용한 T(7) 문) celcius 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7	H(순도) % % 57 57 57 57 57	(해변기안) hPa 1007.6 1007.6 1007.6	G W g/m ² 13.64 13	Visibility km 80 80 50 435 80
Heading(east=90) degree 315 135 315 135 135	그림 2 decimal 34.52986 34.52856 34.53411 34.53423 34.53423 34.534561	7> A' decimal 1264089 1263778 1264183 1263875 1264343 1264343	SZA degree 1366 129 123 119 116	동AA degree 142.8 150.8 158.1 164.8 173.2 180.7	용 한 T(2) 은) celcius 25.7 <td>H(순도) % % 57 57 57 57 57 57</td> <td>·(해변기 안 hPa 1007.6 1007.6 1007.6 1007.3</td> <td>☆ ■/㎡ 13.64 13.64 13.64 13.64 13.64 13.64 13.78</td> <td>Visibility km 80 43.5 80 80 80</td>	H(순도) % % 57 57 57 57 57 57	·(해변기 안 hPa 1007.6 1007.6 1007.6 1007.3	☆ ■/㎡ 13.64 13.64 13.64 13.64 13.64 13.64 13.78	Visibility km 80 43.5 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315	그림 2 decimal 34.52986 34.52451 34.53411 34.53413 34.53431 34.53431 34.54573	7> A' decimal 1264089 1263778 1264375 1264363 1264363 1264363 1264523	5ZA degree 1366 1259 123 119 1166 115 116	SAA degree 142.3 150.8 158.1 164.8 173.2 188	용한 T(7) 문) celcius 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 26.2 26.2 26.2 26.2 26.2 26.2	버(순도) % 57 57 57 57 57 56 56	P(해변기 안) hPa 1007.6 1007.6 1007.6 1007.3 1007.3	WV 9/m ² 13.64 13.64 13.64 13.64 13.64 13.78	Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 180	그림 2 decimal 34.52986 34.52556 34.53441 34.53443 34.54573 34.54673 34.71567	7> A' decimal 1264089 1264778 126483 1264853 1264853 1264853 1264553 1264553	5ZA degree 136 129 123 119 116 115 116 323	SAA degree 142.3 150.8 158.1 164.8 173.2 180.7 100.8 101.5	용 한 celcius 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7	H(순도) % 57 57 57 57 57 57 57 56 66 67	·(해 편기 안) hPa 1007.6 1007.6 1007.6 1007.6 1007.6 1007.3 1007.3 1007.3	₩ 9/m ² 13.64 13.64 13.64 13.64 13.64 13.64 13.78 13.78 15.5	Visibility km 80 50 43.5 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 138 315 138 335	그림 2 de 6 mal 34.52956 34.52556 34.53421 34.53423 34.54561 34.54673 34.71468	7> A' decimal 1264089 1263778 1264383 1264363 12644523 12644523 12634523 1273117	52A degree 136 129 123 119 116 115 116 323 312	SAA degree 1423 150.8 158.1 164.8 173.2 180.7 188. 1012.7	용 한 T(7) 은) celcius 25.7 25.7 25.7 25.7 25.7 26.2 26.2 25.1	H(은도) % 57 57 57 57 56 56 56 56 56	이해 변기 입 hPa 1007.6 1007.6 1007.6 1007.6 1007.3 1007.3 1005.3	₩ g/m ² 13.64 13.64 13.64 13.64 13.64 13.64 13.78 13.78 13.78 13.78 15.5	Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 180 360 180	그림 2 decimal 34,52986 34,52451 34,53411 34,53411 34,53411 34,54673 34,54673 34,71468 34,71468 34,71281	7> A' 25 5 decimal 1264089 1264089 1264383 1264383 1264383 1264523 1264523 1264523 1264523	52A degree 13.6 129 123 119 116 115 116 323 312 302	SAA degree 142.3 158.1 164.8 173.2 188 101.5 102.7	용한 T(7) 문) celcius 25.7 25.7 25.7 25.7 25.7 25.7 26.2 26.2 25.1 25.1	H(순도) % 57 57 57 57 57 56 56 56 56 56 67 67 67	2 ろ 모 (해世7) 21 hPa 1007.6 1007.6 1007.6 1007.6 1007.3 1005.3 1005.3 1005.3	☆ 9/㎡ 13.64 13.64 13.64 13.64 13.64 13.68 13.78 13.78 13.78 15.5 15.5	Visibility km 80 50 4355 80 80 80 20 368 2358
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 180 360 360	그림 2 decimal 34.52986 34.53411 34.53411 34.53411 34.53413 34.53413 34.53413 34.53413 34.71567 34.71567 34.71481 34.71281 34.71281	7> A' decimal 1264089 1263778 1264829 1264823 1264523 1264523 1264523 1264523 1264523 1264523 1264523 1264523 1273559	5ZA degree 136 129 123 119 116 116 323 312 302 291	SAA degree 142.3 158.1 164.8 173.2 188 101.5 102.7 103.8 105.1	8 එ celcius 25.7 25.7 25.7 26.2 26.2 26.2 26.2 25.1 25.1 25.1 25.1	H(순도) % % 57 57 57 57 57 57 57 57 57 57 57 57 57	中(新田フ) 27 トPa 1007.6 1007.6 1007.6 1007.6 1007.6 1007.3 1005.3 1005.3 1005.3 1005.3	w g/m ² 13.64 13.64 13.64 13.64 13.78 13.78 13.78 13.78 15.55 15.55 15.55	Visibility km 80 50 435 80 80 20 368 225 408
Heading(east=90) degree 315 135 315 136 315 136 316 136 316 136 136 136 136 136 136	그림 2 de dmal 34.52986 34.52556 34.53421 34.53423 34.53423 34.53423 34.54561 34.5423 34.71567 34.71667 34.71286	7> A' decimal 1264089 1263778 1264375 1264423 12644523 1264523 1273117 1273247 1273233	52A degree 136 129 123 119 116 115 116 323 312 302 291 281	SAA degree 142.3 1508.8 158.1 164.8 173.2 188.7 1015 102.7 103.8 106.8 106.8	8 रो celcius 25.7 25.7 25.7 25.7 25.7 26.2 26.2 26.2 25.1 25.1 25.1 25.1 25.1 27.1	H(손 도) % 57 57 57 57 57 57 57 57 57 57 57 57 57	P(0) 27 27 hPa 1007.6 1007.6 1007.6 1007.6 1007.3 1007.3 1005.3 1005.3 1005.3 1005.2	w 9/m ⁶ 13.64 13.64 13.64 13.64 13.78 13.55 1555 1555 1555 1555	Visibility km 80 80 43.5 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 180 360 180 360 180 360	그림 2 de dmal 34.52986 34.52986 34.53411 34.528411 34.53423 34.54561 34.54561 34.54561 34.71468 34.71468 34.71281 34.7086 34.70283	7> A' decimal 1264089 1264783 126483 126483 126483 126483 126483 126483 126483 127323 127323 127323 127323 1273305	52A degree 136 123 119 116 115 116 323 312 302 291 281 281 281 281 281	SAA degree 142.3 158.1 164.8 173.2 180.7 188 101.5 102.7 108.8 102.7 108.8 107.8 107.8	१(२) ८२) १(२) ८२) celcius 25.7 25.7 25.7 25.7 25.7 25.1 25.1 25.1 25.1 25.1 25.1 27.1	H(순도) % 57 57 57 57 57 57 57 57 57 57 57 57 57	中 (研 世 7) 空 hPa 1007.6 1007.6 1007.6 1007.6 1007.3 1005.3 1005.3 1005.3 1005.3 1005.3 1005.2 1005.2	W 9/m ³ 13.64 13.64 13.64 13.64 13.64 13.64 13.68 13.68 13.58 15.5 15.5 15.5 15.5 15.5 15.5	Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 1380 360 180 360 180 360 180	그림 2 위도 dedmal 34,52986 34,52586 34,53411 34,53411 34,53411 34,53411 34,53411 34,53411 34,53411 34,53411 34,53451 34,53451 34,53451 34,53451 34,71281 34,70281 34,70283 34,70283	7> A' 25 E decimal 1264089 1263778 1264383 1264383 1264523 1264523 1264523 1264523 1273559 1273255 1273559 1273055 1272676	52A degree 136 129 123 119 116 116 323 312 302 291 281 269 259	SAA degree 142.3 158.1 164.8 173.2 158.1 164.8 101.5 102.7 108.8 105.1 106.3 107.8 107.8 107.8 107.8 107.8	२८ २८ १८/२ २८ २८	H(순도) % 57 57 57 57 57 56 56 56 56 56 56 56 56 58 58 58 58	2 3 P (dt @ 7) 21 hPa 1007.6 1007.6 1007.6 1007.3 1005.3 1005.3 1005.3 1005.3 1005.3 1005.2 1005.2	w g/m ² 13.64 13.64 13.64 13.64 13.64 13.64 13.78 13.78 13.78 155 155 155 155 155	Visibility km 80 50 43.5 80 80 20 368 335 40.8 34 831 23.5 40.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36
Heading(east=90) degree 315 135 315 135 315 135 315 180 360 180 360 180 360 180 360	그림 2 위도 decimal 34.52986 34.52586 34.52556 34.53411 34.53411 34.53413 34.53413 34.53453 34.7567 34.71667 34.71086 34.70853 34.70073 34.70853 34.70074 34.70075 34.70075 34.70075 34.70075 34.70075 34.7007	7> A' decimal 1264089 1263778 1264783 1264523 1264523 1264523 127317 1273247 1273247 1273239 1273339 1273055 1272676 1272676 1272892	5ZA degree 1366 129 123 119 116 323 312 302 291 281 281 281 281 285 295 248	SAA degree 142.3 150.8 1558.1 164.8 173.2 180.7 188.1 101.5 102.7 103.8 107.8 106.3 107.8 105.3 107.8 109.3 111	२८ २८ T(7) २) २८ celcius २८ २८ <td>H(손 또) % 57 57 57 57 57 57 57 57 57 57 57 57 57</td> <td>P(#) E7 [27] hPa 1007.6 1007.6 1007.6 1007.6 1007.6 1007.3 1005.3 1005.2 1005.2</td> <td>W 9/m² 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.55 155 155 155 155 155 155 155</td> <td>Visibility km 80 80 435 80 80 20 235 80 235 82 82 88 235 82 88 88 235 88 88 235 86 88 235 86 88 235 86 88 235 86 86 86 86 86 86 86 86 86 86 86 86 86</td>	H(손 또) % 57 57 57 57 57 57 57 57 57 57 57 57 57	P(#) E7 [27] hPa 1007.6 1007.6 1007.6 1007.6 1007.6 1007.3 1005.3 1005.2 1005.2	W 9/m ² 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.55 155 155 155 155 155 155 155	Visibility km 80 80 435 80 80 20 235 80 235 82 82 88 235 82 88 88 235 88 88 235 86 88 235 86 88 235 86 88 235 86 86 86 86 86 86 86 86 86 86 86 86 86
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 180 360 180 360 180 360 180 360 180	그림 2 de 6 mal 34.52986 34.52856 34.5343 34.5343 34.54561 34.54661 34.54661 34.71468 34.71281 34.7028 34.71281 34.7028 34.7023 34.70273 34.70173 34.70173	7> A' decimal 1264089 1264783 1264363 1264363 1264523 1264523 1273117 1273223 1273275 1273259 1273259 1273259 1273055 1272676 1272821	52A degree 136 129 123 119 116 115 116 323 312 291 281 281 281 281 281 281 281 281 281 28	SAA degree 1423 1581 164.8 1732 188 101.5 102.7 103.8 107.8 111 112.9	२८ २८ १८ २८ २८	H(손도) 9% 57 57 57 57 56 56 56 67 67 67 67 67 67 58 58 58 58 58 58	P(# 世7) 21 hPa 1007.6 1007.6 1007.6 1007.6 1007.3 1007.3 1005.3 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2	W g/m ² 13.64 13.64 13.64 13.64 13.64 13.78 13.78 13.78 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.	Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 1360 180 360 180 360 180 360 180 360 180 360	그림 2 46 dimal 34 52986 34 52411 34 52556 34 53411 34 55143 34 54673 34 54673 34 57468 34 71281 34 57468 34 71281 34 70233 34 70233 34 702572 34 70572 34 70572 34 70572 34 70572 34 70572	7> A' decimal 1264089 1264089 1264483 1264483 1264483 1264453 126453 127359 127359 127355 1272676 1272892 1272892 1272892 1272892	SZA degree 136 129 123 119 116 115 116 323 312 302 291 281 269 259 248 2366 226	SAA degree 1423 1581 1581 1581 1581 1648 1732 1807 188 1015 1027 1088 1051 1027 1088 1078 1078 1073 111 1125% 1147	१८/२ ८२ १८/२ ८२ २२२ २२२ २२२ २२ २२	H(순도) % 57 57 57 57 57 57 57 57 57 57 57 57 57	- - - - - - - - - -	W g/m ³ 13.64 13.64 13.64 13.64 13.64 13.68 13.78 13.78 13.78 15.5	Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 180 360 180 360 180 360 180 360 180 360 180 360 180	그림 2 위도 decimal 34.52986 34.52556 34.53411 34.53431 34.53431 34.53431 34.53431 34.53453 34.71567 34.71265 34.71281 34.70233 34.70233 34.70233 34.70233 34.70273 34.70255 34.70255 34.705	7> A' decimal 1264089 1263778 1264789 1263778 1264523 1264523 1264523 1264523 1264523 127317 1273329 1273278 1273339 1273005 1272676 1272892 1272781	SZA degree 1366 129 123 119 116 323 312 302 291 281 281 281 281 281 281 281 281 281 28	SAA degree 142.3 150.8 158.1 164.8 173.2 180.7 188. 101.5 102.7 103.8 107.8 105.3 107.8 105.3 107.8 105.3 111 112.9 114.7 116.7	स्केट T(7) (2) celcius 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.1 25.1 25.1 25.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1	H(순도) % 577 577 577 576 576 577 577 577 577 577	P(#) E7 [27] hPa 1007.6 1007.6 1007.6 1007.6 1007.3 1007.3 1005.3 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2	₩ 9/m ² 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.65 155 155 155 155 155 155 155 155 155 1	Visibility km 80 80 435 80 80 20 235 80 235 235 235 235 235 868 2279 3668 2279 3668 2279
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 180 360 180 360 180 360 180 360 180 360 180 360	그림 2 de 6 mal 34.52956 34.52556 34.53431 34.53423 34.54561 34.54661 34.54661 34.71468 34.71281 34.71281 34.71281 34.71283 34.7023 34.7023 34.7023 34.70173 34.70572 34.71456 34.701308	7> A' decimal 1264089 1263778 1263778 1263778 1264363 12644523 12644523 12644523 1273117 1273247 1273259 1273055 1272676 1272676 1272282 1272781 1272259 12722781 1272259	SZA degree 136 129 123 119 116 115 116 323 312 302 291 281 269 259 248 236 226 226 226 226 226 226 226	SAA degree 142.3 150.8 158.1 164.8 173.2 188 102.7 103.8 107.8 111 112.9 114.7 115	२८ २८ १८ २८ २८	버(손 도) 9% 57 57 57 57 57 56 56 67 67 67 67 67 67 58 58 58 58 58 58 58 58 58 58 58 58 58	P(01 世7) 27 hP3 1007.6 1007.6 1007.6 1007.6 1007.6 1007.6 1007.3 1005.3 1005.3 1005.3 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2	W 9/m ⁶ 13.64 13.64 13.64 13.64 13.64 13.64 13.78 15.5	Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315 1360 360 180 360 180 360 180 360 180 360 180 360 180 360 180	그림 2 위도 dedmal 34.52986 34.53411 34.52586 34.53411 34.52586 34.53411 34.52586 34.52586 34.52586 34.52586 34.52587 34.71458 34.71281 34.70572 34.70	7> A' decimal 1264089 1264089 1264783 1264483 1264483 1264483 1264523 127381 1273859 1273859 1273859 1273859 1273859 1273859 1272892 1272892 1272892 1272892 1272892 1272781 1272289 1272789 1277789 177789 177789 177789 177789 177789 177789 177789 177789 177789 17	52A degree 136 129 123 119 116 115 116 323 312 2302 291 285 248 2366 226 248 236 226 216 226 216 216	SAA degree 1423 1581 1581 1648 1732 1807 188 1015 1027 1088 1078 10125 11427 1167 119 1215	1(7) 8) celcius 25.7 25.7 25.7 25.7 25.7 25.1 2511 2511 2511 2711	H(순도) % 57 57 57 57 57 56 56 56 56 56 56 56 56 56 56 56 56 56	P(# 世 7) 27 hPa 1007.6 1007.6 1007.6 1007.6 1007.6 1007.3 1007.3 1005.3 1005.3 1005.2	W 9/m ³ 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.68 15.5	Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315 180 360 180 360 180 360 180 360 180 360 180 360 180 360 180 360	그림 2 역년도 성용 22556 34.52556 34.53411 34.53411 34.53411 34.53411 34.53411 34.53411 34.53411 34.53411 34.53411 34.71667 34.71281 34.70233 34.70233 34.70253 34.70253 34.70253 34.70263 34.70263 34.70263 34.70263 34.70263 34.70263 34.70263 34.70263 34.70273 34.70263 34.70263 34.70273 34.70263 34.70273 34.70263 34.70273 34.70263 34.70273 34.70263 34.70273 34.70273 34.70263 34.70273 34.70273 34.70263 34.70273 34.70273 34.70273 34.70273 34.70273 34.70273 34.70265 34.70273 34.70275 34.70275 34.70275 34.70275 34.70275 34.	7> A' decimal 1264089 1263778 1264788 1264788 1264788 1264523 1264523 127317 1273329 1273329 1273329 1272872 127287	SZA degree 136 129 123 119 116 323 312 302 291 281 281 281 281 281 281 281 281 281 28	SAA degree 142.3 150.8 158.1 164.8 158.1 164.8 173.2 180.7 188.7 101.5 102.7 103.8 107.8 105.3 107.8 105.3 107.8 105.3 101.1 105.3 107.8 105.3 101.1 105.3 101.1 105.3 105.1 10	स्केट T(7) (2) celcius 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.1 25.1 25.1 25.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1	H(속 도) % 577 577 577 576 677 677 677 677 677 677	P(#) E7 [27] hPa 1007.6 1007.6 1007.6 1007.6 1007.3 1005.3 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2	₩ 9/m ² 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.78 155 155 155 155 155 155 155 155 155 15	Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 315 135 315 135 315 135 315 180 360 180 360 180 360 180 360 180 360 180 360 180 360 180 360 180 360 180 360 180 360 180 360 180	그림 2 de 6 mal 34.52956 34.52956 34.53431 34.53433 34.53423 34.534561 34.54661 34.71468 34.71281 34.71086 34.7023 34.7023 34.70173 34.70572 34.71475 34.70173 34.70572 34.70456 34.70138 34.70308 34.68859 34.68359 34.68359 34.68359	7> A' 35 <u>5</u> decimal 1264089 1263778 1263778 1263778 1263778 1263778 1263778 1263778 1263778 1263778 1263778 1263778 1263778 1263778 1263778 1273278 12732781 1272859 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272851 1272859 1272859 1272851 1272859 12728	SZA degree 136 129 123 119 116 115 116 323 312 302 291 281 281 269 259 248 236 226 226 226 216 216 216 216 216 217 317 317 317 317 317 317 317 317 317 3	SAA degree 1423 1581 164.8 1732 188 102.7 108.8 107.8 107.8 107.8 107.7 108.3 107.7 108.3 107.7 108.3 107.7 109 111 1129 114.7 115 121.5 122.4	२८ २८ १८ २८ २८	H(손 도) % 57 57 57 57 57 57 57 57 57 57 57 57 57	P(# #7)27 hP3 1007.6 1007.6 1007.6 1007.6 1007.6 1007.6 1007.3 1005.3 1005.3 1005.3 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2 1005.2	W 9/m ⁶ 13.64 13.64 13.64 13.64 13.64 13.64 13.78 15.5	Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80
Heading(east=90) degree 315 135 135 135 135 135 135 135 135 135	그림 2 위도 dedmal 34,52986 34,53411 34,52586 34,53411 34,53423 34,54561 34,54561 34,54561 34,71468 34,71281 34,71458 34,70233 34,70572 34,70572 34,70572 34,70572 34,70572 34,70583 34,70572 34,70583 34,70572 34,70583 34,70030 34,7000000000000000000000000000000000000	7> A' decimal 1264089 1264089 1264375 1264438 1264438 1264438 1264453 1264453 1273317 1273247 1273247 1273259 1273005 1272676 1272892 1273305 1272751 1272559 1272731 1272559 1272731 1272559 1272731 1272741 1272248	52A degree 136 123 119 116 115 116 323 312 302 291 281 281 286 226 226 226 226 216 226 216 226 216 226 216 21	SAA degree 142.3 158.1 164.8 173.2 180.7 188 101.5 102.7 108.8 107.8 107.8 107.8 107.8 107.8 107.8 107.8 107.8 107.8 104.7 11255 124.1 127.3 130.4	१(२) ८२) celcius 25.7 25.7 25.7 25.7 25.7 25.7 25.1 25.1 25.1 25.1 25.1 27.1 </td <td>H(全 ⊆) % 57 57 57 57 57 57 57 57 57 57 57 57 57</td> <td>P(# E 2) P hPa 1007.6 1007.6 1007.6 1007.6 1007.6 1007.6 1007.3 1007.3 1005.3 1005.3 1005.2 1</td> <td>W 9/m³ 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.55 155 155 155 155 155 155 155</td> <td>Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80</td>	H(全 ⊆) % 57 57 57 57 57 57 57 57 57 57 57 57 57	P(# E 2) P hPa 1007.6 1007.6 1007.6 1007.6 1007.6 1007.6 1007.3 1007.3 1005.3 1005.3 1005.2 1	W 9/m ³ 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.55 155 155 155 155 155 155 155	Visibility km 80 80 80 80 80 80 80 80 80 80 80 80 80

Display Image Contrast stretching e = 7 Securitian C Histo-Eq

Result of Atm, Correctio

Constant Visibility Condition

Select display bands (file #) Red = 34 Green = 21 Blue = 7

<그림 28> 대기보정을 위한 입력인자 예시(기상청 자료 이용)

<그림 29>는 대기보정 전의 Radiance 영상과 스펙트럼, 그리고 대기보 정 결과인 반사율(Reflectance) 영상과 스펙트럼을 예시로 보여주고 있다.

<그림 29> 대기보정 전 Radiance 영상과 스펙트럼(좌), 대기보정 후 Reflectance 영상과 스펙트럼(우)

(2) 수면반사 보정

수면반사 보정은 수면에서 반사된 거울반사를 보정하는 과정으로 Headley(2005)가 제안한 알고리즘을 이용하였다. Headley는 근적외선 파장 에서 수체의 반사율이 0 또는 최소값이라는 이론적인 가정 하에 아래 (식 7)을 제안하였다. 즉 <그림 30>과 같이 순수한 수체의 반사율은 해저의 반사율이 영향을 미치지 않는 매우 깊은 지역에서 나타나는 최소 반사율이 고, 그보다 높은 반사율은 수면반사에 의한 것이라고 할 수 있다. 따라서 각 화소에서 순수한 수체의 반사율과의 차를 수면반사율로 보고 이를 제거 하는 원리이다.

$$R'_{i} = R_{i} - b_{i} (R_{NIR} - Min_{NIR}) \tag{(4) 7}$$

수면반사 보정 과정은 해저면의 반사율이 영향을 미치지 않는 깊은 지역 선정, 근적외선 파장에 해당하는 밴드 선정, 영상 전체에 대한 수면반사 보 정의 순으로 진행된다. <그림 31>은 수면반사 보정을 위해 깊은 지역에 해당하는 샘플화소를 선택하는 장면을 보여주고 있다.

<그림 31> 수면반사 보정을 위한 샘플화소 선택 예시

<그림 32>는 수면반사 보정에 사용되는 근적외선 밴드를 선택하는 장면 을 보여주고 있다. 본 연구에서 근적외선은 754.5nm에 해당하는 밴드를 사 용하였다.

		4,0001111
Deep water ROI: Reg	on #1 [Red] 62677 points 👻	
Output Result to 💿 File	C Memory	
Enter Output Filename	Choose	
deglint₩deglint_201409	07_175252_8band,hdr	

<그림 32> 수면반사 보정을 위한 근적외선 밴드 선택

위에서 선택한 샘플화소와 근적외선 밴드를 이용하여 Headley 알고리즘 을 영상 전체에 적용하게 된다. <그림 33>은 연구 지역에 대한 수면반사 보정 결과를 각각 예시로 보여주고 있다. 비교적 수면반사가 깨끗하게 보 정되었다.

<그림 33> 수면반사 보정 전후 영상 비교

(3) 수심에 따른 반사율 변화 보정

Lyzenga(1978)는 Beer의 법칙을 기반으로 수체기둥(수심) 및 해저면의 반사율과 수체 반사율 간의 관계를 아래 (식 8)과 같이 정의하였다. 수면에 서 관측하는 반사율은 해저면의 반사도와 순수한 수체기둥의 합으로 수심 에 따라 지수형태로 감소한다.

$$R_W = (A_d - R_\infty) \exp(-Kz) + R_\infty \qquad (4 8)$$

K = Attenuation coefficient

- z = Depth
- A_d = Bottom albedo
- K = Diffuse attenuation coefficient
- R_W = Water reflectance
- R_{∞} = Water reflectance at very deep water
따라서 해저면에 대한 반사에너지를 분석하기 위해서는 수심에 의한 반 사율 변화를 보정하여야 한다.

동해의 경우 Case-I water와 유사한 특성을 보이는 것으로 알려져 있어 Lyzenga가 제시한 지수형태의 감소패턴이 잘 나타난다. 따라서 수면반사 보정이 완료된 수체반사율 영상에서 수심 1m 간격으로 동일 재질(모래)에 대한 반사율 샘플을 수집하였다. 여기에서 수심은 다양한 수심측량자료 (CZMIL, Multibeam)를 참조하였다. 아래 <그림 34>는 수심 1m 간격으로 반사율 샘플을 수집하는 장면을 예시로 보여주고 있다.

<그림 34> 수심 1m 간격으로 반사율 샘플을 수집하는 장면 예시

그 후 <그림 35>의 예시와 같이 각 밴드별로 수심에 대한 반사율을 그 래프로 도시하고, 지수형태의 정합(Fitting) 모델을 구축한다.

<그림 35> 수심에 따른 모래의 반사율 변화 모델 예시

반사율 변화 모델을 통해 각 수심대에서 발생하는 반사율의 변화를 알 수 있고, 이를 이용하여 각 수심대에 대한 반사율 변화 보정량을 추정할 수 있다. <그림 36>은 반사율 변화 모델을 기반으로 추정한 수심대별 반 사율 변화 보정량을 예시로 보여주고 있다.

이렇게 추정한 수심대별 반사율 변화 보정치를 영상 전체에 적용함으로 써 최종적으로 수심에 의한 반사율 변화를 보정한 영상, 즉 해저면 반사율 영상을 획득하였다. 표 10은 대기보정 영상(반사율), 수면반사 보정 영상 (수체반사율), 수심에 의한 반사율 변화 보정 영상(해저반사율)을 각각 보 여주고 있다.

표 11. 연구 지역에 대한 대기보정, 수면반사 보정, 수심에 의한 반사율 변화 보정 영상

대기보정 영상	수면반사 보정 영상	수심에 의한 반사율 변화 보정 영상

마. 검증자료

검증자료는 항공 수심측량 자료와 초분광영상 그리고 융합 자료를 이용 한 암반 탐지 결과의 정확도를 검증하기 위하여 사용한다. 검증자료는 저 질조사 자료와 수치해도의 2가지 참조자료를 기준으로 하여 수심측량 자료 와 초분광영상의 육안판독을 통하여 수집하였다. 육안판독을 통하여 수집 한 검증자료는 총 160개 지점으로 암반 80점, 모래 80점으로 구성되어 있 다(부록1 참고).

참조자료 중 저질조사 자료는 선박을 이용한 점 단위 조사 방법으로 수 집하였다. 선박을 이용한 저질조사는 2015년 6월에 연구지역에서 28개 표 본지점을 대상으로 수행하였다. 저질조사 방법은 <그림 37>과 같이 표본 지점에서 선박에 장착된 채니기를 이용하여 시료를 채취한다.

<그림 37> 채니기를 이용한 저질 시료 채취

채취한 저질 시료는 국립해양조사원의 수로측량업무 시행기준에 의거하 여 약호에 따라 육안으로 분류하여 야장에 기입한 후 밀폐 보관하였다. 체 분석과 피펫팅법분석 결과로부터 저질입도에 대한 무게의 함량비를 얻은 다음 <그림 38>과 같이 Folk and Ward(1957)가 제시한 Moment method 를 이용하여 평균입도(Mean), 분급도(Sorting), 왜도(Skewness), 첨도 (Kurtosis)를 산출하였고, 분급도, 왜도, 첨도의 분류기준을 표 12에 제시하 였다. 또한 위 방법으로 분류된 퇴적물 유형은 국립해양조사원의 수로측량 업무규정에 의한 도면 표기 방법으로 변환하였다.

<그림 38> 표층퇴적물 유형 분류 삼각다이어그램(Folk. 1957)

Folk and Ward(1957)방법에 의한 입도 파라미터 산정식은 다음과 같다. 평균입도(Mean) : $\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$

분급(Sorting)=표준편차(Standard Deviation) : $\sigma = \sqrt{\frac{\sum f_i (x_i - \overline{x})^2}{\sum f_i}}$

왜도(Skewness) :
$$Sk = \frac{\sum f_i(x-\bar{x})^3}{\sum f_i \times \sigma^3}$$

潜도(Kurtosis) : $K\!u = \frac{\sum f_i (x - \bar{x})^4}{\sum f_i \times \sigma^4}$

표 12. 분급, 왜도, 첨도 분류 기준

	범위	분류	
	< 0.35	극양호분급(very well sorted)	
	0.35~0.50	양호분급(well sorted)	
분급(Sorting)	0.50~0.70	중간양호분급(moderately well sorted)	
(단위 : ∅)	0.70~1.00	중간분급(moderatelly sorted)	
	1.00~2.00	불량분급(poorly sorted)	
	2.00~4.00	극불량분급(very poorly sorted)	
	>4.00	최극불량분급(extremely poorly sorted)	
왜도 (Skewness)	범위	분류	
	-1.0~-0.3	최극음의왜도(very negatively skewed)	
	-0.3~-0.1	음의왜도(negatively skewed)	
	-0.1~0.1	대칭왜도(symmetrical)	
	0.1~0.3	양의왜도(positively skewed)	
	0.3~1.0	최극양의왜도(very positively skewed)	
	범위	분류	
첨도 (Kurtosis)	<0.67	극완첨도(very platykurtic)	
	0.67~0.90	완첨도(platykurtic)	
	0.90~1.11	중첨도(mesokurtic)	
	1.11~1.50	급첨도(leptokurtic)	
	1.50~3.00	극급첨도(very Leptokurtic)	
	>3.00	최극급첨도(extremely leptokurtic)	

<그림 39>는 검증자료 160개 지점의 위치를 보여주고 있다. 여기에서 적색 십자는 암반을 노란색 십자는 모래를 의미한다.

<그림 39> 육안판독을 통해 수집한 검증자료 160개 지점의 위치

Ⅳ. 항공 수심측량 자료를 이용한 암반 탐지

4.1. 질감을 이용한 암반 탐지 방법

인간은 원격탐사 영상을 시각적으로 분석할 때 영상에 포함되어 있는 경 계, 질감, 명암 또는 색상을 동시에 고려한다. 하지만 대부분의 디지털 영 상처리 알고리즘은 명암 또는 색상 정보에만 의존한다. 그러므로 디지털 영상처리 과정에 이런 다른 특성들을 포함시키려는 많은 노력이 있어 왔 다.

명암은 회색조의 밝기값을 통해 표현할 수 있고, 색상은 RGB에 해당하는 세 개 밴드의 명암을 조합한 것이다. 영상의 작은 영역에서 명암 또는 색상의 변화가 거의 없다면 이 영역은 매끈한 질감으로 표현된다. 반대로, 좁은 지역에서 명암 또는 색상의 변화가 심하다면 이 지역은 거친 질감으 로 표현된다. 영상처리 과정에 질감정보를 포함하기 위하여 대부분의 연구 들은 다양한 질감영상을 만들기 위한 시도를 해왔다.

자동적으로 질감을 분류하기 위한 몇 가지 표준방법이 있는데, 여기에는 밝기값의 1차 및 2차 통계값, 푸리에 스펙트럼에 기초한 질감정보, 프랙탈 에 기초한 측정값 등이 포함된다. 연구결과 질감 분석에 푸리에 변환을 사 용하면 보통 결과가 좋지 않다고 알려져 있다(Jensen, 2005).

질감정보를 만들기 위하여 사용할 수 있는 1차 통계값으로는 평균, 분산, 표준편차, 엔트로피 같은 것이 있다. 일반적인 알고리즘은 다음과 같다.

$$AVE = \frac{1}{w} \sum_{i=0}^{quant_k} i \times f_i \tag{4} 9$$

$$STD = \sqrt{\frac{1}{w} \sum_{i=0}^{quant_k} (i - A VE)^2 \times f_i}$$
 (A) (A)

$$ENT_1 = \sum_{i=0}^{quant_k} \frac{f_i}{w} \ln \frac{f_i}{w} \tag{4} 11$$

여기서,

일반적인 윈도우의 크기는 3×3, 5×5, 7×7이고 화소가 밝을수록 윈도 우 내의 불균일도가 더 커진다. 이는 질감이 더 거칠어짐을 의미한다.

가. 조건부 분산탐지

Zhang(2001)은 고해상도 영상에서 나무를 식별하기 위한 질감 측정값을 개발했는데, 이는 방향성 분산탐지와 표준 지역 분산 측정값의 두 가지 요 소로 구성되어 있다.

<그림 40>은 방향성 분산탐지 방법의 공간적인 개념을 나타내고 있다.
방향성 분산탐지는 수목지역에서 윈도우 내의 중심화소가 어디인지를 결정
하는데 쓰인다. 만약 중심화소가 수목지역에 위치하면, 결과 파일에 그 화소를 강조하기 위하여 지역 분산을 계산한다. 그렇지 않은 경우에는 그 화소에 미치는 영향을 줄이기 위하여 지역 분산을 계산하지 않는다. 다른 사물들의 경계를 효율적으로 탐지하여 수목지역으로부터 분리하기 위해서는 방향성 분산탐지 방법의 윈도우는 지역 분산 계산의 윈도우보다 커야 한다.

방향성 분산탐지는 다음의 식을 사용하여 화소의 중심에서 네 방향으로 <그림 40>에 나와 있는 회색 화소를 따라서 화소의 분산을 측정한다.

$$DVar = \frac{1}{n} \sum_{i=-n}^{n-1} [f(i,j) - \overline{f(i,j)}]^2$$
 (4) 12)

-70-

$$\overline{f(i,j)} = \frac{1}{n} \sum_{i=-n}^{n-1} f(i,j)$$
 (4) 13)

i < 0, j = 0 (위쪽의 경우)
i ≥ 0, j = 0 (아래쪽의 경우)
i = 0, j < 0 (왼쪽의 경우)
i ≥ 0, j ≥ 0 (오른쪽의 경우)

여기서 *DVar*는 방향성 분산이고, *f*(*i*, *j*)는 이동 윈도우에서 *i*번째 열, *j* 번째 행에 위치한 화소 값이고 *n*은 중심 화소를 제외한 모든 방향의 화소 수이다.

만약 네 방향 중 한 곳의 분산이 사용자가 정한 임계값보다 작으면, 이 방향을 따라서 균질한 지역이 존재하거나 중심선이 일직선의 경계를 따라 존재한다고 결론지을 수 있다. 이 경우, 중심 화소는 수목이 없는 화소로 간주된다. 그 화소에는 낮은 값이 할당되고, 영역분산을 계산하지 않는다. 반면에 만약 네 방향 중에 한 곳의 분산이 임계값을 넘게 되면, 지역 분산 이 계산되고, 중심 화소에는 큰 값이 할당된다.

나. 최소-최대 질감 연산자

Briggs and Nellis(1991)는 다음과 같은 5개의 요소로 이루어진 이동 윈 도우의 밝기값 분석에 기초하여 최소-최대 질감 연산자를 개발하였다. A B C D E

여기서,

$$texture_{C} = brightest_{A, B, C, D, E} - darkest_{A, B, C, D, E}$$
(4) 14)

그들은 최소-최대 질감 피처와 7개 SPOT HRV 영상의 NDVI 변환을 이용하여 KS주, Konza Prairie Research Natural Area의 높은 초지가 계 절적으로 어떻게 변하고 분포하는가에 대한 중요한 정보를 추출하였다.

본 연구에서는 이동창 기반 최소-최대 질감 연산자를 이용하였고, 질감 연산을 위한 이동창 크기는 7×7로 정의하였다. 그 이유는 <그림 41>과 같이 다양한 크기의 이동창을 적용한 결과 3×3과 5×5의 경우 수심의 변 이가 큰 암반과 비암반의 경계는 명확하게 나타나는 반면, 수심의 변이가 작은 암반 중심부에서 질감이 잘 나타나지 않았다. 또한 상대적으로 큰 9×9 이동창의 경우 암반과 비암반의 경계가 명확하게 나타나지 않는 한 계가 있었다. 따라서 경험적으로 7×7 이동창을 사용하였다.

<그림 41> 윈도우 사이즈에 따른 질감연산 결과 (좌: 3×3, 중: 7×7, 우: 9×9)

7×7 이동창을 이용하여 최소-최대 질감 연산을 실시한 후 질감이 임계 값 0.5보다 큰 경우 암반으로 분류하였다. 임계값을 0.5로 부여한 이유는 사용한 수심측량 자료인 CZMIL의 경우 수심 30m에서 수심측량 오차가 약 0.4m이기 때문이다. 따라서 연구 지역 수심은 최대 30m를 넘지 않으므 로 윈도우 내에서 수심의 변이가 0.5m 이상인 경우 암반으로 분류할 수 있다.

4.2. 항공 수심측량 자료를 이용한 암반 탐지 결과

본 연구에서는 항공 수심측량 자료인 CZMIL 자료에 7×7 크기의 윈도 우에서 최소-최대 질감을 연산하였고, 질감이 0.5 이상인 경우 암반으로 분류하였다. <그림 42>는 앞에서 언급한 방법을 이용하여 탐지한 암반을 보여주고 있다. 그 결과 연구지역의 상단, 중단, 하단에 암반이 주로 탐지 되었다. 또한 수심자료를 육안으로 보았을 때 나타나는 암반의 위치와 대 부분 일치하는 것으로 판단된다.

<그림 42> 항공 수심측량 자료를 이용한 암반 탐지 결과

그러나 <그림 43>과 같이 탐지된 암반과 수심자료에서 나타나는 암반의 경계를 육안으로 비교하면, 탐지된 암반이 수심자료에 비해서 과대 탐지된 것으로 판단된다. 즉, 수심자료에서 판단되는 암반의 경계에 비해 탐지된 암반의 경계가 바깥쪽에 위치한다. 이는 필터링 윈도우를 사용하는 방법의 특성상 윈도우의 크기가 커질수록 블러(Blur) 효과가 크게 나타나는 것을 원인으로 볼 수 있다. 반면 윈도의 크기를 작게 하면 실제 암반이지만 수 심의 변이가 작은 구간은 암반으로 탐지되지 않는 누락오차(Omission error)가 발생할 수 있다. 따라서 질감 연산자를 이용하는 방법에 대한 보 완이 필요하다.

<그림 43> 항공 수심측량 자료를 이용한 암반 탐지 결과와 수심자료 비교

암반탐지 결과의 정확도를 분석하기 위하여 <그림 44>와 같이 160개 검 증지점과 비교하였고, 표 13은 정확도 분석 결과를 수치로 보여주고 있다. 전체적으로 총 160개 검증 지점 중 141개가 탐지결과와 일치하여 88%의 정탐지율을 보여주었다. 암반의 경우 검증지점 80개가 모두 암반으로 탐지 되어 100%의 정탐지율을 보여주었다. 그러나 실제 비암반이지만 암반으로 탐지된 지점이 80개 지점 중 19개 지점으로 나타나 추가오차(Commission error)가 24%로 매우 높게 나타났다. 이러한 현상의 원인은 위에서 언급한 바와 같이 이동창(Moving window)을 이용하는 질감연산 방법 때문인 것 으로 판단된다. 따라서 질감을 이용한 암반 탐지 방법에 있어 추가오차에 대한 보완이 필요하다.

<그림 44> 암반 탐지 결과와 검증자료 비교

표 13. 암반 탐지 결과와 검증자료 비교 결과 정탐지율

검증자료 암반탐지	암반	모래	소계
암반	80	19	99
비암반	0	61	61
소계	80	80	160
암반 탐지 결과 정탐지율 = (80+61)/160 = 88%			

Ⅴ. 항공 초분광 영상을 이용한 암반 탐지

5.1. 항공 초분광 영상을 이용한 암반 탐지 방법

가. 기준 분광반사자료 수집

초분광 영상의 각 화소가 어떤 재질인지 탐지하기 위해서 연구 지역을 구성하고 있는 재질에 대한 정의와 기준 분광반사자료(Reference spectrum)의 수집이 필요하다. <그림 45, 46>과 같이 국립해양조사원에서 과거 실시한 저질조사 결과와 해도를 참고한 결과, 연구지역은 대부분 암 반과 모래로 구성되어 있는 것으로 나타났다. 따라서 탐지 대상(표적)을 암 반, 그리고 배경은 모래로 정의하였다.

<그림 45> 과거 저질조사 결과(국립해양조사원)

<그림 46> 연구 지역의 1:5,000 해도

탐지 대상과 배경(암반과 모래)에 대한 기준 분광반사자료는 참고자료에 서 위치가 명확하게 나타난 지점을 대상으로 CASI-1500 초분광 영상의 화 소에서 수집하였다. 기준분광반사자료는 암반과 모래 각각 30개 화소를 대 상으로 수집한 후 평균하였다. 표 14는 암반과 모래에 대한 예시 영상과 기준 스펙트럼을 보여주고 있다.

표 14. 해저 재질별 분광반사특성 수집을 통해 정의한 기준 분광반사율

나. 사용한 표적탐지 알고리즘

본 연구에서는 앞의 2.3절에서 언급한 다양한 표적탐지 알고리즘 중 가 장 널리 사용되고 있는 분광각매퍼(Spectral Angle Mapper) 알고리즘을 이용하여 암반을 탐지하였다. 일반적인 분류 및 탐지 알고리즘은 화소의 분광반사율을 각 등급(class)에 해당하는 기준 분광반사율과 비교하는데 있 어 절대값(반사율)을 이용하여 유사도를 계산한다. 그러나 많은 경우에 있 어 실제 초분광 영상은 스펙트럼의 절대값에 변이가 발생하고 보정과정에 서 발생하는 오차를 포함하고 있다. 분광각매퍼 알고리즘은 이러한 변이와 오차로 인한 오분류 또는 오탐지를 최소화하기 위하여 분광반사율을 밴드 수 공간의 벡터로 가정한 후, 벡터의 방향을 각으로 비교한다. 이 방법은 분광반사율의 증감 패턴을 비교함으로써 절대값을 비교하는 것보다 형태를 비교하는 방법에 해당한다. 아래 <그림 47>은 분광각매퍼 알고리즘의 원 리를 보여주고 있다. 여기에서 α는 두 스펙트럼 간의 분광각, *x*는 영상(화 소) 스펙트럼 벡터, *r*은 기준 스펙트럼 벡터를 의미한다.

<그림 47> 분광각매퍼(SAM) 알고리즘의 원리

5.2. 항공 초분광 영상을 이용한 암반 탐지 결과

가. 암반 탐지 결과 육안 분석

기준 분광반사자료와 분광각매퍼 알고리즘을 이용하여 보정이 완료된 초

분광 영상을 대상으로 암반 탐지를 수행하였다. <그림 48>은 연구 지역을 대상으로 초분광 영상을 이용하여 실시한 암반 탐지 결과를 보여주고 있 다. <그림 49>의 수심보정 완료 초분광 영상과 탐지된 암반의 위치를 육 안으로 비교하였을 때 영상의 상단, 중단, 하단에 주로 위치하는 암반이 대 부분 탐지된 것을 볼 수 있다. 그러나 초분광 영상을 이용한 암반 탐지 결 과를 보면 해안선 부근의 수심이 얕은 지역이 주로 암반으로 탐지된 것을 볼 수 있다. 특히 사천진항 남쪽의 사천해수욕장의 비암반이 암반으로 탐 지되고 있다. 이러한 오류의 원인은 크게 세 가지를 들 수 있다. 첫째는 초 분광 영상의 보정 과정에서 발생하는 오류이다. 이는 수심에 의한 반사율 변이 보정 모델이 <그림 50>과 같이 로그 형태를 갖고 있어 매우 수심이 얕은 지역의 경우 과소보정이 될 수 있다. 따라서 <그림 51>의 일부지역 에서와 같이 비암반의 반사율이 낮게 나타날 수 있다. 둘째는 비암반 지역 에 분포하는 해조류를 원인으로 들 수 있다. 본 연구에서는 해조류를 탐지 대상으로 하지 않았지만, 실제 해안에 분포하는 해조류가 암반의 분광반사 율과 유사하게 나타날 수 있다. 셋째는 영상 촬영 시 발생한 파도(백파) 또 는 그림자와 같은 환경적인 요인을 들 수 있다. 파도와 그림자에 의해 실 제 해저면의 신호가 왜곡될 경우, 탐지 결과의 오류 원인이 될 수 있다.

<그림 48> 초분광 영상을 이용한 암반 탐지 결과

<그림 49> 수심보정이 완료된 초분광 영상

<그림 50> 수심에 의한 반사율 변화 보정을 위한 모델

<그림 51> 사천해수욕장 부근에서 비암반이 암반으로 오탐지 된 예시

나. 암반 탐지 결과 정탐지율 분석

암반 탐지 결과의 정탐지율을 분석하기 위하여 <그림 52>와 같이 검증 자료 160개 지점과 비교하였다. 또한 표 15는 검증자료를 이용한 정확도 분석 결과를 수치로 보여주고 있다. 검증자료와 탐지결과가 일치하는 지점 은 총 160개 점 중 126개로 정탐지율은 79%로 나타났다. 세부적으로 재질 별 정탐지율을 분석해보면 암반의 경우 검증자료의 80개 점 중 59개가 일 치하여 74%의 정탐지율을 보여주었다. 그러나 검증자료 기준 80개 지점 중 21개의 점이 비암반으로 누락되어 26%의 누락오차를 보여주었다. 또한 비암반이 암반으로 탐지되는 추가오차는 총 80개점 중 13개점에서 발생하 여 16%의 추가오차를 보여주었다.

<그림 52> 초분광영상 암반 탐지 결과와 검증자료 비교

표 15. 암반 탐지 결과와 검증자료 비교 결과 정탐지율

재질조사 암반탐지	암반	비암반	소계
암반	59	13	72
비암반	21	67	88
소계	80	80	160
암반 탐지 결과 정탐지율 = (59+67)/160 = 79%			

누락오차의 경우 <그림 53>과 같이 영상에서 암반의 신호가 약하게 나 타나는 지점에서 주로 발생하고 있다. 또한 추가오차는 수심이 얕은 지역 에서 발생한 오탐지가 원인이다.

<그림 53> 누락오차가 발생한 지점 예시

정탐지율 측면에서 앞의(4장) 수심자료의 질감만을 이용하여 탐지한 결

과의 정탐지율보다 10%p 높게 나타난 수치이다. 그러나 추가오차 및 누락 오차가 높은 한계는 보완되어야 한다.

Ⅵ. 정확도 향상을 위한 초분광 영상과

항공 수심측량 자료 융합 방안

6.1. 융합 자료를 이용한 암반 탐지 방법

가. 초분광 영상과 질감 자료의 융합

위의 4장과 5장에서는 각각 항공 수심측량 자료의 질감(지형기복) 정보 를 이용한 암반 탐지와 초분광 영상의 분광정보를 이용한 암반 탐지를 수 행하였다. 그 결과 각각 88%와 79%의 정탐지율을 보여주었다. 그러나 질 감을 이용한 암반탐지의 경우 비암반이 암반으로 탐지되는 추가오차가 24%로 크게 발생하였고, 분광정보를 이용한 암반탐지의 경우 추가오차에 비해 실제 암반이 탐지되지 않는 누락오차가 26%로 크게 발생하였다. 이 는 4장과 5장에서 언급한 바와 같이 자료와 처리방법의 특성을 오차 원인 으로 들 수 있다. 따라서 이러한 오차원인을 줄임으로써 암반 탐지의 정탐 지율을 향상시킬 수 있다.

1.3절에서 언급한 다양한 연구들에서 단일 자료의 한계를 극복하기 위하 여 이종 자료의 융합을 시도하였고, 보다 향상된 결과를 보여주었다.

수심측량 자료의 질감 정보와 초분광영상의 분광정보는 각각 센서의 특 성에서 기인하는 장단점을 갖고 있다. 질감 자료는 수심과 해저지형에 관 련된 정보를 제공할 수 있지만, 해저 재질을 구별하기 위한 분광정보를 제 공할 수 없다(Pittman 등, 2013). 반면 초분광영상은 분광정보를 이용하여 해저 재질 간 경계를 보다 명확히 구별할 수 있지만, 수심, 해저 특성, 수 질 및 영상 취득 시 국소적 환경에 따른 불확실성과 변이를 포함하고 있다 (Hedley, 2013). 따라서 본 연구에서는 4장과 5장에서 사용한 질감 정보와 분광 정보를 융합하여 암반 탐지의 정탐지율을 향상시키고자 하였다. 질감 정보와 분광정보 융합을 위해 초분광영상의 밴드에 질감 자료를 하나의 밴 드로 추가함으로써, 분광정보와 질감정보를 동시에 이용 가능하도록 하였 다. 따라서 융합 영상은 48개의 분광밴드와 1개의 질감밴드로 구성된 총 49개 밴드를 갖는다. <그림 54>는 초분광영상과 질감 자료를 융합한 영상 을 보여주고 있다. 칼라합성을 위해 적색에 질감자료, 녹색에 초분광영상의 632nm, 청색에 초분광영상의 546 nm를 부여하였다. 그 결과 암반은 적색 계열의 색상으로 나타나고, 비암반은 청색과 녹색계열의 색상으로 나타나 는 것을 볼 수 있다.

<그림 54> 초분광 영상과 질감자료를 융합한 영상 (R: 최소-최대(질감), G: 632nm, B: 546nm)

나. 융합 자료를 이용한 암반 탐지 방법

위의 4장과 5장에서 초분광 영상을 이용한 암반 탐지 방법으로는 분광각 매퍼 기법, 항공 수심측량 자료를 이용한 암반 탐지를 위해 질감연산자에 임계값을 적용하는 방법을 이용하였다. 융합 자료를 이용한 암반 탐지 방 법으로 감독분류 방법의 일종인 최대우도법(Maximum likelihood)을 이용 하였다. 최대우도법 적용을 위한 훈련집단으로 육안판독을 통하여 암반과 비암반 각각에 대하여 50개 화소를 수집하였고, 이때 훈련집단과 검증집단 이 중복되지 않도록 하였다.

최대우도법은 확률에 기초한 분류 기법으로써, 패턴 측정값이나 피처벡 터 X를 가지는 각 화소를 가장 높은 확률을 가지는 클래스 i로 할당한다 (Jensen, 2005). 다시 말하면 어떤 화소가 미리 정의된 m개의 클래스 중 각각에 속할 확률을 계산하여 그 화소를 확률이 가장 높은 클래스로 할당 한다. 최대우도 결정규칙은 보편적으로 많이 사용되는 분류 기법 중 하나 이다. 이는 각 밴드 내의 클래스에 대한 훈련자료 통계가 정규분포를 구성 하고 있다는 것을 가정으로 한다. 수집한 원격탐사 훈련자료로부터 확률정 보 획득이 가능한데, 아래 (식 15)는 1차원에서의 클래스 w_i에 대한 확률함 수를 나타낸다. x는 밝기값 중 하나이며, µ_i은 훈련 클래스에서의 모든 값 들의 평균, $\hat{\sigma}_i^2$ 는 해당 클래스에서의 모든 측정값의 분산을 나타낸다. 그러 므로 클래스 내에서 각각의 밝기값과 연관된 확률 함수의 계산을 위해서는 각 훈련클래스의 평균과 분산만이 필요하다. 클래스가 다중 밴드로 구성된 경우에는, 아래 (식 16)과 같이 n차원의 다변량 정규밀도함수를 계산해야 한다(Swain and Davis, 1978). |V_i] 는 공분산 행렬의 행렬식이며, 평균백 터(M_i)의 각 클래스에 대한 공분산 행렬(V_i)은 훈련자료로부터 예측할 수 있다.

$$\hat{p}(x|w_i) = \frac{1}{(2\pi)^{\frac{1}{2}}\hat{\sigma_i}} exp\left[-\frac{1}{2}\frac{(x-\hat{\mu_i})^2}{\hat{\sigma_i}}\right]$$
(4) 15)

$$p(x|w_i) = \frac{1}{(2\pi)^{\frac{n}{2}} |V_i|^{\frac{1}{2}}} exp\left[-\frac{1}{2}(X - M_i)^T V_i^{-1}(X - M_i)\right] \quad (A 16)$$

최대우도 결정규칙은 1에서 m까지의 클래스 중에서 모든 *i*,*j*에 대해서 아래 (식 17)이 만족하는 경우에만 *X*∈*w*_{*i*}를 결정하는 것을 규칙으로 한다. 따라서 미지의 측정벡터 *X*를 사용하여 원격탐사자료의 화소를 분류하기 위해 각 클래스에 대한 *p*(*X*|*w*_{*i*}) • *p*(*w*_{*i*})를 계산하고 그 값이 가장 큰 클래 스로 패턴을 할당한다.

$$p(X|w_i) \bullet p(w_i) \ge p(X|w_i) \bullet p(w_i) \tag{4 17}$$

 w_i : 클래스x : 밝기값 $\hat{\mu}_i$: 훈련 클래스에서의 모든 값들의 평균 $\hat{\sigma}_i^2$: 해당 클래스에서의 모든 측정값의 분산 $|V_i|$: 공분산 행렬의 행렬식 M_i : 평균벡터

- 90 -

최대우도법을 사용한 이유는 크게 3가지를 들 수 있다. 첫째, 기존 항공 수심측량 자료와 초분광영상을 융합한 자료를 이용하여 해저 분석을 시도 한 연구들에서 주로 최대우도법을 사용하였다(Ciraolo 등, 2006; Wozencraft와 Park, 2013). 둘째, 최대우도법은 자료의 특성 및 변이가 다 른 두 자료의 통계치를 동시에 이용할 수 있다(Jensen, 2005). 셋째, 훈련집 단의 개수가 충분할 때 초분광영상 분류에 주로 사용되는 분광각매퍼 또는 서포트 벡터 머신(support vector machine: SVM) 기법과 유사한 정확도를 보인다(Yang 등, 2012; Shafri 등, 2007).

6.2. 융합 자료를 이용한 암반 탐지 결과

초분광영상의 분광정보와 항공 수심측량 자료의 질감(지형기복)을 융합 한 자료에 최대우도법을 적용하여 암반과 비암반을 분류하였고, 그 중 암 반만을 추출하였다. <그림 56>은 융합 자료를 이용하여 탐지한 암반을 보 여주고 있다. 그 결과 융합영상과 육안으로 비교하였을 때 암반이 비교적 정확히 탐지 된 것을 볼 수 있다. 그러나 수심자료의 잡음으로 인해 비암 반 지역에서 선형의 형태로 탐지된 암반과 해안선 부근의 매우 얕은 수심 지역에서 잡음 형태로 탐지된 암반이 일부 존재하고 있다.

<그림 56> 융합된 자료의 암반탐지 결과

<그림 57> 초분광 영상과 질감자료를 융합한 영상 (R: 최소-최대(질감), G: 632nm, B: 546nm)

암반탐지 결과의 정탐지율을 분석하기 위하여 <그림 58>과 같이 160점 에 대한 검증자료와 비교하였다. 표 16은 검증자료를 이용한 정확도 분석 결과를 수치로 보여주고 있다. 그 결과 전체적으로 160점 중 154점이 일치 하여 96%의 정탐지율을 보여주었다. 암반의 경우 80점 중 79점이 암반으 로 탐지되어 99%의 정탐지율을 보여주었다. 비암반의 경우 80점 중 75점 이 일치하여 94%의 정탐지율을 보여주었다. 그러나 비암반 중 5점은 암반 으로 탐지되어 6%의 추가오차를 보여주었고, 80개 암반 중 1개는 암반으 로 탐지되지 않아 1%의 누락오차를 보여주었다. 이는 4장과 5장의 단일 자료를 이용한 탐지 결과에 비해 향상된 정탐지율을 나타내고 있다. 각 결 과에 대한 비교는 6.3절에서 언급하였다.

재질조사 암반탐지	암반	비암반	소계
암반	79	5	84
비암반	1	75	76
소계	80	80	160
암반 탐지 결과 정탐지율 = (79+75)/160 = 96%			

표 16. 암반 탐지 결과와 검증자료 비교 결과 정탐지율

<그림 58> 융합자료를 이용한 암반 탐지 결과와 검증자료 비교

6.3. 융합 자료를 이용 시 정탐지율 향상 비교

<그림 59>는 항공 수심측량 자료(CZMIL), 초분광 영상(CASI-1500), 융 합자료와 각 자료를 이용한 암반 탐지 결과를 보여주고 있다. 항공 수심측 량 자료의 질감(지형기복) 정보를 이용한 암반 탐지 결과는 과대탐지 경향 을 보이고 있고, 초분광영상의 분광 정보를 이용한 암반 탐지 결과는 과소 탐지 경향을 보인다. 특히 초분광영상의 경우 해안선 부근의 수심이 얕은 지역에서 비암반이 암반으로 오탐지되는 경향을 추가로 보여주었다. 항공 수심측량 자료를 이용한 탐지결과에서 나타난 과대탐지 경향은 자료 잡음 과 함께 질감 정보를 추출하는 과정에서 이용한 이동창이 갖는 특성인 blur 효과를 원인으로 판단하였다. 초분광 영상을 이용한 탐지결과에서 나 타나는 과소탐지 경향은 국소적인 환경조건 변화에 의해 암반의 신호가 약 해지는 것을 원인으로 볼 수 있고, 해안선 부근에서의 오탐지의 주원인으 로는 로그 형태의 수심보정 모델이 갖는 한계로 판단하였다. 이러한 단점 들을 보완하기 위하여 두 자료를 융합하여 암반을 탐지 한 결과 두 가지 자료를 단독으로 이용한 결과에 비해 향상된 결과를 보여주었다. 특히 암 반 사이에 분포하는 비암반 지역(모래골)의 분포가 명확하게 나타나고, 해 안선 부근에서 비암반이 암반으로 오탐지 되는 경향이 크게 감소한 것을 볼 수 있다.

<그림 59> 항공 수심측량 자료(좌), 초분광 영상(중), 융합자료(우)를 이용한 암반 탐지 결과

표 17은 사용한 자료에 따른 암반 탐지 정탐지율을 각각 보여주고 있다. 항공 수심측량 자료의 질감정보와 초분광 영상 각각을 사용하였을 때 정탐 지율은 88%와 79%를 보인다. 그러나 오탐지율 측면에서 추가오차는 항공 수심측량 자료에서 24%, 초분광 영상에서 16%로 나타났다. 누락오차는 초 분광 영상에서 26%로 나타났다. 즉 항공 수심측량 자료의 질감정보를 이 용하였을 때 추가오차가 높게 발생하였고, 초분광 영상을 이용하면 추가오 차와 누락오차가 유사하게 발생하는 것을 볼 수 있다. 융합자료를 이용하 였을 때는 정탐지율이 96%로 나타나 항공 수심측량 자료를 이용하였을 때 에 비해 8%p, 초분광영상을 이용하였을 때에 비해 17%p의 정탐지율 향상 효과가 있었다. 또한 추가오차가 항공 수심측량 자료와 초분광영상을 사용 하였을 때에 비해 각각 18%p와 10%p 감소하였고, 누락오차가 초분광영상 을 사용하였을 때에 비해 25%p 감소하였다. 따라서 항공 수심측량 자료의 질감정보 또는 초분광 영상 각각을 이용하였을 때 보다 이 두 자료를 융합 하여 이용하는 것이 암반탐지의 정탐지율을 향상시킬 수 있는 방법이라고 판단된다.

	항공 수심측량 자료 (질감)	초분광영상	융합자료	
정탐지율	88%	79%	96%	
추가오차	24%	16%	6%	
누락오차	0%	26%	1%	

표 17. 자료에 따른 암반 탐지 정탐지율 비교

Ⅶ. 결 론

7.1. 연구결과 요약 및 향후 연구

연안은 지구표면 중 육지, 해양, 대기가 만나 활발한 상호작용을 하는 곳 이며, 인간의 활동이 매우 활발한 지역이다. 연안 해역에서 암반의 분포를 분석하는 것은 항해 안전, 군사 작전, 해양 개발 및 보존 등 다양한 분야에 서 활용할 수 있어 그 의미가 크다. 현재까지 암반의 분포를 조사하는 방 법은 수심측량자료를 판독하거나 표본지점에 대한 저질조사 자료를 기반으 로 한 점(point) 조사 방법에 의존하고 있다. 이러한 방법은 효율성이나 비 용 측면의 한계를 갖고 있으며 면형의 암반 분포자료 제작이 불가능하다는 단점이 있다.

본 연구에서는 항공 수심측량 자료, 항공 초분광 영상을 이용하여 연안 해저의 암반분포를 효율적이고 정확하게 조사하는 방법을 제시하고자 하였 다. 이를 위해서 항공 수심측량 자료와 항공 초분광 영상을 이용한 암반탐 지를 각각 수행하여 각 자료의 활용 가능성과 한계를 알아보았다. 그 후 각 자료의 단점을 보완하기 위해 두 자료를 융합하여 암반분류를 수행하는 방법을 제시하였다.

항공 수심측량 자료는 질감(지형기복) 정보를 추출한 후 임계값을 적용 함으로써 다른 저질에 비해 상대적으로 지형기복이 큰 암반을 탐지할 수 있었다. 탐지 결과 88%의 정탐지율을 보였고, 비암반이 암반으로 탐지되는 추가오차(오탐지율)가 24%로 높게 나타났다. 추가오차의 원인은 이동 창을 이용한 질감연산으로 인해 암반이 실제보다 넓게 탐지되는 블러(blur)효과 를 들 수 있으며, 이에 대한 보완이 필요하다. 항공 초분광 영상을 이용한 암반탐지는 영상에서 추출한 기준 분광반사자료와 분광각매퍼(SAM) 탐지 기법을 적용하여 수행하였다. 그 결과 79%의 정탐지율을 보여주었으나 16%의 추가오차와 26%의 누락오차(실제 암반이 암반으로 탐지되지 않은 경우)를 보여주었다. 오차원인으로 수심보정 모델의 한계와 국소적인 환경 조건 변화로 인한 반사율 변화를 들 수 있다. 이와 같이 자료의 특성 및 처리 방법에서 기인하는 오차원인을 보완하기 위하여 두 자료를 융합한 후 최대우도법을 이용하여 암반탐지를 수행하였다. 그 결과 96%의 정탐지율 과 6%의 추가오차, 1%의 누락오차를 보여주었다. 이는 단일 자료를 이용 하였을 때의 정탐지율에 비해 8%p에서 17%p 높은 수치이다. 따라서 연안 해저의 암반 분포 조사에 있어 항공 수심측량 자료와 항공 초분광 영상 각 각을 이용하는 것 보다 두 자료를 융합하여 사용할 때 정탐지율을 향상시 킬 수 있다. 또한 기존 수심측량자료의 수동(육안) 분석이나 선박을 이용한

향후 연구에서는 크게 3가지 측면의 추가 연구가 필요하다. 첫째는 정탐 지율 향상이다. 수치적으로 96%의 정탐지율을 확보하였지만 이는 제한된 검증자료로 인한 것일 수 있다. 실제 융합자료를 이용한 탐지결과를 육안 으로 분석해보면 다양한 오탐지가 포함되어 있다. 또한 면형의 검증자료 확보를 통해 경계의 정탐지율을 향상시킬 수 있는 방법 개발이 필요하다. 둘째로 탐지 또는 분류 등급(항목)을 보다 세분화 할 필요가 있다. 연안 해 저는 암반뿐만 아니라 모례, 자갈, 뻘 등 다양한 재질로 구성되어 있고, 이 들 재질 또한 다양한 기준에 의해 보다 세분화 할 수 있다. 따라서 활용도 향상을 위해 분류 가능한 재질 등급의 정의와 이를 위한 실험이 필요하다. 셋째로 지역의 확장성을 위한 추가연구가 필요하다. 본 연구는 상대적으로 수질이 좋은 동해 북부의 일부지역을 대상으로 하였다. 그러나 우리나라는 3면에 연안이 분포하고, 각 연안별로 물의 특성과 환경이 다르다. 또한 광 학자료의 특성 상 물의 특성에 따라 관측 가능한 수심의 범위가 달라질 수 있다. 따라서 이에 대한 고려와 적용성 분석 그리고 광학자료의 한계를 극 복할 수 있는 추가적인 방법 개발이 필요하다.

7.2. 연구결과의 활용을 위한 제언

연안의 해저 암반 분포 조사결과를 기초로 한 해양 주제도를 제작할 수 있으며 이는 크게 항해 및 군사작전, 해양개발, 해양환경 및 수산자원 보존 측면에서 활용할 수 있을 것이다. 항해 및 군사작전 측면에서 암반의 분포 는 선박의 안전 항행, 상륙작전, 수중작전 등 경로 확보에 유용하다. 해양 개발 및 보존 측면에서는 연안 건설 및 자원 개발 사업 등의 적지 확보와 최근 이슈가 되고 있는 연안침식을 모니터링하기 위한 기초자료로 활용할 수 있다. 해양 환경 및 수산자원 보존 측면에서는 연안의 해양 환경 및 수산자원을 파악하고 보존하기 위한 의사결정을 지원할 수 있으며, 재난재해 및 기후변화에 대처할 수 있는 기초자료로 활용할 수 있다. 따라서 항공 원격탐사 자료를 이용한 연안해역 재질조사가 현업에서 이루어 질 수 있도 록 제도화 할 필요가 있다. 또한 재질 분류의 세분화와 정확도 향상을 위하여 지속적인 분광반사자료 수집을 통해 현업에서 이용할 수 있는 분광라 이브러리 구축이 필요하다.

참 고 문 헌

강준묵, 강영미, 이형석 (2004), 도심의 정밀 모니터링을 위한 LiDAR 자 료와 고해상영상의 융합, 한국측량학회 2004년도 춘계학술발표회 논문집, 한국측량학회.

국립해양조사원 (2015), 동해항 수로측량 결과보고서, 국립해양조사원.

국립해양조사원 동해해양조사사무소 (2015), 포항항 수로측량 결과보고서, 국립해양조사원.

김근용, 엄진아, 최종국, 유주형, 김광용 (2012), 수중음향과 Kompsat-2 위성영상을 이용한 해초지 분포 추정, 바다: 한국해양학회지, 17(3), pp.181-188, 한국해양학회.

김선화, 양찬수 (2015), 연안 해역 모니터링을 위한 초분광영상 처리기법 현황, 한국지리정보학회지, 18(1), pp.48-63, 한국지리정보학회.

김선화, 이규성, 마정림, 국민정 (2005), 초분광 원격탐사의 특성, 처리기법 및 활용 현황, 대한원격탐사학회지, 21(4), pp.341-369, 대한원격탐사학회.

김종수 (2013), 고해상도 위성영상과 LiDAR 자료를 융합한 산림 바이오 매스 산정, 상지대학교 대학원 석사 학위논문, 상지대학교. 김태훈, 최영웅, 최종국, 권문상, 박흥식 (2013), 마이크로네시아 웨노섬 연 안 서식지 분포의 현장조사와 위성영상 분석법 비교, Ocean and Polar Research, 35(4), pp.395-405, 한국해양과학기술연구원.

김현호 (2014), 초분광 항공영상과 LiDAR DEM을 이용한 연안지역의 공 간정보 추출, 금오공과대학교 대학원 박사 학위논문, 금오공과대학교.

민지은, 유주형, 최종국, 박홍식 (2010), 고해상도 위성영상을 이용한 산호 초 서식환경 모니터링: 축라군 웨노섬을 중심으로, Ocean and Polar Research, 32(1), pp.53-61, 한국해양과학기술연구원.

서동주, 김진수 (2008), EO-1 Hyperion 영상을 이용한 연안해역의 수심 추출, 한국해양정보통신학회 논문지, 12(4), pp.716-723, 한국해양정보통신 학회.

신은솔 (2013), 지상라이다와 근적외선영상 자료의 융합을 통한 식생추출, 남서울대학교 대학원 석사 학위논문, 남서울대학교.

양인태, 조영헌 (2014), 초미세분광 측정치를 이용한 해저지형 변화산정, 대한토목학회논문집, 34(4), pp.1335-1342, 대한토목학회.

오윤석, 김병국, 김형수 (2005), 우리나라 연안해역 해저정보조사의 필요성 및 조사방향에 관한 연구, 한국공간정보시스템학회 논문지, 13(1), pp. 65-79, 한국공간정보학회. 윤여상 (2007), 초분광 원격탐사자료를 이용한 객체기반 영상융합 기법 연 구, Proceedings of the KSRS spring conference, 대한원격탐사학회.

윤준희 (2007), 항공영상과 라이다로부터 도심지역의 도로 추출, Purdue University 대학원 박사 학위논문, Purdue University.

정재욱, 장휘정, 김유석, 조우석 (2005), LiDAR 데이터와 수치항공사진을 이용한 건물 자동추출, 한국지형공간정보학회지, 13(3), pp.59-67, 한국지형 공간정보학회.

최해종 (2014), 초분광영상의 해안선 토지피복분류에 관한 연구, 경기대학 교 대학원 석사 학위논문, 경기대학교.

허아영, 최승원, 이재훈, 김태형, 박동조 (2010), 초분광 분해기의 광학계 설계 및 영상 처리, 한국군사과학기술학회지, 13(2), pp.328-335, 한국군사 과학기술학회.

Briggs, J. M., Nellis, M. D. (1991), Seasonal variation of heterogeneity in the Tallgrass prairie : A quantitative measure using remote sensing, Photogrammetric Engineering & Remote Sensing, 57(4), pp.407–411, ASPRS.

Caras, T., Karnieli, A. (2015), Ground-Level Classification of a Coral Reef Using a Hyperspectral Camera, Remote Sensing, 7(6), pp.7521-7544, DOAJ.

Ciraolo, G., Cox, E., La Loggia, G., Maltese, A. (2006), The classification of submerged vegetation using hyperspectral MIVIS data, ANNALS OF GEOPHYSICS, 49(1), pp.287–294, DOAJ.

Dimitris G. Stavrakoudis, Eleni Dragozi, Ioannis Z. Gitas, Christos G. Karydas (2014), Decision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping, Remote Sensing, 6(8), pp.6897–6928, DOAJ.

Folk, R. L., Ward, W. C. (1957), Brazos River bar, a study in the significance of grain size parameters, Journal of Sedimentary Petrology, 27(1), pp.3–26.

Goetz, A. F. H. (2009), Three Decades of Hyperspectral Remote Sensing of the Earth : a Personal View, Remote Sensing of Environment, 113(1), S5–S16, Elsevier.

Goetz, A. F., Vane, G., Solomon, J. E., Rock, B, N. (1985), Imaging spectrometry for Earth remote sensing, Science (New York, N.Y.), 228(4704), pp.1147–1153, The American Association for the Advancement of Science.

Headley, J. D., Harborne, A. R., Mumby, P, J. (2005), Simple and

robust removal of sun glint for mapping shallow water benthos, International journal of remote sensing, 26(10), pp.2107–2112, Taylor & Francis; 1999.

Herold, M., Roberts, D. A., Gardner, M. E., Dennison, P. E. (2004), Spectrometry for urban area remote sensing-Development and analysis of a spectral library from 350 to 2400 nm, Remote Sensing of Environment, 91(3), pp.304–319, Elsevier.

Ian A. Leiper, Stuart R. Phinn, Chris M. Roelfsema, Karen E. Joyce, Arnold G. Dekker (2014), Mapping Coral Reef Benthos, Substrates, and Bathymetry, Using Compact Airborne Spectrographic Imager(CASI) Data, Remote Sensing, 6(7), pp.6423–6445, DOAJ.

International Hydrographic Organization (2011), Manual on hydrography, Publication C-13, International Hydrographic Bureau (Monaco), pp.199–246.

Jensen, J. R. (2000), Remote sensing of the environment: an Earth resource perspective. New Jersey: Prentice Hall, pp.544.

Jensen, J. R. (2005), Introductory digital image processing: a remote sensing perspective edition, upper saddle river.

Karaska, M. A., Huguenin, R. L., Beacham, J. L., Wang, M. H., Jensen, J. R., Kaufmann, R. S. (2004), AVIRIS Measurements of Chlorophyll,

Suspended Minerals, Dissolved Organic Carbon, and Turbidity in the Neuse River, North Carolina, Photogrammetric Engineering & Remote Sensing, 70(1), pp.125–133, ASPRS.

Lyzenga, D. R. (1978), Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features, Applied Optics, 17(3), pp.379–383, OSA.

MacDonald, J. S., Ustin, S. L., Schaepman, M. E. (2009), The contributions of Dr. Alexander F. H. Goetz to imaging spectrometry, Remote Sensing of Environment , 113, S2–S4, Elsevier.

Mishra, D. R., Narumalani, S., Rundquist, D., Lawson, M., Perk, R. (2007), Enhancing the detection and classification of coral reef and associated benthic habitats: A hyperspectral remote sensing approach, Journal of Geophysical Research, 112(C8), AGU AMERICAN GEOPHYSICAL UNION.

Stumpf, R. P., Holderied, K., Sinclair, M. (2003), Determination of water depth with high-resolution satellite imagery over variable bottom types, Limnology and Oceanography, 48(1/2), LIMNOLOGY AND OCEANOGRAPHY.

Varshney, P. K., Arora, M. K. (2004), Advanced image processing techniques for remotely sensed hyperspectral data, Springer.

Zavalas, R., Ierodiaconou, D., Ryan, D., Rattray, A., Monk, J. (2014), Habitat Classification of Temperate Marine Macroalgal Communities Using Bathymetric LiDAR, Remote Sensing, 6(3), pp.2154–2175, DOAJ.

Zhang, Y. (2001), Texture-Integrated classification of urban treed areas in high-resolution color-infrared imagery, Photogrammetric Engineering & Remote Sensing, 67(12), pp.1359–1365, ASPRS.

Zoffoli, M. L., Frouin, R., Kampel, M. (2014), Water column correction for coral reef studies by remote sensing, Sensors (Basel, Switzerland), 14(9), pp.16881–16931, DOAJ.

<부 록>

부록 1. 160개 검증점 좌표 및 재질

П	위도				اح [[ح		
	도	분	초	도	분	초	~11 / 겉
R-01	37	50	59.04	128	52	29.79	암반
R-02	37	50	58.77	128	52	20.34	암반
R-03	37	50	58.56	128	52	38.10	암반
R-04	37	50	57.76	128	52	53.98	암반
R-05	37	50	57.72	128	52	50.75	암반
R-06	37	50	55.56	128	53	01.06	암반
R-07	37	50	53.94	128	52	28.86	암반
R-08	37	50	50.25	128	53	07.38	암반
R-09	37	50	49.95	128	52	30.10	암반
R-10	37	50	49.65	128	52	54.69	암반
R-11	37	50	43.40	128	52	41.03	암반
R-12	37	50	42.87	128	52	56.05	암반
R-13	37	50	42.35	128	52	58.06	암반
R-14	37	50	40.63	128	52	55.24	암반
R-15	37	50	39.84	128	52	48.04	암반
R-16	37	50	36.32	128	52	56.43	암반
R-17	37	50	35.69	128	53	19.31	암반
R-18	37	50	35.30	128	53	19.22	암반
R-19	37	50	35.20	128	52	48.09	암반
R-20	37	50	34.68	128	53	20.82	암반
R-21	37	50	33.48	128	53	15.09	암반
R-22	37	50	33.31	128	52	41.26	암반
R-23	37	50	31.70	128	53	19.64	암반
R-24	37	50	24.96	128	52	55.71	암반
R-25	37	50	24.14	128	52	45.20	암반
R-26	37	50	20.71	128	52	53.88	암반
R-27	37	50	13.12	128	53	01.99	암반
R-28	37	50	13.00	128	53	09.23	암반
R-29	37	50	06.76	128	53	04.09	암반
R-30	37	49	50.31	128	53	42.77	암반
R-31	37	49	48.75	128	53	29.32	암반
R-32	37	49	47.75	128	53	42.41	암반
R-33	37	49	45.81	128	53	44.25	암반
R-34	37	49	45.76	128	54	04.09	암반

П	위도				ا ح الح		
	도	분	초	도	분	초	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R-35	37	49	45.59	128	53	55.30	암반
R-36	37	49	41.95	128	53	46.55	암반
R-37	37	49	38.62	128	53	59.28	암반
R-38	37	49	36.25	128	54	06.64	암반
R-39	37	49	35.73	128	53	28.02	암반
R-40	37	49	35.16	128	53	42.35	암반
R-41	37	49	33.66	128	53	28.23	암반
R-42	37	49	33.05	128	54	14.91	암반
R-43	37	49	28.15	128	53	37.12	암반
R-44	37	49	25.42	128	54	16.02	암반
R-45	37	49	25.22	128	54	05.76	암반
R-46	37	49	23.17	128	53	25.06	암반
R-47	37	49	20.63	128	53	48.21	암반
R-48	37	49	17.88	128	53	51.49	암반
R-49	37	49	16.66	128	53	36.48	암반
R-50	37	49	16.08	128	53	32.23	암반
R-51	37	49	14.51	128	53	58.00	암반
R-52	37	49	13.09	128	53	35.22	암반
R-53	37	49	11.28	128	54	18.33	암반
R-54	37	49	10.46	128	54 /	02.30	암반
R-55	37	48	50.18	128	54	49.20	암반
R-56	37	48	48.93	128	54	31.12	암반
R-57	37	48	48.40	128	54	51.74	암반
R-58	37	48	47.87	128	54	45.89	암반
R-59	37	48	46.89	128	54	37.79	암반
R-60	37	48	46.64	128	54	41.02	암반
R-61	37	48	46.45	128	54	15.09	암반
R-62	37	48	40.90	128	54	43.69	암반
R-63	37	48	39.88	128	54	35.34	암반
R-64	37	48	38.78	128	54	34.73	암반
R-65	37	48	37.43	128	54	53.83	암반
R-66	37	48	36.58	128	54	48.03	암반
R-67	37	48	30.51	128	54	44.64	암반
R-68	37	48	29.64	128	54	47.01	암반
R-69	37	48	25.95	128	54	59.61	암반
R-70	37	48	25.93	128	54	39.25	암반
R-71	37	48	24.62	128	55	00.97	암반

	의도				Τ		
ID	Г	- 키고 ㅂ	ラ	E			재질
D_79	エ 27	· 전 10	조 24.16	エ 199	- 도/	56.02	૦ે-મો-
D_{-72}	27	40	24.10	120	55	11.80	- 금민 아바
\mathbf{D}_{-74}	27	40	23.90	120	54	56.24	아바
P_{-75}	27	40	23.10	120	55	12.00	아바
R_{-76}	37	40	21.33	120	54	12.09	아바
R_{-77}	37	40	16.03	120	54	59.67	아바
R-78	37	40	10.33 16.74	120	55	13.07	아바
R_{-70}	37	40	15.83	120	55	10.41	아바
R = 80	37	40	11.00	120	55	10.75	아바
<u> </u>	51	40	11.31	120	- 55	00.00	
S-01	37	51	00.51	128	52	15.10	모래
S-02	37	50	55.75	128	52	54.89	모래
S-03	37	50	53.41	128	52	17.94	모래
S-04	37	50	52.41	128	52	29.36	모래
S-05	37	50	50.61	128	52	43.03	모래
S-06	37	50	48.64	128	52	52.11	모래
S-07	37	50	44.38	128	53	11.52	모래
S-08	37	50	43.70	128	53	14.87	모래
S-09	37	50	42.75	128	52	35.31	모래
S-10	37	50	35.52	128	52	39.08	모래
S-11	37	50	31.88	128	53	05.77	모래
S-12	37	50	31.07	128	53	11.37	모래
S-13	37	50	28.75	128	53	21.93	모래
S-14	37	50	26.57	128	53	16.37	모래
S-15	37	50	26.29	128	52	58.86	모래
S-16	37	50	22.47	128	53	07.13	모래
S-17	37	50	22.44	128	53	09.87	모래
S-18	37	50	16.01	128	53	04.89	모래
S-19	37	50	15.53	128	53	11.36	모래
S-20	37	50	11.00	128	53	21.51	모래
S-21	37	50	05.45	128	53	24.71	모래
S-22	37	50	05.37	128	53	43.36	모래
S-23	37	50	04.92	128	53	10.76	모래
S-24	37	50	04.62	128	53	34.24	모래
S-25	37	50	03.61	128	53	32.57	모래
S-26	37	50	02.84	128	53	02.37	모래
S-27	37	50	00.74	128	53	19.77	모래

П	위도				اح (ا		
	도	분	초	도	분	초	/川/己
S-28	37	49	59.79	128	53	11.09	모래
S-29	37	49	58.72	128	53	04.39	모래
S-30	37	49	51.42	128	53	13.89	모래
S-31	37	49	50.92	128	52	53.68	모래
S-32	37	49	50.15	128	53	38.60	모래
S-33	37	49	49.36	128	52	57.20	모래
S-34	37	49	47.07	128	53	38.77	모래
S-35	37	49	46.97	128	53	36.68	모래
S-36	37	49	46.52	128	53	48.92	모래
S-37	37	49	43.86	128	53	09.97	모래
S-38	37	49	43.51	128	53	13.86	모래
S-39	37	49	36.54	128	53	27.57	모래
S-40	37	49	36.51	128	53	21.52	모래
S-41	37	49	34.56	128	53	54.82	모래
S-42	37	49	30.41	128	53	57.69	모래
S-43	37	49	29.80	128	53	34.86	모래
S-44	37	49	28.07	128	53	54.71	모래
S-45	37	49	25.78	128	54	15.12	모래
S-46	37	49	23.73	128	53	32.30	모래
S-47	37	49	21.93	128	53	50.22	모래
S-48	37	49	18.16	128	53	46.87	모래
S-49	37	49	16.24	128	53	41.10	모래
S-50	37	49	16.11	128	53	40.12	모래
S-51	37	49	09.69	128	54	11.30	모래
S-52	37	49	07.36	128	53	50.28	모래
S-53	37	49	05.46	128	53	58.62	모래
S-54	37	49	01.93	128	54	10.86	모래
S-55	37	49	01.44	128	54	12.62	모래
S-56	37	48	58.31	128	54	34.75	모래
S-57	37	48	56.06	128	54	13.73	모래
S-58	37	48	54.42	128	54	31.40	모래
S-59	37	48	53.97	128	53	56.18	모래
S-60	37	48	52.56	128	54	21.01	모래
S-61	37	48	52.52	128	54	06.45	모래
S-62	37	48	52.07	128	54	17.82	모래
S-63	37	48	47.82	128	54	11.00	모래
S-64	37	48	43.43	128	54	12.77	모래

m	위도				اح (اح		
	도	분	초	도	분	초	세셜
S-65	37	48	41.94	128	54	12.15	모래
S-66	37	48	41.57	128	54	32.40	모래
S-67	37	48	40.36	128	54	16.53	모래
S-68	37	48	39.58	128	54	21.77	모래
S-69	37	48	38.57	128	54	16.70	모래
S-70	37	48	37.60	128	54	17.19	모래
S-71	37	48	37.12	128	54	27.95	모래
S-72	37	48	34.89	128	54	35.84	모래
S-73	37	48	32.13	128	54	36.54	모래
S-74	37	48	17.92	128	54	43.88	모래
S-75	37	48	14.05	128	55	16.40	모래
S-76	37	48	12.87	128	55	01.23	모래
S-77	37	48	10.53	128	54	56.61	모래
S-78	37	48	03.64	128	55	18.57	모래
S-79	37	48	02.31	128	55	20.33	모래
S-80	37	48	00.48	128	54	58.54	모래

감사의 글

2012년 말 내가 몸담고 있는 국립해양조사원이 인천에서 부산으로 이전 함으로서 해양조사원의 부산시대가 시작되었다. 부산은 나에게는 낯설지 않은 곳이다. 30여년 전인 1981년 해양조사원에 공무원으로 처음 임용되어 발령받은 곳이 바로 이곳, 당시 수로국 부산출장소였다. 그래서 부산에서 3년 반 동안 생활했고 그 후로도 간간이 출장을 왔기 때문에 낯설지가 않다. 아마도 나에게 우연인지 운명인지는 모르겠지만 여기 부산이 처음 부임지 이자 퇴임지가 될 것 같다. 아무튼 부산은 나와 인연이 많은 것 같다.

해양조사원이 동삼동 해양클러스터 지구로 이전해 오면서 부산에 있는 해양수산관련 기관 및 대학 등과 MOU 체결을 통한 협력이 활발하게 이루 어졌고, 그 중의 하나가 부경대학교와의 수로학과 신설이었다. 수로학과 개 설은 당시 김석현 원장님과 부경대학교 김영섭 총장님 두 분의 적극적인 지원으로 이루어졌다. 그래서 2013년도 후반학기에 부경대학교에 수로학연 협동과정(수로학과)이 정식으로 개설되어 나도 박사과정에 입학하여 늦깎이 학생이 되었다. 수로학과 개설을 적극적으로 지원해 주신 두 분께 먼저 감사의 인사를 드립니다. 저에게는 두 분이 아니었다면 오늘의 영광도 없었을 것입니다.

그리고, 2년 동안 열정만 있지 도통 이해력이 떨어지는 늦깎이 학생들을 가르치시느라 고생하신 윤홍주 교수님, 이재철 교수님, 이양원 교수님, 김대철 학장님 그리고 저의 논문지도를 맡아 주신 서용철 교수님께 진심 으로 감사를 드립니다. 늦었지만 열정으로 함께 공부를 시작한 우리 학우들 에게도 늘 감사했고 덕분에 대학원 생활이 즐거웠다는 말씀을 드립니다. 또한, 음으로 양으로 격려와 도움을 준 조사원의 많은 동료 직원들과 논문을 작성하는데 많은 자료를 찾아 모아주고 또 이를 처리, 분석하는데 지원과 수고를 아끼지 않은 신정일 박사에게 특히 감사의 말을 전합니다.

가정은 인천에 있고 직장은 부산에 있어 주말에나 아니면 격주에 한번씩 집에 오는 아빠를 반겨주고 걱정해 주는 우리 가족에게도 감사의 말을 전한다. 부모의 아무런 도움도 없이 외국의 선진 기술과 문화를 더 배워 보겠다고 호주로 떠난 큰딸 나리, 유학비는 커녕 비행기표 하나도 사주지 않았는데 혼자 아르바이트로 나름 열심히 생활하며 공부하고 있어 든든하기 그지없다. 고맙다. 그리고 언니를 따라 외국의 문물을 몸소 느껴 보겠다며 학교까지 휴학하고 몇 달간 호주를 다녀오고 나서 마음씀씀이나 모든 행동이 어른스럽고 생각이 성숙된 둘째 새롬이도 고맙다. 주말에나 가끔 만나는 데도 아무 탈없이 착하고 건강하게 학교생활을 스스로 열심히 잘 하고 있는 고3 수험생 셋째 은결이와 막내아들 민석이에게도 미안하고 고맙다는 말을 전하고 싶다.

그리고 마지막으로 가장 중요한 한 사람, 나이들어 공부하는데 힘들지 않느냐, 잘 되어가느냐며 걱정하며 속 깊은 내조를 아끼지 않았고 26년간 함께 살아오면서 나와 아이들 넷의 뒷바라지를 하느라 자신의 삶을 양보한 내 사랑하는 아내 김애경 님에게 감사의 마음과 함께 이 영광을 드립니다.

끝으로, 지천명의 나이에 박사과정을 완수하면서 평소 나의 좌우명으로 여겨온 '매사에 최선을 다하고 하늘의 뜻을 기다리자'는 '盡人事待天命'이라는 성어의 뜻을 다시한번 되새기며 감사의 말씀을 마칩니다.

2016. 5월 어느 날에