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해석함수들의 족들과 관련 주제들에 관한 연구

이 효 정

부경대학교 대학원 응용수학과

요 약

기하함수이론은 복소해석함수들의 기하학적 성질들을 연구하는 복소해석학의 일부이며, 특히, 단엽함수들에 대

한 성질은 기하함수이론에서 가장 중요한 주제 중의 하나이다.

본 논문에서는 해석함수들의 다양한 부분족들을 소개하고, 이 족들에 대하여 여러 가지 사상성질들을 조사하였

으며 단엽함수들과 관련된 여러 주제들에 대하여 해석함수들의 기하하적 성질들을 연구하였다. 구체적인 내용들은

다음과 같다.

먼저 2장에서는 본 연구의 기본틀을 구성하기 위해 필요한 수학적 개념 및 용어, 그리고 중요한 보조정리들을

소개하였고, 중요한 두 가지 개념 즉, 미분종속원리와 대합에 대해서 간략하게 소개하였다.

제 3장에서는 단위 개원판에서 대합에 의해 정의된 양단엽함수들의 새로운 부분족들을 소개하였으며, 그 부분

족들에 속한 함수들에 대한 테일러 계수들의 유계성에 관하여 연구하였다.

제 4장에서는 단위 개원판에서 볼록과 단엽이 되기 위한 적분연산자들의 충분조건을 제시하였다. 그리고 5장에

서는 가우스 초기하 함수에 의해 정의된 선형연산자를 사용하여 해석함수들의 여러 가지 사상성질들을 얻었다.

제 6장에서는 일계 위수 미분종속의 응용과 기존의 알려진 여러 결과들을 확장하였다. 그리고 제 7장에서는 해

석함수들의 부분족들 SPT (υ, δ) , UCT (υ, δ) , PT (υ) , CPT (υ) 을 소개하고, 이 족들에 관한 특성을 조사하였으

며, 일반화된 Bessel 함수들과 관련된 적분연산자들의 특성에 관하여 연구하였다.

마지막으로, 제 8장에서는 미분종속원리와 부등식의 성질을 이용하여 표준화된 Lommel 함수들의 성형성과 볼

록성과 같은 기하학적 성질을 밝혔다.

iv



Chapter 1

Introduction

Geometric function theory is one of the most essential branch of complex anal-

ysis, which works the geometric properties of complex analytic functions. In

1851, Riemann stated impressive consequence in geometric function theory that

is Riemann mapping theorem ([102]).

Theorem 1.0.1. (Riemann mapping theorem)[102, 32] Let D be a simply

connected domain which is a proper subset of the complex plane C. Let ζ be a

given point in D . Then there is a unique function f which maps D conformally

onto the unit disk E = {z ∈ C : |z| < 1} and has the properties f(ζ) = 0 and

f ′(ζ) > 0.

In geometric function theory, the theory of univalent functions is the essential

topic, born around the turn of the century, yet it remains an active field of

current research. Progress has been especially rapid in recent years. Above all,

we consider the class S of functions f analytic and univalent in E , normalized

by the conditions f(0) = 0 and f ′(0) = 1. Hence, each f ∈ S is expressed by a
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Taylor series expansion as:

f(z) = z +
∞∑
n=2

anz
n, z ∈ E.

The remarkable example of f ∈ S is the Koebe function

ķ(z) = z(1− z)−2 = z + 2z2 + 3z3 + · · · .

One of the major problems of the field is the Biberbach conjecture as follows.

Theorem 1.0.2. (Bieberbach Conjecture)[12, 32] The coefficients of each

function f ∈ S satisfy |an| ≤ n for n = 2, 3, · · · . Strict inequality holds for all

n unless f is the Koebe function or one of its rotations.

For a number of years this conjecture has stood as a challenge to all math-

ematicians and has promoted the growth of important new methods in com-

plex analysis. To this date it has been proved only for n = 2, 3, 4, 5 and 6

([12, 59, 34, 93, 94, 86]). In 1985, Louis de Branges [24] proved this conjecture

finally, for all coefficients n , that is now renowned as de Branges Theorem.

In present thesis, we establish various new subclasses of analytic functions as

using certain linear operators. We concern some basic properties of these classes

for instance, coefficient problems, convolution properties and some other topics.

The details are as follows.

In Chapter 2, we review and assemble for later reference some of the general

principles of complex analysis which underlie the theory of univalent functions.

We do not underline proofs of the consequences but offer suitable references.

In Chapter 3, we present new subclass of bi-univalent functions defined by

convolution in E . Furthermore, we get estimates on the second and the third

coefficients for functions belonging to the subclass.
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In Chapter 4, we determined the order of convexity of a integral operator

I1(αi, βi, γi; fi, gi, hi; i ∈ N̄). Moreover, we obtain sufficient restrictions for the

operator Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) to be univalent in E

In Chapter 5, we obtain some mapping and inclusion relations for subclasses

of analytic functions by using a linear operator defined by the Gaussian hyperge-

ometric function. We derive a necessary restriction for the class Rt(C,D, %) and

sufficient restrictions for the classes Rt(C,D, %), UST (%) and UCV(%), respec-

tively.

In Chapter 6, we gives some applications of the first-order differential subor-

dinations. We also extend and improve several previously known results.

In Chapter 7, we obtain some characterizations for the generalized Bessel

functions of the first kind to be in the subclasses SPT (υ, δ), UCT (υ, δ), PT (υ),

and CPT (υ) of analytic functions. Furthermore, we find an integral operator

associated with the generalized Bessel functions.

In Chapter 8, we obtain some geometric properties such as starlikeness and

convexity, for normalized Lommel functions of the first kind. For the purpose of

verifying our principal consequences, we apply the concept of differential subor-

dinations and some inequalities.
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Chapter 2

Preliminaries

The purpose of this preliminary chapter is to review and assemble for later refer-

ence some of the general principles of complex analysis which underlie the theory

of univalent functions. We do not underline proofs of the consequences but offer

suitable references.

2.1 Analytic and univalent functions

In present section, we briefly introduce the classes A and S , consisting of nor-

malized analytic functions and normalized univalent functions, respectively, and

we also show few of their basic properties.

Analytic functions are defined on an open subset of C , that are differentiable.

Complex differentiability has much stronger consequences than real differentia-

bility. The definition of analytic functions is as follows.

Definition 2.1.1. (cf. [114]) A function f is called to be analytic at a point if

it is differentiable everywhere in some neighborhood of the point. A function f

4



is analytic in a domain D if it is analytic at every point in D . Furthermore, a

function analytic at every point in the complex plane is called an entire functions.

Definition 2.1.2. A function f is called to be in the class A, if it is analytic

in E and normalized by the conditions f(0) = 0 and f ′(0) = 1. The function

f ∈ A is expressed by the following power series representation

f(z) = z +
∞∑
n=2

anz
n, z ∈ E. (2.1.1)

Definition 2.1.3. (cf. [32, 114]) A function h is called to be univalent in D ⊂ C,

if it never takes the same value twice; that is, if h(ζ1) 6= f(ζ2) for all pairs of

distinct points ζ1 and ζ2 in D with ζ1 6= ζ2 . That is, h is a one-to-one(or

injective) mapping of D onto another domain. Analytically, a univalent function

has a nonvanishing derivative and geometrically, a univalent function maps simple

curves onto simple curves.

We shall consider firstly the class S as follows:

Definition 2.1.4. (cf. [114]) The class of all functions f , denoted by S , are

analytic and univalent in E, and are normalized by the conditions f(0) = 0 and

f ′(0) = 1. Hence, each f ∈ S is expressed by (2.1.1).

2.2 Several subclasses of univalent functions

Definition 2.2.1. (cf. [114]) A set D ⊂ C is called to be starlike with respect

to z0 , if the staight line segment connecting any point in D to z0 is contained in

D . A function f ∈ S is called to be starlike with respect to the origin if the disk

E by f onto a domain starlike with respect to the point w = 0. We shall denote

this subclass of f ∈ S by f ∈ S∗ .
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Definition 2.2.2. (cf. [114]) The set D is said to be convex if the straight line

segment connecting any two points in D is contained D . A function f ∈ S is

called to be convex if the disk E is mapped by f onto convex domain. We shall

denote this subclass of f ∈ S by f ∈ C .

Analytically, convex and starlike functions are described the following two defi-

nitions.

Definition 2.2.3. (Study. [118]) Let f ∈ S . Then

h ∈ C ⇐⇒ R

(
1 +

zh′′(z)

h′(z)

)
> 0, z ∈ E. (2.2.1)

Definition 2.2.4. (Nevanlinna. [73]) Let h ∈ S . Then

h ∈ S∗ ⇐⇒ R

(
zh′(z)

h(z)

)
> 0, z ∈ E. (2.2.2)

These classes C,S∗ and S are related as follows:

C ⊂ S∗ ⊂ S ⊂ A.

Alexander [1] revealed analytic relation between convex and starlike functions

firstly in 1915.

Theorem 2.2.1. [1](Alexander’s Theorem) Let h be analytic in E, with h(0) = 0

and h′(0) = 1. Then

h ∈ C ⇐⇒ zh′(z) ∈ S∗

The concept of the classes C(%) and S∗(%) of convex and starlike functions of

order %, 0 ≤ % < 1, respectively were given by Robertson [103] in 1936, and

defined by as follows:

C(%) =

{
h ∈ A : R

(
1 +

zh′′(z)

h′(z)

)
> %, z ∈ E

}
, (2.2.3)
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S∗(%) =

{
h ∈ A : R

(
zh′(z)

h(z)

)
> %, z ∈ E

}
. (2.2.4)

The next properties are renowned.

(i) By taking % = 0, we derive the classes C and S∗ .

(ii) C(%) ⊂ C, S∗(%) ⊂ S∗ and C ⊂ S∗
(

1
2

)
.

Let us offer references [30, 40, 103], for details.

2.3 Differential subordination

Simply stated, a differential subordination in the complex plane is the gener-

alization of a differential inequality on the real line (cf. [68]). The notion of

differential subordination was intiated by Lindelöf [54] and basis of this theory

were created by Miller and Mocanu (see, [63, 64]). We previously offer a definition

of differential subordination, the following is needed.

Definition 2.3.1. An analytic function w ∈ E is called to be Schwarz function

if it satisfies following conditions

w(0) = 0 and |w(z)| < 1 for z ∈ E

Definition 2.3.2. [68, 54] Let q,Q ∈ A. Then the function q is called to be

subordinate to Q written q ≺ Q or q(z) ≺ Q(z), if there exists a function w

analytic in E, with

w(0) = 0 and |w(z)| < 1,

and such that

q(z) = Q (w(z)) .
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If Q is univalent in E, then

q ≺ Q ⇐⇒ q(0) = Q(0) and q(E) ⊂ Q(E).

2.4 Uniformly convex and uniformly starlike func-

tions

Goodman [41, 42] presented the notions of uniform convexity and uniform star-

likeness for analytic and univalent functions, and provided proper subclasses such

as C and S∗ , which mean classes of convex and starlike functions, respectively.

Uniform classes are defined by geometrical mapping properties.

Definition 2.4.1. [41] A function h ∈ E is called as uniformly convex, if h is

a normalized convex function and has the property that for every circular arc r

contained in E, with center ζ also in E, the image arc h(ζ) is a convex.

Definition 2.4.2. [42] A function h ∈ E is called to be uniformly starlike, if h

is a normalized starlike function and has the property that for every circular arc

r contained in E, with center ζ also in E, the image arc h(ζ) is a starlike with

respect to h(ζ).

Goodman stated the classes of uniformly convex functions and uniformly starlike

functions by UCV and UST respectively, and these are as follows.

Definition 2.4.3. [41] Let h ∈ A. Then

h ∈ UCV ⇐⇒ R

{
1 + (z − ζ)

zh′′(z)

h′(z)

}
> 0, (2.4.1)

for every (z, ζ) in E× E.
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Definition 2.4.4. [42] Let h ∈ A. Then

h ∈ UST ⇐⇒ R

{
(z − ζ)h′(z)

h(z)− h(ζ)

}
> 0, (2.4.2)

for every (z, ζ) in E× E.

By taking ζ = 0 in (2.4.1) and (2.4.2) we obtain the conditions of C and S∗ .

Ma and Minda [61] and Rønning [105] discovered their own result respectively

and a more applied single variable property for UCV and UST , as follows.

Definition 2.4.5. Let h ∈ A. Then

h ∈ UCV ⇐⇒ R

{
1 +

zh′′(z)

h′(z)

}
>

∣∣∣∣zh′′(z)

h′(z)

∣∣∣∣ , z ∈ E. (2.4.3)

Definition 2.4.6. Let h ∈ A. Then

h ∈ UST ⇐⇒ R

{
zh′(z)

h(z)

}
>

∣∣∣∣zh′(z)

h(z)
− 1

∣∣∣∣ , z ∈ E. (2.4.4)

2.5 Circular domains

Janowski presented circular domain in 1973, as belows.

Definition 2.5.1. [45] Let P be an analytic function with P (0) = 1. Then

P ∈ P [C,D] ⇐⇒ P (z) ≺ 1 + Cz

1 +Dz
, −1 ≤ D < C ≤ 1. (2.5.1)

Janowski also introduced C[C,D] and S∗[C,D] and these mean the classes of

Janowski convex and Janowski starlike functions, respectively.

Definition 2.5.2. [45] Let h ∈ A. Then

h ∈ C[C,D] ⇐⇒ 1 +
zh′′(z)

h′(z)
∈ P [C,D]. (2.5.2)
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Definition 2.5.3. [45] Let h ∈ A. Then

h ∈ S∗[C,D] ⇐⇒ zh′(z)

h(z)
∈ P [C,D]. (2.5.3)

Alexander type relation satisfies between C[C,D] and S∗[C,D] .

Remark 2.5.1. By taking C = 1 and D = −1, we obtain C[C,D] = C and

S∗[C,D] = S∗ .

Janowski functions are studied by many scholars like Noor [74, 78], Polatoglu

[97, 98], Cho [16, 17] and Liu et.el. [55, 56, 57]

2.6 Convolution

The convolution (cf. [32]), or Hadamard product, of two power series

f(z) =
∞∑
k=1

mkz
k, z ∈ E

and

g(z) =
∞∑
k=1

nkz
k, z ∈ E

convergent in E is the function h = f ∗ g with power series

h(z) =
∞∑
k=1

mknkz
k, z ∈ E.

The term ”convolution” arises from the formula

h(reiθ) =
1

2π

∫ 2π

0

f
(
rei(θ−t)

)
g(eit)dt, r < 1.

The geometry series l(z ) =
∑∞

k=1 z k = z
1−z roles as identity element under

convolution such as,

(f ∗ l)(z ) = f (z ) = (l ∗ f )(z ), for all f ∈ A.
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2.7 Hypergeometric functions

Hypergeometric functions (cf. [68]) are known as special functions, because these

functions are the solution of special types of differential equations. Recently,

many authors (see, [17, 79]) applied hypergeometric functions to define various

integral and convolution operator. Here we discuss two types of hypergeometric

functions that is the Kummer and Guass hypergeometric functions.

Let b, d ∈ C with d 6= 0,−1,−2, · · · . The function

Ψ(b, d; z) = 1F1(b, d; z) = 1 +
b

d

z

1!
+
b(b+ 1)

d(d+ 1)

z2

2!
+ · · · . (2.7.1)

is called the confluent (or Kummer) hypergeometric functions, analytic in E and

obey the Kummer’s differential equation

zw′′(z) + [d− z]w′(z)− cw(z) = 0.

The Pochhammer symbol denoted by (ν)k is defined by

(ν)k =
Γ(ν + k)

Γ(ν)
(2.7.2)

=

 1 if k = 0,

ν(ν + 1)(ν + 2) · · · (ν + k − 1) if k ∈ N,

where Γ(ν) denote the gamma function. Then equation (2.7.1) can be express as

Ψ(b, d; z) =
∞∑
k=0

(b)k
(d)k

zk

k!
(2.7.3)

=
Γ(d)

Γ(b)

∞∑
k=0

Γ(b+ k)

Γ(d+ k)

zk

k!
.
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Let b, d, e ∈ C with e 6= 0,−1,−2, · · · . The function

F (b, d, e; z) = 2F1(b, d, e; z)

= 1 +
bd

e

z

1!
+
b(b+ 1)d(d+ 1)

e(e+ 1)

z2

2!
+ · · · ,

(2.7.4)

is said to be the (Gaussian) hypergeometric functions, is analytic in E and com-

plies the hypergeometric differential equation

z(1− z)w′′(z) + [e− (b+ d+ 1)z]w′(z)− bdw(z) = 0 (2.7.5)

As using the symbol offered in (2.7.2), we can rewrite F as

F (b, d, e; z) =
∞∑
k=0

(b)k(d)k
(e)k

zk

k!
(2.7.6)

=
Γ(e)

Γ(b)Γ(d)

∞∑
k=0

Γ(b+ k)Γ(d+ k)

Γ(e+ k)

zk

k!
.

2.8 Convolution operator related to hypergeo-

metric functions

Consider the linear operator I%(b, d, e, q) : A(q)→ A(q) defined by

I%(b, d, e)h(z) = (zq2F1(b, d, e; z))−1 ∗ h(z), (2.8.1)

where b, d, e ∈ R , except 0,−1,−2, · · · , % > −q, z ∈ E and (2F1(b, d, e; z))−1 is

given by

(zq2F1(b, d, e; z)) ∗ (zq2F1(b, d, e; z))−1 =
zq

(1 + z)%+q
.

Simply, we express that

I%(b, d, e)h(z) = zq +
∞∑
k=1

(e)k(%+ q)k
(b)k(d)k

zk+q, (2.8.2)

where (ν)k is the Pochhammer symbol given by (2.7.2).
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Chapter 3

Bi-univalent functions associated

with subordination

3.1 Introduction

Let A denotes the class of functions defined by (2.1.1), which are analytic in

E . And S is the class of all functions in A which are univalent in E . For f(z)

expressed by (2.1.1) and Ψ(z) defined by

Ψ(z) = z +
∞∑
n=2

ψnz
n (ψn ≥ 0 ), (3.1.1)

the Hadamard product (f ∗Ψ) of the functions f and Ψ is defined as follows.

(f ∗Ψ)(z) = z +
∞∑
n=2

anψnz
n = (Ψ ∗ f)(z). (3.1.2)

A renowned concept that every function q ∈ S has an inverse q−1 , defined by

q−1(q(ζ)) = ζ (ζ ∈ E)

13



and

q(q−1(ω)) = ω

(
|ω| < r0(q); r0(q) ≥ 1

4

)
,

where

q−1(ω) = ω − a2ω
2 + (2a2

2 − a3)ω3 − (5a3
2 − 5a2a3 + a4)ω4 + · · · . (3.1.3)

A function q ∈ A is called to be bi-univalent in E if both q and q−1 are univalent

in E . Let Σ denotes the class of bi-univalent functions in E given by (2.1.1). To

obtain our primary consequences, we shall consider the next lemma.

Lemma 3.1.1. [99] Let p ∈ P the family of all functions p analytic in E for

which Rep(z) > 0 and have the form p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · for z

∈ E. Then |pn| ≤ 2, for each n.

Definition 3.1.1. For 0 < % ≤ 1;λ ≥ 1, a function f ∈ Σ given by (2.1.1) is

called to be in the class HΣ(h, %, λ) if the next conditions are satisfied:∣∣∣∣arg

(
ζ(f ∗ h)′(ζ)

(1− λ)(f ∗ h)(ζ) + λζ(f ∗ h)′(ζ)

)∣∣∣∣ < %π

2
(ζ ∈ E) (3.1.4)

and ∣∣∣∣arg

(
ω((f ∗ h)−1)′(ω)

(1− λ)(f ∗ h)−1(ω) + λω((f ∗ h)−1)′(ω)

)∣∣∣∣ < %π

2
(ω ∈ E) (3.1.5)

where the functions h(ζ) and (f ∗ h)−1(ω) are defined by

h(ζ) = ζ +
∞∑
n=2

hnζ
n (hn > 0) (3.1.6)

and

(f ∗h)−1(ω) = ω−a2h2ω
2 +(2a2

2h
2
2−a3h3)ω3−(5a3

2h
3
2−5a2h2a3h3 +a4h4)ω4 +· · · .

(3.1.7)
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Definition 3.1.2. For 0 ≤ η < 1;λ ≥ 1, a function f ∈ Σ given by (2.1.1) is

called to be in the class HΣ(h, η, λ) if the next conditions are satisfied:

Re

(
ζ(f ∗ h)′(ζ)

(1− λ)(f ∗ h)(ζ) + λζ(f ∗ h)′(ζ)

)
> η (ζ ∈ E) (3.1.8)

and

Re

(
ω((f ∗ h)−1)′(ω)

(1− λ)(f ∗ h)−1(ω) + λω((f ∗ h)−1)′(ω)

)
> η (ω ∈ E). (3.1.9)

In this chapter, we obtain estimates on the coefficients |a2| and |a3| for functions

in subclass of Σ by using the methods from Deniz [26].

3.2 Main results

Let ϕ be an analytic function with positive real part in E such that ϕ(0) = 1, ϕ′(0) > 0

and ϕ(E) is symmetric with respect to the real axis. This function is expressed

by a series expansion of the form:

ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · (B1 > 0). (3.2.1)

Now we present the class of bi-univalent functions as belows.

Consider the functions p and q by

p(z) :=
1 + u(z)

1− u(z)
= 1 + p1z + p2z

2 + · · · (3.2.2)

and

q(z) :=
1 + v(z)

1− v(z)
= 1 + q1z + q2z

2 + · · · . (3.2.3)

It follows that

u(z) :=
p(z)− 1

p(z) + 1
=

1

2

{
p1z +

(
p2 −

p2
1

2

)
z2 + · · ·

}
(3.2.4)
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and

v(z) :=
q(z)− 1

q(z) + 1
=

1

2

{
q1z +

(
q2 −

q2
1

2

)
z2 + · · ·

}
. (3.2.5)

Then p and q are analytic in E with p(0) = q(0) = 1. Since u, v : E −→ E ,

the functions p and q have a positive real part in E , and |pi| ≤ 2 and |qi| ≤ 2

for each i .

Definition 3.2.1. Let 0 ≤ λ < 1 and γ ∈ C\{0}. A function f ∈ Σ given by

(2.1.1), is called to be in HΣ(h, ϕ, γ, λ) if each of the next subordinate condition

holds true:

1 +
1

γ

(
ζ(f ∗ h)′(ζ)

(1− λ)(f ∗ h)(ζ) + λζ(f ∗ h)′(ζ)
− 1

)
≺ ϕ(ζ) (ζ ∈ E) (3.2.6)

and

1 +
1

γ

(
ω((f ∗ h)−1)′(ω)

(1− λ)(f ∗ h)−1(ω) + λω((f ∗ h)−1)′(ω)
− 1

)
≺ ϕ(ω) (ω ∈ E) (3.2.7)

Example 3.2.1. For λ = 0 and γ ∈ C \ {0}, a function f ∈ Σ given by (2.1.1)

is called to be in the class HΣ(h, ϕ, γ) if the conditions are satisfied as belows:

1 +
1

γ

(
ζ(f ∗ h)′(ζ)

(f ∗ h)(ζ)
− 1

)
≺ ϕ(ζ)

and

1 +
1

γ

(
ω((f ∗ h)−1)′(ω)

(f ∗ h)−1(ω)
− 1

)
≺ ϕ(ω)

where ζ, ω ∈ E and the function h(ζ) and (f ∗ h)−1(ω) are given by (3.1.6) and

(3.1.7) respectively.
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Theorem 3.2.1. Let f(z) ∈ HΣ(h, ϕ, γ, λ) be of the form (2.1.1). Then

|a2| ≤
|γ|B1

√
B1

h2(1− λ)
√
γB2

1 − (B2 −B1)
(B1 > 0) (3.2.8)

and

|a3| ≤
|γ2|B2

1

(1− λ)2h3

+
|γ|B1|

2(1− λ)h3

(B1 > 0) (3.2.9)

where the coefficients B1 is given by (3.2.1).

Proof. From (3.2.6) and (3.2.7) that

1 +
1

γ

(
ζ(f ∗ h)′(ζ)

(1− λ)(f ∗ h)(ζ) + λζ(f ∗ h)′(ζ)
− 1

)
= ϕ(u(ζ)) (ζ ∈ E) (3.2.10)

and

1 +
1

γ

(
ω((f ∗ h)−1)′(ω)

(1− λ)(f ∗ h)−1(ω) + λω((f ∗ h)−1)′(ω)
− 1

)
= ϕ(v(ω)) (ω ∈ E),

(3.2.11)

where u and v : E −→ E are analytic. Substituting from (3.2.4) and (3.2.5) into

(3.2.10) and (3.2.11), respectively and by using (3.2.1), we get

ϕ(u(ζ)) = ϕ

(
1

2

[
p1ζ +

(
p2 −

p2
1

2

)
ζ2 + · · ·

])
(3.2.12)

= 1 +
1

2
B1p1ζ +

[
1

2
B1

(
p2 −

p2
1

2

)
+

1

4
B2p

2
1

]
ζ2 + · · ·

and

ϕ(v(ω)) = ϕ

(
1

2

[
q1ω +

(
q2 −

q2
1

2

)
ω2 + · · ·

])
(3.2.13)

= 1 +
1

2
B1q1ω +

[
1

2
B1

(
q2 −

q2
1

2

)
+

1

4
B2q

2
1

]
ω2 + · · · .
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It follows from (3.2.12) and (3.2.13) that

1

γ
(1− λ)a2h2 =

1

2
B1p1, (3.2.14)

1

γ
{2(1− λ)a3h3 − (1− λ2)a2

2h
2
2} =

1

2
B1

(
p2 −

p2
1

2

)
+

1

4
B2p

2
1, (3.2.15)

−(1− λ)

γ
a2h2 =

B1q1

2
(3.2.16)

and

1

γ

[
(3− 4λ+ λ2)a2

2h
2
2 − 2(1− λ)a3h3

]
=

1

2
B1

(
q2 −

q2
1

2

)
+

1

4
B2q

2
1. (3.2.17)

From (3.2.14) and (3.2.16), we find that

p1 = −q1 (3.2.18)

and

8(1− λ)2a2
2h

2
2 = γ2B2

1(p2
1 + q2

1). (3.2.19)

By using Lemma 3.1.1, we get

|a2| ≤
|γ|B1

√
B1

h2(1− λ)
√
γB2

1 − (B2 −B1)
(B1 > 0) (3.2.20)

By subtracting (3.2.17) from (3.2.15), we have

1

γ

[
4(1− λ)a3h3 − 4(1− λ)a2

2h
2
2

]
=

1

2
B1(p2 − q2). (3.2.21)
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i.e.,

a3 =
γ2B2

1(p2
1 + q2

1)

8(1− λ)2h3

+
γB1(p2 − q2)

8(1− λ)h3

.

By using Lemma 3.1.1, we get

|a3| ≤
|γ|2B2

1

(1− λ)2h3

+
|γ|B1

2(1− λ)h3

(B1 > 0)

If we take λ = 0 in Theorem 3.2.1, then we get the next consequence.

Corollary 3.2.1. Let f(z) ∈ HΣ(ϕ, γ, λ) be of the form (2.1.1). Then

|a2| ≤
|γ|B1

√
B1

h2

√
γB2

1 − (B2 −B1)

and

|a3| ≤
|γ2|B2

1

h3

+
|γ|B1

2h3

.

where the coefficients B1 is given by (3.2.1).
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Chapter 4

Convexity and univalence

conditions for certain integral

operators

4.1 Introduction

Let A,S,S∗(δ) and C(δ) denote the functions classes defined by (2.1.1), univa-

lent, starlike and convex functions of order δ , respectively.

Silverman [110] researched an representation related to the quotient of the ana-

lytic expression of convex and starlike functions. For 0 < µ ≤ 1, he considered

the class

Gµ =

{
h ∈ A :

∣∣∣∣1 + υh′′(υ)/h′(υ)

υh′(υ)/h(υ)
− 1

∣∣∣∣ < µ, υ ∈ E
}
,

and proved that

Gµ ⊂ S∗
(

2

1 +
√

1 + 8µ

)
.
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Moreover, Tuneski [121] proved that if h ∈ Gµ (0 < µ < 1), then∣∣∣∣υh′(υ)

h(υ)
− 1

∣∣∣∣ < µ

1− µ
(υ ∈ E). (4.1.1)

For the parameter αi, βi, γi ∈ C for all i ∈ N̄ = {1, 2, · · · , n} and ν ∈ C with

Re{ν} > 0, we define a integral operator Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) : A −→ A

as follows:

Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄)(z) (4.1.2)

:=

{∫ z

0

νtν−1Πn
i=1(f ′i(t))

αi

(
gi(t)

t

)βi
(ehi(t))γidt

} 1
ν

.

We note that for some special real or complex parameters αi, βi, γi and ν , the

integral operator Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) defined by (4.1.2) have been ex-

tensively studied by many authors(see [13, 14, 28, 33, 39, 65, 91, 92]). In

present chapter, we determined the order of convexity of a integral operator

I1(αi, βi, γi; fi, gi, hi; i ∈ N̄). Moreover, we obtain sufficient restrictions for the

operator Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) to be univalent in E .

To investigate present study, we need to recall following lemmas.

Lemma 4.1.1. [90] Let ν ∈ C with Re{ν} > 0. If f ∈ A complies

1− |z|2Re{ν}

Re{ν}

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1 (z ∈ E),

then the integral operator

Fν(z) =

{
ν

∫ z

0

tν−1f ′(t)dt

} 1
ν

is in S .
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Lemma 4.1.2. [92] Let ζ ∈ C with Re{ζ} > 0 and c ∈ C with |c| ≤ 1 and

c 6= −1. If f ∈ A complies∣∣∣∣c|z|2ζ + (1− |z|2ζ)zf
′′(z)

ζf ′(z)

∣∣∣∣ ≤ 1 (z ∈ E),

then the integral operator

Fζ(z) =

{
ζ

∫ z

0

tζ−1f ′(t)dt

} 1
ζ

is in S .

4.2 Main results

4.2.1 Convexity of I1(αi, βi, γi; fi, gi, hi; i ∈ N̄)

We begin by investigating the order of convexity of the integral operator

Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) defined by (4.1.2) with ν = 1.

Theorem 4.2.1. Let fi, gi, hi ∈ Gµi for all i ∈ N̄ with |hi(z)| ≤ Mi (Mi > 0)

and satisfy

0 <
n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi
≤ 1,

(αi, βi, γi ∈ C; 0 < µi < 1; i ∈ N̄).

Then the integral operator defined by

q(z) : = I1(αi, βi, γi; fi, gi, hi; i ∈ N̄)(z) (4.2.1)

=

∫ z

0

Πn
i=1(f ′(t))αi

(
gi(t)

t

)βi (
ehi(t)

)γi
dt

is convex of order δ given by

δ = 1−
n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi
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Proof. From (4.2.1), we obtain simply following two equations, that are

q′(z) = Πn
i=1(f ′i(z))αi

(
gi(z)

z

)βi (
ehi(z)

)γi
, (z ∈ E) (4.2.2)

and

q(0) = q′(0)− 1 = 0.

By using logarithmic differentiation to both sides of (4.2.2), we get

zq′′(z)

q′(z)
=

n∑
i=1

αi

(
zf ′′i (z)

f ′i(z)

)
+

n∑
i=1

βi

(
zg′i(z)

gi(z)
− 1

)
+

n∑
i=1

γizh
′
i(z). (4.2.3)

According to the General Schwarz lemma, we have |hi(z)| ≤ Mi (z ∈ E) for all

i = 1, 2, · · · , n. Hence from the definition of Gi and (4.1.1), we obtain∣∣∣∣zq′′(z)

q′(z)

∣∣∣∣ ≤ n∑
i=1

|αi|
(
µi

∣∣∣∣zf ′i(z)

fi(z)

∣∣∣∣+

∣∣∣∣zf ′i(z)

fi(z)
− 1

∣∣∣∣)
+

n∑
i=1

|βi|
∣∣∣∣zg′i(z)

gi(z)
− 1

∣∣∣∣+
n∑
i=1

|γi|
∣∣∣∣zh′i(z)

hi(z)

∣∣∣∣Mi

≤
n∑
i=1

|αi|
[
µi

(
µi

1− µi
+ 1

)
+

µi
1− µi

]
+

n∑
i=1

|βi|
(

µi
1− µi

)
+

n∑
i=1

|γi|
(

µi
1− µi

+ 1

)
Mi

=
n∑
i=1

|αi|
2µi

1− µi
+

n∑
i=1

|βi|
µi

1− µi
+

n∑
i=1

|γi|
Mi

1− µi

=
n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi
= 1− δ. (4.2.4)

Therefore, the function q is convex of order

δ = 1−
n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi
.
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If we take n = 1, α1 = α, β1 = β, γ1 = γ, f1 = f, g1 = g, h1 = h and M1 = M

in Theorem 4.2.1, we derive the consequence as follows.

Corollary 4.2.1. Let f, g, h ∈ Gµ with |h(z)| ≤M (M > 0) and satisfy

0 <
(2|α|+ |β|)µ+ |γ|M

1− µ
≤ 1 (α, β, γ ∈ C; 0 < µ < 1).

Then the integral operator I1(αi, βi, γi; fi, gi, hi; i ∈ N̄) defined by (4.1.2) with

n = 1 is convex order of δ given by

δ = 1− (2|α|+ |β|)µ+ |γ|M
1− µ

.

4.2.2 Univalency of Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄)

Next, applying Lemma 4.1.1 and Lemma 4.1.2 we obtain some sufficient condi-

tions for the integral operator Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) defined by (4.1.2) to

be univalent in E .

Theorem 4.2.2. Let ν ∈ C with

Re{ν} ≥
n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi

(αi, βi, γi ∈ C; 0 < µi < 1; i ∈ N̄).

(4.2.5)

If fi, gi, hi ∈ Gi for all i ∈ N, then Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) defined by (4.1.2)

is univalent in E.

Proof. Let us define the function q as in Theorem 4.2.1. Then we have (4.2.3).

By using the same method as in (4.2.4) and the assumption (4.2.5), we get

1− |z|2Re{ν}

Re{ν}

∣∣∣∣zq′′(z)

q′(z)

∣∣∣∣ ≤ 1− |z|2Re{ν}

Re{ν}

n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi

≤ 1

Re{ν}

n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi
≤ 1.
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Therefore, by applying Lemma 4.1.1 for the function q , we prove that the integral

operator Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) is univalent in E .

Theorem 4.2.3. Let c ∈ C is satisfied with following condition:

|c| ≤ 1− 1

Re{ζ}

n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi

(αi, βi, γi ∈ C; 0 < µi < 1; i ∈ N̄)

(4.2.6)

where ζ ∈ C with

Re{ζ} ≥
n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi

(αi, βi, γi ∈ C; 0 < µi < 1; i ∈ N̄).

(4.2.7)

If fi, gi, hi ∈ Gi for all i ∈ N̄, then Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) defined by (4.1.2)

is univalent in E.

Proof. Let us define the function q as in Theorem 4.2.1. Then from (4.2.4),

(4.2.6) and (4.2.7), we derive∣∣∣∣c|z|2ζ + (1− |z|2ζ)zq
′′(z)

ζq′(z)

∣∣∣∣
≤

∣∣∣∣∣c|z|2ζ +
(1− |z|2ζ)

ζ

n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi

∣∣∣∣∣
≤ |c|+ 1

Re{ζ}

n∑
i=1

(2|αi|+ |βi|)µi + |γi|Mi

1− µi

≤ 1.

Therefore, by applying Lemma 4.1.2 for the function q , we close that the integral

operator Iν(αi, βi, γi; fi, gi, hi; 1 ≤ i ≤ n) defined by (4.1.2) is univalent in E .

25



If we take n = 1, α1 = α, β1 = β, γ1 = γ, f1 = f, g1 = g, h1 = h and

M1 = M in Theorem 4.2.2, and Theorem 4.2.3, respectively, we get the next two

corollaries.

Corollary 4.2.2. Let f, g, h ∈ Gµ and ν ∈ C with

Re{ν} ≥ (2|α|+ |β|)µ+ |γ|M
1− µ

(α, β, γ ∈ C; 0 < µ < 1).

Then the integral operator Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) defined by (4.1.2) with

n = 1 is univalent in E.

Corollary 4.2.3. Let f, g, h ∈ Gµ and c ∈ C with

|c| ≤ 1− 1

Re{ζ}
(2|α|+ |β|)µ+ |γ|M

1− µ
(α, β, γ ∈ C; 0 < µ < 1)

where ζ ∈ C with

Re{ζ} ≥ (2|α|+ |β|)µ+ |γ|M
1− µ

(α, β, γ ∈ C; 0 < µ < 1).

Then the integral operator Iν(αi, βi, γi; fi, gi, hi; i ∈ N̄) defined by (4.1.2) with

n = 1 is univalent in E.
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Chapter 5

Mapping properties for certain

subclasses of analytic functions

5.1 Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n (an 6= 0) (5.1.1)

which are analytic in E . We also denote by S the class of all functions in A which

are univalent in E . A function h ∈ A is called to be in the class Rt(C,D, %) if∣∣∣∣ h′(υ)− 1

t(C −D)−D(h′(υ)− 1)

∣∣∣∣ < % (υ ∈ E), (5.1.2)

where C and D are complex numbers with C 6= D, t ∈ C\{0} and % is a positive

real number. Particularly, for some real numbers C and D with −1 ≤ D < C ≤ 1

and % = 1 without any restriction of the coefficients an (n ∈ N) the class

Rt(C,D, %) was presented by Dixit and Pal [29]. Furthermore, as giving spe-

cific values t, C,D and % in (5.1.2), we derive subclasses investigated by many
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researchers in earlier studies(see, [15, 50, 31, 89, 100]). A function h ∈ A is an

element of the class UST (η) if

Re

{
h(υ)− h(ζ)

(υ − ζ)h′(υ)

}
> η (υ, ζ ∈ E; 0 ≤ η < 1).

Moreover, a function h ∈ A is an element of the class UCV(η) if

Re

{
1 +

(υ − ζ)h′′(υ)

h′(υ)

}
> η (υ ∈ E; 0 ≤ η < 1).

The classes UST (0) ≡ UST and UCV(0) ≡ UCV are presented by Goodman

[37, 38], which are named the classes of uniformly starlike and uniformly convex

functions, respectively. The classes of uniformly starlike and uniformly convex

functions have been widely investigated by Ma and Minda [61] and Rønning [106].

Now, we turn to the Gaussian hypergeometric function defined by (2.7.4), and

present that F (b, d; e; z) = F (d, b; e; z) and

F (b, d; e; 1) =
Γ(e− b− d)Γ(e)

Γ(e− b)Γ(e− d)
(Re{e− b− d} > 0).

We additionaly consider (see, [84, 123]) that the function F (b, d; e; z) is bounded

if Re{e− b− d} > 0, and has a pole at z = 1 if Re{e− b− d} ≤ 0. Furthermore,

univalence, starlikeness and convexity properties of zF (b, d; e; z) have been ex-

tensively studied by Ponnusamy and Vuorinen [101] and Ruscheweyh and Singh

[107].

We state the operator Ib,d;ef by

Ib,d;ef(z) = zF (b, d; e; z) ∗ f(z), f ∈ A (5.1.3)

where ∗ denote the convolution of power series defined by (3.1.2). For a particu-

lar case of the operator Ib,d;ef , we can refer to the result by Swaminathan [119].

In present chapter, we derive a necessary restriction for the class Rt(C,D, %) and
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sufficient restrictions for the classes Rt(C,D, %), UST (%) and UCV(%), respec-

tively. Furthermore, we investigate a restriction for univalency of the operator

Ib,d;ef defined by (5.1.3). Also, we note that the contents of present chapter have

been published by Journal of Inequalities and Applications [51].

5.2 Main results

Theorem 5.2.1. Let f ∈ Rt(C,D, %) defined by (5.1.1), with an = |an|ei
(3n+1)π

2 (n ∈ N\{1}).

Then
∞∑
n=2

n(1− %|D|)|an| ≤ %|t||C −D|. (5.2.1)

Proof. From the definition of Rt(C,D, %), we get

|f ′(z)− 1| < %|t(C −D)−D(f ′(z)− 1)| (z ∈ E).

and so ∣∣∣∣∣
∞∑
n=2

nanz
n−1

∣∣∣∣∣ < %

∣∣∣∣∣t(C −D)−D
∞∑
n=2

nanz
n−1

∣∣∣∣∣ (5.2.2)

If we take z = rei
π
2 , then we see that

anz
n−1 = |an|rn−1 (0 ≤ r < 1). (5.2.3)

Then, by using (5.2.3) to (5.2.2), we have

∞∑
n=2

n|an|rn−1 < %

∣∣∣∣∣t(C −D)−D
∞∑
n=2

n|an|rn−1

∣∣∣∣∣
< % |t(C −D)|+ %|D|

∞∑
n=2

n|an|rn−1,
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or equivalently,
∞∑
n=2

n(1− %|D|)|an|rn−1 < %|t||C −D|. (5.2.4)

If we let r → 1− in (5.2.4), then we have the inequality (5.2.1).

Theorem 5.2.2. Let f ∈ A defined by (5.1.1). If

∞∑
n=2

n(1 + %|D|)|an| ≤ %|t||C −D|, (5.2.5)

where C and D are complex numbers with C 6= D, t ∈ C \ {0} and % is a

positive real number, then f ∈ Rt(C,D, %). This consequence is sharp for the

function defined as

f(z) = z +
∞∑
n=2

%t(C −D)ε

n2(n− 1)(1 + %|D|)
zn

(C,D ∈ C;C 6= D; t ∈ C \ {0}; |ε| = 1; z ∈ E).

Proof. According to the definition of Rt(C,D, %), it is enough to show that

|f ′(z)− 1| < % |t(C −D)−D(f ′(z)− 1)| (z ∈ E). (5.2.6)

From (5.2.6), we obtain∣∣∣∣∣
∞∑
n=2

nanz
n−1

∣∣∣∣∣ < %

∣∣∣∣∣t(C −D)−D
∞∑
n=2

nanz
n−1

∣∣∣∣∣ .
Thus, it satisfies to prove following result.

∞∑
n=2

n|an|rn−1 < %

(
|t||C −D| − |D|

∞∑
n=2

n|an|rn−1

)
,

which is equivalent to the relationship

∞∑
n=2

n(1 + %|D|)|an|rn−1 < %|t||C −D|. (5.2.7)
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If we let r → 1− in (5.2.7), then we get

∞∑
n=2

n(1 + %|D|)|an| ≤ %|t||C −D|.

Theorem 5.2.3. Let f ∈ A defined by (5.1.1). If

∞∑
n=2

((3− η)n− 2)|an| ≤ 1− η (0 ≤ η < 1), (5.2.8)

then f ∈ UST (η). This consequence is sharp for the function defined as

f(z) = z +
∞∑
n=2

(1− η)ε

n(n− 1)((3− η)n− 2)
zn (0 ≤ η < 1; |ε| = 1).

Proof. It is enough to prove that following condition.∣∣∣∣ f(z)− f(ζ)

(z − ζ)f ′(z)
− 1

∣∣∣∣ < 1− η (0 ≤ η < 1; (z, ζ) ∈ E× E).

Then again, we get∣∣∣∣ f(z)− f(ζ)

(z − ζ)f ′(z)
− 1

∣∣∣∣
=

∣∣∣∣∑∞n=2 an(ζn−1 + zζn−2 + · · ·+ zn−1)−
∑∞

n=2 nanz
n−1

1−
∑∞

n=2 nanz
n−1

∣∣∣∣
<

∑∞
n=2 2(n− 1)|an|

1−
∑∞

n=2 n|an|
,

which is bounded by 1− η if the condition (5.2.8) is satisfied.

Theorem 5.2.4. Let f ∈ A defined by (5.1.1). If

∞∑
n=2

n(2n− 1− η)|an| ≤ 1− η (0 ≤ η < 1), (5.2.9)

then f ∈ UCV(η). This consequence is sharp for the function defined as

f(z) = z +
∞∑
n=2

(1− η)ε

n2(n− 1)(2n− 1− η)
zn (0 ≤ η < 1; |ε| = 1; z ∈ E)
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Proof. It is enough to show that following condition.∣∣∣∣(z − ζ)f ′′(z)

f ′(z)

∣∣∣∣ < 1− η (0 ≤ η < 1; (z, ζ) ∈ E× E).

We derive ∣∣∣∣(z − ζ)f ′′(z)

f ′(z)

∣∣∣∣ =

∣∣∣∣(z − ζ)
∑∞

n=2 n(n− 1)anz
n−2

1−
∑∞

n=2 nanz
n−1

∣∣∣∣
<

2
∑∞

n=1 n(n− 1)|an|
1−

∑∞
n=2 n|an|

,

which is bounded by 1− η if the condition (5.2.9) is satisfied.

Theorem 5.2.5. Let c, d ∈ C \ {0} and e > |c| + |d|. If f ∈ Rt(C,D, %) with

cn = |cn|ei
(3n+1)π

2 , 0 < |D| < 1 and

Γ(e− |c| − |d|)Γ(e)

Γ(e− |c|)Γ(e− |d|)
≤ 1− %|D|

1 + %|D|
+ 1.

Then Ic,d;ef ∈ Rt(C,D, %), where the operator Ic,d;ef is defined by (5.1.3).

Proof. From Theorem 5.2.2, we want to show that

T1 :=
∞∑
n=2

n(1 + %|D|)|Cn| ≤ %|t||C −D|,

where

Cn =
(c)n−1(d)n−1

(e)n−1(1)n−1

cn.

By using Theorem 5.2.1, we obtain

|cn| ≤
%|t||C −D|
n(1− %|D|)

,
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T1 ≤
%|t||C −D|(1 + %|D|)

1− %|D|

∞∑
n=2

(|c|)n−1(|d|)n−1

(e)n−1(1)n−1

=
%|t||C −D|(1 + %|D|)

1− %|D|

(
∞∑
n=0

(|c|)n(|d|)n
(e)n(1)n

− 1

)

=
%|t||C −D|(1 + %|D|)

1− %|D|

(
Γ(e− |c| − |d|)Γ(e)

Γ(e− |c|)Γ(e− |d|)
− 1

)
≤ %|t||C −D|.

Now, we recall the next lemma which is required to prove Theorem 5.2.6.

Lemma 5.2.1. [44] Let ω be regular in E with ω(0) = 0. Then, if |ω(z)| reaches

a maximum value on the circle |z| = r (0 ≤ r < 1) at a point z0 , we denote that

z0ω
′(z0) = kω(z0) (k ≥ 1).

Theorem 5.2.6. Let f ∈ A defined by (5.1.1). If∣∣∣∣(Ic,d;ef(z))′ − 1

1− %

∣∣∣∣β ∣∣∣∣ z(Ic,d;ef(z))′′

(Ic,d;ef(z))′ − %

∣∣∣∣γ < 1

2γ
(z ∈ E) (5.2.10)

for some real % (0 ≤ % < 1), β > 0 and γ > 0. Then

|(Ic,d;ef(z))′ − 1| < 1− % (z ∈ E). (5.2.11)

Proof. Let us state ω as

ω(z) =
(Ic,d;ef(z))′ − 1

1− %
(z ∈ E).

Thus, it satisfies that ω is analytic in E with ω(0) = 0.

By using (5.2.10),

|ω(z)|β
∣∣∣∣ zω′(z)

ω(z) + 1

∣∣∣∣γ = |ω(z)|β+γ

∣∣∣∣zω′(z)

ω(z)

1

ω(z) + 1

∣∣∣∣γ (5.2.12)

<
1

2γ
(z ∈ E).
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Here, we consider that there exists a point z0 ∈ E as

max|z|≤|z0||ω(z)| = |ω(z0)| = 1.

By using Lemma 5.2.1, we can put

z0ω
′(z0)

ω(z0)
= k ≥ 1.

Hence, we get

|ω(z0)|β
∣∣∣∣ z0ω

′(z0)

ω(z0) + 1

∣∣∣∣γ =

∣∣∣∣z0ω
′(z0)

ω(z0)

1

ω(z0) + 1

∣∣∣∣γ
≥
(
k

2

)γ
≥ 1

2γ
,

which is contradiction to the condition (5.2.12). This proves that

|ω(z)| =
∣∣∣∣(Ic,d;ef(z))′ − 1

1− %

∣∣∣∣ < 1 (z ∈ E).

Remark 5.2.1. From the restriction (5.2.12) in Theorem 5.2.6 we obtain

Re{(Ic,d;ef(z))′} > 0 (z ∈ E).

Thus, the function Ic,d;ef is univalent in E, under the conditions of Theorem

5.2.6 by the Noshiro-Warschawski theorem [32].
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Chapter 6

Applications of the first-order

differential subordinations

6.1 Introduction

Let A denotes the class defined by Definition 2.1.2. A function l ∈ A is known

as strongly starlike of order % (0 < % ≤ 1) if and only if

zl′(z)

l(z)
≺
(

1 + z

1− z

)%
(z ∈ E). (6.1.1)

We also note that the conditions (6.1.1) can be written by

∣∣∣∣arg
zl′(z)

l(z)

∣∣∣∣ < π

2
% (z ∈ E),

where the notation ≺ denote, the subordination defined in Section 2.4. We

express the subclass of A comprised of all strongly starlike functions of order

% (0 < % ≤ 1) as S[%] and also denote that S[1] ≡ S∗ . This class is renowned as
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the class of all normalized starlike functions in E . The class S[%] and the related

classes have been widely investigated by Mocanu [71] and Nunokawa [80].

If ψ is analytic in D ⊂ C2 , h is univalent in E and p is analytic in E with

(p(z), zp′(z)) ∈ D for z ∈ E , then p is called to satisfy the first-order differential

subordination if

ψ(p(z), zp′(z)) ≺ h(z) (z ∈ E). (6.1.2)

A function q ∈ S is called a dominant of the differential subordination, if p ≺ q

for all p satisfying (6.1.2). If q̃ is a dominant of (6.1.2) and q̃ ≺ q for all

dominants of (6.1.2), then q̃ is said to be the best dominant of the differential

subordination (6.1.2).

The general theory of the first-order differential subordinations, with many inter-

esting applications, especially in the theory of univalent functions, was developed

by Miller and Mocanu ([67, 68]). For several applications of the principle of dif-

ferential subordinations in the investigations of various interesting subclasses of

analytic and univalent functions. We here offer references of the recent works, for

more detail(see, [109, 115, 116, 124, 125]).

In this chapter, we propose to derive some applications of the first-order differ-

ential subordinations. We also extend and improve the results proven earlier by

Cho and Kim [18], Miller et al. [66], and Nunokawa et al. [80, 81, 82, 83]. We

note that the contents of this chapter have been published by Filomat [21].

6.2 Main result

To verify our consequence, we recall the next Lemma by Miller and Mocanu [67].
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Lemma 6.2.1. [67] Let q ∈ S and let θ and ϕ be analytic in a domain D

containing q(E) with

ϕ(ω) 6= 0 when ω ∈ q(E).

Set

Q(z) = zq′(z)ϕ(q(z)), h(z) = θ(q(z)) +Q(z)

and consider that

(i) Q is starlike in E

(ii) Re
{
zh′(z)
Q(z)

}
= Re

{
θ′(q(z))
ϕ(q(z))

+ zQ′(z)
Q(z)

}
> 0 (z ∈ E).

If p is analytic in E with

p(0) = q(0), p(E) ⊂ D

and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)) (z ∈ E), (6.2.1)

then

p(z) ≺ q(z) (z ∈ E)

and q is the best dominant of (6.2.1).

With the help of the above Lemma 6.2.1, we get the next Theorem 6.2.1.

Theorem 6.2.1. Let p be nonzero analytic in E with p(0) = 1. If

∣∣arg
(
βpγ(z) + αzp′(z)pγ−1(z)

)∣∣ < π

2
δ(α, β, %, γ) (6.2.2)

(α, β > 0; γ ≥ 0; 0 < % ≤ 1;−1 ≤ %γ ≤ 1; z ∈ E),
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where δ(α, β, %, γ) (0 < δ(α, β, %, γ) < 1) is the solution of the equation:

δ(α, β, %, γ) = γ%+
2

π
tan−1 α%

β
, (6.2.3)

then

| arg p(z)| < π

2
% (z ∈ E).

Proof. Let

q(z) =

(
1 + z

1− z

)%
, θ(ω) = βωγ and ϕ(ω) = αωγ−1

in Lemma 6.2.1. Then q is univalent(convex) in E and

Re{q(z)} > 0 (z ∈ E).

Further, θ and ϕ are analytic in q(E) and

ϕ(ω) 6= 0 (ω ∈ q(E)).

Set

Q(z) = zq′(z)ϕ(q(z)) =

(
1 + z

1− z

)%γ
2α%z

1− z2

and

h(z) = θ(q(z)) +Q(z) =

(
1 + z

1− z

)%γ (
β +

2α%z

1− z2

)
.

Then we can see easily that the conditions (i) and (ii) of Lemma 6.2.1 are satisfied.

We also note that h(0) = β and

h(eiθ) =
(

1+eiθ

1−eiθ

)%γ (
β + 2α%eiθ

1−e2iθ

)
(6.2.4)

=
(
i cot θ

2

)%γ (
β + i α%

sin θ

)
=
∣∣cot θ

2

∣∣ e±π%2 (β + i α%
sin θ

)
,
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where we take ” + ” for 0 < θ < π , and ” − ” for −π < θ < 0. In view of the

previous relation (6.2.4), we can see that the real and imaginary part of h(eiθ)

is an even and odd function of θ , respectively. Without loss of generality, we

suppose that 0 < θ < π . Hence, from (6.2.4), we obtain

arg h(eiθ) =
π

2
%γ + arg

(
β + i

α%

sin θ

)
=
π

2
%γ + tan−1 α%

β sin θ

≥ π

2
%γ + tan−1 α%

β

=
π

2
δ(α, β, %, γ),

where δ(α, β, %, γ) is the solution of the equation given by (6.2.3). Therefore, we

conclude that the condition (6.2.2) implies that

βpγ(z) + αzp′(z)pγ−1(z) ≺ h(z) (z ∈ E).

Thus, by Lemma 6.2.1, we obtain

p(z) ≺
(

1 + z

1− z

)%
(z ∈ E),

or equivalently,

| arg p(z)| < π

2
% (z ∈ E).

Remark 6.2.1. To take γ = 0 in Theorem 6.2.1, we derive the condition which

is p(z) 6= 0 for z ∈ E. If p has a zero z0 ∈ E of order m, then we may write

p(z) = (z − z0)mp1(z) (m ∈ N),
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where p1 is analytic in E with p1(z0) 6= 0. Thus

β + α
zp′(z)

p(z)
= β + α

zp1
′(z)

p1(z)
+

αmz

z − z0

. (6.2.5)

Therefore, choosing z → z0 , suitably the argument of the right-hand of (6.2.5)

can take any value between 0 and 2π , which contradicts the hypothesis (6.2.2).

6.3 Some applications

If we take

α = 1 and γ = 0

in Theorem 6.2.1, then we get the next Corollary by Nunokawa et al. [82].

Corollary 6.3.1. Let p be analytic in E with p(0) = 1. If

∣∣∣∣arg

(
β +

zp′(z)

p(z)

)∣∣∣∣ < tan−1 %

β
(β > 0; 0 < % ≤ 1; z ∈ E),

then

| arg p(z)| < π

2
% (z ∈ E).

Letting

β = 1 and p(z) =
f(z)

z
(z ∈ E)

in Corollary 6.3.1, we derive the consequence as belows.

Corollary 6.3.2. Let f ∈ A. If

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < tan−1 % (0 < % ≤ 1; z ∈ E),
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then

∣∣∣∣arg
f(z)

z

∣∣∣∣ < π

2
% (z ∈ E).

Making

α = β = 1 and p(z) =
f(z)

z
(z ∈ E)

in Theorem 6.2.1, we have the next consequence.

Corollary 6.3.3. Let f ∈ A. If

∣∣∣∣arg
zf ′(z)fγ−1(z)

zγ

∣∣∣∣ < π

2
δ(%, γ) (γ ≥ 0; 0 < % ≤ 1; z ∈ E),

where δ(%, γ) (0 < δ(%, γ) < 1) is the solution of the equation

δ(%, γ) = %γ +
2

π
tan−1 %, (6.3.1)

then

∣∣∣∣arg
f(z)

z

∣∣∣∣ < π

2
% (z ∈ E).

Remark 6.3.1. If we take

γ = 2 and δ(%, 2) = 1,

in Corollary 6.3.3, then we have the result obtained by Lee and Nunokawa [52].

Taking γ = 1 in Corollary 6.3.3, we derive the next consequence.

Corollary 6.3.4. Let f ∈ A. If

| arg f ′(z)| < π

2
δ(%) (0 < % ≤ 1; z ∈ E),
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where δ(%) is the solution δ(%, 1) of the equation given by (6.3.1) with γ = 1,

then

∣∣∣∣arg
f(z)

z

∣∣∣∣ < π

2
% (z ∈ E).

Applying Corollary 6.3.4, we have the following result immediately.

Corollary 6.3.5. Let f ∈ A. If

| arg f ′(z)| < π

2
δ(%) (0 < % ≤ 1; ∈ E),

where δ(%) is given by Corollary 6.3.4, then

|argF ′(z)| < π

2
% (z ∈ E),

where F is defined by

F (z) =

∫ z

0

f(t)

t
dt (z ∈ E).

Furthermore, from Theorem 6.2.1, we have the next consequence.

Corollary 6.3.6. Let f ∈ A. If

∣∣∣∣arg
zf ′(z)fγ−1(z)

zγ

∣∣∣∣ < π

2
δ(%, γ, c) (0 < % ≤ 1; c > −γ; γ > 0; z ∈ E),

where δ(%, γ, c) (0 < δ(%, γ, c) < 1) is the solution of the equation:

δ(%, γ, c) = %+
2

π
tan−1 %

c+ γ
,

then
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∣∣∣∣arg
zF ′(z)F γ−1(z)

zγ

∣∣∣∣ < π

2
% (z ∈ E),

where F is the integral operator defined by

F (z) =

(
c+ γ

zc

∫ z

0

tc−1fγ(t)dt

) 1
γ

(z ∈ E).

Proof. According to the definition of F that

cF γ(z) + γzF ′(z)F γ−1(z) = (c+ γ)fγ(z).

Let

p(z) =
zF ′(z)F γ−1(z)

zγ
(z ∈ E).

Then, after a simple calculation, we find that

(c+ γ)p(z) + zp′(z) = (c+ γ)
zf ′(z)fγ−1(z)

zγ
.

Therefore, by applying Theorem 6.2.1, we have Corollary 6.3.6.
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Chapter 7

Subclasses of starlike and convex

functions associated with Bessel

functions

7.1 Introduction

Let A denote the class of functions defined by (2.1.1) and T denote the subclass

of A of the functions defined by

f(z) = z −
∞∑
n=2

anz
n (an ≥ 0). (7.1.1)

Let T ∗(υ) and C(υ) denote the subclasses of T consisting of starlike and convex

functions of order υ (0 ≤ υ < 1) (see [111]), respectively. In 1997, Bharati et al.

[11] presented the subclasses of starlike and convex functions as follows.

Definition 7.1.1. Let f ∈ A defined by (2.1.1). A function f ∈ SPT (υ, δ), if

it fulfills the condition:
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Re

(
zf ′(z)

f(z)

)
≥ υ

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣+ δ (υ ≥ 0; 0 ≤ δ < 1)

and

f ∈ UCV(υ, δ) ⇐⇒ zf ′ ∈ SP(υ, δ)

.

Definition 7.1.2. Let f ∈ A defined by (2.1.1). A function f ∈ P(υ), if it

fulfills the condition:

Re

(
zf ′(z)

f(z)

)
+ υ ≥

∣∣∣∣zf ′(z)

f(z)
− υ
∣∣∣∣ (0 < υ <∞)

and

f ∈ CP(υ) ⇐⇒ zf ′ ∈ P(υ).

Denote

PT (υ) = P(υ) ∩ T and CPT (υ) = CP(υ) ∩ T .

Bharati el al. [11] show that

SPT (υ, δ) = T ∗((υ + δ)/(1 + υ)),

UCT (υ, δ) = C((υ + δ)/(1 + υ)),

PT (υ) = T ∗(1− υ) (1/2 < υ < 1)

and

CPT (υ) = C(1− υ) (1/2 < υ < 1).

Particularly, we state that UCV(1, 0) is the class of uniformly convex functions

given by Goodman [37]. For more interesting developments of some related sub-

classes of UCV(υ, δ), for more details, we refer to the works of Goodman [38],

Ma-Minda [61] and Rønning [105, 106].

45



In recent, Baricz [6] defined a generalized Bessel function ωp,b,c ≡ ω as follows:

ω(z) = ωp,b,c(z) =
∞∑
n=0

(−1)n cn

n! Γ
(
p+ n+ b+1

2

) (z
2

)2n+p

, (7.1.2)

which is the special solution of the second order linear homogeneous differential

equation

z2ω′′(z) + bzω′(z) + [cz2 − p2 + (1− b)]ω(z) = 0 (b, p, c ∈ C), (7.1.3)

which is a natural generalization of Bessel’s equation. Solutions of (7.1.3) are

considered the generalized Bessel function of order p . The particular solution

given by (7.1.2) is called the generalized Bessel function of the first kind of order

p . We also note that the function ωp,b,c is commonly not univalent in E , even

though the series defined above is convergent everywhere.

Now, we consider the function up,b,c(z) defined by

up,b,c(z) = 2pΓ

(
p+

b+ 1

2

)
z−

p
2 ωp,b,c (

√
z),
√

1 = 1.

As using the renowned Pochhammer symbol defined by (2.7.2) in Section 2.7,

we can present up,b,c(z) ≡ u as

up(z) = up,b,c(z) =
∞∑
n=0

(−c/4)n(
p+ b+1

2

)
n

zn

n!
(7.1.4)(

p+
b+ 1

2
6∈ N− ∪ {0};N− = {−1,−2, · · · }

)
.

Then the function up,b,c is analytic on C and fulfills the second-order linear

differential equation

4z2u′′(z) + 2(2p+ b+ 1)zu′(z) + cu(z) = 0.

The research of the generalized Bessel function is a intriguing subject in geometric

function theory recently and we refer to the works of Baricz [6, 5, 3, 4] and Cho
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et al. [22] and Mondal and Swaminathan [72] and Deniz [25] and so on (see,

[27, 23, 126]).

In this chapter, we establish sufficient restrictions for zup to be in SPT (υ, δ)

and UCV(υ, δ) and also give necessary and sufficient conditions for z(2 − up)

to be SPT (υ, δ), UCT (υ, δ), PT (υ), CPT (υ). Furthermore, we investigate an

integral operator associated with the function up . Throughout this chapter, we

will use in (7.1.4) the following notation for convenience:

m = p+
b+ 1

2
.

We remark that the contents of this chapter have been published by Filomat [20],

recently.

7.2 Main results

To prove our principal consequences, we recall the next Lemmas by Bharati et al

[11].

Lemma 7.2.1. [11] (i) A sufficient condition for f defined by (2.1.1) to be in

SP(υ, δ) is that

∞∑
n=2

(n(1 + υ)− (υ + δ))|an| ≤ 1− δ (υ ≥ 0 ; 0 ≤ δ < 1) (7.2.1)

and a necessary and sufficient condition for f defined by (7.1.1) to be in

SPT (υ, δ) is that the condition (7.2.1) is satisfied.

(ii) A sufficient condition for f defined by (2.1.1) to be in UCV(υ, δ) is that

∞∑
n=2

n(n(1 + υ)− (υ + δ))|an| ≤ 1− δ (υ ≥ 0 ; 0 ≤ δ < 1) (7.2.2)
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and a necessary and sufficient condition for f defined by (7.1.1) to be in

UCT (υ, δ) is that the condition (7.2.2) is satisfied.

Lemma 7.2.2. [11] (i) A a necessary and sufficient condition for f defined by

(7.1.1) to be in PT (υ) is that

∞∑
n=2

(n− 1− υ)an ≤ υ (1/2 < υ ≤ 1) (7.2.3)

(ii) A a necessary and sufficient condition for f defined by (7.1.1) to be in

CPT (υ) is that

∞∑
n=2

n(n− 1− υ)an ≤ υ (1/2 < υ ≤ 1) (7.2.4)

Lemma 7.2.3. [4] Let b, p, c ∈ C and m 6∈ N− ∪ {0}. Then the function up

defined by (7.1.4) complies the following recursive relation:

4mu′p(z) = −cup+1(z) (z ∈ C). (7.2.5)

Theorem 7.2.1. Let c < 0 and m > 0. Then zup ∈ SP(υ, δ) if

(1 + υ)u′p(1) + (1− δ)[up(1)− 1] ≤ 1− δ (υ ≥ 0 ; 0 ≤ δ < 1). (7.2.6)

Proof. Since

zup(z) = z +
∞∑
n=2

(−c/4)n−1

(m)n−1 (n− 1)!
zn,

by using (i) in Lemma 7.2.1, it enough to show that

L(c,m, υ, δ) :=
∞∑
n=2

[n(1 + υ)− (υ + δ)]
(−c/4)n−1

(m)n−1 (n− 1)!
≤ 1− δ.
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By brief calculation, we have

L(c,m, υ, δ) =
∞∑
n=2

[(n− 1)(1 + υ) + (1− δ)] (−c/4)n−1

(m)n−1 (n− 1)!
(7.2.7)

= (1 + υ)
∞∑
n=2

(−c/4)n−1

(m)n−1 (n− 2)!
+ (1− δ)

∞∑
n=2

(−c/4)n−1

(m)n−1 (n− 1)!

= (1 + υ)
∞∑
n=0

(−c/4)n+1

(m)n+1 n!
+ (1− δ)

∞∑
n=0

(−c/4)n+1

(m)n+1 (n+ 1)!

= (1 + υ)
(−c/4)

m

∞∑
n=0

(−c/4)n

(m+ 1)n n!
+ (1− δ)

∞∑
n=0

(−c/4)n+1

(m)n+1 (n+ 1)!

= (1 + υ)
(−c/4)

m
up+1(1) + (1− δ)[up(1)− 1]

= (1 + υ)u′p(1) + (1− δ)[up(1)− 1].

Therefore, we know that the last expression (7.2.7) is bounded above by 1− δ if

(7.2.6) is fulfilled.

Corollary 7.2.1. Let c < 0 and m > 0. Then z(2− up(z)) ∈ SPT (υ, δ) if and

only if the condition (7.2.6) is satisfied.

Proof. Since

z(2− up(z)) = z −
∞∑
n=2

(−c/4)n−1

(m)n−1 (n− 1)!
zn,

As using analogous methods given in the proof of Theorem 7.2.1, we derive im-

mediately Corollary 7.2.1.

Theorem 7.2.2. Let c < 0 and m > 0. Then zup ∈ UCV(υ, δ) if

(1 + υ)u′′p(1) + (3 + 2υ − δ)u′p(1) + (1− δ)[up(1)− 1] ≤ 1− δ

(υ ≥ 0 ; 0 ≤ δ < 1).
(7.2.8)
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Proof. Since

zup(z) = z +
∞∑
n=2

(−c/4)n−1

(m)n−1 (n− 1)!
zn,

by using (ii) in Lemma 7.2.1, it is enough to show that

P(c,m, υ, δ) :=
∞∑
n=2

n[n(1 + υ)− (υ + δ)]
(−c/4)n−1

(m)n−1 (n− 1)!
≤ 1− δ.

By using n2 = (n−1)(n−2)+3(n−1)+1 and n = (n−1)+1, we can expatiate

on the above terms as follows:

P(c,m, υ, δ)

= (1 + υ)
∞∑
n=2

(n− 1)(n− 2)
(−c/4)n−1

(m)n−1 (n− 1)!

+ (3 + 2υ − δ)
∞∑
n=2

(n− 1)
(−c/4)n−1

(m)n−1 (n− 1)!
+ (1− δ)

∞∑
n=2

(−c/4)n−1

(m)n−1 (n− 1)!

= (1 + υ)
∞∑
n=3

(−c/4)n−1

(m)n−1 (n− 3)!

+ (3 + 2υ − δ)
∞∑
n=2

(−c/4)n−1

(m)n−1 (n− 2)!
+ (1− δ)

∞∑
n=2

(−c/4)n−1

(m)n−1 (n− 1)!

= (1 + υ)
∞∑
n=2

(−c/4)n

(m)n (n− 2)!

+ (3 + 2υ − δ)
∞∑
n=1

(−c/4)n

(m)n (n− 1)!
+ (1− δ)

∞∑
n=0

(−c/4)n+1

(m)n+1 (n+ 1)!

= (1 + υ)
(−c/4)2

m(m+ 1)

∞∑
n=1

(−c/4)n−1

(m+ 2)n−1 (n− 1)!

+ (3 + 2υ − δ)(−c/4)

m

∞∑
n=1

(−c/4)n−1

(m+ 1)n−1 (n− 1)!
+ (1− δ)

∞∑
n=0

(−c/4)n+1

(m)n+1 (n+ 1)!

= (1 + υ)
(−c/4)2

m(m+ 1)
up+2(1) + (3 + 2υ − δ)(−c/4)

m
up+1(1) + (1− δ)[up(1)− 1]

= (1 + υ)u′′p(1) + (3 + 2υ − δ)u′p(1) + (1− δ)[up(1)− 1].
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Therefore, we know that the last expression is bounded above by 1− δ if (7.2.8)

is fulfilled.

Similarly, by using a analogous method like in the proof of Corollary 7.2.1, we

derive the next consequence.

Corollary 7.2.2. Let c < 0 and m > 0. Then z(2 − up) ∈ UCT (υ, δ) if and

only if the condition (7.2.8) is satisfied.

The proofs of Theorem 7.2.3 and Theorem 7.2.4 are much akin to those of The-

orem 7.2.1 or Theorem 7.2.2 and so the particulars are omitted.

Theorem 7.2.3. Let c < 0 and m > 0. Then

z(2− up) ∈ PT (υ) ⇐⇒ u′p(1) + υup(1) ≤ 2υ (1/2 < υ ≤ 1). (7.2.9)

Theorem 7.2.4. Let c < 0 and m > 0. Then

z(2− up) ∈ CPT (υ) ⇐⇒ u′′p(1) + (2 + υ)u′p(1) + υup(1) ≤ 2υ (1/2 < υ ≤ 1).

(7.2.10)

In the next theorems, we derive consequences of analogous types associated with

a special integral operator I(c,m; z) as belows:

I(c,m; z) =

∫ z

0

(2− up(t))dt (7.2.11)

Theorem 7.2.5. Let c < 0 and m > 0. Then I(c,m; z) ∈ UCT (υ, δ) if and

only if the the condition (7.2.6) is fulfilled.

Proof. Since

I(c,m; z) = z −
∞∑
n=2

(−c/4)n−1

(m)n−1 n!
zn,
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by using (ii) in Lemma 7.2.1, it is enough to prove that

∞∑
n=2

(n(1 + υ)− (υ + δ))
(−c/4)n−1

(m)n−1 (n− 1)!
≤ 1− δ.

The rests of the proof of Theorem 7.2.5 is analogous to those of Theorem 7.2.1.

Thus the particulars are omitted.

Similarly, by using (ii) in Lemma 7.2.2 and Theorem 7.2.3, we derive the next

theorem.

Theorem 7.2.6. Let c < 0 and m > 0. Then I(c,m; z) ∈ CPT (υ) if and only

if the the condition (7.2.9) is satisfied.
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Chapter 8

Geometric properties of

normalized Lommel functions

8.1 Introduction

Let S denote the class of functions that are analytic and univalent in E , with

S∗(%) and C(%) designating the subclasses of S that are, respectively, starlike

of order % and convex of order %, 0 ≤ % < 1. According to the definition of

subordination, we present the following classes. That is a function q given by

(2.1.1) is called to be in S∗[C,D] if

zq′(z)

q(z)
≺ 1 + Cz

1 +Dz
(z ∈ E, −1 ≤ D < C ≤ 1) (8.1.1)

and in C[C,D] if

1 +
zq′′(z)

q′(z)
≺ 1 + Cz

1 +Dz
(z ∈ E, −1 ≤ D < C ≤ 1) . (8.1.2)
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The family S∗[C,D] was investigated in [35], [36] and [46]. We say that a function

q(z) given by (2.1.1) is in S∗(c, d) if∣∣∣∣zq′(z)

q(z)
− c
∣∣∣∣ < d (z ∈ E, c ≥ d) (8.1.3)

and in C(c, d) if ∣∣∣∣(1 +
zq′′(z)

q′(z)

)
− c
∣∣∣∣ < d, (z ∈ E, c ≥ d). (8.1.4)

The family S∗(c, d) was introduced in [113]. In addition to the condition c ≥ d

for the families S∗(c, d) and C(c, d), at the origin we have

|1− c| < d. (8.1.5)

Observe that (1 + z)/(1 − z) is mapped by E onto the right half plane so that

S∗[−1, 1] and C[−1, 1] are the families of starlike and convex functions, respec-

tively. Note that functions in S∗[C,D] and S∗(c, d) are starlike, that functions

in C[C,D] and C(c, d) are convex, and that q ∈ C[C,D] (q ∈ C(c, d)) if and only

if zq′ ∈ S∗[C,D] (zq′ ∈ S∗(c, d)).

Lemma 8.1.1. [112] (i) If −1 < D < C ≤ 1, then

S∗[C,D] ≡ S∗
(

1− CD
1−D2

,
C −D
1−D2

)
.

(ii) If c ≥ d, then

S∗(c, d) ≡ S∗
[
d2 − c2 + c

d
,
1− c
d

]
.

In this chapter, we get some geometric properties of the function hµ,v which is a

normalized Lommel functions of the first kind sµ,v.
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8.2 Main results

We ponder the Lommel function of the first kind sµ,v which is a special solution

of the inhomogeneous Bessel differential equation ([122, 8]):

z2w′′(z) + zw′(z) + (z2 − v2)w(z) = zµ+1 (8.2.1)

and it can be represented by a hypergeometric series

sµ,v(z) =
zµ+1

(µ− v + 1)(µ+ v + 1)
1F2

(
1;
µ− v + 3

2
,
µ+ v + 3

2
;−z

2

4

)
,

where µ±v is not negative odd integer. Since the Lommel function sµ,v does not

appertain to A , it is regarded as ordinary to find normalization of the Lommel

function of the first kind

hµ,v(z) = (µ− v + 1)(µ+ v + 1)z
1−µ
2 sµ,v(

√
z)

= z +
∞∑
n=1

(
−1

4

)n
(X)n(Y )n

zn+1, (8.2.2)

where X = µ−v+3
2

, Y = µ+v+3
2

and (ν)k presents Pochhammer symbol defined by

(2.7.2). The function hµ,v is an element of the class A , obviously.

In geometric properties of special functions, Baricz and Ponnusamy ([6, 7, 9])

derived geometric properties of generalized Bessel functions. Geometric proper-

ties of generalized Struve functions are obtained by Yağmur and Orhan [85, 126],

recently. Moreover, Baricz and Szász [10] presented the starlikeness and close-to-

convexity of the derivatives of a normalized form of sµ− 1
2
, 1
2
, most recently.

Here, we present the next theorem for starlikeness and convexity for f ∈ hµ,v.

Theorem 8.2.1. Let µ, v ∈ R where µ± v are not negative odd integers,

J = 4(X + 1)(Y + 1) = (µ+ 5)2 − v2
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and

L = 4XY = (µ+ 3)2 − v2.

Then, for all z ∈ E the following assertion holds true:

If µ > −5 +
√

2 + v2 and

|D|(C −D)(J − 2)(LJ − L+ J) + J(1−D2)(J − 1)

(J − 2)(LJ − L− J)
< C −D, (8.2.3)

then hµ,v(z) ∈ S∗[C,D].

Proof. We apply the inequality∣∣∣∣zh′µ,v(z)

hµ,v(z)
− 1− CD

1−D2

∣∣∣∣ < C −D
1−D2

to prove
zh′µ,v(z)

hµ,v(z)
is subordinate to 1+Cz

1+Dz
. So, as using inequalities

n ≤ 2n−1 (n ∈ N) (8.2.4)

and

(X + 1)n−1(Y + 1)n−1 ≥ (X + 1)n−1(Y + 1)n−1

(n ∈ N, X + 1 > 0, Y + 1 > 0),
(8.2.5)

we obtain

∞∑
n=1

n

4n(X)n(Y )n
≤

∞∑
n=1

2n−1

4n(X)n(Y )n

=
1

4XY

∞∑
n=1

1

2n−1(X + 1)n−1(Y + 1)n−1

≤ 1

4XY

∞∑
n=1

[
1

2(X + 1)(Y + 1)

]n−1

=
J

L(J − 2)
(J > 2)

(8.2.6)
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and

∞∑
n=1

1

4n(X)n(Y )n
=

1

4XY

∞∑
n=1

1

4n−1(X + 1)n−1(Y + 1)n−1

≤ 1

4XY

∞∑
n=1

[
1

4(X + 1)(Y + 1)

]n−1

=
J

L(J − 1)
(J > 1).

(8.2.7)

Using the inequalities (8.2.6) and (8.2.7), we obtain

∣∣∣∣(1−D2)h′µ,v(z)− (1− CD)
hµ,v(z)

z

∣∣∣∣
=

∣∣∣∣∣D(C −D) +
∞∑
n=1

((1−D2)n+D(C −D))

(
−1

4

)n
(X)n(Y )n

zn

∣∣∣∣∣
≤ |D|(C −D) + (1−D2)

∞∑
n=1

n

4n(X)n(Y )n
+ |D|(C −D)

∞∑
n=1

1

4n(X)n(Y )n

≤ |D|(C −D) + (1−D2)
J

L(J − 2)
+ |D|(C −D)

J

L(J − 1)

≤ |D|(C −D)(J − 2)(LJ − L+ J) + J(1−D2)(J − 1)

L(J − 1)(J − 2)
.

(8.2.8)

Moreover, if we apply inequalities

|z1 − z2| ≥ ||z1| − |z2||
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and (8.2.5), then we get∣∣∣∣hµ,v(z)

z

∣∣∣∣ =

∣∣∣∣∣1 +
∞∑
n=1

(
−1

4

)n
(X)n(Y )n

zn

∣∣∣∣∣
≥ 1− 1

4XY

∞∑
n=1

1

4n−1(X + 1)n−1(Y + 1)n−1

≥ 1− 1

4XY

∞∑
n=1

[
1

4(X + 1)(Y + 1)

]n−1

= 1− 1

L

∞∑
n=1

(
1

J

)n−1

=
LJ − L− J
L(J − 1)

(J > 1).

(8.2.9)

As using the inequalities (8.2.3), (8.2.8) and (8.2.9), we derive∣∣∣∣zh′µ,v(z)

hµ,v(z)
− 1− CD

1−D2

∣∣∣∣
≤ 1

(1−D2)

∣∣∣∣ z

hµ,v(z)

∣∣∣∣ ∣∣∣∣(1−D2)h′µ,v(z)− (1− CD)
hµ,v(z)

z

∣∣∣∣
≤ |D|(C −D)(J − 2)(LJ − L+ J) + J(1−D2)(J − 1)

(1−D2)(J − 2)(LJ − L− J)

<
C −D
1−D2

.

We note that the inequalities X + 1 > 0, Y + 1 > 0 and J > 2 hold if and only

if µ > −5 +
√

2 + v2 .

Theorem 8.2.2. Let µ, v ∈ R where µ± v are not negative odd integers,

J = 4(X + 1)(Y + 1) = (µ+ 5)2 − v2

and

L = 4XY = (µ+ 3)2 − v2.
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Then, for all z ∈ E the next assertion holds true:

If µ > −5 +
√

3 + v2 and

(2J − 3)[|D|(C −D)(J − 3)(LJ − 2L+ 2J) + 2J(1−D2)(J − 2)]

(J − 2)(J − 3)(2LJ − 3L− 4J)
< C −D,

(8.2.10)

then hµ,v(z) ∈ C[C,D].

Proof. To prove 1 +
zh′′µ,v(z)

h′µ,v(z)
is subordinate to 1+Cz

1+Dz
, we apply the inequality∣∣∣∣h′µ,v(z) + zh′′µ,v(z)

h′µ,v(z)
− 1− CD

1−D2

∣∣∣∣ < C −D
1−D2

.

So, by using the inequalities (8.2.5),

3n−1 ≥ n(n+ 1)

2
and 2n ≥ n+ 1 (n ∈ N),

we derive
∞∑
n=1

n(n+ 1)

4n(X)n(Y )n
=

1

2XY

∞∑
n=1

n(n+1)
2

3n−1
(

4
3

)n−1
(X + 1)n−1(Y + 1)n−1

≤ 1

2XY

∞∑
n=1

[
3

4(X + 1)(Y + 1)

]n−1

=
2J

L(J − 3)
(J > 3)

(8.2.11)

and
∞∑
n=1

n+ 1

4n(X)n(Y )n
≤

∞∑
n=1

2n

4n(X)n(Y )n

=
1

2XY

∞∑
n=1

1

2n−1(X + 1)n−1(Y + 1)n−1

≤ 1

2XY

∞∑
n=1

[
1

2(X + 1)(Y + 1)

]n−1

=
2J

L(J − 2)
(J > 2).

(8.2.12)
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Using the inequalities (8.2.11) and (8.2.12), we obtain

|(1−D2)(h′µ,v(z) + zh′′µ,v(z))− (1− CD)h′µ,v(z)|

=

∣∣∣∣∣D(C −D) +
∞∑
n=1

((1−D2)n+D(C −D))
(n+ 1)

(
−1

4

)n
(X)n(Y )n

zn

∣∣∣∣∣
≤ |D|(C −D) + (1−D2)

∞∑
n=1

n(n+ 1)

4n(X)n(Y )n
+ |D|(C −D)

∞∑
n=1

n+ 1

4n(X)n(Y )n

≤ |D|(C −D) + (1−D2)
2J

L(J − 3)
+ |D|(C −D)

2J

L(J − 2)

=
|D|(C −D)(J − 3)(LJ − 2L+ 2J) + 2J(1−D2)(J − 2)

L(J − 2)(J − 3)
.

(8.2.13)

Further, if we apply inequalities (8.2.5) and(
3

2

)n−1

≥ n+ 1

2
(n ∈ N),

then we have∣∣h′µ,v(z)
∣∣ =

∣∣∣∣∣1 +
∞∑
n=1

(n+ 1)
(
−1

4

)n
(X)n(Y )n

zn

∣∣∣∣∣
≥ 1−

∞∑
n=1

n+ 1

4n(X)n(Y )n

= 1− 1

2XY

∞∑
n=1

n+1
2

4n−1(X + 1)n−1(Y + 1)n−1

= 1− 1

2XY

∞∑
n=1

n+1
2(

3
2

)n−1 (8
3

)n−1
(X + 1)n−1(Y + 1)n−1

≥ 1− 1

2XY

∞∑
n=1

[
3

8(X + 1)(Y + 1)

]n−1

= 1− 2

L

∞∑
n=1

(
3

2J

)n−1

=
2JL− 4J − 3L

L(2J − 3)
(J > 3/2).

(8.2.14)
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By applying the inequalities (8.2.10), (8.2.13) and (8.2.14), we elicit that∣∣∣∣h′µ,v(z) + zh′′µ,v(z)

h′µ,v(z)
− 1− CD

1−D2

∣∣∣∣
≤ 1

(1−D2)|h′µ,v(z)|
|(1−D2)(h′µ,v(z) + zh′′µ,v(z))− (1− CD)h′µ,v(z)|

≤ (2J − 3)[|D|(C −D)(J − 3)(LJ − 2L+ 2J) + 2J(1−D2)(J − 2)]

(1−D2)(J − 2)(J − 3)(2JL− 4J − 3L)

<
C −D
1−D2

.

We note that the inequalities X + 1 > 0, Y + 1 > 0 and J > 3 hold if and only

if µ > −5 +
√

3 + v2 .

By taking C = 1, D → −1+ in Theorem 8.2.1 and Theorem 8.2.2, we get the

next corollaries, respectively.

Corollary 8.2.1. Let µ, v ∈ R where µ± v are not negative odd integers,

J = 4(X + 1)(Y + 1) = (µ+ 5)2 − v2

and

L = 4XY = (µ+ 3)2 − v2.

Then, for all z ∈ E the following assertions holds true:

If µ > −5 +
√

2 + v2 and LJ−L+J
LJ−L−J < 1, then hµ,v(z) ∈ S∗[−1, 1].

Corollary 8.2.2. Let µ, v ∈ R where µ± v are not negative odd integers,

J = 4(X + 1)(Y + 1) = (µ+ 5)2 − v2
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and

L = 4XY = (µ+ 3)2 − v2.

Then for all z ∈ E the following assertions holds true:

If µ > −5+
√

3 + v2 and (2J−3)[(J−3)(LJ−2L+2J)+2J(J−2)]
(J−2)(J−3)(2LJ−3L−4J)

< 1, then hµ,v(z) ∈ C[−1, 1].
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