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Chapter 1

Introduction

Geometric function theory is one of the most essential branch of complex anal-
ysis, which works the geometric properties of complex analytic functions. In
1851, Riemann stated impressive consequence in geometric function theory that

is Riemann mapping theorem ([102]).

Theorem 1.0.1. (Riemann mapping theorem)[102, 32| Let D be a simply
connected domain which is a proper subset of the complex plane C. Let ¢ be a
given point in D . Then there is a unique function f which maps D conformally

onto the unit disk E = {z € C : |z| < 1} and has the properties f(¢) = 0 and
f'(¢) >0

In geometric function theory, the theory of univalent functions is the essential
topic, born around the turn of the century, yet it remains an active field of
current research. Progress has been especially rapid in recent years. Above all,
we consider the class S of functions f analytic and univalent in [E, normalized

by the conditions f(0) =0 and f’(0) = 1. Hence, each f € § is expressed by a

1



Taylor series expansion as:
f(z)=2z+ Zanz”, z € E.
n=2
The remarkable example of f € § is the Koebe function

k(2) =2(1—2)2=2+222 432+

One of the major problems of the field is the Biberbach conjecture as follows.

Theorem 1.0.2. (Bieberbach Comnjecture)[12, 32] The coefficients of each
function f € S satisfy |a,| < n for n=2,3,--- . Strict inequality holds for all

n unless f is the Koebe function or one of its rotations.

For a number of years this conjecture has stood as a challenge to all math-
ematicians and has promoted the growth of important new methods in com-
plex analysis. To this date it has been proved only for n = 2,3,4,5 and 6
([12, 59, 34, 93, 94, 86]). In 1985, Louis de Branges [24] proved this conjecture
finally, for all coefficients n , that is now renowned as de Branges Theorem.

In present thesis, we establish various new subclasses of analytic functions as
using certain linear operators. We concern some basic properties of these classes
for instance, coefficient problems, convolution properties and some other topics.
The details are as follows.

In Chapter 2, we review and assemble for later reference some of the general
principles of complex analysis which underlie the theory of univalent functions.
We do not underline proofs of the consequences but offer suitable references.

In Chapter 3, we present new subclass of bi-univalent functions defined by
convolution in [E. Furthermore, we get estimates on the second and the third

coefficients for functions belonging to the subclass.



In Chapter 4, we determined the order of convexity of a integral operator
Ty (v, Biy Vi fis 95, hii € N). Moreover, we obtain sufficient restrictions for the
operator Z, (v, B, vi; fis 9i» hi; i € N) to be univalent in E

In Chapter 5, we obtain some mapping and inclusion relations for subclasses
of analytic functions by using a linear operator defined by the Gaussian hyperge-
ometric function. We derive a necessary restriction for the class R*(C, D, ¢) and
sufficient restrictions for the classes R'(C, D, o), UST (0) and UCV(p), respec-
tively.

In Chapter 6, we gives some applications of the first-order differential subor-
dinations. We also extend and improve several previously known results.

In Chapter 7, we obtain some characterizations for the generalized Bessel
functions of the first kind to be in the subclasses SpT (v,0), UCT (v,0), PT (v),
and CPT(v) of analytic functions. Furthermore, we find an integral operator
associated with the generalized Bessel functions.

In Chapter 8, we obtain some geometric properties such as starlikeness and
convexity, for normalized Lommel functions of the first kind. For the purpose of
verifying our principal consequences, we apply the concept of differential subor-

dinations and some inequalities.



Chapter 2

Preliminaries

The purpose of this preliminary chapter is to review and assemble for later refer-
ence some of the general principles of complex analysis which underlie the theory
of univalent functions. We do not underline proofs of the consequences but offer

suitable references.

2.1 Analytic and univalent functions

In present section, we briefly introduce the classes A and S, consisting of nor-
malized analytic functions and normalized univalent functions, respectively, and
we also show few of their basic properties.

Analytic functions are defined on an open subset of C, that are differentiable.
Complex differentiability has much stronger consequences than real differentia-

bility. The definition of analytic functions is as follows.

Definition 2.1.1. (¢f. [114]) A function f is called to be analytic at a point if

it is differentiable everywhere in some meighborhood of the point. A function f
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s analytic i a domain D if it is analytic at every point in D. Furthermore, a

function analytic at every point in the complex plane is called an entire functions.

Definition 2.1.2. A function f is called to be in the class A, if it is analytic
in E and normalized by the conditions f(0) = 0 and f'(0) = 1. The function

f € A is expressed by the following power series representation

f(2) :z+Zanz”, z € E. (2.1.1)
n=2

Definition 2.1.3. (cf. [32, 114]) A function h is called to be univalent in D C C,
if it never takes the same value twice; that is, if h(C1) # f((2) for all pairs of
distinct points ¢ and (y in D with ¢ # (3. That is, h is a one-to-one(or
injective) mapping of D onto another domain. Analytically, a univalent function
has a nonvanishing derivative and geometrically, a univalent function maps simple

curves onto simple curves.
We shall consider firstly the class S as follows:

Definition 2.1.4. (¢f. [114]) The class of all functions f, denoted by S, are
analytic and univalent in E, and are normalized by the conditions f(0) =0 and

f'(0) =1. Hence, each f € S is expressed by (2.1.1).

2.2 Several subclasses of univalent functions

Definition 2.2.1. (¢f. [11}]) A set D C C is called to be starlike with respect
to zo, if the staight line segment connecting any point in D to zy is contained in
D. A function f € S is called to be starlike with respect to the origin if the disk
E by f onto a domain starlike with respect to the point w = 0. We shall denote

this subclass of f €S by feS*.



Definition 2.2.2. (c¢f. [114]) The set D is said to be convex if the straight line
segment connecting any two points in D is contained D. A function f € S is

called to be convex if the disk E is mapped by f onto convex domain. We shall
denote this subclass of f € S by f €C.

Analytically, convex and starlike functions are described the following two defi-

nitions.

Definition 2.2.3. (Study. [118]) Let f € S. Then

zh"(z)
e

heC<:>i)%<1+ >>0,zeE. (2.2.1)

Definition 2.2.4. (Nevanlinna. [73]) Let h € S. Then

zh'(z)
h(2)

hes*@%< >>0,zeE. (2.2.2)

These classes C,S8* and S are related as follows:
ccS*cScA

Alexander [1] revealed analytic relation between convex and starlike functions

firstly in 1915.

Theorem 2.2.1. [1/(Alezander’s Theorem) Let h be analytic in E, with h(0) = 0
and h'(0) =1. Then

helC < z21/(z)e 8"

The concept of the classes C(p) and S*(p) of convex and starlike functions of
order o, 0 < p < 1, respectively were given by Robertson [103] in 1936, and
defined by as follows:

C(o) = {h AR (1 + ZZ;?) >0, 2 € IE} , (2.2.3)

6



S*(o0) = {heA:%('ﬁ?) > o, zeE}. (2.2.4)

The next properties are renowned.
(i) By taking o =0, we derive the classes C and S*.
(i) C(o) CC, S*(0) CS* and C C S* (3) -

Let us offer references [30, 40, 103], for details.

2.3 Differential subordination

Simply stated, a differential subordination in the complex plane is the gener-
alization of a differential inequality on the real line (cf. [68]). The notion of
differential subordination was intiated by Lindeléf [54] and basis of this theory
were created by Miller and Mocanu (see, [63, 64]). We previously offer a definition

of differential subordination, the following is needed.

Definition 2.3.1. An analytic function w € E is called to be Schwarz function

if it satisfies following conditions

w(0) =0 and |w(z)| <1 forz € E

Definition 2.3.2. /68, 54] Let q,Q € A. Then the function q is called to be
subordinate to @ written q < Q or q(z) < Q(z), if there exists a function w
analytic in K, with

w(0) =0 and |w(z)| < 1,

and such that



If Q) is univalent in E, then

¢=Q <= ¢(0)=0Q(0) and q(E) C Q(E).

2.4 Uniformly convex and uniformly starlike func-
tions

Goodman [41, 42] presented the notions of uniform convexity and uniform star-
likeness for analytic and univalent functions, and provided proper subclasses such
as C and S8*, which mean classes of convex and starlike functions, respectively.

Uniform classes are defined by geometrical mapping properties.

Definition 2.4.1. [/1] A function h € E is called as uniformly convez, if h is
a normalized convex function and has the property that for every circular arc r

contained in K, with center ¢ also in K, the image arc h(C) is a conver.

Definition 2.4.2. [42] A function h € E is called to be uniformly starlike, if h
1s a normalized starlike function and has the property that for every circular arc
r contained in E, with center ¢ also in E, the image arc h(() is a starlike with

respect to h(().

Goodman stated the classes of uniformly convex functions and uniformly starlike

functions by UCV and UST respectively, and these are as follows.

Definition 2.4.3. [}1] Let h € A. Then

helUCy < R {1 +(z—0) Z:(;)} >0, (2.4.1)

for every (z,¢) in ExE.



Definition 2.4.4. [42] Let h € A. Then

heUST — m{%} >0, (2.4.2)

for every (z,¢) in ExE.

By taking ¢ =0 in (2.4.1) and (2.4.2) we obtain the conditions of C and S*.
Ma and Minda [61] and Rgnning [105] discovered their own result respectively
and a more applied single variable property for UCV and UST , as follows.

Definition 2.4.5. Let h € A. Then

zh'(z) A4 )
helCV <= 9%{1+ W) }> W) | z € E. (2.4.3)
Definition 2.4.6. Let h € A. Then
zh (2) zh (2)
—1 E. 2.4.4
heuST@m{ h(z)}> 8 , ZE ( )

2.5 Circular domains

Janowski presented circular domain in 1973, as belows.

Definition 2.5.1. [/5] Let P be an analytic function with P(0) = 1. Then

14+Cz

PePIC.D] & P() <5

~1<D<C<1. (2.5.1)

Janowski also introduced C[C, D] and S*|C, D] and these mean the classes of

Janowski convex and Janowski starlike functions, respectively.

Definition 2.5.2. [/5] Let h € A. Then

zh"(2)

heClC,D] <— 1+ )

e P[C, D). (2.5.2)



Definition 2.5.3. [45] Let h € A. Then

2l (2)
h(z)

Alexander type relation satisfies between C[C, D] and S*[C, D].

h e §*[C, D] <~

e P[C, D]. (2.5.3)

Remark 2.5.1. By taking C =1 and D = —1, we obtain C|[C,D] = C and
S*[C, D] = S*.

Janowski functions are studied by many scholars like Noor [74, 78], Polatoglu

[97, 98], Cho [16, 17] and Liu et.el. [55, 56, 57]

2.6 Convolution

The convolution (cf. [32]), or Hadamard product, of two power series
i (2= kazk, z€E
k=1

and
g(z) = anzk, z€E
k=1

convergent in [E is the function h = f % g with power series
oo
h(z) = kankzk, z € E.
k=1

The term ” convolution” arises from the formula

, 1 [ , ,
h(re®) —/ f (rez(e_t)) gleMdt, r < 1.
0

:27T

z
1—=z

The geometry series 1(z) = Y oo, 2" = roles as identity element under

convolution such as,

(fx0)(z)=f(z) =(lxf)(2), forall fe A.

10



2.7 Hypergeometric functions

Hypergeometric functions (cf. [68]) are known as special functions, because these
functions are the solution of special types of differential equations. Recently,
many authors (see, [17, 79]) applied hypergeometric functions to define various
integral and convolution operator. Here we discuss two types of hypergeometric

functions that is the Kummer and Guass hypergeometric functions.

Let b,d € C with d # 0,—1,—2,---. The function

1) 22
qj(bad??«'):1F1(b,d;z):1+93+ bb+1) z

anl T ddsn 2 (2.7.1)

is called the confluent (or Kummer) hypergeometric functions, analytic in E and

obey the Kummer’s differential equation

2w”(2) 4+ [d — z]w'(2) — cw(z2) = 0.

The Pochhammer symbol denoted by (v); is defined by

[(v+ k)

W = ) (2.7.2)

1 if k=0,
viv+1)(v+2)---(v+k—1) if keN,

where I'(v) denote the gamma function. Then equation (2.7.1) can be express as

U(b,d;z) = i——' (2.7.3)




Let b,d,e € C with e #0,—1,—2,--- . The function

F(b,d,e;z) = oF1(b,d,e; 2)

_ bz bt Ddd+1) 22 (2.7.4)
= e 1! 6(6 + 1) 9l )

is said to be the (Gaussian) hypergeometric functions, is analytic in E and com-

plies the hypergeometric differential equation
2(1—2)w"(z) +[e— (b+d+ 1)z]w'(z) — bdw(z) =0 (2.7.5)

As using the symbol offered in (2.7.2), we can rewrite F' as

F(b,d,e;z) = Z%E (2.7.6)
_ T(e) _TO+KI(d+Fk)
4 BOI(d) - Te + &), T\ %

2.8 Convolution operator related to hypergeo-
metric functions

Consider the linear operator I,(b,d, e, q) : A(q) — A(q) defined by
I,(b,d,e)h(z) = (2% F(b,d,e;2)) " * h(2), (2.8.1)

where b,d,e € R, except 0,—1,—2,--+,0> —q, 2 € E and (o3F1(b,d,e;2))7 ! is

given by
q . q <)) = —Zq
(Z 2Fl(b>d7€7 Z))*(Z 2Fl<b>d7€7 Z)) - (1—|—Z)g+q‘
Simply, we express that
I,(b,d,e) =27+ Z Q+ L 2, (2.8.2)

where (v) is the Pochhammer symbol given by (2.7.2).

12



Chapter 3

Bi-univalent functions associated

with subordination

3.1 Introduction

Let A denotes the class of functions defined by (2.1.1), which are analytic in
E. And S is the class of all functions in .4 which are univalent in E. For f(z)

expressed by (2.1.1) and ¥(z) defined by
U(z) =2+ igﬁnz" (Y >0), (3.1.1)
n=2
the Hadamard product (f x W) of the functions f and W is defined as follows.
(f*\If)(z):z—l—ianwnz”: (U f)(2). (3.1.2)
n=2
A renowned concept that every function ¢ € S has an inverse ¢!, defined by

¢ (@) =¢ (C€E)

13



and

_ 1
) = (ol <) m(o) = )
where
¢ (W) = w — aw? + (243 — as)w® — (5as — Sasas + ag)w* + -+ . (3.1.3)

I are univalent

A function g € A is called to be bi-univalent in E if both ¢ and ¢~
in E. Let ¥ denotes the class of bi-univalent functions in E given by (2.1.1). To

obtain our primary consequences, we shall consider the next lemma.

Lemma 3.1.1. [99] Let p € P the family of all functions p analytic in E for
which Rep(z) > 0 and have the form p(z) = 1+ p1z + p22® + p3z® + -+ for z
e E. Then |p,| <2, for each n.

Definition 3.1.1. For 0 < o < 1;\ > 1, a function f € ¥ given by (2.1.1) is

called to be in the class Hx(h, 0, \) if the next conditions are satisfied:

C(f = h)'(¢) _or
arg <(1 = V(= 1))+ X(f * h)’(g‘)) ‘ ; C€E) (3.1.4)
and
: oA(f * W) L
e ((1 — N (f *h)"Hw) + dw((f *h)=1)( )) <5 (weE) (3.1.5)

where the functions h(¢) and (f * h)~}(w) are defined by

<+Zhg (hy > 0) (3.1.6)

and

(fxh) " (w) = w—aghow?® + (20303 — ashs)w® — (5ash — Sashoashs +aghy)w* +- - -
(3.1.7)

14



Definition 3.1.2. For 0 < n < ;A > 1, a function f € ¥ given by (2.1.1) is
called to be in the class Hx(h,n, \) if the next conditions are satisfied:

¢(f *h)'(¢)

Re(u—xxf*m«>+Aaf*mwo):>”(CEE) (3.18)

and

e (5 1) ()
(= N+ B) @) + (= ) 1) ()

In this chapter, we obtain estimates on the coefficients |as| and |as| for functions

) >n (wekE). (3.1.9)
in subclass of 3 by using the methods from Deniz [26].

3.2 Main results

Let ¢ be an analytic function with positive real part in E such that ¢(0) = 1,¢'(0) > 0
and p(E) is symmetric with respect to the real axis. This function is expressed

by a series expansion of the form:
@(2) =1+ Bz + Ba2® + B32® + -+ (B > 0). (3.2.1)

Now we present the class of bi-univalent functions as belows.

Consider the functions p and ¢ by

p(z) = 11——552 =1+piz+pz+-- (3.2.2)
and
q(z) :== 1 t:z; =14+ qz+ g+ (3.2.3)
It follows that
p(z) =1

p(z) +1 % {plz * (p2 - p;) 2t } (3.2.4)



and

Then p and ¢ are analytic in E with p(0) = ¢(0) = 1. Since u, v: E — E,
the functions p and ¢ have a positive real part in E, and |p;| < 2 and |¢| < 2

for each 7.

Definition 3.2.1. Let 0 < A < 1 and v € C\{0}. A function f € ¥ given by
(2.1.1), is called to be in Hx(h,p,v,A) if each of the next subordinate condition

holds true:
1 C(f = h)'(¢) B
1+ v ((1 —N(f * h)(C) + XC(f * h)(C) 1) <¢() (C€E) (3.2.6)
and
1 w((f*h) ™) (W) 4 o
e <(1 —N)(f * h)"Hw) + I ((f * )~ (w) 1> < pw) (weE) (3.2.7)

Example 3.2.1. For A=0 and v € C\ {0}, a function f € ¥ given by (2.1.1)
is called to be in the class Hx(h,p,7y) if the conditions are satisfied as belows:

L (C(F Q)
1+§(<f*h><<> ‘1)“”“)
and
1 (o((f *h) (@) )
1+7( (Fh) 1) 1)”’“

where ,w € E and the function h(¢) and (f * h)~'(w) are given by (5.1.6) and
(3.1.7) respectively.

16



Theorem 3.2.1. Let f(z) € Hx(h,v,7,A) be of the form (2.1.1). Then

BB
las| < 1BV By (B, > 0) (3.2.8)
ha(1 = N)\/vBf — (By — By)
and
[v?| B 17| B
< B 2.
95l < 7 3ems o=, (P20 (329)

where the coefficients By is given by (3.2.1).

Proof. From (3.2.6) and (3.2.7) that
1

- ¢(f *h)'(C) 3 C/a
sy ((1 — N)(f *h)(C) + M (f = h)(Q) 1) pu() (C€E) (3210
and
1 w((f *h) ) (w) —1) = oww)) (w
Hr gl ((1—)\)(f*h)1(w)+)\w((f*h)1)/(w) 1) p(v(w)) (weE),

(3.2.11)
where u and v : E — E are analytic. Substituting from (3.2.4) and (3.2.5) into
(3.2.10) and (3.2.11), respectively and by using (3.2.1), we get

_ 1 AW
plu@) = ¢lg|pCr{p—75)C+ (3.2.12)
2
= 1+ %Blplc + [%Bl (p2 - %) + iBﬂ??] Gt
and
_ (! AW
plow) = ¢lg|awt|e- 5w+ (3.2.13)
2
= 1+ %qulw + |:%B1 ((]2 — %) + ing%:| U)z + -

17



It follows from (3.2.12) and (3.2.13) that

1 1
—(1—=Xaghs = =B
’y( Jazh; B 1P1;

1 2\ 272 1 i 1 2
;{2(1 — /\)(lghg — (1 - A )a2h2} = §Bl D2 — E + Zngl,

1—A B
( )a2h2: 1q1

and

=2 |+

From (3.2.14) and (3.2.16), we find that

P1=—q

and

8(1 — N)*azhy = v*Bi(p} + ¢7)-
By using Lemma 3.1.1, we get
|6L2| < h/lBl\/Bl

" ha(1=XN)\/vB} — (B — By)
By subtracting (3.2.17) from (3.2.15), we have

(Bl > 0)

1
[4(1 — Nashs — 4(1 — A)aihi} = §B1(p2 — q2).

=2 |+

18

1

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)



le.,
G — VB (pt + ¢f) n 1B1(p2 — ¢2)
T U8(1—=A)2hs  8(1—A)hs

By using Lemma 3.1.1, we get

Iv[>B} V| B1

<
e TV T v

(B1 > 0)

If we take A = 0 in Theorem 3.2.1, then we get the next consequence.

Corollary 3.2.1. Let f(z) € Hx(p,v, ) be of the form (2.1.1). Then

V| B1v By
ha\/vB} — (B — By)

las| <

and

2182, hiB:
hs 2h3

where the coefficients By is given by (3.2.1).

las] <
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Chapter 4

Convexity and univalence
conditions for certain integral

operators

4.1 Introduction

Let A,S,8%(6) and C(6) denote the functions classes defined by (2.1.1), univa-
lent, starlike and convex functions of order ¢§, respectively.
Silverman [110] researched an representation related to the quotient of the ana-

lytic expression of convex and starlike functions. For 0 < p < 1, he considered

the class
1+ vh"(v)/h (v)
= : —1 E
G = {1 e ‘ o) fh() | S UERL
and proved that
2
S| ——————— .
Gu (1+\/1—|—8,u>

20



Moreover, Tuneski [121] proved that if h € G, (0 < p < 1), then

vh/(v)
h(v)

1]
1—p

(v EE). (4.1.1)

- 1‘ <
For the parameter a;,3;,7; € C for all i € N = {1,2,---,n} and v € C with

Re{v} > 0, we define a integral operator T, (s, B, %i; fi, gi, hisi € N) : A — A

as follows:

Z,(, Bi,vis fi 9is hisi € N)(2) (4.1.2)

- { [ e o (‘C’T@)ﬁ <e’“<t>>"~dt}i .

We note that for some special real or complex parameters «;, 3;,7; and v, the
integral operator Z, (o, Bi, Vi; fi, 9i, hi;i € N) defined by (4.1.2) have been ex-
tensively studied by many authors(see [13, 14, 28, 33, 39, 65, 91, 92]). In
present chapter, we determined the order of convexity of a integral operator
Ty (i, B, vi; fis 9i, hisi € N). Moreover, we obtain sufficient restrictions for the

operator T, (i, Bi, Vi; fi» 9i, hi; i € N) to be univalent in E.

To investigate present study, we need to recall following lemmas.

Lemma 4.1.1. [90] Let v € C with Re{v} > 0. If f € A complies

zf”(z)
f'(2)

1 — ‘Z|2Re{u}
Re{v}

<1 (z€E),

then the integral operator

F,(2) = {u/o t”lf’(t)dt}i

21
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Lemma 4.1.2. [92] Let ¢ € C with Re{¢} > 0 and ¢ € C with |c¢| < 1 and
c#—1.If f € A complies

=% + (1~ [2f2) 2L

then the integral operator
isin S.

4.2 Main results

4.2.1 Convexity of Z,(«y, Bi,vi; fi, gi, hi;i € N)

We begin by investigating the order of convexity of the integral operator

T, (o, Bi,Vi; fi, gis by i € N) defined by (4.1.2) with v = 1.

Theorem 4.2.1. Let fi,gi,hi € G,, for all i € N with |hi(2)| < M; (M; > 0)
and satisfy

n

2|0y i) i 5| M
o< 3o o 18w+ M _

1,
i=1 i M
Then the integral operator defined by
q(z): = Tilow, Bivis fir 9is hisi € N)(2) (4.2.1)
z Bi
n o [ i t . i
_ /0 ", (f/ ()™ (¥> ()" gt

s convex of order & given by

n

(2|ai| + [Bil) s + |7l M;
§ = 1—; -
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Proof. From (4.2.1), we obtain simply following two equations, that are

i\ 2 o Vi
() =L (SE) @O Gen a2

z

and

By using logarithmic differentiation to both sides of (4.2.2), we get

?ﬁg)zzﬁéa ( gL ) 2:51(%L )-+§:7ﬂh’ (4.2.3)

=1

According to the General Schwarz lemma, we have |h;(z)| < M; (2 € E) for all
i=1,2,--- ,n. Hence from the definition of G; and (4.1.1), we obtain

T < e ([ HE -]
+;|/@'| %(5))—1’%-;%\ Zh}?((j i
+§:Wz( ) }:Wz< )M;
ST RS BT R BT
_ ;(2|ai|+|1ﬁil)zi+|%|Mi
= 1-4 (4.2.4)

Therefore, the function ¢ is convex of order

B L (2laq| + |Bil) i + il M
5_1—%; -— '
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fwetaken=1 oy =a, Bi=6, =7 fi=fi gi=9, hh=hand My =M

in Theorem 4.2.1, we derive the consequence as follows.

Corollary 4.2.1. Let f,g,h € G, with |h(z)| < M (M > 0) and satisfy

@laf + B+ MM _
1—p -

Then the integral operator Ty(au, Bi,vi; fi, gi, hisi € N) defined by (4.1.2) with

0<

(o, B,7€C; 0<pu<1).

n =1 1is convex order of & given by
(2l + [BDp + [vIM
1—pu '

§=1-

4.2.2 Univalency of Z, (o, Bi,i; fi, gi» hi;i € N)

Next, applying Lemma 4.1.1 and Lemma 4.1.2 we obtain some sufficient condi-
tions for the integral operator Z, (s, Bi, Vi; fi» gi, hi;i € N) defined by (4.1.2) to

be univalent in E.

Theorem 4.2.2. Let v € C wz’th
2 7, ’L ’L Z M

T (4.2.5)
(ai,ﬁi,% €C; 0<pu; <1;i €N).

]f f’i)gia hz S g’b fOT a’ll { S N; then Iu(aiaﬁia’%; fi)gia hl) ? € N) deﬁned by (412)

1s uniwwalent in E.

Proof. Let us define the function ¢ as in Theorem 4.2.1. Then we have (4.2.3).
By using the same method as in (4.2.4) and the assumption (4.2.5), we get
1— [ 2¢"(2) L— PR S~ @laal + 1BiDpi + il M
Re{v} | ¢(2) Re{v} — 1—p

Z (2|ai| + |Bil ) s + |7l M;
Re{y} 1—

IN
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Therefore, by applying Lemma 4.1.1 for the function ¢, we prove that the integral
operator T, (i, Bi, Vi; fi» 9i, hi; i € N) is univalent in E. ]
Theorem 4.2.3. Let ¢ € C 1is satisfied with following condition:

2|az| + wzbﬂz + ‘%’M

|C|<1_R{C}Z 1 — p

(a;,Bi,7€C; 0 <y <1; i €N)

(4.2.6)

where ¢ € C with

(2las| + 1Bl i + |vil M;
1= g (4.2.7)

(Odz,ﬁl,’}/l EC, 0<,ul < Wk ZEN)

Re{(} > Z

If f;, i hi € G; for alli €N, then T (0, B, V3 fir in sy 1 € N) defined by (4.1.2)

1s unialent in E.

Proof. Let us define the function ¢ as in Theorem 4.2.1. Then from (4.2.4),
(4.2.6) and (4.2.7), we derive
2¢ 2 2q"(2)
clz|®+ (1 -1z
ERRIREE
1—|2[*) < (2l il )i i| M,
c|z\2<+< C|z| )5 i B b
i=1 :

(2]evi| + ’ﬁl‘)/ﬁz + |vi| M;
< lc| +
< 1.

<

Therefore, by applying Lemma 4.1.2 for the function ¢, we close that the integral
operator Z,(ay, Bi, Vi; fis iy hi; 1 <@ < n) defined by (4.1.2) is univalent in E. [
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Ifwetakenzla ap = Q, 51267 =7, flzfa g1 = 9, h’lzhand
My = M in Theorem 4.2.2, and Theorem 4.2.3, respectively, we get the next two

corollaries.

Corollary 4.2.2. Let f,g,h € G, and v € C with

Claf + [8)p + [vIM

Re{rv} > -

(o, B,7€C; 0<pu<1).

Then the integral operator T, (s, Bi,Vi; fi 9i, hi; i € N) defined by (4.1.2) with

n =1 is univalent in E.

Corollary 4.2.3. Let f,g,h € G, and c € C with

1 2la|+[8))p+ v|M
Re{(} 1—p

where ¢ € C with

<1

(@87 €C; 0<p<1)

2la] + [B])p + |y| M
1—p

Re{C} > (a, B,7€C; 0<pu<1).

Then the integral operator T, (cu, B, Vi; fi, gi, hi; i € N) defined by (4.1.2) with

n =1 is univalent in E.
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Chapter 5

Mapping properties for certain

subclasses of analytic functions

5.1 Introduction

Let A denote the class of functions of the form
f(&) =2+ Zanz” (a, #0) (5.1.1)
n=2

which are analytic in [E. We also denote by S the class of all functions in A which
are univalent in E. A function h € A is called to be in the class R'(C, D, o) if
h(v)—1
t(C—D)—D(W(v)—1)

‘ <o (veE), (5.1.2)

where C' and D are complex numbers with C' # D,t € C\ {0} and p is a positive
real number. Particularly, for some real numbers C' and D with —1 < D < (C <1
and o = 1 without any restriction of the coefficients a, (n € N) the class
R(C, D, p) was presented by Dixit and Pal [29]. Furthermore, as giving spe-

cific values ¢,C, D and p in (5.1.2), we derive subclasses investigated by many
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researchers in earlier studies(see, [15, 50, 31, 89, 100]). A function h € A is an
element of the class UST (n) if
h(v) —h

e {110

(v =Qh(v)

Moreover, a function h € A is an element of the class UCV(n) if

(v = Qh"(v)
h'(v)

}>77 (v, eE;0<n<1).

Re{1+ }>77(UEE;0§77<1).

The classes UST (0) = UST and UCV(0) = UCV are presented by Goodman
[37, 38], which are named the classes of uniformly starlike and uniformly convex
functions, respectively. The classes of uniformly starlike and uniformly convex
functions have been widely investigated by Ma and Minda [61] and Rgnning [106].
Now, we turn to the Gaussian hypergeometric function defined by (2.7.4), and
present that F'(b,d;e;z) = F(d, b;e; z) and

I(e—b—d)'(e)

F(b,d;e;1) = T(e — b)[(e — d)

(Re{e — b—d} > 0).

We additionaly consider (see, [84, 123]) that the function F'(b,d;e;z) is bounded
if Re{e —b—d} > 0, and has a pole at z = 1 if Re{e —b—d} < 0. Furthermore,
univalence, starlikeness and convexity properties of zF'(b,d;e; z) have been ex-
tensively studied by Ponnusamy and Vuorinen [101] and Ruscheweyh and Singh
[107].

We state the operator I 4. f by

Laef(2) = 2F(bdse; =)  f(2), [ €A (5.1.3)

where * denote the convolution of power series defined by (3.1.2). For a particu-
lar case of the operator I 4. f, we can refer to the result by Swaminathan [119].

In present chapter, we derive a necessary restriction for the class R*(C, D, p) and
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sufficient restrictions for the classes R(C, D, o), UST (0) and UCV(p), respec-
tively. Furthermore, we investigate a restriction for univalency of the operator
Iya.f defined by (5.1.3). Also, we note that the contents of present chapter have
been published by Journal of Inequalities and Applications [51].

5.2 Main results

. (3n+1)m

Theorem 5.2.1. Let f € RY(C, D, ) defined by (5.1.1), with a,, = |a,|e” 2 (n € N\{1}).
Then

> n(1— o|D|)]an| < oft||C — DJ. (5.2.1)
n=2
Proof. From the definition of RY(C, D, g), we get

f'(z) = 1] < 0lt(C' — D) — D(f'(z) — 1) (z € E).

and so
Z na,z""! - D Z na, 2"t (5.2.2)
n=2 n=2
If we take z = re’2 , then we see that
a2t =a,r™t (0<r < 1), (5.2.3)
Then, by using (5.2.3) to (5.2.2), we have
Zn|an|rn_1 <po[t(C—D)— Dzzn|an|r”_1
n=2 n=2

< o[t(C = D)+ oDy nlanlr™,

n=2
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or equivalently,

> n(1 = g|D])|ayr"" < oft||C — D. (5.2.4)
n=2
If we let » — 17 in (5.2.4), then we have the inequality (5.2.1). O

Theorem 5.2.2. Let f € A defined by (5.1.1). If
> n(1+ o|D])]an| < oft||C - D], (5.2.5)
n=2

where C' and D are complex numbers with C' # D,t € C\ {0} and ¢ is a
positive real number, then f € RY(C, D, ). This consequence is sharp for the

function defined as

(C,DeC;C#D;te C\{0};|¢e] =1,z €E).
Proof. According to the definition of R*(C, D, g), it is enough to show that
|f(2) = 1] < o|t(C = D) = D(f'(2) = 1)| (2 €E). (5.2.6)

From (5.2.6), we obtain

Z na,z"* t(C—D)—D Z na,z"*
n=2 n=2
Thus, it satisfies to prove following result.
> nlan)r T <o <|t||C — D|—|D| Zn|an|rn_l> ,
n=2 n=2
which is equivalent to the relationship
> n(1+ gl D])an|r™" < oft||C — D. (5.2.7)
n=2
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If we let r — 17 in (5.2.7), then we get

o0

n(l+ o|D)|an| < oft]|C — DI.
n=2
O
Theorem 5.2.3. Let f € A defined by (5.1.1). If
Y (B-nn—2)a,[<1-n (0<n<1), (5.2.8)
n=2
then f € UST (n). This consequence is sharp for the function defined as
)e
= i < 1; e =1).
Proof. 1t is enough to prove that following condition.
f(z) = f({)
e —1l<l—n 0<np<];(2()cExE).
:-0r) ( - NSV
Then again, we get
1910 |
(z = O)f'(2)
Zn 5 n, Cn 1 + ch 2 1 ¥+ Zn—l) _ ZZO:2 TLCLnZn_l
1- ZZOZQ Na, 2"
_ T 20— Dl
1= 0, nfan]
which is bounded by 1 — 7 if the condition (5.2.8) is satisfied. O
Theorem 5.2.4. Let f € A defined by (5.1.1). If
d n@n—1-nla|<1-n (0<n<1), (5.2.9)
n=2

then f € UCV(n). This consequence is sharp for the function defined as

1 —
f) =2t Y o (0 < bl =12 € R)
n=2




Proof. 1t is enough to show that following condition.

(z = Of"(2)
——(<1l—-n (0<n<1;(z¢) cEXE).
70 ( (.0 €EXE)
We derive
(z—=0O)f"(2) _ (=0 Y, n(n—1)a,z""?
f'(z) 1= o, nayzm!
_ 25l Dl
1= snlan| -

which is bounded by 1 — 7 if the condition (5.2.9) is satisfied. O

Theorem 5.2.5. Let ¢,d € C\ {0} and e > |c|+ |d|. If f € RY(C, D, o) with

. (3n+1)m

Cn=leulet = ,0<|D| <1 and

P(e — || — [d)T(e) _ 1— o|D)|
T(e —|e)T(e—|d) ~1+eD| T "

Then I.q.f € RY(C, D, g), where the operator I.q.f is defined by (5.1.3).

Proof. From Theorem 5.2.2, we want to show that
T, := Zn(l + o|D|)|C,| < olt||C — D],

where

By using Theorem 5.2.1, we obtain

olt/|C — D]

Cp| £ ——/——m—,
el < =g
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olt]|C — D|(1 + 0|D]) = (leDn—1(Jd)n—1
T, <
b= 1_Q|D| Z n 1(1)71 1
_ ot)|€ = D|(1 + ¢|D]) (leDnldDn )
= oD 2O,
_ otl|C = D|(1 + ¢|D]) ( (e — || \dl) (e) 1)
1 —o|D| I'(e — [e))I'(e — |d])
< olt||C - DI.

Now, we recall the next lemma which is required to prove Theorem 5.2.6.

Lemma 5.2.1. [/4] Let w be regular in E with w(0) = 0. Then, if |w(z)| reaches

a mazimum value on the circle |z| =r (0 <r < 1) at a point zy, we denote that

20w’ (20) = kw(z9) (k> 1).

Theorem 5.2.6. Let f € A defined by (5.1.1). If
(Ic,d;ef(z))/ 51 'ﬁ Z([c,d;ef(’z))" F i (Z c E) (5‘2.10)
)

=0 | |TafGy =0l =7
for some real o (0<p<1), >0 and v >0. Then

(Laef(2)) =1l <1—¢ (z €E). (5.2.11)
Proof. Let us state w as
CLJ(Z) _ (Ic,d;ef(z>>/ B
-0

Thus, it satisfies that w is analytic in E with w(0) = 0.
By using (5.2.10),

(z € E).

o) | 25 = P | 220 (5.2.12)
< 2% (z € E).
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Here, we consider that there exists a point z5 € E as
max|.|<|zo) [w(2)] = |w(z0)] = 1.

By using Lemma 5.2.1, we can put

=k>1.
w(z0) B
Hence, we get
w(z0)|? 20w (20) ‘ w'(z) 1|
w(zg) + 1 w(zo0) w(zo)+1

which is contradiction to the condition (5.2.12). This proves that

(Leaief(2)) — 1
1—op

|w(z)\:‘ ‘<1 (2 €E).

Remark 5.2.1. From the restriction (5.2.12) in Theorem 5.2.6 we obtain
Re{(L.acf(2))} >0 (2 €E).

Thus, the function I.q.f ts univalent in E, under the conditions of Theorem

5.2.6 by the Noshiro-Warschawski theorem [32].
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Chapter 6

Applications of the first-order

differential subordinations

6.1 Introduction

Let A denotes the class defined by Definition 2.1.2. A function [ € A is known

as strongly starlike of order o (0 < ¢ <1) if and only if

2l'(2) 142\
i) =< (1—2) (z € E). (6.1.1)

We also note that the conditions (6.1.1) can be written by

2l (z)
I(2)

where the notation < denote, the subordination defined in Section 2.4. We

< gg (z € E),

arg

express the subclass of A comprised of all strongly starlike functions of order

0 (0 <p<1) as S[o] and also denote that S[1] = S*. This class is renowned as
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the class of all normalized starlike functions in E. The class S[p] and the related
classes have been widely investigated by Mocanu [71] and Nunokawa [80].

If ¢ is analytic in D C C?, h is univalent in E and p is analytic in E with
(p(2),2p'(2)) € D for z € E, then p is called to satisfy the first-order differential

subordination if
Y(p(z),2p'(2)) < h(2) (z € E). (6.1.2)

A function ¢ € S is called a dominant of the differential subordination, if p < ¢
for all p satisfying (6.1.2). If ¢ is a dominant of (6.1.2) and ¢ < ¢ for all
dominants of (6.1.2), then ¢ is said to be the best dominant of the differential
subordination (6.1.2).

The general theory of the first-order differential subordinations, with many inter-
esting applications, especially in the theory of univalent functions, was developed
by Miller and Mocanu ([67, 68]). For several applications of the principle of dif-
ferential subordinations in the investigations of various interesting subclasses of
analytic and univalent functions. We here offer references of the recent works, for
more detail(see, [109, 115, 116, 124, 125]).

In this chapter, we propose to derive some applications of the first-order differ-
ential subordinations. We also extend and improve the results proven earlier by
Cho and Kim [18], Miller et al. [66], and Nunokawa et al. [80, 81, 82, 83]. We
note that the contents of this chapter have been published by Filomat [21].

6.2 Main result

To verify our consequence, we recall the next Lemma by Miller and Mocanu [67].
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Lemma 6.2.1. [67] Let ¢ € S and let 0 and ¢ be analytic in a domain D
containing q(E) with
p(w) #0 when w € q(E).

Set
Q(2) = 2¢'(2)¢(q(2)), h(z) =0(q(2)) + Q(2)
and consider that
(i) @ tis starlike in E
.. 2h () | _ 0'(q(2)) | 2Q'(2)
(11) Re{w} = Re{m + W} >0 (Z € E)

If p is analytic in E with

and

then
p(z) < q(z) (2 €E)

and q is the best dominant of (6.2.1).

With the help of the above Lemma 6.2.1, we get the next Theorem 6.2.1.
Theorem 6.2.1. Let p be nonzero analytic in E with p(0) = 1. If
jarg (89" (2) + a2/ ()77 (2))] < 5(a B, ,7) (6.2.2)
(,0>0;, v>0,0<0o<1;-1<py<1;z€E),
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where §(a, 5, 0,7) (0 < d(a, 5,0,7) < 1) is the solution of the equation:

2
8(a, By0,7) = e+~ tan ™" %, (6.2.3)

then
m
larg p(2)] < 5o (2 €E).

Proof. Let

‘1<Z>=sz)g, f(w) =’ and  p(w) = aw’!

in Lemma 6.2.1. Then ¢ is univalent(convex) in E and
Re{q(2)} >0 (z e E).
Further, 6§ and ¢ are analytic in ¢(E) and
pw)#0  (weq(E)).

Set

Q(2) = 2¢ (2)p(q(2)) = (1 - z)m 2002

1—2 1 — 22

and

) = otate) + Q) = (2) (34125 ).

1—-2
Then we can see easily that the conditions (i) and (ii) of Lemma 6.2.1 are satisfied.

We also note that h(0) = 8 and

ne) = ()" (5+220) (6.2.4)
= (z’cot g)m (6 + -2 )

sin 6

= !cot g‘ et (B+i2%),

sin 0
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where we take 7 +7 for 0 < 0 < m,and " — 7 for —7m < 6 < 0. In view of the
previous relation (6.2.4), we can see that the real and imaginary part of h(e)
is an even and odd function of 6, respectively. Without loss of generality, we

suppose that 0 < § < 7. Hence, from (6.2.4), we obtain

arg h(e?) = ggfy + arg (ﬁ + is?;g@)

_T +tan~! ae
2% Bsin0

1 00
8

7T -

27 ITytan
m

= 55(05757 0, 7)7

where d(«, 3, 0,7) is the solution of the equation given by (6.2.3). Therefore, we
conclude that the condition (6.2.2) implies that

BpY(2) + azp/(2)p" "' (2) < h(2) (2 €E).

Thus, by Lemma 6.2.1, we obtain

< (122)  Gem),

1—=z2

or equivalently,

s
larg p(z)] < 50 (z € E).
[

Remark 6.2.1. To take v =0 in Theorem 6.2.1, we derive the condition which

is p(z) #0 for z € E. If p has a zero zg € E of order m, then we may write

p(2) = (2 — 20)"p1(2) (m € N),
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where py is analytic in E with pi(20) # 0. Thus

2p'(z) zp’(z)  amz
8+« o) g n2) + — (6.2.5)

Therefore, choosing z — zy, suitably the argument of the right-hand of (6.2.5)

can take any value between 0 and 2w, which contradicts the hypothesis (6.2.2).

6.3 Some applications

If we take

a=1 and v=0
in Theorem 6.2.1, then we get the next Corollary by Nunokawa et al. [82].

Corollary 6.3.1. Let p be analytic in E with p(0) = 1. If

/
arg(ﬁ+2p<z))‘<tan1% (B>0;, 0<p<1; z€E),

p(z)
then
jarg p(:)| < Se (= €E).
Letting
=1 and  p(z) = fiZ) (z €E)

in Corollary 6.3.1, we derive the consequence as belows.

Corollary 6.3.2. Let f € A. If

2f'(2)
f(2)

arg

‘<tan_1g (0<o<1; z€E),
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then

arg @‘ < gg (z € E).
Making
a=p=1 and  p(z) = fiz) (z € E)

in Theorem 6.2.1, we have the next consequence.

Corollary 6.3.3. Let f € A. If

/ y—1
arg W <g(5(g,’y) (v20; 0<o<1; z€E),

where 0(p,7) (0 < d(o,7v) < 1) is the solution of the equation

2
5(0,7) = oy + » tan~! o, (6.3.1)
then
fE)| =
— E).
arg ——| < 50 (z € E)

Remark 6.3.1. If we take
v=2 and 5(0,2) =1,
in Corollary 6.5.3, then we have the result obtained by Lee and Nunokawa [52].

Taking v =1 in Corollary 6.3.3, we derive the next consequence.

Corollary 6.3.4. Let f € A. If

larg f'(2)] < gé(g) 0<o0<1; z€E),
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where 6(p) is the solution 0(p,1) of the equation given by (6.53.1) with v = 1,
then

arg

f(z)

< EQ (z € E).
2
Applying Corollary 6.3.4, we have the following result immediately.

Corollary 6.3.5. Let f € A. If

arg f/(2)] < 50(0) (0< o<1 €E),

where §(o) is given by Corollary 6.3.4, then

WMWM<29@6E7

where F' is defined by

*f(t
F(2) :/ Malt (z€RE).
o U
Furthermore, from Theorem 6.2.1, we have the next consequence.

Corollary 6.3.6. Let f € A. If

O

z

a <g5(g,%0) (0<o<1; ¢>—7; v>0; z€E),

where §(0,7,¢) (0 < d(0,7,¢) < 1) is the solution of the equation:

2 0
5 =0+ —tan '
(0,7,¢) o+ —tan e

then
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2F'()F77Y2)|
o < §Q (Z € E)v

arg

where F is the integral operator defined by

F(z) = (C”/ztclfw)dt)i (z €E).

C
< 0

Proof. According to the definition of F' that

cF(2) +y2F () F' N (z) = (e +7) £ (2).

Let

2F'(2) F771(2)

p(z) = = (z € E).

Then, after a simple calculation, we find that

(c+7)p(2) + 2p'(2) = (c+ v)w.

Therefore, by applying Theorem 6.2.1, we have Corollary 6.3.6.
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Chapter 7

Subclasses of starlike and convex
functions associated with Bessel

functions

7.1 Introduction

Let A denote the class of functions defined by (2.1.1) and 7 denote the subclass
of A of the functions defined by

fz)=2=> a;2" (an >0). (7.1.1)

n=2

Let 7*(v) and C(v) denote the subclasses of T consisting of starlike and convex
functions of order v (0 < wv < 1) (see [111]), respectively. In 1997, Bharati et al.

[11] presented the subclasses of starlike and convex functions as follows.

Definition 7.1.1. Let f € A defined by (2.1.1). A function f € SpT (v,9), if
it fulfills the condition:
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2f'(2)
f(2)

—1‘—1—5(1}20; 0<d<1)

()=

feuUCV(v,d) < zf € Sp(v,9)

and

Definition 7.1.2. Let f € A defined by (2.1.1). A function f € P(v), if it
fulfills the condition:

+f(2) D A 0 o < o0
Re<f(z))+1)2 &) (0 < v < o0)
and
feCP) < zf € P(v).
Denote

PT(v) =P@)NT and CPT(v)=CP)NT.
Bharati el al. [11] show that
SpT(v,6) = T*((v+6)/(1+v)),
UCT (v,6) =C((v+6)/(1+v)),
PT()=T(1-v) (1/2<v<])

and

CPT(v)=C(1—-v) (1/2<v<1).

Particularly, we state that «CV(1,0) is the class of uniformly convex functions
given by Goodman [37]. For more interesting developments of some related sub-
classes of UCV(v, ), for more details, we refer to the works of Goodman [38],

Ma-Minda [61] and Rgnning [105, 106].
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In recent, Baricz [6] defined a generalized Bessel function wy,;. = w as follows:

wl2) = wpaele) = 3 OBV ()

n! T (p+n+22)\2

n=0
which is the special solution of the second order linear homogeneous differential

equation
20 (2) + bz (2) + [e2” — p* + (1 = b)Jw(2) = 0 (b,p,c € C), (7.1.3)

which is a natural generalization of Bessel’s equation. Solutions of (7.1.3) are
considered the generalized Bessel function of order p. The particular solution
given by (7.1.2) is called the generalized Bessel function of the first kind of order
p. We also note that the function w, ;. is commonly not univalent in E, even
though the series defined above is convergent everywhere.

Now, we consider the function w, () defined by
b+1
Uppc(2) = 2T (p - %) z”

As using the renowned Pochhammer symbol defined by (2.7.2) in Section 2.7,

[Sl4S]

Wp,b,c (\/2), \/T =1.

we can present u,p.(2) = u as
(= 2
up(2) = tpp,e(2) = Z

(p—I—HTl 4 N‘U{O};N‘z{—l,—Z,---}).

(7.1.4)

Then the function u,p. is analytic on C and fulfills the second-order linear

differential equation
420" (2) +2(2p + b+ 1)20/(2) + cu(z) = 0.

The research of the generalized Bessel function is a intriguing subject in geometric

function theory recently and we refer to the works of Baricz [6, 5, 3, 4] and Cho
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et al. [22] and Mondal and Swaminathan [72] and Deniz [25] and so on (see,
27, 23, 126]).

In this chapter, we establish sufficient restrictions for zu, to be in Sp7T (v, )
and UCV(v,0) and also give necessary and sufficient conditions for z(2 — u,)
to be SpT (v,d), UCT (v,0), PT(v), CPT (v). Furthermore, we investigate an
integral operator associated with the function w,. Throughout this chapter, we
will use in (7.1.4) the following notation for convenience:

m:p—l—T.

We remark that the contents of this chapter have been published by Filomat [20],

recently.

7.2 Main results

To prove our principal consequences, we recall the next Lemmas by Bharati et al

[11].

Lemma 7.2.1. [11] (i) A sufficient condition for f defined by (2.1.1) to be in
Sp(v,0) is that

i(n(1+v)—(v+5))|an| <1-¢6 (v>0;0<0<1) (7.2.1)

n=2
and a necessary and sufficient condition for f defined by (7.1.1) to be in
SpT (v,9) is that the condition (7.2.1) is satisfied.
(ii) A sufficient condition for f defined by (2.1.1) to be in UCV (v, ) is that

in(n(l+v}—(v+5))|anlgl—5 (v>0;0<d<1) (7.2.2)

n=2
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and a necessary and sufficient condition for f defined by (7.1.1) to be in
UCT (v,0) is that the condition (7.2.2) is satisfied.

Lemma 7.2.2. [11] (i) A a necessary and sufficient condition for f defined by
(7.1.1) to be in PT (v) is that

i(” —l-vja, <v  (1/2<0v <) (7.2.3)

n=2

(1)) A a necessary and sufficient condition for f defined by (7.1.1) to be in
CPT (v) is that

in(n —1-v)a, <v (1/2<v<1]) (7.2.4)

n=2

Lemma 7.2.3. [}/ Let b,p,c € C and m ¢ N~ U{0}. Then the function u,
defined by (7.1.4) complies the following recursive relation:

dmu,(z) = —cupy(2) (2 € C). (7.2.5)
Theorem 7.2.1. Let ¢ <0 and m > 0. Then zu, € Sp(v,d) if
(I +v)u, (1) + (1 —=0)[up(1) =1] <1 =35 (v>0;0<6<1). (7.2.6)

Proof. Since
_ OO (_6/4)n71 n
2up(2) = 2 + n§:2 s

by using (i) in Lemma 7.2.1, it enough to show that

L(e,m,v,0) = Z[n(l +v) — (v +0)] (mgn_cl/‘an: o <1-34.
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By brief calculation, we have

Ce,m,0,6) = 3 l(n — 1)(1+0) + (1 - 8) <m§_f/d<‘3:: 5 (7.2.7)

n=2

=(1 —I—U)Z (
=1 +U)Z—((_c/4>n+. +(1=6)) (m(—c/4 "*

oo

_ (1 + U) _:n/4> Z <_C/4)nn' + (1 _ 5) Z (_6/4)n+1

= (m+ 1), — (m)n+1 (n+1)!
(=¢/4)

=(1+v) upt1(1) + (1 = 0)[up(1) — 1

= (14 v)uy, (1) + (1 = 0)[uy(1) — 1].

Therefore, we know that the last expression (7.2.7) is bounded above by 1 —§ if
(7.2.6) is fulfilled. O

Corollary 7.2.1. Let ¢ <0 and m > 0. Then z(2 —uy(z)) € SpT (v,0) if and
only if the condition (7.2.6) is satisfied.

Proof. Since

& C/4n1
2 —wuy(z2)) = 2",
( p ; nl n—l)

As using analogous methods given in the proof of Theorem 7.2.1, we derive im-

mediately Corollary 7.2.1. [
Theorem 7.2.2. Let ¢ <0 and m > 0. Then zu, € UCV(v,0) if

(1 +v)uy(1) + (3420 — d)uy(1) + (1 = 0)[up(1) = 1] <1 -0

(7.2.8)
(v>0;0<d<1).
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Proof. Since
6/4 n 1 "
zu,(2) = 2 + E oy (n—1)! z

by using (ii) in Lemma 7.2.1, it is enough to show that

P(c,m,v,9) ZQn (v +9)] (mg:cl/l(lzlnjl)! <1-4.

By using n? = (n—1)(n—2)+3(n—1)+1 and n = (n—1)+1, we can expatiate

on the above terms as follows:

Ple,m, v, 0)
= (1+v) i(n #Hip 2 (mgn__cl/gjlw
+ (3420 6) o:(n ~1) (mgn—cl/ %3::11) +(1-9) g (mggcl/‘(l::ll)!
Sl
+ (3420 —4) nf; (mgn_cl/ 2”:12) S+ (1-9) nf‘; (mgncl/ ?2:111);
(34 20— 0) f; (mgn—céf)_nl)‘ (1) f; (mgnfl/grl)'

+ (3420 —6) (_;/4) i ( (=e/4)™ +(1-90) i (m(—6/4)"+1

— (m+1)p1 (n— 1)!
L 1)+ (1= Dan1) ~ 1
=(1+ U)u;’(l) + (3+2v — (5)u;(1) + (1 = 8)[uy(1) — 1]
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Therefore, we know that the last expression is bounded above by 1 —§ if (7.2.8)
is fulfilled. O

Similarly, by using a analogous method like in the proof of Corollary 7.2.1, we

derive the next consequence.

Corollary 7.2.2. Let ¢ < 0 and m > 0. Then z(2 — u,) € UCT (v,0) if and
only if the condition (7.2.8) is satisfied.

The proofs of Theorem 7.2.3 and Theorem 7.2.4 are much akin to those of The-

orem 7.2.1 or Theorem 7.2.2 and so the particulars are omitted.

Theorem 7.2.3. Let ¢ <0 and m > 0. Then
2(2—up) € PT(v) <= u,(1)+vup(l) <20  (1/2<v<1). (7.2.9)
Theorem 7.2.4. Let ¢ < 0 and m > 0. Then

2(2—up) € CPT(v) <= uy(1)+ (2+v)u,(1) +ovuy,(l) <20 (1/2<wv < ).
(7.2.10)

In the next theorems, we derive consequences of analogous types associated with

a special integral operator Z(c, m; z) as belows:

Z(c,m;z) = /:(2 — u,(t))dt (7.2.11)

Theorem 7.2.5. Let ¢ < 0 and m > 0. Then Z(c,m;z) € UCT (v,0) if and
only if the the condition (7.2.6) is fulfilled.

Proof. Since
0 4 n—1
Z(e,m;z) =z — Z C/

n—=2 n 1 n'
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by using (ii) in Lemma 7.2.1, it is enough to prove that

S (1 4 0) — (v 4 8)) D

n=2

s =1y =170

The rests of the proof of Theorem 7.2.5 is analogous to those of Theorem 7.2.1.

Thus the particulars are omitted. O

Similarly, by using (ii) in Lemma 7.2.2 and Theorem 7.2.3, we derive the next

theorem.

Theorem 7.2.6. Let ¢ <0 and m > 0. Then Z(c,m;z) € CPT (v) if and only
if the the condition (7.2.9) is satisfied.
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Chapter 8

Geometric properties of

normalized Lommel functions

8.1 Introduction

Let S denote the class of functions that are analytic and univalent in [E, with
S*(p) and C(p) designating the subclasses of S that are, respectively, starlike
of order ¢ and convex of order p, 0 < o < 1. According to the definition of
subordination, we present the following classes. That is a function ¢ given by

(2.1.1) is called to be in S*[C, D] if

2¢(z) 1+Cz

-1< < 1.
e <1—|—Dz (z€eRE, -1<D<(C<1) (8.1.1)

and in C[C, D] if

2¢"(z)  1+C=z

1 <
* q(z) 1+ Dz

(z€E, —-1<D<C<1). (8.1.2)
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The family S*[C, D] was investigated in [35], [36] and [46]. We say that a function
q(z) given by (2.1.1) is in S*(c,d) if

Zq//(z) c c

The family S*(c,d) was introduced in [113]. In addition to the condition ¢ > d
for the families $*(¢,d) and C(¢,d), at the origin we have

[1—c| <d. (8.1.5)

Observe that (14 z)/(1 — z) is mapped by E onto the right half plane so that
S*[—1,1] and C[—1,1] are the families of starlike and convex functions, respec-
tively. Note that functions in S*[C, D] and S§*(c,d) are starlike, that functions
in C[C, D] and C(c,d) are convex, and that q € C[C, D] (q € C(¢,d)) if and only
if z¢q' € §*[C, D] (2¢' € §*(¢,d)).

Lemma 8.1.1. [112] (i) If —1 <D < C <1, then

8*[C,D]ES*<1_0D O_D)

1-D?"1-D?

(i1) If ¢ > d, then

. L=+ 1-c
S(C,d):8|: . ,d].

In this chapter, we get some geometric properties of the function h,, which is a

normalized Lommel functions of the first kind s, ,.
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8.2 Main results

We ponder the Lommel function of the first kind s, , which is a special solution

of the inhomogeneous Bessel differential equation ([122, §]):
2w (2) + 20/ (2) + (2% — v)w(z) = 2 (8.2.1)

and it can be represented by a hypergeometric series

(2) = Zht ] 1'”_U+3 p+uv+3 2
22 1) ’ )

S (p—v ) (vt 2 2 4

where £ v is not negative odd integer. Since the Lommel function s, does not

appertain to A, it is regarded as ordinary to find normalization of the Lommel

function of the first kind

hun(2) = (w —v+1)(u+v+ 1)2725,,0(V/Z)

B nzl ﬁznﬂ, (8.2.2)

where X = “_;’Jrg, Y = “+;’+3 and (v), presents Pochhammer symbol defined by
(2.7.2). The function h,, is an element of the class A, obviously.

In geometric properties of special functions, Baricz and Ponnusamy ([6, 7, 9])
derived geometric properties of generalized Bessel functions. Geometric proper-
ties of generalized Struve functions are obtained by Yagmur and Orhan [85, 126],
recently. Moreover, Baricz and Szasz [10] presented the starlikeness and close-to-

convexity of the derivatives of a normalized form of s, 1 1, most recently.
272

Here, we present the next theorem for starlikeness and convexity for f € h,,,.
Theorem 8.2.1. Let p,v € R where p £ v are not negative odd integers,
J=4X+1)(Y +1)=(u+5)°—
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and

L=4XY = (u+3)* -

Then, for all z € E the following assertion holds true:

If u>—=5++v2+v? and

ID|(C' = D)(J —2)(LJ — L+ J)+ J(1— D*)(J — 1)
(J—2)(LJ —L—J)

then hy,,(z) € S*[C, D].

<C-—-D,

Proof. We apply the inequality
zh,,(2) 1-CD| C-D

<
hyw(2) 1-D? 1—D?

to prove % is subordinate to %. So, as using inequalities
n<2"! (neN)
and
(X +1Dpt(Y + 1)y > (X + 1)V (Y + 1)
meN, X+1>0,Y+1>0),
we obtain
> n > on—1
2 (), (7, < 22 B0,

—_

1
4XY Z 27U X 1)1 (Y + 1)

n—1

7722[X+1Y+D

J

TIu-y VY

o6

(8.2.3)

(8.2.4)

(8.2.5)

(8.2.6)



and

o0

= 1 1 1
2 (X)),  4XY ; AU (X + Dpa (Y + Dy

n=1

o] n—1
1

1
= W; [4(X+1)(Y+1)

J
L(J—1)

(8.2.7)

(J>1).

Using the inequalities (8.2.6) and (8.2.7), we obtain

’(1 — D), () — (1 - CD) h*‘z(z)

- ‘D(C ~pye f:(a — D¥)n + D(C — D)) (=3)

< |D|(C - D) 1—D2Z4n n+|D\(C—D)Zm

n=1 n—=

J
D) IDIC = D)L(J —-1)

ID|(C — D)(J = 2)(LJ — L+ J) + J(1 — D?)(J — 1)
< .
= L(J—1)(J —2)

< |D|(C — D) + (1 — D?

(8.2.8)

Moreover, if we apply inequalities

21 — 22| > |21 — | 22|
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and (8.2.5), then we get

M@ |, (D"

I P DG
>1o L N L
= 4XYy ; A= (X + 1)1 (Y 4 D)pey

1 o0 1 n—1
2l Xy ; [4(){ +1)(Y + 1)} (8.2.9)
1 o] 1 n—1
=112 (5)
L e A

As using the inequalities (8.2.3), (8.2.8) and (8.2.9), we derive

zh, (2) 1-CD
huo(z) 1—D2
< 1 %
ST=DY | )
< |D|(C — D)(J —2)(LJ —L+J)+J(1—D*(J—-1)
- (1—-D2)(J—=2)(LJ—L—J)

’(1 — DA, (=) — (1 - CD)h"%(Z)

- C—-D

1—D?
We note that the inequalities X +1 >0, Y4+ 1 >0 and J > 2 hold if and only
if u>—-5++v2+02. O

Theorem 8.2.2. Let u, v € R where p+ v are not negative odd integers,
J=4X+1)Y +1)=(u+5)>—2?

and

L=4XY = (u+3)* — o2
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Then, for all z € E the next assertion holds true:

If u>—=5++v3+v? and
(27 — 3)[|D|(C — D)(J — 3)(LJ — 2L + 2J) + 2J(1 — D*)(J — 2)]
(J —2)(J —3)(2LJ — 3L — 4) <

then hy,.(z) € C[C, D].

Proof. To prove 1+ Z:i;”((;)) is subordinate to %igz , we apply the inequality

- < .
h;w(z) 1—D? 1— D2
So, by using the inequalities (8.2.5),
ey M and 2">n+1 (neN),
we derive
i nin+1) 1 = —n(n;l)
n=1 4n<X)n(Y)n 2XY n=1 377,—1 (%)n_l (X + 1)n_1<Y + 1>n—1
o] n—1
< ok 3 (8.2.11)
2 = A(X +1)(X )
2J
= J>3
L(J —3) ( )
and
= n+1 = 2"
<
; A X)n(Y)n — ; 4 (X )0 (Y )
1 «— 1
- 2XY ; 201X 4+ 1), 1 (Y + 1)py (8.2.12)
_ 1 00 1 n—1
T2XY = [2(X +1)(Y +1)
2J
=—7 (J>2).
L(J—2) ( )
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Using the inequalities (8.2.11) and (8.2.12), we obtain
2
(1= D7) (hy, o (2) + 2l (2)) = (1 = CD)hy, ,(2)]

=|D(C - D)+ i((l — D*)n+ D(C — D))Mzn

— (X)n(Y)n
> n n + 1 > n—+1
< |D|(C — D) — D?) +|D(C—=D)y ——
; )n ; A X)n (Y )n
2J 2J
< |D|(C - D 1— D? D|(C — D)———
< [DI(C - D) + >L(J_3> +1DIC - D) g
B |D|(C — D)(J —3)(LJ —2L +2J) + 2J(1 — D?)(J — 2)
B L(J—=2)(J - 3) '
(8.2.13)
Further, if we apply inequalities (8.2.5) and
3\" ' n+1
e >
then we have
1 <
> e n—|— 1
- 4”(X .
n=1
1 «— ntl
—1— Z 2
2XY " 4n—1<X =+ 1)n—1(Y —+ 1)71—1
1 f: = (8.2.14)
= ]' - n—1 n—1 o
XY = ()" (3)" (X 4 Dpa (Y + 1)
1

o) 3 n—1
2 1= 2XY; {8(X+1)(Y+1)]

B 9 00 3 n—1
B L £ 2.J
2JL —4J — 3L
= 2).
Ter—3 =32



By applying the inequalities (8.2.10), (8.2.13) and (8.2.14), we elicit that

Hpol2) +20,(2) 1=CD

h;w(z) 1— D?

IA

1 2\(1,/ //Z—— /Z
D Do) + 2h(2) = (L= O (o)

(27 — 3 HD\W(C — D)(J = 3)(LJ — 2L+ 2J) + 2J(1 — D2)(J — 2)]
(1— D2)(J —2)(J — 3)(2JL — 4J — 3L)

IA

- C-D
1 - D%

We note that the inequalities X +1 >0, Y +1 >0 and J > 3 hold if and only
if p>—-5++v3+02. ]

By taking C' = 1,D — —1" in Theorem 8.2.1 and Theorem 8.2.2, we get the

next corollaries, respectively.

Corollary 8.2.1. Let p,v € R where p + v are not negative odd integers,
J=4X+1)Y +1)=(p+5)>—2?

and

L=4XY = (u+3)* =%

Then, for all z € E the following assertions holds true:

If > =5+v2+ 02 and L2=LE <1 then h,,(2) € S*[-1,1].
M?

LJ—-L—-J

Corollary 8.2.2. Let p,v € R where u+ v are not negative odd integers,

J=4X+1)(Y +1)=(u+5)°—0*
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and

L=4XY = (u+3)* =%

Then for all z € E the following assertions holds true:

2J—3)[(J—3)(LJ—2L+2J)+2J (J—2
If w> —5+v3 +v? and ( ()}(_2)(}(_3)(2L;32f4jg U <1, then hu(z) € C[—1,1].
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