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1 Introduction

In this paper, we deal with the approximate controllability for the following nonlinear
functional differential equation with time delays in a Hilbert space H:

{ 2 (1) + Aw(t) = [°, g(t, s, 2(t), x(t + 8))u(ds) + (Bu)(t), 0<t<T, 4

z(0) =¢°% x(s) =g'(s) se€[-h,0).

Here, Ag is the operator associated with a sesquilinear form defined on V' x V' and
satisfying Garding’s inequality, where V' is another Hilbert space such that V' C
H C V*. The nonlinear term G(t, z), which is a Lipschitz continuous operator from
L?(—h,T;V) to L*(0,T; H), is a semilinear version of the quasilinear one considered
in Yong and Pan [1]. The controller B is a bounded linear operator from L*(0,T; U)
to L2(0,T; H), where U is some Banach space. Precise assumptions are given in the
next section.

It is well known that the future state realistic models in the natural sciences,
biology economics and engineering depends not only on the present but also on the
past state. Such applications are used to study the stability, controllability and
the time optimal control problems of hereditary systems. The regular problems
the semilinear functional differential equations with unbounded delays has been
surveyed in Vrabie [2] and Jeong et al. [3]. The approximate controllability for
semilinear differential systems has been also studied in [3-8]. As for the regularity
results for a class of nonlinear evolution equations with the nonlinear operator A
were developed in many references [9-12]. Ahmed and Xiang [12] gave some existence
results for the initial value problem in case where the nonlinear term is not monotone,
which improved Hirano’s result [13]. Recently, the controllability of neutral evolution
integrodifferential systems with state dependent delay has been studied by [14, 15] ,
impulsive neutral functional evolution integrodifferential systems with infinite delay
in [16], and the approximate controllability of stochastic equations by authors [17,
18, 19].

We will first establish a variation of constant formula for solutions of the given
equation with a general condition of the local Lipschitz continuity of the nonlinear
operator , which is reasonable and widely used in case of the nonlinear system. The
main research direction is to find conditions on the nonlinear term such that the
regularity result of (1.1) is preserved under perturbation. In order to prove the
solvability of the initial value problem (1.1) in Section 3, we establish necessary
estimates applying the result of Di Blasio et al. [20] to (1.1) considered as an
equation in H as well as in V* in Section 2.

Moreover in Section 4, we establish the approximate controllability of control
system (1.1) with condition on a range condition of the controller and an inequality



condition on the system parameters as in Naito [21]. In this paper, we no longer
require the compact property of structural operators, and the uniform boundedness
and the uniform continuity of nonlinear terms, but instead we need the regularity
and a variation of solutions of the given equations with local Lipschitz continuity of
nonlinear terms by using a successive approach method.

2 Preliminaries and Assumptions

If H is identified with its dual space we may write V. C H C V* densely and the
corresponding injections are continuous. The norm on V', H and V* will be denoted
by || |, | - | and || - ||+, respectively. The duality pairing between the element v,
of V* and the element vy of V' is denoted by (v, v3), which is the ordinary inner
product in H if vy,v, € H.

For | € V* we denote (I,v) by the value [(v) of [ at v € V. The norm of [ as
element of V* is given by

), = sup {0

vev ol

Therefore, we assume that V' has a stronger topology than H and, for brevity, we
may regard that
lulls < Juf < lul], VYueV. (2.1)

Let a(-,-) be a bounded sesquilinear form defined in V' x V and satisfying
Garding’s inequality
Re a(u,u) > wy||u|]* — walul?, (2.2)

where wy; > 0 and w» is a real number. Let A be the operator associated with this
sesquilinear form:
(Au,v) = a(u,v), u, veV.

Then — A is a bounded linear operator from V' to V* by the Lax-Milgram Theorem.
The realization of A in H which is the restriction of A to

DA)={ueV:Aue H}
is also denoted by A. From the following inequalities
wil|ul]? < Rea(u, u) + walul* < ClAu| |u| + ws|ul* < max{C, wa H[ul| peaylul,

where
lull pay = (JAul? + [uf*)'/?



is the graph norm of D(A), it follows that there exists a constant Cy > 0 such that

[ul| < Col ul [yl . (2:3)
Thus we have the following sequence
D(A)cV CcHcCV*cC DA, (2.4)

where each space is dense in the next one which continuous injection.

Lemma 2.1. With the notations (2.8), (2.4), we have
(ViV¥)i22 = H,
(D(A), H)1j22 =V,

where (V,V*)1/95 denotes the real interpolation space between V' and V*(Section

1.3.3 of [22)).

It is also well known that A generates an analytic semigroup S(t) in both H and
V*. For the sake of simplicity we assume that ws = 0 and hence the closed half
plane {\ : Re A > 0} is contained in the resolvent set of A.

If X is a Banach space, L*(0,T;X) is the collection of all strongly measur-
able square integrable functions from (0,7") into X and W'2(0,T; X) is the set of
all absolutely continuous functions on [0, 7] such that their derivative belongs to
L2(0,T; X). C([0,T]; X) will denote the set of all continuously functions from [0, 7]
into X with the supremum norm. If X and Y are two Banach space, £L(X,Y) is
the collection of all bounded linear operators from X into Y, and £(X, X) is simply
written as £(X). Let the solution spaces W(T') and W;(T) of strong solutions be
defined by

W(T) = L*(0,T; D(A)) nW"%(0,T; H),
Wi(T) = L*(0,T; V) N W20, T;V*).
Here, we note that by using interpolation theory, we have
W(T) c C([0, T]; V), Wi(T)cC C([0,T]; H).
Thus, there exists a constant My > 0 such that
zlleqorivy) < Mollzllwry,  @lleorim < Mollzlw, ). (2.5)

The semigroup generated by —A is denoted by S(t) and there exists a constant M
such that
SO <M, [IS@)]l. <M.

The following Lemma is from Lemma 3.6.2 of [23].



Lemma 2.2. There exists a constant M > 0 such that the following inequalities
hold for allt > 0 and every x € H or V*:

S(t)x| < M2 |z]].,  [ISE)zl| < Mt~Y/2|a.

First of all, consider the following linear system

{ ((()t)): fm = k(1) 26)

By virtue of Theorem 3.3 of [20](or Theorem 3.1 of [?], [23]), we have the following
result on the corresponding linear equation of (2.6).

Lemma 2.3. Suppose that the assumptions for the principal operator A stated above
are satisfied. Then the following properties hold:

1) For xzg € V = (D(A), H)122(see Lemma 2.1) and k € L*(0,T; H), T > 0, there
exists a unique solution x of (2.6) belonging to W(T') C C([0,T]; V) and satisfying

[zllwry < Crlllol| + [[El| 201 ) (2.7)

where C is a constant depending on T
2) Let xo € H and k € L*(0,T;V*), T > 0. Then there exists a unique solution
of (2.6) belonging to Wy (T) C C([0,T]; H) and satisfying

llz]lwi ) < Crllzol + [|Kl|L200,mv+)), (2.8)

where C1 is a constant depending on T .

Lemma 2.4. Suppose that k € L*(0,T; H) and z(t) = [ S(t — s)k(s)ds for 0 <
t <T. Then there exists a constant Co such that

||| L20,7:00a)) < Cullk|| 220,70, (2.9)
2| r2(0.1;0r) < CoT'||k| 22 (0,7;m), (2.10)

and
12|20,y < CoV'T K| r20,7:0m)- (2.11)



Proof. The assertion (2.9) is immediately obtained by (2.7). Since
HxH%?(O,TH fo |fo (t — s)k(s)ds|?dt < Mfo fo |k(s)|ds)?dt
<M [f tfo |k (s)|2dsdt < MZ [ 1 |k(s)|ds
it follows that
2llz20,0:m) < TN/ M 2| 2002
From (2.3), (2.9), and (2.10) it holds that
1] z207v) < Cov/ O T(M/2)Y| K| 20,7,
So, if we take a constant Cy > 0 such that

Cy = max{\/M/Z,C'O\/a(M/Q)l/4},

the proof is complete. n

3 Semilinear differential equations

In this Section, we consider the maximal regularity of the following nonlinear func-
tional differential equation

(3.1)

{ & () + Ax(t) = [, g(t, s, 2(t), z(t + s))p(ds) + k(t), 0<t<T,
2(0)=¢% a(s)=g'(s) s€[-h0),

where A is the operator mentioned in Section 2. We need to impose the following
conditions.

Assumption (F). Let £ and B be the Lebesgue o-field on [0, 00) and the Borel
o-field on [—h, 0], respectively. Let u be a Borel measure on [—h, 0] and g : [0, 00) X
[—h,0] x V x V — H be a nonlinear mapping satisfying the following:

(i) For any x,y € V the mapping g(-,-, z,y) is strongly £ x B-measurable.

(ii) g(t,s,z,y) is locally Lipschitz continuous in x and y, uniformly in (¢,s) €
[0,00) X [—h,0], i.e., there exist positive constants Ly, L;(r) and Ly such that

lg(t,s,z,y) — g(t,5,2,9)] < Li(r)|z — 2| + Lo||y — 9|,

for all (t,s) € [0,00) X [=h,0], y, g€V, |z| <rand |2 <7



(iii) There exists a real number Ly such that
l9(t, 5,2, 9)] < Lo(1+ [] + [yl),  [g(t,5,0,0)] < Lo,
for any (t,s) € [0,00) x [~h,0], z € H,and y € V.

Remark 3.1. The above operator g is the semilinear case of the nonlinear part of
quasilinear equations considered by Yong and Pan [1].

For x € L*(—=h,T;V), T > 0 we set

Gt z) = / ot 5, 2(8), 2t + 5))u(ds). (3.2)

—h

Here, as in [1] we consider the Borel measurable corrections of z(-).
Let U be a Banach space and the controller operator B be a bounded linear
operator from the Banach space L*(0,T;U) to L*(0,T; H).

Lemma 3.1. Letx € L*(—=h,T;V),T > 0 and ||z||c(o,r,m) < 7. Then the nonlinear
term G(-,z) defined by (3.2) belongs to L*(0,T; H) and

G (- @)l 20,3y < il[—h, OD{LoVT + (La(r) + Lol 201y + Lallg" 12 (-no) }
(3.3)
Moreover, if x1, x5 € L*(—h,T; V), then
|G(,21) = G( 2|2 0,150y < pl[=h, 0])
X { (L1(r) + Lo)||z1 — 22| 22(0,m3v) + Lallz1 — 22|22 hDV)}

(3.4)
Proof. From (ii) of Assumption (F), it is easily seen that
1GC )20y < m([=h, ON{LoVT + Li ()2 20,0 + N2l z2-nra }
[—h, O){LoV'T + (L1 (r) + La) || %]l z20,,vy + Lall x|l 12(-n0) }-
The proof of (3.4) is similar. O

From now on, we establish the following results on the local solvability of (3.1)
represented by

{ 2 (t) + Az(t) = G(t,z) + k(t), te€ (0,T]
2(0) = g% x(s) = g'(s), s€[—h,0].



Theorem 3.1. Let Assumption (F) be satisfied. Assume that (¢°,g') € H x
L*(=h,0;V), k € L*(0,T;V*). Then, there exists a time Ty € (0,T) such that
the equation (3.1) admits a solution

x € L*(—h, To; V) N W20, Ty; V*) € C([0, Ty); H). (3.5)

Proof. For a solution of (3.1) in the wider sense, we are going to find a solution of
the following integral equation

x(t) = S(t)g° + /0 S(t —s){G(s,z) + k(s)}ds. (3.6)

To prove a local solution, we will use the successive iteration method. First, put

zo(t) = S(t)g° + /Ot S(t— s)k(s)ds

and define z;4(¢) as

5Cj+1 = CIZO / S t— S )d (37)
By virtue of Lemma 2.3, we have xy(-) € Wy(t), so that

[lzollwiey < Crllol + [[El|20.5v+)),

where (1 is a constant in Lemma 2.3. Choose r> 01 o “(Jmol + k|| 20 4:v+)), where

My is the constant of (2.5). Putting p(t) = [; S(t—s)G(-,20)ds, by (2.11) of Lemma
2.4, we have

||p||L2 0,tv) < 02\/_||G(' xO)HLQ (0,t;H)
< CQ\/_{M —h, 0] Lo\/_-i-( 1(r )+L2)H$HL2(0,T;\/) +L2H91”L2(—h,0;v)}
= Cop([—h, 0]) Lot + Cop([—h, 0)) [(L1(r) + Lo) ||l 2orvy + Lallg' 2oy ] VE.
(3.8)
So that, from(3.5) and (3.6),

H-TlHLQ(O,t;V)
< 7+ Cop([—h, 0))t + Copu([—h, O){(L1(r) + Lo) |||l 20, + Lallg" || 2(-nony }VE
< 3r



for any
m = min{r(Caou([~h,0]))~",
r{(Cop([~h, 0])) (L1 (r) + Lo)l|2 z2050) + 119" |22(-n,001) } 2}
0 <t < m. By induction, it can be shown that for all 7 = 1,2, ...
il 200y < 3r, 0<t<m. (3.9)

Hence, from the equation

t
pyaa(®) = ) = [ St~ 9{Gt.2,) - Glt,ayo)ds
0
From (2.11), (3.7) and Assumption (F), we can observe that the inequality

12501 = 25|20y < CoVH||G (- 25) = Gl i) 20,
_ ([, O (L (3r) + Lo VY
< il
holds for any 0 <t < m. Choose Ty > 0 satisfying

|21 — @o||£2(0,5v)

Ty < min{m, {Cou([—h,0])(L1(3r) + Ly)} 2}. (3.10)

Then {xz;} is strongly convergent to a function z in L*(0,Ty; V) uniformly on 0 <
t <Tp. By letting j — oo in (3.7), we obtain (3.6). Next, we prove the uniqueness
of the solution. Let ¢ > 0 be given. For e <t < Tj, set

z°(t) = S(t)g° + /0 = S(t — s){G(s,z%) + k(s)}ds. (3.11)

Then we have 2¢ € W, (1) and for z¢, y° € B,(1p) which is a ball with radius = in
L?(0,Ty; V), since

x(t) — z°(t) :/0 St — s){G(s,x) — G(s,x°)}ds
+ /t_ S(t — s){G(s,z%) + k(s)}ds,

with aid of Lemma 2.4,

|l — 220,50y < Cop([=h, O]) (L (r) + L2) v/ To||lz — 2|2 0,m5v)
+ Cov/eu([—h, OD{(LoVTo + (L1 + Lo)||2||20.10:v) + VT ol|El|2(0.70:80) }-



we have ¢ — x as € — 0 in L%(0,Ty; V). Suppose y is another solution of (3.1)
and y, is defined as (3.11) with the initial data (¢°, g'). Let z¢, y° € B,. Then From
Lemma 2.2, it follows that

e = vl < | / " / (s — (G 2%) — G, y))}drPds] 2
< M| / y / (s 1) G 1) — Gly)|dr)ds]
< Mu([—h,0])Ly(r) [/0 ' /08_6(3 — ) Ydr /OS_6 |z°(T) — y€(¢)’|2d7ds] 1/2
T

To
< Mp((=h 0L () og = [ e = a0,
0

so that by using Gronwall’s inequality, independently of €, we get x¢ = y° in
L*(0, Tp; V'), which proves the uniqueness of solution of (3.1) in Wi (Tp). O

From now on, we give a norm estimation of the solution of (3.3) and establish
the global existence of solutions with the aid of norm estimations.

Theorem 3.2. Under the Assumption (F) for the nonlinear mapping G, there exists
a unique solution x of (3.1) such that

z € Wy(T) c C([0,T]; H). (3.12)

for any (¢° g') € H x L*(0,T;V), k € L?(0,T;V*). Moreover, there exists a
constant Cy such that

zlwy < Cs([zol + [[Kl|L20mv+)), (3.13)
where C5 is a constant depending on T

Proof. Let y € B, be the solution of the following linear functional differential
equation parabolic type;

{ y'(t) + Ay(t) = k(t), te (0,Ty].
y(0) = ¢°.

Let the constant T} satisfy (3.10) and the following inequality:

T

ﬁﬁm—h,m)(mm +Ly) < 1. (3.14)

CoCh(
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Then we have

d(z —y)@)/dt + A(x —y)(t)) = G(t,x), te(0,Th].
{ (z —y)(0) =0.
Hence, in view of (F) and Lemmas 2.3 and 3.1,
||x - y||L2(O,Tl;D(A))ﬂWL?(O,Tl;H) < C1||G(', $)||L2(0,T1;H)
< Cup([=h, ON{LoV'T1 + (Li(r) + Lol r20mv) + Lallg" 12 -n00) }
< Cipl([=h, O)(La(r) + Lo) ([lx = yllr20mv) + |yl 220,20:v))
+ Cvpa([=h, 0) (Lov/Tr + Lallg* [l 2 (-now)) -
Thus, by the above inequality and arguing and (2.3),

1 1
||z — y||L2(0,T1;V) < Col|lz — y‘|i2(o,T1;D(A))Hx e yHEZ(O,Tl;H)

3 T 1
< COHx = yHiQ(O’T”D(A)){EHx - y||W1,2(o,T1;H)}2

P
) CO(E)Q |z = yllL20,1: DAy w201y 1)

< %(%)é{au([—h, O (Ls(r) + L)l 2 0.z10)
+ Cr([—h, O)) (Lo/Th + Lallg |l z2(—nov)) }
; cocx%)%u([—h, O)(L1(r) + Lo)||= — yll20my.

Therefore, since
CoCi(Z5) 2 ([, 0)) (L (r) + Lo)
1= CoCr(Z5) 2 ul([=h, O]) (L (r) + Lo)
N CoCr(T5 L)z ([, 0) (LovTi + Lallg* [l 2 (<now))
1- 0001(%)2M([_h> 0])(L1(r) + Lo)

|z = yllr20,mv) < 1yll 20,1157

)

we have
1

1= CoCr(Z5)2 (=, 0)) (L (r) + Lo)
CoCr ()2 p([=h, O)) (Lov/Th + Lallg* |l 22(-nov)
1= CoCr(Z5)2 (=, 0)) (L (r) + Lo)

HIHLQ(O vy < ||y||L2(0,T1;V)

Y
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and hence, with the aid of (2.8) in Lemma 2.3 and Lemma 3.1, we obtain
(| z2 0.1y w20, miv) (3.15)
<Ci(1g°1 + G, )| 20,1y 3v+) + 1Kl 20,10+
<C1[1g°| + p([=h, OD{ Lo/ Ty + (L1 (r) + Lo)l|zll 2201y + L2llg' | 2(-nowy }
+ 1kl 20 v+))
<Cs(19°1 + 1kl |20+ -
for some constant C5. Now from (2.5) and (3.15), it follows that

2(T1)] < lzlleqonnm < MoCs(1g°] + |1kl L20mv+)- (3.16)

So, we can solve the equation in [T},277] with the initial data (x(71),z7 ), and
obtain an analogous estimate to (3.15). Since the condition (3.14) is independent of
initial values, the solution of (3.1) can be extended the internal [0, n7T7] for a natural
number n, i.e., for the initial w(n7}) in the interval [T}, (n + 1)T}], as analogous
estimate (3.15) holds for the solution in [0, (n + 1)T3]. O

By the similar way to Theorems 3.1 and 3.2, we also obtain the following results
for (3.1) under Assumption (F) corresponding to 1) of Lemma 2.3.

Corollary 3.1. Let (¢°,g') € V x L*(—=h,0; D(A)) and k € L*(0,T; H). Then there
exists a unique solution x of (3.1) such that

x € L*(0,T; D(A) n W0, T; H) c C([0,T}; V).
Moreover, there exists a constant Csg such that
||x||L2(0,T;D(A)OW172(O,T;H) < 03(“90” + ||kHL2(07T;H))a

where C5 is a constant depending on T

4  Controllability for retarded systems

In this paper, we are concerned with the approximate controllability for the following
the semilinear control system with a control part Bu in place of k of (3.1):

{ 2 (1) + Ax(t) = [, glt, s, 2(t), 2(t + 5))p(ds) + (Bu)(t), 0<t<T, “1)

2(0) =g° a(s)=g'(s) s€[-h,0).
Here, U is a Banach space of control variables, and B is an operator from U to

H, called controller. Let x(7T; g,u) be a state value of the system (4.1) at time T
corresponding to the nonlinear term ¢ and the control .
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Definition 4.1. The system (4.1) is said to be approximately controllable in the
time interval [0, T] if for every desired final state x; € H and € > 0 there ezists a
control function uw € L*(0,T;U) such that the solution x(T;g,u) of (4.1) satisfies
|2(T; g,u) — 1| < €.

In order to obtain results of controllability, we need the stronger hypotheses than
Assumption (F) of Section 3:
Assumption (F1). g(t, s, x,y) satisfies Assumption (F) instead of (ii) to

(i) g(t,s,x,y) is locally Lipschitz continuous in z and y, uniformly in (¢,s) €
[0,00) x [—h,0], i.e., there exists a constant Ly, L1 = Li(r) > 0 and Ly such
that

‘g(ta‘g?fﬂay) o g(t, 373?7:’3)‘ < Ll‘x - ‘%‘ + LQHy - QH)

for all (t,S) = [OJOO> X [_h70]7 Y, ﬁ = V? ‘$| <r and ’j| <.

We define the linear operator S from L2(0,T; H) to H by
y ik
5% / S(T — s)p(s)ds for p € L*(0, T; H).
0

Assumption (B). For any ¢ > 0 and p € L*(0,T; H) there exists a u € L*(0,T;U)
such that

|Sp — SBu| < ¢,
|| Bul| 20,1 < @llpl| 200,60y, 0 <t < T\

where ¢ is a constant independent of p.
Assumption (H). We assume the following inequality condition:

(q+ DVTCop([=h, 0))(Ly + Ly) < 1.

Lemma 4.1. Let u;(i = 1,2) be in L*(0,T;U) and ||x(t; 9, wi)||cqom,m) < 7. Then
under the assumptions (F1) and (H), we have

z(t; 9,u1) — 2(t; g, U2>HL2(0,T;V)

< (1= VTMu([=h,0))(Ly + L)) 'VIM||Buy — Bus|| 20y (4.2)

for0 <t <T.
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PT’OOf. PUttlngp fo t—S {G ( 9, f,U1))_G(',f(‘;g,f,UQ))}dS, by (211)
and Lemma 3.1, we have
1Pl r20.0v) < VECou([—h, 0])(Ly + La)||lz1 — 22| 20,71

From that the solution of (4.1) is represented by

w(t; g,0) = S()g° + / S(t = $){G(s, 2( g,u)) + Bu(s) }ds,

it follows (4.2). O

Theorem 4.1. Under the assumptions (F1), (B) and (H), the system (4.1) is ap-
prozimately controllable on [0,T].

Proof. We will show that D(A) C Rr(g), i.e., for given € > 0 and & € D(A) there
exists u € L*(0,T;U) such that

&r — (T 9,u)| <e,

where
T
o(Tsg,u) = ST+ [ ST~ 5){Gls,(9,0)) + Buls)}ds.
0
As & € D(A) there exists a p € L?(0,T; H) such that

gp = ST T S(T)goa

for instance, take p(s) = (ép — sAép) — S(s)g°/T. Let uy € L*(0,T;U) be arbitrary
fixed. Since by Assumption (B) there exists uy € L*(0,T;U) such that

S = G(-,a(-19,m)) = $Bus| < 7,

it follows

. . 5
(&r — S(T)g° — SG(-,z(-;9,u1)) — SBuy| < 7 (4.3)
We can also choose wy € L*(0,T;U) by Assumption (B) such that
. A €
IS(G(-2(-39,u2)) = G(-2(-59,m)) = SBuy| < ¢ (4.4)

and
| Bwal|r200,m;my < ql|G(-,2(-59,w)) — G(-,2(-; g,u2))|| 220,738
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Choose a constant r; satisfying

(-5 g, u)lleqogm <, 2(-5.9,u2)lleqogm < -

For brevity, set
1

= (1= VTCou([=h,0)) (L1 + L)) M.

Therefore, in view of Lemma 3.1 and Assumption (B)

[[Bwa|| 200,01y < ql|G(-,2(-39,u1)) — G(-, 25 9,u2))|| 120,750 (4.5)
< qu([—h,0])(Ly + Lo)||z(-; g, u2) — x(+5 g, u1)|| 20,10y
< qu([—h, 0))(Ly + Lo) MNT||Buy — Bus || 120 2119,

Put us = us — wy. We determine ws such that
$(G(-2(-19,u3)) = G- 2(-19,w2))) = $Bus] < .
||Bw3||L2(0,T;H) < QHG( : J( : ;97U3)) - G( ’ J( ) §9>U2))||L2(0,T;H).

Let 75 be a constant satisfying ro > r; and

[z (-5 g, us)llcqon.m) < T2

Then, in a similar way to (4.5) we have

|| Bws|| 20y < gllG(-,2(-59,u3)) — G(- 2 (-5 9, u2))| | 20,00
< qu([=h,0)) (L1 + La)||z(; g, us) — 2(+; 9, ua)l|2(01v)
< qu([—h, 0)) (L1 + Lo) MN/T||Bus — Bus|| 120 .11)
< qu([—h, 0)) (L1 + La) MV/T| Bws||r2(0.:m1)
< (qu([—h, 0))(Ly + Lo) MVT)?|| Buz — Bua || 120,711

By proceeding this process, it holds

1B (tn, — tny)|| 220,150y = || Bwal|L20,7:m)
< (qu([—h, O))(Ly + Lo)MVT)" || Bug — Bua||r2(0,1:m)-

Here, noting that Assumption (H) is equivalent to

qu([—h,0))(Ly + Lo) MVT < 1,
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it follows that there exists u* € L*(0,T; H) such that

lim Bu, =u* in L*0,T;H).

n—oo

From (4.3), (4.4) it follows that
&7 = S(T)g — SG('; (-1 9,uz)) — SBU3|
= }ST - S(T)g - SG(-, x(-5g,u1)) — SBusy + SBuw,

— S[G(,z(5; 9,u2)) = G( z(+5 g, w))]|
11

By choosing w,, € L*(0,T;U) by the assumption (B) such that

< (

. ~ £
|S(G( ’ ,l’( ’ 797“”)) . G( 71’(' ;g7un—1))> i SBw”| < W’

putting w, 1 = u, — w,, we have

|§T y S(T>go F SG(, .Z‘(-; g7un)) - gBun+1|

1 1
§—|—" +

' on+1 )6’
Therefore, for € > 0 there exists integer N such that

<( n=12 -

‘SB’LLN_H » SBUN‘ < g

and

|5T - S(T)QO - SG('? 917('3 gauN)) - SBUN’
< |ér — S(T)g° — SG(, (g, un)) — SBuns1| + |SBun41 — SBuy|

1 5<
<(?+”.+2N+1)6+§—€‘

Thus, System (4.1) is approximately controllable on [0, T7.
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