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Dynamical Analyses of Communicability Structures in Complex 
Networks 

 

Ki Hong Shin 

Department of Physics, The Graduate School, 

Pukyong National University 

Abstract 

본 연구는 한국물리학회(Korean physical society)의 새물리, 한국기상학회(Korean 

meteorological society)의 발표회 저자들을 추출하여 미시적 및 중시적 사회구조에 

관하여 수행한 연구이다. 이론적으로 고전, 양자적 진동자를 도입하여 사회 

네트워크에서 온도가 높아짐에 따라 사회성 함수 (communicability function) 을 

시뮬레이션하여 분석하였다. 양자적 진동자 네트워크에 대한 사회구조는 온도에 

비례하지 않는 반면, 온도의 변화는 고전적 진동자 네트워크의 구조에 선형적으로 

영향을 준다. 특히 중시적 사회구조에서 집단들 사이의 사회성등을 비교분석하였다. 
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1. Introduction 

Over the two decades, the study of networks has generated crucial 

interest, as the researchers have treated various applications in scientific 

areas. This has particularly been emerged many topics as one of the 

important frameworks when each researcher analyzed the method and its 

technique in complex systems [1-4]. An important property of networks is 

included the existence of communities, and the communicability between a 

pair of nodes in a network is concerned with the shortest path connecting 

both nodes. Estrada et. al. [5] have proposed generally the community 

structure by elucidating for the shortest paths and all the other walks. The 

communicability allows one to determine potentially the hidden and 

unknown relations between nodes. Furthermore, we may describe to reduce 

and analyze a large group into smaller and smaller groups, and to relate 

between one large group and other large groups. In the issues of the 

macroscopic community, several researchers have studied statistical metrics 

such as the entropy, natural connectivity, total energy, free energy, and 

bipartivity in order to present the overall society structure [5]. The 

macroscopic, mesoscopic, and microscopic community structures within the 

investigation of networks will be an open subject of great interest in the 

future.  

Complex networks are also ubiquitous in many biological, ecological, 

technological, informational, and infrastructural systems [6–12]. It is clear 

that the atomic, oscillating, and social systems display network-like 

structures using the tools of statistical mechanics. These methods and 

techniques were contributed to shed light on the structure and dynamics of 
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applied systems [13-15]. It is actually recognized that the analogy functions 

describing the properties depend mainly on the structural properties of the 

system in networks. An important issue in regards to networks has recently 

been the cascade effect in both the ecological network and the multiplex 

network. The former propagates well beyond the nearest neighbors of the 

extinguished species [16-18] with protein–protein interactions. The latter 

describes the fact that multiplex structures with different strength of 

coevolution respond differently to the cascade process, exemplifying the 

dynamical signature that coevolution can imprint [19]. 

The viewpoint of community structure is the advantage that it allows 

the effect of a selective temperature under study. The community structure 

for network of quantum oscillators changes non-trivially with temperature, 

while the change of temperature affects linearly the structure of quantum 

network. We can provide some important results giving evolutionary 

information, as the communicability functions in the community structure 

are investigated. The difference between intra-cluster and inter-cluster 

communicability is also calculated in mesoscopic community structure, and 

this is the statistical quantity estimated the community structure between 

two societies. 

In this paper, we study the macroscopic and mesoscopic 

communicability in author networks. Data is extracted from papers in the 

talk and poster sessions of the Korean meteorological society (KMS) from 

March 2008 to November 2013 and in Saemulli of the Korean physical 

society (KPS) from January 2003 to December 2014. In Section II, we treat in 

detail the theoretical methods of mesoscopic and microscopic 

communicability in networks. We perform the numerical calculation and 

give its result in Section III. Our main results are summarized in Section IV. 
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II. Communicabilities in networks 

 

 

In this section, we mainly consider the theoretical method of 

microscopic and mesoscopic communicabilities in networks. First of all, let 

us introduce the concept of communicability in networks by describing a 

community structure. Stating point of a network is a sequence of nodes n0, 

n1, . . . ,nk−1, nk  such there is a link from ni−1 to ni for i= 1, 2, . . . , k[20]. Using 

the concept of link, we can define the communicability between two nodes, p 

and q. The communicability function [4] is represented in terms of

0

( )k

pq k pq

k

G c A




 . Here, A is the adjacency matrix, which has unity if the nodes p 

and q are linked to each other, and has zero otherwise. The adjacency matrix 

(Ak)pq gives the number of length k starting at the node p and ending at the 

node q [17,18]. The communicability function [19] is calculated as 

 

0

( )
( )

!

k

pqEA A

pq pq

k

A
G e

k





   .                     (1) 

 

The communicability function Gpq is obtained by using the weighted 

adjacency matrix W=(Wij)n×n. The centrality measures were originally 

introduced in social sciences [20,21] and widely used in the whole field of 

complex network analysis [9]. We can derive the communicability function as  

 
2 ( )RA

pq pqG Km G                           (2) 

 

with the identification α = 1/K. Here, the correlation between two nodes in a 

network structure is given by 

 

1

2

1
( ) [1 ( / ) ]pq pqG A K

Km


 

  .                   (3) 

From the fact that the Laplacian matrix of a connected network has a non-

zero eigenvalue, we can calculate another correlation function as 
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2

1
( ) ( )D

pq pqG L
Km


 

 ,                       (4) 

 

Where L+  is the Moore–Penrose generalized inverse of the Laplacian.  

In a quantum oscillator, we consider the quantum-mechanical 

counterpart of the Hamiltonian HA. After arranging several equations, we can 

see that 

 

exp( ) ( )EA A

pq pqG G   .                         (5) 

 

The diagonal thermal Green’s function is given in the framework of quantum 

mechanics, and we can compute the thermal Green’s function as 

 
2

( ) exp( )(exp[ ])
2

A

pq pqG A
 

   


.                   (6) 

 

Note that when the temperature tends to infinity or β → 0, there is no 

communicability between any pair of nodes. That is, ( 0)EA

pqG   = 0. If we 

consider the case when the temperature tends to zero or β→ ∞, then there is 

an infinite communicability between every pair of nodes, i.e., ( )A

pqG   = ∞. 

Furthermore, the communicability function is represented in terms of 

 

( ) ( ) 1EL L

pq pqG G   ,                       (7) 

 

where the quantum-mechanical calculation by using the Hamiltonian HL in 

Eq. (5) is calculated as 

 
2

( ) (exp[ ])
2

L

pq pqG L
 

  


.                     (8) 

 

From Eqs. (7) and (8), the communicability function EL

pG gives ( ) 1L

pqG    upon 

setting βhω2= 2Ω [4]. Lastly, we simulate and analyze the averaged 

communicability function for a given node defined as 
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1

1

n

p pq

q p

G G
n 



 .                          (9) 

 

Consequently, the communicability functions RA

pqG  and D

pqG  become the 

types of the thermal Green’s function of classical harmonic oscillators in 

networks of the community structure. The communicability functions ( )EA

pqG 

and ( )EL

pqG   also become the types of the thermal Green’s function in 

quantum harmonic oscillators. From Eq. (9), RA

pG , 1/ D

pG , EA

pG , and EL

pG are, 

respectively, the averaged communicability function of RA

pqG , 1/ D

pqG , EA

pqG , and 

EL

pqG .  

In mesoscopic communicability of networks, the community structure 

has become one of the most intensive areas of interdisciplinary research in 

this field [22,23]. In order to analyze the communicability of mesoscopic 

level, we recall the community structure of complex networks from the sign 

separation of the communicability function. The community function used by 

Estrada and Hatano [5] is represented in terms of 

 

, ,1,

1, 1, , , , ,

2 2

( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ]j A j AAEA

pq A A j A j A j A j A

j n j n

G p q e p q e p q e
 

      
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   

   
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2 2
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j n j n

p q e p q e
 
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 

   

  
               

(10) 

 

where 


 represents the summation over the terms with both ϕj,A(p) and 

ϕj,A(q) positive, 


 represents the summation over the terms with ϕj,A(p) 

positive and ϕj,A(q) negative, and so on. 
The network consists of several clusters of connected nodes forming 

distinguishable communities which are relatively poorly connected to each 
other. The main difference between intra-cluster and inter-cluster 
communicabilities can be calculated as follows: 
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1,

1, 1,( ) ( ) AEA

pq A AG G p q e


     

1, 1,

intra inter

1, 1, 1, 1,

1 1

( ) ( ) | ( ) ( ) |A A

A A A A

j j

p q e p q e
 

   
 

   ,    (11) 

 
where intra (inter) denotes intracluster (intercluster). 

Next, the modularity is a value of a community structure that is the 

number of edges falling within groups minus the expected number in an 

equivalent network with edges placed at random [24]. This is represented in 

terms of 

 


 











N

i

ji

N

j

ji

ij ss
m

kk
A

m
Q

1 1 24

1 ,                    (12) 

 
where 1is  if the node i exists in a group, and 1is  if the node I does not 

exist in another group. The quantity 𝐴𝑖𝑗  is the number of edges between 

vertices i and j and will normally be 0 or 1, although larger values are 
possible in networks where multiple edges are allowed. The expected 
number of edges between i and j when edges are placed at random is kikj/2m, 

where 𝑘𝑖 𝑎nd kj are the degrees of the vertices, and 



N

i

ikm
12

1 is the total 

number of edges in the network. As the modularity goes to a larger value, the 
system extends to a network that is more modularized or become a richer 
community structure. 

We will make use of averaged communicability functions in a 

microscopic community and other metrics to compute the measures of a 

mesoscopic community structure. These statistical quantities will lead us to 

more general results and predictions in the future. From calculated results, 

we consider that the analysis of communicability functions and other metrics 

is very useful and rewarding in the community structure.  

 
 

 

 

 

III. Numerical calculations and results 
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Fig.1:Averaged communicability function 
EA

pG  from β=1 to 0.01 in the KMS. These values 

are displaced upward by 1.0 unit each in order to provide better visibility. 
 

 

 
 

Fig.2: Averaged communicability function 
EL

pG  from β=1 to 0.01 in the KMS. These values 

are displaced upward by 1.0 unit each in order to provide better visibility. 
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Fig.3: Averaged communicability function 
EA

pG  from β=1 to 0.01 in the Saemulli of the KPS. 

These values are displaced upward by 1.0 unit each in order to provide better visibility. 
 

 
 

Fig.4: Averaged communicability function 
EL

pG  from β=1 to 0.01 in the Saemulli of the KPS. 

These values are displaced upward by 1.0 unit each in order to provide better visibility. 
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Fig. 5: Number of communities as a function of the number of papers from β=1 to 0.01 in the 

KMS and the Saemulli of the KPS. 
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Fig. 6:ΔG as a function of the number of papers from β=1 to 0.01 in the KMS and the 

Saemulli of the KPS. 

 

 

 

 

 
Fig. 7: Number of communities (left) and modularity (right) as a function of the number of 

papers in the KMS and the Saemulli of the KPS. 
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Table 1:  Values of the sum of degrees Ds, the weight of community Wc, and the number of 

published papers Nc, and the averaged communicability functions. Here, the averaged 

communicability functions have the maximum value (one) for first rank author, respectively. 

This is the data for authors of (a) the Korean meteorological society and (b) Saemulli of KPS 

publications in the author network at β=1. 

(a) KMS 

Sequential 
order of 
authors 

Ds Wc Nc 
EA

pG  
RA

pG  
EL

pG  1/ D

pG  

1 135.9767 32.5395 190 1 1 1 1 

100 13.366 4.931 20 0.1448 0.112 0.9995 5.6197 

200 8.481 1.2177 12 0.0851 0.0703 0.9967 8.6968 

300 6.1595 2.65 9 0.0022 0.0425 0.9806 13.9951 

400 4.5265 3.2 7 0.0014 0.0296 0.9671 18.2785 

500 3.6682 1.7333 5 0.0004 0.0246 0.953 21.5809 

600 3.0173 0.5667 4 0.0049 0.0201 0.9248 27.2853 

700 2.4364 0.7429 4 0.0001 0.0157 0.8811 33.449 

800 2.0921 0.5833 3 0.0075 0.0146 0.838 61.1628 

900 1.6667 0.2679 3 0.0001 0.0109 0.7561 56.0115 

1000 1.4643 0.3333 2 0.0019 0.0102 0.757 46.8707 

 

(b) Saemulli of KPS 

Sequential 
order of 
authors 

Ds Wc Nc 
EA

pG  
RA

pG  
EL

pG  1/ D

pG  

1 26.6222 11.1667 37 1 1 1 1 

100 6.1239 2.1389 10 0.3572 0.274 0.9817 3.1066 

200 4.0762 1.2468 7 0.0389 0.162 0.9443 7.0265 

300 3.1682 1.1333 5 0.0347 0.11 0.9377 6.9127 

400 2.5333 0.7774 4 0.0084 0.0949 0.868 8.8308 

500 2.131 1.3167 3 0.0034 0.0745 0.8146 12.3472 

600 1.7574 0.9167 3 0.1708 0.0805 0.8154 7.6484 

700 1.5556 0.5833 2 0.0005 0.0498 0.727 7.1131 

800 1.4643 0.9167 2 0.0003 0.0458 0.6905 5.7709 

900 1.3333 0.7333 2 0.0015 0.0443 0.6634 16.1744 

1000 1.1667 0.3667 2 0.0004 0.0367 0.6172 32.6687 
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In order to simulate and analyze the communicability structure, the first 

type of data is extracted 2684 papers for 1943 authors in the talk and poster 

sessions of Korean meteorological society from March 2008 to November 

2013. Second type of data is extracted 1983 papers for 2636 authors 

published of Saemulli in the Korean physical society from January 2003 to 

December 2014. We assume that it only takes an equally contributed weight 

between all authors in one published paper.  

Figures 1 and 2 plot the averaged communicability functions EA

pG  and 

EL

pG  in the KMS, respectively, as the temperature increases to β = 0.1from 

β=1. While Fig. 1 has the higher communicability function achieved by 

authors within 200 ranks, Fig. 2 has the higher communicability function 

achieved by authors within 1,200 ranks. We find that the gap change of EL

pG

shows more difference than that of EL

pG . It is however noted that our result 

has the better communicated persons in community structures only 

surpassed by the higher persons at the level of lower temperature.  

In Figs. 3 and 4, the averaged communicability functions EA

pG  and EL

pG  

in the Saemulli of KPS are, respectively, showed at four different 

temperatures. The averaged communicability functions EA

pG and EL

pG  in 

Saemulli of KPS is appeared similar to those of the KMA (Figs. 1 and 2). The 

gap change of EL

pG  in Saemulli of KPS shows notoriously larger difference 

rather than that of KMA. 

In Fig. 5, we show the number of communities as a function of the 

number of papers from β=1 to 0.01 in the KMS and the Saemulli of the KPS. 

We expect that the number of communities increases relatively as the 

number of papers increases, but the number of communities appear no 

change except the Saemulli at β=0.01 and 0.1. That is, the number of 

communities increases notoriously near 1,500 papers in the Saemulli of KPS 

at β=0.01 and 0.1.  

Figure 6 plots ΔG as a function of the number of papers in the KMS and 

the Saemulli of the KPS. From the viewpoint of mesoscopic structure, the 

Saemulli of KPS the ΔG appears no linearity at β=0.3, but the ΔG increases 

linearly at β=1.0.   
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Figure 7 plots the number of communities and modularity as a function 

of the number of papers in the KMS and the Saemulli of the KPS. To compare 

two societies, we find the more number of communities in the Saemulli 

rather than in the KMS. The modularity has larger values in the Saemulli of 

the KPS as well. As shown in Fig. 7, the values of modularity over 200 

(number of papers) has a decreasing trend, and the modularity of two 

societies has a larger value rather than the generic value of random data.  

In the Korean meteorological society and (b) Saemulli of KPS 

publications of the author network at β=1, Table 1 summarizes values of the 

sum of degrees Ds, the weight of community Wc, and the number of published 

papers Nc, and the averaged communicability functions. The averaged 

communicability functions of each author have relative values from 

normalized maximum value (one) of first ranked author. 

 

 

 

 

IV. Summary 
 

 

We have studied the microscopic and mesoscopic community structures 

in the two Korean scientific societies. As well-known, the community 

structure for the network of quantum oscillators changes non-trivially with 

temperature, while the change of temperature affects linearly the structure 

of classical network. Particularly, the difference between intra-cluster and 

inter-cluster communicability is calculated in mesoscopic community 

structure.  

It is expected that our result may be cultivated the better communicated 

persons having potential ability surpassed by the excellent and brilliant 

persons of higher rank at the level of lower temperature. We may provide 

some important results giving evolutionary information, as the microscopic 

and mesoscopic community structures are investigated. 

We emphasize that our result can be very useful for studying phase 

transitions as our numerical results is compared with others. In the future, 

the universal and irregular properties would like to find from our and other 
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networks. As future works, we are planning to investigate extensively the 

dynamical behavior of systems in other community.  

In our community structures of two societies on the basis on the 

communicability functions, it is not simple to make the novel community 

structure as the number of authors (or papers) increases more and more, 

and we may consider our structure as the analytical method of a 

conservative viewpoint. In next time, we hope to discuss the phase transition 

of the averaged communicability functions, with network systems of other 

societies. The scientific field of community structure in complex systems is 

small but still growing. It opens up mesoscopic community structure to a 

vast range of brain and neuron systems. Therefore, further work is needed 

for the case with societies of more than the author and citation networks 

[25-27]. In the next time, we hope to discuss the phase transition of the 

averaged communicability functions, with network systems of other 

societies. The result of our analysis can be extended to both the 

discrimination and the characterization of communicability functions in 

other various societies. 
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