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1 Introduction

In this paper, we deal with the approximate controllability for the following nonlinear
functional differential equation with time delays in a Hilbert space H:{

x
′
(t) + Ax(t) =

∫ 0

−h g(t, s, x(t), x(t+ s))µ(ds) + (Bu)(t), 0 < t ≤ T,

x(0) = g0, x(s) = g1(s) s ∈ [−h, 0).
(1.1)

Here, A0 is the operator associated with a sesquilinear form defined on V × V and
satisfying G̊arding’s inequality, where V is another Hilbert space such that V ⊂
H ⊂ V ∗. The nonlinear term G(t, x), which is a Lipschitz continuous operator from
L2(−h, T ;V ) to L2(0, T ;H), is a semilinear version of the quasilinear one considered
in Yong and Pan [1]. The controller B is a bounded linear operator from L2(0, T ;U)
to L2(0, T ;H), where U is some Banach space. Precise assumptions are given in the
next section.

It is well known that the future state realistic models in the natural sciences,
biology economics and engineering depends not only on the present but also on the
past state. Such applications are used to study the stability, controllability and
the time optimal control problems of hereditary systems. The regular problems
the semilinear functional differential equations with unbounded delays has been
surveyed in Vrabie [2] and Jeong et al. [3]. The approximate controllability for
semilinear differential systems has been also studied in [3-8]. As for the regularity
results for a class of nonlinear evolution equations with the nonlinear operator A
were developed in many references [9-12]. Ahmed and Xiang [12] gave some existence
results for the initial value problem in case where the nonlinear term is not monotone,
which improved Hirano’s result [13]. Recently, the controllability of neutral evolution
integrodifferential systems with state dependent delay has been studied by [14, 15] ,
impulsive neutral functional evolution integrodifferential systems with infinite delay
in [16], and the approximate controllability of stochastic equations by authors [17,
18, 19].

We will first establish a variation of constant formula for solutions of the given
equation with a general condition of the local Lipschitz continuity of the nonlinear
operator , which is reasonable and widely used in case of the nonlinear system. The
main research direction is to find conditions on the nonlinear term such that the
regularity result of (1.1) is preserved under perturbation. In order to prove the
solvability of the initial value problem (1.1) in Section 3, we establish necessary
estimates applying the result of Di Blasio et al. [20] to (1.1) considered as an
equation in H as well as in V ∗ in Section 2.

Moreover in Section 4, we establish the approximate controllability of control
system (1.1) with condition on a range condition of the controller and an inequality
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condition on the system parameters as in Naito [21]. In this paper, we no longer
require the compact property of structural operators, and the uniform boundedness
and the uniform continuity of nonlinear terms, but instead we need the regularity
and a variation of solutions of the given equations with local Lipschitz continuity of
nonlinear terms by using a successive approach method.

2 Preliminaries and Assumptions

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and the
corresponding injections are continuous. The norm on V , H and V ∗ will be denoted
by || · ||, | · | and || · ||∗, respectively. The duality pairing between the element v1
of V ∗ and the element v2 of V is denoted by (v1, v2), which is the ordinary inner
product in H if v1, v2 ∈ H.

For l ∈ V ∗ we denote (l, v) by the value l(v) of l at v ∈ V . The norm of l as
element of V ∗ is given by

||l||∗ = sup
v∈V

|(l, v)|
||v||

.

Therefore, we assume that V has a stronger topology than H and, for brevity, we
may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V. (2.1)

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying
G̊arding’s inequality

Re a(u, u) ≥ ω1||u||2 − ω2|u|2, (2.2)

where ω1 > 0 and ω2 is a real number. Let A be the operator associated with this
sesquilinear form:

(Au, v) = a(u, v), u, v ∈ V.

Then −A is a bounded linear operator from V to V ∗ by the Lax-Milgram Theorem.
The realization of A in H which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}

is also denoted by A. From the following inequalities

ω1||u||2 ≤ Re a(u, u) + ω2|u|2 ≤ C|Au| |u|+ ω2|u|2 ≤ max{C, ω2}||u||D(A)|u|,

where

||u||D(A) = (|Au|2 + |u|2)1/2
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is the graph norm of D(A), it follows that there exists a constant C0 > 0 such that

||u|| ≤ C0||u||1/2D(A)|u|
1/2. (2.3)

Thus we have the following sequence

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗, (2.4)

where each space is dense in the next one which continuous injection.

Lemma 2.1. With the notations (2.3), (2.4), we have

(V, V ∗)1/2,2 = H,

(D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Section
1.3.3 of [22]).

It is also well known that A generates an analytic semigroup S(t) in both H and
V ∗. For the sake of simplicity we assume that ω2 = 0 and hence the closed half
plane {λ : Reλ ≥ 0} is contained in the resolvent set of A.

If X is a Banach space, L2(0, T ;X) is the collection of all strongly measur-
able square integrable functions from (0, T ) into X and W 1,2(0, T ;X) is the set of
all absolutely continuous functions on [0, T ] such that their derivative belongs to
L2(0, T ;X). C([0, T ];X) will denote the set of all continuously functions from [0, T ]
into X with the supremum norm. If X and Y are two Banach space, L(X, Y ) is
the collection of all bounded linear operators from X into Y , and L(X,X) is simply
written as L(X). Let the solution spaces W(T ) and W1(T ) of strong solutions be
defined by

W(T ) = L2(0, T ;D(A)) ∩W 1,2(0, T ;H),

W1(T ) = L2(0, T ;V ) ∩W 1,2(0, T ;V ∗).

Here, we note that by using interpolation theory, we have

W(T ) ⊂ C([0, T ];V ), W1(T ) ⊂ C([0, T ];H).

Thus, there exists a constant M0 > 0 such that

||x||C([0,T ];V ) ≤M0||x||W(T ), ||x||C([0,T ];H) ≤M0||x||W1(T ). (2.5)

The semigroup generated by −A is denoted by S(t) and there exists a constant M
such that

|S(t)| ≤M, ||S(t)||∗ ≤M.

The following Lemma is from Lemma 3.6.2 of [23].
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Lemma 2.2. There exists a constant M > 0 such that the following inequalities
hold for all t > 0 and every x ∈ H or V ∗:

|S(t)x| ≤Mt−1/2||x||∗, ||S(t)x|| ≤Mt−1/2|x|.

First of all, consider the following linear system{
x
′
(t) + Ax(t) = k(t),

x(0) = x0.
(2.6)

By virtue of Theorem 3.3 of [20](or Theorem 3.1 of [?], [23]), we have the following
result on the corresponding linear equation of (2.6).

Lemma 2.3. Suppose that the assumptions for the principal operator A stated above
are satisfied. Then the following properties hold:
1) For x0 ∈ V = (D(A), H)1/2,2(see Lemma 2.1) and k ∈ L2(0, T ;H), T > 0, there
exists a unique solution x of (2.6) belonging to W(T ) ⊂ C([0, T ];V ) and satisfying

||x||W(T ) ≤ C1(||x0||+ ||k||L2(0,T ;H)), (2.7)

where C1 is a constant depending on T .
2) Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then there exists a unique solution x
of (2.6) belonging to W1(T ) ⊂ C([0, T ];H) and satisfying

||x||W1(T ) ≤ C1(|x0|+ ||k||L2(0,T ;V ∗)), (2.8)

where C1 is a constant depending on T .

Lemma 2.4. Suppose that k ∈ L2(0, T ;H) and x(t) =
∫ t
0
S(t − s)k(s)ds for 0 ≤

t ≤ T . Then there exists a constant C2 such that

||x||L2(0,T ;D(A)) ≤ C1||k||L2(0,T ;H), (2.9)

||x||L2(0,T ;H) ≤ C2T ||k||L2(0,T ;H), (2.10)

and

||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H). (2.11)
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Proof. The assertion (2.9) is immediately obtained by (2.7). Since

||x||2L2(0,T ;H) =
∫ T
0
|
∫ t
0
S(t− s)k(s)ds|2dt ≤M

∫ T
0

(
∫ t
0
|k(s)|ds)2dt

≤M
∫ T
0
t
∫ t
0
|k(s)|2dsdt ≤M T 2

2

∫ T
0
|k(s)|2ds

it follows that

||x||L2(0,T ;H) ≤ T
√
M/2||k||L2(0,T ;H).

From (2.3), (2.9), and (2.10) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M/2)1/4||k||L2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√
M/2, C0

√
C1(M/2)1/4},

the proof is complete.

3 Semilinear differential equations

In this Section, we consider the maximal regularity of the following nonlinear func-
tional differential equation{

x
′
(t) + Ax(t) =

∫ 0

−h g(t, s, x(t), x(t+ s))µ(ds) + k(t), 0 < t ≤ T,

x(0) = g0, x(s) = g1(s) s ∈ [−h, 0),
(3.1)

where A is the operator mentioned in Section 2. We need to impose the following
conditions.
Assumption (F). Let L and B be the Lebesgue σ-field on [0,∞) and the Borel
σ-field on [−h, 0], respectively. Let µ be a Borel measure on [−h, 0] and g : [0,∞)×
[−h, 0]× V × V → H be a nonlinear mapping satisfying the following:

(i) For any x, y ∈ V the mapping g(·, ·, x, y) is strongly L × B-measurable.

(ii) g(t, s, x, y) is locally Lipschitz continuous in x and y, uniformly in (t, s) ∈
[0,∞)× [−h, 0], i.e., there exist positive constants L0, L1(r) and L2 such that

|g(t, s, x, y)− g(t, s, x̂, ŷ)| ≤ L1(r)|x− x̂|+ L2||y − ŷ||,

for all (t, s) ∈ [0,∞)× [−h, 0], y, ŷ ∈ V , |x| ≤ r and |x̂| ≤ r.
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(iii) There exists a real number L0 such that

|g(t, s, x, y)| ≤ L0(1 + |x|+ |y|), |g(t, s, 0, 0)| ≤ L0,

for any (t, s) ∈ [0,∞)× [−h, 0], x ∈ H, and y ∈ V.

Remark 3.1. The above operator g is the semilinear case of the nonlinear part of
quasilinear equations considered by Yong and Pan [1].

For x ∈ L2(−h, T ;V ), T > 0 we set

G(t, x) =

∫ 0

−h
g(t, s, x(t), x(t+ s))µ(ds). (3.2)

Here, as in [1] we consider the Borel measurable corrections of x(·).
Let U be a Banach space and the controller operator B be a bounded linear

operator from the Banach space L2(0, T ;U) to L2(0, T ;H).

Lemma 3.1. Let x ∈ L2(−h, T ;V ), T > 0 and ||x||C([0,T ],H) ≤ r. Then the nonlinear
term G(·, x) defined by (3.2) belongs to L2(0, T ;H) and

‖G(·, x)‖L2(0,T ;H) ≤ µ([−h, 0])
{
L0

√
T + (L1(r) + L2)‖x‖L2(0,T ;V ) + L2‖g1‖L2(−h,0;V )

}
(3.3)

Moreover, if x1, x2 ∈ L2(−h, T ;V ), then

‖G(·, x1)−G(·, x2)‖L2(0,T ;H) ≤ µ([−h, 0])

×
{

(L1(r) + L2)‖x1 − x2‖L2(0,T ;V ) + L2‖x1 − x2‖L2(−h,0;V )

}
(3.4)

Proof. From (ii) of Assumption (F), it is easily seen that

‖G(·, x)‖L2(0,T ;H) ≤ µ([−h, 0])
{
L0

√
T + L1(r)‖x‖L2(0,T,V ) + ‖x‖L2(−h,T,V )

}
≤ µ([−h, 0])

{
L0

√
T + (L1(r) + L2)‖x‖L2(0,T,V ) + L2‖x‖L2(−h,0;v)

}
.

The proof of (3.4) is similar.

From now on, we establish the following results on the local solvability of (3.1)
represented by {

x
′
(t) + Ax(t) = G(t, x) + k(t), t ∈ (0, T ]

x(0) = g0, x(s) = g1(s), s ∈ [−h, 0].
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Theorem 3.1. Let Assumption (F) be satisfied. Assume that (g0, g1) ∈ H ×
L2(−h, 0;V ), k ∈ L2(0, T ;V ∗). Then, there exists a time T0 ∈ (0, T ) such that
the equation (3.1) admits a solution

x ∈ L2(−h, T0;V ) ∩W 1,2(0, T0;V
∗) ⊂ C([0, T0];H). (3.5)

Proof. For a solution of (3.1) in the wider sense, we are going to find a solution of
the following integral equation

x(t) = S(t)g0 +

∫ t

0

S(t− s){G(s, x) + k(s)}ds. (3.6)

To prove a local solution, we will use the successive iteration method. First, put

x0(t) = S(t)g0 +

∫ t

0

S(t− s)k(s)ds

and define xj+1(t) as

xj+1(t) = x0(t) +

∫ t

0

S(t− s)G(·, xj)ds. (3.7)

By virtue of Lemma 2.3, we have x0(·) ∈ W1(t), so that

||x0||W1(t) ≤ C1(|x0|+ ||k||L2(0,t;V ∗)),

where C1 is a constant in Lemma 2.3. Choose r > C1M
−1
0 (|x0|+||k||L2(0,t;V ∗)), where

M0 is the constant of (2.5). Putting p(t) =
∫ t
0
S(t−s)G(·, x0)ds, by (2.11) of Lemma

2.4, we have

||p||L2(0,t;V ) ≤ C2

√
t||G(·, x0)||L2(0,t;H)

≤ C2

√
t
{
µ([−h, 0])L0

√
t+ (L1(r) + L2)‖x‖L2(0,T ;V ) + L2‖g1‖L2(−h,0;V )

}
= C2µ([−h, 0])L0t+ C2µ([−h, 0])

[
(L1(r) + L2)‖x‖L2(0,T ;V ) + L2‖g1‖L2(−h,0;V )

]√
t.

(3.8)

So that, from(3.5) and (3.6),

||x1||L2(0,t;V )

≤ r + C2µ([−h, 0])t+ C2µ([−h, 0]){(L1(r) + L2)‖x‖L2(0,T ;V ) + L2‖g1‖L2(−h,0;V )}
√
t

≤ 3r
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for any

m = min{r(C2µ([−h, 0]))−1,

r{(C2µ([−h, 0]))
(
(L1(r) + L2)‖x‖L2(0,T ;v) + ‖g1‖L2(−h,0;V )

)
}−2},

0 ≤ t ≤ m. By induction, it can be shown that for all j = 1, 2, ...

||xj||L2(0,t;V ) ≤ 3r, 0 ≤ t ≤ m. (3.9)

Hence, from the equation

xj+1(t)− xj(t) =

∫ t

0

S(t− s){G(t, xj)−G(t, xj−1)}ds

From (2.11), (3.7) and Assumption (F), we can observe that the inequality

||xj+1 − xj||L2(0,t;V ) ≤ C2

√
t||G(·, xj)−G(·, xj−1)||L2(0,t;H)

≤
{
C2µ([−h, 0])(L1(3r) + L2)

√
t
}j

j!
||x1 − x0||L2(0,t;V )

holds for any 0 ≤ t ≤ m. Choose T0 > 0 satisfying

T0 < min{m, {C2µ([−h, 0])(L1(3r) + L2)}−2}. (3.10)

Then {xj} is strongly convergent to a function x in L2(0, T0;V ) uniformly on 0 ≤
t ≤ T0. By letting j →∞ in (3.7), we obtain (3.6). Next, we prove the uniqueness
of the solution. Let ε > 0 be given. For ε ≤ t ≤ T0, set

xε(t) = S(t)g0 +

∫ t−ε

0

S(t− s){G(s, xε) + k(s)}ds. (3.11)

Then we have xε ∈ W1(T0) and for xε, yε ∈ Br(T0) which is a ball with radius r in
L2(0, T0;V ), since

x(t)− xε(t) =

∫ t

0

S(t− s){G(s, x)−G(s, xε)}ds

+

∫ t

t−ε
S(t− s){G(s, xε) + k(s)}ds,

with aid of Lemma 2.4,

||x− xε||L2(0,T0;V ) ≤ C2µ([−h, 0])(L1(r) + L2)
√
T0||x− xε||L2(0,T0;V )

+ C2

√
εµ([−h, 0]){(L0

√
T 0 + (L1 + L2)||x||L2(0,T0;V ) +

√
T 0||k||L2(0,T0;H)}.
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we have xε → x as ε→ 0 in L2(0, T0;V ). Suppose y is another solution of (3.1)
and yε is defined as (3.11) with the initial data (g0, g1). Let xε, yε ∈ Br. Then From
Lemma 2.2, it follows that

||xε − yε||L2(0,T0;V ) ≤
[ ∫ T0

0

||
∫ s−ε

0

S(s− τ){(G(·, xε)−G(·, yε))}dτ ||2ds
]1/2

≤M
[ ∫ T0

0

( ∫ s−ε

0

(s− τ)−1/2|G(·, xε)−G(·, yε)|dτ
)2
ds
]1/2

≤Mµ([−h, 0])L1(r)
[ ∫ T0

0

∫ s−ε

0

(s− τ)−1dτ

∫ s−ε

0

||xε(τ)− yε(τ)||2dτds
]1/2

≤Mµ([−h, 0])L1(r) log
T0
ε

∫ T0

0

||xε − yε||L2(0,s;V )ds,

so that by using Gronwall’s inequality, independently of ε, we get xε = yε in
L2(0, T0;V ), which proves the uniqueness of solution of (3.1) in W1(T0).

From now on, we give a norm estimation of the solution of (3.3) and establish
the global existence of solutions with the aid of norm estimations.

Theorem 3.2. Under the Assumption (F) for the nonlinear mapping G, there exists
a unique solution x of (3.1) such that

x ∈ W1(T ) ⊂ C([0, T ];H). (3.12)

for any (g0, g1) ∈ H × L2(0, T ;V ), k ∈ L2(0, T ;V ∗). Moreover, there exists a
constant C3 such that

||x||W1 ≤ C3(|x0|+ ||k||L2(0,T ;V ∗)), (3.13)

where C3 is a constant depending on T .

Proof. Let y ∈ Br be the solution of the following linear functional differential
equation parabolic type;{

y
′
(t) + Ay(t) = k(t), t ∈ (0, T1].

y(0) = g0.

Let the constant T1 satisfy (3.10) and the following inequality:

C0C1(
T1√

2
)
1
2µ([−h, 0])(L1(r) + L2) < 1. (3.14)
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Then we have{
d(x− y)(t)/dt+ A((x− y)(t)) = G(t, x), t ∈ (0, T1].

(x− y)(0) = 0.

Hence, in view of (F) and Lemmas 2.3 and 3.1,

||x− y||L2(0,T1;D(A))∩W 1,2(0,T1;H) ≤ C1||G(·, x)||L2(0,T1;H)

≤ C1µ([−h, 0])
{
L0

√
T1 + (L1(r) + L2)‖x‖L2(0,T1;V ) + L2‖g1‖L2(−h,0;V )

}
≤ C1µ([−h, 0])(L1(r) + L2)

(
||x− y||L2(0,T1:V ) + ||y||L2(0,T1;V )

)
+ C1µ([−h, 0])

(
L0

√
T1 + L2‖g1‖L2(−h,0;V )

)
.

Thus, by the above inequality and arguing and (2.3),

||x− y||L2(0,T1;V ) ≤ C0||x− y||
1
2

L2(0,T1;D(A))||x− y||
1
2

L2(0,T1;H)

≤ C0||x− y||
1
2

L2(0,T1;D(A)){
T1√

2
||x− y||W 1,2(0,T1;H)}

1
2

≤ C0(
T1√

2
)
1
2 ||x− y||L2(0,T1;D(A))∩W 1,2(0,T1;H)

≤ C0(
T1√

2
)
1
2

{
C1µ([−h, 0])(L1(r) + L2)||y||L2(0,T1;V )

+ C1µ([−h, 0])
(
L0

√
T1 + L2‖g1‖L2(−h,0;V )

)}
+ C0C1(

T1√
2

)
1
2µ([−h, 0])(L1(r) + L2)||x− y||L2(0,T1:V ).

Therefore, since

||x− y||L2(0,T1;V ) ≤
C0C1(

T1√
2
)
1
2µ([−h, 0])(L1(r) + L2)

1− C0C1(
T1√
2
)
1
2µ([−h, 0])(L1(r) + L2)

||y||L2(0,T1;V )

+
C0C1(

T1√
2
)
1
2µ([−h, 0])

(
L0

√
T1 + L2‖g1‖L2(−h,0;V )

)
1− C0C1(

T1√
2
)
1
2µ([−h, 0])(L1(r) + L2)

,

we have

||x||L2(0,T1;V ) ≤
1

1− C0C1(
T1√
2
)
1
2µ([−h, 0])(L1(r) + L2)

||y||L2(0,T1;V )

C0C1(
T1√
2
)
1
2µ([−h, 0])

(
L0

√
T1 + L2‖g1‖L2(−h,0;V )

)
1− C0C1(

T1√
2
)
1
2µ([−h, 0])(L1(r) + L2)

,
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and hence, with the aid of (2.8) in Lemma 2.3 and Lemma 3.1, we obtain

||x||L2(0,T1;V )∩W 1,2(0,T1;V ∗) (3.15)

≤C1(|g0|+ ||G(·, x)||L2(0,T1;V ∗) + ||k||L2(0,T1:V ∗))

≤C1

[
|g0|+ µ([−h, 0])

{
L0

√
T1 + (L1(r) + L2)‖x‖L2(0,T1;V ) + L2‖g1‖L2(−h,0;V )

}
+ ||k||L2(0,T1:V ∗)

]
≤C3(|g0|+ ||k||L2(0,T1:V ∗)).

for some constant C3. Now from (2.5) and (3.15), it follows that

|x(T1)| ≤ ||x||C([0,T1];H) ≤M0C3(|g0|+ ||k||L2(0,T1;V ∗)). (3.16)

So, we can solve the equation in [T1, 2T1] with the initial data (x(T1), xT1), and
obtain an analogous estimate to (3.15). Since the condition (3.14) is independent of
initial values, the solution of (3.1) can be extended the internal [0, nT1] for a natural
number n, i.e., for the initial u(nT1) in the interval [nT1, (n + 1)T1], as analogous
estimate (3.15) holds for the solution in [0, (n+ 1)T1].

By the similar way to Theorems 3.1 and 3.2, we also obtain the following results
for (3.1) under Assumption (F) corresponding to 1) of Lemma 2.3.

Corollary 3.1. Let (g0, g1) ∈ V ×L2(−h, 0;D(A)) and k ∈ L2(0, T ;H). Then there
exists a unique solution x of (3.1) such that

x ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V ).

Moreover, there exists a constant C3 such that

||x||L2(0,T ;D(A)∩W 1,2(0,T ;H) ≤ C3(||g0||+ ||k||L2(0,T ;H)),

where C3 is a constant depending on T .

4 Controllability for retarded systems

In this paper, we are concerned with the approximate controllability for the following
the semilinear control system with a control part Bu in place of k of (3.1):{

x
′
(t) + Ax(t) =

∫ 0

−h g(t, s, x(t), x(t+ s))µ(ds) + (Bu)(t), 0 < t ≤ T,

x(0) = g0, x(s) = g1(s) s ∈ [−h, 0).
(4.1)

Here, U is a Banach space of control variables, and B is an operator from U to
H, called controller. Let x(T ; g, u) be a state value of the system (4.1) at time T
corresponding to the nonlinear term g and the control u.
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Definition 4.1. The system (4.1) is said to be approximately controllable in the
time interval [0, T ] if for every desired final state x1 ∈ H and ε > 0 there exists a
control function u ∈ L2(0, T ;U) such that the solution x(T ; g, u) of (4.1) satisfies
|x(T ; g, u)− x1| < ε.

In order to obtain results of controllability, we need the stronger hypotheses than
Assumption (F) of Section 3:
Assumption (F1). g(t, s, x, y) satisfies Assumption (F) instead of (ii) to

(ii’) g(t, s, x, y) is locally Lipschitz continuous in x and y, uniformly in (t, s) ∈
[0,∞) × [−h, 0], i.e., there exists a constant L0, L1 = L1(r) > 0 and L2 such
that

|g(t, s, x, y)− g(t, s, x̂, ŷ)| ≤ L1|x− x̂|+ L2||y − ŷ||,

for all (t, s) ∈ [0,∞)× [−h, 0], y, ŷ ∈ V , |x| ≤ r and |x̂| ≤ r.

We define the linear operator Ŝ from L2(0, T ;H) to H by

Ŝp =

∫ T

0

S(T − s)p(s)ds for p ∈ L2(0,T; H).

Assumption (B). For any ε > 0 and p ∈ L2(0, T ;H) there exists a u ∈ L2(0, T ;U)
such that {

|Ŝp− ŜBu| < ε,

||Bu||L2(0,t;H) ≤ q||p||L2(0,t;H), 0 ≤ t ≤ T.

where q is a constant independent of p.
Assumption (H). We assume the following inequality condition:

(q + 1)
√
TC2µ([−h, 0])(L1 + L2) < 1.

Lemma 4.1. Let ui(i = 1, 2) be in L2(0, T ;U) and ||x(t; g, ui)||C([0,T ],H) ≤ r. Then
under the assumptions (F1) and (H), we have

||x(t; g, u1)− x(t; g, u2)||L2(0,T ;V )

≤
(
1−
√
TMµ([−h, 0])(L1 + L2)

)−1√
tM ||Bu1 −Bu2||L2(0,T ;H). (4.2)

for 0 ≤ t ≤ T .
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Proof. Putting p(t) =
∫ t
0
S(t−s){G(·, x(·; g, f, u1))−G(·, x(·; g, f, u2))}ds, by (2.11)

and Lemma 3.1, we have

||p||L2(0,t;V ) ≤
√
tC2µ([−h, 0])(L1 + L2)‖x1 − x2‖L2(0,T ;V ).

From that the solution of (4.1) is represented by

x(t; g, u) = S(t)g0 +

∫ t

0

S(t− s){G(s, x(·; g, u)) +Bu(s)}ds,

it follows (4.2).

Theorem 4.1. Under the assumptions (F1), (B) and (H), the system (4.1) is ap-
proximately controllable on [0, T ].

Proof. We will show that D(A) ⊂ RT (g), i.e., for given ε > 0 and ξT ∈ D(A) there
exists u ∈ L2(0, T ;U) such that

|ξT − x(T ; g, u)| < ε,

where

x(T ; g, u) = S(T )g0 +

∫ T

0

S(T − s){G(s, x(·; g, u)) +Bu(s)}ds.

As ξT ∈ D(A) there exists a p ∈ L2(0, T ;H) such that

Ŝp = ξT − S(T )g0,

for instance, take p(s) = (ξT − sAξT )−S(s)g0/T . Let u1 ∈ L2(0, T ;U) be arbitrary
fixed. Since by Assumption (B) there exists u2 ∈ L2(0, T ;U) such that

|Ŝ(p−G( · , x( · ; g, u1)))− ŜBu2| <
ε

4
,

it follows
|ξT − S(T )g0 − ŜG( · , x( · ; g, u1))− ŜBu2| <

ε

4
. (4.3)

We can also choose w2 ∈ L2(0, T ;U) by Assumption (B) such that

|Ŝ(G( ·x( · ; g, u2))−G( ·x( · ; g, u1))− ŜBw2| <
ε

8
(4.4)

and
‖Bw2||L2(0,T ;H) ≤ q||G( · , x( · ; g, u1))−G( · , x( · ; g, u2))||L2(0,T ;H).
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Choose a constant r1 satisfying

||x( · ; g, u1)||C([0,t];H) ≤ r1, ||x( · ; g, u2)||C([0,t];H) ≤ r1.

For brevity, set

M̂ :=
(
1−
√
TC2µ([−h, 0])(L1 + L2)

)−1
M.

Therefore, in view of Lemma 3.1 and Assumption (B)

||Bw2||L2(0,T ;H) ≤ q||G( · , x( · ; g, u1))−G( · , x( · ; g, u2))||L2(0,T ;H) (4.5)

≤ qµ([−h, 0])(L1 + L2)||x(·; g, u2)− x(·; g, u1)||L2(0,T ;V )

≤ qµ([−h, 0])(L1 + L2)M̂
√
T ||Bu2 −Bu1||L2(0,T ;H).

Put u3 = u2 − w2. We determine w3 such that

|Ŝ(G( · , x( · ; g, u3))−G( · , x( · ; g, u2)))− ŜBw3| <
ε

8
,

||Bw3||L2(0,T ;H) ≤ q||G( · , x( · ; g, u3))−G( · , x( · ; g, u2))||L2(0,T ;H).

Let r2 be a constant satisfying r2 ≥ r1 and

||x( · ; g, u3)||C([0,t];H) ≤ r2.

Then, in a similar way to (4.5) we have

||Bw3||L2(0,T ;H) ≤ q||G( · , x( · ; g, u3))−G( · , x( · ; g, u2))||L2(0,T ;H)

≤ qµ([−h, 0])(L1 + L2)||x(·; g, u3)− x(·; g, u2)||L2(0,T ;V )

≤ qµ([−h, 0])(L1 + L2)M̂
√
T ||Bu3 −Bu2||L2(0,T :H)

≤ qµ([−h, 0])(L1 + L2)M̂
√
T ||Bw2||L2(0,T ;H)

≤ (qµ([−h, 0])(L1 + L2)M̂
√
T )2||Bu2 −Bu1||L2(0,T ;H).

By proceeding this process, it holds

||B(un − un+1)||L2(0,T ;H) = ||Bwn||L2(0,T ;H)

≤ (qµ([−h, 0])(L1 + L2)M̂
√
T )n−1||Bu2 −Bu1||L2(0,T ;H).

Here, noting that Assumption (H) is equivalent to

qµ([−h, 0])(L1 + L2)M̂
√
T < 1,
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it follows that there exists u∗ ∈ L2(0, T ;H) such that

lim
n→∞

Bun = u∗ in L2(0, T ;H).

From (4.3), (4.4) it follows that

|ξT − S(T )g − ŜG(·, x(·; g, u2))− ŜBu3|
=
∣∣ξT − S(T )g − ŜG(·, x(·; g, u1))− ŜBu2 + ŜBw2

− Ŝ[G(·, x(·; g, u2))−G(·, x(·; g, u1))]
∣∣

< (
1

22
+

1

23
)ε.

By choosing wn ∈ L2(0, T ;U) by the assumption (B) such that

|Ŝ
(
G( · , x( · ; g, un))−G( · , x( · ; g, un−1))

)
− ŜBwn| <

ε

2n+1
,

putting un+1 = un − wn, we have

|ξT − S(T )g0 − ŜG(·, x(·; g, un))− ŜBun+1|

< (
1

22
+ · · ·+ 1

2n+1
)ε, n = 1 2, · · ·.

Therefore, for ε > 0 there exists integer N such that

|ŜBuN+1 − ŜBuN | <
ε

2

and

|ξT − S(T )g0 − ŜG(·, x(·; g, uN))− ŜBuN |
≤ |ξT − S(T )g0 − ŜG(·, x(·; g, uN))− ŜBuN+1|+ |ŜBuN+1 − ŜBuN |

< (
1

22
+ · · ·+ 1

2N+1
)ε+

ε

2
≤ ε.

Thus, System (4.1) is approximately controllable on [0, T ].
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